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Abstract

Multi-agent systems are prevalent in nature, within human society,
and more recently are being employed in fields such as swarm robotics.
However, these systems inherently depend on the emergent cooperation
between individual agents, which can make them vulnerable to disruptions
in their coordination. The goal of this work is to study how obstructions in
the communication between agents can affect the behaviour of a group of
cooperating agents. Here a foraging simulation is created that emulates
a group of agents that work together to find and deliver food in a dis-
crete map. These agents are guided by a pre-defined behaviour tree and
are able to communicate by sharing information about discovered food
sources. As a baseline, the behaviour of the group was first examined
without any communication obstructions. Communication was then hin-
dered by giving agents a set chance to miss-communicate, which distorts
the information received by the receiving agents. In certain circumstances
this caused the group to become fixated on non-existent food sources. It
was found that this effect only happens when information can be passed
around frequently enough, allowing false information to be preserved by
spreading through the group. Limiting how often agents can communi-
cate, reducing the maximum communication range and decreasing the
amount of agents was found to reduce the formation of this phenomenon.
Making agents more skeptical by allowing them to ignore some of the false
information was also found to make the group more resistant to this effect.

1 Introduction

Termite colonies, teams of rescue drones and sports teams all share a common
trait: they rely on a group of autonomous agents that cooperate in order to
fulfil a common goal. These systems, where individuals interact and coordinate
their actions, are present across a wide range of disciplines. In computer science,
multi-agent systems (MAS) are often used as a means of solving problems that
are hard to solve using a monolithic setup. Here the field of natural computing
does this by taking inspiration from such systems found in nature. An interest-
ing example of this is the ant colony optimization algorithm, which is inspired by
the foraging behaviour of real ant colonies [2]. Another example is the artificial
bee colony algorithm, which is based on how consensus is formed in honeybee
swarms [8]. The field of swarm robotics takes this idea one step further, using
swarms of physical robots to perform tasks. For example, in Shader et al.[11],
up to 64 robots were used in a brick-layering scenario.

In other areas, agent-based models (ABM) are instead used to increase our
understanding of the behaviour of these complex systems. Here the goal is not
to create an application, but to be able to make predictions about multi-agent
systems. This is used in fields such as sociology, where the behaviour of humans
is modelled using computational models. One example of this is van der Kam
et al. [14], where the charging behaviour of electric vehicle drivers is modelled.
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These examples show that multi-agent systems are used effectively in many
different situations. In nature, the social organization of ant colonies allow them
to be one of the most successful animal groups on the planet, with ants having
colonised almost every landmass on earth. Human society also implicitly makes
use of this distributed approach, for example in companies where tasks are di-
vided among cooperating individuals. In technology, using this approach has
several benefits over using a monolithic system, in which decisions are made by
a single governing entity. Spreading a task across multiple agents can offer more
flexibility as agents can make autonomous decisions. This division of labour can
also limit overhead costs, thereby making the system more efficient[5]. However,
these systems also come with a challenge. The emergent nature of multi-agent
systems can make it hard to predict how a system will behave under different
circumstances, sometimes leading to unexpected and unwanted outcomes. One
extreme example of this is in colonies of ants. Ants make use of pheromones, a
chemical substance used for communication. When an ant finds food, it leaves
a trail of pheromones which allows other ants to also find the discovered food.
However, if a group of ants gets separated from the colony these ants some-
times end up following their own trail, forming a loop. These ants then follow
a circular path, reinforcing the trail, until the ants die of exhaustion. This
phenomenon is known as an ant mill or death spiral, named after the circular
rotating movement of the group.

One of the most important aspects of these distributed systems is communi-
cation between individual agents. When unexpected disruptions affect commu-
nication between agents, for example as seen in ant mills, the consequences can
be severe. The goal of this work is to study how disturbances in the communica-
tion of distributed systems can cause these systems to lose performance or even
fail entirely.This can give an indication of how different circumstances affect the
impact of these communication problems. When building a multi-agent system,
for example, in the field of swarm robotics, this prior knowledge may help in
preventing unintended behaviour. This is also relevant to fields such as sociol-
ogy, where preventing miscommunication between human actors is important.

1.1 Overview

In this work, our aim is to study how obstructions in communication impact
the performance of multi-agent systems. Our goal is to identify what circum-
stances make a system most vulnerable to problems with communication be-
tween agents. Here we study three different types of factors that impact these
systems:

• The external environment of the system. These are factors that are not
directly controlled by the group of agents, like the layout of the physical
space around the group.
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• The internal workings of the group. This includes things like the number
of agents in the group and the behaviour of the individual agents.

• Constraints placed on the communication between agents. This includes
constraints like limiting the amount, range and accuracy of communica-
tion.

In order to study the effect of these different conditions, a simulation is
created that models a group of foraging agents that aim to collect food placed
on a discrete map. Here the behaviour of the agents is controlled through a
behaviour tree, which is a rule-based data structure that can be easily modified
and designed. These agents are homogeneous, they share the same behaviour
and perform the same tasks, and work together by sharing information about
discovered food sources. The objective of the group is to maximise the amount of
food gathered in set amount of time. This allows us to evaluate the performance
of the group quantitively, allowing us to assess the impact of different factors.
The impact of communication obstructions is then studied in four steps:

1. A foraging simulation is created where a group of agents cooperate in
order to gather food in a limited amount of time. Agents can cooperate
by sharing information about discovered food sources.

2. In the base setup, the impact of different parameters, such as the pop-
ulation size and the layout of the map, is explored without intentionally
obstructing communication. This gives an idea of how the group behaves
under ordinary circumstances.

3. Communication constraints are now introduced. These constraints serve
to limit or distort communication between individual agents.

4. The impact of several parameters is again tested. The behaviour and
performance of the group can now be compared to the results found in the
base setup. This gives some indication of which parameters are relevant
when communication is hindered.

2 Simulation

2.1 Foraging simulations

As discussed in the introduction, solving problems with a group of agents has
some advantages over using a centralized system. The downside of these dis-
tributed systems is that their emergent nature makes it harder to predict what
will happen in a given situation. This can be a large disadvantage when it is
important that a setup works the way it is intended to work. Knowing where
such a system is most vulnerable can mitigate this risk. The goal of this work is
to create a test environment of cooperating agents and see what kind of disrup-
tions are most hindering to the performance of the group. There are many types
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of simulations that have already been made in order to study the behaviour of
groups of agents. One example of this is in Deadman et al., 1999[4], where
an agent simulation was used to study the tragedy of the commons. Studying
group behaviour is also done in fields such as sociology, for example in Wang et
al, 2022[17], where a simulation was made in order to model the evacuation of
pedestrians from disasters.

Before we present the simulation created in this work we highlight some
properties that the simulation is expected to have:

• The mechanics of the simulation should be relatively simple.

• Emergent behaviour should be possible.

• The problem introduced in the simulation should be non-trivial.

• The computational resources required to run the simulation should be
minimal.

• The problem solved by the agents in the simulation should be comparable
to problems found in the real world.

The mechanics of the simulation should be simple for two reasons: first, this
makes it easier to analyse the results and second, this makes the results more
generalisable to other scenarios. The group of agents in the simulation should
also display emergent behaviour. Without emergent behaviour the results are
not likely to present new insights. The same is the case for the third point,
if the problem is trivial to solve then the simulation is not a good test envi-
ronment. Lastly, the computing power needed to run the simulation should be
minimized. A high computation cost will either limit the scope of what can be
explored or harm the accuracy of the results. For example, a simulation that
involves a physics system would be less preferable as this often involves a higher
performance requirement.

Primarily for these reasons a decision was made to create a simple foraging-
based simulation. Multi-Agent Foraging (MAF) problems involve groups of
agents that cooperate to either gather, find or move some objects. One main
advantage of this setup is that it mimics many real world problems such as
finding unexploded mines (Acar et al., 2003 [1]), searching for fire (Marjovi
et al., 2009 [9]) or transporting resources (Vaughan et al., 2000 [15]). Thus
understanding the behaviour of a group of agents in a similar setup has the
potential to help with these problems as well. MAF problems can also satisfy our
other requirements: The mechanics can be relatively simple which makes them
easy to study and they do not require extensive computational power. Solving
these problems is also non-trivial and requires the agents to work together in
an emergent manner.

5



2.2 Simulation details

Our simulation is a type of foraging simulation, created using the Python pro-
gramming language. The objective of the agents in our simulation is to gather
as much food as possible in a set amount of time. They do this by moving to a
piece of food, picking it up, and bringing it back to the delivery point at the cen-
tre of the map. Here the agents search for food by traversing a map of discrete
square tiles. In order to simplify the problem we allow multiple agents to stand
on the same tile, preventing the agents from bumping into each other. Food
sources are placed on some of the tiles on the map, which allow agents to pick up
a piece of food when standing on the same tile. This food can then be delivered
at the centre of the map which increases the score of the group. Not all food is
created equal, some food gives more points than other food when brought back.
Tiles can also contain multiple pieces of food, which means multiple trips can
be made before the food runs out. Additionally, some tiles contain walls which
prevent agents from moving over them. As time is limited, the challenge for the
group is to maximize the time spent gathering the most valuable type of food.
The group can benefit from cooperation by sharing information on the location
and value of discovered food sources, but it is also possible for the agents to
gather food independently, though this may be less efficient.

The simulation is run using a turn-based system. Each turn, all agents
choose one action to perform. They choose between three possible actions:

• The agent moves up, down, left or right to an adjacent tile that does not
contain a wall. Agents cannot move diagonally.

• The agent does not move. This is sometimes useful when communicating
with other agents.

• The agent picks up the food that is on their current tile. Agents can only
hold one piece of food at a time. If the agent then moves onto the tile at
the centre of the map their food is removed and the food value is added
to the total score.

Additionally agents can also save information to their internal memory, for
example the position of food that they found. This is explained in more detail
in the next section.

The simulation can be run in two modes: hidden or visualized. In hidden
mode multiple simulations can be run in parallel. Afterwards the results, such
as the total food collected, are saved. Visualized mode shows a visualization of
the simulation in real time. Figure 1 shows a moment in time of the simulation
for an example scenario.

