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1 Abstract
The Major Histocompatibility Complex (MHC) is a family of proteins responsible for presenting pep-
tides derived from the intracellular degradation of proteins to T-cells. It allows the immune system to
recognize non-self peptides from pathogens or transformed cells. Only specific peptide fragments
bind to MHC, and the probability of this binding can be described by the binding affinity (BA). Pre-
dicting BA is crucial for the development of immunotherapies, such as cancer vaccines. Tools like
MHCflurry and NetMHCpan predict BA for peptide-MHC combinations using sequence-based fea-
tures, but these methods suffer from out-of-distribution (OOD) problems when faced with peptide
sequences that differ from the ones seen in training data. This research aims to improve binding
predictions by incorporating 3D structural information, as protein shape is critical to its function and
ability to interact. peptide-MHC (pMHC) complexes are represented as 3D grids, and 3D convolu-
tions are applied using a 3D CNN architecture. Structures are generated with PANDORA (Marzella
et al., 2022), which uses homology modeling and other modeling strategies to produce optimal
peptide-MHC conformations. Both positive and negative structures are produced, providing training
material containing binding and non-binding interactions. Physico-chemical features are extracted
from the structures using DeepRank (Renaud, 2021), and the resulting grid has a 1 Å resolution, with
each feature mapped onto a single channel. Experiments with 3D features demonstrate predictive
performance competitive with sequence-based methods. Experiments using a train-test split with
hierarchically clustered MHCs demonstrate that the network generalizes effectively to unseen MHC
alleles, outperforming MHCflurry in the AUC metric. Future research should prioritize reducing data
noise and improving on fair benchmarking.

Table

ID allele peptide BA label

1 ID001 HLA-A*02*01 KLLALGILA 500

2 ID002 HLA-A*02*01 ALYGAILLK 1000

3 ID003 HLA-B*02*01 ATLGAILLK 10000
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Figure 1: Graphical abstract of experiments workflow: tabular data of peptide-MHC measurements are filtered,
3D structures are rendered by PANDORA, the structures are divided into 3D sections by fitting a grid, physico-
chemical features are computed by DeepRank, the resulting 3D matrices serve as an input for a 3D-CNN to
train a model for predicting peptide-MHC binding affinities
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2 Introduction
2.1 Background
Cancer immunotherapy is a type of treatment that harnesses the body’s immune system to identify
and combat tumor cells. Currently, a lot of research is being invested in developing several types
of these therapies, e.g. monoclonal antibodies, checkpoint inhibitors, cytokines, CAR T-cell therapy,
and cancer vaccines. Cancer vaccines do not work preemptively like classical vaccines but have the
same principle of administering antigens to combat the disease by mobilizing the immune system
[22].

One of the more recent approaches is the use of neo-antigens as a therapy. Abnormal proteins
within the cell can originate from viruses and bacteria, but can also be caused by damaged DNA in
the cell nucleus that produces faulty proteins. Fragments of the protein strands: peptides, can be
recognized by the immune system as non-self. These fragments are called neo-antigens. Tumor cells
produce peptides that are never seen before by the immune system and the cells hosting foreign
proteins may therefore be selected for elimination. Neo-antigen therapy can be utilized to strengthen
the anti-tumor response. Specific neo-antigens, that correspond with the antigens produced by the
patient’s tumor cells, can be delivered to the patient [30].

The class I Major histocompatibility complex (MHC-I) molecule is a protein present in all nucleated
cells of the human body. It is integral for helping the immune system detect foreign proteins in the
cell because it binds to (neo-) antigens. MHC is also known as the Human Leukocyte Antigen (HLA)
for humans. The MHC-I gene complex consists of the following genes: A, B, C (classical) and E, F, and
G (non-classical). MHC-I binds fragments of proteins (peptides) present in the cytosol and travels
to the cell surface to present the peptide externally. These peptides are obtained from proteins
floating around in the cytosol tagged for destruction. The proteasome will chop off small strings of
amino acids, and with the help of TAP it is then transported to the lumen of the ER. The peptide
may then be loaded onto a MHC protein. Several post-translational modifications happen in the ER
and Golgi complex. After packaging into a vesicle the pMHC (peptide-MHC) multimer can travel
to the cell surface to present the antigen on the exterior of the cell (Figure 2) [13]. This collective
process is known as ‘antigen processing’. This process is selective, meaning that not all peptides
will pair up with MHC to be presented on the cell surface. Cytotoxic T-cells (CTL) have specific
receptors for antigens: T-cell receptors (TCRs) and play an important role in the adaptive immune
system [26]. TCRs will then bind to the pMHC (in this context, the peptides bound to the MHC
are referred to as ‘antigens’). Once binding is successful, the CTL releases perforins and granzymes,
which trigger cytolysis and lead to the death of the host cell. In order to find relevant neo-antigens,
high-throughput data from tumor cells are used to screen for target mutations. The antigens (or
peptides) should be selected on successful antigen processing) (immunogenicity) and strong binding
to relevant MHC-I alleles.

Figure 2: A peptide in MHC binding groove,
adapted from Marzella, 2023 [11]

The MHC-I gene complex is highly polymorphic, with the
most common and extensively studied genes being HLA-
A, HLA-B, and HLA-C. Each person carries a maternal and
a paternal allele which are almost always heterozygous.
There is an abundance of alleles for each gene, for ex-
ample, there are 8381 entries for the HLA-A gene in the
IPD-IMGT/HLA database [2]. MHC-I can bind to a very
large number of peptides, thus pMHCs may be comprised
of many combinations of many possible MHCs and pep-
tides. Although a single MHC-I allele is estimated to bind
to over tens of thousands of peptides [6], there is a bias
in which MHC isoforms can successfully bind to certain
peptides. Since there is such an abundance of alleles for
MHC-I and a very high number of possible peptides, there
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is a need for a computational method that can predict binding affinity between all these possible
combinations.

