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Abstract

In today’s time, software testing is one of the most important parts of the software development
life-cycle, which ensures system reliability and software quality. In a semiconductor manufactur-
ing environment, software testing is even more important due to the high cost associated with
undetected failures. At ASML, where rapid software evolution and continuous integration are the
norm, conducting exhaustive testing to validate software integration is an impractical approach.
This is because of the enormous number of test scenarios present in test suites where most of
the scenarios pass. In this thesis, we propose a predictive test advice system that is designed to
prioritize test scenarios by leveraging historical test results, file changes, and code quality metrics.
By a combination of these diverse data sources, we construct a rich feature set that includes static,
dynamic and time-based rolling metrics, while addressing the challenges faced due to severe class
imbalance in our data.

The methodology that we adopted is based on the use of CatBoost, an algorithm that uses
gradient boosting and is capable of handling many categorical features and uses ordered boosting
to prevent overfitting. The model is validated by using an expanding-window cross validation
that respects the chronological order of the Qualified Baseline (QBL) data. A Qualified Baseline
(QBL) represents a critical checkpoint in our continuous integration process where code changes
that have passed extensive testing and thorough review become the stable foundation for all fu-
ture development and integration e!orts. This way, only the past data is used for the predictions,
which is consistent with the way of continuous integration in the real world. The performance
of the model was also improved by a comprehensive hyperparameter optimization, which led to
the setting of 1000 iterations, tree depth of 7, learning rate of 0.01, and class weight ratio of [1, 25].

An evaluation on real data shows that the trained model has a high recall rate of about 80%.
The precision is rather low, but this is an acceptable compromise given the fact that the absolute
majority of errors in an industrial application should be avoided. The predictive framework is
found to generalize well to unseen scenarios on new QBL data from 2025, which supports its
potential as a robust tool for optimizing test execution and resource allocation.

Although the present system constitutes a considerable enhancement with regard to the ef-
fectiveness of testing at ASML, future work will involve refining the interdependency modeling
process, enhancing drift detection, and integrating continuous retraining into the system in order
to achieve higher levels of predictive accuracy in the context of an evolving software environment.
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1 Introduction

Software Testing is considered as an important part of the software development life cycle to en-
sure that defects are rejected, new features are validated, and the product stability is maintained
in the light of changing code and environmental conditions. In the semiconductor manufacturing
industry, the software that regulates and supervises sophisticated machines is continuously being
developed through enhancement of features, correction of bugs or updating of the software for
compatibility. This pace of change coupled with the complexity of interactions between hardware
parts demands frequent testing at each iteration. However, in large scale operations where there
are thousands of possible test conditions, it would be impractical to execute all the checks within
the desired time frame as it leads to wastage of resources. Hence, the problem is how to choose
an optimal number of tests which are most likely to detect real failures without compromising on
the product quality or coverage.

Predictive test selection leverages historical test execution results, component changes, and
environmental factors to prioritize test cases likely to fail, reducing unnecessary executions. This
data-driven approach is intended to preserve failure detection capabilities while improving the
e”ciency of the testing process, reducing the number of unnecessary runs, and saving resources.
When used in conjunction with domain knowledge, predictive test selection can provide valuable
information on the potential risks that are associated with a certain feature or subsystem due to
a recent change

This thesis is about the development of a Predictive Test Advice System in the context of
ASML, the world’s leading manufacturer of photolithography equipment for the semiconductor
industry. ASML’s machines work on nanometer scale precision and rely on very complex and
continuously changing software. Each change, whether an incremental modification to improve
machine throughput or an entirely new feature to support next generation lithography processes,
poses potential risks that have to be identified and verified through testing. With our proposed
system, we aim to use historical test data and component change information to identify where
those risks are most likely to be present, steering engineers toward the portion of the tests that
are most likely to be defects or regressions.

This research has implications that go beyond simply finding out which test scenarios should
be run. The consequences of reducing testing can be significant. For instance, the saved resources
(in terms of CPU hours, or the time spent testing in a laboratory using dedicated equipment, or
engineering e!ort) can be used for more sophisticated analyses and rapid iteration. Furthermore,
the capability to predict failing scenarios is a proactive approach to quality. Potential failures can
be investigated early in the development cycle, before the cost of fixing them or the downtime to
fix them is high. In an environment such as ASML, where precision is a critical factor and even
small defects can lead to a production e”ciency loss, such improvements in testing e!ectiveness
have a real e!ect on product reliability and development speed.

1.1 Problem Statement

Despite the importance of thorough testing, many organizations still employ exhaustive or static
approaches that treat all scenarios equally, regardless of how likely they are to fail. This practice
is costly and ignores possible subtle patterns of software changes and their relationships with po-
tential failure. In particular, in ASML’s semiconductor manufacturing environment, the absence
of a predictive framework for test selection results in critical tests sometimes going undetected
while developers spend time on uninformative test runs. This lack of targeted advice delays defect
detection, increases testing costs, and leads to later feedback to development teams operating on
tight iteration timelines.

This research addresses this need for an adaptive and data driven system that targets the most
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likely to fail scenarios using historical data and component change data. We develop a Predictive
Test Advice System that dynamically selects high-risk test scenarios, optimizing test coverage
while reducing costs, thus improving software quality and operational e”ciency in a high stakes
manufacturing environment.

1.2 Structure of Study

In the following sections, we explain the fundamental concepts of predictive test selection, we ex-
plain the challenges of large-scale test management at ASML, and describe the end-to-end pipeline
for developing, verifying, and deploying the predictive model. We first explored prior work on pre-
dictive test selection and software analytics (Chapter 2) before introducing the details of the
ASML-specific data sources and feature engineering process (Chapters 3-4). We then present our
model development and empirical validation (Chapters 5-7), demonstrating how our approach
improves test e”ciency. Finally, we discuss future enhancements and deployment considerations
(Chapters 8-10).

In this thesis, we show how our Predictive Test Advice System for ASML can help realize selec-
tive and intelligent testing that not only helps save time and resources, but also enhances software
quality in an industrial environment where each defect can pose a relatively high operational risk.
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2 Literature Review

Testing is a critical phase in the software development life cycle to ensure that changes made do
not cause regressions or failures [Rothermel et al., 2001]. Conventional test selection techniques
involve either performing a comprehensive set of tests, which is costly in terms of computation
time, or using static dependency-based selections that are inadequate to recognize complex be-
havioral patterns in the execution of the software. Predictive test selection, based on machine
learning and past test execution information, is a recent innovative approach for improving the
e!ectiveness of test execution by identifying critical risk areas with a reduced number of tests.

Data-driven strategies enhance testing e”ciency without compromising fault detection rates.
[Google AI Team, 2016] [Facebook Eng. Team, 2019] [Mozilla Hacks Team, 2021] have adopted
machine learning-based test selection model on their respective data and implemented it to reduce
testing time by up to 90% with high defect detection rates. The use of such methodologies in
large-scale environments such as ASML’s semiconductor manufacturing software is therefore a
natural progression in optimizing the testing for complex systems.

2.1 Challenges in Traditional Test Selection

Conventional test selection techniques are based on static dependency analysis, which means that
the tests are chosen according to build dependencies and file changes. Although e”cient, these
methods lead to an increase in the number of test executions, which are often unnecessary and
result in the unnecessary expenditure of computational resources as well as prolong the time
to feedback for developers. Furthermore, static analysis cannot capture the runtime behavioral
changes that are brought about by software updates as it is unable to identify subtle defect
patterns. Hence, there is a need to adopt a more refined approach that integrates both tradi-
tional techniques with adaptive strategies to enhance the e!ectiveness of test selection processes.
[Williams and Kevin, 2024].

The exhaustive testing has been complemented by test case prioritization techniques in an
attempt to improve upon them by ranking test cases according to a variety of metrics, including
risk based, version based, and cost based prioritization. However, these approaches are typically
based on manually defined heuristics and are therefore not very adaptable to changing software
environments [Johnson and Miller, 2022]. There is a need for a more scalable and intelligent so-
lution that adapts dynamically to historical test failure patterns and software change histories.

2.2 The Role of Machine Learning in Test Optimization

[Facebook Eng. Team, 2019] found that applying historical data and learned patterns to the train-
ing data set of a machine learning model can identify valuable test cases that are most likely to
fail. It has also been shown that machine learning models can learn the set of tests impacted by a
given code change to good approximation. This is important in large-scale continuous integration
systems where the expense of running all tests is too much[Doe and Smith, 2023].

A systematic review of the use of machine learning in testing reveals that decision trees, neu-
ral networks, and reinforcement learning are used in conjunction with software testing to predict
test case failures and to optimize the size of test executions. Hence, the classifiers learned from
the previous test results are capable of identifying the relationship between code change and fail-
ure rates in order to reduce the number of tests while keeping a high level of failure detection
[Sedighe et al., 2024] [Rongqi Pan, 2021]. But still the results achieved from neural networks, and
reinforcement learning implementations were not upto industry standard. Decision-tree based
implementations showed promising results on the open source data. But, it’s important to note
that the data used was di!erent across the proposed solutions.
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In a study on Facebook’s continuous integration pipeline, researchers implemented a predictive
test selection model that reduced test execution costs by 50% while preserving over 99.9% of defect
detection capabilities [Facebook Eng. Team, 2019]. This success demonstrates the feasibility of
deploying machine learning in industrial testing environments. At Facebook, they focused on the
repeatedly changed code regions, along with the highly correlated and interconnected code. This
gives Facebook an advantage. They are able to find regression from these regions, as they have
data about which tests are related to a specific part of code. Our data at ASML is very vast and
there is no such guidelines set to find the relationships between the test scenarios and changed files.

