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Abstract

Cross-modal associations are defined as the ability to connect information across
different sensory modalities. For example, linking linguistic features (sound or words)
to corresponding visual attributes (images). This thesis investigates whether Vision-
and-Language Models (VLMs), specifically Vision Transformer-based and ResNet-based
CLIP models, show robust cross-modal associations between linguistic inputs (words)
and visual shapes (curved and jagged images). These associations are important as they
reveal how closely AI models reflect human perception and can enhance human-machine
interactions through shared preferences. The CLIP model was chosen for this thesis be-
cause of its strong performance in aligning visual and textual representations. Addition-
ally, prior research has shown that CLIP exhibits patterns of human-like associations in
specific contexts, such as connecting linguistic features to visual attributes. This study
explores the presence of cross-modal associations in VLMs through four experiments:
probability comparisons, image-to-text matching, phonetic component analysis, and at-
tention pattern evaluation. Overall, the findings reveal that cross-modal associations are
not consistently present in VLMs and depend heavily on the word type, the model archi-
tecture, and the specific task. While familiar word types like English synonyms produce
strong associations, more abstract or complex pseudowords reveal significant limitations.
Future work should explore several key directions, such as examining other cross-modal
associations to provide a broader perspective on how different sensory modalities in-
teract in VLMs. Moreover, investigating models with diverse architectures shows how
architectural differences influence cross-modal associations in VLMs.
Keywords: Cross-Modal Associations, Bouba-Kiki Effect, Vision-and-Language
Models, CLIP
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1 Introduction

Understanding the connection between different types of information (such as sound and
vision) and human perception is a fascinating area of study in cognitive science. Links and
relationships between different sensory experiences, such as linking sound to another modality,
such as vision, are defined as cross-modal associations. One of the most famous examples in
this context is the bouba-kiki effect, where most people tend to associate the word ”kiki” with
jagged and sharp shapes and the word ”bouba” with soft and round shapes. In 1929, köhler
revealed that people consistently associate the pseudoword ”takete” with jagged, angular
shapes and ”maluma” with soft, rounded shapes [Köhler, 1929, 1947]. This effect, which
has since then been widely studied, shows that humans share strong preferences for mapping
auditory information to visual shapes.
Cross-modal associations have been investigated in both human studies and Artificial Intel-
ligence. Human studies indicate that certain sounds can be consistently linked to specific
shapes [Ramachandran and Hubbard, 2001, Lockwood and Dingemanse, 2015, Cuskley and
Kirby, 2013, Nielsen and Rendall, 2012]. Besides human studies, the advancement of AI has
provided researchers with new opportunities to investigate these associations in artificial sys-
tems. Recent work by Alper and Averbuch-Elor [2023] on VLMs explored whether AI models
show the bouba-kiki effect. Their findings show strong evidence of cross-modal associations
in VLMs. Another study by Verhoef et al. [2024] further examined the bouba-kiki effect in
VLMs. Unlike Alper and Averbuch-Elor [2023], who reported strong evidence of cross-modal
associations in VLMs, Verhoef et al. [2024] found only limited evidence, with outcomes heavily
dependent on model architecture and task design.
Understanding whether cross-modal associations exist in VLMs like CLIP is important for
assessing how closely these AI models reflect human perception. Such associations are funda-
mental to how humans interpret and engage with the world. These associations support key
aspects of human cognition, such as learning language by linking abstract symbols to sensory
experiences and communicating effectively through multiple types of information. Examining
whether VLMs replicate these associations allows us to evaluate how well these models align
with human-like representations. Such alignment enhances interactions between machines and
humans by enabling the development of shared preferences and creating a common ground for
communication Kouwenhoven et al. [2022]. Furthermore, understanding cross-modal associa-
tions in VLMs increases the development of AI systems that perform effectively and replicate
how humans process and convey meaning.
In order to understand whether human-like cross-modal associations exist in VLMs, this thesis
builds upon the work of Verhoef et al. [2024] and extends their work in several key ways. First,
we incorporate a wider range of words to explore the robustness of cross-modal associations
across different types of words. Then, we employ a comprehensive analysis of probability ex-
periments to examine how VLMs like CLIP align with human cross-modal preferences. Second,
we extend the analysis by utilizing different CLIP [Radford et al., 2021] architectures, such
as Vision Transformer and ResNet-based version of CLIP, which allow us to assess the gen-
eralizability of the findings across different model structures. Lastly, we analyze the attention
patterns of these models on images containing both curved and jagged regions when paired
with a label to examine whether their focus aligned with the relevant region, similar to hu-
man perception. As shown by Taubert et al. [2011], human perception works holistically by
integrating visual information to focus on relevant features within an image.
Our findings confirm the work of Verhoef et al. [2024], demonstrating that cross-modal asso-
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ciations in VLMs highly depend on the specific stimuli, the model architecture, and the task
design. This variability emphasizes that cross-modal associations do not consistently emerge
across different contexts, inputs, or model designs.
The remainder of this thesis is structured as follows: Section 2 reviews the related literature
on cross-modal associations in both humans and VLMs. Section 3 discusses the methodology
and explains the process of image generation, pseudoword selection, probability-related ex-
periments, attention pattern analysis, and other analytical techniques. Section 4 presents the
results and their findings. Section 5 provides a discussion of the findings. Section 6 concludes
with a summary of the contributions. Finally, Section 7 offers suggestions for future research
directions.

2 Background

Cross-modal associations are defined as the non-arbitrary relationships between different sen-
sory experiences, such as linking sounds with visual shapes. These associations have been
investigated in both human studies and artificial intelligence. The following sections will dis-
cuss the relevant literature from both domains.

2.1 Cross-Modal Associations in Humans

Cross-modal associations play an important role in human language processing and language
evolution. These associations challenge the traditional belief that language is completely ar-
bitrary and show that there may be patterns or meanings behind how words and sounds
are connected [Lockwood and Dingemanse, 2015, Cuskley and Kirby, 2013]. More specifically,
Lockwood and Dingemanse [2015] defines sound symbolism as an intuitive connection between
a word’s sound and its meaning. They argue that sound symbolism is not a random language
feature but a key part of a more extensive system where the brain links different senses and
experiences. In these cases, the brain processes sound symbolic words more effectively be-
cause there is a clear link between how the word sounds and what it represents. Furthermore,
Cuskley and Kirby [2013] show that sound symbolism and cross-modal associations play an
essential role in language evolution. They propose that iconic form-meaning mappings, like
sound symbolism, offer a natural starting point for language development. These connections
make communication easier because of common cognitive tendencies. Moreover, Nielsen and
Rendall [2012] show how sound symbolism and cross-modal associations influence the lan-
guage learning process because humans tend to learn and retain words more effectively when
there is a meaningful, non-arbitrary relationship between the sound of a word and its mean-
ing. They emphasize that these meaningful connections make it easier to learn a language,
especially during the earliest stages when humans first start to develop ways to communicate.
Over time, these connections have shaped how new languages have formed and evolved. Blasi
et al. [2016] have conducted a thorough study and examined sound-meaning correspondences
in a large representative subsection of all existing languages. Their findings show that specific
sounds mainly correspond to particular meanings, even across unrelated languages. This find-
ing indicates that some words might originate from natural cognitive connections. This shows
that sound symbolism is not just a rare occurrence but a key feature embedded in the core
vocabulary of languages.
The bouba-kiki effect, investigated by [Köhler, 1929, 1947], is a key part of sound symbolism
and has been studied and replicated extensively in research across different cultures, languages,
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and sensory experiences [Maurer et al., 2006, Westbury, 2005]. Ramachandran and Hubbard
[2001] highlight the importance of the bouba-kiki effect by linking it to larger cognitive pro-
cesses. Their research suggests that these sound symbolic associations show deeper connections
in human cognition between sensory inputs and meanings. This finding suggests that these
cross-modal mappings are not random but rooted in how we perceive and process information
neurologically.
Furthermore, Cuskley et al. [2017] examine how the shape of written letters, called orthogra-
phy, can evoke cross-modal associations. For instance, some letter shapes might be seen as
”rounded” or ”jagged.” They also show that this effect holds even when the shapes of the
words are absent and only the sounds of the letters and words are present, which is aligned
with the ”bouba-kiki” effect.
Nielsen and Rendall [2013] also further explore the ”bouba-kiki” effect. They aim to analyze
how consonants and vowels influence cross-modal associations between sounds and shapes.
Their experiments use novel pseudowords and newly generated curved and jagged images.
They ask participants to create two-syllable words from consonant and vowel options to match
curved or jagged shapes. They found that participants tend to associate rounded vowels and
sonorant consonants with curved images and non-rounded vowels and plosive consonants with
jagged images. Their study shows that both consonants and vowels affect the ”bouba-kiki”
effect.
Besides the bouba-kiki effect, many other cross-modal associations have been observed. A
study by Hubbard [1996] explores how visual lightness relates to auditory pitch. This study
shows that people tend to associate lighter images with higher-pitched sounds and darker
images with lower-pitched ones. This built on earlier work by Marks [1974], which found
that melodic intervals are connected to visual lightness, meaning that higher-pitched sounds
usually go along with lighter visuals. In contrast, lower-pitched sounds are linked to darker
visuals. Hubbard [1996] also mentions that the background color affects these associations.
More specifically, these associations are more substantial with a black background. Parise and
Spence [2009] also explore how people inherently associate high-pitched sounds with smaller
or brighter objects, while low-pitched sounds are linked to larger or darker ones.

