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Abstract

Automated quality control for industrial use has overcome the issue of detecting objects on
the conveyor belts, by using neural networks (e.g. YOLO) or reference points on objects (e.g.
QR codes), but has yet to accomplish the same for estimating the orientation of the objects
on the conveyor belts. While being able to detect objects on the conveyor belts is already a
good step in improving the automation of quality control, the lack of orientational information
means that not all aspects of the products can be automatically checked. In a similar fashion,
the physical twin lab, located at Leiden University, needs to be able to track coloured blocks
as well as estimate their orientation. In this thesis several approaches for the estimating
the orientation of coloured cubes are explored using an Intel RealSense D455 camera, which
provides depth information in conjunction to colour images. Although the use of the depth
imaging capabilities of the camera seemed useful, these turned out to not be stable enough
to be used with the proposed initial idea of difference between object extremities. Thus, the
proposed method for further research is the use of photogrammetry in conjunction with pose
estimation techniques and the use of QR codes as the anchor points. This method proved to
be the most reliable and least computationally expensive way to track objects and estimate
their orientation.
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1 Introduction

For the past ten years there has been a considerable rise in use for object detection algorithms.
These algorithms are used in the medical field to assist medical personnel [YY21] by analysing
various types of images, computed tomography (CT), X-ray images or magnetic resonance imaging
(MRI) among many other variations [YY21]. Outside of their use for static image analysis, object
detection algorithms, can also be applied for dynamic image processing. This type of detection makes
use of highly efficient one-stage networks [ZLW+21], such as single-shot detection (SSD) [LAE+16]
or You Only Look Once (YOLO) [RDGF16]. The use of these efficient networks has allowed for the
application of object detection in multiple fields such as: security surveillance [LLT+23], automated
cars [YSP+22] and for industrial product lines quality control [BAX19]. Automated inspection for
quality control in the food industry is able to assure the quality of products through the use of
gas-sensors which can distinguish volatile organic compounds determined by the aroma of different
products [KCF23]. However, while AI has proven to be capable at determining the quality of food
products based on images [AEP+22, ZZL+19] it faces a key challenge in accurately determining the
3D orientation of the objects it detects. As these objects move on the production line it is for some
products important to verify that they are not misaligned in order to assure smooth operation.
The physical twin lab at Leiden University aims to find a solution to the problem of orientation
estimation by using previously researched object tracking methods [SKJ19] and building on top of
these to find a suitable method for the estimation of the orientation of objects, which are coloured
cubes in this case, using the Intel RealSense D455 camera. The additional layer of information can
help detecting misplacement of objects on the conveyor belt and thus assure smooth operation of
the machinery surrounding the conveyor belts. Additionally the rotational information can be used
to help in the detection of defects.
This paper aims to explore and compare multiple methods of object detection and orientation
estimation in order to answer the following questions:

1. Is it possible to use object detection in conjunction with the depth camera from the D455
camera to accurately detect and estimate the orientation of objects?

2. Is it possible to accurately and reliably detect small QR codes to estimate the orientation
thereof?

1.1 Thesis overview

The second section will cover some related work that explains the concepts of the methods used for
both the object detection pipeline as well as the orientation estimation. The third section gives
an overview of the hardware that was used which includes the Intel RealSense D455 [inta] with
its depth imaging capabilities as well as the conveyor belt from the LIACS Twinlabs that was
used to perform some of the experiments as it provides for a suitable prototyping environment.
The methodology behind the object detection pipeline, which allows for the detection of the small
cubes chosen for the experimentation, is also elaborated upon in this section. The fourth section
then presents the methods that were theorized and implemented for the orientation estimation.
This includes a theoretical approach, which was unable to be implemented due to the limitations
of the depth imaging of the chosen camera as well as an implemented method whose robustness
and limitations were tested. In the conclusion, the take-aways from this paper are summarized as
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well as ideas for further research are given. This work was part of a bachelor thesis at the Leiden
Institute of advanced Computer Science (LIACS) with the help of dr. Daan M. Pelt as a supervisor
and A.R. Mesquita Fery Antunes as a second supervisor.

2 Related Work

At the core of this paper are two concepts: object detection and orientation estimation.