2.3 Predictive Test Selection in Practice

Real-world implementations of predictive test selection have demonstrated substantial gains in
e”ciency and defect detection. Mozilla, for instance, successfully integrated a machine learning-
based test prioritization system that significantly reduced test execution times while maintaining
fault coverage of their web browser development data [Mozilla Hacks Team, 2021]. Mozilla focused
on historical performance of failed tests. They were also able to find a solution to the problem
of flaky tests. A test is termed flaky when on same configuration the test results are di!erent.
Similarly, Launchable Inc. has developed a predictive test selection framework that dynamically
selects high-value tests based on past failures, allowing developers to receive faster feedback with-
out sacrificing test quality.

These approaches leverage features such as:

• Code change history: Frequent modifications to certain components increase the likeli-
hood of failures.

• Test failure history: Tests with a history of failures are prioritized.

• Dependency distance: The proximity of a change to a given test case in the dependency
graph influences selection.

• Execution time constraints: Tests are selected based on their runtime impact to balance
coverage and e”ciency.

2.4 Comparison of Approaches

In the literature, there are various approaches for e!ectively reducing the test suite. Table 1 shows
the advantages and limitations of these approaches:

Table 1: Comparison of Test Selection Approaches

Approach Advantages Limitations

Exhaustive Testing Ensures complete coverage Computationally expensive,
time-consuming

Dependency-based Selection Captures direct code-test re-
lationships

Cannot detect deeper behav-
ioral dependencies

Heuristic Prioritization Focuses on high-risk areas Requires manual e!ort, lacks
adaptability

Predictive Test Selection Learns from historical pat-
terns, optimizes execution

Requires data availability,
initial model training e!ort

On the basis of these results, predictive test selection seems to be the most e!ective way of
ensuring that the right number of tests are executed without compromising on the quality of the
software.
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This way, organizations can reduce costs, improve feedback time and make sure that the right
tests are run for every software update by leveraging machine learning to guide test selection
[Rongqi Pan, 2021].

The literature clearly supports the prediction of test selection over traditional test selection
and prioritization techniques. Large scale deployments at the likes of Facebook, Google, and
Mozilla show that predictive test selection cuts infrastructure costs and execution time with-
out compromising on fault detection rates [Google AI Team, 2016] [Facebook Eng. Team, 2019]
[Mozilla Hacks Team, 2021]. An intelligent, adaptive system is enabled by integration of historical
execution data, component changes and dependency analysis for an e”cient test set.

The literature demonstrates that predictive test selection outperforms traditional methods be-
cause it saves time and costs but it is crucial to recognize potential drawbacks. The predictive
test selection approach depends on extensive historical data about test executions and failure
patterns, yet it can generate cold start problems when there is insu”cient data available. The
inherent probabilistic nature of machine learning methods creates a risk that test cases will be
misclassified which leads to incorrect test case result predictions. The probabilistic behavior of the
system creates di”culties in explaining its decisions because stakeholders need clear reasons for
model choices. The challenges from these issues can be reduced through ASML’s large historical
data collection and its continuous integration practices.

These insights can be leveraged to develop a Predictive Test Advice System tailored to ASML’s
semiconductor manufacturing software. The system will then use state-of-the-art predictive test
selection methods to optimize test execution and create a scalable, data-driven approach to soft-
ware quality assurance in a high-stakes industrial environment [Google AI Team, 2016]
[Mozilla Hacks Team, 2021].

It is also important to note that the data used by the mentioned literature references are very
di!erent to what we have at ASML. Systematic Reviews are based on open source data, which
doesn’t match the data complexity of industry leaders like ASML. Big companies mentioned
above do not provide data due to privacy concerns. Making their findings and results very hard
to reproduce. Hence, It is safe to say that our data brings new and unseen challenges with itself,
which require custom solutions as existing solutions will not work on our data directly. In the
following sections of this thesis, we are going to discuss these challenges and propose our solutions.

8



3 Data Collection and Description

ASML is operating in a highly dynamic and complex software development environment, whereby
several departments and development teams develop various components while working together.
Since the expectation of the software quality is very high, there is a need for very strict and
very thorough testing. In this regard, ASML schedules routine Qualified Baseline (QBL) testing
runs, which are daily and weekly tests, for checking integrity and completeness of software fea-
tures. A QBL functions as an essential milestone in our continuous integration process because it
establishes a stable foundation for future development and integration e!orts through extensive
testing and thorough review of code changes. Weekly runs include running of a large test scenarios
across all the functional clusters (FCs) while the daily runs only cover a small number of these
test scenarios. With every QBL testing cycle, new scenarios are introduced and the testing cover-
age is gradually increased. However, the majority of test scenarios pass [Mohamed A. Shibl, 2021].

In each FC, dedicated teams perform small-scale tests of the modifications, which are specific
to their area. Localized tests are critical to finding defects early in the development process, and
provide rapid feedback on each code change. However, such tests are not su”cient to guarantee
that the overall system will work properly when integrated as a whole. Therefore, all test scenario
suites are run only after any changes are to be incorporated o”cially into a new QBL (as depicted
in Figure 1). This last version of integration testing is meant to ensure that all the changes com-
bined from multiple FCs work together without a surprise regression.

This dual level testing strategy where changes are first tested at the FC level and then subjected
to a comprehensive QBL testing guarantees both local and system wide reliability. The growing
complexity of the test scenarios (as depicted in Figure 2) not only shows the rising number of tests
but also the ever-increasing resource requirements to sustain such a dense testing schedule. In the
end, this integrated approach resonates with the ultimate goal of ASML’s testing framework: to
detect and fix defects early to ensure product quality and e”ciency.

Figure 1: A schematic that shows how each FC runs its own test to validate code changes, which
are then fed back into the full test suite to do broader integration testing. It shows how a baseline
with code changes is tested before being accepted as the new QBL.

The software testing structure of ASML is based on a hierarchy of about 35 functional clus-
ters, each of which combined have over 500 building blocks (BB). The BBs encapsulate several

9



components (approximately 3,000), which in turn are associated with more than 15,000 distinct
test scenarios. Most scenarios are modeled after several configurations and test cases; a failure
at the configuration level implies the failure of the entire test scenario. The main purpose of this
research is to design a predictive model that can distinguish between scenarios that are likely to
fail during weekly QBL test runs to ensure that resources are used to their fullest potential and
tests are as e!ective as they can be [Kuhn and Johnson, 2013].

As depicted in Figure 2, the rate of executed test scenarios at ASML has been on the rise,
especially for the last 3 years, which shows the growing complexity and increasing needs in terms
of resources for the thorough testing throughout the period under consideration (2022-2024).

Figure 2: Growth in the number of test scenarios executed during QBL test runs at ASML from
2022 to 2024. This figure illustrates the increasing complexity and resource demands associated
with maintaining comprehensive test coverage.

3.1 Data Sources

The development of predictive models which forecast test scenario failures requires study across
di!erent stages of development and testing pipeline. The study requires multiple interconnected
data sources that provide distinctive and useful information. The predictive model uses exten-
sive information from five main data sources: Historical Test Scenario Execution (Test Result
Database), Integration Data, Interface Data, Polluter Data, and Code Quality Data. Each data
source brings di!erent aspects of the testing and development process and are all necessary for a
detailed predictive analysis.

Historical Test Scenario Execution (Test Result Database)

The historical execution data is the core of the predictive framework. This data is sourced from
the Test Result Database (TRD) and is from 2022-2024 and contains detailed logging of every

10



executed test scenario. The record is further enriched with other attributes like the Qualified Base-
line identifier (source), functional cluster, building block, scenario name, configuration name, test
level, machine type, target operating system, and the test environment (primarily Google Cloud
Platform (GCP)). Furthermore, key data on execution outcomes (pass/fail) and their timestamps
is captured, thus giving the data a temporal dimension.

Besides these basic properties, the dataset also contains records of identified known issues, i.e.
recurring problems that were highlighted during the previous test cycles. Failures from previous
QBL test runs, which are already known to us are named known issues. The presence of known
issues allows the model to learn the tendencies of failure that are more likely to recur. The data
set is extensive and longitudinal in nature, and thus, considerable time is spent on data collection,
accuracy, homogeneity, and density. This basic dataset is used not only for the analysis of historical
trends and performance, but also as a framework into which other features from other datasets
are appended.

Integration Data

Integration Data is received through an internal Application Programming Interface (API) which
provides detailed information regarding QBL and their snapshots. This dataset reflects the chang-
ing nature of software development by reporting the changes made between integrations. Each
unique software delivery by teams and the number of modified files are also recorded. Further,
the file modifications are subdivided into code-specific files, i.e., those with extensions .cpp, .py,
.xml, .h, .hpp, .c, .robot, and .ddf, and non-code files, which include Make-files and Markdown
documents.

The predictive model is able to contextualize the impact of software modifications on test
outcomes by linking integration data to the corresponding QBL identifiers in the historical test
logs. This detailed record of integration activities gives a nuanced view of the scale and scope of
changes, and how small tweaks and big overhauls a!ect the probability of test failures. In other
words, Integration Data is not only a measure of the volume of changes but also encapsulates the
collaborative and iterative process of the software development process.

Interface Data

Interface Data is used to capture the complex inter dependencies among the software components.
Because of the modular architecture of modern software, changes in one component can cause
a drastic change in other components as well. This data source quantifies such interactions by
extracting key metrics that highlight the connectivity and complexity of the system. It also mea-
sures the maximum dependency count among the components and the maximum frequency of
nested changes (They are defined later in Section 4).