This shows a group of six agents gathering from three different patches of
food. Here the agents not currently holding food are shown as white circles.
When an agent picks up a piece of food they become slightly tinted in the
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Figure 1: Example of the simulation being run in real-time in a test scenario.
Agents, depicted as white circles, start at the blue drop-off point at the centre.
The agents are able to gather food from one of the three food deposits by first
picking up a piece of food, shown as agents matching the colour of the food,
and then delivering the food at the centre. The sidebar shows how much food
has been collected so far(Score) and how much has passed(Time) in time steps
since the start of the simulation. The colour gradient shows the score received
from bring back each type of food. This scenario is only used to illustrate the
mechanics of the simulation and is not used further.

colour of the food they picked up. Food is shown as coloured squares, with
the colour indicating the value of the food, as indicated by the gradient on the
right. In this case the red food has a value of 1, the yellow food a value of 2
and the green food a value of 3. The brown squares surrounding the agents are
walls that are impassable. The blue basket in the middle indicates where the
agents can drop off food. The blue crosses indicate coordinates that agents have
remembered.

2.3 Behaviour trees

The goal of the simulation is to model a group of cooperating agents and to see
what disruptions harm the performance of the group. Therefore, a framework
for modelling the behaviour of the agents is needed. Though it is possible to
explicitly program the behaviour of the agents, in this case it was decided to use
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a behaviour tree(BT). Behaviour trees are most commonly used in video games
to define the behaviour of non-player characters. However recently they have
also received attention in fields such as robotics, see e.g. Iovino et al. [7]. An
interesting application is the use of BTs in robot swarms, for example in hogg
et al. [6], where behaviour trees were generated using an artificial evolution
algorithm. Using behaviour trees in our context has several benefits:

• Behaviour trees are easy to visualise and understand without programming
knowledge.

• Behaviour trees can be easily modified, for example by adding an addi-
tional condition somewhere within the tree.

• An internal memory system that allows agents to store information is
straightforward to implement with behaviour trees.

• Though this is not done in this work, it is possible to use self-learning
algorithms, e.g. a genetic algorithm, to automatically generate or adjust
a behaviour tree by maximizing an objective value.

Initially Finite state Machines(FSMs) were used for designing the behaviour
of the agents. However implementing internal memory proved to be more
straightforward using behaviour trees.

2.3.1 Implementation

Behaviour trees consist of a tree of nodes. Each simulation tick the agents
traverse this tree, starting from the root, and end at a leaf node that represents
the task that the agent will perform. This way the agents decide, based on the
conditions within the tree, what action they will perform. The tasks that can be
done by the agent consist of pre-defined behaviours that accomplish a sub-task,
like picking up food. The full list of tasks that can be performed is shown here:

• Random walk: Agents take a random step in a direction not blocked by
a wall. This is mainly used for exploration.

• Return home: Agents take a step into the direction of the delivery point
of the colony at the centre of the map.

• Gather food: Agents select the closest food within range and take a step
toward it. If the agent is already standing on a tile with food then a piece
of food is picked up instead of moving.

• Go to waypoint: Agents can remember the coordinates of positions
they have previously been on. This task makes the agents return to a
memorized position.

• Stay still: The agent remains at the same tile.
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The function of the behaviour tree is to decide which of these tasks to perform
at any given moment. Each node of the tree has zero or more child nodes, which
are ordered below the parent node from left to right. A node is executed when it
is reached during the traversal of the tree. If the node has child nodes then these
nodes are instead executed first, from left to right. After execution, the child
node returns a boolean to the parent which indicates whether it was successful
or not. The parent then decides to either continue executing the remaining
children or pass control back to its own parent node. In our implementation
Behaviour trees consist of six distinct types of nodes:

• Selector: A composite node with one or more children. When executed it
loops through it’s child nodes from left to right until a node returns True,
in which case the selector returns True. If each child returned False when
executed then the selector returns False. This way the selector ’selects’
one of the child nodes. It is similar to an OR operator as it returns True
when at least one of its child nodes is True, and otherwise returns False.

• Sequence: A composite node with one or more children, which can be
seen as the opposite of the selector. It also loops through its child nodes
from left to right but now stops when a child node returns False, in which
case the sequence returns False. The sequence returns True when all of
its children have returned true. Therefore the the child nodes form a
’sequence’ that most fully executed in order to succeed. It is similar to
an AND operator as it only returns True when all its child nodes are true
and otherwise returns False.

• Conditions: Conditions are leaf nodes that return True or False based
on some measurable fact by the agent. An example is the IsHoldingFood
Condition which returns True when the agent is holding food and False
otherwise. Conditions can also take the form of inequalities, for example
NearbyFood > 3 checks if there is more than three pieces of food nearby.
Conditions are usually placed in a sequence before a task so that the task
only executes if the condition is met.

• Tasks: Task are leaf nodes that make the agent do a pre-defined behaviour
such as gathering food. Before executing an action the node checks if the
task can be performed, for example the Gather food task requires that
there is food in range. If the task is possible then an action is performed
and the node returns True. Otherwise the node returns False. Trees are
constructed so that only one task node can ever return True per tick.

• Decorators: Decorators are nodes with exactly one child. Some examples
are the ’Succeeder’ and the ’Failer’ which respectively always return True
and False, regardless of the outcome of the child node. Another subset of
decorators are loops, which execute child nodes multiple times. Behaviour
trees in this work can make use of a ’communication loop’ which iterates
over all nearby agents within the detection range.
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• Memory node: Memory nodes change the internal memory of the agent
in some way. Some examples could be saving the current coordinate of
the agent or incrementing a counter by one. Memory nodes always return
True.

In our implementation, behaviour trees can be constructed using pre-defined
classes representing subtypes of the above node types. The behaviour tree can
then automatically generate Graphviz code that is used to visualize the tree.
To illustrate, Figure 2 shows a simple behaviour tree visualized in this manner.

Figure 2: A simple behaviour tree that makes agents independently gather food.
Here Selectors are shown in yellow, sequences are shown in blue, tasks are shown
in red and conditions are shown in green.

This behaviour tree makes agents walk around randomly until food is de-
tected. The agent then picks up the food and brings it back to the delivery
point. The tree starts with a selector as its root, which means it chooses one of
it’s child nodes to execute. The first child node that is checked is a sequence of a
condition and a task. This sequence first checks if the agent is holding food and
if so makes the agent walk to drop off the food. If this sequence was successful,
i.e. the agent was holding food and was able to make progress walking home,
then the behaviour tree stops because the selector found a child node to execute
successfully. Otherwise the next child node is checked, another sequence with
a condition and a task. This counts the amount of food that the agent can see
and then checks if this amount is higher than zero. If so the agent spends this
step working towards gathering the closest piece of food. Notice that once the
agent has picked up the food, the condition in the previous child node will now
return True, making the agent walk back home. If the agent is neither holding
a piece of food or sees any food nearby, then the selector will check its last child
node which makes the agent walk in a random direction. This serves to make
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the agent explore until it detects nearby food.

This behaviour tree is enough to make the agents gather food, but is less
efficient than more complex trees. One problem the tree has is that once the
agent has brought back a piece of food, it does not remember where it was
discovered, and again starts moving randomly. One way to improve the tree is
to make use of memory nodes. Agents can at any point save some known value
to their internal memory. There are four data types that can be saved to internal
memory: Booleans, integer values, continues values and coordinates. Agents can
always store their current coordinates to their internal memory, which we will
from now on refer to as waypoints. Agents can then return to these waypoints
using the Go Waypoint task. Figure 3 shows an improved behaviour tree that
makes use of memory nodes.

Figure 3: A behaviour tree that is adjusted from the behaviour tree in Figure 2.
The tree now contains memory nodes shown in orange that let agents remember
the location of food.

Now when an agent detects a piece of food it stores its current coordinate,
which is indicated as WP [0] = pos. Here the 0 is a memory address and pos
refers to the current coordinate of the agent. This allows the agent to store
multiple coordinates at a time, for example setting WP [1] = pos would allow
the agent to store a second waypoint without overwriting the first waypoint. The
third sequence now checks if the waypoint at address 0 is set with IsSetWP [0].
If so, the agent moves back to the coordinate stored in memory. This makes it
so that agents move back and forth between food and drop-off point, without
having to rediscover the food every time. In the case that the agent moves
back to the waypoint but no food is found, probably because all the food has
been gathered, then the agent will execute the fourth sequence. This resets the
waypoint with ResetWP [0] and again lets the agent explore for new food with
the RandomWalk task.
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2.3.2 Communication

The previously shown behaviour trees do not include any interaction between
the agents, which means the agents operate completely independently of each
other. However, it is possible for agents to cooperate by sharing information
about the position and quality of the food they have discovered. An example
behaviour tree that makes use of communication between agents is shown in
Figure 4.

Figure 4: Behaviour tree that allows agents to share the position of food. A
Failer is included above the communication loop which always returns False.
This is done so that the selector executes the remaining sub-trees.

Now, when an agent without a waypoint encounters an agent that does have
a waypoint, it will copy that waypoint. Here, communication is implemented us-
ing a communication loop node, shown on the left in purple. This node executes
its child node once for each nearby agent. Descendant nodes of the communi-
cation loop are then able to access all information known by the agent that is
currently being iterated over, including its internal memory. This is shown in
the behaviour tree through the loop prefix. For example loop.WP[0] retrieves
the coordinates saved at memory address 0 for the agent that is currently in the
loop. If a variable does not contain a prefix, then it retrieves information from
the agent running the behaviour tree. This setup makes it so that communi-
cation is performed by the agents that want to retrieve information, while the
agents sending the information are not actively involved. Future setups could
consider implementing a form of mutual communication where both the sender
and the retriever are actively involved, but this is not done in this work.

2.4 Object detection and pathfinding

In the simulation, agents can only detect or interact with objects that are close
enough to them. Two parameters determine the detection range of agents:
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Smell range(Rsmell) and Communication range(Rcomm). Food detection uses
the Smell Range parameter. When the distance between an agent and a piece
of food is greater than Rsmell then the agent will be unable to detect the food.
The Communication range determines whether two agents are able to commu-
nicate. If the distance between two agents is greater than Rcomm, then the
agents will not detect each other when running a communication loop. In both
cases, the distance is defined as the minimum amount of steps an agent needs
to take to traverse from one coordinate to another. This also takes into account
the presence of walls. If the path between two coordinates is blocked by walls
then the distance between the coordinates will be longer. This is illustrated
in Figure 5. The figure shows the detection boundary for the Smell range and
Communication range of the agent at the centre.