Modeling and predicting the interaction of MHC-I with a peptide is the main objective of this
research. MHC-I proteins have a binding groove containing several pockets, of which two are
especially relevant. The interaction of the anchoring residues (typically the second and the last
residue) of the peptide plays an important role because they have the strongest interaction inside
the binding pocket. Ultimately the three-dimensional shape and the chemical and physical proper-
ties (eg. polarity, charge) of each residue/atom will play a role in the successful binding of these two
molecules.

2.2 Computational approaches
The field of molecular dynamics (MD) employs algorithms that model forces and interactions within
the molecules and make predictions about successive molecular configurations. This approach can
yield many useful insights into pMHC binding affinity, but is too time-consuming for a high-throughput
approach analyzing the vast number of peptide-MHC combinations in the databases (several hun-
dreds of thousands). Most machine learning predictors, however, operate with significantly greater
speed, achieving this by relying primarily on sequence information. In essence, these predictors
learn the relation between the amino acid distribution of a peptide and every distinct MHC allele.
Collecting peptides with positive binding to a specific MHC from experimental data reveals a dis-
tinct amino acid distribution. (Figure 3). For a single MHC allele, there will be a certain distribution
of amino acids in the peptides that have a positive interaction with the binding groove of an MHC
molecule.

Figure 3: Sequence logos of 9mer peptides with positive
binding affinity with respective alleles HLA-A*68:01 and
HLA-C*14:13. The x-axis represents the position of the
amino acid in the string, the y-axis shows the frequency
or probability of a certain amino acid for each position.
Position 2 and 9 are the most conserved for 9mers, be-
cause they are anchor amino acids.

Sequence-based predictors use a variety of
learning methods, most are based on ANN (Ar-
tificial Neural Networks). Early methods are al-
lele specific: NetMHC 1 to 3 [8], MHCflurry
1.2.0 [15] which have newer pan-allele meth-
ods: NetMHCpan 4xx [7] and MHCflurry 2x
[14]. The latter has a combination of im-
munogenicity network and binding affinity net-
work. MHCNuggets [24] and MATHLA [27]
use LSTM networks. Several use ensembles in
their methods: MHCflurry 2x, Pickpocket [28]
and ForestMHC [4]. Each method uses a differ-
ent set of features in its learning algorithm, e.g.
ForestMHC uses chemical predictions along-
side feature information. Other than sequence
information, structural information can also be
used to predict binding affinity. For example,
this is done by ConvNeXt-MHC [29], which en-

codes the three-dimensional amino acid neighborhoods into a multidimensional matrix.

Learning from sequence information is an effective approach for learning binding affinity, as is shown
by the state-of-the-art algorithms. However, this approach suffers from OOD (out-of-distribution)
problems when presented with sequence data that is too distant from its learned distributions. Ulti-
mately the 3D shape of the amino acids yields the most important properties to determine interaction
on a molecular level. Properties from similar amino acids, such as charge and polarity, should carry
over to unfamiliar rearrangements in unseen cases. Therefore the hypothesis is that learning from
3D information will yield a more powerful model for predicting binding affinity and will suffer less
from OOD problems.
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2.3 3-Dimensional Deep Learning approach
DeepRank [20] is a deep learning framework for making predictions on high-throughput protein-
protein complexes. It uses 3D convolutions to gather information from molecule structures. Deep-
Rank is competitive, sometimes outperforming state-of-the-art methods at ranking docking models.
The framework can distinguish between crystal artifacts and near-native configurations generated
by 3D docking software. The features are derived from physico-chemical properties computed from
the binding interface of both peptide and MHC. Contrary to sequence-based predictors, this frame-
work learns based on the 3D interactions between the macromolecules rather than certain amino
acid motifs found in the 2-dimensional sequences. DeepRank requires accurate 3D-models of the
complexes to calculate the physico-chemical features from the residues and atoms. For this task, ac-
curate pMHC 3D models are needed. To generate these accurate 3D models, PANDORA [10] was
selected: a novel modeling pipeline for pMHC complexes developed by the CMBI Structural Bioin-
formatics group. This algorithm takes a query peptide sequence and allele as input, then identifies an
optimal structural template and utilizes a combination of homology modeling and anchor-restrained
loop modeling. This approach ensures high-quality models, achieving a 93% success rate within the
top 10 generated models, with minimal computational time.

2.4 pMHC datasets
pMHC affinity predictors are typically trained using one or both of the following data types: binding
affinity (BA) and Mass Spectrometry (MS). There is a large distinction between these two types
of data. BA data are obtained from in vitro experiments, often competitive binding assays. MS
data are obtained from in vivo samples (human tissue), yielding a peptidome: a complete set of
peptides in complex with MHC. BA data show the likeliness of a random peptide binding to the
MHC, but there is no proof that these peptides will go through antigen processing in the cell. Thus
BA data only show MHC-peptide combinations that chemically have a high affinity to bind with
each other. However, the important caveat with MS data is that these experiments do not reveal
which MHC allele was actually bound to the peptides in the peptidome. The nature of the mass
spectrometry process makes this determination impossible. To address this limitation, new methods
have been developed to ‘de-convolute’ the original MHC alleles bound to the measured peptides
[3]. Additionally, some MS datasets from single-cell lines producing single MHC alleles are available,
eliminating the need for de-convolution. Due to their complementary benefits, many modern pMHC
predictors, such as MHCflurry and NetMHCpan, utilize a combination of both data types. In essence,
MS data provides biologically relevant peptides that have been experimentally verified, while BA
data supplies chemically relevant peptides with proven binding characteristics. Biological relevance
is crucial because candidate peptides must be processed by the cell to be viable as cancer vaccines.
Meanwhile, chemical relevance ensures that the peptides exhibit strong binding to MHC molecules,
which is essential for the therapy’s efficacy.
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3 Methods
3.1 Dataset

Figure 4: Duplicate peptide-MHC in the
dataset: ‘same’ indicates duplicates meeting
the same threshold for binding/non-binding
label, while ‘different’ denotes those that do
not.