These metrics are helpful in determining the risk of cascading failures. For instance, a high
dependency count indicates that a component is highly depended on by others, which means that
even a small change can cause propagation through the system. Likewise, more frequent nested
changes may indicate a more volatile part of the code base that is more likely to cause indirect
failures. Thus, Interface Data is crucial in providing essential information on how small changes
can cause big systemic events, and it is an essential part of the predictive analytics framework.

Polluter Data

Polluter Data is based on the idea of identifying the frequent causes of failure, also known as
polluters. During the testing process, the initial failure of scenarios is checked. If a test fails, then
the test is re-executed to ensure that the failure is consistent. If a test fails repeatedly, it is termed
a polluter. After the review by the developers and confirmation of these scenarios as known issues,
i.e., intractable problems that adversely impact the software stability to a large extent, they are
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further categorized.

Received weekly through an internal API and in CSV format, Polluter Data o!ers a complete
record of faulty scenarios. The data is crucial to the predictive model as it helps in identifying the
frequent problems and their e!ects on the test suite. By identifying the failure patterns, Polluter
Data helps the model distinguish between occasional test anomalies and the general problems that
require further analysis. Therefore, it improves the predictive ability by focusing on the regions
that are likely to cause other failures based on their likelihood.

Code Quality Data

A specialized third-party tool is used to gather Code Quality Data which gives a better view of
the technical health of individual software components. This data source has variety of metrics
designed to capture both the structural quality and maintainability of the code. The insights
are from the key metrics, namely, the Technical Quality Index (tqi) and the average cyclomatic
complexity (cycloxAverage) that help understand the overall complexity and potential fragility
of the code. Moreover, the dataset includes the percentage of duplicated code and the e!ective
lines of code (eloc).

To further enhance this profile, the dataset also collects metrics on average code coverage and
code churn rates (changerate). These metrics can be used to highlight parts of the code base
that are being changed frequently or that may have low test coverage. For example, high churn
rates or low code coverage may point to unstable or poorly maintained components that are more
likely to fail. When the model incorporates Code Quality Data, it provides a more accurate risk
assessment that relates technical health metrics to the probability of test scenario failures. All the
features mentioned here are defined later in section 4.

3.2 Dataset Overview and Characteristics

The dataset processed from the source data sets includes data from 137 QBL test run files from
2022–2024. The size of the dataset is about 6 million records, and there is a strong class imbalance:
97% pass outcomes to around 3% failures. Such imbalance makes standard models face prediction
challenges as the model tends to favor the majority class (Pass in our case) which produces poor
sensitivity to the minority class (failures). As a result, it achieves high overall accuracy but fails
to identify actual failure cases e!ectively. This class imbalance is addressed through targeted
modeling and data sampling techniques discussed in detail later in the methodology section.

Each processed dataset file is tied to a specific QBL test run and are saved separately in
Parquet format. The Parquet format was used instead of the traditional CSV because it provides
data compression and faster read-write performance, optimized storage, and better scalability to
a large amount of data typical in industrial applications.

Table 2 summarizes the approximate dimensions and complexity of the dataset utilized in this
research:

Table 2: Overview of dataset statistics used in this study (2022–2024)

Attribute Approximate Count

Qualified Baseline Runs (QBLs) 137
Test Scenarios 15,500+
Components 3,000+
Building Blocks 500+
Functional Clusters 35+
Configurations per Scenario Multiple
Total Test Executions (Rows) 6,083,455
Passing Instances 5,882,740 (96.7%)
Failing Instances 200,715 (3.3%)
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This structured approach to data collection and description is a foundation for strong and
meaningful predictive analytics that is designed to greatly improve test scenario selection, failure
detection accuracy, and test e”ciency within ASML’s software development ecosystem.

There were some challenges in integrating data from multiple departments. First, we had
to secure access to the diverse datasets because each department had its own data repositories,
standards, and protocols. We had coordinating meetings, negotiated data-sharing agreements,
and aligned on a common format that could accommodate the heterogeneous nature of the data,
from legacy systems to modern cloud-based platforms. We also had to develop bespoke extraction
and transformation processes to harmonize these sources, because each department logged and
stored, and managed the information di!erently [Zhu, 2017].
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4 Data Preprocessing and Feature Engineering

It is essential to design a rich and carefully chosen feature set for detecting failure signs in large-
scale, continuously evolving environments such as ASML’s. In addition to the domain knowledge,
we also used insights from extensive exploratory data analysis (EDA) to identify the specific
attributes of how, why, and when a scenario may fail. The changes in the code base usually
happen in a gradual manner and can be seen as increased activity in certain file extensions, or
a dependency that was not accounted for in a highly interconnected component can worsen the
impact of even a small change. However, it is crucial to monitor the historical performance of
each scenario, component, or cluster in the last testing runs in order to find out whether the issues
have been resolved, worsened, or appeared for the first time. It is only by combining these signals
– code churn metrics, platform configurations, and time series rolling windows of failures – that
we can build up a full picture of the dynamics that give rise to the unexpected. Furthermore,
since data drift is a normal phenomenon in any long-lived software system, our rolling-window
features are based only on the data from past runs, which avoids data leakage and preserves the
practical significance of the prediction. Each feature, whether categorical or numerical, brings
some extra information that helps the model distinguish between the robust tests and the ones
that are likely to regress. Thus, we build up a coherent view of the testing environment based on
the recent information about code refactors, system-wide dependencies, operating environments,
and historical pass-fail patterns to enable the predictive model to pinpoint high-risk scenarios
before they reach production [G Dong, 2018].

4.1 Categorical Features

scenario name An identifier for the test scenario. EDA showed that some scenarios had higher
failure rates consistently, which could be due to their complexity or the focus on a particular
function. With scenario name, the model can use historical performance data (e.g., repeated
failures) without referring to the outcomes of the current QBL test run. This prevents data
leakage and still learns scenario-specific behaviors.

configuration name Defines the configuration in which a test scenario is to be executed. The
data revealed that certain configurations, particularly those involving uncommon hardware or
complex environment variables, are more likely to fail. By encoding configuration name, the
model identifies failure risks specific to the environment: what might be a stable scenario in one
configuration can be a failure in another.

level Sets the hierarchical scope of a test, e.g. Component, BB, FC, or system (SY), etc. SY
level tests are very important as these tests integration of di!erent systems. The level feature
also provides rolling statistics like level 10QBL fail rate (explained later in this section), which
gives the model a more general view of how the entire test levels have been performing recently.

machine type Refers to the hardware platform on which the test is running, e.g., a specific
machine or hardware configuration set. Platform specific failures can be caused by hardware
nuances, wrong driver versions and concurrency issues. With machine type, the model can look
at machine type fail rate 10QBL (explained later in this section) and see if there has been any
recent spike in failures attributable to certain machines.

target os Defines the type of system (e.g. Wind River Linux, Red Hat Enterprise Linux Ver-
sion 8) on which the test is performed. OS-level variations can lead to certain dependencies or
driver conflicts that can result in failures that may not occur on other OS types. Hence, the
target os fail rate 10QBL (explained later in this section) rolling metric thus provides a time-
phased measure of OS-specific reliability.

component x Denotes the particular software component to be tested. Components di!er in
size, complexity, and volatility. Out of the components considered, some had reliably high failure
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rates which may have been accrued through frequent refactoring. Having component x allows us
to build a rolling fail rate (component x fail rate 10QBL, explained later in this section) such
that the model can tell whether the risk posture of that component has altered lately.

building block Within a FC, a fine grained subdivision is small enough to include several
related components. Some building blocks are closely correlated with failure spikes.

functional cluster Represents a more coarse-grained categorization of building blocks. Some
clusters are developed more often or have experimental functions and have a higher failure rate.
To this end, we incorporate the functional cluster and calculate the failure rate of each
functional cluster fail rate 10QBL (explained later in this section) to determine whether a
cluster and its constituent components have become unstable in the past 10 QBL test runs.

4.2 Numerical Features

total developers This measures how many developers are currently involved in the QBL run.
EDA revealed that as the number of developers increases, the complexity can result in more
regressions. Including this feature gives the model a sense of organizational scale, telling the
model when more collaboration may lead to instability.

total extension files changed & total non extension files changed These features help
to distinguish between file changes with known source extensions (e.g. .cpp, .py) and changes to
other files without extensions (documentation, Make-files).
The existence of non extension files changed may a!ect builds, but the e!ect on direct code
failures is usually smaller.

if component changed A Boolean that indicates whether the test’s associated component was
changed during this QBL test cycle. EDA shows the majority of the failing scenarios do not have
their component changed in the QBL.

.cpp, .py, .xml, .h, .hpp, .c, .ddf, .robot Over the course of three years’ worth of data, eight
extensions were implicated in the majority of file modifications at ASML. Understanding the type
of extension helps the model distinguish if the changes are in test harness files (e.g. .robot) as
opposed to core system code (e.g..cpp, .c).

age days The number of days since the scenario was first introduced. This means that younger
scenarios have a higher initial failure rate which can be attributed to the fact that the code has
not been fully debugged or that there are new features that are not yet fully tested. The model
thus distinguishes between a fully formed, thoroughly tested scenario and a recently introduced
one that is likely to be riddled with undiscovered bugs.

weighted age Refines age days by also considering the frequency of test executions.

weighted age =
total runs

age days + total runs
,

Here, total runs refers to the total number of times a given test scenario has been executed
across all testing runs.