Figure 5: Illustration of the Smell range, shown in red, and the Communication
range, shown in yellow, from the perspective of the agent in the centre. Two
extra agents are shown in white, the one closest to the centre is detectable, while
the farthest agent is not detectable. Two pieces of food are also shown, again
with one being detectable and one being undetectable. The wall at the bottom
of the agent illustrates that walls can also limit the detection range.
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The distances between each pair of coordinates are calculated using a simple
pathfinding algorithm. Before running a simulation, all distances are calculated
and stored in array. The distances between coordinates can then be accessed
without having to do additional calculations. Because our maps are currently
static, i.e. the walls do not change over time, we only need to calculate the
distances once per map. This is very beneficial because most of the results
involve running the same simulation multiple times. The pathfinding algorithm
also stores the shortest path between every pair of coordinates. This is used
in tasks that make agents walk to a specified coordinate, for example, when
traversing to a detected piece of food.

3 Base setup

In the previous section we illustrated the mechanics of our foraging simulation.
In the simulation, a group of agents work together to find and gather food. Here,
agents can communicate by sharing their internal memory. However, before a
simulation can be run, three parameters need to be set:

• The map that is used. This determines the placement of walls and food
and the value of each food source when gathered.

• The behaviour tree of the agents. All agents use the same behaviour tree
that determines their actions at any moment in time.

• Other free parameters. These are the smell range Rsmell, the communica-
tion range Rcomm and the population size npop.

In this section we introduce the setup that is used throughout this work.
We first discuss the map and the behaviour tree for the agents, which were
both designed manually. We then illustrate some of the group’s behaviour and
explore how the behaviour depends on the remaining free parameters, like the
population size. This serves as a baseline for the next section, where we explore
how disruptions in the communication of the agents affect the behaviour of the
group.

3.1 Map

The goal in designing a map is to create a situation where agents benefit from
cooperation through communication. This can be encouraged in two ways:
First, food should be non-trivial to find. This makes it so that agents can
benefit from communication by sharing the position of discovered food sources.
Secondly, we want to include multiple food sources of differing quality. This
way, agents still need to consider new information even when a food source has
already been found. Figure 6 shows the map named Four Rooms, which was
designed to have these properties.

Here, agents are initially placed at the centre of an empty circular room. The
agents can find food in each of the four smaller connected rooms. The room to
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Figure 6: The map Four Rooms, which is used in all experiments.

the right is filled with food with a quality of 1. When this food is brought back
to the centre, the score of the group is increased by 1. The other rooms contain
food with increasingly higher values: The room on the top contains food with a
value of 2, the room on the left has food with a value of 4 and the room on the
bottom has food with a value of 8. The different food sources make it so that
agents benefit from exploration. Even if a food source has already been found,
it is possible that a better food source exists.

The exact shape of the map, and the values of the food, can be changed using
a set of free parameters, shown in Table 1. This table shows the default values
of these parameters used throughout the experiments. One notable parameter
is ρfood, which determines the number of food pieces per tile of food. The higher
the value of this parameter, the longer it will take the agents to gather all the
food placed on the map.

3.2 Behaviour tree

The behaviour of the agents is guided by a manually created behaviour tree,
which is shown in Figure 7. This behaviour tree is an updated version of the
example behaviour tree that was shown in Figure 4. Here agents again move
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R1 R2 d w f1 f2 f3 f4 ρfood
Value 6-22 6 6 3 1 2 4 8 10npop

Table 1: The default parameters that determine the shape of the Four Rooms
map. Here R1 is the radius in the central room, R2 is the radius of the outer
rooms, d is the length of the tunnels between the rooms and w is the width of
tunnels. f1, f2, f3, f4 determine the value of the food in the right, top, left and
bottom room respectively. ρfood determines the amount of food pieces per tile,
which is set to 10 times the amount of agents.

randomly in order to find food. When food is found, the agents remember
the location of the found food. When the food is delivered, agents move back
towards the previously gathered food. There are two differences between this
and the previous behaviour tree. First, agents try to more actively communicate
the position of discovered food. They do this by standing still at the drop-off
point for a set amount of time, making it easier for other agents to copy the
coordinates of the discovered food. The second change is to the communication
loop. When communicating with other agents, agents now compare the quality
of their food source with the food source of other agents. Agents only copy
information when the other food source is more efficient.

Figure 7: Behaviour tree that is used for the agents in the base setup. This
behaviour allows agents to search for and gather food and share the location
of detected food sources. Here, selectors are shown in yellow, sequences are
shown in blue, conditions are shown in green, tasks are shown in red, memory
nodes are shown in orange and decorators are shown in purple. Each sub-tree
is labelled with a number and explained in more detail below.

1. The first sub-tree handles the communication between agents. The tree
starts with a Failer, which ensures that the selector continues after ex-
ecuting the sub-tree. The communication loop then loops through all
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agents within communication range. This loop retrieves the coordinate
(loop.WP[0]) and food value (loop.Flt[0]) of the last food that the looped
agent has found. The tree then checks if the food source of the other agent
is more efficient than its current food source. Here the efficiency is the
value of the food(Flt[0] and Flt[1]) divided by the distance to the drop-off
point(drpDist). If it is more efficient, then the agent forgets its current
food source and copies the information about the food source of the other
agent.

2. If the agent is already holding food, then this sub-tree makes the agent
deliver the food to the centre.

3. This sub-tree serves to make agents pick up nearby food. First it checks
if the agent can detect any food using the condition FoodNearby. If this
is the case then the agent stores it’s current location and the value of the
food in its internal memory. The agent then moves to pick up the closest
food piece.

4. This sub-tree helps agents communicate information once food is found.
If the agent is at the drop-off point(drpDist is 0) and has a waypoint
set(IsSet WP[0]) then the agent will stand still. This allows other agents
which have not yet found a food source to communicate with the agent
and move to the food already found. The agent makes use of a counter
Int[0] which increments every tick the agent stands still. When the agent
has stood still for tStay seconds, the agent continues as normal.

5. If the agent has already found a food source, or has heard of a food source
from another agent, this sub-tree makes the agent move towards the saved
coordinates of the food.

6. This tree is executed only if all other sub-trees failed to fully execute. This
makes the agent move in a random direction, effectively making the agent
explore for new food. This sub-tree also resets the internal memory. This
makes it so that if the agent moves towards a waypoint but does not find
any food, the agent then does not return to that waypoint.
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3.3 Setup parameter overview

For future reference, Table 2 gives an overview of all setup parameters that are
experimented with. This also includes parameters not yet used in the base setup
that become relevant when communication disruptions are introduced.

Symbol Name Description Value

npop Population size
Amount of agents placed in
the simulation

1-100

Rcomm Communication range
Maximum range at which agents
are able to share information

0-12

Rsmell Smell range
Maximum range at which agents
can detect food

5

λcomm
Average communication
budget

Average amount of agents that can be
communicated with each simulation step

0-∞

pdistort Distortion chance
Probability that information is distorted
when agents share information

0-1

λdistort
Average distortion
distance

Average distance a coordinate is
displaced when a distortion occurs

1-8

R1 Central room size
Radius of the room that agents are
initially placed in

6-22

f1, f2, f3, f4 Food values
Score received for gathering food
from each of the four food deposits

1-27

Table 2: Overview of the most relevant setup parameters that are set before run-
ning a simulation. Here Value indicates the range of values that is experimented
with. Here λcomm, pdistort and λdistort determine the severity of communication
disruptions and are not yet relevant for the base setup.

3.4 Group behaviour

In the previous sections, the structure of the map was defined, along with the
behaviour of the individual agents. Now we explore the behaviour of the group
as a whole in this setup. In this setup, the group generally goes through three
distinct phases: The Exploration Phase, the Communication Phase and
the Exploitation Phase. Initially, the group is focused on exploring the map
and finding food. When food is found, agents proceed to communicate and
decide on the best food source. Eventually the agents converge on a single
food source. These phases are illustrated in more detail in Figure 8. Here the
simulation is shown for three moments in time, one for each of the three different
phases.

The different phases are further illustrated in Figure 9. This shows the score
over time for 50 different runs using a population size of 20 and a communication
range of 2. The different phases can be identified based on how much food is
collected per tick. In the exploration phase, no food is being collected, as
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(a) Exploration Phase: The agents
are initially placed at the centre of the
map indicated by the light blue bas-
ket. At this point none of the agents
know about the location of any of the
food, therefore they start taking steps
in random directions. This causes the
agents to spread out over the map. By
chance, one or more agents will eventu-
ally walk close enough to a food source.
The agent will then bring back the food
and attempt to communicate the posi-
tion to the other agents, which marks
the end of the exploration phase.

(b) Communication Phase: The
communication phase happens when
one or more agents find a food source.
These agents then stand still at the
centre of the map for a set amount
of time, allowing other agents to learn
the position of the food from them.
Agents can only communicate with
other agents in their communication
range, which has the effect that agents
on the edge of the map keep explor-
ing for more food. When communicat-
ing, agents prefer better food sources,
which means that agents switch to
more appealing food if able. Eventu-
ally, all the agents converge on a single
food source.

(c) Exploitation Phase: After com-
municating, the agents eventually
agree on gathering from a single food
source. In this phase the agents walk
towards the food source, pick up a
piece of food and deposit it at the bas-
ket in the centre. This continues un-
til the food source is depleted. Then,
when agents encounter the now empty
food source, they clear their internal
memory. The cycle then repeats with
the agents again entering the explo-
ration phase.

Figure 8: An overview of the three broad phases that the group of agents can
be in.
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no food sources have yet been found. In the communication phase, agents
gradually collect more food over time as more agents are told about discovered
food sources. In the exploitation phase all agents gather from the same food
source, causing a linear increase in score over time.

Figure 9: Score over time for a population of 20 agents with a communication
range of 2. Here the red line indicates when most groups have entered the
communication phase and the blue line indicates when most groups have entered
the exploitation phase.

3.5 Evaluating group performance

In our simulation, the performance of a group of agents can be determined by
measuring the score of the group after a set amount of time. However, this
score is not very meaningful in a vacuum. This can be improved by normalizing
the score, which is done by dividing the score by the maximum possible score
that could be achieved. The normalized score then gives some indication of the
efficiency of the group compared to the maximum theoretical efficiency. The
maximum possible score at any point in time can be calculated using a simple
algorithm, which is shown in algorithm 1. The idea behind this algorithm is
straightforward: If the group is working at maximum efficiency then the group
must always be gathering from the most efficient food source, as measured by
the food value divided by walking distance. Thus the most efficient strategy is
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to first gather all the food from the most efficient food source until it is depleted,
and then move on to the second best food source. This continues until either
the time is up or all food on the map is depleted. In a real simulation run,
gathering from the best food source is not trivial, as agents have to first find
and communicate the position of food sources, which means that the theoretical
maximum will almost never be reached in practice.