2.2 Cross-Modal Associations in VLMs

In addition to human studies, some research has explored how cross-modal associations func-
tion in artificial systems. For example, Kann and Monsalve-Mercado [2021] examine the link
between character embeddings in neural networks and a phenomenon called grapheme-color
synesthesia, where people see specific colors when they look at letters. Based on data from this
grapheme-color synesthesia, the researchers measure letter similarities based on these color as-
sociations. Then, they compare these similarities to character embeddings derived from various
neural architectures. More specifically, they trained models on different tasks. They found that
models focused on tasks involving the relationship between letters and their sounds aligned
most closely with human perceptions, as letter sounds often influence synesthetic color as-
sociations. Their research shows how understanding cross-modal associations, for example,
focusing on sound-letter relationships, can help improve AI systems and bring their represen-
tations closer to human cognition.
Despite advancements in AI models and their ability to process multimodal data, these models
still face limitations.
Thrush et al. [2022] state that even advanced models struggle with tasks requiring visio-
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linguistic compositional reasoning. This involves understanding complex relationships between
images and text, such as distinguishing how word order changes the meaning of captions. The
poor performance of AI models on the Winoground dataset highlights these challenges. Unlike
humans, these models fail to distinguish subtle changes in word order and match captions
to images correctly. The study by Diwan et al. [2022] shows that the failure of VLMs on
the Winoground dataset arises from factors such as reasoning about complex relationships,
identifying fine-grained visual details, challenges with unusual or visually difficult data, and,
most importantly, the difficulty in robustly aligning textual semantics with visual elements.
Kamath et al. [2023] also indicate that VLMs struggle with basic spatial reasoning tasks,
such as understanding the difference between ”on” and ”under.” These failures arise from
spatial relationships being rarely labeled in training datasets and a bias toward common object
arrangements. The study by Kamath et al. [2023] also confirms the challenges VLMs face, as
seen in the Winoground dataset, which results from their inability to accurately align semantic
and spatial relationships.
Furthermore, [Jabri et al., 2016, Goyal et al., 2017, Agrawal et al., 2018] highlight another
limitation of VLMs. Their studies show that these models rely heavily on textual patterns
instead of precisely analyzing visual content. Therefore, these models struggle to integrate
textual and visual data meaningfully. For example, these models tend to answer ”yes” to
questions without basing their answers on the image. The work by Goyal et al. [2017] shows
that even when these models are trained on a balanced dataset, they face challenges connecting
textual input with subtle visual details.
These examples show that poor visio-linguistic compositional reasoning, difficulty understand-
ing spatial relationships, and challenges in integrating textual and visual data may cause AI
models to struggle to replicate human-like cognitive patterns.
A recent study by Alper and Averbuch-Elor [2023] explores whether VLMs like CLIP and Sta-
ble Diffusion show sound-symbolic patterns, similar to the bouba-kiki effect. Specifically, they
used Stable Diffusion to generate images of pseudowords carefully designed to reflect phonetic
properties linked to sharp or round shapes. These images were then projected into CLIP’s
shared semantic space, which enables a comparison of the generated images’ visual properties
with the pseudowords’ linguistic properties. Then, by learning a projection in CLIP’s seman-
tic space, they determined whether the generated images aligned with the sharp or round
associations of the pseudowords. Their findings indicate strong evidence for the existence of
cross-modal associations in VLMs. More precisely, they show that VLMs tend to associate
sharp-sounding pseudowords with jagged and sharp visual elements and round-sounding pseu-
dowords with round and soft visual elements. This finding is surprising because, as mentioned
earlier, VLMs still face limitations. These limitations suggest that even if VLMs can extract
sound-symbolic information from the texts they have been trained on, they are likely to have
difficulty associating this information with visual features.
Unlike Alper and Averbuch-Elor [2023], the study by Verhoef et al. [2024] tests various VLMs,
including CLIP, BLIP2, ViLT, and GPT-4o, using newly generated curved and jagged images
paired with novel pseudowords adapted from Nielsen and Rendall [2013] ’s work. They used a
far more direct approach than the study of Alper and Averbuch-Elor [2023] by analyzing the
probabilities generated by VLMs for matching specific pseudowords with curved and jagged
images. Their findings show limited evidence for the bouba-kiki effect, with CLIP and GPT-4o
showing some alignment with human-like associations. The study concludes that cross-modal
associations in VLMs are highly dependent on factors such as model architecture, training
data, and the specific text prompts used.
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Figure 1: Original pairs of curved and jagged images used in previous studies [Köhler,
1929, 1947, Maurer et al., 2006, Westbury, 2005]

This thesis, building upon the work by Verhoef et al. [2024], delves deeper into these as-
sociations by using a broad set of words and different CLIP architecture and also analyzing
the attention patterns to assess the alignment between model focus and human perceptual
tendencies. This study shows that while VLMs may exhibit certain human-like cross-modal
tendencies, their performance highly depends on the evaluation approaches and model-specific
characteristics.

3 Methodology

In order to explore the existence of cross-modal associations in VLMs, this thesis focuses on the
CLIP model because it demonstrates the best performance in the work of Verhoef et al. [2024]
and is further supported by Demircan et al. [2024], who show that CLIP outperforms other
models in capturing human-like decision patterns. As mentioned, we use the Vision Transformer
(ViT) and ResNet-based versions of the CLIP model. The ViT version used in this study is
clip-vit-base-patch32, while the ResNet-based version corresponds to the RN50 model. The
methodology begins with creating and defining the newly generated images and word sets used
in the experiments. Following this, we explain the methods used to investigate the existence of
cross-modal associations in CLIP. This project is primarily implemented using Python and its
various libraries, which provide the necessary tools for processing data, generating embeddings,
and visualizing results.

3.1 Visual Shapes

In this thesis, a combination of curved and jagged images is used. Some of these images
are sourced directly from previous works [Köhler, 1929, 1947, Maurer et al., 2006, Westbury,
2005], while others are specifically generated for this study, inspired by the methods described
in Nielsen and Rendall [2013]. More specifically, one set of curved and jagged images is taken
from Köhler [1929, 1947], four sets are obtained from Maurer et al. [2006], and four additional
sets are sourced from Westbury [2005], which feature white shapes on a black background.
Figure 1 shows three pairs of these original curved and jagged images, presented from left to
right, corresponding to [Köhler, 1929, 1947], Maurer et al. [2006], and Westbury [2005].
In addition to these original images, we generate new curved and jagged images following the
methodology outlined in Nielsen and Rendall [2013]. We first create random points uniformly
distributed within a circle with one radius to generate these images. More precisely, the points
are arranged in polar coordinates, with random angles sorted in ascending order to ensure a
sequential path and random radii sampled between zero and the circle’s radius to vary the
point distribution. These points are then connected to form closed shapes, with the method
differing for curved and jagged images.
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Figure 2: Newly generated curved and jagged images

To create curved images, we connect the points using cubic spline interpolation. This method
produces smooth, continuous contours by fitting a periodic spline through the points, ensuring
that the ending and starting points are connected. We add extra interpolated points along
the curves to make the shapes even smoother. In contrast, straight-line segments connect
the points directly in jagged images. The points are linked sequentially to form sharp, angular
edges, with the final segment connecting the last point back to the first to complete the closed
shape. Figure 2 shows three pairs of newly generated curved and jagged images used in this
study.
Eight pairs of newly generated images and original curved and jagged shapes have been selected
for the experiments, totaling 17 pairs of images used in the study. Appendix A shows all the
images described in this section.

3.2 Linguistic Inputs

This study uses a diverse set of English adjectives and pseudowords that conform to the
phonotactic rules of English. English adjectives serve as a baseline for analyzing associations
within established language use. Pseudowords, however, are included to investigate how specific
linguistic features influence cross-modal associations without the constraints of pre-existing
semantic meanings. By doing this, we ensure that the observed associations are based on
the structure and syllables of a pseudoword and not on any arbitrary semantic associations
that may have been learned during the VLM training. This approach differentiates our work
from the study of Alper and Averbuch-Elor [2023] because, in this thesis, we focus only on
the relationships between linguistic features and visual representations. However, in Alper and
Averbuch-Elor [2023]’s work, they used CLIP’s shared semantic space to analyze embeddings,
which may include associations influenced by patterns or biases in the training data.
The pseudowords used in this thesis include the common initial words used in cross-modal
association research, including bouba, kiki, maluma, and takete. Additionally, it contains the
pseudowords introduced in Alper and Averbuch-Elor [2023]’s study as well as newly generated
one-syllable and two-syllable pseudowords presented in the work of Verhoef et al. [2024]. These
pseudowords are constructed following the methodology outlined in Nielsen and Rendall [2013]
for generating novel pseudowords. In the following sections, we will explain each word set in
detail.

Adjectives We select English synonyms for the adjectives to represent curved and jagged
shapes. The synonyms for curved shapes are: curved, round, circular, soft, wavy, oval, smooth,
plush, arc-shaped, and rotund. For jagged shapes, the synonyms are: jagged, spiky, sharp,
uneven, angular, serrated, edgy, pointed, prickly, and rugged. These words are chosen to
capture a variety of terms commonly associated with curved and jagged features, resulting
in 10 curved and 10 jagged synonyms.
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Alper and Averbuch-Elor [2023]’ Word Set This thesis uses the round and sharp
pseudowords generated by Alper and Averbuch-Elor [2023]. These pseudowords are specifically
designed to capture phonetic properties linked to roundness and sharpness. The set includes
324 round words, such as baloba, and 324 sharp words, such as kitiki.