The Binding Affinity data for this research was obtained
from O’Donnell et al. (2020) [14]. Several filtering steps
have been applied to enhance the quality of the labels.
‘Qualitative’ label and ‘inequality’ labels are removed to
obtain more consistent labels to train the models. After fil-
tering the number of data points is 100,315, with a higher
number of negatives than positives (Figure 5b). The total
number of alleles is 116, with 29,156 unique peptides.
About 72% is represented by gene A and about 27 % by
gene B, with only around 1.5% of the data consisting of
gene C and others. The measurement data of the BA ex-
periments range from 0 to several million, the distribution
without outliers can be seen in Figure 6. Duplicates were
kept inside the training data. The collection of binding
affinity data has multiple sources and therefore contains
several duplicate entries. Figure 4 shows the percentage
of duplicates and the number of similar and conflicting la-
bels of those duplicates.

31406

11896

869

5

41164

14587

350

6

32

0 10k 20k 30k 40k

A

B

C

CW

E

binder non-binder

(a)

44176

56139

binder
non-binder

0

10k

20k

30k

40k

50k

(b)

Figure 5: Distributions of binders/non-binders per gene in the filtered BA dataset (a), the overall distribution
of binders/non-binders (b)

Mass spectrometry data was not included for training in experiments. However, the integrity of the
data was also estimated using these data. The cutoff for BA data to be labeled as positive is an IC50
of ă 500nm. Duplicates were identified between the types of data, all MS entries are positives,
and most BA entries should have an affinity around the threshold. Figure 16 (supplemental) shows
that this holds true but „30% of the BA data points exceed 500nm and therefore have the negative
label, resulting in conflicting labels.
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Figure 6: Distributions of the labels/binding affinity measurements in a violin plot overlayed with box plot
(the outliers are shown as dots but show a continuous line in some of the plots). Data points above the 99th
percentile were removed for this figure. The purple line signifies the cutoff of 500nm. Statistics of the overall
genes: mean: 10,3, median: 799, q3: 9190, q1: 55

3.2 Modeling molecular data with DeepRank
DeepRank’s approach focuses on encoding the structural information of a 3D molecule by employing
a 3D grid. The grid size of the matrix is chosen so that all of the atoms of the binding interface (the
residues that are in contact with each other from the two molecules) will fit inside this 3D box. The
relation of the number of atoms to voxels is 1:1. Each voxel can hold a number of features calculated
for an atom mapped to that voxel. This can also be done for residue features, a residue will span a
multiple number of voxels since it is made up of several atoms. For the featurization of molecules,
GNNs are often proposed as a method to model the 3D structure, using atoms or residues as nodes
and the bonds between those nodes as edges. However, DeepRank addresses the challenge of
spatially representing molecules using a grid with limited resolution. Atomic coordinates are mapped
onto a 3D grid by identifying the nearest grid point for each coordinate. To improve the resolution,
Gaussian mapping is employed: the value of a computed feature is added to grid points in equal
directions, and the contribution of each feature follows a Gaussian density. This method eliminates
the need for atomic coordinates to align perfectly with grid points. This approach allows feature
effects calculated for a specific atom to propagate to its neighbors, the same principle applies to
residue features [20].

3.3 Selection of features
The DeepRank package uses atomic and/or residue features to learn the relationship between the
properties (e.g. energies) within the molecules and the binding affinity label (Table 1). All features
calculated with the DeepRank package [20]. Features are calculated per node: an atom or residue.
Certain features are static, like the atom density. Other features are flexible and must be calculated
based on the surrounding nodes (e.g. intramolecular charge). The calculated energies are derived
from force fields: existing computational models that approximate energies within a network of
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atoms.

In addition to the physico-chemical attributes, there is a selection of other features. A PSSM score
is also added for all the residues in the MHC-I binding groove. The PSSM scoring matrix was con-
structed based on a database of all available MHC-I sequences in public databases. In order to
obtain a consistent size, a pseudo-sequence (using the most interactive amino acids) was used to
represent the MHC. The MHC was then scored against the PSSM scoring matrix. This feature aims
to provide information on significant residue changes: an uncommon residue change in a conserved
position will have a low probability score. To keep the number of features between the MHC-I and
the peptide consistent there is an equivalent feature for the peptide: one-hot-encoded vector for
each of the residues. An alternative feature used for the peptide is a skip-gram embedding, specif-
ically trained with peptide epitope data [18]. This describes the frequency of the residues within
the peptide (analogous to the PSSM feature). Lastly, there is the anchor feature, a binary indicator
that specifies whether a residue is an anchor residue of the peptide. This highlights the two most
significant positions in the peptide structure.

The true dimension of the features is doubled since the grid of features always consists of the MHC-I
and the peptide chain. This means that features are calculated separately for both the MHC-I and
peptide atoms/residues and are concatenated together in one matrix.

Table 1: All features crafted by DeepRank that are computed based on 3D structures of the pMHCs

Feature scale Feature name Type Dimension
Atom level Atom density float 5

Atomic charge float 1
Intramolecular electrostatic charge float 1
Intramolecular vd Waals energy float 1
Desolvation Energy float 1

Residue level Buried surface Area (BSA) float 1
Residue Contact Density (RCD) float 7
Position specific scoring matrix (PSSM) float 20
Skip-Gram float 6
Anchor boolean 1

3.4 Data processing
The newly developed 3D-Vac pipeline handles raw input processing, feature crafting, data manage-
ment, and model training to predict binding affinities using peptide-MHC pairs as input. It processes
large tabular datasets containing hundreds of thousands of peptide-MHC pairs in a server environ-
ment [17].