Algorithm 1 Calculating maximum attainable score

Require: tmax > 0 ▷ Runtime of the simulation
Require: npop > 0 ▷ Amount of agents

Require: size(d⃗)=n ▷ Distance of each food source to centre
Require: size(v⃗)=n ▷ Value of each food source
Require: size(⃗a)=n ▷ Amount of food pieces per food source
for i is 0 to n do ▷ Calculate gathering speed for each food source

gi ← vi/(2di − 1)
end for

d⃗← sortby(d⃗,−g⃗) ▷ Sort food by gathering speed, highest first

E⃗ ← sortby(v⃗,−g⃗)
a⃗← sortby(⃗a,−g⃗)
g⃗ ← sortby(g⃗,−g⃗)

t← 0
tnew ← 0
s← 0
for i is 0 to n do ▷ Loop through each food source

dt← ai · vi/(npop · gi) ▷ Time needed to deplete food source
tnew ← t+ dt
if tnew < tmax then

s← s+ ai · vi ▷ Add gathered food to score
t← tnew

else ▷ Stop when time is over, add partially gathered food
s← s+ ai · vi · (tmax − t)/(tnew − t)
break

end if
end for
return score

One of the main advantages of normalizing by the maximum attainable
score is that it allows us to compare the performance of the group in different
scenarios. For example, if the food is placed further away from the centre
of the map then the agents will naturally have to walk a larger distance to
gather food, decreasing performance. This decrease is then not a result of the
poor performance of the group but rather due to the less suitable environment.
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Similarly, large groups of agents naturally gather more food than small groups,
and maps with high value food yield better performance than maps with low
value food. By dividing the score by the maximum attainable score, these factors
are automatically taken into consideration.

3.6 Impact of population size

The effectiveness of communication can be understood by looking at the perfor-
mance of the group for different population sizes. Figure 10 shows the impact
of the population size on the normalized score of a group, for groups of commu-
nicating and non-communicating agents.

Figure 10: Normalized performance as a function of the population size. Here
each data point represents the average of 200 runs. Each run uses a commu-
nication range Rcomm = 3, a central room radius R1 = 18 and a time limit of
Tmax = 1000.

Here the communicating groups use the behaviour tree shown in Figure 7,
which allows agents to share information, while the non-communicating groups
use the tree in Figure 3, which only allows agents to individually remember co-
ordinates. Here we see that the normalized performance of the communicating
group increases monotonically with the population size, going from about a 10%
effectiveness at a population size of 1 to about a 70% effectiveness at a popula-
tion size of 100. This shows that communication becomes more valuable as the
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group increases in size. The reason for this is that when agent communicate,
only one agent needs to find a food source for the group to discover its location.
This makes it so that each additional agent decreases the average time spent
looking for food, increasing efficiency. In comparison, the non-communicating
group does not get any additional benefits from increasing in size. This is be-
cause each agent acts independently, so the agents do not benefit from their
shared existence.

3.7 Impact of communication range

As with the population size, we now examine the impact of the communication
range on the performance of the group. Here the communication range Rcomm

determines the maximum distance at which agents can still communicate. At
short communication ranges, agents are only able to communicate with other
close-by agents. If the communication range is set to the minimum of 0 then two
agents can only communicate if they share the same position, which is possible
since agents can occupy the same tile. For large communication ranges, agents
will be able to communicate with agents at a large distance. For sufficiently
large communication ranges, each pair of agents will always be able to commu-
nicate, even if they are positioned on opposite sides of the map. The influence of
the communication range on the performance of the group is shown in Figure 11.

Here the green line shows the normalized score after 1000 time steps for
groups using different communication ranges. Interestingly, we see that in order
to maximize performance, the communication range should be neither too high
nor too low. For this scenario, the optimal communication range seems to be
somewhere between 3 and 6. This result of needing a balanced communication
range can be explained by the trade-off between exploration and exploitation.
If the communication range is short, the group spends a relatively long time
in the communication phase. This is because agents that are exploring are
less likely to hear about a food source from other agents, because agents need
to get close in order to tell them. This results in agents spending more time
exploring before the group converges on a food source. The food source that is
eventually converged on is then more likely to have food of a high value. This
advantage is indicated by the black dotted line in Figure 11. This shows the
probability that the group finds the most valuable food source in the bottom
room. We see that as the communication range increases, this probability goes
towards 0.25, which indicates that the group instantly converges once the first
food source found. However, time that is used to explore is time not spent
gathering food, meaning fast convergence also has an upside. This is shown
through the red dotted line in Figure 11, which shows the total food collected
after 1000 steps, ignoring the value of the food. Here we see that groups with
a high communication range gather more food than low communication range
groups, as they spend less time exploring and thus more time gathering food.
In conclusion, the communication range serves as a way to balance exploration
and exploitation, making a balanced communication range preferable.

23



Figure 11: Normalized performance(green) as a function of communication
range, with the shaded area showing one standard deviation. Each data point
represents the average of 200 runs. The black dotted line shows the fraction
of runs where the best food in the southern room was found. The red dotted
line shows the amount of food collected ignoring the value of food. All runs use
a population size of 30, a central room radius of R1 = 14 and a time limit of
Tmax = 1000.

3.8 Impact of map size

Previously it was discovered that the communication range can serve as a means
to control the level of exploration and exploitation. This makes it so that choos-
ing the right communication range is not trivial. We now examine how the op-
timal communication range, the range that maximizes the average performance
of the group, changes in different circumstances. One factor that is likely to
be important is the shape of the map. The map Four Rooms uses several pa-
rameters that define its shape, with the parameter R1 determining the radius
of the central room. Setting R1 to a small value means food is relatively easy
to find, as agents only have to explore a small area. At higher values of R1,
food becomes harder to find, as the food is placed further away from the centre.
The impact of the central radius size on the communication range optimum is
illustrated in Figure 12.

This shows the normalized score after 1000 steps for setups with different
communication ranges and central radii. As expected, performance generally
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Figure 12: The normalized score after 1000 time steps for different communica-
tion ranges and map sizes, using a population size of 30 agents.

decreases as the central room radius increases. This happens because the group
has to spend more time on average to find the food sources. We also see that
the optimal communication range increases as the central room radius increases.
For a small central radius of 6, the optimal communication range is somewhere
between 1 and 3, while for a large room size of 22, the optimal communication
range is somewhere between 5 and 7. In larger maps, agents are generally more
spread out. This makes a larger communication range beneficial, as it allows
the agents to still communicate efficiently.

3.9 Impact of food value distribution

Another factor that could affect the optimal communication range is the distri-
bution of food sources. Here the idea is that if the simulation contains a variety
of different food sources, agents need to explore longer in order to find the best
food source. In case there is only a single food source, or all food sources are
the same, then the group does not need much exploration as they can simply
converge on the first food source found. In the simulation this distribution of
food can be varied by setting the value of the four available food sources. Previ-
ously an exponentially increasing distribution was used, where each food source
had a value two times higher than the previous food source. This relationship
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is generalized in equation 1.

fi = αi−1, i = 1, 2, 3, 4, α ≥ 1 (1)

Here f1 determines the food value in the right most room, f2 for the top
room, f3 for the left room and f4 for the bottom room. α determines the
variance in food source values. If α is set to 1 then all food sources have the
same value. As α gets bigger, the difference between best and worst food source
becomes larger, making exploration more important. As previously α was set
to 2 for all experiments, we now test the simulation again for other values of α
in order to examine the influence of the distribution of food. Figure 13 shows
the normalized performance as a function of communication range for different
values of α.

Figure 13: Normalized performance as a function of communication range, for
several food distributions α. Here each data point represents the average of 200
runs. All runs use a population size of 20, a room size of R1 = 14 and a time
limit of Tmax = 1000.

As expected, we see that the optimal communication range generally de-
creases as α increases. Here a lower communication range leads to more explo-
ration, which is more important as food becomes unevenly distributed. When
α is set to 1, the performance increases monotonically with the communication
range. Since all food has the same value in this case, it is optimal to instantly
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converge on the first food found, which is only possible with a high enough
communication range. When α is set to a higher value, the lowest value food
is almost worthless compared to the highest value food. Here it becomes very
important that the group converges on the best food source, which makes a
relatively small communication range optimal.

3.10 Discussion

In the previous experiments we examined the behaviour of the group in an en-
vironment without intentional obstructions. Before moving on, we summarize
some of the results and compare them to results found in other works. Firstly,
we saw that the performance per agent grows as the population size increases.
Because agents are able to communicate, each individual benefits from the pres-
ence of other agents, as they share information on the position of food. This
shows that the group indeed benefits from cooperation under ordinary circum-
stances.

Secondly, we saw that choosing the optimal maximum communication range
is not trivial. When the communication range is set too high, agents converge
too fast on discovered food sources. When the communication range is too low,
information about discovered food sources travels slowly, making it so agents
spend an unnecessary amount of time exploring. A similar dilemma can be
found when using the particle swarm optimization(PSO)[16] algorithm. PSO is
an optimization algorithm inspired by the movement of groups of animals such
as flocks of birds and schools of fish. PSO works by having a group of agents
semi-independently search the search space. These agents are affected by two
components: an individual component and a social component. Here the social
component pulls agents towards the best found solution of nearby agents, which
is very similar to how agents communicate in our simulation about memorized
food sources. In PSO, a major challenge is adjusting the relative strength of
the individual and the social component. If the strength of the social com-
ponent is too high then the group converges too quickly on one solution. On
the other hand, if the individual component is too strong then agents lose the
benefit of cooperation. Here the relative strength of the social component can
be compared to the communication range in our simulation, as both need to be
optimized to balance individuality and conformity.

This problem of choosing the right communication range can also be com-
pared to the multi-armed bandit problem[13] in probability theory. In this
problem, a decision maker iteratively chooses between multiple actions, with
each action having an unknown reward distribution. Here the trade-off is again
between exploring for potentially better rewards and sticking to a known good
solution. The optimal balance between exploration and exploitation depends
on the reward distribution of the different actions. This is also the case in our
simulation, where the optimal communication range, and thus the amount of
exploration, is determined by the distribution of food. If all food is equal in
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value then the optimal strategy is to immediately converge on the first food
found. However, if some food is vastly more valuable than other food, then
exploration becomes more important as finding the best food source becomes
essential.

