
Master Computer Science

Enhancing the Reliability of Model Evaluations in

Predictive Process Monitoring

Name: Hidde van Rooijen
Student ID: 3377954

Date: 26-05-2025

Specialisation: Data Science

1st supervisor: dr. Peter van der Putten
2nd supervisor: Prof. dr. Hans Mulder

Master’s Thesis in Computer Science

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

Abstract

Predictive Process Monitoring (PPM) is an upcoming research field aimed at developing
machine learning models to predict various aspects of business processes. For training
these models, researchers rely on process event logs commonly used for process mining.
There are a variety of publicly available event logs that researchers can choose from to
benchmark their models.

However, recent publications have shown that commonly used evaluation methods and
datasets produce unreliable estimates of real-world performance, due to data leakage and
other forms of bias present in event logs. Furthermore, the lack of standardised evaluation
methods makes it difficult to compare models between different studies. Researchers use
varying datasets, preprocessing techniques, and evaluation metrics, preventing meaningful
comparisons between approaches.

For this thesis, a benchmark framework was developed to address these challenges.
Following a design science approach, the following features were implemented: a debi-
asing strategy that removes selection bias from datasets, automated baseline predictions
for proper comparison, visualisation tools that reveal model behaviour beyond simple
metrics, and the Probability Ratio Score (PRS) metric to measure model performance in
ambiguous situations. The framework was built to be easily extensible; researchers can
add new datasets and metrics without changing the core structure.

A literature review identified 111 articles, of which 27 had available source code. Three
algorithms were ultimately implemented and tested: ProcessTransformer, PGTNet, and
PyDREAM. The results show significant performance drops on debiased datasets com-
pared to reported scores. For remaining time prediction, no model outperformed a simple
median baseline. For next activity prediction, while ProcessTransformer achieved the best
scores, a simple distance-based baseline performed surprisingly well. The visualisations
revealed insights impossible to capture with metrics alone, showing that some models
only excel on cases with activity sequences already seen during training.

This work contributes a practical tool for more reliable PPM evaluation. The frame-
work is available on GitHub to encourage community adoption and extension.

1

Contents

1 Introduction 4
1.1 Research questions . 4

2 Background & Related Work 6
2.1 Process mining . 6
2.2 Predictive process monitoring . 7

2.2.1 Model training . 7
2.3 Model evaluation . 8
2.4 Challenges in model evaluation . 9

2.4.1 Generalization . 9
2.4.2 Selection bias . 10

3 Methodology 12
3.1 Design science . 12
3.2 Problem identification . 13
3.3 Solution objectives . 13

3.3.1 The model evaluation framework 13
3.4 Design and development . 14
3.5 Demonstration and evaluation . 15

3.5.1 Demonstration of evaluation framework 15
3.6 Communication . 15

4 Implementation 16
4.1 Benchmark data selection . 16
4.2 Measuring generalization . 18

4.2.1 Next activity & next attribute prediction 18
4.2.2 Next timestamp prediction & remaining time prediction 19
4.2.3 Activity suffix & attribute suffix prediction 19
4.2.4 Outcome prediction . 19
4.2.5 Comparing generalization between models 19

4.3 Benchmark Framework . 20
4.3.1 DatasetLoaders . 20
4.3.2 DatasetNormalizers . 20
4.3.3 Metrics . 21
4.3.4 Configuration file . 21
4.3.5 Experiments . 21
4.3.6 TaskGenerator . 22
4.3.7 Evaluator . 23

2

CONTENTS

5 Experiments & Results 26
5.1 Experiment Setup . 26

5.1.1 PPM literature . 26
5.1.2 Model selection . 28
5.1.3 Final setup . 29

5.2 Results . 30
5.2.1 Relevance cycle . 30
5.2.2 Knowledge base . 31
5.2.3 Next activity prediction . 31
5.2.4 Design cycle . 42

6 Discussion 43
6.1 Limitations . 43
6.2 Interpretation of results . 43

6.2.1 Debiasing strategy . 43
6.2.2 Measuring generalisation . 44
6.2.3 PRS metric . 44

6.3 Answers to the research questions . 44
6.4 Future research . 45

7 Conclusion 46
7.1 Final Reflections . 46

3

Chapter 1

Introduction

Process mining is an emerging field that lives on the intersection of data science and
process science. The technology leverages (real-time) process data to construct process
models, which allow for a detailed evaluation of business processes. Due to the increasing
popularity of process mining, a new field has emerged which leverages the datasets used
for process mining to make predictions for intelligent decisions in business processes using
machine learning techniques.

Several models have been developed that aim to predict various aspects of business
processes such as the next activity, the remaining time, or the result of a running process
[Rama-Maneiro et al., 2021, Teinemaa et al., 2019]. The models described in the litera-
ture are usually trained and evaluated on publicly available process datasets. These data
sets are divided into a training set and a test set, where the test set is used to evaluate the
model. Splitting the data set in this way is common practice in many machine learning
fields and enables researchers to estimate a model’s real-world performance.

However, recent publications have shown that evaluating predictive process monitor-
ing models in this way will not produce reliable estimations of a model’s real-world perfor-
mance [Weytjens and De Weerdt, 2021, Abb et al., 2023]. This is due to large amounts
of data leakage and other types of test set bias. This is mainly due to the fact that a large
portion of process executions tend to be identical, resulting in a test set with samples
already observed in the training data. Furthermore, even if performance estimates were
reliable, researchers tend to use varying datasets and evaluation metrics, making it diffi-
cult to compare models. There is no standardised method for reliable model evaluations
within the field.

The motivation for this thesis stems from the need to improve the reliability and com-
parability of PPM model evaluations, which is crucial to advance the field and ensure that
models can be effectively applied in real world settings. This will be done by developing
a benchmark framework with improved and standardised evaluation techniques.

1.1 Research questions

To address the challenges outlined above, this thesis investigates the following research
questions.

RQ 1: Which methods can be further developed which can effectively measure the gener-
alization ability of predictive process monitoring models across diverse generalization
scenarios?

4

CHAPTER 1. INTRODUCTION

RQ 2: What models can be found in PPM literature for each of the prediction tasks
found in literature?

RQ 3: What are the software requirements for a benchmark suite which allows for easy
integration of the methods designed in RQ 1, and allows for the addition of new
methods in the future?

RQ 4: What is the performance of the identified state-of-the-art models (RQ2) on the
constructed benchmark, and how does this compare to the performance described by
the authors?

The remainder of this thesis is structured as follows. Chapter 2 provides the nec-
essary technical background and reviews related work, detailing current model training
approaches and the specific evaluation challenges arising from event log data. Chapter
3 will describe the methodology used to answer each of the research questions, including
the software requirements and the benchmark framework. Chapter 4 contains the de-
tails of the implementation of the implemented framework. With the methodology and
benchmark framework details covered, chapter 5 will continue with the validation of the
framework. The chapter describes the experimental setup, which includes motivation
on model selection, and benchmark results on two prediction problems for the selected
models. Chapter 6 will discuss the results in more detail, including the limitations of this
study, and provide future research directions. Chapter 7 contains the conclusion of the
results and the performed work.

5

Chapter 2

Background & Related Work

The following chapter will provide the reader with the necessary background knowledge
to understand the relevance of the research performed. It also provides an overview of
previous work done in the field that served as an inspiration for this thesis.

2.1 Process mining

Process mining is a technology that lives at the intersection of data science and process
science. Using event data generated during the execution of a process, process mining
algorithms construct BPMN models of the true execution of the process. These models
can then be used to detect issues in a (business) process. Common use cases are: de-
tecting compliance violations, identifying bottlenecks, root cause analysis, or performing
predictive process monitoring. [van der Aalst, 2022].

All process mining algorithms require event data to build process models. This event
data is usually a tabular data set that contains a large number of cases (process execu-
tions) including the activities performed for each case and its timestamp [van der Aalst, 2022].

Table 2.1 shows an example of such event data for a simplified online purchase process.
This process includes the activities ’placing an order’, ’payment processing’, and ’order
shipment’. The event log contains a timestamp at which the activity was executed, the
resource that executed the activity, and to which case these attributes belong.

Table 2.1: Sample event log for online purchase process.

Case ID Timestamp Activity Resource
1 2024-04-18 08:00:00 Placing an Order Website
1 2024-04-18 08:05:00 Payment Processing Payment Sys.
1 2024-04-18 08:15:00 Order Shipment Warehouse
2 2024-04-18 09:00:00 Placing an Order Website
2 2024-04-18 09:03:00 Payment Processing Payment Sys.
2 2024-04-18 09:20:00 Order Shipment Warehouse
3 2024-04-18 09:30:00 Placing an Order Website
3 2024-04-18 09:35:00 Payment Processing Payment Sys.
3 2024-04-18 09:45:00 Order Shipment Warehouse

6

CHAPTER 2. BACKGROUND & RELATED WORK

2.2 Predictive process monitoring

The event logs created for process mining also enable practitioners to perform predictive
analytics on their process data. This field of predictive process monitoring (PPM) has
gained a lot of popularity over the past few years. Using machine learning techniques,
researchers aim to predict a variety of attributes or outcomes for ongoing cases. Common
prediction types include next activity prediction, remaining time prediction, or categorical
outcome prediction [Rama-Maneiro et al., 2021].

2.2.1 Model training

Within predictive process monitoring, a variety of prediction tasks can be identified.
Rama-Maneiro et al. [Rama-Maneiro et al., 2021] performed a thorough analysis of cur-
rent deep learning methods in the field of predictive process monitoring and identified six
main prediction tasks. These prediction tasks are:

• Next Activity Prediction: Predicts the next activity in a business process based
on historical event log data.

• Next Attribute Prediction: Predicts the next attribute of an event.

• Next Timestamp Prediction: Predicts the time until the next activity occurs.

• Remaining Time Prediction: Predicts the time remaining until the completion
of a process instance.

• Activity Suffix Prediction: Predicts the sequence of future activities that will
occur until the case is completed.

• Attribute Suffix Prediction: Predicts the sequence of future attributes for the
rest of the case.

• Outcome Prediction: Forecasts the outcome of a running case or a process in-
stance.

Various methods exist to train predictive process monitoring models. Some researchers
leverage deep learning models which support the direct input of process sequences with
minimal data preprocessing. Others leverage a variety of sequence encoding techniques
to transform an event log into a machine learning ready format. Methods for encoding
event sequences for deep learning include [Rama-Maneiro et al., 2021]:

• Continuous (prefix padded): Inspired by language models, treats the event log
as a continuous sequence. Can be implemented either using a sliding window or
using the entire prefix. Padding might be used to create sequences of equal length.

• N-gram: Breaks down the prefix into all possible sub-sequences of size k. Meaning
an n-gram encoded event log is represented as a set of all sub-sequences of length
k contained within it.

• Single event: A simple encoding method that only considers a single event and
its attributes as input.

7

CHAPTER 2. BACKGROUND & RELATED WORK

• Timed state: An encoding method that captures not only the sequence of events,
but also the timing between them. It uses a decay function to represent the state
of the process, incorporating how long ago events occurred and the frequency of
transitions.

Apart from the single-event encoding, these methods result in a sequence which
will serve as input to the model. Classical machine learning algorithms do not sup-
port the input of such sequences and thus require different encoding techniques. These
methods aim to ”flatten” the event log into a tabular dataset. These methods include
[Teinemaa et al., 2019]:

• Last state: Only use the last state of the process and its attributes as input. Can
be combined with aggregation to create more meaningful features.

• Aggregation: Aggregate attributes from the trace into a single row. For example,
averaging numerical columns or taking the most common string.

• Index-based: Transforming the event log to include a column for each event at-
tribute and its index.

All these different sequence-encoding schemes show the differences in philosophy
throughout the literature. Some encoding techniques aim to keep as much informa-
tion from the original sequence in the training data as possible (index-based , continuous,
timed state), assuming long-range dependencies within the data. Others disregard the
idea of long-range dependencies and leverage techniques based on single events.

2.3 Model evaluation

In the field of predictive process monitoring, model evaluation is usually performed on
publicly available real-life event logs. These are often event logs from the Business Process
Intelligence Challenge (BPI), which was a process mining challenge organised during
the yearly International Conference on Process Mining (ICPM). Although data sets are
usually the same, evaluation methods are usually different between research papers. This
section will proceed with some examples of how model evaluation is done for a small,
random selection, of articles published in the field.

The benchmark performed in [Rama-Maneiro et al., 2021] performs 5-fold cross-validation,
where the final performance is given as the performance in the final fold. The splitting is
done in an 80/20 ratio. Events are ordered using the timestamps from the trace. Metrics
used for evaluation include: accuracy (for next activity), Damerau-Levenshtein distance
(for activity suffix) or Mean Absolute Error (for next- and remaining time). Although
this paper describes the prediction tasks outcome, attribute and attribute suffix, they do
not consider these prediction problems in their benchmark. The paper does not describe
any event log-specific transformations done. No details are given for the hyperparameter
search space in the paper. The code is available on GitHub, but a quick analysis shows
no systematic approach for defining the hyper-parameter search space.

Teinemaa et al. [Teinemaa et al., 2019] performed a benchmark on outcome-orientated
predictive process monitoring approaches. The authors compare various algorithms
and combinations of sequence encoding techniques. They performed a three-fold cross-
validation and used the AUC metric to determine the best model. The paper also provides

8

CHAPTER 2. BACKGROUND & RELATED WORK

metrics for computation time and earliness of the prediction. Since the authors focused
on outcome-oriented predictions, the event logs were enhanced with custom labels to
simulate the process outcomes.

In 2021 Kratsch et al. performed another comparison of outcome-oriented approaches.
They used only a partial subset of the logs in [Kratsch et al., 2021] and created their own
set of outcome labels. The authors performed a 10-fold cross-validation on each of the
compared methods. Performance is given using the following metrics: accuracy, precision,
recall, F-beta, and AUC score.

2.4 Challenges in model evaluation

Most of the studies described in section 2.3 evaluate models by performing a train-test
split and/or performing k-fold cross-validation. Splitting is commonly done by sorting
events according to their occurrence time in the event log, and taking the first n rows
for training and the remaining part for evaluation. This is standard practice in machine
learning research, as it makes sure the model is evaluated on unseen data. However,
recent publications have shown that evaluations done in this matter might not always
produce reliable estimates of a model’s real-world performance [Abb et al., 2023].

2.4.1 Generalization

Abb et al. [Abb et al., 2023] have published a discussion on example leakage and gener-
alization in next activity prediction. The authors argue that current evaluation methods
produce unreliable estimates of the real-world performance of a model. The authors iden-
tify a problem where most PPM models learn to predict the next activity primarily based
on the already completed activities. This questions whether PPM models actually learn
anything about the underlying business process, or completely rely on the activity prefix,
which contains high levels of example leakage.

This concept is demonstrated by comparing a state-of-the-art deep learning model
with a naive baseline, which only predicts the most common next activity based on the
last activity. This comparison is done on five popular benchmark event logs. The results
show only a few percentage points difference in performance for the worst-case scenario
and the same performance in the best-case scenario. The same performance is achieved on
an event log where the test set contains no new activity traces compared to the training
set. The question is whether this small difference in performance is caused by the fact
that this is simply a trivial prediction task, and thus both models being close to the
maximum achievable score, or whether there exists a more complex relation which is not
captured due to overfitting on the activity prefix.

