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Abstract
Novelty is a key driver of innovation, acting as the
catalyst that propels advancements across various
domains, including technology, economics, and
artificial intelligence. This paper explores how
novelty influences innovation within Multi-Agent
Systems (MAS) using Reinforcement Learning
(RL) frameworks. By categorizing novelty into
two components—Curiosity and Diversity—we
examine their impact on exploration and role spe-
cialization. We propose an integrated methodol-
ogy that combines Intrinsic Curiosity Modules
(ICM) and Diversity Control (DiCo), providing
insights into their interaction and contribution
to innovation. Experimental results in two dis-
tinct environments highlight how these novelty
components drive emergent behaviors, offering
implications for learning efficiency and system
robustness.

1. Introduction
Measuring novelty and its impact on innovation poses sig-
nificant challenges. Novelty is a multifaceted concept that
can manifest at individual and collective levels, influencing
both personal exploration and group dynamics. By dissect-
ing novelty into quantifiable components and tracking their
influence over time, we can better understand its role in
driving innovation within complex systems.

Multi-agent systems (MAS) have become increasingly im-
portant in artificial intelligence research, offering unique
insights into complex interactions, emergent behaviors, and
collective problem-solving. Recent advancements in multi-
agent systems, language models, and reinforcement learning
have opened new avenues for exploring creativity and inno-
vation in artificial systems (Lazaridou et al., 2016; Eecke
et al., 2023).

Agents operating within MAS can exhibit behaviors influ-
enced by novelty, leading to emergent innovation that mir-
rors real-world processes (Leibo et al., 2019). Reinforce-
ment Learning (RL) provides the tools for agents to learn
and adapt based on interactions with their environment, mak-
ing it an ideal framework for modeling and measuring the
influence of novelty on innovation.

Innovation drives technological and societal progress, with
novelty as its cornerstone. However, understanding and
quantifying novelty’s role in fostering innovation in artifi-
cial systems remains challenging. This research investigates
novelty in Multi-Agent Systems (MAS), where agents in-
teract and adapt, simulating complex systems. Using Rein-
forcement Learning (RL), we measure how curiosity and
diversity—two key aspects of novelty—affect individual

and collective behaviors. Specifically, this research aims to
answer the question: How does novelty, quantified through
curiosity and diversity, influence innovation in Multi-Agent
Systems (MAS) using Reinforcement Learning (RL). The
findings aim to bridge gaps in modeling innovation and
provide tools for analyzing emergent intelligence.

2. Literature Review
2.1. The Role of Novelty in Innovation

Novelty search has been widely recognized as a key driver
of innovation, stimulating exploration and the discovery
of new knowledge or strategies. In the context of MAS
and RL, novelty search algorithms encourage agents to ex-
plore the state-action space beyond the objective of reward
maximization (Aydeniz et al., 2023). Recent studies have ap-
plied novelty search to address the exploration-exploitation
dilemma in RL, demonstrating its effectiveness in avoid-
ing local optima and promoting the discovery of diverse
behaviors (Ecoffet et al., 2021).

Novelty is inherently linked to innovation, representing the
introduction of new elements—ideas, products, or behav-
iors—that differ from existing ones. Studies in innova-
tion diffusion within multi-agent systems have provided
valuable insights into how new ideas and behaviors spread
through agent interactions (Ting, 2006; Zhang & Vorob-
eychik, 2019). These studies underscore the potential of
multi-agent systems to model and analyze the dynamics of
innovation diffusion, contributing to our understanding of
how innovative behaviors emerge and propagate in decen-
tralized environments. This research focuses on the interplay
between individual curiosity and group diversity, two facets
of novelty, to model innovation diffusion in MAS.