2.1 Object Detection

Detecting objects within images is a task usually done by convolutional neural networks. The first
such network to successfully solve the task of object detection is the CaffeNet [KSH17] architecture,
this architecture was however slow due to using a selective search method for the generation
of region proposals. As an improvement on this previous method the Fast R-CNN network was
developed. This network makes use of a feature map that is calculated and onto which the region
proposals given by the selective search are projected [Gir15]. However, this method still suffered
from the usage of the selective search which lead to it getting replaced by its next iteration being
the Faster R-CNN. The Faster R-CNN network applies the selective search directly to the feature
map instead of projecting the proposed regions onto it [RHGS17]. However, even though this made
it possible to make more use of the feature map and the information it provides, the speed of these
neural networks was still nowhere near where it needed to be for them to be used in real-time
analysis. These networks are what we classify under two-shot algorithms [DZW20] as they make
use of region proposals before extracting features from the proposed regions.
In order to make the task of object detection faster single-shot or one-shot neural networks were
developed. The first of its kind was the Single shot multibox detector (SSD) [LAE+16]. These
networks perform their detection procedures for a large number of regions in a single iteration,
making them faster than two-shot networks but less accurate. Two other single-shot architectures
are the You only look once (YOLO) [RDGF16] and RetinaNet [LGG+17]. The networks from the
YOLO architecture will be focused on further as they are central to the content of this paper. At
the time of writing, the YOLO architecture boasts twelve neural network versions each improving
upon the last iteration [Ultb]. In this paper the fifth iteration of the network is used as it provides
satisfactory performance in detection of objects in real-time. Early iterations of the YOLO networks,
including YOLOv5, make use of a DarkNet-53 neural network [pjr], which is a convolutional neural
network that is used for the recognition of objects. The YOLO architecture also does not make use
of the previously mentioned selective region search and instead scales and divides the input image
into square regions within which recognition takes place. By subdividing each square into three
more rectangles and estimating the presence of an object within these. The rectangles can be of
differing sizes, which allows for leaving the area with the highest probability. YOLO also allows for
processing individual frames from a video sequence in a single pass, making it a suitable method
for use in real-time application.
However, object detection, whether static or dynamic in nature, suffers from the fact that the
coordinates of the detected objects or entities are represented within the pixel space of the image.
Thus, the detected objects need an extra layer of translation from between pixel space to real
life coordinates. In a similar research [AKU+22] using a stereo camera (Intel RealSense D415) to
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get the depth information and a YOLOv3 neural network for object detection a method to relate
camera pixel location and depth information to real world axes is described.

Figure 1: Schema demonstrating the process of detecting objects for one-stage and two-stage neural
networks [BWL20]

2.2 Object orientation

In terms of object orientation we take a look at the field of pose estimation and photogrammetry.
The orientation of objects is a concept that has been long used with Augmented Reality (AR)
[MUS16], where a virtual object is correlated to the real world through a camera in order to
give the impression that it is in fact real. AR technology is most notably used in conjunction
with QR codes or ArUco codes, the latter of which was specifically designed for AR applications
[ACPT22, CFA+11]. At the core of these technologies is the translation of a 3-dimensional object
into a 2-dimensional view. For this Perspective-n-Point (PnP) is particularly interesting in our
case. This method makes use of known points within an image [QL99] to correlate them to the
pixel space. In order to correlate an object with known points from its world coordinates to their
projection within an image, the intrinsic parameters from the camera used to capture the image are
necessary. These parameters are the camera’s distortion coefficients as well as the camera matrix.
The reason behind the need for these parameters is to correct any kind of distortion that the camera
lens might have introduced to the image.
Most cameras make use of a lens in order to allow for sharp pictures. The lens of a camera determines
its focal point and the refraction that light undergoes when passing through the lens. Refraction is
the process of bending the light as it passes through the lens and the light waves speed is altered
[Pen00]. The point at which all the light waves meet, before reaching a mirror or an imager [Fos93]
depending on the age of the camera, is the focal point of a camera. While lenses are essential to the
working of a camera, they are the cause of radial distortion. Radial distortion comes in three types,
which depends on the type of lens used: barrel distortion, pincushion distortion and moustache
distortion. [vW]. Barrel distortion occurs when a fisheye lens is used as these take hemispherical
views in order to map an infinitely wide object plane into an image using this kind of distortion.
Zoom lenses also cause barrel distortion in the middle of the lens’s focal length range and the
distortion amplifies at the wide-angle end of the range. Pincushion distortion occurs due to the use
of a convex lens, which causes the image to be magnified the further away it is from the centre.
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And lastly, moustache distortion is a mixture of both previous types of radial distortion, which
occurs less frequently and causes horizontal elements from the image to bend in the shape of a
handlebar moustache.