Novel Generated Words In the study by Nielsen and Rendall [2013], participants con-
structed novel words to match curved or jagged shapes. They were provided with specific
consonants and vowels categorized by their phonetic characteristics. Participants selected syl-
lables from these groups to form two-syllable words that they felt best matched the visual
properties of an object, such as its curviness or jaggedness.
For consonants, sonorants (/m/, /n/, /l/) were associated with curved shapes, while plosives
(/t/, /k/, /p/) were linked to jagged shapes. For vowels, rounded vowels (/oo/, /oh/, /ah/)
were associated with curved shapes, and non-rounded vowels (/ee/, /ay/, /uh/) with jagged
shapes.
Inspired by this method, we use the same set of consonants and vowels to construct novel words
for our study. A key reason for using this set is that it has been used in elaborate experiments
with humans. This provides the opportunity to directly compare the VLMs’ performance to
human behavior, which is not possible by using the Alper and Averbuch-Elor [2023]’s word set.
For one-syllable words, we create categories such as s r (sonorant consonants with rounded
vowels) for curved shapes and p nr (plosive consonants with non-rounded vowels) for jagged
shapes. Additionally, we create combinations like s nr (sonorant consonants with non-rounded
vowels) and p r (plosive consonants with rounded vowels) to examine mixed associations. This
process results in 9 words for each group of one-syllable words, totaling 36 one-syllable words.
We extend this approach for two-syllable words to produce fully curved words s r s r and fully
jagged words p nr p nr align with prior findings [Nielsen and Rendall, 2013, Verhoef et al.,
2024] on their relevance to the bouba-kiki effect. Other combinations, such as s r p nr and
p nr s r, are also included to examine the roles of consonants and vowels in our experiments,
similar to the study by Verhoef et al. [2024]. This approach results in a total of 324 two-syllable
words.
In our study, both adjectives and pseudowords are incorporated into the sentence structure:
The label for this image is [insert word]., where [insert word] represents the selected label.
This approach aligns with how VLMs are typically used and trained in practice. Moreover,
incorporating these labels into a structured sentence helps the model process the pseudowords
more effectively within a context.

3.3 Embeddings

Before analyzing the cross-modal associations in CLIP, we extract CLIP vision and text em-
beddings and project these into a two-dimensional space using the t-SNE technique [van der
Maaten and Hinton, 2008]. By doing this, we can observe patterns and clusters within the data,
which helps us to identify potential patterns or clusters that reflect how the model organizes
curved and jagged images and different word types in its feature space.
Figure 3 shows the result of the t-SNE technique applied to our curved and jagged images.
The left plot represents embeddings from the ViT-based model, while the right plot shows
the embeddings for the ResNet-based model. In these images, the blue dots show the jagged
images, and the orange dots show the curved images. The smaller dots correspond to images
with black backgrounds, as used in Westbury [2005] ’s study, while the larger dots represent

12



shapes with white backgrounds. Figure 3 shows distinct clusters for curved and jagged images
and images with black and white backgrounds. While there is some overlap between curved
and jagged points in both models’ embeddings (corresponding to images from [Köhler, 1929,
1947] and some of Maurer et al. [2006] ’s datasets), most points form well-defined clusters. In
the ViT-based embeddings (left plot), a diagonal line could largely separate curved and jagged
images. In contrast, a horizontal line could achieve similar separation in the ResNet-based
embeddings (right plot). This observation indicates that even without considering the labels,
both models can distinguish between curved and jagged images and identify shape-specific
differences in their representations.

Figure 3: Image embeddings

On the other hand, figure 4 shows the result of the t-SNE technique applied to the different
word sets we use in this thesis. In this figure, the left plot shows embeddings from the ViT-based
model, and the right plot shows the embeddings for the ResNet-based model. We observe
distinct clusters for certain word categories, such as the round and sharp words from the
Alper and Averbuch-Elor [2023]’ study and English adjectives. However, there is a noticeable
overlap between some clusters, particularly those representing one-syllable words (s r and p nr)
and two-syllable words (s r s r and p nr p nr). The distinct clustering of round and sharp
pseudowords from Alper and Averbuch-Elor [2023]’s word set in the word embeddings could
potentially help explain why they found strong evidence of cross-modal associations in their
results. Their sharp and round pseudowords show more distinct clusters than the other curved
and jagged pseudowords. This clearer separation of clusters likely made it easier for the model
to capture cross-modal associations. In contrast, the overlapping clusters of curved and jagged
words in one-syllable and two-syllable pseudowords may have contributed to the weaker cross-
modal associations observed in Verhoef et al. [2024]’s study.

3.4 Probability Analysis

In this analysis, we use the probabilities generated by different CLIP architectures to analyze
cross-modal associations in VLMs. In the first experiment, we focus on directly analyzing the
probability distributions produced by the models for different word-image pairs. In the second
experiment, we use these probabilities to determine the label that best matches each image
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Figure 4: Word embeddings

and generate results that can be compared more directly to human data. The following sections
explain the process in detail.

3.4.1 Probability Comparison

As mentioned, for this experiment, we directly use the probabilities generated by the CLIP
model to analyze the association between textual inputs and visual shapes. This process is
conducted separately for each word set and ensures that all the images within a given word
set are evaluated against the corresponding textual prompts. More specifically, we compute
logits for each image, representing the raw scores and indicating how well the image aligns
with each textual prompt. These logits are then converted into probability distributions using a
softmax function. This process is repeated for all the images, and word types. We can analyze
the relationships between textual inputs and visual features modeled by the different CLIP
architectures by calculating these probability distributions for each word set and its associated
images. Then, by comparing these probabilities, we can determine if the model prefers to
match curved images with curved labels and jagged images with jagged labels. This approach
is similar to what Verhoef et al. [2024] conducted using different VLMs. This comparison allows
us to explore the consistency of cross-modal associations in the CLIP model and evaluate its
ability to align linguistic and visual features in a human-like way.

3.4.2 Image-To-Text Matching Task

In the second experiment, for each word set, we identify the label with the maximum probability
for each image. This label, which has the highest probability, is considered the best match
for the corresponding image. This approach is similar to what Nielsen and Rendall [2013]
conducted with human participants and what Verhoef et al. [2024] implemented using different
VLMs. This experiment, like the probability comparison 3.4.1, helps us to examine whether
the model aligns linguistic inputs with visual inputs in a manner consistent with human-like
cross-modal associations.
We analyze the results of this experiment in two ways. First, we examine whether the model
correctly matches the correct labels to the images based on the complete word structure. For
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example, for one-syllable and two-syllable pseudowords, we expect that fully curved labels (s r,
s r s r) would be matched to curved images, and fully jagged labels (p nr, and p nr p nr)
would be matched to jagged images correspondingly. As another example, for the Alper and
Averbuch-Elor [2023] ’s word set, we expect round words to align with curved images and
sharp words to align with jagged images. Second, we analyze the effect of consonants and
vowels in one-syllable and two-syllable pseudowords. We examine whether labels containing
sonorant consonants or rounded vowels tend to align with curved images and whether labels
containing plosive consonants or non-rounded vowels align with jagged images.
Conducting these experiments enables us to evaluate the model’s ability to capture holistic
word structures and its sensitivity to fine-grained phonetic properties. Additionally, it enables
us to explore whether the observed patterns differ across different word sets, such as adjectives,
pseudowords, and novel syllables.

3.5 Attention Pattern Analysis

In the second part of this study, we want to understand which parts of the image the CLIP
model focuses on when seeing a label. We use the Grad-CAM Selvaraju et al. [2020] tech-
nique to do this. Grad-CAM (Gradient-weighted Class Activation Mapping) generates visual
explanations by highlighting regions in the input image that the model considers important
for its predictions. More precisely, Grad-CAM computes the gradient of a target class score
(for example, the probability of a cat in an image classification task) with respect to the
feature maps in the last convolutional layer. These gradients show how much each neuron in
that layer contributes to the target. After that, these gradients are averaged to determine the
importance of the weights for each feature map. Then, by combining these feature maps with
their corresponding weights, Grad-CAM generates a numerical map that shows the importance
or contribution of each specific location in the image to the model’s prediction. This map is
typically visualized as a heatmap, overlaid onto the image, with colors indicating regions with
higher or lower importance for the model’s prediction of the target class Selvaraju et al. [2020].
In our study, we apply Grad-CAM to both ViT and ResNet-based versions of CLIP and set the
target as the cosine similarity score between text and image embeddings. This choice is made
because the similarity score shows how well the model associates a given text label with an
image, which is suitable for analyzing cross-modal attention patterns.
We use the last convolutional layer as the target layer to adapt Grad-CAM for ResNet-based
CLIP. A forward hook is attached to this layer to capture the activations and gradients during
the forward and backward passes. The importance weights are computed by averaging the
gradients across the spatial dimensions. Then, these averaged gradients are combined with the
activations to generate a relevance map. For ViT-based CLIP, which lacks convolutional layers,
we modify the Grad-CAM implementation to work with the last attention block. In order to
do this, we define hooks to capture both the attention probabilities during the forward pass
and their corresponding gradients during the backward pass. The attention probabilities and
gradients are then combined and averaged across attention heads to compute a relevance map.
It is important to mention that for both ViT and ResNet, we clamp the relevance maps to
remove negative values because we only want to highlight the regions that positively impact
the model’s predictions.
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3.5.1 Preprocessing The Images

For the attention pattern experiments, we combine pairs of curved and jagged images into
single images to analyze attention patterns and better understand how the model distinguishes
between these shapes when given a label. Each pair is concatenated in two configurations: one
with the curved image on the left and the jagged image on the right, and the other with the
jagged image on the left and the curved image on the right, to prevent any unwanted effect
of a potential positional bias in the model’s attention. Positional bias, as highlighted by Wang
et al. [2024], is an issue in both language and vision-and-language models. VLMs may correctly
identify objects in certain positions but fail when the objects are positioned elsewhere Wang
et al. [2024].
After concatenating these square images, we obtain rectangular images, which, if passed di-
rectly to the model, would become squeezed during the processing steps. We add a consistent
background to address this issue by resizing and padding the images to 224x224 pixels. Specif-
ically, black backgrounds are used for images with black background Westbury [2005], and
white backgrounds for images with white backgrounds. This preprocessing step avoids unnec-
essary attention to the background. Figure 5 shows an example of how the combined images
appear after concatenation and background adjustment.