The authors also discuss an ’accuracy limit’ problem found in nearly all event logs.
Consider two identical activity prefixes that precede some decision point in a process. For
a naive model, there is a clear maximum achievable accuracy for this type of path as it
will always predict the most common ’decision’. The authors show that state-of-the-art
models are also bounded by this same accuracy limit. Intuitively, one might argue that
more complex models should be able to learn at least some of the factors influencing
the decision based on other process attributes, thus being able to exceed this maximum
as its only determined by the activity prefix. This, combined with the observation that
most event logs contain high levels of example leakage, calls into question the level of
generalisation these state-of-the-art models are capable of.

9

CHAPTER 2. BACKGROUND & RELATED WORK

The authors continue by describing three generalisation tasks which could be measured
to determine the generalisation ability of next activity prediction models. These are:
unseen control flow, unseen attribute value combinations, and unseen attribute values.
An unseen control-flow can occur when the training data does not contain an example of
a specific sub-sequence of activities. This can happen if a subset of process activities is
allowed to be executed in any order, and this particular sequence was not present in the
training data. I.e. activities C1, C2, and C3 can occur in any order, and the sequence
⟨C1, C3, C2⟩ was not part of the training data. A model capable of generalisation should
have learnt that the subsequence has completed and that the next activity is D.

Unseen attribute value combinations occur when the training data does not contain
an example of a specific activity attribute pair. An example of this is when the training
data only contains traces in the form of ⟨(A,R1), (B,R2), (C,R3)⟩, and a new trace
⟨(A,R1), (B,R1)⟩ is given. A model capable of generalisation should predict C, as C
always follows B. The model should not take into account the resource associated with
B to make the prediction in this case.

Sometimes, training data might not contain all unique attribute values. This can
happen, for example, if new resources are employed or product prices change. Predictive
process monitoring models should be capable of handling such changes and generate
informed predictions. I.e. if some numeric attribute influences the path of the process
and a new numeric value is observed, the model should predict the path of the closest
numeric value in the training data.

The generalisation challenges described above are merely a starting point and do not
cover all prediction tasks. More work is needed to come up with more ways to determine
PPM model’s generalisation capabilities and implement methods to measure these.

2.4.2 Selection bias

Weytjens and de Weerdt [Weytjens and De Weerdt, 2021] have published paper describ-
ing two forms of selection bias that occur when splitting data using the methods described
earlier, specifically for predicting the remaining time. Firstly, in most cases, to be able to
determine the target variable for prediction, one must filter the event log for completed
cases. This produces a form of bias where uncompleted long-running cases are removed
from the end of the dataset, resulting in a test set which contains a larger proportion of
short cases compared to the training data.

The second form of bias comes from the inter-case properties at the end of this filtered
event log. Since uncompleted cases are removed from the data, the number of running
cases at the end of the data set no longer reflects the underlying business process. If this
last part of the dataset is used for testing, any learnt inter-case dynamics are not usable
for the test set.

The authors propose a method to debias the end of the event log, by removing all
events that occur in a time window equal to the longest duration case from the end. A
similar process is followed to split the training data from the test data. Figure 2.1 shows
a visual representation of which parts of the dataset are removed. In Section 4.1 of this
thesis you will find more details on the implementation of this debiasing strategy.

Some work has been done by the authors to create benchmark data sets that remove
this type of bias. However, their public Github repository shows only a limited amount
of datasets, which could be further extended.

10

CHAPTER 2. BACKGROUND & RELATED WORK

Figure 2.1: Visual representation of testset debiasing strategy introduced by Weytjens and de Weerdt [Weytjens and De Weerdt, 2021]

11

Chapter 3

Methodology

This chapter provides a detailed description of the methodology used for this research.
These are given as the six design science objectives.

3.1 Design science

This research will follow a design science approach. This is a research paradigm that
focusses on the development and evaluation of artefacts that aim to improve an en-
vironment. In this case, the development of a reusable benchmark framework for the
evaluation of PPM models. Hevner describes three main cycles in design science research
[Hevner, 2007], these are outlined in Figure 3.1. These cycles are the relevance cycle, the
rigour cycle, and the design cycle.

Figure 3.1: The three design science cycles

Peffers et al. [Peffers et al., 2020] identified six main objectives which must be in-
cluded in the design science research of information systems. These are:

1. Problem identification and motivation

2. Objectives of a solution

3. Design and development

12

CHAPTER 3. METHODOLOGY

4. Demonstration

5. Evaluation

6. Communication

These objectives can be translated into the design science cycles described by [Hevner, 2007].
Objectives 1 and 2 are part of the relevance cycle. The design cycle encompasses objec-
tives 3-5, while objective 6 is grounded in the rigour cycle. To ensure that this research
produces useful contributions to the field of predictive process monitoring, I will further
elaborate the methodology of this research based on the principles described above.

3.2 Problem identification

Problem identification was done before starting the thesis project. This was done by
writing a comprehensive research plan that included relevant related work and possible
contributions to the field. This document contains the most important details for this
problem identification.

3.3 Solution objectives

The long-term objective of this research is to reach a consensus on model evaluation meth-
ods in the field of PPM. It is naive to think that a single master’s thesis can reach this
objective. Moreover, as more prediction tasks are developed and more public event logs
become available, the requirements for such an evaluation approach might shift. There-
fore, it is important to design an approach that can withstand changing requirements
(RQ3). This makes another objective of this research to design a design science method
itself.

3.3.1 The model evaluation framework

In practice, a carefully designed, open-source, extendable framework can serve as a design
science artefact. As the objective is to build a software package for PPMmodel evaluation,
the solution objectives for this part will be given in terms of requirements. This is
a common practice in software development. These are very general requirements and
require further refinement. Requirement refinement will be an ongoing process during this
research as more knowledge becomes available. The following is a list of initial (rough)
requirements.

1. The solution should allow the user to retrieve a test- and training dataset using an
API.

2. The solution should have a consistent API regardless of the data set or evaluation
metric.

3. Adding new evaluation datasets should be straightforward, maintaining a consistent
API.

4. Adding new evaluation metrics should be straightforward and maintain a consistent
API.

13

CHAPTER 3. METHODOLOGY

5. A knowledge base should be part of the final solution containing: model evaluations
with paper references, documentation on how to evaluate models, and documenta-
tion on how to extend the framework.

6. Must be built in Python

7. Framework must work with models trained using: Scikit-learn, Tensorflow, or py-
Torch.

8. The data sets must be downloadable either using the library or included directly
with the source code.

9. After evaluating the model, a report should be returned to the user containing the
following evaluation metrics:

• For general classification tasks: AUC, precision, recall, F-1 and accuracy

• For sequence classification tasks: Damerau-Levenshtein distance

• For regression tasks: MSE, RMSE, and MAE

Model evaluation techniques
To develop new PPM model evaluation techniques, RQ1 must be answered. This requires
the development of evaluation methods that capture the generalisation ability of models
described in the article by Abb et al [Abb et al., 2023]. This will be done by constructing
various benchmark datasets that can be used to measure a model’s generalisation ability.
The following event log characteristics will be taken into account for evaluating models
and measuring generalisation:

• Unseen activity sequences: measure the performance of the model when includ-
ing unseen activity sequences at various levels of complexity.

• Label ambiguity: Performance measurements should account for potentially high
levels of label ambiguity in event logs.

• Attribute drift: measure the performance of the model when various types of
attribute drift are introduced, such as new resources or new activities.

3.4 Design and development

The design and development cycle will consist of designing a system architecture and
refining the requirements. Part of the input for this cycle will be the answers to RQ1, as
this is needed to refine requirements related to specific generalisation metrics.

At least three iterations of the design cycle can be identified when considering the
requirements of Section 3.3. Firstly, a ’skeleton framework’ must be developed. This
skeleton framework is based on requirements 1-4. After that, the skeleton framework
can be used to implement the evaluation methods identified by answering RQ1. The
third cycle will consist of improvements as the framework is rigorously tested during the
answering of RQ4.

Completing these cycles will both ensure a robust framework capable of handling
shifting requirements as the field of PPM matures, and provide an initial contribution to
solving the problems described in sections 2 and 3.

14

CHAPTER 3. METHODOLOGY

3.5 Demonstration and evaluation

Demonstration & evaluation of the framework will be carried out by answering RQ4 and
evaluating the design phases described in Section 3.4. The framework will be considered
as a significant contribution if the skeleton framework is sufficient to extend the framework
with new evaluation metrics developed after answering RQ1. Evaluation methods will
be considered successful if they successfully capture differences in state-of-the-art models
and the naive baseline described in [Abb et al., 2023].

3.5.1 Demonstration of evaluation framework

To answer RQ4, which aims to demonstrate the developed framework, RQ2 needs to
be answered. This requires the identification of relevant models in the literature. This
will be done by performing a backwards snowball literature review. Snowball literature
research involves selecting an initial, relevant paper and then systematically exploring its
references. This process is repeated recursively, following citations within each referenced
paper, until a predetermined stopping criterion is met, such as reaching a saturation point
where no new relevant information is found or when the sources become too outdated or
irrelevant. The starting paper for this literature research will be the work of Weinzierl et
al. [Weinzierl et al., 2024] as it is the most recent published literature review related to
the field.

Two general rules will be followed for including sources for further exploration: the
topic of the source must be a literature review on PPM or a novel PPM method, and
the source must be published after January 2019. The first rule will prevent a complete
’explosion’ of sources while still allowing more exploration using literature reviews. The
second rule will save some work in analysing papers of outdated methods. It is likely that
any method published before 2019 is somewhat outdated. It is also not the main goal of
this review to provide a complete overview of all published methods, as the only goal is
to validate the developed benchmark.

3.6 Communication

Communication is part of the knowledge base component of the design cycle in Figure
3.1. Section 3.3 describes the requirements for this knowledge base as part of the general
requirements of the framework. Communication will be done in two-fold: a complete
master’s thesis describing the proposed solution and a comprehensive documentation of
the solution.

The thesis will be mainly geared towards the description and evaluation of all objec-
tives set in Section 3.3. As one of the objectives is to create a framework that allows
for further extension, there must also be a standalone documentation/knowledge base
for the framework. This knowledge base should contain information on how to extend
the framework, use it to evaluate models, and contain the evaluations of state-of-the-art
models. All of this can be found on the GitHub page of this thesis1.

1https://github.com/hiddevr/ppm benchmark

15

https://github.com/hiddevr/ppm_benchmark

Chapter 4

Implementation

Chapter 4 describes the technical details of the implemented benchmark framework. It
includes a detailed UML diagram, motivation behind the dataset selection, and the strat-
egy used to measure generalization in PPM models. For more details on the benchmark
framework, see the GitHub project1.

4.1 Benchmark data selection

Popular datasets for evaluating PPM models include the Business Process Intelligence
Challenge (BPIC) event logs [van Dongen, 2020b], hospital billing event log [Mannhardt, 2017]
and sepsis cases event log [Mannhardt, 2016]. These are all datasets from real business
processes. As mentioned earlier, the data in the benchmark will be debiased using the
methods proposed in [Weytjens and De Weerdt, 2021].

The debiasing strategy works by first identifying any chronological outliers in a dataset.
These are cases that start significantly earlier/later compared to all other cases in the
event log. This is done by performing a visual inspection of the number of cases by start
date. Figure 4.1 shows an example plot used for visual inspection. We can clearly see
that any cases that start before the main peak (around 2018) can be considered outliers.
The second step in the debiasing process is debiasing the end of the dataset. This is
done by removing all cases from the end that are longer than the case of longest duration
(after removing the top 5%). This ensures that only finished cases remain in the dataset,
removing any duration bias from unfinished shorter cases at the end of the data set.

Figure 4.1: Example of dataset containing chronological outliers.

1https://github.com/hiddevr/ppm benchmark

16

https://github.com/hiddevr/ppm_benchmark

CHAPTER 4. IMPLEMENTATION

After that, a strict temporal split is applied on the dataset, meaning only cases com-
pleted before the separation time are included in the train set. For this benchmark
framework, a test set size of 20% was chosen. Cases that started before the separation
time but ended after the separation time are added to the test set. This leaves a slightly
biased part at the end of the train set and the start of the test set, for which no solution
has been found yet.

Table 4.1 shows all datasets selected for the benchmark framework with their proper-
ties after applying the debiasing strategy described above. It appears that not all of the
datasets are suitable for PPM model benchmarking, as insufficient samples remain after
debiasing. This result underlines the importance of the debiasing strategy and suggests
that existing publications in the field might rely too heavily on biased datasets.

The datasets BPIC 2011, all BPIC 2013 datasets, Mobis and Production all lose too
many cases after debiasing to be representative of the original business process. The
BPIC 2016 data set is a special case where the data set will be completely removed when
applying the debiasing strategy. This is likely caused by the fixed time span over which
the event log was created, resulting in nearly all cases being unfinished.

Table 4.1: Dataset properties of the identified publicly available event logs after applying the debiasing strategy.

Dataset
Top 5% duration

(days)
Cases original # Cases train # Cases test % Cases retained Date start Date end Reference

BPIC 2011 992 1143 31 210 21,09% - - [van Dongen, 2011]
BPIC 2012 31,34 12087 7799 2719 87,03% - - [van Dongen, 2012]
BPIC 2013: Open problems 324,95 716 280 88 51,39% 2011-10 - [Steeman, 2014]
BPIC 2013: Closed problems 660,71 1456 221 70 19,98% 2010-01 - [Steeman, 2014]
BPIC 2013: Incidents 35,7 7228 563 3155 51,41% 2012-04 - [Steeman, 2014]
BPIC 2014 19,99 46616 31582 8675 86,39% 2013-10 - [van Dongen, 2014]
BPIC 2015: Municipality 1 313,43 1199 711 242 79,48% 2010-10 - [van Dongen, 2015]
BPIC 2015: Municipality 2 470,37 832 407 177 70,19% 2010-10 - [van Dongen, 2015]
BPIC 2015: Municipality 3 197 1409 914 268 83,90% 2010-10 - [van Dongen, 2015]
BPIC 2015: Municipality 4 274,65 1053 579 243 78,14% 2010-10 - [van Dongen, 2015]
BPIC 2015: Municipality 5 260,48 1156 721 212 80,66% 2010-10 - [van Dongen, 2015]
BPIC 2016 235,06 27412 - - - - - [Dees and van Dongen, 2016]
BPIC 2017 42,52 31509 21314 7854 92,62% - - [van Dongen, 2017]
BPIC 2019 142,3 251734 85277 86055 68,02% 2018-01 2019-02 [van Dongen, 2019]
BPIC 2020: Domestic declarations 29,2 10500 7692 2186 94,17% - - [van Dongen, 2020a]
BPIC 2020: International declarations 244,35 6449 2525 2288 74,61% 2017-01 - [van Dongen, 2020a]
BPIC 2020: Payments 31,27 6886 5035 1486 94,68% 2017-01 - [van Dongen, 2020a]
BPIC 2020: Permits 209,32 7065 3952 2555 92,17% 2017-01 - [van Dongen, 2020a]
BPIC 2020: Travel Costs 112,17 2099 1263 545 86,14% - - [van Dongen, 2020a]
Helpdesk 57,99 4580 3221 1084 93,93% - - [Polato, 2017]
Mobis 168,17 6555 665 2016 40,89% 2017-02 - [Scheid et al., 2018]
Production 72 225 - - - 14-01-2012 - [Levy, 2014]
Traffic 968 150370 89687 31476 80,56% 2012-12 - [de Leoni and Mannhardt, 2015]

17

CHAPTER 4. IMPLEMENTATION

4.2 Measuring generalization

Section 2.4.1 has introduced some of the work done by Abb et al. [Abb et al., 2023] on
defining what generalization means in the context of next activity prediction in PPM.
This section will expand on this work by proposing methods to measure generalization
for each prediction task described in section 2.2.1. The goal is to find a set of metrics for
all PPM problems, such that future research in the field will use this same set of metrics
allowing for a direct comparsion between models.