(a) Barrel distortion (b) Pincushion distortion (c) Mustache distortion

Figure 2: Different types of distortion, images by WolfWings - Own work, Public Domain, url

To correct the radial distortion that lenses and other radial components of cameras introduce,
the Brown-Conrady distortion model [Bro66] can be used. This model also corrects for tangential
distortion which can be caused by the misalignment of camera components. Correcting the distortion
in images is paramount to achieving good results when solving the PnP equation, as distortion
leads to the points of interest being misplaced resulting in inaccurate projections from the 3D plane
to the image.

3 Methods and Hardware

To apply the methodology in practice, the hardware used must be defined. This is because the
hardware, especially the selection of the camera, has significant effects on the end result. The
camera used is the Intel RealSense D455 and is further described in section 3.1. To run the neural
network as described in section 3.3 a Desktop, with a NVIDIA GeForce RTX 4090 and a AMD
Ryzen 9 7950X3D CPU was used.

3.1 Depth Camera

The camera that was used is an Intel RealSense D455, which is a newer model compared to the one
used in the aforementioned study [AKU+22]. According to intel this newer model features the same
capabilities as the older model’s but with better performance at longer range [inta]. The important
feature of this camera is its depth imaging. To get depth information the camera makes use of two
imagers, which are spaced away from each-other by a known distance on the same plane [Intb].
By correlating the pixels from both images the depth is calculated for each pixel using the known
distance between the two imagers and the range to the pixels.
The depth images can be ran at 60 frames per second (fps) at a resolution of 640 by 480. the camera
does allow for a depth resolution of up to 1280 by 720 and a max of 90 fps, but it is not possible to
reach both of these upper limits at the same time. At its maximal resolution the camera is able to
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do at most 30 fps, while to reach 90 fps the camera needs to be operating at a resolution of 640 by
360 at most.
Our choice in resolution and framerate strikes a balance between the maximum resolution and
fps the camera is able to output. To be of note is also the fact that to use higher resolutions and
framerates the camera needs to be connected to using a USB 3.0 connection as otherwise the data
throughput is not high enough to handle all the data transmitted by the camera. A fully detailed
list of all possible configurations can be found within the data sheet provided by intel.

Figure 3: Intel RealSense D455 Depth and Colour Camera

3.2 Mini conveyor belt

A small conveyor belt used to test the different methods and implementations described in further
sections. A picture of the conveyor belt can be seen in figure 4a. This conveyor belt allows for the
simulation of realistic application for the object tracking and orientation estimation methods. The
conveyor belt’s speed can be adjusted with a valve-like controller that can be found on the motor
located at the top of the conveyor belt.

(a) Conveyor belt without the camera (b) Conveyor belt with the camera

Figure 4: Small conveyor belt from the LIACS TwinLabs
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3.3 Object Detection

Taking inspiration from the study on detecting apples using a similar camera [AKU+22] the
YOLOv5 [Joc20] architecture from ultralytics was chosen for the object detection pipeline. Being
a one-shot neural network architecture made for use in video feed object detection makes it ideal
for usage in a quality control environment. This architecture makes use of a three part system
consisting of the backbone, the neck and the head [Joc20, Ulta]. The backbone is the main part
of the neural network containing the convolutional layers, the neck of connects the backbone of
the network to the head by making use of Spatial Pyramid Pooling - Fast (SPPF) [HZRS15] and
Path Aggregation Network (PAN) [LQQ+18] to remove the fixed size needed by images and object
instance segmentation respectively. Finally, the head is the part responsible for the final predictions
given by the model.
To detect specifically the coloured cubes that were used for these experiments, the first step was
to train the neural network on different images of coloured cubes. For this a mixture of a dataset
provided by Jakob Sluf [Slo23], which was then further processed with some data augmentations to
have a bigger dataset, and a home-made dataset were used. The data augmentations performed on
these images include:

• Adding noise

• Removing random parts of the image (effectively creating black squares)