3.4.1 Generation of 3D models

PANDORA takes peptide-MHC pairs as input to produce 3D structures of pMHC complexes in PDB
format as output. The tool relies on templates of the crystal structure of pMHC complexes. If the
MHC protein in the query does not match any of the templates, it uses sequence alignment of the
query MHC with all possible template MHC sequences to find the closest match. So any queries
where the sequence of the MHC allele is unknown will be excluded from further processing. PAN-
DORA [10] also strongly relies on anchor predictions. Anchors are two amino acids of the peptide
that sit in the two main pockets of the MHC binding groove and play a crucial role in the ability
of a peptide to bind to the MHC. Anchor predictions can be obtained from computational models
trained on similar data. NetMHCpan [21] is used by PANDORA to make such predictions. If such
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predictions are not available, the query entry will be excluded. Additionally, PANDORA will use the
templates together with the anchor predictions to model the peptide in the best possible configura-
tion (lowest energy) inside the MHC binding groove. This last step is achieved using loop modeling,
using the MODELLER [23] software. For downstream processing, only the binding groove domains
of the MHC (α1 and α2) and the peptide inside the groove are retained. The final resulting models
will have two possible scores associated with them. The scores approximate the free energy, the
lower the better the model. Multiple models are produced from different initializations. The best
model produced by this algorithm may have configurations that are not possible in biology, for ex-
ample when residues are clashing. This means that the atoms are too close together to remain in a
stable configuration. These models may be produced because the peptide-MHC pair is actually un-
able to bind physically (non-binder). These cases will have a high energy score associated with them.
Obtaining these high-energy models is important to be able to present the self-learning algorithm
with negative examples in addition to all the positive examples.

3.4.2 Feature generation

The focus of the analysis of the pMHC is on the binding interface. Therefore, DeepRank takes a
distance cutoff of 15 Å around the interacting atom between the two molecules. All the pMHC
models are aligned with GradPose [19] to one reference pMHC to obtain a consistent orientation
between all examples with all equivalent amino acids on the same coordinates. The grid size was
optimized to the shape of the binding interface and has the following dimension: 35 ¨ 30 ¨ 30 Å3. The
corresponding input matrix holding the features has the equivalent amount of voxels. The atomic and
residue features are computed for all grid points for both the peptide and the MHC. These features
and their indices are saved in HDF5 [25] format by the DeepRank package to create the input matrix
on demand when training is initialized. All features are min-max normalized and standardized before
training. All labels are binary, where a cutoff of ă 500nm is used for positives.

3.4.3 Data partitioning

The partitioning of the peptide-MHC pairs for the train, validation, and test set was accomplished
using three methods: random shuffling, clustering on peptide similarity and lastly clustering on MHC
similarity. The peptide similarity clustering was done with GibbsCluster 2.0 ([1]), it is an unsupervised
clustering method aiming to find meaningful groups by identifying motifs in the peptide sequences.
The parameters used were peptide length=15, and number of clusters=10. The MHC-I similarity
clustering was performed by scoring all the individual genes against a PAM30 matrix to obtain evo-
lutionary distances. The dendrogram resulting from this was used to find the most distant clusters
of alleles to be used in the test set, each around 10% of the total data points corresponding to genes
A, B and C. Five different clusters were obtained.

3.5 Experiments
Three categories of experiments were performed to test the model’s generalization power. First
testing the model’s ability to generalize to alleles from an unseen gene, specifically gene C. This task
involved training the network on a set of common MHC-I alleles and evaluating uncommon MHC-I
alleles (along with their respective peptide pairs). The training/validation dataset included the full
dataset, excluding all alleles from gene C, while the test set consisted entirely of alleles from gene
C. The split resulted in 72% positives and 28% negatives (see Figure 14) All features were included
except for the skip-gram feature and atom densities.

Second, the effect of subsets of features used in the network was tested. Theoretically, the model
should be able to represent protein interactions on a molecular (i.e. residue) or atom level. These
two levels are measured against a combined model using both atom and residue features. The
atom model was implemented with the following features: desolvation energy, atomic charge, in-
tramolecular charge, vd Waals and atomic densities. The Residue model: BSA, RCD, Skip-Gram and

8



anchor. The combined model: desolvation energy, RCD, Skip-Gram, BSA, atomic charge, intramolec-
ular charge and vd Waals (section 3.3). The test set consisted of 59% negatives and 41% positives
(see Figure 14).

Finally, the results are compared to the state-of-the-art binding affinity prediction algorithm. MHCflurry
2.0 [14] is a deep learning prediction tool that utilizes only the sequence information of the peptides
and the MHC. MHCflurry 2.0 is compared against DeepRank CNN with randomly shuffled data and
clustered data. The CNN used the following features: desolvation energy, RCD, Skip-Gram, BSA,
atomic charge, intramolecular charge and vd Waals and anchor. This experiment was performed
5-fold with the five different clusterings. These experiments had around 40% negative and 60%
positive distribution (see Figure 15).

3.6 Deep learning
The HLA-C left-out experiment was performed with architecture 1, found in Table 2. In summary:
The first layer is batch normalization for 3D, this is followed by a 3D convolutional layer + ReLu
where the n features are halved to function as a projection layer [12], then 3 layers of 3D convolution
(kernel size 2) + max 3D pooling + ReLu. Then the layers are flattened. In the feed-forward part,
batch normalization is applied, a linear layer follows that maps the flattened array to 1000 + ReLu
+ 0.5 dropout, then linear layer + ReLu + 0.5 dropout, keeping the dimension of 1000. Finally, the
output layer is a linear layer mapping to an output of 2. The batch size was 128, the optimizer ‘sgd’,
the learning rate 1e-3, a cross-entropy loss function was used and the training was done with a
maximum of 40 epochs.

The feature set experiment was performed with an architecture similar to architecture 1 with some
modifications: the kernel size was set to 3 (apart from the first layer), ELU was used instead of ReLu,
the fully connected layers halved the dimension for each layer from the flattened dimension. Other
parameters were the same except for a maximum of 25 epochs.