(a) Image with white background (b) Image with black background

Figure 5: Concatenated images used in attention pattern experiments

3.5.2 Quantifying The Attention Pattern

As mentioned, Grad-CAM allows us to generate heatmaps that highlight the regions of an
image where the model focuses when given a specific label. Figure 6 provides two examples
of visualizing the attention pattern for an input image with different text prompts. In these
examples, the left image shows the input image and its corresponding text prompt, while the
right image displays the resulting attention pattern for this input image and text prompt. In
the right image, the green checkmark indicates the region expected to receive more attention
for that specific label. Additional visualizations of attention patterns can be found in Appendix
B.
While these heatmaps visually indicate which parts of the image are most important to the
model, we need a way to quantify this attention in a measurable form. As mentioned, the output
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(a) Text prompt: The label for this image is kiki

(b) Text prompt: The label for this image is bouba

Figure 6: Visualizing the attention patterns for the ResNet-based version of CLIP for
different text prompts

of the Grad-CAM is essentially a map containing importance weights for different regions, so
metrics are required to analyze and compare the model’s attention patterns. We explored
several methods for this purpose, including the sum of intensities (which measures the total
attention allocated to each part of the image), maximum intensities (which identifies the single
most focused point), average intensities (which shows the mean attention value), attention
ratio (which compares the distribution of attention across different regions of the image),
standard deviation (which indicates the variation in attention values), and peak attention
density (which measures the density of attention within a small patch surrounding the most
focused area).
We decided to use the sum of intensities as the primary metric for quantifying attention
patterns because it captures the total attention distributed across the image, similar to how
humans perceive images. Taubert et al. [2011] suggest that humans perceive images holistically
by combining visual details to understand the overall context and identify the most relevant
features within an image. The sum of intensities provides a precise measure of how much
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attention the model allocates to different regions of the image. The sum of intensities also
helps us understand the model’s attention as a whole rather than focusing on isolated areas.
We divide each combined image into curved and jagged regions to quantify the attention
patterns using the sum of intensities. For each text label, we calculate the sum of intensities
in both regions. By comparing the sum of intensity values, we evaluate whether the model
allocated more attention to the expected region corresponding to the given label. It should be
noted that we conducted this experiment using other metrics as well. The results show that,
besides the advantages mentioned for the sum of intensities, it performs better and provides
more stable results than the other metrics, making it the most reliable choice for analyzing
attention patterns. Performance of the other metrics can be seen in Appendix C.

3.6 Analyzing the Results

In this study, we assess the statistical significance of our findings using Bayesian models with
the brms package in R. This method enables us to evaluate the reliability of the results for the
observed patterns.
We model the generated probabilities using a Gaussian distribution for the experiments in
Section 3.4.1. Based on the definition of our data, we use the formula shown in Equation 1.
In this formula, Condition (curved and jagged images) and Category (different word sets) are
the fixed effects. In contrast, Label and Image are included as random effects to account for
variability across different labels and images. The model is run with 4 chains, 4000 iterations,
and 2000 warmup steps.

Probability ∼ Condition ∗ Category+ (1 + Condition | Label) + (1 | Image) (1)

We use a binomial logistic regression model for the experiments in Section 3.4.2, where the
outcome is binary (correct match or not). In other words, we are quantifying the probability of
correctly matching curved and jagged images to their corresponding labels. The formula can
be seen in Equation 2. In this formula, Condition (curved or jagged) serves as the predictor,
and the response variable Occurrence represents the number of correct matches within a given
sample size. The model is configured with 4 chains, 1000 iterations, and 500 warmup steps.

Occurrence | trials(Sample Size) ∼ Condition (2)

Finally, for the experiments in Section 3.5, we again work with binary outcomes that indicate
whether the higher sum of intensities is observed in the expected region. In other words,
in these experiments, we need to model the proportion of times attention is higher in the
expected region for each word type. Given the structure of this data, we employ a binomial
logistic regression model with the formula defined in Equation 3. Here, Label serves as the
predictor, while the response variable Occurrence represents the occurrence of correct matches
relative to the sample size. The model is run with 4 chains, 1000 iterations, and 500 warmup
steps.

Occurrence | trials(Sample Size) ∼ Label (3)
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4 Result

In this section, we present the results obtained from each of the conducted experiments for
both versions of the CLIP model. First, we compare the probability scores for curved and jagged
images across different word sets. Next, we analyze the percentage of cases where the selected
label, which has the highest probability, aligns with the image, considering both the whole
word structure and its individual components (consonants and vowels). Finally, we evaluate
the quantified results of the attention maps and analyze the percentage of cases where, for
each label, the sum of intensities is higher in the expected region, indicating that the model
allocates more attention to the correct region.
As mentioned in Section 3.6, in addition to visually analyzing the results, we use the Bayesian
significance test to analyze the results’ significance statistically. Tables 1, 2, 3, and 4 summarize
the details of these tests.
It should be noted that, in addition to the standard CLIP models, we also use the specific
version of the CLIP model from Alper and Averbuch-Elor [2023]’s study, which is laion/CLIP-
ViT-H-14-laion2B-s32B-b79K. The results of this experiment are presented in Appendix D.

4.1 Probability Comparison

Figures 7, 8, 9, 10, and 11 show the average probabilities for curved and jagged shapes across
different word types. The x-axis represents the word types, while the y-axis shows the average
probability scores assigned to curved and jagged shapes. The red bars show the results for the
ViT-based version of CLIP, with lighter red for curved shapes and darker red for jagged shapes.
Similarly, the blue bars represent the result for the ResNet-based version of the CLIP model,
with lighter blue for curved shapes and darker blue for jagged shapes. In these plots, the error
bars show the standard error of the mean for the average probability scores and represent the
confidence in the mean estimates.
In these plots, we expect higher probabilities for curved shapes when paired with curved-related
words and higher probabilities for jagged shapes when paired with jagged-related words. This
pattern aligns with the sound-shape associations observed in human cognition.

Initial Words Figure 7 presents the results for the initial words kiki, bouba, takete, maluma.
As mentioned, we expect curved images to achieve higher probabilities when associated with
the curved words bouba and maluma, and jagged images to achieve higher probabilities when
associated with the jagged words kiki and takete. In the ViT model, for bouba, we observe high
probabilities for both curved and jagged images. However, no notable pattern differentiates
the two, indicating that the model does not strongly associate this word with curved images
as expected. Additionally, for takete, the average probabilities for jagged images are slightly
higher than those for curved images. We do not observe notable expected patterns for the
other initial words in the ViT model. The results from the Bayesian model show that takete
has a small positive effect on its association with jagged images. However, the model indicates
no statistically significant interactions between curved and jagged shapes and the initial words
in the ViT model.
The ResNet model shows clearer patterns than the ViT model for the initial word set. Specif-
ically, for the words kiki, bouba, and takete, the expected patterns are visually apparent.
However, the results of the Bayesian model indicate no statistically significant effects, which
suggests that the ResNet model does not consistently align with our expectations.
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Figure 7: Average probability results for initial words

Adjectives Figure 8 represents the average probabilities for curved and jagged images for
the English synonyms. As this word set consists of adjectives, it is our benchmark. The red
bars show a clear, curved, and jagged synonym pattern. More specifically, for curved synonyms,
the model assigns higher probabilities to curved images; for jagged synonyms, the model as-
signs higher probabilities to jagged images. This result aligns well with our expectations. The
Bayesian significance test supports these observations and indicates that the ViT model sig-
nificantly assigns higher probabilities to jagged shapes when associated with jagged synonyms.
Similarly, the Bayesian significance test shows that the ViT model assigns higher probabilities
to curved shapes when associated with curved synonyms.
Like the ViT model, the ResNet model shows a strong and clear pattern. The Bayesian sig-
nificance test also confirms the observed pattern in this plot. It shows that the ResNet model
reliably assigns higher probabilities to jagged shapes when associated with jagged synonyms
and significantly assigns higher probabilities to curved shapes when associated with curved
synonyms.