2.2. Measuring Novelty: Curiosity and Diversity

Novelty can be characterised through two distinct compo-
nents that reflect both individual and collective aspects of
innovation: Curiosity and Diversity. These components
were chosen based on their relevance to both biological and
artificial systems. Curiosity, inspired by cognitive models
of learning, drives individual agents to explore new and
unfamiliar states, enhancing their ability to discover novel
solutions (Berlyne, 2014). Techniques such as Intrinsic Cu-
riosity Modules (ICM) (Pathak et al., 2017) and Random
Network Distillation (RND) (Burda et al., 2018) provide
methods for incorporating curiosity into RL agents.

Diversity, on the other hand, promotes a range of behaviors
across agents, preventing homogenization and encouraging
the exploration of varied strategies. Methods like promoting
behavioral diversity (Parker-Holder et al., 2020) and sharing
novel experiences among agents (Gerstgrasser et al., 2024)
enhance group novelty within MAS. Measuring diversity



can be achieved through metrics such as System Neural
Diversity (SND) (Bettini et al., 2024b), which quantifies the
behavioral differences among agent policies.

This combination allows us to study how individual explo-
ration and group heterogeneity contribute to the emergence
of innovative behaviors in multi-agent systems.

2.3. Multi-Agent Systems and Reinforcement Learning

Multi-agent systems consist of autonomous agents which
observe their environment, reason about their actions, and
interact to accomplish shared goals. These interactions can
be competitive, collaborative, self-replicating, or mixed,
leading to diverse emergent behaviors and solutions (Baker
et al., 2020; y Arcas et al., 2024). Agents, termed adaptive
units, learn and adapt their strategies to benefit themselves
and their peers. These dynamics have been well documented
across various domains, including biology, economics, soci-
ology, and psychology.

Reinforcement Learning provides a framework for agents to
learn optimal behaviors through environment interaction. In
Multi-Agent Systems, RL enables agents to adapt not only
to the environment but also to other agents’ actions. This
framework allows us to study how curiosity-driven explo-
ration and diversity among agents contribute to innovation.

2.4. Motivation

Understanding the influence of novelty on innovation has
several practical implications:

• Enhancing Learning Efficiency: By promoting nov-
elty through curiosity and diversity, agents can dis-
cover innovative solutions more efficiently, leading to
improved problem-solving capabilities.

• Facilitating Cooperation and Role Specialization:
Diversity in agent behaviors can lead to better coopera-
tion strategies and role specialization in MAS, essential
for complex task completion (Bettini et al., 2024a).

• Increasing Interpretability: Tracking feature impor-
tance over time aids in understanding how agents pri-
oritize different novelty components, enhancing trans-
parency and explainability in AI systems.

• Emergent Behavior Understanding: Studying nov-
elty in MAS provides insights into how complex be-
haviors emerge from simple interactions, contributing
to our understanding of collective intelligence (y Arcas
et al., 2024).

3. Methodology
3.1. MADDPG Architecture for Multi-Agent

Reinforcement Learning

We adopt the Multi-Agent Deep Deterministic Policy Gradi-
ent architecture for training agents in cooperative environ-
ments (Lowe et al., 2020). MADDPG extends the DDPG
algorithm to handle multiple agents, enabling centralized
training with decentralized execution. Agents share a com-
mon critic network while maintaining separate actor net-
works, allowing them to learn individual policies that col-
lectively optimize a shared objective.

3.2. Intrinsic Curiosity Modules (ICM)

Intrinsic Curiosity Modules introduce intrinsic rewards
based on the prediction error of an agent’s internal for-
ward model (Pathak et al., 2017). The curiosity reward
encourages agents to explore unfamiliar or unpredictable
transitions in the environment.

The curiosity reward at time t is defined as:

rcuriosity(t) = ‖ŝt+1 − st+1‖2 (1)

where ŝt+1 is the predicted next state from the agent’s inter-
nal model, and st+1 is the actual next state observed.

3.3. Measuring Diversity: System Neural Diversity

System Neural Diversity (SND) is a metric used to quantify
the diversity among agent policies in a multi-agent sys-
tem. It measures the functional differences between agents’
policies by computing the pairwise Wasserstein distance
between their action distributions over a set of observations
and then aggregating these distances to provide a system-
level diversity measure.