It ensures that scenarios old but seldom run remain flagged as higher risk. Our processed data
showed that simply being “old” is not necessarily correlated with stability; scenarios must also be
exercised frequently to truly harden against failures.
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fail count 10QBL A simple count of how many times the current scenario key has failed in
the last 10 QBL test runs. EDA showed that historical performance in a rolling window is a good
short term indicator of future fails. This way we do not use data leakage but still encode the
notion of the recent memory.

Centrality Component x Tells how interconnected a component is from the system’s depen-
dency graph. If they break, components with high centrality can spread failures broadly. However,
we believe that while the more central components are more aggressively monitored, they also fail
more destructively when problems occur, thus increasing the probabilities of test-failure.

tqi (Technical Quality Index) A composite code-quality metric. We believe that components
with low tqi contain more bugs, i.e., have technical debt. Including tqi in the model assists in
pin pointing where poor code quality may lead to failed tests.

RunDate Captures the QBL’s date. RunDate is usually a baseline for time comparisons, but
it becomes important for cutting up historical windows (e.g., last 10 QBL test runs). RunDate
is never used to look at run time outcomes directly, thus preventing leakage and ensuring purely
time based grouping.

cycloxAverage The mean cyclomatic complexity of the functions in a component. High cy-
clomatic complexity can hide more corner cases and thus increases the likelihood of undiscovered
bugs.

DuplicatedCode() Shows the percentage of the code that is similar. Similar code can lead to
similar bugs and if the fixes are not done correctly then they can lead to similar errors.

eloc E!ective lines of code (excluding comments and blank lines). A more extensive code
base, however, increases the defect surface area. This feature is also employed in ratios like
eloc per fail to demonstrate how failures occur rather ’densely’ with respect to code size.

changerate Tracks how often a component’s code is changing over time. Rapid iteration or
refactoring indicates volatility. We believe that test scenarios targeting high churn components
were more likely to fail, which could be due to bad merges or newly introduced regressions.

avgCodeCoverage A measure of overall test coverage (e.g., coverage of lines or branches) of
the component. Lower coverage is a sign that many possible pathways are left untested, and
hence, there are more potential bugs.

Max DepCC total To The maximum dependency count of a component, or in other words
the number of modules that depend on it. The e!ects can be far reaching; e.g., changes to heavily
depended-on components. We saw that failures usually occur in these critical components as even
modest defects have significant impacts downstream.

Max Change Freq Nested To Shows the frequency of changes in one module causing or con-
taining changes in another. Highly nested or highly coupled modules have integrated complexity.

eloc per fail Ratio capturing how many lines of e!ective code exist per historical failure:

eloc per fail =
eloc

fail count historical
.

A small code base with many failures has a high “fail density,” while large code areas with few
failures appear more stable.
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total known issues last time & if last time known issue Indicates whether or not a sce-
nario (or however many times it) was identified as an ‘known issue’ in previous QBL runs. Re-
curring issues persist unless solved completely. These variables help the model identify potential
risks by highlighting past issues.

if flaky count last QBL & if flaky tendency last QBL Indicates whether a scenario was
considered flaky (inconsistent pass/fail) and how often it switched result in the previous QBL test
run. It also prevents overemphasis on one o! failures where a test is understood to be environment
sensitive rather than indicating a real code defect.

polluter count last QBL Displays the number of times the scenario was classified as a ‘pol-
luter’ i.e. the test that if failed a!ects subsequent tests. EDA revealed that polluters are frequent
o!enders so including this metric is useful to help the model identify them as potential priority
for retesting.

total runs all data last QBL Historically up to the prior QBL, the cumulative number of
times this scenario has been run. We want a product with hundreds of tests with little failure,
but we don’t want one that has been barely tested. This measure gives us a sense of how far each
scenario has come.

4.3 Time-Series Rolling Features

pass percentage last15 & fail percentage last15 Calculated over the previous 15 QBL test
runs, these percentages reflect medium-term behavior of a scenario:

fail percentage last15 =

(
Number of times the scenario failed in the last 15 QBL runs

Number of times the scenario ran in the last 15 QBL runs

)
→ 100,

pass percentage last15 =

(
Number of times the scenario passed in the last 15 QBL runs

Number of times the scenario ran in the last 15 QBL runs

)
→ 100

Crucially, they exclude the current QBL test run’s results to avoid data leakage. By focusing
on a rolling window, these features show whether a scenario’s reliability has trended upward or
downward over several weeks. It is necessary to add both of these features as a test result can be
of multiple types (e.g. Pass, Fail, Untested, Unresolved, and Unsupported) [Christ et al., 2018].

Category-Level Rolling Fail Rates Each of these fail rates measures how often the respective
category has failed in the last 10 QBL test runs:

category fail rate 10QBL =

∑t→1
j=t→10 [failure in category c]

∑t→1
j=t→10 [total runs in category c]

They reveal trends that may not be apparent on a per scenario basis. e.g. if component x has
started failing more often of late across a number of scenarios, the component x fail rate 10QBL
feature brings the model’s attention to a potential issue with that component.

All of the features are deliberately chosen to represent a distinct factor that contributes to
the instability of the test. These features in combination define the map of the code changes
dynamics, component complexity, organizational e!ort, and historical performance can lead to
scenario failing. To prevent data leakage, rolling-window features (for example, 10 or 15 QBL
windows) are limited to historical data only, while keeping an accurate understanding of ongoing
data drift. The large feature set of this model includes categorical labels, numeric indicators, and
time-series rolling metrics to increase the model’s e!ectiveness in identifying the highest risk test
scenarios in every new QBL test cycle [Isabelle and André, 2003].
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5 Addressing Class Imbalance and Feature Skewness

It is a challenge to achieve statistical significance in the context of an industrial scale software
testing pipelines where we get many more instances of successful test executions than failed ones.
As discussed in Section 3, only 3.3% of the scenarios that were recorded in the dataset are failed,
and 96.7% are passed. This situation creates a typical class imbalance problem: There is a lot
of data, but most of it is from the majority class (passing scenarios). A näıve strategy would be
to build a model that would mostly predict pass as it minimizes the overall error; however, such
model would be practically useless in identifying the real failures. In this section we discuss the
strategies used to address class imbalance and feature skewness in the predictive modeling process
and explains why some other strategies, such as SMOTE or under-sampling, were inapplicable to
this particular field [Fernández et al., 2018].

5.1 Nature and Impact of Class Imbalance

In an environment that is continuously integrated such as ASML’s, developers and validation en-
gineers rely on predictive insights to recommend high risk test scenarios to be injected
[Fowler and Foemmel, 2006]. But when only 3.3% of runs fail, a model trained on an unmodified
dataset will likely predict all scenarios as likely to pass because it provides high accuracy. How-
ever, such a model fails to provide vital risk assessments: it does not capture the real value; where
and when the next failure is most likely to occur.

From a business and engineering perspective, precise failure prediction helps teams focus their
time and resources on the tests most likely to have regressions or new bugs. If we fail to identify
these failures, we delay the discovery of the defect and can introduce the problem at a later stage
or even in the production environment. Hence, addressing class imbalance is not a theoretical
exercise but a necessity to ensure that the model is fit for practical industrial use.

5.2 Challenges of Oversampling and Under-sampling in a Time-Series
Context

Oversampling using SMOTE. One commonly suggested remedy for class imbalance is SMOTE
(Synthetic Minority Over-sampling Technique). SMOTE generates additional examples for the
small class (failing scenarios) by drawing lines from the existing minority-class instances
[Chawla et al., 2002]. While SMOTE and other oversampling techniques can help in some classi-
fication tasks, they have certain drawbacks in a dynamic, time series-based industrial setting:

• Loss of Temporal Integrity. In a software testing pipeline, each QBL represents a real
chronological step. Introducing synthetic failures that never actually occurred disrupts the
continuity of these records, making it di”cult to interpret when and why failures happen.

• Risk of Unrealistic Data Points. As for the real software changes or the interactions of
test configurations, code dependencies, and execution environments, it may not capture the
entire scenario in synthetic scenarios. That could lead the model to be wrong about actual
failure signatures.

• Evolution of Software and Tests. Because our dataset is of a constantly changing code base,
the patterns learned from older QBL runs might be somewhat inaccurate. Since historic
minority instances are fake data created, it might randomize synthetic data that represents
instances that are not so typical anymore.

Undersampling the Majority Class. At the other end of the spectrum, undersampling the
majority (passing) class means that the data size is also reduced by passing records being discarded
randomly until the two classes are balanced. This approach is also inconsistent with the time-series
and domain-driven nature of our data:
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• Potential Loss of Crucial Information. Passing tests are not a ‘black and white’ issue. There
are important signals they carry: about stable regions of the code, tested functionalities that
did not fail under particular file changes, or slowly worsening scenarios. Discarding them
might strip crucially temporal information on the software evolution process.

• Distortion of Realistic Pass/Fail Ratios. Maintaining the real-world ratio of test outcomes is
crucial for ensuring that model’s prediction aligns with actual scenarios. Avoiding overfitting
the artificially balanced dataset is unrealistic for real (future) data, which might have much
higher false positive rates.

• Preserving Chronological Progression. Randomly removing pass instances can break the
coherence of QBL run, which can remove entire sequences that show gradual changes or
shifts in the code over time.

Due to these issues, using SMOTE or under-sampling would compromise both the temporal
integrity of the data and the accuracy of the model’s predictions. Maintaining the precise order
and frequency of pass/fail events is crucial to the model.