4.2.1 Next activity & next attribute prediction

The work by Abb et al. [Abb et al., 2023] already describes some definitions for general-
ization in next activity prediction for PPM. This includes a model’s ability to accurately
predict the next activity for unseen activity sequences, for sequences with concurren-
cy/loops and for sequences with attribute drift. Simple metrics like precision, recall,
AUC, accuracy or F1-score can be used to quantify the performance on each of these
scenarios.

A problem in PPM is the relatively high level of label ambiguity in event logs when
considering only the activity prefix. Abb et al. have shown that state-of-the-art models
are bounded by an accuracy limit caused by decision points in the process. It is unclear
whether this problem can be overcome by creating more complex models, or whether this
is an unavoidable problem. One way to get more insight into this, would be to leverage
prediction probabilities to measure the model’s behaviour in these ambiguous situations.
Below we introduce a metric called the probability ratio score (PRS), which can be used
to quantify how well a model is able to predict a label in such ambiguous situations. For
each label j, rj is the ratio of:

• The mean probability of j on samples where j is not the true label (incorrect).

• The mean probability of j on samples where j is the true label (correct).

thus:

rj =

∑
i

pij
(
1− yij

)
/ (N −Nj)∑

i

pij
(
yij

)
/ Nj

where:

• N : Number of test instances.

• Nj: Number of test instances with label j.

• pi,j: Predicted probability of label j for test instance i.

• yi,j ∈ {0, 1}: Indicates whether sample i has true label j.

To avoid rj blowing up for instances where the mean probability of j on samples where
j is the true label is extremely low, a log-sigmoid transform is applied resulting in the
final form Rj:

Rj = σ (ln(rj + ϵ)) =
(rj + ϵ)

1 + (rj + ϵ)
.

18

CHAPTER 4. IMPLEMENTATION

Here ϵ is a small constant set at 1e−7 to avoid taking ln(0) in some cases.
The final score PRS is given as the mean of Rj across all labels.
The resulting metric can be interpreted as follows:

• When PRS ≈ 0.5: On average, the probability for labels on incorrect samples is
similar to that on correct samples.

• When PRS < 0.5: On average, the model tends to give less probability to labels
on wrong samples than on correct samples.

• When PRS > 0.5: On average, the model is giving higher probability to labels on
incorrect samples than on correct ones.

4.2.2 Next timestamp prediction & remaining time prediction

A model trained to perform timestamp prediction should be able to predict the timestamp
of the next activity (or remaining time) by leveraging various process attributes. A naive
baseline would use a simple statistic like the mean or median time between activities to
predict the next timestamp. A real business process likely has many factors influencing
the duration in-between activities such as: resource availability, process dependencies,
prioritization, resource experience and various external factors.

A model capable of generalization should be able to learn at least some of the time-
influencing factors, and avoid generic predictions approaching a constant. It could thus
be useful to compare the distributions of the predictions and actual targets to measure
generalization. A correlation test can be used to compare the two distributions. A com-
bination of correlation together with the RMSE, MSE or MAE, can be used to determine
how well a model adjusts its predictions to the case execution context.

4.2.3 Activity suffix & attribute suffix prediction

Suffix prediction is a task where a model aims to predict the remaining sequence of
attributes or activities for a running case. This type of prediction should be evaluated
using the same methods as regular activity/attribute prediction, only using a metric
suitable for sequences such as the Damerau-Levenshtein distance.

4.2.4 Outcome prediction

Outcome prediction can either be a regression or classification task. The goal here is to
predict some outcome variable given an unfinished case in the same format as an event
log. This type of prediction task is more similar to a classical machine learning problem
compared to the tasks described above. As we are still dealing with process data, there
might still be a risk of overfitting on the activity prefix, due to its the high levels of
data leakage. For this reason the same methods as in next activity/attribute prediction
will be used. It might also be necessary to balance the evaluation metrics for potentially
unbalanced classes in the dataset.

4.2.5 Comparing generalization between models

Combined with appropriately debiased datasets, all metrics described in this section
should give an indication on how well a PPM model will perform on unobserved data.

19

CHAPTER 4. IMPLEMENTATION

However, these metrics should not be used as a performance metric on their own, as differ-
ent process circumstances are not captured by these metrics. The benchmark framework
should not only incorporate these metrics into its evaluation functions, but also incor-
porate these metrics into various graphs that visualize the performance across different
scenarios within a process.

4.3 Benchmark Framework

An initial version of the benchmark framework was implemented by following the re-
quirements specified in section 3.3.1. The core idea behind the framework is to make
it easy for researchers to run a standardized benchmark on their PPM models, while
also enabling users to extend the benchmark with new datasets and metrics. Figure 4.2
shows the class diagram of the implemented framework. To reduce clutter, some of the
implemented subclasses have been omitted. These are some of the subclasses extended
from the abstract classes.

The framework consists of two core components: the BenchmarkLoader and Exper-
iment classes. The BenchmarkLoader is responsible for initializing a benchmark, either
by loading an already initialized benchmark from disk or by initializing a new one from
a configuration file. The configuration can be used to specify which datasets should be
used, how different benchmark tasks should be generated from these datasets, and which
metrics should be used for evaluation.

When initializing a new benchmark from a configuration file, 4 submodules are used:
DatasetLoaders, DatasetNormalizers, Metrics, and TaskGenerators. These submodules
contain classes extended from their respective base model. These modules are designed
in such a way that they can be easily extended for implementing new benchmarks. This
section will proceed with a description of these submodules.

4.3.1 DatasetLoaders

The DatasetLoader classes inside the DatasetLoaders module are responsible for retriev-
ing the source data. Currently supported methods are remote from url or local using a
file path. The remote from url component requires a data owner to be specified, which
is displayed to the user when downloading the data. This way, datasets with unclear
licenses can be downloaded from their source with appropriate attributions.

4.3.2 DatasetNormalizers

The DatasetNormalizer classes inside the DatasetNormalizers module are responsible for
formatting the data into a pandas dataframe, and use the XES naming conventions
[xes, 2016]. Some important column names in this standard are as follows: the case iden-
tifier column should be named ’case:concept:name’, the activity timestamp column should
be named ’time:timestamp’, the activity resource column should be named ’org:resource’,
and the activity column should be named ’concept:name’. DatasetNormalizers are also
responsible for performing the debiased train/test split on a dataset, and calculating the
target variable.

20

CHAPTER 4. IMPLEMENTATION

4.3.3 Metrics

Metric objects are wrappers around an evaluation function, and must contain an eval-
uate() method. Metrics are added to a task such that the evaluation method of a task
returns the score on each metric.

4.3.4 Configuration file

A configuration file is used to specify each of the submodules required for a benchmark,
an example of such a configuration file can be found in appendix 1. Datasets are spec-
ified with their appropriate DatasetLoader, DatasetNormalizer, and TaskGenerators. A
BenchmarkLoader object is then responsible for orchestrating the Benchmark initializa-
tion. After initialization the Benchmark is saved locally for easy retrieval.

4.3.5 Experiments

The Experiment class can be used for easy tracking of predictive process monitoring ex-
periments. the init run() method returns a Callback object which can be used to track
training metadata and model evaluations. Two types of callbacks are implemented: a
GenericCallback and TFCallback. The GenericCallback allows for the tracking of any
PPM experiments by manually calling its methods inside the training loop. The TFCall-
back can be added to a Tensorflow model for automated tracking. Tracking is done inside
Run objects which can be exported as a dictionary for easy processing of experiment data.
The save() method on the experiment object can be used to save an experiment and its
runs to disk.

21

CHAPTER 4. IMPLEMENTATION

Figure 4.2: The class diagram of developed benchmark framework. It provides a simplified overview of the framework’s architecture, by
visualizing the implemented classes and their relationships.

4.3.6 TaskGenerator

A TaskGenerator is responsible for generating baseline predictions and evaluation metrics
for given prediction problems. A TaskGenerator has been implemented for the following

22

CHAPTER 4. IMPLEMENTATION

prediction problems: next attribute prediction, outcome prediction, and attribute suffix
prediction. Each of these prediction problems has a TaskGenerator for both classification
and regression.

Each TaskGenerator calculates the values needed to create the plots described in the
next section (4.3.7). This includes calculating the closest train activity sequence for each
test instance (in terms of Damerau Levensthein distance), finding attribute drift in the
test set, and calculating baseline predictions. It should be noted that the calculation of
the closest train sequence is an estimation and not an exact value. More details are given
in 4.3.6.

The following baselines were implemented in the benchmark:

• Next attribute classification: a distance baseline giving the probability of each
possible next attribute for the closest train activity sequence. A naive baseline giv-
ing the probability for each possible next attribute value, given the current attribute
value, considering the entire training set.

• Next attribute regression: The median of all target values.

• Outcome classification: The mean probability for each class over the whole train
set.

• Outcome regression: The median of all target values.

• Attribute suffix classification: The most common following attribute for the
current attribute.

Activity sequence matching
A sequence matching algorithm was implemented that is used by both the next attribute
classification distance baseline and one of the benchmark plot methods. This matching
algorithm attempts to find the activity sequence in the training data closest to a given
activity sequence, in terms of the Damerau-Levenshtein distance. The algorithm works
by calculating the distance between a given sequence and a randomly selected sequence
from the training data for each iteration. The algorithm returns the best matching
sequence after no sequence with a lower distance is found after 100 iterations. This
random search approach was chosen because of the computational cost of calculating the
Damerau-Levenshtein distance for each combination of activity sequences.

4.3.7 Evaluator

The evaluator class is a wrapper around a PlotGenerator object, which is responsible for
generating consistent graphs to evaluate a trained model. Each task has its own plotting
methods that can be used to gain insight into the generalisation abilities of PPM models.
Currently, three different plot methods have been implemented.

Figure 4.3 shows an example of a graph displaying the accuracy of a next activity
prediction model by the distance from the train sequence. The model is a Random
Forest (RF) classifier with default parameters. The plot is generated by calculating the
Damerau-Levensthein distance between each test instance and the closest train sequence.
The test instances are then grouped by this distance and predictions are made for each
group. This plot shows the accuracy for each group, but any metric implemented in the
benchmark is supported.

23

CHAPTER 4. IMPLEMENTATION

Figure 4.3: Example of a train sequence distance plot generated by the benchmark framework.

0 10 20 30 40 50
0.0

0.1

0.2

0.3

0.4

0.5

0.6

bpi 2015 1

0 10 20 30 40 50
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

bpi 2015 3

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Train Sequence Distance

F
1S
co
re

F
ra
ct
io
n
of

T
ot
al

S
am

p
le
s

RandomForest naive baseline distance baseline Fraction of Total Samples

Figure 4.4: Example of an attribute drift plot generated by the benchmark framework.

0.0 0.1 0.2 0.3 0.4

org:resource

monitoringResource

question

actioncode

activityNameEN

activityNameNL

concept:name

case:lastphase

bpi 2015 1

0.0 0.1 0.2 0.3

question

actioncode

activityNameEN

activityNameNL

concept:name

case:lastphase

case:Responsibleactor

bpi 2015 3

F1Score Penalty

D
ri
ft
A
tt
ri
b
u
te

RandomForest naive baseline distance baseline

The motivation behind this graph lies in the observation made by Abb et al. [Abb et al., 2023]
that most real-world event logs contain a large amount of example leakage between the
train and test set. This graph aims to give an indication of how well a model is able to
generalise by also measuring its performance on activity sequences not observed in the
training data. If a model overfits on the activity prefix, this should be clearly visible in
this plot.

Figure 4.4 shows the decrease in F1-score for test instances where some attribute value
is not present in the training data. As with the previous plot, F1-score is displayed here,
but any metric implemented in the benchmark is supported. This plot can be used to see
how well a model can generalise for cases where attribute drift should have no impact on
predictive performance. An example could be attribute drift in the org:resource column,
where hiring a new employee should have no impact on performance. It gives a visual
representation of the performance on the ”attribute drift” generalisation task described
in Section .

Figure 4.5 shows the accuracy of a model when grouped by its fraction completed.
These fractions completed are binned in 20 groups. This graph is mostly useful for com-
paring the earliness of outcome predictions but could also be useful for finding individual
strengths and weaknesses of models.

24

CHAPTER 4. IMPLEMENTATION

Figure 4.5: Example of a fraction completed plot generated by the benchmark framework.

0.
03
0.
07
0.
12
0.
17
0.
23
0.
28
0.
33
0.
38
0.
42
0.
47
0.
53
0.
57
0.
62
0.
68
0.
72
0.
78
0.
82
0.
88
0.
93
0.
97

0.1

0.2

0.3

0.4

0.5

0.6
bpi 2015 1

0.
03
0.
07
0.
12
0.
17
0.
23
0.
28
0.
33
0.
38
0.
42
0.
47
0.
53
0.
57
0.
62
0.
68
0.
72
0.
78
0.
82
0.
88
0.
93
0.
97

0.2

0.4

0.6

0.8

bpi 2015 3

Fraction Completed

F
1S
co
re

RandomForest naive baseline distance baseline

25

Chapter 5

Experiments & Results

This chapter will describe the experiments that were performed to evaluate the benchmark
framework. This includes a brief overview of the available literature to motivate the
selection of models which will be evaluated on the benchmark. Section 5.2 contains the
results of the experiments performed.

5.1 Experiment Setup

5.1.1 PPM literature

A literature review has been performed according to the method described in 3.5.1. The
snowball method identified a total of 111 papers. Some of these papers can only be
accessed through IEEE, for which Leiden University has no open access and therefore
cannot be used for this research. Of the 111 articles, 32 have not included a reference to
their source code, which disqualifies these articles for further analysis.

In total, 27 articles have published their source code and are accessible through Leiden
University. Out of these 27 articles, 15 articles propose a method for next activity/at-
tribute prediction, 2 articles propose a method for next timestamp prediction, 10 articles
propose a method for remaining time prediction, 5 articles propose a method for outcome
prediction, and 1 method was found for suffix prediction. Note that some methods can
be used for multiple prediction types. Table 5.1 shows a list of the identified relevant
papers.

Table 5.1: A table summarizing the results of the literature review. This table contains all identified relevant articles which are accessible
(without paywall) and have their source code published. The title of the article is given together with a brief explanation of its relevance to
this research.