1. Pairwise Diversity: For every pair of agents, compute
the Wasserstein distance W2 between their action distribu-
tions over a set of observations O:

d(πi, πj) =
1

|O|
∑
o∈O

W2(πi(o), πj(o)) (2)

2. Aggregate to System-Level Diversity:

SND({πi}i∈N ) =
2

N(N − 1)

N∑
i=1

N∑
j=i+1

d(πi, πj) (3)

where N is the number of agents.



3.4. Diversity Control (DiCo)

Diversity Control is a method designed to maintain de-
sired levels of diversity among agent policies by scaling
agent policies to achieve a desired diversity level quanti-
fied through SND (Bettini et al., 2024a). DiCo adjusts the
balance between homogeneous (shared) policy components
and heterogeneous (agent-specific) components, ensuring
that diversity is controlled without altering the learning ob-
jective.

πi(o) = πh(o) +
SNDdes

SNDcurrent
πh,i(o) (4)

where πi(o) is the policy of agent i, πh(o) is the homo-
geneous policy component, πh,i(o) is the heterogeneous
component, SNDcurrent is the current System Neural Diver-
sity, and SNDdes is the desired diversity level.

3.5. Integrating Curiosity and Diversity

We propose an approach that integrates ICM and DiCo
within the MARL framework to study their combined effect
on innovation.

3.5.1. INTEGRATED REWARD FUNCTION

We define the overall reward for each agent as a combination
of extrinsic rewards and curiosity-driven rewards:

Rtotal = Rextrinsic + αRcuriosity (5)

where:

- Rextrinsic is the external reward from the environment. -
Rcuriosity is the intrinsic curiosity reward as defined by ICM.
- α is a scaling factor that adjusts the influence of curiosity
on the agent’s learning process.

Diversity on the other hand is maintained by directly scal-
ing agent policies to achieve the desired diversity level as
described in the Diversity Control (DiCo) method. Agents
update their policies using the integrated reward, balanc-
ing exploration driven by curiosity with the maintenance of
diversity among agent policies.

4. Experiments
This section describes the experimental setup designed to
examine the effects of curiosity and diversity as potential
novelty drivers in Multi-Agent Reinforcement Learning
(MARL). Our objective is to understand their role individu-
ally and collectively in enhancing exploration, improving
learning efficiency, and fostering innovative behavior in
agents across two distinct environments.

4.1. Experimental Design

4.1.1. SELECTED ENVIRONMENTS

To evaluate the impact of integrating curiosity and diversity
in MARL agents, we selected two environments with dis-
tinct characteristics that highlight different aspects of agent
coordination and exploration.

• Balance Environment: The Balance environment as
seen in Figure 1 is designed as a cooperative task where
agents must work together to balance an object (e.g., a
plank or beam) and move it to a target location. Precise
synchronization is required, emphasizing the need for
homogeneous behavior among agents. This environ-
ment allows us to assess the effectiveness of diversity
control mechanisms in situations where coordinated
actions are critical and where curiosity-driven explo-
ration may have limited impact due to a relatively small
and well-defined state space.

• Multiagent Navigation Environment: The Multi-
agent Navigation environment as seen in Figure 2
presents a more complex, multi-objective task where
agents navigate to dispersed target locations. Each
agent has a unique target, requiring individual explo-
ration to find the most efficient path while also requir-
ing coordination to avoid collisions with other agents.
This scenario necessitates higher levels of exploration
and role specialization, making it an ideal test bed for
evaluating both curiosity and diversity mechanisms.

Figure 1. Balance Environ-
ment: Purple agents can
be seen taking the platform
with the red ball towards
the green target.

Figure 2. Multiagent Navi-
gation Environment: Five
agents (represented by dif-
ferent colors) have success-
fully navigated to their re-
spective target locations.