• Rotating the images

For the home-made dataset, images of the cubes on the conveyor belt were taken periodically as
the camera was pointed at the conveyor belt. The images were then processed algorithmically to
label the location of the cubes. This is done by thresholding images for each of the cube colours in
the Hue, Saturation and Value (HSV) space, which gives us a binarized mask. The lower and upper
bounds for Red, Green and Blue (RBG) that were used are as follows:

• Red: (170, 50, 50) - (180, 255, 255)

• Green: (40, 100, 50) - (80, 255, 255)

• Blue: (100, 150, 50) - (140, 255, 255)

After thresholding the images OpenCV’s connectedComponentsWithStats function is used to clean
the mask to only contain the cubes. With this final mask the label information can be computed
by obtaining the normalized centre coordinates, height and width of the remaining shapes.
Making use of this mixed data set the YOLOv5 model is trained to be able to recognize the cubes
in real-time and categorize their colour. By using a threshold of 45% for the prediction confidence
cubes are reliably detected in most lighting settings, without detecting other cubic objects as cubes.
To be of note is that a confidence threshold of 50% can be used in bright lighting for even better
accuracy, however the model struggles with blue coloured cubes in darker lighting, resulting in the
use of a threshold of 45% to increase the reliability of the model for different environments.
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Figure 5: Cube detection using the YOLOv5 architecture and a confidence threshold of 45%. The
green rectangle indicate the predicted pixel area occupied by the cubes and the text indicates the
colour of the cube as well as the confidence in the prediction.

4 Experiments

To start experimenting with the Intel RealSense camera and its capabilities as a depth camera, the
first step was to set up and train a model for the object detection as described in section 3.3.

4.1 Depth difference between edges

The initial idea to solve the estimation of the 3D orientation of cubes was to use the object detection
pipeline as described in section 3.3 to get the location of the cubes. The location of the cubes is
then looked at the corresponding pixels of the depth image to get the depth information of the
detected cubes. To be able to correlate both images they are captured at the same time, same
resolution and framerate. These exact parameters are mentioned at the end of section 3.1
By taking the depth information of the cubes, the orientation can be estimated by taking four
depth points of the cubes. The four depth points are used in the following pairs:

• Leftmost point and rightmost point

• Topmost point and bottommost point

These points are used in pairs in order to calculate the difference between the extremities of
the detected cube area. Since the cube detection is not perfect the area classified as cube might
include some background and objects that are not the cube we can’t just use a single point for the
extremities. Instead we have to use an area of points around the centre of the extremities, which is
then averaged out, while removing dead pixels if there are any in order to keep the values reliable.
In addition to using an area of pixels we also move the centre of this area towards the centre of the
cube detection, which further reduces the likelihood of including depth pixels that are not part of
the actual cube. The depth average is calculated as follows:

Pavg =

∑n
i=1 pi
n

(1)
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where n is the amount of depth pixels within our extremity area, pi is the i-th point within the
extremity area.
The horizontal difference is calculated as follows:

Hdiff = Lavg −Ravg (2)

where Lavg and Ravg are the left and right depth averages calculated using the equation 1.
Using the value of Hdiff the following conclusions can be made on the horizontal orientation of an
object:

• 0 : no difference in depth between left and right means horizontal axis is flat.

• > 0 : left area has a higher value indicating that it is further away, meaning that the right
side is tilted forwards.

• < 0 : right area has a higher value indicating that it is further away, meaning that the left
side is tilted forwards.

Since the horizontal tilt is not enough to estimate the 3D orientation we also need a second axis,
which is where the topmost and bottommost points are used to calculate the vertical difference.
The vertical difference is calculated as follows:

Vdiff = Tavg −Bavg (3)

where Tavg and Bavg are the top and bottom depth averages calculated using the equation 1.
Using the value of Vdiff the following conclusions can be made on the vertical orientation of an
object:

• 0 : no difference between top and bottom means the vertical axis is flat.

• > 0 : top area has a higher value indicating that it is further away, meaning that the bottom
is tilted forwards.

• < 0 : bottom area has a higher value indicating that it is further away, meaning that the top
is tilted forwards.