Figure 8: Average probability results for adjectives
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Alper and Averbuch-Elor [2023]’s Word Set Figure 9 shows the average probability
scores for the Alper and Averbuch-Elor [2023] ’s word set. For the ViT model, we can see that
the curved images achieve slightly higher probabilities for round words than jagged images. For
sharp words, the jagged images achieve higher probabilities than curved images. However, the
difference is minimal. The error bars also show that the variability is very small. The results
of the Bayesian significance test show that there are no meaningful effects, as the coefficients
for all terms, including the interaction between the shape condition and word category, are
effectively zero. This result is reasonable, as the probabilities for this word set are very small
due to the large number of words (648), which causes the model to distribute its predictions
evenly across all categories. When using a Bayesian significance test with the Gaussian family
on such small probabilities, the coefficients naturally remain close to zero, making it challenging
to detect meaningful effects.
Although the ResNet model shows more pronounced visual patterns than the ViT model, the
Bayesian significance test similarly reports no statistically significant effects. The interaction
term remains near zero, and the confidence intervals are narrow, which indicates that the
observed patterns are not strong enough to reach statistical significance. It is worth noting that
the original study by Alper and Averbuch-Elor [2023] also used binary outcomes and applied
mixed-effects logistic regression to model participants’ correct answers for their significance
testing and did not use probability scores.

Figure 9: Average probability results for Alper and Averbuch-Elor [2023]’s words

One-syllable Pseudowords The results can be seen in figure 10 for one-syllable words.
The results for the ViT model show that for s r syllable, curved shapes achieve slightly higher
probabilities than jagged shapes. Moreover, for the p nr pseudowords, we can see slightly
higher probabilities for jagged images compared to the curved images. These patterns are in
line with our expectations. For s nr and p r pseudowords, probabilities are very similar between
curved and jagged shapes. However, the Bayesian significance test results for the ViT model
reveal a small positive effect for curved images paired with p nr pseudowords, which is opposite
to our expectations. Most interaction effects between word categories and shape conditions
are insignificant, as the estimates are near zero, with narrow credible intervals including zero.
The results of the ResNet model are very similar to the ViT model, with slightly higher
probabilities for curved images given s r pseudowords and higher probabilities for jagged images
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when given p nr pseudowords. Bayesian significance test shows a small positive association
between curved images and s r pseudoword. However, it is not significant. Furthermore, it
shows that there is also a slightly positive effect for curved images and p nr pseudowords,
which is opposite to our expectations.

Figure 10: Average probability results for one-syllable pseudowords

Two-syllable Pseudowords Figure 11 shows the result for two-syllable pseudowords. For
the ViT model, we can see that the probabilities for curved and jagged shapes are relatively
close across all categories. Only for s r s r pseudowords, probabilities are slightly higher for
curved shapes, which are as expected. However, the results of the Bayesian model show that
there are no statistically significant effects for any category.
For the ResNet model, although we can see higher probabilities for curved shapes when having
s r s r pseudowords and higher probabilities for jagged shapes when having p nr p nr pseu-
dowords, again, with credible intervals that include zero, significance test confirms that no
statistically significant differences exist between curved and jagged shapes across the two-
syllable word categories.

Figure 11: Average probability results for two-syllable pseudowords
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Table 1 shows the credible intervals from the Bayesian significance test for different word types
in this experiment.

Table 1: Details of the Bayesian significance test for experiment 4.1

Word Type Model Association(Image-Label) Bayesian Significant Test Statistics
Initial Words ViT Jagged-takete Not Significant b = 0.39, 95% CI = [-8.12, 9.19]

ResNet Curved-bouba Not Significant b = 3.66, 95% CI = [-5.43, 18.40]
ResNet Jagged-kiki Not Significant b = 2.07, 95% CI = [-5.57, 11.66]
ResNet Jagged-takete Not Significant b = 2.49, 95% CI = [-4.84, 17.65]

Adjectives ViT Curved-Curved Significant b = 0.07, 95% CI = [0.03, 0.10]
ViT Jagged-Jagged Significant b = 0.08, 95% CI = [0.02, 0.15]

ResNet Curved-Curved Significant b =0.06, 95% CI = [0.03, 0.09]
ResNet Jagged-Jagged Significant b = 0.08 95% CI = [0.01, 0.14]

Alper’s Words ViT - Not Significant -
ResNet - Not Significant -

One-Syllable Words ViT Curved-Jagged Significantly Opposite b = 0.03, 95% CI = [0.01, 0.04]
ResNet Curved-Jagged Significantly Opposite b = 0.02, 95% CI = [0.01, 0.03]
ResNet Curved-Curved Not Significant b = 0.01, 95% CI = [-0.01, 0.02]

Two-Syllable Words ViT - Not Significant -
ResNet - Not Significant -

4.2 Image To Text Matching Task

In this experiment, we identify each image’s label with the highest probability. The goal is to
analyze how often the label with the highest probability aligns with the expected associations.
This experiment is conducted in two ways, which will be explained below.

4.2.1 Based on Complete Word Structure

This experiment examines how effectively the CLIP models associate specific words with the
expected visual shapes (curved and jagged) by selecting the label with the highest probability
for each image. If the bouba-kiki effect exists in VLMs, there should consistently be higher
percentages of matches between the predicted labels and the expected shapes. For instance,
curved-related labels should align more frequently with curved images, and jagged-related labels
should align more frequently with jagged images. It should be noted that in this experiment,
the word selection is based on the complete form of the words.
Figure 12 shows the percentage of cases where the selected label aligns with the expected
association for each word type and image shape. The x-axis represents the different word
types, and the y-axis indicates the percentage of correct label assignments. The blue bars
show the results for the ViT-based model, with darker blue indicating jagged images and
lighter blue indicating curved images. Similarly, the green bars represent the results for the
ResNet version of CLIP, with darker green indicating jagged images and lighter green indicating
curved images.

Initial Words For the initial words, in the ViT model, 100% of curved images are matched
to curved initial words, while only 6% of jagged images are associated with jagged words. The
Bayesian analysis supports this result and shows a strong association between curved images
and curved initial words. The significant test also shows that jagged images might increase the
likelihood of association with jagged initial words, but this effect is not significant. Similarly,
in the ResNet model, the results for curved initial words are similar to those of the ViT model,
with the Bayesian analysis confirming this strong association. However, it can be seen that the
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Figure 12: Percentage of selecting the expected label for each image across different word
types

jagged images are not strongly associated with jagged words. The Bayesian significance test
also confirms that the results for jagged images and initial words are insignificant.

Adjectives For adjectives, the results of the ViT model show that 100% of jagged images
are matched to jagged synonyms, while 65% of the curved images are correctly matched to
curved synonyms. The Bayesian significance test results support a strong match between jagged
images and jagged words. However, a moderate association between curved images and curved
synonyms can be seen, but it is not statistically significant. Similarly, in the ResNet model,
100% of the jagged images align with jagged synonyms, while only 59% of curved shapes align
with curved synonyms. For jagged images, the Bayesian results confirm the observed pattern.
However, as with the ViT model, the Bayesian results show a moderate association between
curved images and curved synonyms, which is not significant.

Alper and Averbuch-Elor [2023]’s Word Set For Alper and Averbuch-Elor [2023] ’s
word set, the results of the ViT model show that 82% of the jagged images are matched to sharp
words and 65% of the curved images are matched to round words. The Bayesian significant test
results show that jagged shapes are more likely to be assigned to sharp words. Furthermore,
assigning the curved images to round words has a positive effect, but it is not statistically
significant. The Resnet model for this word set has a similar result to the ViT model but with
different percentages: 94% of jagged images are associated with sharp words. In contrast, 53%
of curved images are associated with round words. The Bayesian analysis confirms that jagged
images are more likely to align with sharp words. While a slight positive association exists
between curved images and round words, this effect is not statistically significant.
It should be noted that the observed significant patterns in this experiment, compared to the
Bayesian significant results in Section 4.1, can be attributed to the nature of the test. Here,
the analysis is based on binary outcomes (whether a word is correctly matched to an image)
rather than directly comparing probability distributions. In other words, this approach is similar
to what was done in the study of Alper and Averbuch-Elor [2023]. They used binary outcomes
to model participants’ correct answers.
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One-syllable pseudowords For one-syllable words, the results of the ViT model show
that 29% of the curved images are matched to curved labels (s r) and 47% of the jagged
images are matched to jagged words (p nr p nr), which in both cases show a preference for
the unexpected pattern. The Bayesian analysis confirms this finding and shows no significant
difference between the predicted probabilities for curved and jagged shapes, as the credible
interval includes zero. In ResNet, we can see that 24% of the curved images are matched
to curved labels, and all the jagged images are also matched to curved labels, which is an
unexpected pattern. The Bayesian analysis results show that jagged images are more likely to
align with s r words, and curved images are more likely to match with p nr words, both of
which are the opposite of our expectations based on the bouba-kiki effect.

Two-syllable pseudowords For two-syllable words and the ViT model, it can be seen
that 24% of the curved images are matched to the curved labels (s r s r), and 35% of the
jagged images are matched to jagged labels (p nr p nr). The significance test results show
that jagged images are more likely to align with s r s r words, and curved images are more
likely to match with p nr p nr words. These findings contradict the associations predicted by
the bouba-kiki effect. Similarly, in the ResNet model, 24% of curved images are matched to
curved labels, while 53% of jagged images are matched to jagged labels. The Bayesian analysis
shows that curved images are more likely to align with p nr p nr words, which is also contrary
to expectations. Furthermore, no significant results are found for jagged images in the ResNet
model.
Table 2 shows the coefficients related to the significance test in this experiment.