Title Reference Relevance

Enhancing the Accuracy of Predictors of Activity Se-
quences of Business Processes

[Ali et al., 2023] Proposes a new method for activity suffix and remaining time
prediction. The method balances exploration and exploitation
for predicting the next activity, which could have interesting im-
plications for predictions on uncommon activity sequences.

ProcessTransformer: Predictive Business Process Moni-
toring with Transformer Network

[Bukhsh et al., 2021] Authors propose a deep learning architecture leveraging trans-
formers to predict next activities, remaining time and next event
times. They claim an increase in performance compared to other
methods on all problems on nearly all datasets.

Transition-driven time prediction for business processes
with cycles

[Cao et al., 2022] The authors propose a new method for remaining time prediction,
they claim superior performance with respect to all compared
methods.

Continued on next page

26

CHAPTER 5. EXPERIMENTS & RESULTS

Title Reference Relevance

Remaining cycle time prediction with Graph Neural Net-
works for Predictive Process Monitoring

[Duong et al., 2023] The authors propose a new method for remaining time predic-
tion leveraging graph neural networks (GGNN). Results are mea-
sured on the helpdesk, BPIC 2020 and a non-public dataset. The
method shows only a slight increase in performance compared to
LSTM on BPIC 2020 vs helpdesk. The authors claim superiour
performance on the non-public dataset.

PGTNet: A Process Graph Transformer Network for Re-
maining Time Prediction of Business Process Instances

[Elyasi et al., 2024] This paper proposes a new method for remaining time prediction
using a graph transformer network architecture. Authors claim
superior performance on all compared datasets & methods. These
methods include the previously mentioned ProcessTransformer
and GGNN.

Semi-Supervised Discovery of DNN-Based Outcome Pre-
dictors from Scarcely-Labeled Process Logs

[Folino et al., 2022] The authors propose a DNN-based outcome prediction model
especially geared towards sparsely labelled outcome logs. They
show an increase in performance compared to similar methods
for outcome prediction.

Process data properties matter: Introducing gated convo-
lutional neural networks (GCNN) and key-value-predict
attention networks (KVP) for next event prediction with
deep learning

[Heinrich et al., 2021] This paper proposes two new neural network architectures for
next activity prediction. The authors claim a significant per-
formance increase as compared to more classical LSTM-based
network architectures.

Exploiting Event Log Event Attributes in RNN Based
Prediction

[Hinkka et al., 2019] The authors propose a method which leverages an RNN-based
architecture combined with a clustering approach which enables
the use of event attributes as features for next activity predic-
tion. The authors show that their approach of including event
attributes can improve prediction accuracy.

Activity Prediction of Business Process Instances with
Inception CNN Models

[Mauro et al., 2019] The authors compare their newly proposed CNN-based model
to an LSTM model. Results show that the CNN-based model
outperforms LSTM-based models in terms of efficiency and accu-
racy. It should be noted that only 3 datasets were used for this
comparison.

Time Matters: Time-Aware LSTMs for Predictive Busi-
ness Process Monitoring

[Nguyen et al., 2020] The authors propose a new ’T-LSTM’ architecture for next ac-
tivity and next timestamp prediction. They show an increased
performance for 2 out of 2 datasets as compared to a more stan-
dard LSTM architecture.

Predicting remaining execution time of business process
instances via auto-encoded transition system

[Ni et al., 2022] The authors propose a new model for remaning time predic-
tion leveraging an auto-encoded transition system. The approach
shows superior performance as compared to other methods on the
datasets hospital billing, helpdesk and BPIC 2013. It does how-
ever not show superior performance on the BPIC 2012 dataset.

A Multi-View Deep Learning Approach for Predictive
Business Process Monitoring

[Pasquadibisceglie et al., 2021b] The authors propose another novel method for next activity pre-
diction, levering multi-view and deep learning. The authors show
that their proposed method outperforms all other methods on an
extensive selection of datasets.

DARWIN: An online deep learning approach to handle
concept drifts in predictive process monitoring

[Pasquadibisceglie et al., 2023] The method proposed in this article aims to increase prediction
accuracy by adjusting deep learning models for concept drift. The
method outperforms most compared tree-based and ensemble-
based models.

ORANGE: Outcome-Oriented Predictive Process Moni-
toring Based on Image Encoding and CNNs

[Pasquadibisceglie et al., 2020] This paper proposes another CNN-based model for outcome pre-
diction. Results show an increased performance as compared to
SVM, LR, RF, XGB and LSTM based models.

FOX: a neuro-Fuzzy model for process Outcome predic-
tion and eXplanation

[Pasquadibisceglie et al., 2021a] The method proposed in this paper focuses on explainability in
outcome predictions. Results show that the proposed method has
a good trade-off between predictive accuracy and explainability,
even out-performing the previously described ORANGE model
in some cases.

Bayesian Network Based Predictions of Business Pro-
cesses

[Pauwels et al., 2020] This paper proposes a Bayesian network based model for next
activity prediction. Results show that the proposed method is
on-par with LSTM-based models and even outperforms these in
some cases. This comes with the added benefit of explainability
when using bayesian networks.

Incremental Predictive Process Monitoring: The Next
Activity Case

[Pauwels et al., 2021] The paper proposes a method for handling concept drift using an
incremental learning strategy for next activity prediction. Re-
sults show that the method significantly improves ’no-update’
results without having to fully retrain the model. Interestingly,
this is especially true for BPIC 2015 datasets which have an accu-
racy of 0.2-0.3 without update, and 0.72-0.76 using the proposed
method.

Continued on next page

27

CHAPTER 5. EXPERIMENTS & RESULTS

Title Reference Relevance

A Deep Adversarial Model for Suffix and Remaining
Time Prediction of Event Sequences

[Taymouri et al., 2021] In this paper, a deep adversarial model is proposed for both ac-
tivity suffix and remaining time prediction. The authors show
their method outperforms all compared methods on 4 datasets,
for both remaining time and activity suffix in terms of SDL.

Predictive Business Process Monitoring via Generative
Adversarial Nets: The Case of Next Event Prediction

[Taymouri et al., 2020] This papers proposes a similar adversarial network as the pa-
per described above. The authors here show that their method
outperforms all other compared methods in terms of weighted
average accuracy on the same 4 datasets as the paper above. An
interesting observation here is that both this paper and the paper
above compare their method to [Tax et al., 2017], and the paper
above includes this paper in the comparison as well. However,
this paper reports the performance in terms of weighted average
accuracy, while the other paper reports performance in terms of
SDL. This makes it impossible to compare both methods.

Improving Predictive Process Monitoring Through
Reachability Graph-Based Masking of Neural Networks

[Theis et al., 2023] This paper describes another novel approach for next activity
prediction which leverages reachability graphs to mask the neu-
ral networks of decay replay mining methods. Results show in
increased performance as compared to regular decay replay min-
ing methods in terms of AUROC.

Decay Replay Mining to Predict Next Process Events [Theis et al., 2019] Decay Replay Mining leverages petri net models enchanced with
time decay functions to create continuous process state samples.
these samples are used in combination with discrete token move-
ment counters and Petri net markings to train a deep learning
model for next event prediction. The method outperforms all
other compared methods on 9 datasets.

Enhancing Stochastic Petri Net-based Remaining Time
Prediction using k-Nearest Neighbors

[Vandenabeele et al., 2022] In this article, a method is proposed for remaining time predic-
tion which combines petri-nets with k-nearest neighbors. Unfor-
tunately, the authors do not compare their method to state-of-
the-art methods.

Encoding High-Level Control-Flow Construct Informa-
tion for Process Outcome Prediction

[Vazifehdoostirani et al., 2022] The method proposed in this paper aims to encode high-level
process features into the prediction model for outcome predic-
tion. Results show that the approach outperforms vanilla LSTM
models on a large selection of datasets.

Predicting process performance: A white-box approach
based on process models

[Verenich et al., 2019] This paper proposes a method which is used to perform remaining
time prediction using explainable techniques. These techniques
include an analysis of reachability and computing the mean cy-
cle time for the reachable activities. On average, the proposed
method outperforms baselines such as an XGBoost model or
stochastic petri net. No comparison was made to more state-
of-the-art methods.

Predicting Outcomes of Business Process Executions
Based on LSTM Neural Networks and Attention Mecha-
nism

[Wang et al., 2021] This paper describes an outcome prediction method leveraging
and LSTM with an attention mechanism. The proposed method
outperforms all other compared methods.

XNAP: Making LSTM-based Next Activity Predictions
Explainable by Using LRP

[Weinzierl et al., 2020] This paper proposes a LSTM based architecture integrated with
a layer-wise relevance propagation method, to allow for better ex-
plainability. Performance is similar to other LSTM based meth-
ods.

Learning Uncertainty with Artificial Neural Networks for
Improved Remaining Time Prediction of Business Pro-
cesses

[Weytjens et al., 2021] Although this paper describes a novel approach for remaining
time prediction, this approach is based around predicting distri-
butions over specific values.

5.1.2 Model selection

Due to time constraints it is unfeasible to benchmark all models described in table 4.1.
This section will motivate how the selection of models was made.

One goal of this evaluation is to see if the proposed benchmark can give a better
estimation of a model’s real-world performance as compared to popular methods described
in literature. Another goal is to create a unified benchmark which allows for a direct
comparison of models by using the same datasets, with the same pre-processing, on the
same performance metrics.

A good selection of models with which to evaluate the framework should therefore in-
clude: models which have similar architectures but different reported evaluation metrics,

28

CHAPTER 5. EXPERIMENTS & RESULTS

models with very different architectures (to estimate the influence of event log bias on
reported performance), and models with limited experimental results (to validate claims
over more datasets). The following articles were selected based on these criteria:

Next activity prediction:

• Graph-based masking [Theis et al., 2023]: included as it provides a drastically
different approach compared to more standard NN-based methods.

• ProcessTransformer [Bukhsh et al., 2021]: included as the state-of-the-art method.

• Bayesian network based [Pauwels et al., 2020]: included as it is a very simple
method, it would be interesting to see differences with state-of-the-art methods.

Remaining time prediction:

• PGTNet [Elyasi et al., 2024]: will serve as the state-of-the-art model with highest
reported performance.

• ProcessTransformer [Bukhsh et al., 2021]: included to compare against PGTNet
and validate claims of PGTNet paper.

• Petri-net + KNN [Vandenabeele et al., 2022]: included as is it much simpler than
the other two methods and it would be interesting to compare the performance.

Outcome prediction:

• Control-flow features [Vazifehdoostirani et al., 2022]: Included to see the effects
of high-level control-flow features on the debiased datasets.

• LSTM + Attention mechanism [Wang et al., 2021]: will serve as the state-of-
the-art model.

5.1.3 Final setup

To summarize, an initial version of the benchmark framework was implemented which
will be used to measure the predictive performance of 8 models described in 5.1.2. The
performance will be measured on the debiased datasets listed in table 4.1. By using the
evaluator from the benchmark framework, the predictive performance will be compared
using three plots:

• Train sequence distance: A plot that shows the performance of a model on the
test set, where test set prefixes are grouped by their distance from the closest train
prefix. This could give insight into how well a model performs on test prefixes
not observed during training. It should give insight in both the “unseen activity
sequences” and “label ambiguity (in terms of the activity prefix)” tasks described
in 4.3.7.

• Attribute drift: A plot that shows the performance penalty for test instances for
which some attribute value was not observed during training. It should give insight
in the ”attribute drift” task described in 4.3.7.

29

CHAPTER 5. EXPERIMENTS & RESULTS

• Fraction completed: A plot that shows the performance on the test set grouped
by the fraction completed of each test instance. This plot is not directly meant to
answer research questions, but could give interesting insights into early prediction
quality and differences in models.

For next activity predictions (or next attribute classification) tasks the PRS metric
(4.2.1) was added to the framework. This metric might help in measuring how well a
model ”recognizes” test prefixes with multiple theoretically valid predictions. It assigns
a value close to 0 if the model assigns a higher probability to labels even if they are
misclassified.

Furthermore, several baseline predictions were added by the benchmark framework
for each task to see how well a model performs compared to some naive predictions.

5.2 Results

The following section contains the results from the performed experiments. As this re-
search followed a design science methodology, this section will describe the results grouped
by their corresponding cycle or objective.

5.2.1 Relevance cycle

Even though subsection 5.1.2 has described a selection of 10 models across 4 prediction
types, the final evaluation was done on only 4 models. This was due to unexpected dif-
ficulties in implementing the chosen algorithms despite the source code being available.
This made it too time consuming to implement all algorithms. The decision could have
been made to simply adjust the methodology subsection, however, I think that the expe-
rienced difficulties underline why this research is relevant. This subsection will contain a
description of these difficulties as I think they can be considered relevant ’results’.

Project dependencies
An issue encountered with nearly every algorithm is the poorly documented dependencies.
Even if a project contained a requirements file, this commonly did not include any package
versions. This made it very time consuming to find compatible packages especially for
projects using a deep learning framework like Tensorflow or pyTorch. This is because
setting up the appropriate CUDA versions can be an error-prone and time consuming
process when having to try different versions. Pm4py is another package which is used
by nearly all algorithms and which caused a lot of issues. The package has undergone
many major changes in its API over the years, requiring you to find a very specific version
of the package. Documentation on earlier versions of the package is also hard to find,
making it difficult to make code adjustments.

Data Pre-processing
Most projects are published/designed in such a way that it runs the complete pre-
processing and training pipeline for only the datasets used in the article. This is likely
because source code is only published to reproduce results and not implement a model
for custom data. However, the goal of this research is to benchmark the models on the
debiased datasets. These datasets are different from the regular BPIC datasets commonly
used in the published code. Thus, the pre-processing code for each algorithm had to be
adjusted to work with the debiased data and developed benchmark tool. This was by
far the most time consuming task. Algorithms could run just fine after adjusting some

30

CHAPTER 5. EXPERIMENTS & RESULTS

pre-processing steps, but then produce strange results on the benchmark after the (usu-
ally days long) training process had finished. This was usually due to an oversight in the
pre-processing code like a hidden test-set shuffling mechanism, or faulty parameter setup
hidden in some configuration file.

Petri-net generation
Some of the algorithms described in subsection 5.1.2 required a petri net as input. Petri
nets are usually generated using pm4py, which as mentioned earlier, was a difficult library
to work with. I was not able to generate a petri net for all datasets. When pm4py did not
work, I tried using ProM [ProM Tools, 2025] but with no success. The exact cause is not
directly clear. It might have to do with the mining algorithm not being able to produce
a petri-net due to the structure of the event log. Interestingly, datasets for which I was
not able to generate a petri-net were also not present in the original article.

5.2.2 Knowledge base

In the end four models were benchmarked on the developed framework: ProcessTrans-
former next activity & remaining time [Bukhsh et al., 2021], PGTNet [Elyasi et al., 2024]
and PyDREAM (NAP) [Theis et al., 2019]. For both PGTNet and PyDREAM, I was
unable to train a model on all datasets. The evaluation graphs seen in this subsection
contain only the joined results, the full results for ProcessTransformer can be found in
Appendix 2.