By making use of the conclusion drawn from bothHdiff and Vdiff an estimation of the 3D orientation
can be made. This estimation is however, still prone to error, an example for this would be the
cube position illustrated in figure 6. In this situation the cube would be estimated to be flat, which
would not be correct. To circumvent this issue a fifth area of points is introduced at the centre of
the detection. By using this extra depth area a difference between the centre and the extremities
can be calculated, which allows to determine when the cubes are in the specific orientations that
would not be properly estimated with just Hdiff and Vdiff

8



Figure 6: Render of a coloured cube with one of the corners pointing towards the camera.

4.2 Performance of the object detection

To be able to make use of the method as described in section 4.1 the object detection necessary
to correlate pixel coordinates to the relevant depth values needs to be accurate. To this end the
accuracy of the YOLO model trained on our cube dataset was measured using average precision
(AP), for this we need to calculate the precision and recall of our predictions, which are calculated
as follows:

precision =
TP

TP + FP
(4)

recall =
TP

TP + FN
(5)

where TP are true positives, FP are the false positives and FN are the false negatives. TP and
FP are determined using the Intersection over Union (IoU), which is given by:

IoU =
Atruth ∩ Aest

Atruth ∪ Aest

(6)

where Atruth is the bounding box area defined as ground truth and Aest is the bounding box
estimated by the neural network. AP is then given by:

AP =

∫ 1

0

P (R)dR (7)

where P (R) is the precision as a function of recall and the integral gives us the value for the area
under the curve of that function. We interpolate this curve to 11 points in the same way as was
introduced in the 2007 PASCAL VOC [EVGW+10] challenge to calculate the AP, which is given
by:

AP =
1

11

∑
r∈[0,0.1,...,1]

pinterp(r) (8)

where the precision at each recall level r is interpolated by taking the maximum precision measured
for a method for which the corresponding recall exceeds r [EVGW+10]:

pinterp(r) = max
r̃:r̃≥r

p(r̃) (9)

9



where p(r̃) is the measured precision at recall r̃ We use a threshold of 0.50, where any score above
the threshold is considered a TP and below is FP . FN are missclassifications or missing detections
in a given frame. For our tests two variables were tested at different values: the distance of the
camera (in cm) and the amount of cubes. The distance of the camera allows us to measure how
much screen space the cubes need to occupy in order for the detection to work accurately. The
camera was placed at three different distances: 10cm, 15cm and 20cm. As for the amount of cubes,
we tested one to three simultaneous cubes. The measurements were made on 60 images taken from
the cameras live feed.

Amount of Cubes Camera distance Precision Recall AP

1

10cm 98.3 100 99.8
15cm 96.6 96.6 99.5
20cm 95.1 96.6 99.5

2

10cm 98.3 100 99.8
15cm 94.8 96.5 97.2
20cm 94.5 91.2 96.9

3

10cm 98.8 96.6 99.7
15cm 95.9 94.2 96.9
20cm 95.2 92.4 96.5

Through our tests we find that at any distance between 10cm and 20cm our YOLO network is
capable of detecting between 1 and 3 cubes at a satisfactory AP above 96%. We estimate that these
results apply to up to 5 simultaneous cubes. To be of note is that at higher distances the Precision
might suffer from the network mistakenly classifying background objects as cubes. The Recall also
suffers at greater distances, due to the fact that the cubes we have used are relatively small objects.

4.3 Limitations of the Depth Camera

The depth camera as described in section 3.1 is unfortunately not suited to make use of the method
for orientation estimation as described in the previous section. This is mainly due to the fact that
the depth camera is unable to get the entire cube’s depth information as can be seen in figure
7. Due to the way that the camera calculates depth, which requires correlating pixels between
the right and left imager, it has dead pixel areas, these are areas where the camera is unable to
calculate the depth. The reason behind the occurrence of the dead pixels at the edges of objects is
occlusion. When only one of the two imagers can see around the corner this causes the camera to
be unable to calculate the depth, which in turn results in dead pixels. This makes it impossible to
get an accurate reading of the needed areas of the cubes in order to calculate both Hdiff and Vdiff .
This is not the only issue that presents itself when trying to apply the initial idea to estimate the
object’s orientation. Due to the fact that the chosen object for these experiments is a small-sized
cube, the fluctuations of the depth camera readings make the information unusable. The difference
between a tilted cubes’ edges is small enough, 1mm to 5mm difference between centre pointing
outwards and corners, that these fluctuations make it so that the cube would seemingly constantly
be changing orientation, when in reality it has not moved.
During these experiments the depth camera was used at a resolution of 640 by 480 to match the
resolution of the object detection pipeline so that the pixels could be cross-referenced in order to
find the points of interest from the cubes. This lower resolution than the camera is capable of
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Figure 7: Depth camera output of the same frame as seen in Figure 5. The colour on the image
indicates a relative distance, where the colder the colour the closer the object is to the camera.
Dark blue indicates dead pixels with no value.