5.3 Rationale for Using Class Weights

To address the limitations of SMOTE or under-sampling, we use class weighting in our training
process for our models. Class weights are a way of adjusting the loss function so that, for instance,
misclassify minority-class (failing) instances are penalized much more heavily, e!ectively forcing
the model to really weigh those rare but critical outcomes more heavily. Advantages:

• Preservation of Data Integrity. Unlike oversampling or under-sampling, class weighting
retains the entire time series. Every passing and failing instance remains in the dataset with
its full contextual detail, ensuring chronological continuity.

• No Synthetic Instances Introduced. The model trains strictly from real events (real pass/fail
scenarios) so that domain consistency is maintained. This approach is particularly important
when code changes are special and not often repeated exactly like in industrial projects.

• Parameterization Emphasis. We can tune the weight ratio to balance the predictive objec-
tives. When tested on multiple class weight ratios (e.g. [1,10], [1,15] ,[1,20], [1:25], [1:30]) we
found that a fail-to-pass weight ratio of 1:25 was both practical and e!ective. This means a
single misclassified failing scenario is treated as severely as 25 misclassified passing ones.

Incorporating class weights into the model’s cost function directly encodes the reality of the
engineering problem: It is much more costly to fail to detect a real failing scenario than it is to
falsely identify a passing one. From a business continuity perspective, “false positives” – incorrectly
tagged high risk scenarios – are more easily managed than “false negatives” – undetected failing
scenarios.

5.4 Accounting for Feature Skewness

Besides the problems of class imbalance, some numerical features are heavy tailed or skewed.
Fail count 10QBL is one such example where most of the tests have no failures in the last 10
QBL runs, but a few have very high failure counts. The same applies to the changerate feature
where, while some components might have frequent changes, others may have none.

Log Transformations & Outlier Capping. To stabilize these skewed features, we employ
limited transformations:

• Logarithmic Scaling. Using log(1+x) can decrease the influence of the big outliers and
help the model to distinguish between the minor but significant variations in the components
that have moderate changes.
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• Winsorizing. To ensure that a handful of extraordinary data points do not skew the
model’s gradients, we cap or trim extreme values at the 99th or 99.5th percentile.

Both transformations are applied carefully to preserve model interpretability. For instance, if we
have an extreme outlier in fail count 10QBL then we might cap it at a quantile that is reasonably
high to avoid the outlier a!ecting the model while still capturing the idea that a situation with
many failures is more dangerous than one with no or very few failures.

Respecting Temporal Continuity. Another important consideration is that any transfor-
mation or outlier treatment should be consistent through time. We prevent the use of dynamic
thresholds that could randomly shift between QBL cycles, which could otherwise bias the historical
data.

5.5 Practical Implementation and Lessons Learned

The decision to use class weights rather than oversampling or under-sampling was informed by
extensive domain feedback and pilot experiments:

• Pilot Runs. When SMOTE and random under-sampling were first used, they destroyed the
temporal order and created pathological pass/fail rates. This is because predictive accuracy
on real QBL data actually worsened, highlighting the significance of chronological accuracy.

• Weight Tuning. We tested di!erent weight ratios (e.g. [1 : 10], [1 : 25], [1 : 50]etc) and
checked them against a hold-out set of QBL runs to find which ratio gave the optimal
sensitivity and specificity for the failing class. We finally settled on [1 : 25] as a fair and
stable selection.

• Influence on Model Architecture. As a result, for example, some model architectures, such
as tree based ensembles, learn to handle imbalance more easily than linear or unregularized
models. To make sure the model does not overfit the minority class, we had to optimize
hyperparameters (e.g. learning rate, maximum tree depth).

Furthermore, the transformations for feature skewness were useful to even out extreme values
in some of the numeric fields. Without these modifications, some features like fail count 10QBL
or changerate could have outliers that would dominate the training of the model and produce
inaccurate predictions in more normal ranges. By applying slight capping or logarithmic scal-
ing, we achieved more even gradients, leading to better generalization across typical value ranges
[Miguel Carvalho, 2025].

It is crucial to handle heavily imbalanced data and skewed features for robust predictive mod-
eling in industrial testing. Using actual pass/fail data without creating synthetic or discarding
real examples maintains the structure and chronology of the QBL pipeline. Class weights are a
simple yet e!ective way of telling the model to pay more attention to the minority class (failing
scenarios) when calculating the loss. In parallel, small feature transformations ease the extreme
values e!ect, which helps the model distinguish between relevant signals spread across the vast
majority of ‘normal’ data points.
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6 Model Development

Many high cardinality categorical inputs (e.g., scenario name or component x) and frequent
changes in the software under test pose specific challenges in the setting of failure prediction in large
industrial scales [Zhang and Chen, 2023]. Although techniques like Random Forest, XGBoost
and LightGBM have shown e!ectiveness on tabular data, factors such as the native support for
categorical features, robustness to transient signals, and computational complexity dictate which
of these algorithms is best. Our thesis further compares di!erent tree-based approaches. Rationale
for choosing Catboost is too discussed in this section[Prokhorenkova et al., 2017].

6.1 Rationale for Using CatBoost

The table below highlights the strengths and drawbacks of commonly used tree-based classification
methods, focusing on how they handle high-cardinality categorical data and evolving distributions:

Algorithm Advantages Drawbacks

Random Forest

• Straightforward to implement

• Often robust against moderate
overfitting

• Good baseline for structured
data

• Requires external categorical
encoding

• Can be slower on large datasets

• May struggle with complex fea-
ture interactions

XGBoost

• Highly optimized; proven per-
formance

• Well-established in competi-
tions

• Extensive hyperparameter sup-
port

• Manual or one-hot encoding for
categoricals

• Overfitting if not carefully reg-
ularized

• Can require intensive tuning

LightGBM

• Very fast (histogram-based
splits)

• Memory-e!cient

• Built-in GPU support

• Binning of categories may lose
detail

• Sensitive to some hyperparams

• Overfitting possible if miscon-
figured

CatBoost

• Native handling of categoricals

• Resilient to short-lived patterns

• Strong performance with mini-
mal tuning

• Slower unless GPU is used

• Higher memory usage for wide
data

• Less common than XGBoost

Table 3: Comparison of Common Tree-Based Methods for Evolving, High-Cardinality Data

CatBoost is particularly compelling because it is one of the few algorithms that can directly
handle categorical features (cat features) without the need for encoding or binning and thus
avoids the potential inflation of the feature dimension. Its ‘ordered boosting’ is another way of
combating overfitting to noisy or short-lived trends, a crucial advantage in contexts where bugs
that lead to failure one week might be fixed by the next week.

Key advantages in an Industrial testing context include:

E!cient Handling of High-Cardinality Categories. There are columns like scenario name
that have thousands of unique values. CatBoost encodes these internally without needing la-
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borious transformations to preserve meaningful distinctions and reduce engineering overhead
[CatBoost.ai, 2025].

Reduced Overfitting via Ordered Boosting. Transient bugs tend to induce ephemeral fail-
ure patterns in software tests. CatBoost prevents the model from latching onto fleeting correlations
by permutation-driven approach that limits target leakage [CatBoost.ai, 2025].

Balanced Performance with Minimal Tuning. For example, other gradient boosting li-
braries can achieve similar results, but they generally require complicated hyperparameter tuning,
especially for categorical feature encoding. CatBoost typically sets a good baseline that is di”cult
to improve upon without extensive fine-tuning, which is useful for large teams developing their
software at speed [CatBoost.ai, 2025].

Support for GPU Acceleration. For iterative workflows, however, because of the high cost
of training time for model with deep trees and many boosting rounds, CatBoost’s parallel pro-
cessing enables e”cient handling of large datasets, particularly when using GPU acceleration
(task type="GPU") [CatBoost.ai, 2025].

6.2 Overall Pipeline Overview

Figure 3 shows a high level view of how diverse data sources are ingested into our Predictive
Test Advice System, and how it produces a CatBoost model that is ready to be deployed on
future QBL runs. First, multiple repositories such as test result logs, integration data, interface
metrics, polluter flags, and code quality measures are combined into one large dataset. The data
collection phase was also rather complex and involved significant data cleaning and alignment to
ensure that each QBL file is associated with the right changes, dependencies and historical impacts.

Figure 3: Data is merged and preprocessed from multiple sources and then fed to CatBoost for
training, validation, and testing. Class weighting is incorporated during training to manage class
imbalance without changing the base dataset. When validated, the final model is saved and used
on new QBL runs (2025) in sync with ASML’s practice of gradual integration.

After merging the data, we perform feature engineering to extract both static and time-
based signals. This step includes constructing rolling window metrics (e.g., fail count 10QBL,
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pass percentage last15), domain-specific transformations (e.g., eloc per fail), and encoding
various categorical features, which CatBoost handles natively. Class weighting is applied within
CatBoost during model training, rather than altering the dataset itself. This means we are up-
grading a weight for failing scenarios as part of the training configuration, and that is assisting
the model to pay closer attention to these minority but crucial instances [Zheng and Casari, 2018].

After the feature rich dataset is made, it is divided chronologically into three sets; training,
validation and test. The training subset is iterative and improves CatBoost’s learning process,
while the validation set di!ers from the training data to enable early stopping and hyperparameter
tuning. We then test performance on a strictly newer QBL slice to gauge real world predictive
power on final model selection. Once the fully trained and validated model is saved, it is deployed
on upcoming QBL data (in 2025) to ensure that predictions are based solely on historical knowledge

As shown in Figure 3, this pipeline ensures that each stage–from data ingestion and feature
engineering, to class weighted model training and to eventual deployment–aligns with the temporal
nature of ASML’s QBL cycles and the industrial necessity of accurate and timely defect prediction.