Table 2: Details of the Bayesian significance test for experiment 4.2.1

Word Type Model Association (Image-Label) Bayesian Significant Test Statistics
Initial Words ViT Curved-Curved Significant b = 8.17, 95% CI = [2.43, 22.39]

ViT Jagged-Jagged Not Significant b = 10.66, 95% CI = [-1.21, 72.30]
ResNet Curved-Curved Significant b = 12.82, 95% CI = [2.38, 54.16]

Adjectives ViT Jagged-Jagged Significant b = 9.31, 95% CI = [2.87, 29.64]
ViT Curved-Curved Not Significant b = 0.69, 95% CI = [-0.38, 1.78]

ResNet Jagged-Jagged Significant b = 8.37 95% CI = [2.57, 23.44]
ResNet Curved-Curved Not Significant b = 0.42 95% CI = [-0.54, 1.47]

Alper’s Words ViT Jagged-Jagged Significant b = 2.28, 95% CI = [0.70, 4.04]
ViT Curved-Curved Not Significant b = 0.65, 95% CI = [-0.35, 1.75]

ResNet Jagged-Jagged Significant b = 3.26, 95% CI = [1.21, 6.12]
ResNet Curved-Curved Not Significant b = 0.17, 95% CI = [-0.78, 1.21]

One-Syllable Words ViT - Not Significant -
ResNet Jagged-Curved Significantly Opposite b = 9.82, 95% CI = [3.42, 28.97]
ResNet Curved-Jagged Significantly Opposite b = 1.35, 95% CI = [0.16, 2.74]

Two-Syllable Words ViT Jagged-Curved Significantly Opposite b = 1.89, 95% CI = [0.31, 3.51]
ViT Curved-Jagged Significantly Opposite b = 1.26, 95% CI = [0.23, 2.47]

ResNet Curved-Jagged Significantly Opposite b = 1.29, 95% CI = [0.12, 2.58]

4.2.2 Effect of Consonants and Vowels

This experiment is similar to the one described in Section 4.2.1. However, this experiment
focuses on the effects of individual consonants and vowels instead of analyzing the complete
word structure. Specifically, we calculate the percentage of cases where the selected label for
each image aligns with expectations based on its structure. The results are analyzed for both
the ViT and ResNet-based versions of CLIP.
Figure 13 shows the results for both models across different conditions, including rounded and
non-rounded vowels, sonorant and plosive consonants for one-syllable words, and cases with
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at least one s r or p nr syllables for two-syllable words. The x-axis represents the conditions
in these plots, while the y-axis indicates the percentage of shape-label matches. The blue bars
represent the results for the ViT model, with light blue corresponding to the percentage of
matches for curved shapes and dark blue for jagged shapes. Similarly, the green bars represent
the results for the ResNet model, with light green indicating the percentage of matches for
curved shapes and dark green for jagged shapes.

Figure 13: Percentage of selecting the expected label for each image based on consonants
and vowels

Consonants Based on figure 13, we can see that in the ViT model, 41% of the curved
images are matched to labels that have sonorant consonants. The results of the significance test
confirm this pattern. It shows no significant effect of matching curved images with sonorant
consonants. The ViT model also shows that 88% of jagged images are matched to labels
that contain plosive consonants in their structure, which shows a strong association. The
Bayesian results also confirm this and show that jagged shapes are significantly more likely to
be associated with plosive consonants.
On the other hand, the ResNet-based model shows a lower percentage of 24% for sonorant
consonants, which shows a weaker association of curved shapes with sonorant consonants
compared to the ViT model. For plosive consonants, the ResNet model shows that 88%
of the jagged images are matched with plosive consonants. The Bayesian analysis shows a
positive effect of associating jagged images with plosive consonants; however, this effect is
not statistically significant despite the observed pattern. Additionally, it reveals that curved
images are statistically more likely to be associated with plosive consonants, contrary to our
expectations.

Vowels For rounded vowels, we can see that in the ViT mode, 76% of the curved images
are associated with labels that contain rounded vowels. The Bayesian analysis supports this
observation and shows a significant association between curved images and rounded vowels.
Moreover, for non-rounded vowels, the ViT-based model shows that 59% of jagged images
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are associated with non-rounded vowels, and the result of the significance test also shows that
jagged shapes are significantly more likely to be associated with non-rounded vowels.
In the ResNet-based model, all the curved images are associated with rounded vowels. The
Bayesian significance test confirms this association and shows a strong association between
curved images and rounded vowels. For non-rounded vowels, the ResNet-based model shows
12% of jagged images are matches to non-rounded vowels, which indicates a weak association.
The Bayesian analysis confirms this observation and shows no significant association between
jagged images and non-rounded vowels.

Syllables The last two bars in figure 13, which relate to two-syllable words, show the
percentage of cases where the selected two-syllable label for each image contains at least one
s r (curved) or p nr (jagged) component.
The plot for the ViT model shows that 59% of the curved images are associated with selected
syllables containing at least one s r syllable. The Bayesian analysis indicates a small effect
of matching curved images with s r syllables, although this effect is not statistically signifi-
cant. Moreover, the ViT plot shows that 65% of the jagged images align with selected labels
containing at least one p nr syllable. The Bayesian analysis confirms that jagged images are
significantly more likely to align with p nr pseudowords.
On the other hand, the ResNet model shows that 56% of the curved images are associated with
labels that contain at least one s r syllable. The Bayesian analysis shows that curved images
are likely associated with s r syllables. However, this effect is not statistically significant. For
p nr syllables, 71% of the jagged images are matched to pseudowords that contain at least one
p nr syllables. The Bayesian analysis supports this finding and indicates that jagged images
are significantly more likely to align with p nr syllables.
Table 3 shows the details of the Bayesian significance test.

Table 3: Details of the Bayesian significance test for experiment 4.2.2

Word Type Model Association (Image-Label) Bayesian Significant Test Statistics
Consonants ViT Jagged-Plosive Significant b = 1.81, 95% CI = [0.19, 3.76]

ResNet Curved-Plosive Significantly Opposite b = 1.20 95% CI = [0.18, 2.41]
ResNet Jagged-Plosive Not Significant b = 0.94 95% CI = [-0.83, 3.00]

Vowels ViT Curved-Rounded Significant b = 1.25, 95% CI = [0.22, 2.51]
ViT Jagged-Non rounded Significant b = 1.64, 95% CI = [0.16, 3.30]

ResNet Curved-Rounded Significant b = 7.86, 95% CI = [2.26, 24.74]
ResNet Jagged-Non rounded Not Significant b = 5.76, 95% CI = [-0.28, 20.80]

Syllable ViT Jagged-p nr Significant b = 0.99, 95% CI = [0.02, 1.90]
ViT Curved-s r Not Significant b = 0.37, 95% CI = [-0.33, 1.10]

ResNet Jagged-p nr Significant b = 1.15, 95% CI = [0.15, 2.13]
ResNet Curved-s r Not Significant b = 0.27, 95% CI = [-0.46, 0.98]

4.3 Analyzing the Sum of Intensities

In this experiment, our goal is to determine whether attention is allocated more in the expected
region of an image based on different word types. For example, for a curved-related word, we
expect higher attention in the curved region of the image. For a jagged-related word, we expect
higher attention in the jagged region. To do this, we begin by calculating the sum of intensities
in each region to evaluate if the attention is higher in the expected region. Then, for each
word type, we calculate the percentage of cases where the sum of intensities in the expected
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region is greater than the other region. By performing this analysis, we can assess whether the
attention patterns of ViT-based and ResNet-based CLIP models align with expectations.
Figure 14 shows the percentage of cases where the attention is higher in the expected region
based on the given label across different word types and for both models. In this plot, the
x-axis represents different word categories, and the y-axis shows the percentage of cases where
the sum of intensities (attention) is higher in the expected region. The red horizontal line
shows the chance performance (baseline), set at 50%, which indicates random alignment. The
orange boxes show the result for the ViT model, and the blue boxes show the result for the
ResNet model.

Figure 14: Percentage of achieving higher sum of intensities in expected regions across
different word types for ViT and ResNet models

Initial Words The ViT model’s result shows considerable variability, with percentages
below and above chance, which indicate inconsistent attention alignment with the expected
regions. The ResNet model’s percentage for this word type is higher than chance, suggesting
that ResNet focuses better on expected regions for initial words than ViT. However, the
Bayesian significance test’s results do not show any significant effect for this word type for
both models, which shows that the alignment remains around chance.

Real-Words For this word set, both models show strong performance. The ResNet model
performs above 50%, which shows attention alignment with expected regions. The ViT model
performs even better, with a higher percentage of achieving aligned attention. For the ViT
model, the Bayesian significance test confirms strong attention alignment with expected re-
gions. For the ResNet model, the Bayesian significance test shows a positive effect. However,
it is not significant.

Alper and Averbuch-Elor [2023]’s Word Set Both models perform near or slightly
above the chance level for this word set. However, the significance test results show that the
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observed pattern is statistically significant for both models, indicating a significant alignment
with higher attention in the expected regions for both models.

One-syllable Pseudowords For the ViT model, attention alignment for one-syllable
words is slightly above chance. Still, the result of the Bayesian test shows that this is not
statistically significant, indicating that the observed pattern may be due to random variation.
For the ResNet model, attention alignment performs below chance, and the Bayesian test
confirms that the result is statistically significant, showing that attention aligns less frequently
with the expected regions for one-syllable words.

Two-syllable Pseudowords Both models perform close to chance for this word set,
indicating weak and inconsistent alignment with expected regions. The Bayesian significance
test shows that attention aligns significantly less frequently with the expected regions in both
models in both models.
A finer-grained version of this experiment can be found in Appendix E, and the details of the
Bayesian significance test are presented in Table 4.