running was used due to two reasons, which are, as mentioned, to match the resolution of the object
detection and due to the lack of a USB 3.0 cable. The USB 2.1 cable that was used in conjunction
with the camera is unable to run at higher performance due to the lack of transfer speed of the older
USB standard. Using a higher resolution could improve the accuracy of the depth image, however
would likely not improve the fluctuations of the readings nor get rid of the dead pixels. While the
lack of precision means that the method as described in section 4.1 cannot be implemented with
this specific camera, it could potentially be implemented with a more accurate depth camera such
as a light detection and ranging (LiDar) camera as these have shown promising results in other
fields, such as transportation and 3D reconstruction [GB19, Kul22].

4.4 Usage of light difference

Due to the undesirable results of the previous method as described in section 4.1 the next idea was
to make use of the difference between colour intensity caused by lighting. This method would make
use of the fact that the parts of the cube facing away from a light source would receive less light
and thus appear darker. This would mean that the colour would be less bright from the cameras
perspective. This could then be used to calculate the difference in colour intensity similarly to how
the depth difference was calculated. However, this idea was quickly abandoned due to its fragility,
due to the fact that while the lighting of a room can be controlled to some extent it is hard to keep
it constant.

4.5 Photogrammetry with QR codes

Another approach is to make use of a photogrammetry implementation by Temuge Batpurev [Bat].
This makes use of a QR coordinate system that is then translated to a camera coordinate system.
The first step to make use of this implementation is to get the intrinsic camera parameters.
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4.5.1 Intrinsic camera parameters

There are two main intrinsic camera parameters that are needed to make use of the QR code
implementation. These two parameters are the distortion coefficients and the camera matrix. To
get both of these parameters a calibration process is ran. To run the calibration a chessboard
pattern is used, this pattern can be from any source but since the methods that are used to run the
calibration are from the python OpenCV library it is recommended to use the chessboard pattern
provided on the github repository from OpenCV.
After printing out this pattern images need to be taken using the camera with the chessboard in the
frame. This requires about 5 images at the very minimum, but roughly 10 to 15 are recommended.
OpenCV’s built-in functions can then be used to find the chessboard on the images. We first
make use of OpenCV’s function to find a chessboard pattern within an image. If this function
successfully finds the chessboard it returns the locations of the corners of the chessboard pattern,
which can be seen on figure 8. We then attempt to improve the detection of the corners, once again

Figure 8: Detected chessboard pattern corners connected by lines indicating their position in the
grid coordinates. The red corner at the bottom left is the origin point and the end point is the
orange point at the top right, creating a 2-dimensional coordinate system

with OpenCV’s built-in methods, before using these corners to use OpenCV’s camera calibration.
OpenCV’s camera calibration makes use of the corners coordinates to then calibrate the camera
and return the camera matrix, distortion coefficients, rotations per frame and translations per
frame. On top of these the function also provides an root mean squared re-projection error (RMSE),
which should be below 2 and ideally below 1 for the best results. The re-projection error
The reason that we require both the distortion coefficients and the confusion matrix is that cameras
introduce distortion to the images. This distortion comes in two types: radial distortion and
tangential distortion.
Radial distortion is what causes straight lines to be curved on images and becomes larger the
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further away these straight lines are from the centre of the camera. Radial distortion, as discussed
previously, can come in three subtypes of distortion [vW]: barrel distortion, pincushion distortion
and mustache distortion. The type of distortion depends on the lens used by the camera. Radial
distortion can generally be represented as follows:

xdistorted = x(1 + k1r
2 + k2r

4 + k3r
6) (10)

ydistorted = y(1 + k1r
2 + k2r

4 + k3r
6) (11)

where x and y are pixel coordinates, kn is the nth radial distortion coefficient and r is the Euclidean
distance between the distorted image point and the distortion centre [dVLG08]. To be of note is that
the radial coefficient k will typically be negative for barrel distortion and positive for pincushion
distortion.
Tangential distortion also occurs because the camera lens is not perfectly aligned to the image.
This type of distortion causes parts of the image to look closer than they are in reality. Tangential
distortion can be represented as follows:

xdistorted = x+ [2p1xy + p2(r
2 + 2x2)] (12)

ydistorted = y + [p1(r
2 + 2y2) + 2p2xy] (13)

where pn is the tangential distortion coefficient.
Using this information we can get the distortion coefficients which are given by:

Distortion coefficients = (k1, k2, p1, p2, k3) (14)

In addition to the distortion coefficient we also need the camera matrix, which represents intrinsic
parameters. These parameters are unique to each camera and are composed of the focal length (fx,
fy) and optical centres (cx, cy) of a camera. With these two parameters we can create a camera
matrix that is then used to remove distortion caused by the cameras specific lens. Since the focal
length and optical centres of each camera is unique, their camera matrix is also unique, but can be
reused on images taken by the same camera. This matrix is represented by:

camera matrix =

fx 0 cx
0 fy cy
0 0 1

 (15)

4.5.2 QR code orientation

The first step in determining the orientation of a QR code is to detect the QR code in a picture.
For this we make use of OpenCV’s built-in function to detect QR codes. This function returns two
values: the first value is a boolean indicating if a QR code was found and the second value is either
empty if no QR code was found or it is a list containing the pixel coordinates of the four corners of
a QR code as shown in Figure 9 By making use of the four corners a coordinate system can be
defined for the QR code. This coordinate system uses the corner labelled as 1 in figure 9 as the
origin for the coordinates. We define the x-axis to be pointing from corner 1 to corner 4 and our
the y-axis to be pointing from corner 1 to corner 2. The reason these axes are defined as such is so
that the z-axis is pointing outwards from the QR code. To create the coordinate system for the
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Figure 9: Corners of a detected QR code with their respective coordinates within the defined
coordinate system.

QR code the 4 corners are given their own 3 value tuple indicating x, y and z position within the
coordinate system defined for the QR code.
With this information, it is possible to turn the 2-dimensional pixel coordinates from the detected
QR code into 3-dimensional axes by making use of OpenCV’s Perspective-n-Point (PnP) [MUS16]
solver. This solver gives us a rotation vector and a translation vector, which can then be used to
reproject the axes from the QR code’s coordinate system to camera pixel values, which allows us to
display them on a 2D image or video feed.

4.5.3 Ideal configuration and limitations

By making use of this implementation and printing out small QR codes that were then stuck to
the cubes, as seen in figure 10, the robustness and the limitations of this method were tested. Since
this method relies on finding the QR codes to get an orientation, this means that we cannot use
Intersection over Union (IoU) for our calculation of the average precision, we can however use a
similar threshholding method to determine true positives from false positives. For this, instead of
determining a ground truth bounding box for each frame, a ground truth for the three axes that
should be projected from the QR code are defined. The difference between the defined axes and the
estimated axes can then be used as follows:

3∑
i=0

|(xtrue, ytrue)i − (xest, yest)i| (16)

where (xtrue, ytrue)i represents the ground truth ith point on the image and (xest, yest)i is the
equivalent estimation of that point. The three axes are constructed by four points and we can use
the sum of the absolute value of the difference of each of these points to know by how much the
estimation is off. While this is not a perfect way of measuring this it allows us to have a comparable
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metric to our object detection accuracy evaluation. For this use case we use a threshold value of
80. This value allows each x and y to be off by about 10 pixels before the orientation estimation
is classified as a false positive. With this the average precision can be calculated. To test the
robustness of this method the same parameters as described in section 4.2 were tested. However,
for this method smaller distances were used for the camera as the QR code needs to occupy at
least a certain percentage of the screen space for the program to be able to solve the PnP.