6.3 Training, Validation, and Testing Strategy

The training sets are based on the previous QBL runs, validation sets are taken from the central
part of the subsequent QBLs, and test sets are obtained from the most recent QBL files. The
approach is consistent with the actual setting where the models are expected to predict failures
before they happen. This arrangement also enables the use of the most current data (which is
likely to contain the most up-to-date component) for hyperparameter tuning.

• Train on Older QBL Files: Covered a wide historical range of passes and missteps, so
the model could gain general trends.

• Validate on Intermediate QBL Files: Guarantees that alterations to hyper-parameters
(e.g., depth, iterations, learning rate) are set properly for fairly new, but not the latest data.
These validation metrics — including recall to ensure failing scenarios are detected — help
avoid overfitting while retaining generalization to the next wave of changes.

• Final Test on the Newest QBL Files: This is achieved through testing small changes to
the code base, simulating how the classifier performs on genuinely unseen iterations of the
code base, thus reflecting emergent bug fixes or expansions of test coverage.

Use of GPU Acceleration

Using the attribute specifying task type as GPU, parallel computing resources are leveraged.
The construction, generation and encoding of trees occur at a significantly higher rate, which is a
significant advantage when retraining many times on datasets that have millions of entries. This
is because of the necessity of having short feedback loops to continuously integrate new QBL data
or tune features.

Methodology

1. Data Aggregation: The first, Individual QBL parquet files for each window of test execu-
tions are read and concatenated in chronological order. The columns are retained according
to previous feature engineering steps, to make sure both numeric and categorical attributes
are standardized.

2. Partitioning by Time: The consolidated dataset is divided into three parts: The older
data is used to train, the next block is used for validation and the latest data is saved for final
testing. This maintains the chronological order and prevents the future QBL information
from leaking into the past.
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3. Model Configuration: The key hyperparameters are chosen to avoid overfitting while cap-
turing nuanced interactions without too many iterations, depth or learning rate. Processing
of categorical features is enabled by CatBoost, for which a cat features index is specified.
Early stopping is controlled via early stopping rounds, which stops boosting if validation
recall flattens.

4. Training on Historical Data: The model is trained on the training subset and every
iteration is evaluated on the validation subset as we fit the model. It shows whether the
chosen setup still identifies newly emerging failure patterns through this continual feedback
loop.

5. Validation and Early Stopping: If validation recall does not improve for a certain number
of consecutive iterations, training is stopped. This safeguard is to avoid overfitting to transient
anomalies in the older QBL data.

6. Final Testing: After convergence of training, the real world performance is checked using the
newest QBL portion. Recall, precision, F1-score and accuracy are the metrics that quantify
the e!ectiveness of the classifier to generalize to scenarios that are not seen during training.

7. GPU Acceleration: The configuration task type=GPU, which parallelizes computationally
heavy tasks (for example, tree splitting, histogram generation) and reduces model-fitting time
significantly for an environment that receives QBL data in a stream.

As shown in Figure 4, we divide the data based on time from 2022 up to the end of 2024
and the last 30 QBL runs we use for validation (15 QBLs) and test (15 QBLs). The rest is used
for training. When the final model is trained and tested, it is then used on the new QBL data
that comes in the year 2025, which means that the predictions for future runs are based only on
historical information.

Figure 4: Timeline-based partitioning of QBL data from 2022 to 2024 into training, validation,
and test sets, with the final saved model deployed on new QBL data in 2025. This forward-only
scheme aligns with real-world continuous integration practices at ASML.

In addition, to building on time specific data splits, utilising CatBoost’s strong performance
with respect to categorical variables and exploiting GPU based training; this methodology is in
line with the large scale, continuous integration pipelines needs. Thus, chronological integrity is
maintained to ensure that the performance metrics actually reflect the true predictive value as far
as upcoming QBL runs are concerned.
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7 Empirical Results

In this section, we present the results of our predictive model. We have divided our results of our
work into three main parts: (1) Hyperparameter optimization, (2) Model performance on valida-
tion and test sets, and (3) Feature importance analysis. Together, these results demonstrate the
e!ectiveness of our approach in identifying failing test scenarios while considering the problems
of class imbalance and the evolution of the software under test.

First, we conducted an extensive grid search to identify the best setting for our CatBoost
model. The hyperparameters chosen are listed in Table 4. These settings—e.g., a large number
of boosting iterations, moderate tree depth, and low learning rate—help the model learn complex,
nonlinear relationships without overfitting. Furthermore, the use of class weighting (set to [1, 25])
means that rare failing scenarios are highlighted during training, and early stopping (with 200
rounds) stops the training process once the validation recall plateaus.

Next, we used validation and test sets which we derived from our QBL data which was chrono-
logically split for the evaluation of the model. The performance metrics for these sets are presented
in Tables 5 and 6 respectively. These results show that the model has a high recall of 0.820
on validation and 0.806 on test, which is important because missing a failing test scenario can
have a significant impact on operations. While the test precision (0.107) is low, this is acceptable
given the context in which this is a trade o! between precision and recall, and detecting failures
is the primary concern. The confusion matrix in Figure 5 confirms that the model is good at
distinguishing between failing and passing scenarios.

Finally, we use CatBoost’s internal evaluation to analyze feature importance. Figure 6 shows
a horizontal bar plot of the top features. The results also show that features such as changes
in files ending with .h, eloc per fail, and fail count 10QBL are among the most influential.
These findings support our feature engineering strategy and o!er actionable insights for future
refinement of test selection processes.

7.1 Hyper-parameter Optimization Results

We conducted a comprehensive grid search to determine the optimal configuration for our Cat-
Boost model. The best hyper-parameters obtained are summarized in Table 4.

Table 4: Optimal Hyperparameter Configuration for CatBoost

Parameter Optimal Value

Iterations 1000
Depth 7
Learning Rate 0.01
Loss Function logloss
Class Weights [1, 25]
L2 Leaf Regularization 0
Random Seed 42
Use Best Model True
Early Stopping Rounds 200
Evaluation Metric Recall
Random Subspace Method (RSM) 0.8

From our hyperparameter search, we identified several key settings that allow the model to
capture complex, high-dimensional relationships while mitigating overfitting. We set the number
of iterations to 1000 and a tree depth of 7. This allows the model su”cient capacity to learn
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intricate patterns in the data, and the relatively low learning rate of 0.01 ensures that the model
updates its weights gradually, fostering stable convergence even in the presence of noise and severe
class imbalance. The use of early stopping with a patience of 200 iterations further guards against
overfitting by stopping training when the recall metric on the validation set stops improving.

Additionally, we use the logloss loss function, which penalizes confident but incorrect pre-
dictions, making it well-suited for our binary classification task. For instance, to overcome the
pronounced class imbalance where the failure cases are only about 3.3% of the data, we use class
weight ratio of [1, 25]. This e!ectively forces the model to pay attention to the minority class by
penalizing the model more for failing to identify a failing test during the training process. The
RSM (Random Subspace Method) is also enabled (RSM = 0.8) to randomly sample 80% of the
features in every iteration, preventing the model from over-relying on specific predictors in the
training dataset.

Other parameters such as fixing the random seed at 42, to make sure that our experiments are
reproducible, and setting L2 leaf regularization to 0 since our robust early stopping mechanism
proved su”cient. Finally, we use the best model as determined by the recall metric on the vali-
dation set, to guarantee that the final model is optimized for detecting failing scenarios, which is
crucial in our industrial application.

All in all, the hyper-parameter settings identified in this study, as presented in Table 4 and
discussed above, form a balanced configuration that is a foundation of the predictive power of our
CatBoost model. They help us to accurately and reliably detect failing test scenarios, so that our
system is working well for us in the challenging, data-intensive environment at ASML.

7.2 Performance Metrics

We trained the model on a di!erent validation and test set taken from chronologically partitioned
QBL data. The following tables present the key performance metrics.

Table 5: Validation Metrics
Metric Value

Recall 0.820
Precision 0.339
F1 Score 0.480
Accuracy 0.964

Table 6: Test Metrics
Metric Value

Recall 0.806
Precision 0.107
F1 Score 0.189
Accuracy 0.845

The high recall values on both the validation (0.820) and test (0.806) sets indicate that the
model e!ectively identifies failing scenarios. The test precision is fairly low (0.107), but this is an
acceptable trade o! in our context as the cost of missing failures is greater than the inconvenience
of some false alarms.
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Figure 5: Confusion matrix for the test set, indicating the distribution of true positives, false
positives, true negatives, and false negatives.

See figure 5 for the confusion matrix of the test set, o!ering a detailed breakdown of true
positives, false positives, true negatives, and false negatives. The top-left cell (True Negatives)
is 860,848 stable scenarios called not fail correctly. Out of that, 157,380 stable scenarios ended
up in the top-right cell (False Positives), which means these were misidentified as failing. The
bottom-left cell, False Negatives, contains 4,553 failing scenarios that the model failed to capture,
while the bottom-right cell, True Positives, contains 18,877 failing scenarios that the model could
correctly identify.