Table 4: Details of the Bayesian significance test for experiment 4.3

Word Type Model Bayesian Significant Test Statistics
Initial Words ViT Not Significant -

ResNet Not Significant -
Adjectives ViT Significant b = 0.62, 95% CI = [0.46, 0.80]

ResNet Not Significant b = 0.12, 95% CI = [-0.03, 0.28]
Alper’s Words ViT Significant b = 0.10, 95% CI = [0.07, 0.13]

ResNet Significant b = 0.18, 95% CI = [0.15, 0.20]
One-Syllable Words ViT Not Significant -

ResNet Significantly Opposite b = -0.33, 95% CI = [-0.49, -0.18]
Two-Syllable Words ViT Significantly Opposite b = -0.14, 95% CI = [-0.20, -0.08]

ResNet Significantly Opposite b = -0.33, 95% CI = [-0.39, -0.27]

5 Discussion

This thesis explored whether VLMs, specifically ViT-based and ResNet-based CLIP models,
display robust cross-modal associations between linguistic inputs and visual shapes. By ex-
amining probabilities, label assignments, and attention patterns across different word types,
we aimed to evaluate how well these models show the same associations as observed in hu-
man cognition. The results provide insights into the models’ ability to capture and represent
connections between language and visual shapes. Table 5 summarizes the findings of each
experiment.
In the probability comparison experiment, the expected pattern of achieving higher average
probabilities for curved images paired with curved labels and jagged images paired with jagged
labels was observed only for adjectives, which served as the benchmark. The plots and Bayesian
significance tests confirmed this alignment, indicating that the models performed reliably with
familiar and meaningful words. However, the expected patterns were not consistently observed
for all other word types, including initial words, Alper and Averbuch-Elor [2023]’ words, one-
syllable pseudowords, and two-syllable pseudowords. Some cases (initial words and round and
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sharp pseudowords) showed a positive effect in these word types, but the results were not
statistically significant. Other cases (one-syllable and two-syllable pseudowords) deviated from
expectations based on the bouba-kiki effect. This suggests that the models have difficulty
creating strong associations for these word types.
In the second experiment, we calculated the percentage of cases where each image’s se-
lected label (based on the complete word structure) matched the expected association. The
results of the Bayesian significance tests revealed that, overall, the expected patterns were not
statistically significant across most word types. Furthermore, for certain word types such as
initial words, adjectives, and Alper and Averbuch-Elor [2023]’s word set, significant results were
found only for one condition, which shows the variability in the strength of the associations.
In the third experiment, which was similar to the approach used in the study by Verhoef et al.
[2024], we analyzed the effect of consonants and vowels on the selected labels for each image.
The Bayesian significance results showed that for the ViT model, jagged images were more
likely to align with labels containing plosive consonants. However, there was no statistically
significant effect between curved images and sonorant consonants. Moreover, curved images
were more likely to align with labels containing rounded vowels, while jagged images were more
likely to align with non-rounded vowels. These findings align with expectations and suggest that
the ViT model can capture certain shape-related associations based on phonetic components,
especially vowels. For the ResNet model, only curved images were more likely to align with
round vowels, and all the other effects were not statistically significant. When analyzing the
two-syllable pseudowords, we examined whether the selected labels contained at least one s r
syllable for curved images or at least on p nr syllable for jagged images. The Bayesian analysis
showed that jagged images were significantly more likely to align with labels containing at least
one p nr syllable in both models. In contrast, no significant effect was found for curved images
paired with labels containing at least one s r syllable in either model. These results suggest
that both models, particularly ViT, show some sensitivity to individual phonetic components
and syllable structures. However, the lack of consistency and significant effects in all conditions
highlight their limitations in consistently capturing these associations.
In the last experiment, we calculated the percentage of cases where higher attention (mea-
sured as the sum of intensities) was observed in the expected regions for different word types.
The Bayesian significance results showed that initial words did not produce significant results
for either model, suggesting that attention was not consistently focused on the expected re-
gions. The ViT model showed significant results in English adjectives, confirming that attention
aligned well with the expected regions. However, although a positive alignment was observed
for the ResNet model, it was not statistically significant, indicating weaker alignment compared
to the ViT model. Both models showed significant results for the word set used in the work
of Alper and Averbuch-Elor [2023], indicating that attention was consistently directed toward
the expected regions for round and sharp words. In one-syllable words, no significant results
were found for the ViT model. Moreover, attention aligned significantly less frequently with
the expected regions for the ResNet model, suggesting a clear misalignment for this word type.
Finally, both models demonstrated significant results opposite our expectation for two-syllable
words, indicating that attention aligned significantly less frequently with the expected regions.
Table 5 demonstrates that the bouba-kiki effect is not consistently present in the VLMs ana-
lyzed in this thesis. Several factors could explain this. First, tokenization, which is an important
step in how VLMs process text. Words may be broken down into smaller, often meaningless
parts during tokenization. This process can distort word representations and weaken the se-
mantic alignment with visual shapes. In contrast, humans do not process words in this frag-
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mented manner. This mismatch between how humans and VLMs handle words helps explain
why models often fail to replicate the intuitive sound-symbolic associations observed in hu-
mans. Second, we observed in our experiments that the ViT model performed better than
the ResNet model, which might be related to differences in their architectures. Specifically,
cross-modal associations require integrating global visual features with linguistic inputs. The
ResNet model’s early layers capture local features like edges and small patterns. Later layers
progressively combine these features to form a broader understanding of the image. Therefore,
the global context only emerges after several layers. Still, by that point, some of the finer
relationships between the smaller parts of the image may have been lost or weakened. This
architectural limitation makes it harder for ResNet to effectively capture cross-modal associ-
ations. In contrast, the ViT model processes images using a global self-attention mechanism,
allowing it to consider the entire image from the beginning. This architecture of the ViT model
makes it more suited for cross-modal association tasks. Third, the CLIP model is trained us-
ing a contrastive learning objective designed to align image and text embeddings. However,
it does not focus on sound-symbolic associations because these associations are not part of
CLIP’s training objective. Moreover, the dataset used to train CLIP consists of commonly
found language and image pairs. However, the pseudowords used in this thesis are unlikely to
appear in the training data, meaning the model has no prior knowledge of their sound-symbolic
properties or potential associations with visual features. Unlike humans, who intuitively asso-
ciate these pseudowords with visual shapes due to cognitive biases, the model relies entirely on
patterns within the training data, and these patterns are absent for pseudowords. Additionally,
the dataset may introduce bias by including more examples of one type of word-image pairing
(e.g. curved words with curved images) and fewer examples of the other. This imbalance leads
to stronger associations for the more frequently represented pairings, while the associations
for the less common pairings remain weaker due to limited exposure during training.
The overall finding suggests that cross-modal associations between linguistic inputs and visual
shapes are not consistently present in VLMs such as ViT-based and ResNet-based CLIP models.
The associations depend on multiple factors, including the model architecture, task design, the
word type, and the images used. While our results suggest that cross-modal associations, such
as the bouba-kiki effect, are not consistently present in VLMs, the potential value of shared
preferences between humans and machines remains significant. Establishing shared preferences
and common understanding between humans and AI can enhance their interactions. This
helps in creating AI systems that work effectively and resemble how humans process and
communicate meaning.

6 Conclusion

This thesis investigated whether VLMs, like CLIP, show consistent cross-modal associations
between linguistic inputs (different word types) and visual shapes (curved and jagged im-
ages). The CLIP model was chosen due to its better performance and reported alignment
with human-like associations in prior studies [Verhoef et al., 2024, Demircan et al., 2024]. To
examine cross-modal associations in VLMs, we conducted different experiments: probability
comparisons, image-to-text matching, and attention pattern analysis using the sum of intensi-
ties. Across these experiments, we observed that cross-modal associations depend on multiple
factors, including the model architecture, the word type, and the specific experimental task.
English synonyms, serving as the benchmark, showed stronger associations, while pseudowords
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Table 5: Summary of ViT and ResNet model performance across experiments

Experiment Task/Word Type ViT ResNet

Probability Comparison

Initial Words Fail Fail
Adjectives Pass Pass

Alper’s Words Fail Fail
One-Syllable Words Fail Fail
Two-Syllable Words Fail Fail

Choosing the preferred label

Initial Words Fail Fail
Adjectives Fail Fail

Alper’s Words Fail Fail
One-Syllable Words Fail Fail
Two-Syllable Words Fail Fail

Effect of Consonants and Vowels

Sonorant Consonants Fail Fail
Plosive Consonants Pass Fail
Rounded Vowels Pass Pass

Non-Rounded Vowels Pass Fail
s r syllable Fail Fail
p nr syllable Pass Pass

Attention Pattern Analysis

Initial Words Fail Fail
Adjectives Pass Fail

Alper’s Words Pass Pass
One-Syllable Words Fail Fail
Two-Syllable Words Fail Fail

demonstrated weaker and inconsistent patterns. The round and sharp pseudowords generated
in prior research [Alper and Averbuch-Elor, 2023] performed well in certain tasks but did not
show robust performance across all experiments. Moreover, while the ViT model performed
better than ResNet in experiments analyzing the effect of consonants and vowels or attention
alignment experiments, it still showed inconsistencies. The ResNet model was the most incon-
sistent and struggled to exhibit any clear patterns. These findings suggest that CLIP models
can capture some shape-related associations in certain cases. However, their performance lacks
robustness across different model architectures, experiments, and word types, highlighting their
limitations in replicating the detailed cross-modal relationships observed in human cognition.