4 Setup with impeded communication

Previously, we explored the performance of the agents in an ideal environment.
Here the group of agents was able to effectively find and gather food. In this
section we now explore what happens when communication between agents is
impeded. We first introduce the way communication is impeded. Secondly, we
study under what circumstances the loss in communication is most detrimental
to the performance of the group. Lastly, we look at some measures that can be
taken to prevent the negative effects of communication disruptions, and study
in what circumstances these measures are effective.

4.1 Communication constraints

In our new setup, communication can be obstructed in two ways: Limiting the
amount of communication and limiting the accuracy of communication. In our
base setup, agents are able to communicate with all agents within their com-
munication range each tick. In our new setup, this amount is limited, making it
so that agents can only communicate with a subset of the nearby agents. Each
tick each agent is given a communication budget ncomm. When running a com-
munication loop, agents are then only able to communicate with ncomm nearby
agents, instead of being able to communicate with all nearby agents. For exam-
ple, an agent might be surrounded by 6 other agents and have a communication
budget ncomm of 3. The agent can then only communicate with 3 out of the
6 agents. The size of the communication budget is randomly determined each
tick depending on the parameter λcomm. Here ncomm is take from a Poisson
distribution, as in equation 2.

ncomm ∼ Poisson(λcomm) (2)

In case λcomm is set to 0, we obtain a situation where no communication is
possible, as the communication budget is always 0 for all agents. In the case of
λcomm →∞, we obtain the same situation as in our base setup, giving agents an
unlimited amount of communication. Thus the parameter λcomm allows us to
scale the amount of communication between no communication and unlimited
communication.

The second communication obstruction is the possibility of miscommunica-
tion. In the base setup agents can read the internal memory of other agents with
perfect accuracy. In the new setup, each time an agent communicates with an-
other agent it has a pdistort chance of miscommunication. This causes the agent
to ’mishear’ the other agent, which perturbs the information to some extend.
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This perturbation affects how the stored coordinates are received. When a co-
ordinate is miscommunicated, the coordinate is displaced by the distortion size
ndistort. The new coordinate, heard by the receiving agent, is then obtained
by taking ndistort random steps. The size of the distortion is again sampled
from a Poisson distribution, as in Figure 3. Here λdistort is a parameter that
determines the average distortion size.

nperturb ∼ Poisson(λdistort) (3)

Figure 14 gives an example to illustrate the two communication constraints.

Figure 14: Two ways in which communication is obstructed between agents.
The figure on the left shows an example where communication is limited by a
communication budget. In this case, the communication budget of 1, sampled
from a Poisson distribution, prevents the agent from communicating with more
than one other agent per tick. The figure on the right depicts an example of
communication distortion. Here agent 2 attempts to communicate the position
(1, 2) to agent 1. However, this information is miscommunicated, displacing the
coordinate by the distortion distance of two steps. As a result, agent 1 believes
that agent 2 has found food at position (2, 3) instead of position (1, 2).

4.2 Impact of communication limit

In order to study the effect of communication disruption we first introduce the
the communication limit to the simulation without including communication
distortions. Here the parameter λcomm determines the average communication
budget given to the agents each tick. This parameter thus limits how much
agents can communicate, with agents being completely unable to communicate
when λcomm is set to 0. We now test the influence of λcomm on the performance
of the group. When experimenting with this, it was discovered that the effect
of λcomm is similar to the effect of the communication range, which is shown in
Figure 15.
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Figure 15: Normalized performance as a function of the average communication
budget λcomm for several communication ranges. Here the Average communica-
tion budget ranges logarithmically from 0.01 to 1. Each data point represents
the average of 400 runs. All runs use a population size of 20, a room size of
R1 = 18 and a time limit of Tmax = 1000.

This shows the normalized performance as a function of the average com-
munication budget λcomm for several different communication ranges. As with
the communication range, we see that a balanced communication budget is op-
timal. For example, when the communication range is set to 8, the performance
is optimal for a λcomm slightly above 0.1, where lower or higher values result
in lower performance. This can again be explained as a balancing between ex-
ploitation and exploration. When the communication budget is too low, agents
take an unnecessary long time to communicate the position of discovered food.
However, if the communication budget is too high, the group converges too fast
on discovered food even if better food is available. Since the communication
range and the average communication budget serve a similar purpose, they can
be used to offset one another. For example, if the communication budget is too
low, this can be compensated by increasing the communication range and vice
versa. This is reflected in Figure 15. When the communication budget is set
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to 0.01, the best performing communication range is 12. In contrast, when the
communication budget is set to 1, the best performing communication range
is 6. In conclusion, limiting the communication between agents is not always
detrimental and can sometimes be beneficial for the performance of the group.

4.3 Impact of communication distortion

We now examine the impact of distorting the communication between agents.
Here communication distortion is governed through two parameters: the dis-
tortion chance pdistort and the mean distortion size λdistort. This allows us
to scale both the frequency of distortions and the size of distortions indepen-
dently. When adding communication distortion to the base setup, it quickly
becomes apparent that the distortions can drastically reduce the performance
of the group. An example of this is shown in Figure 16, which shows the score
over time for a setup with a moderate amount of distortion. Here we see that
in most runs the agents eventually stop gathering food altogether. This effect
sometimes ends, where agents start to gather food again, only for it to return
at a later time.

Figure 16: 50 runs of agents placed in the Four Rooms map, now with com-
munication distortion enabled. Sometimes the score of individual runs abruptly
stops increasing, which indicates no food is being collected. This is not the case
in figure 9, where communication is not being distorted.
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This phenomenon is better observed by looking at the simulation in real
time. When agents are gathering food and communication distortion is enabled,
agents sometimes start swarming around a coordinate close to the entrance of a
food source. Here agents form a circular blob that pulls in other nearby agents.
This swarm then gradually moves towards the centre of the map, where it stays.

The reason for this phenomenon can be explained by the way that agents
communicate. When an agent is told about another food source, it compares
this new food source to the food source it has currently memorized. Agents
prefer food sources that have a high value and are close to the centre, and will
only switch food sources if the new source is better in this regard. Due to the
communication distortion, agents sometimes mishear that the found food source
is closer to the centre than it actually is. Because this non-existent food source
would be better than the real food source, the new coordinate is rapidly spread
through the group. Eventually an agent again mishears another agent, and
comes to believe there is an even better food source closer to the centre. The
new coordinate is then again spread through the population, with this process
repeating until the centre is reached. From now on we call this phenomenon a
phantom swarm, as agents are swarming around a non-existent food source.
The formation of a phantom swarm is shown visually in Figure 17, which shows
three moments in time during phantom swarm formation.

Figure 17: The formation of a phantom swarm over time. Initially agents are
effectively gathering food from a food source, as shown in the left image. An
agent then mishears another agent, leading it to believe there is food in front of
the entrance to the food, shown in the middle image. This drift in coordinates
continues until agents swarm around the centre of the map, as shown in the
right image.

Agents do have a defence mechanism against the formation of phantom
swarms: When an agent finds no food at a stored coordinate, it empties its
internal memory. This was originally made so that when a food source is de-
pleted, agents continue searching for new food sources. In the case of a phantom
swarm, agents also delete their internal memory when they discover that their
memorized coordinate does not contain any food. This leaves the question of
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why phantom swarms can exist for a prolonged amount of time. The reason
is that even though agents are constantly clearing the fake signal, the signal is
also kept alive because it is transmitted to other agents. This is shown in more
detail in Figure 18, where an overview of how the false signal is maintained is
shown.

(a) In the initial state, the agent is
walking towards the non-existent food
source. This could be because it mis-
heard another agent talking about a
real food source, or because it is told
about a false food source by an agent
in the phantom swarm. In this state,
agents also communicate the false in-
formation to other agents.

(b) When the agent reaches its desti-
nation, it discovers that the specified
food does not exist. It then clears its
internal memory, removing the fake co-
ordinate.

(c) Because the agent has cleared it’s
memory, it now again starts explor-
ing for new food, generally moving
away from the fake food. However, if
the agent communicates with another
agent in state a, it will again start mov-
ing back to the false coordinate.

Figure 18: While in a phantom swarm, agents generally exist in one of three
states: moving towards the fake food source, standing on the fake food source
and moving away from the fake food source. The reason that the phantom
swarm does not dissipate is that agents continuously move through these states.
Agents in state 1 can then transmit the false information to agents in state 3,
which continues the loop.

After some experimentation, it was found that stopping the formation of
phantom swarms is not entirely trivial. Furthermore the formation of phantom
swarms also seems to depend highly on the simulation parameters that are being
used. One example of this is that phantom swarms seem to be more common for
groups with a higher amount of agents. The remainder of this work focuses on
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better understanding this phenomenon. We first examine how phantom swarms
relate to previously discovered phenomena. Secondly, we examine under what
circumstances phantom swarms are most likely to occur. Lastly, we propose
some measures that can be taken to prevent phantom swarms, and test the
effectiveness of these measures.

4.4 Comparison to other phenomena

In our simulation, phantom swarms can significantly affect the performance of
the group. Here, the formation of phantom swarms is an emergent effect that
can happen due to the way that communication is set up. This effect, however,
is not restricted to our environment, and can happen in other scenarios as well,
as long as the following conditions are met:

• There is a group of communicating entities that have the ability to share
information.

• The entities prefer to accept some pieces of information over other infor-
mation.

• Untrue information is generated in some way.

Phantom swarm like phenomenon are still possible even if the exact mecha-
nisms behind these conditions are different. For example, if untrue information
is generated in a different way, perhaps by being introduced by adversarial
agents, then phantom swarms can still occur. The agents that form the group
also do not have to be simulated entities; the group could also consist of humans,
animals or robots.