This breakdown makes clear that the model’s high recall is gained by identifying the majority
of failing scenarios correctly (True Positives) at the cost of labeling a moderate number of stable
scenarios as failing (False Positives). This trade-o! is justified in our industrial context, where
missing failures poses a greater risk than investigating false alarms. However, this is also the
cause of the lower precision seen in our test metrics since precision is directly proportional to
the percentage of correctly identified failing scenarios among all the predicted failures. Overall,
the confusion matrix captures how the model focuses on identifying the majority of failing tests
— essential in ASML’s high risk manufacturing environment — while acknowledging that future
work may seek to decrease false positives without sacrificing recall.

7.3 Feature Importance Analysis

Internal evaluation was used to obtain feature importance by CatBoost. Although, the internal
model generates a full table of feature scores, Figure 6 presents a horizontal bar plot of the
most influential features.. It also has some high ranking features like file modifications in .h
files, eloc per fail, and fail count 10QBL indicating their importance in predicting failing test
scenarios.

27



Figure 6: Horizontal bar plot of the top features by importance, highlighting the most influential
variables in the predictive model.

Therefore, from our empirical results it can be concluded that the Predictive Test Advice
System is e!ective and robust. The recall performance is also high (about 80%) and the feature
importance analysis is insightful. Achieving a recall rate of 95% would be ideal but remains chal-
lenging in an imbalanced and dynamic environment such as ours. Thus, achieving approximately
80% recall represents a strong starting point and a step in the right direction.

It should also be highlighted that the validation and test sets are based on data from 15 QBLs
(15 weeks), which introduces naturally variability into our performance metrics. Because of the
weekly test outcomes variability and the complexity of the software under test, the current recall
value indicates that our model identifies most failures, thus reducing the risk of undetected defects
that could have a critical impact on ASML’s operations.

In summary, further work in this area will continue to focus on further boosting recall and
precision, while there is still room for improvement especially in enhancing precision the results
achieved so far underscore the potential of our approach. While there is room for improve-
ment—especially in precision, our results are encouraging and demonstrate the model’s potential
to enhance ASML’s testing process in a high-stakes production environment.
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8 Time-Aware Cross-Validation

Predictive modeling in our semiconductor manufacturing environment depends on identifying
changes in software and testing conditions from multiple QBL runs. Simple random cross vali-
dation – where data is mixed arbitrarily – might lead to the so called ‘future’ code information
being incorporated into the training data, overestimating the ability of the model to identify previ-
ously unseen defects. To this end, we employ an expanding window cross validation strategy that
respects the chronological order of the QBL data. This section explains the rationale for using
an expanding window, defines the folds of our dataset, presents the per-fold results and average
metrics, and finally discusses how this approach is suitable for large-scale software systems that
are continually evolving [Bergmeir and Beńıtez, 2012].

8.1 Expanding Window Folds

See figure 7 for how each fold is created in our expanding window setup. We first define an initial
block of QBLs (e.g., 15 QBLs from early 2022) as the training set. In the first fold, this block is
used to train the model and the next QBL is held out for validation. When the validation step is
done, the newly validated QBL is then “folded” into the training set, thus increasing the length
of the historical data. This process is then repeated incrementally such that every QBL is used
once as a validation set.

Figure 7: Schematic of expanding window cross-validation. Each fold adds a new QBL to the
validation set while merging previously validated QBLs back into the training set, preserving
temporal order and avoiding data leakage.

In this forward only manner, where no future data is made available to the model, we replicate
real continuous integration (CI) workflows for testing. At ASML, new code merges and QBL runs
arrive chronologically, and the model never “sees” future QBL data while training on the past,
the true causal flow of development and testing events.

8.2 Implementation Details in Our Dataset

Initial Window. We use the first 15 QBL files (chosen to cover some months in 2022). This
block includes the initial pass/fail patterns and helps to set a baseline for what constitutes a
failing scenario for the model. Picking too few QBLs might prevent the model from ever seeing
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the variety of failures that are typical in large industrial software, but using a large initial block
could mean that subsequent folds would be relatively short.

Sequential Validation Folds. In each iteration, the next QBL files in the chronological order
are used as the validation set. Recall, precision, F1-score and accuracy are reported as performance
metrics. We then incorporate the newly validated QBL(s) to the ’training window’ expanded to
simulate the way of dealing with code changes and testing in production.

Cumulative Historical Knowledge. In addition, the training set is continually expanded by
appending newly validated QBL data from early 2022 up to the final QBL runs that we keep for
our ultimate test set. This enables the model to ‘remember’ historical defects that might recur
due to reintroduced libraries or reverted code commits, e.g., older bugs or features. This also
helps the model to catch the drift in the data where failing scenario patterns change frequently.

8.3 Per-Fold Validation Results

See figure 8 for a bar plot of validation recall across each fold, which shows how accurately the
model detects failing scenarios at di!erent points in the expanding window. A few QBLs have
notably lower recall (suggesting code change or test coverage di!erences), but the overall pattern is
stable. This suggests that the model is robust to incremental changes in the software environment,
even when new QBLs are added to the validation set and then folded in to training.

Figure 8: Bar plot of recall for each validation fold in the expanding window cross-validation.

From the validation folds, we summarize the results and present the overall performance in
Table 7. The model has a high overall recall of 0.856, which is a key metric in industrial settings
where missing a defective scenario can result in costly consequences. However, the precision is low
at 0.260, which indicates that the model is likely to label some stable scenarios as fail. Some folds
are not as robust, but the average of the overall average is still a good start for ASML’s high-risk,
highly dynamic continuous testing stream.
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Table 7: Average Performance Metrics Across All Validation Folds

Metric Value

Recall 0.856
Precision 0.260
F1-Score 0.380
Accuracy 0.868

The model reaches a high recall (0.856) which means it identifies most of the failing scenarios,
an important goal in ASML’s testing environment where missing a failure is costly. Although
the precision is relatively low (0.260), resulting in more false positives, this trade-o! is acceptable
in this context. It is better to over-predict potential failures (and investigate further) than to
risk missing critical issues. However, the precision could still be improved through further model
tuning or post-processing, especially to reduce unnecessary test executions without compromising
the recall.

8.4 Significance for Long-Lived Software Testing

Our methodology delivers practical advantages for enduring software testing environments. The
following factors demonstrate its ability to sustain performance through time:

• Ensuring No Forgotten Bugs: ASML’s code base can go back to older libraries or states.
The model keeps a record of past defects by folding in continuously historical QBL data to
the training set, so it can tell regressions that are similar to past failures.

• Mimicking Real Processes: All the QBLs are tested only after the results of previous
QBLs are finalized. This growing scheme mirrors real-world development, where each QBL
is validated before being incorporated into the training set, similar to how code merges and
test data accumulate over time.

• Capturing Evolving Failures: Introducing new hardware integrations, environment changes
or bug fixes can lead to the appearance of completely new failure modes. A forward-only
cross validation scheme tells you whether the model is having trouble with newly introduced
patterns, which calls for tweaking of feature engineering or hyper-parameters.

• Time-Based Drift Assessment: We can detect performance metric drift across folds to
see if the model remains stable or declines, we can see this in figure 8. Such declines may
be an indication of large code merges or environment modifications that the model has not
yet learned how to handle. This enables us to detect drift in performance metrics across
folds, whether the model stays stable or declines in recall or precision. Such declines may
be an indication of large code merges or environment modifications that the model has not
yet learned how to handle.

Therefore, expanding window cross-validation is a core part of our approach for sequentially
indexed test data. To do this, we train the model on the past QBLs and validate on each new
QBL before folding it back in, thus mimicking the real-life scenario in which the only available
information is the data of the tests that have already been completed. Figures 7 and 8 highlight
how the training region grows from 2022, so that early failing components, changes in the hardware
or previous failures are included in the model’s history when detecting the failure in the future.
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9 Ablation Study

The Predictive Test Advice System underwent an ablation study to measure the e!ect of our
designed features on its performance. The goal was to separate and measure the contribution of
each feature subset to show that our advanced feature engineering including those from historical
test results, integration data, interface metrics and time-aware signals significantly enhances the
model’s ability to predict failing test scenarios.

We analyzed three di!erent configurations of the feature set:

1. Categorical Features Only: The configuration only includes the basic categorical at-
tributes that are provided directly through ASML’s APIs such as scenario name,
configuration name, level, machine type, component x, target os, functional cluster,
and building block. These features describe the static properties of the test scenarios.

2. Categorical + Code Quality Features: The dataset includes both categorical features
and code quality metrics (e.g., tqi, cycloxAverage, DuplicatedCode(), and eloc) that
are also provided through APIs. These metrics give an idea about the maintainability and
structural health of the software.

3. All Features (Including Engineered): This comprehensive set adds our custom-engineered
features—such as rolling-window statistics (fail count 10QBL, pass percentage last15),
integration and interface metrics, known issue flags, and other time-aware signals—to the
previous two groups. These features are designed to capture dynamic trends and historical
patterns that static attributes cannot reveal. All feature definitions are provided in Section 3.

Figure 9: Comparing di!erent models with di!erent sets of features, showcasing the results
achieved across all the test set QBLs.
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Table 8: Ablation Study: Impact of Feature Subsets on Model Metrics

Feature Subset Average Recall Average Precision

Categorical Only 0.402 0.037
Categorical + Code Quality 0.450 0.060
All (Including Engineered) 0.806 0.107

The results reveal several key observations:

• The Categorical Only configuration, although useful as a baseline, only reaches an average
recall of 0.402 and 0.037 precision. This shows that using only static categorical attributes
is not enough to capture the complex dynamics of test failures.

• Adding Code-Quality features slightly improves recall to 0.450 and precision to 0.060, indi-
cating a limited but noticeable e!ect This indicates that code quality metrics are somewhat
useful, but the overall gain is rather small.