4.2. Configurations and Methodology

We systematically tested the influences of curiosity and
diversity by configuring the following agent setups in each
environment:

• MADDPG Baseline: Serving as the control group,
this configuration evaluates agents using the standard



MADDPG algorithm without any novelty incentives.
Agents learn purely from extrinsic rewards provided
by the environment.

• Curiosity-Driven Agents: Agents are attached with
Intrinsic Curiosity Modules (ICM), receiving intrinsic
rewards based on the prediction error of their inter-
nal forward model. This setup highlights the effect of
intrinsic motivation on exploration potential. The α pa-
rameter is set to a fixed value of 0.1 for all experiments
to measure a consistent level of curiosity influence.

• Diverse Agents: Agents use Diversity Control (DiCo)
to maintain varying levels of System Neural Diver-
sity (SND). We tested multiple desired diversity levels
(SNDdes) to assess how systemic diversity influences
agent behavior and task performance.

• Combined Strategy: This configuration integrates
both ICM and DiCo within the agents to determine
the interactions between curiosity-driven exploration
and diversity in enhancing overall performance.

5. Results
The following section discusses the experimental findings,
providing insight into how curiosity and diversity influence
MARL agents’ behaviors, with implications for innovative
capacity and learning dynamics.

5.1. Findings from the Balance Environment

Figure 3. Comparison of Baseline vs. Curiosity-Driven Agents in
the Balance Environment. The graph shows cumulative rewards
over training episodes, highlighting the impact of intrinsic curiosity
on exploration efficiency and task performance.

5.1.1. CURIOSITY INSIGHTS

Introducing ICM to the baseline configuration increased
exploration in the balance environemnt. Curiosity-driven

exploration initially slowed down the learning curve before
reaching a plateau, which led to lower cumulative rewards
compared to baseline agents, as shown in Figure 3.

5.1.2. DIVERSITY OBSERVATIONS

Diversity control mechanisms exhibited nuanced effects
on task performance. Agents with lower diversity levels
(SNDdes = [0.2]) achieved better cumulative rewards com-
pared to curiosity-driven agents, indicating an optimal level
of diversity can enhance learning efficiency without compro-
mising coordination, as can be seen in Figure 4. Agents with
SNDdes = [0.2] demonstrated faster learning in the early
stages and achieved marginally higher cumulative rewards
compared to the baseline. Where as agents with higher diver-
sity level (SNDdes = [0.5]) showed decreased performance
in the early stages of training, possibly due to excessive
behavioral divergence hindering the precise coordination
required for the task, followed by a lower cumulative reward
compared to the baseline.

From Figure 5, it can be observed that the SND value of
the baseline agents, which do not use any scaling methods,
remains close to 0.2 over time. This helps confirm that
the ’balance’ environment requires lower diversity levels to
achieve optimal performance. By using DiCo to constrain
diversity levels to 0.2, the agents were able to achieve a
higher cumulative reward compared to the baseline agents.

Figure 4. Performance Comparison of Curisos, Diverse, and Com-
bined Strategy Agents in the Balance Environment. The graph
illustrates cumulative rewards over training episodes.

5.1.3. COMBINED EFFECTS

When combining curiosity and diversity mechanisms, agents
with 0.2 SND slightly underperformed compared to those
using pure diversity mechanisms, as shown in Figure 4. Con-
versely, agents with 0.5 SND and curiosity outperformed
their counterparts, indicating a complex relationship be-



Figure 5. System Neural Diversity (SND) Levels Over Training
Episodes in the Balance Environment. The graph shows the evolu-
tion of diversity among agent policies as measured by SND.

tween these novelty components.