One example of a real-world phenomenon comparable to phantom swarms
is the spread of misinformation on social media. On social media, individuals
can have a bias on what kind of content they accept and share. For example,
in Weeks, 2015[18], it was found that individuals are more likely to believe du-
bious information that aligns with their political beliefs than information that
runs counter to their beliefs. Another example is the sensationalizing of news,
where more outlandish claims might be more likely to be shared than relatively
simple claims. Because of this bias, misinformation is able to spread through
the population of users. This spread of misinformation can be likened to the
spread of a virus, which is done for example in Rubin et al., 2019[10], which
proposed a conceptual model for modelling ”fake news” as an epidemic. In Shin
et al., 2018[12], the spread of online rumours was studied, and found that false
political rumours tend to resurface multiple times, often turning more extreme
over time. Here misinformation on social media and the formation of phantom
swarms is similar, as in both cases false information is spread through a popu-
lation due to the way agents accept and communicate information.
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Another phenomenon that is similar to phantom swarms is the formation of
ant mills, which were mentioned earlier in the introduction. When a group of
army ants gets separated from the colony, it can happen that they start follow-
ing each other’s pheromone track, creating a continuous circle. Similarly to in
our simulation, the ants are following information that does not reflect reality.
When ants follow the circular track, they expect the track to lead them to some
endpoint, for example food. However, because ants reinforce the pheromone
trail as they walk, they do not manage to filter out the false information. As
with our simulation, the communication system of the group becomes a hin-
drance, as the agents are not able to deal with incorrect data. Interestingly, ant
mills have also been observed to happen in swarm-based algorithms[3]. This fur-
ther shows that communication systems have to be carefully considered when
implemented in multi-agent systems.

4.5 Detecting phantom swarms

As phantom swarms can halt the performance of the group, we want to explore
under what circumstances phantom swarms occur. To do this, a method is
needed to automatically detect when a phantom swarm is occurring. This allows
us to run many simulations without having to manually check for phantom
swarms. For the current setup, phantom swarms can be detected using a simple
heuristic. This is based on two observations:

• When a phantom swarm is happening, almost no food is being collected.

• When a phantom swarm is happening, agents believe there is food close
to the centre of the map when there is not.

When both conditions are met, the group is considered to be in a phantom
swarm. For the first condition, the amount of food that was collected in the last
tsum steps is determined, where tsum is a parameter that can be tuned. If this
value is below a predefined minimum then the condition is met, which is shown
in equation 4. Here nfood(t) is the cumulative amount of food collected up to
time t, Rwalk is the minimum distance that agents need to walk to gather food
and npop is the number of agents in the population. Here we include the walking
distance and population size in order to normalize the amount of collected food.
This is normalized so that if c1(t) = 1 all agents are gathering at maximum
efficiency.

c1(t) = Rwalk
nfood(t)− nfood(t− tsum)

tsum · npop
(4)

The walking distance Rwalk is constant for the Four Rooms map, as all food
sources are at the same distance. Here the walking distance is calculated as:

Rwalk = 2 · (R1 + d) + 1 (5)
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For the second condition the average distance of memorized coordinates to
the centre is determined. If this distance is smaller than a predefined value,
then the condition is met. The exact calculation is shown in equation 6.

c2(t) =
1

Rwalk

∑npop

i=0 mi(t)Rmem,i(t)∑npop

i=0 mi(t)
(6)

Here Rmem,i(t) is the distance to the centre for the memorized coordinate of
agent i. mi(t) indicates if agent i is storing a coordinate, where agents without
a memorized coordinate are ignored. The walking distance is again included
to normalize the distance. The total condition for phantom swarm detection
is shown in equation 7. Here c1,min and c2,min are parameters that define the
sensitivity of the condition. The rightmost condition also checks that at least
one agent has stored a coordinate.

c1(t) < c1,min, c2(t) < c2,min,

npop∑
i=0

mi > 0 (7)

In order to test this heuristic, the simulator now shows in real-time whether
this condition is met. In this way, it can be checked if the condition accurately
predicts the presence of phantom swarms. This is used to choose the values for
c1,min and c2,min. By doing this, it was discovered that the second condition,
which is based on the position of perceived food, was a sufficient indicator on
its own. The first condition requires measuring the amount of food collected
over some time period, making it unresponsive in practice. We therefore set
c1,min = 1 and c2,min = 0.75, meaning the first condition is always met. The
heuristic is illustrated in Figure 19, where we show the detection of phantom
swarms based on this condition for a single run.

4.6 Measuring swarm frequency

The previously defined heuristic allows us to measure when a phantom swarm
is occurring. Our goal now is to study how different parameters affect the
prevalence of phantom swarms. The prevalence of phantom swarms can be
described by two measurements:

• The likelihood of the group forming a phantom swarm.

• The average duration of a phantom swarm.

In order to measure these factors, we measure the duration of periods with
and without phantom swarms. For example, in Figure 19, a swarm starts at
around step 700 and ends at around step 2800, giving a duration of roughly 2100
ticks. Here the duration of each gap between the start and end of a phantom
swarm is gathered, as well as the duration between start and end of each period
without a phantom swarm. Gaps with a length smaller than 10 are ignored,
which prevents short random disturbances from splitting up the periods. A
simple way to calculate the average phantom swarm duration is to take the
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Figure 19: The average distance between waypoints and the centre of the map
for a single run(green) and the swarm detection heuristic(red). Here the red
dotted line is 1 when a phantom swarm is detected and 0 when a swarm is not
detected. A negative average waypoint distance indicates no waypoints are set.

average of the duration of all recorded swarms. However, this has one flaw,
which is that when the simulation ends after 5000 ticks, it is unknown how
much longer a possible phantom swarm at that time would last. For example,
in Figure 19, a swarm occurs just before the end of the simulation, which lasts
an undetermined amount of time. By using a statistical model, finished periods,
periods that end during the simulation, can be separated from these unfinished
periods. If it is assumed that the formation of phantom swarms is memoryless,
i.e. that the probability of the group forming a swarm is the same each step,
then a geometric probability distribution can be used. Under this assumption,
the system is defined by two probabilities. First, in the case that the group is not
currently in a swarm, the swarm formation probability pswarm determines the
chance that a swarm is formed each tick. In the case that the group is in a swarm,
the dissipation probability pdissipate determines the chance that the group forgets
the false coordinate and returns to normal. The values for pswarm and pdissipate
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can be found by maximizing the posterior probability. The posterior probability
can be constructed using the probability mass function(pmf) and cumulative
distribution function(cdf) of a geometric distribution, shown in equation 8. Here
the pmf can be interpreted as the probability of phantom swarm forming/ending
after t simulation ticks. The cdf can be interpreted as the probability that a
swarm forms/ends before t simulation step.

pmf(t, p′) = (1− p′)tp′, cdf(t, p′) = 1− (1− p′)t+1 (8)

The likelihood function describes the likelihood of a set of a set of phantom
swarm/non-phantom swarm durations t⃗, as shown in Figure 9. Here fi records
whether phantom swarm i is finished or unfinished, with fi = 0 meaning the
swarm is finished and fi = 1 meaning the swarm is unfinished, i.e. ends after
the simulation ends. This determines whether to use the cdf, in the case of
fi = 1, or the pmf, in the case of fi = 0.

p(⃗t, p′) =

n∏
i=0

fi(1− cdf(ti, p
′)) + (1− fi)pmf(ti, p

′) (9)

We can then estimate the probability p̂ given the data by maximizing the
logarithm of the likelihood function, which is equivalent to maximizing the pos-
terior probability, as shown in Figure 10.

p̂(⃗(t)) = argmax
p′

n∑
i=0

fi(1− cdf(ti, p
′)) + (1− fi)pmf(ti, p

′) (10)

This allows us to estimate the probabilities pswarm and pdissipate. Here pswarm,
the probability of a swarm forming, depends on the duration of periods with-
out a swarm, with shorter periods indicating a higher probability of formation.
Thus in this case t⃗ is set to the durations of all swarm-less period. The same
is true for pdissipate, the probability of swarms dissolving, but now the set of
durations with a swarm is used for t⃗.

With this setup, it is now possible to quantify the presence of phantom
swarms. Here a high value of pswarm indicates that swarms are likely to form.
A low value of pdissipate on the other hand, indicates that swarms are likely
to last a long time once formed. Under the assumption that swarm forma-
tion/dissipation follows a geometric distribution, we can calculate the expected
duration of periods with or without a swarm, as shown in equation 11.

tswarm =
1− pdissipate
pdissipate

, tno swarm =
1− pswarm

pswarm
(11)

Here tswarm is the average duration of a swarm and tno swarm is the average
duration of periods between swarms. Because the presence of phantom swarms
is unwanted, it is preferable to have both a low value for tswarm and a high value
for tno swarm. Both metrics can be combined to obtain a single estimator that
takes both values into account, as shown in equation 12.
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ϕswarm =
tswarm

tswarm + tno swarm
(12)

Here ϕswarm is the swarm rate, the fraction of time where a phantom swarm
is present. A high swarm rate then indicates that at any point in time there is a
high chance of the group being in a phantom swarm. By substituting equation
11, this equation can be rewritten in terms of the swarm formation/dissipation
probabilities, as shown in equation 13.

ϕswarm =
pswarm(1− pdissipate)

pswarm(1− pdissipate) + pdissipate(1− pswarm)
(13)

This circumvents division by zero when either pswarm or pdissipate is zero.

4.7 Results

4.7.1 Population size dependence

The estimators pswarm, pdissipate and ϕswarm can be used to measure the for-
mation rate, dissipation rate and overall presence of phantom swarms. This is
now used to examine how the different parameters of our setup influence the
manifestation of this phenomenon. We first analyse how the population size,
the average communication budget λcomm and the distortion chance pdistort af-
fect swarm formation. Here 50 simulations are run for each combination of 4
different population sizes, 8 values for λcomm and 8 values for pdistort, resulting
in a total of 12800 simulation runs. The results are shown in Figure 20. This
shows the swarm formation probability pswarm, the swarm dissipation probabil-
ity pdissipate and the swarm rate ϕswarm as a function of population size, λcomm

and pdistort. Here we see a clear boundary between systems suffering or not suf-
fering from phantom swarms, most clearly seen by looking at the swarm rate.
The position of this boundary seems to depend on all three of the considered
parameters. Firstly, we see that limiting communication by lowering the average
communication budget can prevent swarms from persisting. One explanation
is that when communication is limited, agents can disprove false signals faster
than the signal can spread, causing the swarms to dissipate. We also see that
phantom swarms are more likely when information has a higher chance of being
distorted. Here we see that even with a relatively small distortion chance the
formation probability is high enough for swarms to form. However, we also see
that with a small distortion chance swarms quickly dissipate. Finally, we see
that the population size also plays a significant role. At a population size of
10, the swarm rate does not come close to 1 with any parameters, even with
guaranteed information distortion. At a population size of 25, phantom swarms
occur for most circumstances. The reason for this is likely the same as with
the communication budget. When more agents are present, more information
is exchanged on average each step. This makes it so that swarms do not easily
dissipate, as false information is preserved by transferring between agents.
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Figure 20: Heat-maps for the swarm formation probability, swarm dissipation
probability and swarm rate for different simulation parameters. Each data point
represents the average over 50 simulation runs. Here the x-axis represents the
average communication budget ranging linearly from 0 to 1, which determines
how much agents can communicate each tick. The y-axis shows the distortion
chance ranging logarithmically from 0.1% to 100%. All simulations use an
average distortion size of λdistort = 1, a communication range of Rcomm = 6
and a room radius of R1 = 18.