7 Limitations

This thesis provides insights into the cross-modal associations in ViT-based and ResNet-based
CLIP models. However, its limitations provide opportunities for future research. First, this the-
sis focused only on linguistic-visual associations and did not examine other modalities. Future
work should explore other types of cross-modal associations, such as sound-color, to provide a
more comprehensive understanding of how different sensory modalities interact in VLMs. Ex-
ploring these additional modalities reveals new patterns in cross-modal associations in VLMs.
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Second, we did not investigate the effects of different model architectures in detail. Examin-
ing models with diverse architectures would help clarify how architectural differences influence
the emergence of cross-modal associations. Third, we used the standard tokenization method
and did not evaluate alternatives that might preserve holistic word structures. Investigating
tokenization methods that align more closely with how humans process words could poten-
tially lead to stronger associations between linguistic and visual features. Fourth, we did not
consider the effect of background color. Analyzing how different background colors influence
cross-modal associations would provide valuable insights into how color affects the model’s
associations similar to human cognition Hubbard [1996]. Lastly, when generating the attention
patterns using the Grad-CAM technique, we only focused on regions that positively affect
the model’s prediction. Analyzing regions that negatively contribute to the model’s prediction
provides insights into the model’s preferences and decision-making processes.
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Figure 15: Images from [Köhler, 1929, 1947]

Figure 16: Images from [Maurer
et al., 2006]

A Complete Set of Images Used in This Study

This section represents all the images used in this study. Figure 15 16, 17, 18 show the images.

B Examples of Attention Pattern Visualization

This section provides more examples of visualizing the attention pattern for different text
prompts in the ViT and ResNet-based versions of the CLIP. The left image shows the input
image with the text prompt above it, and the right image shows the resulting attention pattern.
Figures 19 show these images.

C Performance of Different Metrics in Quantifying

the Attention Pattern

This section shows the metrics’ performance in quantifying the attention pattern. Figure 20
shows the performance and stability of different metrics across different word types for both
models. As can be seen, the sum of intensities shows better performance and more stability
compared to other metrics.
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D Probability Experiments Using the Specific Ver-

sion of CLIP Model Used in Alper and Averbuch-

Elor [2023]

This section shows the results of the probability experiments (4.1, 4.2) using the specific ver-
sion of the CLIP model used in the work of Alper and Averbuch-Elor [2023]. Figure 21 shows
that patterns are similar to those observed in our ViT and ResNet versions of CLIP. In some
cases, we observe stronger patterns with this specific model, which could be because of its
larger architecture, finer granularity (patch size of 14x14), and training on a significantly larger
dataset. However, the Bayesian model’s result shows that most effects are not statistically sig-
nificant. For the adjectives, a significant interaction effect (b = 0.11, and 95% credible interval
= [0.01,0.22]) is observed, which shows that jagged images lead to higher probabilities for
jagged synonyms compared to curved images. However, none of the fixed effects or interactions
are significant for the initial, one-syllable, and two-syllable pseudowords. The Bayesian signifi-
cant result for the word set used in the study of Alper and Averbuch-Elor [2023] is very close
to zero, which is reasonable due to the nature of the dataset and the testing methodology.
With 648 words in the word set, the probabilities for individual word-image pairs are inherently
very small. When using Bayesian significance testing with a Gaussian distribution on such
small probabilities, the coefficients approach zero, making it challenging to detect meaningful
effects. This result aligns with the original study by Alper and Averbuch-Elor [2023], which
did not rely on probability scores for statistical testing but instead used binary outcomes.
Figure 22 presents the experiment conducted in Section 4.2.1 using the specific version of CLIP
employed in the study by Alper and Averbuch-Elor [2023]. The Bayesian significance results
show that jagged images are significantly less likely to match with curved initial labels (b =
-10.45, credible interval = [-54.67, -1.0]). Moreover, jagged images are significantly less likely
to be associated with curved synonyms (b = -2.82, credible interval = [-4.8, -1.02]). For the
word set used in Alper and Averbuch-Elor [2023], the Bayesian significance test does not show
strong evidence of associations between round or sharp labels and curved or jagged images.
Furthermore, the significance test indicates that jagged images are significantly more likely to
match with curved-related one-syllable (s r)(b = 2.74, credible interval = [0.62, 5.63]) and
two-syllable pseudowords (s r s r)(b = 2.54, credible interval = [0.84, 4.53]), which is opposite
to our expectations.
Figure 23 shows the experiment conducted in Section 4.2.2 for this specific model. The results
of the Bayesian significance test do not indicate any significant associations between curved
or jagged shapes and sonorant or plosive consonants. However, the results show that jagged
images are significantly more likely to match with rounded vowels (b = 2.36, credible interval =
[0.27, 5.15]), which contradicts our expectations. Furthermore, no significant evidence exists
for an association between curved and jagged images and labels containing at least one s r or
p nr syllable.

E Sum of Intensities Across different Words Types

Figure 24 shows the percentage of cases achieving a higher sum of intensity in the expected
region for each word type. The x-axis represents the different word types, and the y-axis shows
the percentage. The blue bars represent the results for the ViT model, with lighter blue for
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curved regions and darker blue for jagged regions. The green bars show the ResNet results,
with lighter green for curved regions and darker green for jagged regions.
For adjectives, the expected pattern appears for both curved and jagged labels, with percent-
ages above 50%. In other word types, the percentage of correct matches for curved words is
higher than that for jagged words and remains above 50%. This could indicate a bias toward
curved regions, which may receive more attention than jagged regions.
To verify whether the attention pattern results are consistent, we checked each pair of combined
images (one with the curved shape on the left, the jagged shape on the right, and the other with
the jagged shape on the left and the curved shape on the right). Consistency is defined as having
a higher sum of intensity in the same region (curved or jagged) across both configurations.
If this condition is not met, it indicates inconsistency. Figure 25 shows the percentage of
consistency results for the ViT model (blue bars) and the ResNet model (green bars). The x-axis
shows the consistent (true) and inconsistent (false) cases. The y-axis represents the percentage
of cases. The results show that while the ViT model shows relatively high consistency, there
is a noticeable bias in the attention pattern results, particularly for the ResNet model.
Table 6 shows the details of the attention pattern result for each image and its swapped version.
In this table, the first column indicates whether the attention pattern remains consistent across
both versions of combined images. The second column shows the region with a higher sum
of intensity when the curved region is placed on the left. The third column indicates the
dominant region when the jagged region is on the left, and the last column provides the
number of occurrences for each case. We observe a clear regional bias when examining the
inconsistent cases (first two rows). More specifically, in the first 2 rows, the sum of intensity is
higher in the left region. This bias highlights a strong preference for the left region. Calculating
the proportions, 77.42% of the inconsistent cases show left-side, and only 22.58% show right-
side dominance. This significant difference indicates a regional bias, where the left region
consistently receives more attention than the right.
A different pattern can be seen for the consistent cases (last two rows). In these 2 rows,
curved regions attract more attention overall compared to jagged regions, with 56.53% of the
occurrences showing curved image dominance and 43.47% showing jagged image dominance.
Although curved regions dominate slightly, the difference is less pronounced than the regional
bias observed in the inconsistent cases. However, this slight preference for curved regions could
explain the higher percentages for curved images in figure 24 across different word types.

Table 6: Consistency results for attention patterns

Consistent Dominant Region(Curved left) Dominant Region(Jagged left) Count

False left left 5862
False right right 1710
True left right 12075
True right left 9287
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Figure 17: Images from [Westbury, 2005]

Figure 18: Generated images in this
study
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(a) Takete (ViT Model) (b) Takete (ResNet Model)

(c) Spiky (ViT Model) (d) Spiky (ResNet Model)

(e) Moo (ViT Model) (f) Moo (ResNet Model)

(g) Kaypee (ViT Model) (h) Kaypee (ResNet Model)

(i) Dododo (ViT Model) (j) Dododo (ResNet Model)

Figure 19: Visualizing the attention patterns for different text prompts. Each pair of
subfigures shows the input image with the text prompt and the resulting attention pattern
for ViT and ResNet models.
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(a) Average Intensity

(b) Maximum intensity

(c) Density around the maximum intensity

(d) Standrad Deviation

Figure 20: Performance of ResNet- and ViT-based CLIP models across different word
types using various attention metrics (average intensity, maximum intensity, peak atten-
tion density, and standard deviation). The boxplots show the percentage of cases where
higher values are observed in the expected region (curved or jagged) for each label. The
red dashed line represents the 50% baseline, and the orange and blue boxes correspond
to ViT and ResNet models, respectively.
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(a) Initial words

(b) Adjectives

(c) Alper and Averbuch-Elor [2023]’s words

(d) One-syllable pseudowords

(e) Two-syllable pseudowords

Figure 21: Average probability results using the specific version of CLIP model used in
The study by Alper and Averbuch-Elor [2023].
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Figure 22: Percentage of selecting the expected label for each image across different word
types for the specific CLIP model used in Alper and Averbuch-Elor [2023]

Figure 23: Percentage of selecting the expected label for each image based on consonants
and vowels for the specific CLIP model used in Alper and Averbuch-Elor [2023]

Figure 24: Percentage of achieving higher sum of intensity in the expected region across
different word types
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Figure 25: Consistency in attention pattern results
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