Amount of Cubes Camera distance Precision Recall AP

1

5cm 98.3 100 99.8
9cm 96.7 49.1 45.1
10cm 0 0 0

2

5cm 95.2 86.9 80.6
9cm 98.1 43.7 36.1
10cm 0 0 0

3

5cm 92.0 26.1 25.8
9cm 90.9 5.6 8.3
10cm 0 0 0

Through these tests the limitations in the amount of simultaneous QR codes that can be read
as well as the needed size the QR codes need to be were deduced as these were the main factors
contributing to the robustness of the QR code reading. This implementation of the QR code

Figure 10: Cube with a QR code stuck on top. The content of the QR code does not impact the
use of this method and can be anything. In this case reading the QR code returns the message ”I
am a cube”

orientation, which is a slightly modified version of the original [Bat] in order to work with the Intel
RealSense D455 and with the newer version of OpenCV, is able to accurately scan one to two
QR codes at the same time and get their axes in real time at sixty frames per second. Lowering,
the frames per second to thirty improves the robustness slightly as the script gets more time to
calculate the axes and solving the PnP in between frames, however the limit remains the same.
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Figure 11: Picture of a QR code on a cube with the respective axes indicating the orientation of
the cube. The red axis indicates the z axis, the blue line indicates the x axis and the green line
indicates the y axis.

Increasing the amount of QR codes results in a decrease in detections although small, it does
decrease the recall. On the matter of the size needed by the QR codes, this is mostly due to the
amount of space or pixels that these need to cover in the cameras view. Without enough pixels the
script is unable to find the QR code or solve the PnP, which means that the orientation cannot be
read. Thus, on the used camera resolution of 640 by 480 the QR code’s axes were most consistent
when the QR code is taking up between 4.4% to 70% of the image, meaning that it is in our case
between 1cm to 5cm away from the camera. 4.4% of the screen equates to roughly a 110x110 pixel
area at a resolution of 640x480. When the QR code takes up more screen space, there are either
parts of it out of frame or it is pointing straight at the camera, which in the first case results in an
unreadable QR code and in the second case results in the PnP solver not being consistent with
the z-axis and it changing constantly instead of pointing towards the screen. When the QR code
covers between 1.7% and 4.4% of the image, which for our QR code is a distance of 9cm to 5cm,
the reading of the QR code becomes unstable, due to the lower amount of pixels. This results in
flickering readings due to the inability to find or read the QR code from the camera feed, causing
the discrepancy between the recall and precision, as when the QR code is able to be detected the
orientation estimation is accurate, however in about half the frames the QR code is unable to be
solved for PnP, resulting in the big amount of false negatives. At less than 1.7% of the cameras
image, which is an area of about 75 by 70 pixels, the QR code cannot be found and read, except for
one or two frames within a second. This means that ideally the QR codes should be at a distance
or size that makes them take up between 4.4% to 70% of the image for the readings to be usable.
Using a higher resolution for the camera output, for example the maximum resolution that the Intel
RealSense D455 can output which is 1280 by 720, decreases the lower bound for these thresholds as
the image contains more pixels making it possible to either use smaller QR codes or to have the
QR codes be further away.

5 Conclusions and Further Research

Concluding, we can determine that the best method for object detection and orientation estimation
using the Intel RealSense D455 camera is a method not involving the use of the depth imaging that
the camera provides. While the use thereof in conjunction with a neural network for object detection
is interesting as it would be able to handle more objects simultaneously, the lack of precision and
full coverage of the image due to dead pixels make it hard, respectively impossible to use for small
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object orientation estimation. The depth cameras capabilities could prove sufficient for bigger
objects as the noise from the camera would have less impact. On the other hand, using methods for
pose estimation with just a standard video feed are more compelling. These are computationally
less expensive, compared to the use of a neural network especially, and provide good precision for
orientation estimation. This method however suffers from the struggle to detect multiple codes
simultaneously at a reliable rate. It also requires the camera to be a lot closer to the objects due to
needed size of the QR code, which is not necessarily an issue, but does need to be considered.
Further research into the usage of the axes calculated through the QR code coordinate system,
described in section 4.5.2, for practical use is needed. In particular how to determine if an object is
oriented inappropriately, through the usage of a fixed world origin point decided by for example a
QR code placed at a fixed location which can be used for this purpose. To distinguish the QR code
that has been determined as the world origin point the content of the QR code could be used, since
QR codes are able to contain information and can be easily read from if detected. Another option
would be to use just the axes from the QR codes themselves and based on the direction of these
within the camera pixel space determine if the object is oriented in a problematic way or not. This
could potentially be a more viable way of applying this implementation as it would only rely on
the QR codes themselves and doesn’t need to read and interpret the contents of the QR codes,
which introduce more delay in the processing.
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