40



4.7.2 Distortion size dependence

We now examine the effect of the average distortion size λdistort on the for-
mation of phantom swarms. Here the average distortion size determines how
much information is distorted when a miscommunication happens. The higher
the distortion size, the higher the distance between the initially communicated
coordinate and the received distorted coordinate. Figure 21 again shows the
results of 12800 simulations, now for 4 different values of λdistort. Here we see
that the distortion size is much less influential than the population size. The
dissipation probability is not noticeably affected by the distortion size. The for-
mation probability is only affected when the distortion chance is low, in which
case the formation probability increases with the distortion size. One expla-
nation is that if the distortion chance is low, a larger distortion size helps the
swarm get going because it helps to create a false signal away from the food.
When the swarm has formed, the false signal already exists, and the distortion
size does not affect how long the swarm remains.
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Figure 21: Heat-maps for the swarm formation probability, swarm dissipation
probability and swarm rate for different simulation parameters. Each data point
represents the average over 50 simulation runs. Here the x-axis represents the
average communication budget ranging linearly from 0 to 1, which determines
how much agents can communicate each tick. The y-axis shows the distortion
chance ranging logarithmically from 0.1% to 100%. All simulations use a pop-
ulation size of 20, a communication range of Rcomm = 6 and a room radius of
R1 = 18.
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4.7.3 Communication range dependence

Lastly, we study the influence of the communication range on phantom swarm
formation. Here the communication range determines the maximum distance at
which two agents can communicate. Figure 22 shows the results of 12800 simula-
tions, for 4 different communication ranges. This shows that the communication
range has a large influence on the presence of phantom swarms. When the com-
munication range is set to 1, swarms quickly dissipate for all tried parameters.
Swarms can still form when the distortion chance and communication budget
are high enough but swarms do not last for a prolonged period of time. In this
case, false signals cannot spread fast enough due to the limited communication
range, allowing agents to reset their internal memory. Even though this pre-
vents agents from being stuck in place for long, this can have the downside that
agents forget the position of the original food source. The swarm rate noticeably
increases when the communication range is increased to 3 or 6. Here the in-
creased communication range makes it possible for the false signal to propagate.
However, when the communication range is increased to 9, the swarm rate does
not noticeably increase. At this point the communication range is sufficient for
signals to propagate efficiently, making any additional range irrelevant.
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Figure 22: Heat-maps for the swarm formation probability, swarm dissipation
probability and swarm rate for different simulation parameters. Each data point
represents the average over 50 simulation runs. Here the x-axis represents the
average communication budget ranging linearly from 0 to 1, which determines
how much agents can communicate each tick. The y-axis shows the distortion
chance ranging logarithmically from 0.1% to 100%. All simulations use a pop-
ulation size of 20, an average distortion size of λdistort = 1 and a room radius
of R1 = 18.
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4.8 Counter measures

In the previous results, it was shown that phantom swarms can significantly
impact the behaviour of the group. However, in this case the agents do not
have any defence mechanisms designed to stop phantom swarms. We now look
at some measures that can be taken by the agents in order to stop phantom
swarms, and examine under which circumstances these measures are effective.

With the behaviour tree that is currently used, agents compare received in-
formation with information stored in their internal memory. When the received
information, i.e. the position and value of a food source, sounds more preferable
than the currently memorized information then the new information is copied.
Here the agents only compare how much they prefer each piece of information,
and do not consider the accuracy of the information. This is not unreasonable in
principle, as none of the agents are intending to be deceptive. However, due to
the communication distortions, some skepticism might help the agents discern
true and false information. One simple way of making agents more skeptical is
by letting agents ignore information that they can readily disprove. Agents are
sometimes told about food sources that would be in their detection range. In
this case, if the agent does not actually sense any food nearby, the agent can
readily ignore this supposed food source, as it can not exist. This allows agents
to ignore some of the false signals that are propagated through the popula-
tion, preventing the formation of phantom swarms. This change is implemented
by modifying the behaviour three that was previously used. Here an additional
condition is added that stops agents from accepting food sources that are within
their smell range when no food is detected.

4.8.1 Population size dependence

We now perform the same experiments that were performed previously, now
with the adapted behaviour tree that can partially ignore false information. We
start by again looking at the impact of the population size on phantom swarm
formation, which is shown in Figure 23. When comparing this graph to Figure
20, which showed swarm presence for the initial behaviour tree, we see that
both the swarm formation probability and dissipation probability have changed
notably. For the formation probability, the boundary between swarms forming
and not forming has shifted so that a higher communication budget and dis-
tortion chance is needed for swarms to form. The dissipation probability has
noticeably increased, with swarms only failing to dissipate when communication
distortion is nearly guaranteed. We also see that the population size again in-
fluences swarm presence. At a population size of 10, the swarm rate is less than
30% for all tried parameters. For a population size of 25, long term swarms can
occur when the communication budget and distortion chance are high enough.
However, the required communication budget and distortion chance for swarms
to occur are much higher than was the case with the original behaviour tree.
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The difference between these results and the results for the previous be-
haviour tree can be understood by looking at the behaviour of the group in
real time. Previously, even though communication distortions were necessary
for phantom swarms to form, these distortions were not necessary for swarms
to persist. Once enough distortions were introduced, a false signal could be
transmitted without having to be distorted further. With our new setup, trans-
missions of obviously false signals are ignored. In this case if only a single
distortion is introduced, this false signal is eventually disproven by the group.
Phantom swarms then only persist if new false signals are continuously gener-
ated. These false signals are further away, making them harder to disprove.
This has the effect that instead of converging on the centre, the swarm is now
continuously changing position. This idea explains the increased importance of
the distortion chance, as seen in Figure 23. Here we see that a higher distor-
tion chance is necessary for swarms to persist compared to with the previous
behaviour tree.
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Figure 23: Heat-maps for the swarm formation probability, swarm dissipation
probability and swarm rate for different simulation parameters, now using an
adapted behaviour tree that helps agents ignore provably false information.
Each data point represents the average over 50 simulation runs. Here the x-axis
represents the average communication budget ranging linearly from 0 to 1, which
determines how much agents can communicate each tick. The y-axis shows the
distortion chance ranging logarithmically from 0.1% to 100%. All simulations
use an average distortion size of λdistort = 1, a communication range of Rcomm

= 6 and a room radius of R1 = 18
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4.8.2 Distortion size dependence

We now examine the effect of the distortion size on the presence of phantom
swarms when using the adapted behaviour tree. Figure 23 again shows the result
of 12800 simulation runs in total for 4 different values of λdistort. As opposed to
with the original behaviour tree, we now see that the distortion size does affect
the swarm rate. When the average distortion size is set to 1, the swarm rate
only comes close to 100% when the distortion chance is set to 100%. However,
when the average distortion size is set to 8, the swarm rate can come close to
100% even for distortion sizes below 10%. The reason that the distortion size
is relevant in this case likely has to do with how distortions help preserve the
phantom swarm. Due to the added condition in the behaviour tree, agents do
not accept new coordinates if they can prove that these coordinates contain
no food. Large distortions are more likely to generate coordinates outside of
the detection range of the receiving agent, meaning that these agents can not
disprove the presence of food and thus accept the false information.
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Figure 24: Heat-maps for the swarm formation probability, swarm dissipation
probability and swarm rate for different simulation parameters, now using an
adapted behaviour tree that helps agents ignore provably false information.
Each data point represents the average over 50 simulation runs. Here the x-
axis represents the average communication budget ranging linearly from 0 to
1, which determines how much agents can communicate each tick. The y-axis
shows the distortion chance ranging logarithmically from 0.1% to 100%. All
simulations use a population size of 20, a communication range of Rcomm = 6
and a room radius of R1 = 18.
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4.8.3 Communication range dependence

Lastly we again examine the influence of the communication range on phantom
swarm formation, now using the updated behaviour tree. Figure 25 shows the
relationship between phantom swarm presence and communication range when
using the updated behaviour tree. Compared to the results with the previous
behaviour tree, continued phantom swarms are now absent for communication
ranges 3 and below. However, at communication ranges 6 and 9, persistent
swarms are possible with a high enough distortion chance. The figure also shows
a noticeable increase in the swarm rate when increasing the communication
range from 6 to 9, which was not present when using the original behaviour
tree. Since the phantom swarm now requires constant distortions in order to be
preserved, agents in the swarm are more spread out. This additional increase in
communication range then prevents agents from splitting off from the swarm.
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Figure 25: Heat-maps for the swarm formation probability, swarm dissipation
probability and swarm rate for different simulation parameters, now using an
adapted behaviour tree that helps agents ignore provably false information.
Each data point represents the average over 50 simulation runs. Here the x-
axis represents the average communication budget ranging linearly from 0 to
1, which determines how much agents can communicate each tick. The y-axis
shows the distortion chance ranging logarithmically from 0.1% to 100%. All
simulations use a population size of 20, an average distortion size of λdistort =
1 and a room radius of R1 = 18.
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4.9 Disregarding indirect sources

In the previous section, an additional condition was added to the behaviour tree
that helped prevent phantom swarms by making agents ignore provably false in-
formation. This measure helped reduce the frequency and duration of phantom
swarms but still allowed swarms to form in circumstances with a large enough
communication distortion. We now examine another way of limiting the effect
of communication distortions. In scholarship, secondary and tertiary sources
are generally considered less reliable than primary sources. This principle can
be translated to our simulation, by making agents ignore information that has
been passed around too many times. In order to do this the agents now keep
track of the age of the information they have currently memorized. When an
agent picks up a piece of food and remembers the location, the age is set to 0.
If this information is then transmitted, the receiving agent copies the age of the
information and increments it by one. In this way the other agents will be able
to tell that this agent is a secondary source, and thus reconsider accepting their
message. Here we set a limit τmax for the maximum acceptable information age
τ , so that any message with an age higher than τmax is ignored. The down-
side of this approach is that it requires us to track the source of each piece of
information, which in reality might not always be possible. Another downside
is that this can hinder messenger agents, which are used in some multi-agent
systems to transport information.