5.2. Findings from the Multiagent Navigation
Environment

5.2.1. CURIOSITY IMPLICATIONS

In the Multiagent Navigation environment, the implementa-
tion of ICM significantly enhanced exploration efficiency.
Curiosity-driven agents exhibited increased state coverage,
exploring a broader range of the environment and achieving
higher cumulative rewards, as illustrated in Figure 6. This
improved exploration led to faster convergence, evidenced
by the reduced episode lengths shown in Figure 7. No-
tably, agents discovered more efficient paths to their targets
and exhibited innovative behaviors, such as exploring less
congested routes to avoid collisions.

5.2.2. DIVERSITY IMPACTS

Diversity control mechanisms had pronounced effects on
task performance and agent behaviors in the Navigation en-
vironment. Agents with desired SND levels of SNDdes =
[0.2] and SNDdes = [0.5] achieved superior task perfor-
mance compared to the baseline. This can be seen in Fig-
ure 7, where agents with lower diversity levels (SNDdes =
[0.2]) took the lead, converging faster to optimal policies.
The faster learning is further evidenced by the cumulative
rewards, indicating that constraining diversity to these levels
can enhance learning efficiency.

5.2.3. COMBINED INFLUENCES

Combining curiosity and diversity mechanisms in the Nav-
igation environment led to mixed results. Agents with
SNDdes = [0.2] and ICM modules performed as well as

Figure 6. Comparison of Baseline vs. Curiosity-Driven Agents in
the Multiagent Navigation Environment. The graph illustrates cu-
mulative rewards over training episodes, highlighting the impact of
intrinsic curiosity on exploration efficiency and task performance.

the curiosity-driven agents, as shown in Figure 7. This in-
dicates that curiosity-driven exploration can enhance the
performance of agents even in scenarios where diversity is
constrained. However, when combining curiosity and di-
versity with SNDdes = [0.5], agents performed worse than
their counterparts with pure diversity. This suggests a more
complex relationship between curiosity and diversity, where
higher levels of diversity combined with curiosity-driven ex-
ploration may lead to excessive exploration and degradation
in performance.

6. Discussion
Our experiments reveal that incorporating novelty compo-
nents like curiosity and/or diversity can enhance MARL
agent effectiveness, particularly in environments requiring
exploration and role specialization. The Balance and Multia-
gent Navigation environments provided contrasting insights
into the interplay between curiosity and diversity, highlight-
ing the importance of task complexity and coordination
requirements in shaping the benefits of novelty mechanisms.

6.1. Balance Environment Insights

In the Balance environment, the benefits of incorporating
curiosity and diversity were limited.

• Curiosity Limitations: The small and well-defined
state space meant that agents quickly learned optimal
policies without needing extensive exploration. Exces-
sive exploration driven by curiosity disrupted coordi-
nation without providing significant benefits.

• Diversity Trade-offs: While moderate diversity



Figure 7. Comparison of Baseline vs. ICM vs. Curiosity-Driven
Agents in the Multiagent Navigation Environment. The graph illus-
trates the mean episode length over training episodes, highlighting
the impact of factors of novelty on exploration efficiency.

slightly improved performance by preventing prema-
ture convergence, high diversity levels hindered the
precise synchronization required, reducing overall per-
formance.

• Combined Mechanisms: Integrating curiosity and di-
versity did not yield notable improvements. The task’s
cooperative nature favors homogeneous behaviors, sug-
gesting that in environments demanding tight coordina-
tion, novelty mechanisms must be carefully calibrated.

6.2. Multiagent Navigation Environment Insights

In contrast, the Multiagent Navigation environment ben-
efited significantly from the integration of curiosity and
diversity.

• Curiosity Benefits: The larger and more complex
state space allowed curiosity-driven agents to explore
effectively, discovering efficient paths and improving
task engagement.

• Diversity Advantages: Constraining diversity to 0.2
and 0.5 led to role specialization, enhancing agents’
ability to navigate to their unique targets while avoid-
ing collisions. Both levels of diversity showed im-
proved performance over the baseline, with 0.2 achiev-
ing faster convergence and higher cumulative rewards.