The SOTA experiment CNN was trained with the following architecture (see Table 6): the first layer
is batch normalization, followed by a 3D convolutional layer with ReLU, effectively a projection layer
where the number of features is halved. Then convolutional layers + ReLu with kernel size 3, followed
by batch normalization. Then two convolution blocks with ReLu and batch normalization where the
features space is doubled again. Max pooling then reduces the space of the grid to about half the
size. The convolutional block is followed by a feed-forward network where the grid is flattened and
reduced to 128, three linear layers follow where ReLu and dropout are applied. Finally, softmax is
applied to the output. The batch size was 128, the optimizer ’Adam’ with learning rate 1e-3 and
cross-entropy loss function, and the training lasted 15 epochs. The training details for the MLP and
MHCflurry can be found in the supplemental materials of Marzella et al. (2024) [9].
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4 Results
4.1 Leaving out allele group
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Figure 7: Performance of DeepRank CNN on test set
containing only HLA-C alleles, not seen in train set

The full dataset was used as the training/vali-
dation set in this experiment, excluding all alle-
les from gene C. Figure 9a shows that the loss
curve did not flatten completely after a training
time of 40 epochs, but the loss was still high
at „0.5. Figure 7 shows that after the learn-
ing phase, the model was unable to generalize
to alleles of HLA-C to make reliable predictions.
It shows that at initialization, the model scores
the expected random ROC-AUC score of „0.5
and after 40 iterations scores worse than ran-
dom with an AUC of only 0.481.

4.2 Feature set experiments
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Figure 8: Performance of DeepRank CNN on varying feature sets
(section 3.5), with random selection of peptide-MHC pairs for
train-test

To know which features contribute to
the performance or might cause the
model to overfit, different feature sets
were tested. The results in Figure
8 show that the model trained with
just atom features slightly outper-
forms the model using combined fea-
tures, which again outperforms the
model trained with residue features.
The especially low MCC score for
the residue model can be explained
by the very low TPR (0.161) of the
model. Combined with a high TNR
(0.90), this indicates that the model
was skewed towards predicting nega-
tive labels in the majority of the cases.
This is also true to a certain degree
for the ‘combined features’ and ‘atom
features’ model where the TPR is al-
most twofold compared to the TNR and more than twofold in the case of the ‘combined features’
model. The bias of the models is also seen in the density plots (Figure 10) The data points from the
validation sets of the experiments did not resemble the test set enough to indicate a good stopping
point for learning (Figure 9), thus the number of epochs was likely not optimized for these experi-
ments. The Residue + Atom model (Figure 9b) suggests overfitting because the training loss is slightly
lower than the validation loss and keeps diverging with increasing epochs.

4.3 Clustering experiments against state-of-the-art
A simple Deep Learning algorithm (MLP) and a state-of-the-art algorithm (MHCflurry 2.0) were
tested against the DeepRank CNN with three sets of clusters (Figure 13). All three methods (MLP,
CNN, MHCflurry) performed best on random clustering and showed the lowest performance on
MHC clustering, based on AUC. The simplest architecture (the MLP) scored the highest with both
imbalanced metrics (ACC and AUC) and balanced metrics (MCC and F1). The AUC drop between
clustered and shuffled is 0.149 (CNN), 0.334 (MLP), and 0.163 (MHCflurry).
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features sets experiment: atom + residue, atom features, residue features
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Figure 10: Density plot of test set probabilities for three DeepRank CNN models in feature experiments. A
perfect model has two separate curves on each side of the 0.5 vertical line, positives ě 0.5 and negatives ă

0.5. The atom model has the best separation of the three experiments, though the density for the positive
label is almost evenly distributed across the probability space
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Figure 11: Density plot of the probabilities on the test set from three different models, DeepRank CNN, MLP
and state-of-art (MHCflurry) with shuffled train-test. A perfect model has two separate curves on each side of
the 0.5 vertical line, positives ě 0.5 and negatives ă 0.5.
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Figure 12: Density plot of the probabilities on the test set from three different models, DeepRank CNN, MLP
and state-of-art (MHCflurry) with allele clustering to separate train-test. A perfect model has two separate
curves on each side of the 0.5 vertical line, positives ě 0.5 and negatives ă 0.5.
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Figure 13: Performance on the test set from three different mod-
els, DeepRank CNN, MLP, and state-of-art (MHCflurry) with two
modes of clustering for the training and test set: random (shuffled),
clustered by MHC similarity

The density plots for the state-of-the-
art experiments (see Figure 11 and
12) show a notably different predic-
tion distribution for the MLP, with
shuffling there is clear separation,
while clustering shows poor separa-
tion. The CNN shows a clear de-
crease in successfully predicting posi-
tives with clustering compared to the
shuffled experiments. The same is
true for MHCflurry. Figure 13 also
shows that the true positive rate (TPR)
drops significantly for all models be-
tween clusterings, while the true neg-
ative rate (TNR) stays high and even
increases slightly for all models. The
DeepRank CNN shows the highest
ROC AUC score between the three
models for MHC clustering. How-
ever, MHCflurry has a higher F1 and
MCC score, indicating a better bal-
ance between type 1 and type 2 er-
rors.
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5 Discussion
5.1 Benchmarking and ranking
To this date, there is no universal benchmark for pMHC affinity prediction methods. New algorithms
often benchmark their new method against other state-of-the-art methods using a test dataset ac-
cording to self-motivated criteria. Sometimes test data is selected on the criteria that it is ‘unseen’
by the trained algorithms, however, unseen alleles are rarely a criterion and the similarity of the pep-
tide amino acid distribution is often not considered. Additionally, each research publication chooses
one or two metrics to compare and rank the tested algorithms, which makes comparing benchmarks
across publications even more difficult. Popular metrics are among others: AUCROC (area under the
curve of Receiving Operating Characteristic), AUCPRC (area under the curve of Precision and Recall),
Accuracy, and top n% ranking (number of positives found for data points with top n probability). The
widely used ROCAUC does not take the label distribution of the test set into account, Mathews
correlation coefficient (MCC) is the most suited metric when false positives and false negatives are
of equal importance [5]. A variety of metrics should be reported to increase comparability. The most
popular methods (MHCflurry, NetMHCpan) use data from a source separate from their training data
for final validation (commonly referred to as ‘test set’) to ensure a fair evaluation of their predictive
performance. However, there is no focus on the overlap of alleles and peptides as a criterion for
selecting these data. In O’Donnell (2020) [14] there is a 100% overlap of MHC alleles and a large
majority of overlap in peptides in both sets.