5.2.3 Next activity prediction

Table 5.2 contains the results for next activity prediction for the ProcessTransformer and
NAP models. It also shows the predicted results from two baseline methods. The naive
baseline simply returns the most common next activity given the current activity, while
the distance baseline returns the most common next activity based on the closest training
prefix. The reported F1-score is added for datasets where it is available in the original
article. One thing to note about this table is that the metrics are calculated on all test
instances where both models made a prediction. For the ProcessTransformer model, this
means that there are some slight differences with the table in appendix 2. This is because
NAP requires at least three activities to make a prediction.

The results for the F1-score and PRS metric are summarized in figures 5.2 and 5.1.
From the F1-scores we can see that overall, the naive baseline performs worst, while the
distance baseline performance is very similar to that of the state-of-the-art models. The
bpi 2020 domestic dataset seems to be a special case where all performance metrics are
identical.

The results measured using the PRS metric seem to correlate with the F1-score perfor-
mance. Meaning PRS is generally lower where the F1-score is higher. The ProcessTrans-
former model seems to be the only model that outperforms the distance baseline in terms
of PRS. This might suggest that this model is learning more complex relations in the pro-
cess. This is supported by the observation that ProcessTranformer is the best performing
model overall in terms of F1-score.

The results show that the reported F1-score of the ProcessTransformer model is
slightly higher compared to the score observed on most of the debiased datasets. For
the NAP model the reported F1-score on the traffic fine is equal to the benchmark score
while it is substantially lower on the bpi 2012 dataset. For the helpdesk dataset, both

31

CHAPTER 5. EXPERIMENTS & RESULTS

Figure 5.1: Comparison of F1-score across eight event logs. Each subplot compares the F1-score for four approaches: ProcessTransformer
(orange), NAP (green), a naive baseline (light blue), and a distance baseline (darker blue). Higher F1-score values signify better predictive
performance.

P
ro
ce
ss
Tr
an
sf
or
m
er

N
A
P

na
iv
e b
as
el
in
e

di
st
an
ce

b
as
el
in
e

0.0

0.2

0.4

0.6

0.8

1.0
bpi 2012 next attribute

P
ro
ce
ss
Tr
an
sf
or
m
er

N
A
P

na
iv
e b
as
el
in
e

di
st
an
ce

b
as
el
in
e

0.0

0.2

0.4

0.6

0.8

1.0
bpi 2020 domestic next attribute

P
ro
ce
ss
Tr
an
sf
or
m
er

N
A
P

na
iv
e b
as
el
in
e

di
st
an
ce

b
as
el
in
e

0.0

0.2

0.4

0.6

0.8

1.0
bpi 2020 payments next attribute

P
ro
ce
ss
Tr
an
sf
or
m
er

N
A
P

na
iv
e b
as
el
in
e

di
st
an
ce

b
as
el
in
e

0.0

0.2

0.4

0.6

0.8

1.0
bpi 2020 travel cost next attribute

P
ro
ce
ss
Tr
an
sf
or
m
er

N
A
P

na
iv
e b
as
el
in
e

di
st
an
ce

b
as
el
in
e

0.0

0.2

0.4

0.6

0.8

1.0
helpdesk next attribute

P
ro
ce
ss
Tr
an
sf
or
m
er

N
A
P

na
iv
e b
as
el
in
e

di
st
an
ce

b
as
el
in
e

0.0

0.2

0.4

0.6

0.8

1.0
traffic fine next attribute

P
ro
ce
ss
Tr
an
sf
or
m
er

N
A
P

na
iv
e b
as
el
in
e

di
st
an
ce

b
as
el
in
e

0.0

0.2

0.4

0.6

0.8

1.0
bpi 2017 next attribute

P
ro
ce
ss
Tr
an
sf
or
m
er

N
A
P

na
iv
e b
as
el
in
e

di
st
an
ce

b
as
el
in
e

0.0

0.2

0.4

0.6

0.8

1.0
bpi 2019 next attribute

Model

F
1-
S
co
re

32

CHAPTER 5. EXPERIMENTS & RESULTS

Figure 5.2: Comparison of PRS across eight event logs. Each subplot compares the PRS for four approaches: ProcessTransformer (orange),
NAP (green), a naive baseline (light blue), and a distance baseline (darker blue). Lower PRS values signify better predictive performance.

P
ro
ce
ss
Tr
an
sf
or
m
er

N
A
P

na
iv
e b
as
el
in
e

di
st
an
ce

b
as
el
in
e

0.0

0.2

0.4

0.6

0.8

1.0
bpi 2012 next attribute

P
ro
ce
ss
Tr
an
sf
or
m
er

N
A
P

na
iv
e b
as
el
in
e

di
st
an
ce

b
as
el
in
e

0.0

0.2

0.4

0.6

0.8

1.0
bpi 2020 domestic next attribute

P
ro
ce
ss
Tr
an
sf
or
m
er

N
A
P

na
iv
e b
as
el
in
e

di
st
an
ce

b
as
el
in
e

0.0

0.2

0.4

0.6

0.8

1.0
bpi 2020 payments next attribute

P
ro
ce
ss
Tr
an
sf
or
m
er

N
A
P

na
iv
e b
as
el
in
e

di
st
an
ce

b
as
el
in
e

0.0

0.2

0.4

0.6

0.8

1.0
bpi 2020 travel cost next attribute

P
ro
ce
ss
Tr
an
sf
or
m
er

N
A
P

na
iv
e b
as
el
in
e

di
st
an
ce

b
as
el
in
e

0.0

0.2

0.4

0.6

0.8

1.0
helpdesk next attribute

P
ro
ce
ss
Tr
an
sf
or
m
er

N
A
P

na
iv
e b
as
el
in
e

di
st
an
ce

b
as
el
in
e

0.0

0.2

0.4

0.6

0.8

1.0
traffic fine next attribute

P
ro
ce
ss
Tr
an
sf
or
m
er

N
A
P

na
iv
e b
as
el
in
e

di
st
an
ce

b
as
el
in
e

0.0

0.2

0.4

0.6

0.8

1.0
bpi 2017 next attribute

P
ro
ce
ss
Tr
an
sf
or
m
er

N
A
P

na
iv
e b
as
el
in
e

di
st
an
ce

b
as
el
in
e

0.0

0.2

0.4

0.6

0.8

1.0
bpi 2019 next attribute

Model

P
R
S
M
et
ri
c
V
al
u
e

33

CHAPTER 5. EXPERIMENTS & RESULTS

models perform significantly worse on the debiased version. Both models have a re-
ported F1-score of approximately 0.8, and a benchmark score of approximately 0.3 on
this dataset. When looking at the ProcessTransformer predictions in Appendix 2, this
score is slightly higher at around 0.437 but still much lower compared to the reported
score.

ProcessTransformer clearly outperforms all other models in most datasets. However,
it should be noted that in only two out of eight datasets, the ProcessTransformer model
is ahead by more than 6% in terms of accuracy when compared to the distance baseline.
NAP only outperforms the other methods in terms of accuracy for the helpdesk dataset.

Except for the helpdesk dataset, the NAP model does not appear to achieve better
performance than the distance baseline. Especially the bpi 2017 dataset seems to be a
challenge for this model, with only an accuracy of 0.123 it performs even worse than the
naive baseline.

Interestingly, the naive baseline performs poorly on nearly all datasets except for the
bpi 2020 domestic dataset. This might indicate that the debiasing strategy has worked,
as this is the opposite of what was reported in the article by Abb et al. [Abb et al., 2023].

Table 5.2: A comparative overview of prediction scores (Accuracy, PRS, Precision, Recall) for ProcessTransformer, NAP, a naive baseline,
and distance baseline models across multiple datasets. Higher values of Accuracy, Precision, Recall indicate better performance, while the
perfect score for PRS is 0 and PRS ≥ 0.5 is undesirable. The final metric, “Reported F1-Score,” shows F1-Score values from the original
articles (where available).

Dataset Metric ProcessTransformer NAP Naive baseline Distance baseline
bpi 2012 Accuracy 0.836 0.625 0.451 0.629
bpi 2012 PRS 0.015 0.382 0.129 0.094
bpi 2012 Precision 0.800 0.745 0.429 0.613
bpi 2012 Recall 0.836 0.625 0.451 0.629
bpi 2012 F1-Score 0.802 0.653 0.403 0.602
bpi 2012 Reported F1-Score 0.83 0.763 – –
bpi 2020 domestic Accuracy 0.850 0.847 0.850 0.843
bpi 2020 domestic PRS 0.063 0.280 0.254 0.251
bpi 2020 domestic Precision 0.745 0.741 0.742 0.817
bpi 2020 domestic Recall 0.850 0.847 0.850 0.843
bpi 2020 domestic F1-Score 0.787 0.785 0.787 0.785
bpi 2020 domestic Reported F1-Score 0.861 – – –
bpi 2020 payments Accuracy 0.843 0.836 0.596 0.819
bpi 2020 payments PRS 0.097 0.307 0.056 0.005
bpi 2020 payments Precision 0.803 0.725 0.480 0.826
bpi 2020 payments Recall 0.843 0.836 0.596 0.819
bpi 2020 payments F1-Score 0.778 0.771 0.508 0.758
bpi 2020 payments Reported F1-Score – – – –
bpi 2020 travel cost Accuracy 0.798 0.766 0.243 0.756
bpi 2020 travel cost PRS 0.072 0.310 0.300 0.146
bpi 2020 travel cost Precision 0.796 0.688 0.176 0.746
bpi 2020 travel cost Recall 0.798 0.766 0.243 0.756
bpi 2020 travel cost F1-Score 0.769 0.715 0.190 0.728
bpi 2020 travel cost Reported F1-Score – – – –
helpdesk Accuracy 0.325 0.438 0.285 0.299
helpdesk PRS 0.189 0.406 0.369 0.389
helpdesk Precision 0.268 0.317 0.252 0.348
helpdesk Recall 0.325 0.438 0.285 0.299
helpdesk F1-Score 0.284 0.366 0.256 0.272
helpdesk Reported F1-Score 0.82 0.795 – –
traffic fine Accuracy 0.929 0.877 0.454 0.869
traffic fine PRS 0.072 0.339 0.301 0.200
traffic fine Precision 0.929 0.906 0.445 0.906
traffic fine Recall 0.929 0.877 0.454 0.869
traffic fine F1-Score 0.917 0.890 0.448 0.881
traffic fine Reported F1-Score 0.87 0.89 – –
bpi 2017 Accuracy 0.876 0.123 0.244 0.738
bpi 2017 PRS 0.016 0.499 0.013 0.014
bpi 2017 Precision 0.864 0.111 0.332 0.735
bpi 2017 Recall 0.876 0.123 0.244 0.738

Continued on next page

34

CHAPTER 5. EXPERIMENTS & RESULTS

Dataset Metric ProcessTransformer NAP Naive baseline Distance baseline
bpi 2017 F1-Score 0.859 0.116 0.212 0.727
bpi 2017 Reported F1-Score – – – –
bpi 2019 Accuracy 0.775 0.546 0.087 0.719
bpi 2019 PRS 0.105 0.418 0.440 0.177
bpi 2019 Precision 0.838 0.591 0.078 0.793
bpi 2019 Recall 0.775 0.546 0.087 0.719
bpi 2019 F1-Score 0.793 0.547 0.081 0.740
bpi 2019 Reported F1-Score – – – –

Train sequence distance
Figure 5.3 shows the F1-score for each model on the test set, grouped by the test prefix’s
distance from the closest prefix in the training data. The results indicate that it might
be beneficial to perform such analysis compared to simply displaying a results table.
The results table 5.2 suggested that the NAP model significantly outperformed the Pro-
cessTransformer model on the helpdesk dataset. However, when looking at the results in
this graph, it appears that the NAP model only achieves this higher performance because
it outperforms ProcessTransformer on prefixes which were already observed during train-
ing and which consist of a significant portion of the total test samples. When accounting
for this, the results might be considered less impressive.

The plot offers several other notable insights. When looking at the bpi 2012 dataset
for example, an F1-score of 0.653 for the NAP model might sound decent, but the plot
clearly shows this score is much lower for prefixes which were not already present in
the training data. This clearly indicates that the model is not very capable of general-
isation, even though its overall score might sound decent. The bpi 2020 domestic and
bpi 2020 payments plots also raise some questions. The two compared models only score
marginally better compared to the baselines for some samples, but have identical scores
for most. The identical scores are quite strange and might have to do with some of the
unique properties of these datasets.

Furthermore, when looking at the bpi 2020 travel cost dataset, the NAP model and
distance baseline have very similar scores in the results table (0.715 vs 0.728) with the
distance baseline even outperforming NAP. However, after looking at the graph, one might
conclude that NAP clearly outperforms the distance baseline. The overall F1-score being
slightly higher for the baseline is only caused by the fact that it is only slightly better for
samples with distance 0, which account for a much larger portion of test samples thus
inflating the overall score.

Fraction completed
Figure 5.4 displays the F1-score for each model on the test set, grouped by the test
prefix’s completion percentage at the time of prediction. This plot gives another unique
perspective of the performance of a model under various conditions. For the helpdesk
dataset, it is once again visible that the NAP model only outperforms the others on
very specific samples. It would be interesting to investigate what these samples have
in common. For the bpi 2020 domestic and bpi 2020 payments datasets, the identical
results are even more pronounced. The traffic fine dataset now also shows some identical
results, which were not directly visible from the plot earlier.

35

CHAPTER 5. EXPERIMENTS & RESULTS

Figure 5.3: Comparison of predictive performance across eight event logs grouped by the test prefix distance from the closest train prefix.
Each subplot compares F1-score for four approaches—ProcessTransformer (orange), NAP (green), a naive baseline (light blue), and a distance
baseline (darker blue)—as the training sequence distance increases (x-axis). The dashed gray line in each subplot indicates the fraction of
total samples at each distance (right-hand y-axis). Higher F1-scores values signify better predictive performance.

0 5 10 15 20 25 30 35

0.0

0.2

0.4

0.6

0.8

1.0

bpi 2012

0 1 2 3 4 5 6 7

0.0

0.2

0.4

0.6

0.8

1.0

bpi 2020 domestic

0 2 4 6 8 10 12

0.0

0.2

0.4

0.6

0.8

1.0

bpi 2020 payments

0 1 2 3 4 5

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

bpi 2020 travel cost

0 1 2 3 4 5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

helpdesk

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.2

0.4

0.6

0.8

traffic fine

0 10 20 30 40 50

0.0

0.2

0.4

0.6

0.8

1.0

bpi 2017

0 10 20 30 40 50 60 70

0.0

0.2

0.4

0.6

0.8

1.0

bpi 2019

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Train Sequence Distance

F
1S

co
re

F
ra
ct
io
n
of

T
ot
al

S
am

p
le
s

ProcessTransformer NAP naive baseline distance baseline Fraction of Total Samples

36

CHAPTER 5. EXPERIMENTS & RESULTS

Figure 5.4: Comparison of predictive performance across eight event logs grouped by the fraction complete of the test prefix. Each subplot
compares F1-score for four approaches—ProcessTransformer (orange), NAP (green), a naive baseline (light blue), and a distance baseline
(darker blue)-as the fraction completed increases (x-axis). Higher F1-scores signify better predictive performance.