We now examine the effect of indirect source prevention in the same way as
the previous experiments. Here τmax is set to 2, meaning agents only accept
primary, secondary and tertiary sources. We also again use the previously de-
fined adaptation that helps agents ignore provably false information. Instead
of running the simulation for a variety of setup parameters, we now only run
the simulation for the setup that was most challenging. Here the population
size is set to 25, the average distortion size λdistort is set to 8, and the com-
munication range is set to 9. The result is shown in Figure 26, which again
shows the swarm formation probability, dissipation probability and swarm rate.
Here we see that even for this challenging scenario, phantom swarms are almost
completely prevented. When running this setup in real time, we see that any
distorted signals generated through miscommunication are not able to be pre-
served for long. These false signals are only able to be passed back and forth a
fixed amount of times, making them dissipate before they can seriously affect
the group.
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Figure 26: Heat-maps for the swarm formation probability, swarm dissipation
probability and swarm rate. Here the behaviour tree is adapted so that agents
ignore messages that are provably false and messages that have been passed
around too many times. Each data point represents the average over 50 simula-
tion runs. Here the x-axis represents the average communication budget ranging
linearly from 0 to 1, which determines how much agents can communicate each
tick. The y-axis shows the distortion chance ranging logarithmically from 0.1%
to 100%. All simulations use a population size of 25, an average distortion size
of λdistort = 8, a communication range of Rcomm = 9 and a room radius of R1

= 18.

5 Discussion and conclusion

This work introduced a multi-agent foraging simulation with the goal of study-
ing the effect of communication obstructions on the performance of groups of
cooperating agents. Here the simulation involved a colony of autonomous agents
that gather food and work together by sharing information about detected food
sources. The behaviour of these agents was rule-based, governed by pre-made
behaviour trees. In order to test the influence of communication obstructions,
we first examined the behaviour of the group under ordinary circumstances
without any obstructions. Communication was then hindered in two ways: lim-
iting the frequency of communication and introducing communication distor-
tions which modify the transmitted information. We then studied under which
circumstances these obstructions are most harmful to the performance of the
group. Here we now summarize and discuss our findings, as well as address
some limitations and consider some possible future work.

53



5.1 Key findings

Initially the simulation was run without including a communication limit or
information distortion. Here the performance of the group as a function of
several setup parameters was examined. The most notable result is the influence
of the communication range:

• The communication range influences the rate of exploration and
exploitation.

Here we saw that balancing the communication range, the maximum range
at which agents can communicate, is not trivial. When the communication
range is set too high, the group converges too quickly on a discovered food
source, disregarding possible better food sources. When the communication
range is set too low, agents are more independent, and spend too much time
exploring. This result is partly due to the limitations of the relatively simple
behaviour of the agents, with smarter agents potentially being able to overcome
the downside of large communication ranges. However, this effect still needs
to be taken into account when dealing with a multi-agent system. When de-
signing a multi-agent system, for example in the case of swarm robotics, an
unlimited communication range is not necessarily optimal. The same principle
should also be considered when organizing human groups. One example of com-
munication between humans having a negative effect is found in Lorentz et al,
2011[19], which studied the wisdom of the crowd effect. Here the wisdom of the
crowd effect is a phenomenon where taking the average judgement of a group
of people can result in surprisingly accurate predictions. However, when indi-
viduals are allowed to communicate, it was found that this effect is undermined.

Comparable to the communication range, we also studied the effect limiting
the frequency of communication had on the performance of the group. Here
agents are assigned a communication budget each step, which has the effect
that agents can communicate less often. Similar to the communication range,
it was found that:

• Limiting the frequency of communication can be beneficial in
some circumstances.

Here limiting the frequency of communication can prevent the group from
converging too fast on a food source. As with the communication range, choos-
ing the right communication frequency comes down to a balance between ex-
ploration and exploitation. Here the risk of excessive communication is that
agents lose their individuality, making it so that the group loses the advantage
of parallelism.

Another way of obstructing communication is by distorting transmitted in-
formation. Here agents have a chance pdistort of mishearing other agents, re-
sulting in agents receiving another coordinate than was sent. Due to the way
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agents accept new information, this can drastically reduce the performance of
the group.

• Distorting the information sent between agents can cause the
system to fail when agents accept incorrect information too read-
ily.

With our initial setup, when agents receive information that sounds more
preferable than their original memory, agents always accept the more appealing
information. This then leads to an information cascade, where false but desir-
able information quickly spreads through the population. In our simulation, this
leads agents to believe food sources exist closer to drop-off points than in actu-
ality. What is unexpected in this case is that this false information persists even
when individual agents have the ability to disprove it over time. When agents
reach a target coordinate and fail to find a food source, their false information is
discarded. However, because this false information can spread between agents
faster than it can be disproven, it endures unchecked. Here this effect was
named a Phantom swarm, as the group swarms around a non-existing food
source. When studying this phenomenon, it was found that the formation of
phantom swarms depends highly on the setup parameters that are used. Most
significantly, we find that:

• Limiting communication helps prevent the negative effects of
communication distortions.

The spread of false distorted information can be compared to the propaga-
tion of a virus, here with the information or virus being spread from agent to
agent through communication. When the amount of communication is limited
by the setup parameters, we see that phantom swarms quickly dissipate. Here
three parameters can affect the amount of communication. Firstly, increas-
ing the communication range was found to increase the presence of phantom
swarms. Here a larger communication range makes it easier for false informa-
tion to be spread and maintained. In a similar way, increasing the frequency of
communication also increases phantom swarm presence. Lastly, a high popula-
tion size also indirectly increases phantom swarm presence. Here having more
agents increases communication because there are more agents that communi-
cate. In all these cases, a relatively small change in parameters can sometimes
drastically change the disruptiveness of phantom swarms. This is similar to a
phase transition, where phantom swarms are either able to preserve themselves
for long periods of time or fall apart quickly, depending on the setup parameters.
This can have some counter-intuitive results, where for example, increasing the
total number of agents can actually decrease performance.

Another way of preventing phantom swarms that was examined is by making
agents more skeptical when accepting new information. Here we found that:

• Making agents more skeptical when accepting new information
helps prevent the negative effects of communication distortions.
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One of the main reasons that phantom swarms occur is that agents do not
take into consideration the likelihood of incoming information being true, and
only compare the preferability of information. If agents can ignore a portion
of incoming false information then phantom swarms can be greatly diminished.
One preventative measure that was tested is making agents ignore provably
false information. This made it so that phantom swarms only persist in setups
with a high enough distortion chance. In practice we see that without this
change, swarms can persist even when distorted information is only introduced
once. When agents are made more skeptical, swarms require false information
to constantly mutate in order for the swarm to persist. We see that when false
information is constantly changing, disproving it becomes harder. This is also
reflected in the influence of the average distortion size, which determines how
much information is perturbed when a miscommunication happens. In this
setup, a larger distortion size leads to phantom swarms becoming more persis-
tent. Here frequent large distortions make it hard to disprove false information,
as new fake food sources crop up faster than can be disproven.

Another measure that was tested is making agents track the age of infor-
mation. When agents receive a piece of information that is too far removed
from the primary source, they elect to ignore it. This was shown to completely
prevent phantom swarms from persisting, even for the least favourable setup
parameters. However, the downside of this is that it requires every agent in
the group to track the source of every piece of information, which might not be
possible or desirable for some systems.

5.2 Limitations

The main goal of this work was to examine the influence of communication ob-
structions on groups of cooperating agents. Here we discuss some limitations
of this work in regard to the discovered findings. One major limitation is that
the experiments were performed for one specific type of map with the agents
having a pre-defined behaviour. Here our map contains four static food sources
of equal distance to the centre. The behaviour of the agents was designed to be
effective on this map, and will fail in a more complicated environment. More
complex behaviour and maps were designed but tests on this new environment
were not included. Here one significant challenge in testing these more com-
plex environments is that these usually include more setup parameters, making
them exponentially more time consuming to explore fully. Our results should
thus not be taken as generalisable to most multi-agent systems, but rather as
considerations when engaging with a group of communicating actors.

Another limitation is the statistical model that was used to approximate
phantom swarm formation/dissipation. Here it was assumed that the probabil-
ity of a phantom swarm forming/dissipating was time independent, with each
tick having an equal chance of swarm formation/dissipation. We see that in
practice this assumption does not fully hold, for example because the group
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cannot form a swarm right after it has dissipated because the agents have to
relocate a food source. Therefore the results should not be considered as exact
quantitative predictions.

5.3 Future research

The main result discovered in this work was that communication disruptions
can cause groups of agents to collapse when individuals prefer some information
over other information. We now discuss some ways this idea can be studied
further.

As mentioned previously, the scope of our simulation was limited, with agents
having relatively simple behaviour and with the map being mostly static. In a
more complex environment with more intelligent agents the effect of communica-
tion distortions could be significantly different. One way to make the simulation
more complex is by making food sources dynamic, appearing and disappearing
over time. Agents could adapt to this by storing multiple coordinates, allowing
agents to switch between discovered food sources. One thing to look out for is a
possibly subtler version of a phantom swarm, where instead of having all agents
swarming around a coordinate agents periodically return to a false coordinate.
This would be much harder to detect than a regular phantom swarm and could
conceivably harm a more intelligent group.

One design goal when creating the simulation was to make it easily modifi-
able, which was accomplished by using customizable maps and behaviour trees.
This allows it to be adapted for other scenarios. One interesting continuation
would be to look at non-heterogeneous populations, where not all agents have
the same behaviour tree, and examine the effect of communication distortions
on these groups. Here, the population could for example be split into multiple
sub-groups with different roles, such as looking for food or relaying informa-
tion. Another option would be to make the scenario non-cooperative, with
some agents seeking to hinder another group. Here some agents could be de-
signed to deliberately spread disinformation, aiming to waste the time of the
main group. An interesting experiment would then be to see what measures
work well to prevent these agents from hindering the group.

Another interesting experiment would be to see if phantom swarm like phe-
nomenon can be found in other scenarios. One possible example which was
mentioned previously is the spread of misinformation on social media. Here an
idea is to simulate a group of social media users and then test the effect of intro-
ducing false but appealing information. It is conceivable that a phantom swarm
like phenomenon can happen in this context, with false information persisting
over time by being transmitted between agents. By simulating this, it is again
possible to test in which circumstances this effect is most damaging.
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