• The average recall increases to 0.806 when All Features (including our engineered features)
are incorporated. This significant boost shows the e!ectiveness of our feature engineering
e!orts. Also precision improved to 0.107 too. Precision is still low but it varies on di!erent
data, table 5 showed precision of 0.339 on the validation set.

The engineered features originate from di!erent data sources which include historical test re-
sults together with integration and interface information and time-dependent signals that detect
temporary trends and developing patterns in software. The additional features deliver an enhanced
understanding of testing conditions which allows the model to identify faint failure indicators that
static data cannot detect [Kohavi and John, 1997]. The substantial increase in recall from 0.450 to
0.806 demonstrates how engineered features enhance the predictive system’s overall performance.

The significant rise in recall from 0.450 to 0.806 demonstrates that the engineered features de-
tect essential dynamic information which static categorical and code quality features fail to detect.
The engineered features enable detection of time-dependent test failure patterns. These features
excel at detecting new failure patterns that stem from recent code modifications and hardware
updates and dependency changes which static attributes cannot detect. The analysis reveals that
time-series rolling metrics such as pass percentage last15 and fail percentage last15 pro-
vide the most significant boost to recall improvement among all engineered features. The model
shows robust performance across most QBLs yet there are specific challenging cases which pro-
duce lower detection rates due to atypical or transient failure patterns. Precision too requires
more research to be improved.

Hence, the ablation study shows that while basic categorical and code quality features provide
a baseline, the additional engineered features are necessary to achieve robust predictive perfor-
mance. The complete feature set improves the model’s ability to capture the dynamic and complex
nature of test failures, which leads to a more e!ective and reliable Predictive Test Advice System.
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10 Deployment on 2025 Data

After finalizing the model through expanding window cross-validation on QBL data up to late
2024, we now apply the saved model to new QBL runs from 2025. This step verifies how well
the model generalizes to genuinely unseen test scenarios that may incorporate novel code merges,
hardware updates, or unanticipated regressions [Li and Zhao, 2020].

Figure 10 shows the model’s recall for each weekly QBL in the 2025 dataset, illustrating the
extent to which failing scenarios are captured at di!erent points in the new year. Although indi-
vidual weeks fluctuate—likely reflecting variations in code changes and testing scope—the overall
trend remains reasonably stable, underscoring the model’s adaptability to ongoing development.

Figure 10: Recall per weekly QBL in 2025. Despite natural week-to-week variation, the model
maintains a reasonably high recall.

To quantify the model’s overall e!ectiveness on the 2025 data, we compute the average per-
formance across all weekly QBLs in this timeframe. Table 9 summarizes the key metrics:

Table 9: Average Performance Metrics on 2025 QBL Data

Metric Value

Recall 0.825
Precision 0.209
F1-Score 0.329
Accuracy 0.932

The average recall (approximately 0.825) rea”rms the model’s strength is in identifying failing
scenarios, which is a priority in ASML’s production environment. The F1-score (0.329) and accu-
racy (0.932) further illustrate how the model balances the competing objectives of comprehensive

34



defect detection and minimizing false alarms.

In this context, low precision and F1-scores are acceptable because the primary objective is
to maximize recall—ensuring that nearly all failing test scenarios are detected. In high-stakes
environments like ASML, missing a failing test (a false negative) can have critical operational
consequences, so the trade-o! of having some additional false positives (resulting in lower precision)
is justified.

Figure 11: Comparison between the total test runs across 2025 data and the advice provided by
our model.

Table 10: Models performance across 2025 QBLs

Metric Value

Test Set Reduction 92%
Failure catching capability 80.2%

In Figure 11 and Table 10, we can see that the total test runs across 8 QBL test runs were
566,406 and the advice generated by our model is 45,103 tests. This results in a reduction of 92%
from ASML’s test suite. In terms of failures, 10,713 tests failed across the 8 QBL test runs in 2025
and our Predictive test selection system was able to catch 8,592 failure. This means our model
was able to catch 80.2% of the total failures. This result is consistent with our results obtained
on our expanding validation and test set.

35



11 Future Work

While the Predictive Test Advice System demonstrates promising results in identifying failing
scenarios at ASML, several avenues remain open for further enhancement:

Refining Interdependency Modeling. Although our present feature set includes basic de-
pendency metrics (e.g. Max DepCC total To, Max Change Freq Nested To), future work could
focus more on the structure of software modules. For example, we believe creating more detailed
dependency graphs could help to understand how small changes in one component spread across
complex interlinked subsystems.

Dynamic File Change Analysis. Our analysis does include file level metrics (.cpp, .h etc.)
but more specific characteristics might be available from a comparison of the particular lines or
functions altered over time. Further, using automated di! based parsing could help in understand-
ing the kind of changes being made and may help in identifying some patterns which are strongly
correlated with failing scenarios.

Advanced Drift Detection. For instance, the model now updates itself to new code merges
using the expanding window cross-validation strategy. However, there is no need for explicit
drift detection techniques to notify the engineers when historical patterns are no longer relevant.
Making it possible to detect and highlight critical change, e.g., a sharp decrease in recall for new
QBLs would force a more urgent need for retraining or feature re-engineering so that the model
stays current with the constantly changing software.

Continuous Integration and Automated Retraining. Although our pipeline has a mech-
anism to retrain and validate on newly arrived QBL test run data, there is further automation
possible. Scheduling frequent, incremental updates to the model—especially when development is
intense—would help to maintain high recall on new features and bug fixes.

Extended Hyper-parameter Tuning. As for now, our grid search has yielded e!ective hyper-
parameters for CatBoost, but other tuning approaches (say, Bayesian optimization) might have
been even better. Getting a more solid search strategy integrated could actually help reveal subtler
parameter interactions as well, especially when the dataset grows or new features are added.

Exploring Additional Machine Learning Architectures. Although CatBoost was good at
working with categorical data and high cardinality features, there are other advanced methods
that may pose some additional benefits. Transformers excel at capturing long-range dependencies
and contextual relationships in sequential data. While they are traditionally used in NLP, in
predictive testing they could be employed to model sequences of code changes, test outcomes,
and time-series trends. This could enable the system to understand subtle patterns over long
periods—for instance. We believe examining such approaches could help to uncover some other
ways to improve recall or precision.
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12 Conclusion

In this thesis, a comprehensive Predictive Test Advice System has been designed for ASML’s
high-stakes, continuously evolving software development, testing, and integration. Central to this
e!ort was the integration of multiple data sources — from historical execution logs, to detailed
file change records, to code quality metrics — into a unified, time-aware pipeline. By leveraging
CatBoost’s native handling of categorical features and applying class weighting to address the
pronounced imbalance between passing and failing test scenarios, our model prioritizes those test
scenarios which are most likely to fail. This approach not only streamlines the allocation of testing
resources but also protects against the possibility of missing critical defects in a domain where
even minor oversights can have substantial operational consequences.

A key strength of the system is its time aware cross validation, which conserves the temporal
coherence of the QBL data. This strategy ensures that the model is trained only on the historical
runs before validating on the newer QBLs, just as it does in real-world continuous integration.
Subsequent deployment on 2025 data and multiple validation folds yields high recall (typically
greater than 80%) from the model in detecting the majority of failing scenarios. Precision is
lower, but this is a reasonable trade o! with respect to the industrial priority of avoiding false
negatives (undetected defects). Thus, the system captures the majority of the failing scenarios
early, providing a good safety net to avoid the cost of many defects appearing in production en-
vironments.

The system shows promising results but multiple challenges and limitations persist. The severe
class imbalance in QBL test run data remains di”cult to handle because passing test executions
dominate the data. This results in low precision rates as stable scenarios are being misclassi-
fied as failures. The system requires additional development of feature engineering methods and
advanced hyperparameter tuning and alternative machine learning architectures to maintain pre-
cision levels without compromising the achieved recall rates. The solution of these problems is
crucial for enhancing the reliability and practical use of the predictive test selection system in
industrial continuous integration environments.

Nevertheless, a fully optimized predictive test selection system is not yet complete. This could
be achieved through a deeper dependency analysis of the data to understand the subtle inter-
actions among software components and how small changes to one module can cause failures.
Further, adaptability could be improved through more advanced drift detection mechanisms that
can identify abrupt changes in code. Strategies for continuous retraining or incremental learning
are needed to ensure that the model stays current with new QBLs as it learns to handle emer-
gent bugs, features, and hardware integrations in near real time. At the same time, examining
line-level code di!s or other more sophisticated graph-based techniques for modeling inter-module
dependencies may reveal predictive signals that are currently unexploited by the feature set.

While CatBoost has proven highly e!ective for large-scale tabular data with many categorical
features, other algorithms (e.g., transformer-based or graph neural networks) might capture the
nuances of evolving code bases even more accurately. Finally, bridging these predictive insights
with ASML’s existing development workflows—such as automatically suggesting test subsets in
a continuous integration pipeline—would further reduce unnecessary test executions, speed up
feedback loops, and ensure that engineering e!orts focus on genuinely high-risk areas.

In sum, the Predictive Test Advice System developed in this thesis marks a significant step to-
ward more intelligent and resource-e”cient testing at ASML. By identifying failing scenarios early,
it helps avert production risks, saves engineering time, and maintains the high standards of quality
essential in semiconductor manufacturing. Yet, as software complexity continues to grow, so too
must our predictive strategies evolve. Continued research and iterative improvements promise
to elevate recall, precision, and overall robustness, contributing to ASML’s continuous e!orts in
delivering reliable lithography solutions.
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