0.
02
5

0.
07
5

0.
12
5

0.
17
5

0.
22
5

0.
27
5

0.
32
5

0.
37
5

0.
42
5

0.
47
5

0.
52
5

0.
57
5

0.
62
5

0.
67
5

0.
72
5

0.
77
5

0.
82
5

0.
87
5

0.
92
5

0.
97
5

0.2

0.4

0.6

0.8

bpi 2012

0.
02
5

0.
07
5

0.
12
5

0.
17
5

0.
22
5

0.
27
5

0.
32
5

0.
37
5

0.
42
5

0.
47
5

0.
52
5

0.
57
5

0.
62
5

0.
67
5

0.
72
5

0.
77
5

0.
82
5

0.
87
5

0.
92
5

0.
97
5

0.2

0.4

0.6

0.8

1.0

bpi 2020 domestic

0.
02
5

0.
07
5

0.
12
5

0.
17
5

0.
22
5

0.
27
5

0.
32
5

0.
37
5

0.
42
5

0.
47
5

0.
52
5

0.
57
5

0.
62
5

0.
67
5

0.
72
5

0.
77
5

0.
82
5

0.
87
5

0.
92
5

0.
97
5

0.0

0.2

0.4

0.6

0.8

1.0

bpi 2020 payments

0.
02
5

0.
07
5

0.
12
5

0.
17
5

0.
22
5

0.
27
5

0.
32
5

0.
37
5

0.
42
5

0.
47
5

0.
52
5

0.
57
5

0.
62
5

0.
67
5

0.
72
5

0.
77
5

0.
82
5

0.
87
5

0.
92
5

0.
97
5

0.2

0.4

0.6

0.8

1.0

bpi 2020 travel cost

0.
02
5

0.
07
5

0.
12
5

0.
17
5

0.
22
5

0.
27
5

0.
32
5

0.
37
5

0.
42
5

0.
47
5

0.
52
5

0.
57
5

0.
62
5

0.
67
5

0.
72
5

0.
77
5

0.
82
5

0.
87
5

0.
92
5

0.
97
5

0.0

0.2

0.4

0.6

0.8

1.0

helpdesk

0.
02
5

0.
07
5

0.
12
5

0.
17
5

0.
22
5

0.
27
5

0.
32
5

0.
37
5

0.
42
5

0.
47
5

0.
52
5

0.
57
5

0.
62
5

0.
67
5

0.
72
5

0.
77
5

0.
82
5

0.
87
5

0.
92
5

0.
97
5

0.0

0.2

0.4

0.6

0.8

1.0

traffic fine

0.
02
5

0.
07
5

0.
12
5

0.
17
5

0.
22
5

0.
27
5

0.
32
5

0.
37
5

0.
42
5

0.
47
5

0.
52
5

0.
57
5

0.
62
5

0.
67
5

0.
72
5

0.
77
5

0.
82
5

0.
87
5

0.
92
5

0.
97
5

0.2

0.4

0.6

0.8

1.0

bpi 2017

0.
02
5

0.
07
5

0.
12
5

0.
17
5

0.
22
5

0.
27
5

0.
32
5

0.
37
5

0.
42
5

0.
47
5

0.
52
5

0.
57
5

0.
62
5

0.
67
5

0.
72
5

0.
77
5

0.
82
5

0.
87
5

0.
92
5

0.
97
5

0.2

0.4

0.6

0.8

bpi 2019

Fraction Completed

F
1S

co
re

ProcessTransformer NAP naive baseline distance baseline

Attribute drift
Figure 5.4 shows the average reduction in F1-score for test instances where the displayed
attribute’s value (y-axis) was not in the training data. The plot provides some interesting
insights into how well a model can handle a changing process. The helpdesk dataset
stands out as it has a significant penalty for the ’concept:name’ attribute, which contains
the name of the activity. It is not very surprising that a model built to predict activities
has a reduction in performance when new activities are added. Appendix 2 also contains
plots from the ProcessTransformer on the bpi 2015 datasets, which also contain attribute
drift in the concept:name column. Here we see a similar trend, but at 0.05 - 0.2 the
penalty does seem lower for these datasets. An important column to look for in this plot
is the ”org:resource” column; this contains the resource that performed the activity. As
noted in the problem statement, under ideal circumstances, a model should not take a
significant hit in performance if a new resource is added to the process. In the plot, we
see that the performance impact of new resources is only substantial on the bpi 2019 and
bpi 2020 travel cost datasets.

The bpi 2020 travel cost, bpi 2019 and helpdesk datasets seem to be the only datasets
for which there is a significant impact on performance for cases with attribute drift.
It seems like these are also the datasets on which models have the worst predictive
performance. This trend continues in table 2 and figure 1 (appendix 2). Although it
makes sense that when plotting errors, the datasets with the highest errors are the ones
with the worst predictive performance, it might point in the direction of where miss-

37

CHAPTER 5. EXPERIMENTS & RESULTS

Figure 5.5: Comparison of the average reduction in F1-score across eight event logs for test instances where some attribute value was
not observed in the training data (attribute drift). Each subplot compares the average decrease in F1-score (F1-score penalty) for four
approaches: ProcessTransformer (orange), NAP (green), a naive baseline (light blue), and a distance baseline (darker blue). The y-axis
indicates the attribute, the x-axis shows the average F1-score penalty. Lower F1-score penalty values signify a model is more capable of
dealing with attribute drift for the given attribute.

-0.03 -0.02 -0.01 0.00

case:AMOUNT REQ

bpi 2012

-0.01 -0.01 -0.01 -0.00 0.00

id

case:DeclarationNumber

bpi 2020 domestic

-0.04 -0.02 0.00 0.02

id

case:RfpNumber

case:Task

case:Project

bpi 2020 payments

-0.20 0.00 0.20

id
case:RfpNumber

case:Task
case:Project

case:Permit travel permit number
case:Permit ProjectNumber

case:Permit id
case:Permit ActivityNumber
case:Permit BudgetNumber

case:Permit OrganizationalEntity
case:OrganizationalEntity
case:Permit TaskNumber

bpi 2020 travel cost

0.00 0.20 0.40

org:resource

concept:name

customer

Variant

Variant.1

product

helpdesk

-0.05 0.00

org:resource

EventID

bpi 2017

-0.50 0.00 0.50

org:resource

case:Sub spend area text

case:Purchasing Document

case:Vendor

case:Name

User

case:Item

bpi 2019

F1Score Penalty

D
ri
ft

A
tt
ri
b
u
te

ProcessTransformer NAP naive baseline distance baseline

classifications come from. When we look at the bpi 2017 dataset, the performance impact
of the attribute drift columns is negligible, but the model does not have a perfect F1-
score (0.859). Meaning on average, the impact on performance is the same as if there was
no attribute drift. Combining this with the PRS metric value which is near perfect for
bpi 2017, it might indicate that dataset/model suffers from the accuracy limit problem
described in Subsection 4.2.1. However, for the helpdesk and bpi 2019 datasets, there
seems to be room for improvement in terms of PRS and some attribute drift columns
have a significant impact on performance. There might be specific unique behaviours in
cases where attribute drift occurs for these datasets which the model was not able to
capture, and thus does not generalise well on.

Remaining time prediction
Table 5.3 shows the results of the remaining time prediction benchmark on the Pro-
cessTransformer and PGTNet model. The included baseline is simply a constant, it
returns the median remaning time across the training set.

The results immediately show that the remaining time scores take a significant hit on
the debiased datasets. The ProcessTransformer model performs worse on all data sets
compared to the baseline. With a correlation of near 0 on all datasets, it seems like this
model is not able to predict the remaining time at all. The PGTNet model can only
outperform the baseline in some bpi 2015 datasets.

38

CHAPTER 5. EXPERIMENTS & RESULTS

Table 5.3: A comparative overview of prediction errors (MAE, RMSE, MSE) and correlation for ProcessTransformer, PGTNet, and a baseline
model across multiple datasets. Lower values of MAE, RMSE, and MSE indicate better performance, while the opposite is true for correlation.
The final metric, “Reported MAE,” shows MAE values from the original articles (where available).

Dataset Metric ProcessTransformer PGTNet Baseline
bpi 2012 MAE 8.378 9.205 7.919
bpi 2012 RMSE 10.835 12.555 10.714
bpi 2012 MSE 117.399 157.634 114.781
bpi 2012 Correlation 0.062 0.034 0.000
bpi 2012 Reported MAE 4.60 2.31 –
bpi 2015 1 MAE 44.901 28.793 39.364
bpi 2015 1 RMSE 67.157 49.700 61.553
bpi 2015 1 MSE 4510.016 2470.076 3788.775
bpi 2015 1 Correlation -0.101 0.621 0.000
bpi 2015 1 Reported MAE – – –
bpi 2015 2 MAE 64.218 46.778 55.249
bpi 2015 2 RMSE 89.580 77.968 80.264
bpi 2015 2 MSE 8024.543 6079.068 6442.347
bpi 2015 2 Correlation 0.049 0.404 0.000
bpi 2015 2 Reported MAE – – –
bpi 2015 3 MAE 20.762 11.973 14.382
bpi 2015 3 RMSE 32.211 20.838 26.608
bpi 2015 3 MSE 1037.522 434.204 708.006
bpi 2015 3 Correlation -0.060 0.601 0.000
bpi 2015 3 Reported MAE – – –
bpi 2015 4 MAE 58.072 50.483 41.644
bpi 2015 4 RMSE 70.446 63.830 51.982
bpi 2015 4 MSE 4962.596 4074.292 2702.176
bpi 2015 4 Correlation -0.015 0.408 0.000
bpi 2015 4 Reported MAE – – –
bpi 2020 domestic MAE 5.500 5.453 4.845
bpi 2020 domestic RMSE 11.925 11.857 11.669
bpi 2020 domestic MSE 142.208 140.597 136.154
bpi 2020 domestic Correlation 0.004 -0.008 0.000
bpi 2020 domestic Reported MAE 2.44 1.19 –
bpi 2015 5 MAE 43.725 41.361 43.265
bpi 2015 5 RMSE 64.531 64.044 55.003
bpi 2015 5 MSE 4164.191 4101.611 3025.350
bpi 2015 5 Correlation 0.083 0.221 0.000
bpi 2015 5 Reported MAE – – –

Train sequence distance Figure 5.6 shows the train sequence distance plot for the
remaining time prediction results shown above. As with next activity prediction, the
plot provides some valuable insights into model behaviour which cannot be deduced from
performance metrics alone. the bpi 2015 datasets, it appears that the test sets contain
a large amount of cases which differ significantly from the training data. This explains
the poor performance of the ProcessTransformer model, which uses a feature set that
relies heavily on the activity prefix. This probably also explains the poor performance of
ProcessTransformer on the bpi 2015 datasets for the next activity prediction (Appendix
2). Interestingly, these are the datasets in which PGTNet achieves a significantly better
performance compared to the baseline. In fact, it seems like the higher the train se-
quence distance, the better the performance. Unfortunately, the plots generated by the

39

CHAPTER 5. EXPERIMENTS & RESULTS

Figure 5.6: Comparison of predictive performance across seven BPIC datasets grouped by the test prefix distance from the closest train
prefix. Each subplot compares mean absolute error (MAE) for three approaches—ProcessTransformer (orange), PGTNet (green), and a
baseline model (blue)—as the training sequence distance increases (x-axis). The dashed gray line in each subplot indicates the fraction of
total samples at each distance (right-hand y-axis). Lower MAE values signify better predictive performance.

0 5 10 15 20 25 30 35

2

4

6

8

10

12

bpi 2012

0 10 20 30 40 50 60 70 80

20

40

60

80

100

bpi 2015 1

0 20 40 60 80

20

40

60

80

100

bpi 2015 2

0 10 20 30 40 50 60 70

5

10

15

20

25

30

35

bpi 2015 3

0 10 20 30 40 50 60

10

20

30

40

50

60

70

bpi 2015 4

0 2 4 6 8 10

2

4

6

8

10

12

14

bpi 2020 domestic

0 20 40 60 80

20

40

60

80

100

bpi 2015 5

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Train Sequence Distance

M
A
E

F
ra
ct
io
n
of

T
ot
al

S
am

p
le
s

ProcessTransformer PGTNet baseline Fraction of Total Samples

benchmark are not detailed enough to explain this behaviour.
Attribute drift The attribute drift plot seen in figure 5.7 reveals another unique per-

spective on model behaviour, which cannot be deduced from the performance metrics
alone. This is especially true for the bpi 2015 dataset. Here, we see that the resource or
monitoring resource has a significant influence on the MAE score. The fact that this is
also the case for the baseline indicates that this is not an overfitting problem, but more
likely has to do with a complete shift in the process. Interestingly, the PGTNet model
seems to handle this shift much better compared to the other models. It would be in-
teresting to investigate exactly what happens here, as it might also explain the observed
performance in the next activity prediction on these datasets for the ProcessTransformer
model.

Since the performance penalty for attribute drift on the bpi 2012 and bpi 2020 domestic
dataset seems to be negligible, while the overall performance is not better than an ex-
tremely naive baseline, suggests that some properties of these datasets prevent the algo-
rithms from learning the remaining time. It is not directly clear from the results why
this happens and is something that needs to be further investigated.

40

CHAPTER 5. EXPERIMENTS & RESULTS

Figure 5.7: Comparison of the average reduction in mean absolute error score (MAE Penalty) across seven BPIC datasets for test instances
where some attribute value was not observed in the training data (attribute drift). Each subplot compares the average decrease in MAE
(MAE penalty) for three approaches: ProcessTransformer (orange), PGTNet (green), and a baseline model (blue). The y-axis indicates the
attribute, the x-axis shows the average MAE penalty. Higher MAE penalty values signify a model is more capable of dealing with attribute
drift for the given attribute.

-1.00 -0.50 0.00

case:AMOUNT REQ

bpi 2012

-150.00 -100.00 -50.00 0.00

org:resource

monitoringResource

question

action code

activityNameEN

activityNameNL

concept:name

case:last phase

bpi 2015 1

-150.00 -100.00 -50.00 0.00

org:resource

monitoringResource

question

action code

activityNameEN

activityNameNL

concept:name

case:last phase

case:Responsible actor

bpi 2015 2

-75.00 -50.00 -25.00 0.00

question

action code

activityNameEN

activityNameNL

concept:name

case:last phase

case:Responsible actor

bpi 2015 3

-20.00 0.00 20.00 40.00

org:resource

question

concept:name

case:last phase

bpi 2015 4

-0.01 -0.00 0.00

id

case:DeclarationNumber

bpi 2020 domestic

-20.00 0.00 20.00

org:resource

monitoringResource

question

activityNameEN

activityNameNL

concept:name

case:last phase

case:parts

bpi 2015 5

MAE Penalty

D
ri
ft

A
tt
ri
b
u
te

ProcessTransformer PGTNet baseline

41

CHAPTER 5. EXPERIMENTS & RESULTS

5.2.4 Design cycle

Benchmark plots
The results in this chapter clearly show the benefit of the developed benchmark framework
over a more standard approach to only compare performance metrics. We have seen in the
bpi 2020 travel cost dataset for next activity prediction that the F1-score indicates that
the baseline outperforms NAP, while the train sequence distance plot tells a different
story. A similar thing happened for the bpi 2012 dataset, for which the NAP model
reported a decent overall score, but closely looking at the plot shows us that this score is
only thanks to a large portion of prefixes which were already observed during training.
In the remaining time prediction problem, the same plot shows that a likely culprit of
poor performance is the large number of cases which are completely different from the
training data. It also shows that even though the performance is not very good, PGTNet
is able to capture at least some relationship between case properties and the remaining
time, serving as a good starting point for further investigations.