5.2 Data limitations
Training data is abundant for certain alleles, especially HLA-A:02*01, but the frequency in BA datasets
does not always represent the frequency in the human genome. Alleles of gene C of MHC are very
rare in general in pMHC datasets, while it could provide important insights for pMHC binding affinity
research. Computational models should be able to perform well on rare alleles to be relevant for ad-
vanced research in personalized medicine. Because of the discrepancy between allele frequencies in
datasets and the frequency in biology, these models will not perform in real-world cases where rare
alleles could be present. Another crucial link for immunogenicity is TCR compatibility. The CD8+
T-cell must bind to the pMHC complex to illicit a tumor-specific CTL response. The lack of experi-
mental data for TCR:pMHC bindings explains the current scarcity of predictors taking TCR binding
into account. Nevertheless, MHC-peptide interaction after antigen processing is thought to be the
single most selective factor for immune response.

5.3 Exclusion of mass spectrometry data
The increasing availability of experimental MHC epitope data facilitates the development of algo-
rithms with improved predictive power, driven by the greater volume and diversity of training data.
Some argue that models trained solely on chemically validated BA labels are becoming less relevant,
MS data provides biologically validated evidence of MHC-peptide binding. On the other hand, a
case can be made for developing models that focus on accurately representing the chemical interac-
tions between MHC and peptides, independent of antigen processing properties. For vaccine design
applications, such models should be integrated with an antigen processing model to ensure that pre-
dicted peptides possess immunogenic properties. An undeniable drawback of excluding MS data is
the loss of training data volume to further improve the robustness of the model. However, the bias
that MS data introduces to the peptide landscape could be offset by including enough chemical (BA)
examples in the training data.
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5.4 Data quality Limitations
BA labels are not consistent between duplicates and the control (MS data) as shown by the analysis in
3.1. The binding affinity cutoff also does not correspond to the positive data points that MS datasets
provide, where almost 30% exceed the cutoff of 500nm and are falsely labeled as non-binders. To
determine a better cutoff, more research needs to be done, also accounting for biological negatives,
not just positives. The binding affinity cutoff has been proven specific to the allele: a successful bind-
ing in vivo corresponds to a different binding affinity measurement [16]. Inconsistencies between
duplicate BA data points also suggest that the labels are unreliable to a certain degree. From all the
duplicate data points, 5% had conflicting labels. The lacking quality of the labels is also likely causing
troubles for any algorithm to distinguish the binders from the non-binders. Likely the quality of the
non-binders is better than the binders. This is because the range of the IC measurement beyond
the cutoff of 500nm is very high: it goes up to hundreds of thousands in certain cases (see Figure
16). This theory is also supported by the model’s tendency to identify negatives with confidence
but not the positives (see Figure 10 The data enrichment step could also possibly introduce some
quality issues: high-energy 3D models of pMHC may be produced by PANDORA while the complex
should have low energies in biology. This will limit the Deep Learning model from learning the cor-
rect relationships since these complexes have a positive BA associated labels, while the energy of the
calculated features is high. Because it requires manual inspection, the exact number of low-quality
3D models in the dataset is not known. Additionally, the generated 3D structures (in PDB format)
lacked properly assigned hydrogen atoms, leading to inaccuracies in energy calculations.

5.5 Experiment flaws
Multiple iterations of training a model starting from a random state are important to determine the
stability or the variance in performance. Due to extensive training times and a limited budget, not all
experiments had replicates, only the state-of-the-art comparison. Because of this limitation, the met-
rics may slightly over- or underestimate the performance. Furthermore, the feature set experiment
suggests that atom features yield models with the best predictive power. However, the skip-gram
and anchor feature should have been included in the ’combination feature’ model. Due to the omis-
sion of these features, it is unknown whether the inclusion of those features was causing the drop
in performance in the residue model, or if it was due to the lack of atom features.

To accurately determine feature importance and identify the optimal feature set, an ablation test
should be conducted. The ablation test removes any assumptions about how the model should the-
oretically be constructed (e.g. on atom or residue level) and finds the optimal set based on empirical
results. Ideally an Automated Machine Learning (AML) method is used to find the ideal set without
running all the permutations. However, the number of parameters of the experimental models was
too large to justify the cost of running an AML application with the resources available.

5.6 Future research
The research and experiments conducted in this study are closely related to the work of Marzella et
al. (2024). In this new experimental work, the CNN is tested against a GNN (using similar physico-
chemical features to the CNN in the Results 4) and an eGNN (using only amino acid types and
distances as features). The (e)GNN represents the atoms as nodes, and the edges are equivalent to
the relative distances between the atoms. In allele cluster experiments (similar to this experiment
in this report) GNN outperforms the CNN and again the eGNN outperforms GNN. From these re-
sults can be hypothesized that a GNN is better suited to represent a molecule and its interactions
in 3D space compared to a constrained grid that was used for the CNN. The resolution (1 Å) of
the grid is simply not sufficient to approximate the true geometry of the molecules like a GNN can
do inherently. The Gaussian mapping is supposed to alleviate the restriction of the mapping to a
constrained grid, but this representation might be too distant from a high-resolution 3D model for
the Deep Learning model to learn good correlations. A higher resolution might boost performance
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but will be exponentially slower and can never match the efficiency of representing and processing
power of a GNN. Another point of discussion is how the features of the MHC chain and peptide
chain are combined as a single data point. The features of both chains are represented on a separate
matrix. This method was chosen to make a clear distinction between MHC and ligand grid points.
Because the matrices of the chains are concatenated together the model needs to learn the relation-
ship between the interactions on equivalent coordinates of the separate matrices. This introduces
another challenge and potentially harms learning efficiency. Additionally, the rotational invariance
of the GNN makes the direction of interaction between atoms or residues with respect to each
other irrelevant. This presumably, gives the GNN a big advantage in learning quality and efficiency.
The eGNN outperforming the GNN suggests that, rather than explicitly providing physico-chemical
properties, geometry is the ultimate most important feature to represent the molecules, which is
something that the CNN inherently cannot represent.