• Complementary Effects: Curiosity-driven explo-
ration complemented constrained diversity, resulting in
agents performing on par with the best configuration,
which were curiosity-driven agents. This indicates that
maintaining a controlled level of diversity does not
undermine the value of curiosity-driven exploration.

Figure 8. Performance Comparison of Baseline, Curiosity-Driven,
Diverse, and Combined Strategy Agents in the Multiagent Naviga-
tion Environment. The graph illustrates cumulative rewards over
training episodes.

• Innovation Indicators: Faster convergence is a sign
that exploration led to the discovery of less congested
routes and the avoidance of collisions, indicating that
integrating these novelty components can drive innova-
tion and improve performance in complex tasks.

7. Limitations
• Environment Constraints: The environments used

in the experiments were limited by the complexity
of the tasks, potentially constraining the benefits of
combining curiosity and diversity.

• Parameter Sensitivity: The performance of novelty
mechanisms is sensitive to parameter settings (e.g.,
α, lr, SNDdes). Finding optimal values may require
extensive tuning. For example, for the α parameter, the
value of 0.1 was used for all experiments, which may
vary as the diversity levels change.

• Computational Resources: Increased computational
demands due to additional modules like ICM and DiCo
may limit scalability.

8. Future Work
These findings suggest that adaptive strategies that dynami-
cally adjust the contributions of curiosity and diversity based
on task demands could optimize innovation and learning
stability. In tasks requiring tight coordination, mechanisms
should favor homogeneity, possibly reducing the influence
of curiosity and diversity. This task-specific calibration en-
sures that agents can synchronize their actions effectively
without being disrupted by excessive exploration or behav-
ioral divergence.



Implementing adaptive mechanisms that adjust the scaling
factors α (curiosity) and SND (diversity) during training
could allow agents to balance exploration and exploitation
more effectively. By dynamically adjusting their novelty-
seeking behaviors based on task requirements, agents can
optimize their learning processes and improve overall per-
formance.

Future studies could explore adaptive integration strategies
and investigate the impact of these novelty components in
other environments that facilitate more complex interac-
tions and emergent behaviors. This research could provide
deeper insights into how curiosity and diversity contribute
to innovation in artificial systems, paving the way for more
advanced and adaptive multi-agent learning frameworks.

Further research could explore additional novelty compo-
nents, to gain a more comprehensive understanding of their
interactions and influence on agent behaviors, leading to
more sophisticated insights. This approach provides a foun-
dation for innovation modeling in artificial systems and of-
fers new perspectives on how novelty mechanisms can drive
emergent behaviors and learning dynamics in multi-agent
systems.

9. Conclusion
This thesis introduces a novel approach to studying inno-
vation in multi-agent systems by examining how factors of
novelty: curiosity and diversity contribute to agent behavior.
By combining Intrinsic Curiosity Modules and Diversity
Control within a MARL framework, we provide new tools
for investigating how different aspects of novelty influence
learning and behavior in artificial systems.

The key contribution of our work lies not in demonstrating
dramatic performance improvements, but in establishing
that curiosity and diversity can be effectively combined as
components of novelty without mutual interference. This
finding opens new avenues for studying innovation in ar-
tificial systems and suggests that the relationship between
these novelty components is more complex than previously
understood.

Our experiments across two distinct environments revealed
that the effectiveness of novelty components in driving in-
novation depends strongly on environmental characteristics
and task constraints. In the Balance environment, the bene-
fits were limited by task constraints, while in the Navigation
environment, the combination of curiosity and diversity sup-
ported the emergence of diverse behavioral strategies.

These findings lay the groundwork for future research into
how multiple components of novelty can be integrated and
dynamically balanced to promote innovation in artificial
systems. The framework we’ve developed provides new

tools for measuring and analyzing innovation-promoting
factors, contributing to our understanding of how complex
behaviors emerge from simple mechanisms in multi-agent
systems.
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