The fraction completed plot has proven useful for visualizing unexpected prediction
behaviors in next activity prediction. Some data sets show strange identical performance
on some groups. It is difficult to determine why this happens, but explaining this phe-
nomenon could help to improve the benchmark and possibly also the prediction models.

The attribute drift plot has made a clear distinction between data sets that have
reduced performance because of concept/attribute drift, and datasets for which attribute
drift is not the cause of decreased performance. However, it appears that this is only the
case for the remaining time prediction. ProcessTransformer seems to run perfectly fine
on those same datasets in next activity prediction. In fact, we might even observe the
accuracy limit problem for the ProcessTransformer model on these datasets when looking
at the PRS metric. This shows us that the proposed metric could be useful for scoring
models on these types of data set.

Dataset debiasing
The debiasing strategy also looks promising from the results of the experiments. In next
activity prediction, the naive baseline is clearly not able to make accurate predictions.
This is completely opposite to the results reported by Abb et al. [Abb et al., 2023],
who observed a naive baseline that was on par with the state-of-the-art models in biased
datasets. Furthermore, in remaining time prediction, the reported MAE was significantly
better than the observed MAE on the debiased datasets. Combined with the fact that
no model provides truly impressive performance in this problem, suggests that published
methods for remaining time prediction rely heavily on bias in the datasets.

Framework flaws
There were also some flaws in the benchmark framework that were noticed during the
evaluation. An oversight in the design is the fact that models can have different require-
ments for test instances on which to make predictions. For example, the PGTNet model
uses a graph-based neural network which requires at least a trace of length 3. This means
that the first two rows of each test case are removed from the data. For the results in this
chapter, these types of test set mismatches were handled manually, but a more robust
approach should be implemented for this. There is also a similar problem where some
algorithms cannot handle unseen attribute values while others can. This could result in
somewhat unfair comparisons, as some models have made much fewer predictions.

42

Chapter 6

Discussion

This chapter will delve into the interpretation of the experimental results of the previous
chapter and analyse the implications for predictive process monitoring. This chapter will
also address the limitations of this research and provide suggestions for future research.

6.1 Limitations

Before we discuss the conclusions of this work, we need to address some of its limitations.
The results observed in chapter 4 were the result of a somewhat limited experiment. First,
only three unique algorithms were implemented compared to the 111 articles identified
during the literature review. This means that a large portion of the algorithms were not
compared. Conclusions about the meaning of these results on the general state of PPM
might become invalid once more models are benchmarked.

Secondly, there exist some limitations in the experiment setup itself which might result
in somewhat unfair comparisons. Models were only trained once, no hyperparameter
optimisation was done on the debiased datasets (the best reported hyper parameters
were used), and no statistical analysis was done for model comparison.

Finally, a reflection on the benchmark framework itself will be inherently subjective.
More objective validation will be possible as the framework is adopted and extended by
other researchers.

6.2 Interpretation of results

6.2.1 Debiasing strategy

The debiasing strategy used to create the datasets has proven to be a very useful tool
to measure generalisability. The results show a reduction in performance compared to
the reported performance. This is especially true for remaining time prediction. This
likely means that the reported performance was based on some bias contained in the
datasets. The debiasing strategy leaves a slightly biased part of the dataset near the
splitting point, which has not been corrected yet. There is also a problem where some
datasets become completely unusable due to a large number of test cases being removed.
To advance the field, more high-quality (large) event logs are needed to produce an even
better benchmark.

43

CHAPTER 6. DISCUSSION

6.2.2 Measuring generalisation

The experimental results have clearly shown that trying to measure the performance
of PPM models using only standard machine learning evaluation metrics and standard
datasets will not produce reliable estimates of a model’s real-world performance. Perfor-
mance scores appear to be heavily inflated by data leakage and, without the context of a
baseline’s performance, give no information on generalisation as the actual ’difficulty’ of
the prediction problem cannot be assessed. The results show several examples of models
with high performance scores that are very similar to the baseline score. This is espe-
cially true for remaining-time prediction, where the naive baseline even outperforms the
compared models multiple times.

The plots generated by the benchmark framework appear to be a great tool to gain
more understanding of generalisation. The train sequence distance plot can help identify
performance scores inflated by data leakage, as well as help identify models that are
capable of generalisation. Examples of this are the bpi 2012 and traffic fine subplots for
next activity prediction. The fraction completed plot provides a more granular insight
into performance at specific moments in the process. It is not directly useful as a tool
to measure generalisation, but can serve as a starting point for more detailed analysis on
model behaviour. It might be useful to investigate the identical performances observed in
these plots. The attribute drift plot aids in understanding generalisation by giving insight
into the performance penalty suffered by models when some process attribute changes.
As with the previous plot, it could be used as a starting point for more detailed analysis.

6.2.3 PRS metric

The introduced PRS metric has proven to be useful in identifying data sets for which the
accuracy limit described by Abb et al. might be reached, but also shows data sets that
still have potential for improved scores. Examples of this are the bpi 2017 and bpi 2019
datasets for which the observed performance clearly outperforms the baseline, but the
bpi 2019 has a much higher PRS indicating potential room for improvement. However, on
its own, this metric might not provide much information. A more complete and detailed
comparison between models is needed to evaluate this metric’s usefulness.

6.3 Answers to the research questions

RQ1: Which methods can be further developed which can effectively measure the gen-
eralisation ability of predictive process monitoring models across diverse generalisation
scenarios? The results of this research show that generalisation cannot be reduced to
a single metric, and instead a combination of quantitative and visual analysis is needed
to assess the generalisability of PPM models. The combination of baseline comparisons,
the newly proposed PRS metric combined with more standard machine learning metrics,
and detailed visualisations provide the information necessary to assess generalisation.

RQ2: What models can be found in PPM literature for each of the prediction tasks
found in literature? The literature review uncovered 28 methods with published source
code. Ultimately, four models from three distinct studies were implemented.

RQ3: What are the software requirements for a benchmark suite which allows for
easy integration of the methods designed in RQ 1, and allows for the addition of new
methods in the future? Before starting the development of the benchmark framework, a

44

CHAPTER 6. DISCUSSION

set of requirements was established which can be found in Section 3.3.1. These include
requirements for an API that can maintain consistency even when adding new metrics,
datasets, or evaluation metrics. A ’skeleton’ version of the benchmark was implemented,
extended with new datasets and metrics, and then tested by applying it to the experiments
described in Chapter 5.

The developed skeleton framework has proven to be sufficient to build an extendable
benchmark framework that allows for easy addition of new datasets and evaluation met-
rics. This conclusion is supported by the fact that no changes were made to the skeleton
framework when implementing the various datasets and metrics used in this research.

However, one design flaw was encountered during the evaluation of models on the
benchmark. The design of the framework assumes that all models are able to make
a prediction on all test set instances; however, this is not the case in practice. For
the models evaluated in this research, some require a longer activity prefix in order to
make a prediction than others. There are possibly also other restrictions which were
not encountered now, but might become an issue later. For now, this problem has been
solved by adding a method to remove specific test cases from the test data. This is not
an ideal solution as it requires figuring out which instances should be removed manually.
Furthermore, it puts some models at a disadvantage in direct comparisons as it might
remove correct predictions from the results because another model is not able to make
these predictions. Future iterations of the framework should implement a more robust
approach to handle this issue.

RQ4: What is the performance of the identified state-of-the-art models (RQ2) on the
constructed benchmark, and how does this compare to the performance described by the
authors? The benchmark results indicate a significant drop in performance, especially for
remaining time prediction, compared to the published results. This difference suggests
that previously reported scores are inflated by the bias present in the datasets.

6.4 Future research

The most obvious starting point for future research would be to benchmark more models.
Unfortunately, there was not enough time available to do that during this thesis. Both
the suffix and outcome prediction problems remain untouched. It would be interesting
to see the benchmark results for these model types. Benchmarking more remaining time
and next activity models could also be helpful in gaining a more accurate overview on
the current state of PPM.

Future work should also focus on extending the benchmark with more advanced anal-
ysis options. The attribute drift and fraction completed plots have shown that predictive
performance can be identical for the baseline and compared models for some subsets of
the event log. Understanding why this happens could help to advance the field signifi-
cantly. Future versions of the benchmark should also implement a better approach for
handling instances where some models are not able to make a prediction on all test cases.

Finally, more fundamental work could be done to define more accurate definitions with
respect to what generalisation really means in the context of PPM. The discussion written
by Abb et al. [Abb et al., 2023], which was referenced throughout this thesis, provides
some great starting points for this. These points were briefly discussed in Section 2.4.1,
but the true spirit of this discussion was not captured in the final benchmark.

45

Chapter 7

Conclusion

For this master’s thesis, a benchmark framework was implemented with the goal of
providing more insight into the performance of predictive process monitoring (PPM)
techniques. Recent publications in the field have raised some questions with regard to
the validity of reported performance of PPM models, as event logs appear to contain
large amounts of bias. Abb et al. [Abb et al., 2023] showed that a naive baseline per-
forms on par with state-of-the-art models in next activity prediction. Weytjens and
de Weerdt [Weytjens and De Weerdt, 2021] made a similar point and have shown that
popular event logs used for PPM benchmarking contain large amounts of data leak-
age. The authors proposed a debiasing strategy which was used as the foundation for
the developed benchmark. Other publications in the field further emphasise the need
for a common and reliable benchmark, as current publications all use different eval-
uation metrics, data pre-processing techniques, and data sets [Teinemaa et al., 2019],
[Rama-Maneiro et al., 2021], [Kratsch et al., 2021]. The developed benchmark contains
features for debiasing event logs, experiment tracking, baseline prediction generation,
and detailed performance analysis. A literature review was conducted to identify state-
of-the-art models for various PPM prediction problems. Finally, four of these models
were implemented and tested on the developed framework.

7.1 Final Reflections

The findings of this thesis underscore the complexity of accurately estimating the real
world performance of PPM models. The results have shown that high levels of bias are
present in unprocessed event logs that cause inflated performance scores. It has become
clear that, in their current state, PPM models are not sufficiently reliable to be used in
the real world. Future work should focus on gaining a better understanding of model
behaviour and using this understanding to improve models. All in all, the developed
benchmark proves to be a valuable contribution to the field of PPM, and I encourage
all researchers to contribute to the project1and use this framework to benchmark their
models.

1https://github.com/hiddevr/ppm benchmark

46

https://github.com/hiddevr/ppm_benchmark

Bibliography

[xes, 2016] (2016). Ieee standard for extensible event stream (xes) for achieving interop-
erability in event logs and event streams. IEEE Std 1849-2016, pages 1–50.

[Abb et al., 2023] Abb, L., Pfeiffer, P., Fettke, P., and Rehse, J.-R. (2023). A discussion
on generalization in next-activity prediction. In International Conference on Business
Process Management, pages 18–30. Springer.

[Ali et al., 2023] Ali, M. A. et al. (2023). Enhancing the accuracy of predictors of activity
sequences of business processes. arXiv.org.

[Bukhsh et al., 2021] Bukhsh, Z. A. et al. (2021). Processtransformer: Predictive busi-
ness process monitoring with transformer network. arXiv: Learning.

[Cao et al., 2022] Cao, R. et al. (2022). Transition-driven time prediction for business
processes with cycles. Expert Systems with Applications.

[de Leoni and Mannhardt, 2015] de Leoni, M. and Mannhardt, F. (2015). Road Traffic
Fine Management Process.

[Dees and van Dongen, 2016] Dees, M. and van Dongen, B. B. (2016). BPI Challenge
2016.

[Duong et al., 2023] Duong, L. T. et al. (2023). Remaining cycle time prediction with
graph neural networks for predictive process monitoring. In International Conference
on Machine Learning Technologies.

[Elyasi et al., 2024] Elyasi, K. A. et al. (2024). Pgtnet: A process graph transformer
network for remaining time prediction of business process instances. In International
Conference on Advanced Information Systems Engineering.

[Folino et al., 2022] Folino, F. et al. (2022). Semi-supervised discovery of dnn-based out-
come predictors from scarcely-labeled process logs. Business & Information Systems
Engineering.

[Heinrich et al., 2021] Heinrich, K. et al. (2021). Process data properties matter: In-
troducing gated convolutional neural networks (gcnn) and key-value-predict attention
networks (kvp) for next event prediction with deep learning. Decision Support Systems.

[Hevner, 2007] Hevner, A. R. (2007). The three cycle view of design science research.
Scandinavian Journal of Information Systems, 19(2):87.

[Hinkka et al., 2019] Hinkka, M. et al. (2019). Exploiting event log event attributes in
rnn based prediction. In Communications in computer and information science.

47

BIBLIOGRAPHY

[Kratsch et al., 2021] Kratsch, W., Manderscheid, J., Röglinger, M., and Seyfried, J.
(2021). Machine learning in business process monitoring: a comparison of deep learning
and classical approaches used for outcome prediction. Business & Information Systems
Engineering, 63:261–276.

[Levy, 2014] Levy, D. (2014). Production Analysis with Process Mining Technology.

[Mannhardt, 2016] Mannhardt, F. (2016). Sepsis cases - event log.

[Mannhardt, 2017] Mannhardt, F. (2017). Hospital billing - event log.

[Mauro et al., 2019] Mauro, N. D. et al. (2019). Activity prediction of business process
instances with inception cnn models. In International Conference of the Italian Asso-
ciation for Artificial Intelligence.

[Nguyen et al., 2020] Nguyen, A. et al. (2020). Time matters: Time-aware lstms for
predictive business process monitoring. In Lecture Notes in Computer Science.

[Ni et al., 2022] Ni, W. et al. (2022). Predicting remaining execution time of business
process instances via auto-encoded transition system. Intelligent Data Analysis.

[Pasquadibisceglie et al., 2020] Pasquadibisceglie, V. et al. (2020). Orange: Outcome-
oriented predictive process monitoring based on image encoding and cnns. IEEE Access.

[Pasquadibisceglie et al., 2021a] Pasquadibisceglie, V. et al. (2021a). Fox: a neuro-fuzzy
model for process outcome prediction and explanation. In International Conference on
Process Mining.

[Pasquadibisceglie et al., 2021b] Pasquadibisceglie, V. et al. (2021b). A multi-view deep
learning approach for predictive business process monitoring. IEEE Transactions on
Services Computing.

[Pasquadibisceglie et al., 2023] Pasquadibisceglie, V. et al. (2023). Darwin: An online
deep learning approach to handle concept drifts in predictive process monitoring. En-
gineering applications of artificial intelligence.

[Pauwels et al., 2020] Pauwels, S. et al. (2020). Bayesian network based predictions of
business processes. In Lecture Notes in Business Information Processing.