6 Conclusion
The OOD problem is known across different fields of science where data-driven modeling is used.
A way to improve modeling for protein-protein interaction is to obtain more robust features from
the interaction of these molecules. Rather than just 2D sequence information, DeepRank incorpo-
rates 3D structural information of the molecules. Different feature subsets were tested to find the
influence on performance. The findings from the model with atomic-only features showed that per-
formance was actually superior without a sequence embedding in its feature set. Additionally, the
DeepRank CNN was tested against state-of-art in different clustering scenarios. The performance
of the CNN models shows that this structural method is competitive with state-of-the-art in both
shuffled learning scenarios as well as unseen groups of MHC alleles. Based on the commonly used
AUC score, it even outperforms the state-of-the-art in the MHC-cluster experiment. However, the
state-of-the-art network still performs better in recall, a relevant metric for this task. Subsequent
research has already shown that structure (or geometry) is an excellent modeling strategy for this
task. Future research should also focus on reducing data noise for reliable modeling, as inconsistent
labeling hinders learning.
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Table 2: Architecture 1 (HLA-C):
Total params: 2,231,514
Trainable params: 2,231,514
Non-trainable params: 0
Input size (MB): 10.57
Forward/backward pass size (MB): 56.92
Params size (MB): 8.51
Estimated Total Size (MB): 76.01

Layer (type) Output Shape Param
BatchNorm3d-1 [-1, 88, 35, 30, 30] 176
Conv3d-2 [-1, 44, 35, 30, 30] 3,916
ReLU-3 [-1, 44, 35, 30, 30] 0
Conv3d-4 [-1, 44, 35, 30, 30] 1,980
MaxPool3d-5 [-1, 44, 17, 15, 15] 0
ReLU-6 [-1, 44, 17, 15, 15] 0
Conv3d-7 [-1, 44, 16, 14, 14] 15,532
MaxPool3d-8 [-1, 44, 8, 7, 7] 0
ReLU-9 [-1, 44, 8, 7, 7] 0
Conv3d-10 [-1, 44, 7, 6, 6] 15,532
MaxPool3d-11 [-1, 44, 3, 3, 3] 0
ReLU-12 [-1, 44, 3, 3, 3] 0
Flatten-13 [-1, 1188] 0
BatchNorm1d-14 [-1, 1188] 2,376
Linear-15 [-1, 1000] 1,189,000
ReLU-16 [-1, 1000] 0
Dropout-17 [-1, 1000] 0
Linear-18 [-1, 1000] 1,001,000
ReLU-19 [-1, 1000] 0
Dropout-20 [-1, 1000] 0
Linear-21 [-1, 2] 2,002

17



Table 3: Architecture 2 (Atom & Residue features):
Total params: 75,022
Trainable params: 75,022
Non-trainable params: 0
Input size (MB): 5.29
Forward/backward pass size (MB): 28.25
Params size (MB): 0.29
Estimated Total Size (MB): 33.83

Layer (type) Output Shape Param
BatchNorm3d-1 [-1, 44, 35, 30, 30] 88
Conv3d-2 [-1, 22, 35, 30, 30] 990
ELU-3 [-1, 22, 35, 30, 30] 0
Conv3d-4 [-1, 22, 35, 30, 30] 506
MaxPool3d-5 [-1, 22, 17, 15, 15] 0
ELU-6 [-1, 22, 17, 15, 15] 0
Conv3d-7 [-1, 22, 15, 13, 13] 13,090
MaxPool3d-8 [-1, 22, 7, 6, 6] 0
ELU-9 [-1, 22, 7, 6, 6] 0
Conv3d-10 [-1, 22, 5, 4, 4] 13,090
MaxPool3d-11 [-1, 22, 2, 2, 2] 0
ELU-12 [-1, 22, 2, 2, 2] 0
Flatten-13 [-1, 176] 0
BatchNorm1d-14 [-1, 176] 352
Linear-15 [-1, 176] 31,152
ELU-16 [-1, 176] 0
Dropout-17 [-1, 176] 0
Linear-18 [-1, 88] 15,576
ELU-19 [-1, 88] 0
Dropout-20 [-1, 88] 0
Linear-21 [-1, 2] 178
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Table 4: Architecture 3 (Atom features):
Total params: 12,791
Trainable params: 12,791
Non-trainable params: 0
Input size (MB): 2.16
Forward/backward pass size (MB): 11.56
Params size (MB): 0.05
Estimated Total Size (MB): 13.77

Layer (type) Output Shape Param
BatchNorm3d-1 [-1, 18, 35, 30, 30] 36
Conv3d-2 [-1, 9, 35, 30, 30] 171
ELU-3 [-1, 9, 35, 30, 30] 0
Conv3d-4 [-1, 9, 35, 30, 30] 90
MaxPool3d-5 [-1, 9, 17, 15, 15] 0
ELU-6 [-1, 9, 17, 15, 15] 0
Conv3d-7 [-1, 9, 15, 13, 13] 2,196
MaxPool3d-8 [-1, 9, 7, 6, 6] 0
ELU-9 [-1, 9, 7, 6, 6] 0
Conv3d-10 [-1, 9, 5, 4, 4] 2,196
MaxPool3d-11 [-1, 9, 2, 2, 2] 0
ELU-12 [-1, 9, 2, 2, 2] 0
Flatten-13 [-1, 72] 0
BatchNorm1d-14 [-1, 72] 144
Linear-15 [-1, 72] 5,256
ELU-16 [-1, 72] 0
Dropout-17 [-1, 72] 0
Linear-18 [-1, 36] 2,628
ELU-19 [-1, 36] 0
Dropout-20 [-1, 36] 0
Linear-21 [-1, 2] 74
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Table 5: Architecture 4 (Residue features):
Total params: 35,087
Trainable params: 35,087
Non-trainable params: 0
Input size (MB): 3.60
Forward/backward pass size (MB): 19.26
Params size (MB): 0.13
Estimated Total Size (MB): 23.00

Layer (type) Output Shape Param
BatchNorm3d-1 [-1, 30, 35, 30, 30] 60
Conv3d-2 [-1, 15, 35, 30, 30] 465
ELU-3 [-1, 15, 35, 30, 30] 0
Conv3d-4 [-1, 15, 35, 30, 30] 240
MaxPool3d-5 [-1, 15, 17, 15, 15] 0
ELU-6 [-1, 15, 17, 15, 15] 0
Conv3d-7 [-1, 15, 15, 13, 13] 6,090
MaxPool3d-8 [-1, 15, 7, 6, 6] 0
ELU-9 [-1, 15, 7, 6, 6] 0
Conv3d-10 [-1, 15, 5, 4, 4] 6,090
MaxPool3d-11 [-1, 15, 2, 2, 2] 0
ELU-12 [-1, 15, 2, 2, 2] 0
Flatten-13 [-1, 120] 0
BatchNorm1d-14 [-1, 120] 240
Linear-15 [-1, 120] 14,520
ELU-16 [-1, 120] 0
Dropout-17 [-1, 120] 0
Linear-18 [-1, 60] 7,260
ELU-19 [-1, 60] 0
Dropout-20 [-1, 60] 0
Linear-21 [-1, 2] 122
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Table 6: Architecture 5 (CNN SOTA):
Total params: 1,629,026
Trainable params: 1,629,026
Non-trainable params: 0
Input size (MB): 2.88
Forward/backward pass size (MB): 35.55
Params size (MB): 6.21
Estimated Total Size (MB): 44.64

Layer (type) Output Shape Param
BatchNorm3d-1 [-1, 24, 35, 30, 30] 48
Conv3d-2 [-1, 12, 35, 30, 30] 300
BatchNorm3d-3 [-1, 12, 35, 30, 30] 24
ReLU-4 [-1, 12, 35, 30, 30] 0
Conv3d-5 [-1, 12, 35, 30, 30] 156
BatchNorm3d-6 [-1, 12, 35, 30, 30] 24
ReLU-7 [-1, 12, 35, 30, 30] 0
Conv3d-8 [-1, 24, 33, 28, 28] 7,800
BatchNorm3d-9 [-1, 24, 33, 28, 28] 48
MaxPool3d-10 [-1, 24, 16, 14, 14] 0
ReLU-11 [-1, 24, 16, 14, 14] 0
Conv3d-12 [-1, 48, 14, 12, 12] 31,152
BatchNorm3d-13 [-1, 48, 14, 12, 12] 96
MaxPool3d-14 [-1, 48, 7, 6, 6] 0
ReLU-15 [-1, 48, 7, 6, 6] 0
Flatten-16 [-1, 12096] 0
BatchNorm1d-17 [-1, 12096] 24,192
Linear-18 [-1, 128] 1,548,416
ReLU-19 [-1, 128] 0
Dropout-20 [-1, 128] 0
Linear-21 [-1, 128] 16,512
ReLU-22 [-1, 128] 0
Dropout-23 [-1, 128] 0
Linear-24 [-1, 2] 258
Softmax-25 [-1, 2] 0
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Glossary
antigen processing (AP) A process on cellular level where random fragments of protein go through

several steps to be bound to MHC and eventually be presented on the cell surface. 2, 4, 13

BA Binding Affinity: the level of binding strength between two molecules expressed in a concen-
tration (in nm) of the IC50, often determined by competitive binding assays. The lower the
concentration, the stronger the binding score. 4, 5, 13, 14

CNN CNN: Convolutional Neural Networks, Deep neural networks that utilize kernels to perform
convolutions (derived from the field of Image Analysis) on the input data in order to obtain
many different low level features (e.g. a circle) and eventually high level features (e.g. a face)
deeper in the network. 1

Deep Learning Deep Learning: a field within Machine Learning, uses algorithms that are described
as Deep Neural Networks. 10, 14

ensembles Multiple machine learning models are integrated within a framework to produce a single
output using a weighted sum or another combination function, allowing the strengths of each
model to be utilized. 3

ER Endoplasmatic Reticulum: unit in the cell responsible for transport and protein folding. 2

GNN Graph Neural Network. A deep neural network for Geometric Deep Learning. It can process
data with inherent geometrical properties (3D objects) translated to graphs, it learns (updates)
through message passing from neighbouring nodes. 14

LSTM Long Short Term Memory: a Deep Neural Network derived from a RNN (Recurrent Neural
Network) that has been optimized to learn from sequence input data, by capturing long term
dependencies. 3

MLP MLP: Multilayer Perceptron Networks. The first, and most simplified form of Neural Networks.
It is a self-learning algorithm using non-linear functions. It is built up of several layers of nodes
and edges, in each layer all nodes are connected to nodes of the next layer. Random initial
numerical properties (weights) of the edges are updated through backpropagation to minimize
the error between input and output. 9, 10

MS Mass Spectrometry: a technique to measure to measure the protein composition of a sample
based on the weight of molecules. 4, 5, 13, 14

TAP Transporter associated with Antigen Processing: the protein complex that transports peptides.
2
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