[Pauwels et al., 2021] Pauwels, S. et al. (2021). Incremental predictive process monitor-
ing: The next activity case. In Lecture Notes in Computer Science.

[Peffers et al., 2020] Peffers, K., Tuunanen, T., Gengler, C. E., Rossi, M., Hui, W., Virta-
nen, V., and Bragge, J. (2020). Design science research process: A model for producing
and presenting information systems research. arXiv preprint arXiv:2006.02763.

[Polato, 2017] Polato, M. (2017). Dataset belonging to the help desk log of an Italian
Company.

[ProM Tools, 2025] ProM Tools (2025). Prom tools. Accessed: 2025-01-06.

[Rama-Maneiro et al., 2021] Rama-Maneiro, E., Vidal, J. C., and Lama, M. (2021). Deep
learning for predictive business process monitoring: Review and benchmark. IEEE
Transactions on Services Computing, 16(1):739–756.

48

BIBLIOGRAPHY

[Scheid et al., 2018] Scheid, M., Rehse, J.-R., Houy, C., and Fettke, P. (2018). Data Set
for MobIS Challenge 2019.

[Steeman, 2014] Steeman, W. (2014). BPI Challenge 2013.

[Tax et al., 2017] Tax, N., Verenich, I., La Rosa, M., and Dumas, M. (2017). Predic-
tive business process monitoring with lstm neural networks. In Advanced Information
Systems Engineering: 29th International Conference, CAiSE 2017, Essen, Germany,
June 12-16, 2017, Proceedings 29, pages 477–492. Springer.

[Taymouri et al., 2020] Taymouri, F. et al. (2020). Predictive business process monitoring
via generative adversarial nets: The case of next event prediction. In International
Conference on Business Process Management.

[Taymouri et al., 2021] Taymouri, F. et al. (2021). A deep adversarial model for suffix
and remaining time prediction of event sequences. In SDM.

[Teinemaa et al., 2019] Teinemaa, I., Dumas, M., Rosa, M. L., and Maggi, F. M. (2019).
Outcome-oriented predictive process monitoring: Review and benchmark. ACM Trans-
actions on Knowledge Discovery from Data (TKDD), 13(2):1–57.

[Theis et al., 2019] Theis, J. et al. (2019). Decay replay mining to predict next process
events. IEEE Access.

[Theis et al., 2023] Theis, J. et al. (2023). Improving predictive process monitoring
through reachability graph-based masking of neural networks. IEEE Transactions on
Computational Social Systems.

[van der Aalst, 2022] van der Aalst, W. M. (2022). Process mining: a 360 degree
overview. In Process Mining Handbook, pages 3–34. Springer.

[van Dongen, 2011] van Dongen, B. (2011). Real-life event logs - Hospital log.

[van Dongen, 2012] van Dongen, B. (2012). BPI Challenge 2012.

[van Dongen, 2017] van Dongen, B. (2017). BPI Challenge 2017.

[van Dongen, 2019] van Dongen, B. (2019). BPI Challenge 2019.

[van Dongen, 2020a] van Dongen, B. (2020a). BPI Challenge 2020.

[van Dongen, 2020b] van Dongen, B. (2020b). Bpi challenges: 10 years of real-life
datasets.

[van Dongen, 2014] van Dongen, B. B. (2014). BPI Challenge 2014.

[van Dongen, 2015] van Dongen, B. B. (2015). BPI Challenge 2015.

[Vandenabeele et al., 2022] Vandenabeele, J. et al. (2022). Enhancing stochastic petri
net-based remaining time prediction using k-nearest neighbors. arXiv.

[Vazifehdoostirani et al., 2022] Vazifehdoostirani, M. et al. (2022). Encoding high-level
control-flow construct information for process outcome prediction. In International
Conference on Process Mining.

49

[Verenich et al., 2019] Verenich, I. et al. (2019). Predicting process performance: A
white-box approach based on process models. J. Softw. Evol. Process.

[Wang et al., 2021] Wang, J. et al. (2021). Predicting outcomes of business process exe-
cutions based on lstm neural networks and attention mechanism. RS.

[Weinzierl et al., 2020] Weinzierl, S. et al. (2020). Xnap: Making lstm-based next ac-
tivity predictions explainable by using lrp. In Lecture Notes in Business Information
Processing.

[Weinzierl et al., 2024] Weinzierl, S., Zilker, S., Dunzer, S., and Matzner, M. (2024).
Machine learning in business process management: A systematic literature review.
Expert Systems with Applications, 253:124181.

[Weytjens and De Weerdt, 2021] Weytjens, H. and De Weerdt, J. (2021). Creating un-
biased public benchmark datasets with data leakage prevention for predictive process
monitoring. In International Conference on Business Process Management, pages 18–
29. Springer.

[Weytjens et al., 2021] Weytjens, H. et al. (2021). Learning uncertainty with artificial
neural networks for improved remaining time prediction of business processes. In Lec-
ture Notes in Computer Science.

50

Appendix 1: Sample Benchmark Configuration

data s e t s :
− name : ” bpi 2012 ”

da ta s e t no rma l i z e r : ”BPI2012Normalizer ”
da t a s e t l o ad e r : ”LocalXes ”
data path : ” . . / raw event logs /BPI Chal lenge 2012 . xes /BPI Chal lenge 2012 . xes ”
i s r emote : f a l s e
data owner : ”Boudewijn van Dongen”
ta sk s :

− name : ” bp i 2 0 12 n ex t a t t r i bu t e ”
s p l i t d e t a i l s :

s t a r t d a t e : nu l l
end date : nu l l

− name : ” bp i 2 0 2 0 t r a v e l c o s t ”
da ta s e t no rma l i z e r : ”BPI2020Normalizer ”
da t a s e t l o ad e r : ”LocalXes ”
data path : ” . . / raw event logs /BPI Chal lenge 2020 PrepaidTrave lCost . xes /PrepaidTravelCost . xes ”
i s r emote : f a l s e
data owner : ”Boudewijn van Dongen”
ta sk s :

− name : ” b p i 2 0 2 0 t r a v e l c o s t n e x t a t t r i b u t e ”
s p l i t d e t a i l s :

s t a r t d a t e : nu l l
end date : nu l l

benchmark :
ta sk type : ” n ex t a t t r i bu t e ”
name : ”Test Benchmark”
s a v e f o l d e r : ” n e x t a t t r i b u t e c l a s s i f i c a t i o n ”
a t t r c o l : ” concept : name”
keywords d ic t : nu l l
eva luato r : ” Nex tAt t r i bu t eC l a s s i f i c a t i o n ”

ta sk s :
− name : ” bp i 2 0 12 n ex t a t t r i bu t e ”

s a v e f o l d e r : ” n e x t a t t r i b u t e c l a s s i f i c a t i o n / bp i 2 0 1 2 n ex t a t t r i bu t e t a s k ”
t a sk g ene r a t o r :

name : ” Nex tAt t r i bu t eC l a s s i f i c a t i o n ”

− name : ” b p i 2 0 2 0 t r a v e l c o s t n e x t a t t r i b u t e ”
s a v e f o l d e r : ” n e x t a t t r i b u t e c l a s s i f i c a t i o n / bp i 2 0 2 0 t r a v e l c o s t n e x t a t t r i b u t e t a s k ”
t a sk g ene r a t o r :

name : ” Nex tAt t r i bu t eC l a s s i f i c a t i o n ”

metr i c s :

51

− name : ”Accuracy”
− name : ”LASS”
− name : ” Pr e c i s i on ”
− name : ” Reca l l ”
− name : ”F1Score”

52

Appendix 2: ProcessTransformer results

Table 1: A comparative overview of prediction errors (MAE, RMSE, MSE) and correlation for ProcessTransformer and a baseline model
across multiple datasets. Lower values of MAE, RMSE, and MSE indicate better performance, while the opposite is true for correlation. The
final metric, “Reported MAE,” shows MAE values from the original articles (where available).

Dataset Metric ProcessTransformer Baseline
bpi 2012 MAE 8.392 7.868
bpi 2012 RMSE 10.876 10.663
bpi 2012 MSE 118.297 113.703
bpi 2012 Correlation 0.059 0.000
bpi 2012 Reported MAE – –
bpi 2015 1 MAE 46.600 40.910
bpi 2015 1 RMSE 69.307 63.593
bpi 2015 1 MSE 4803.482 4044.132
bpi 2015 1 Correlation -0.108 0.000
bpi 2015 1 Reported MAE – –
bpi 2015 2 MAE 68.126 61.613
bpi 2015 2 RMSE 97.363 88.552
bpi 2015 2 MSE 9479.482 7841.392
bpi 2015 2 Correlation 0.031 0.000
bpi 2015 2 Reported MAE – –
bpi 2014 MAE 2.959 2.259
bpi 2014 RMSE 4.800 4.069
bpi 2014 MSE 23.038 16.561
bpi 2014 Correlation 0.003 0.000
bpi 2014 Reported MAE – –
bpi 2015 3 MAE 23.284 17.466
bpi 2015 3 RMSE 36.720 32.594
bpi 2015 3 MSE 1348.378 1062.367
bpi 2015 3 Correlation -0.038 0.000
bpi 2015 3 Reported MAE – –
bpi 2015 4 MAE 59.984 44.262
bpi 2015 4 RMSE 73.068 54.569
bpi 2015 4 MSE 5338.891 2977.751
bpi 2015 4 Correlation -0.039 0.000
bpi 2015 4 Reported MAE – –
bpi 2020 domestic MAE 5.481 4.830
bpi 2020 domestic RMSE 11.543 11.277
bpi 2020 domestic MSE 133.240 127.160
bpi 2020 domestic Correlation 0.008 0.000
bpi 2020 domestic Reported MAE – –
bpi 2015 5 MAE 42.797 42.935
bpi 2015 5 RMSE 63.150 54.172
bpi 2015 5 MSE 3987.878 2934.586
bpi 2015 5 Correlation 0.092 0.000
bpi 2015 5 Reported MAE – –
bpi 2020 payments MAE 6.759 6.071
bpi 2020 payments RMSE 11.442 10.969
bpi 2020 payments MSE 130.925 120.316
bpi 2020 payments Correlation -0.052 0.000
bpi 2020 payments Reported MAE – –
bpi 2020 travelcost MAE 18.643 16.323
bpi 2020 travelcost RMSE 32.309 31.962
bpi 2020 travelcost MSE 1043.871 1021.541
bpi 2020 travelcost Correlation -0.018 0.000
bpi 2020 travelcost Reported MAE – –
helpdesk MAE 18.775 14.410
helpdesk RMSE 23.105 18.087
helpdesk MSE 533.852 327.130
helpdesk Correlation -0.025 0.000
helpdesk Reported MAE 3.72 –
traffic fine MAE 304.079 287.373
traffic fine RMSE 364.164 363.371
traffic fine MSE 132615.175 132038.212
traffic fine Correlation -0.033 0.000
traffic fine Reported MAE 98.24 –
bpi 2017 MAE 11.855 10.340
bpi 2017 RMSE 15.442 14.005
bpi 2017 MSE 238.454 196.150
bpi 2017 Correlation 0.009 0.000
bpi 2017 Reported MAE – –

53

Table 2: A comparative overview of prediction scores (Accuracy, PRS, Precision, Recall) for ProcessTransformer, a naive baseline and
distance baseline model across multiple datasets. Higher values of Accuracy, PRS, Precision, Recall indicate better performance, while the
perfect score for PRS is 0 and PRS ≥ 0.5 is undesirable. The final metric, “Reported F1-Score,” shows F1-Score values from the original
articles (where available).

Dataset Metric ProcessTransformer Naive Baseline Distance Baseline
bpi 2012 Accuracy 0.843 0.487 0.641
bpi 2012 PRS 0.014 0.13 0.017
bpi 2012 Precision 0.805 0.464 0.621
bpi 2012 Recall 0.843 0.487 0.641
bpi 2012 F1Score 0.81 0.441 0.612
bpi 2012 Reported F1-Score 0.83 – –
bpi 2015 1 Accuracy 0.24 0.054 0.113
bpi 2015 1 PRS 0.2 0.321 0.374
bpi 2015 1 Precision 0.235 0.065 0.133
bpi 2015 1 Recall 0.24 0.054 0.113
bpi 2015 1 F1Score 0.226 0.049 0.115
bpi 2015 1 Reported F1-Score – – –
bpi 2015 3 Accuracy 0.404 0.065 0.217
bpi 2015 3 PRS 0.134 0.177 0.016
bpi 2015 3 Precision 0.428 0.071 0.223
bpi 2015 3 Recall 0.404 0.065 0.217
bpi 2015 3 F1Score 0.398 0.057 0.207
bpi 2015 3 Reported F1-Score – – –
bpi 2020 domestic Accuracy 0.867 0.868 0.85
bpi 2020 domestic PRS 0.07 0.04 0.011
bpi 2020 domestic Precision 0.796 0.767 0.826
bpi 2020 domestic Recall 0.867 0.868 0.85
bpi 2020 domestic F1Score 0.81 0.811 0.803
bpi 2020 domestic Reported F1-Score 0.861 – –
bpi 2020 payments Accuracy 0.859 0.687 0.83
bpi 2020 payments PRS 0.104 0.267 0.189
bpi 2020 payments Precision 0.801 0.577 0.807
bpi 2020 payments Recall 0.859 0.687 0.83
bpi 2020 payments F1Score 0.798 0.611 0.772
bpi 2020 payments Reported F1-Score – – –
bpi 2015 5 Accuracy 0.442 0.024 0.256
bpi 2015 5 PRS 0.125 0.218 0.247
bpi 2015 5 Precision 0.468 0.04 0.255
bpi 2015 5 Recall 0.442 0.024 0.256
bpi 2015 5 F1Score 0.435 0.018 0.247
bpi 2015 5 Reported F1-Score – – –
bpi 2020 travel cost Accuracy 0.821 0.324 0.771
bpi 2020 travel cost PRS 0.074 0.2 0.12
bpi 2020 travel cost Precision 0.82 0.267 0.762
bpi 2020 travel cost Recall 0.821 0.324 0.771
bpi 2020 travel cost F1Score 0.794 0.28 0.746
bpi 2020 travel cost Reported F1-Score – – –
helpdesk Accuracy 0.516 0.491 0.501
helpdesk PRS 0.154 0.418 0.381
helpdesk Precision 0.394 0.383 0.453
helpdesk Recall 0.516 0.491 0.501
helpdesk F1Score 0.437 0.418 0.432
helpdesk Reported F1-Score 0.82 – –
traffic fine Accuracy 0.948 0.6 0.863
traffic fine PRS 0.075 0.189 0.396
traffic fine Precision 0.949 0.59 0.891
traffic fine Recall 0.948 0.6 0.863
traffic fine F1Score 0.94 0.594 0.87
traffic fine Reported F1-Score 0.87 – –
bpi 2017 Accuracy 0.862 0.258 0.728
bpi 2017 PRS 0.017 0.108 0.041
bpi 2017 Precision 0.853 0.342 0.731
bpi 2017 Recall 0.862 0.258 0.728
bpi 2017 F1Score 0.846 0.223 0.719
bpi 2017 Reported F1-Score – – –
bpi 2019 Accuracy 0.667 0.066 0.626
bpi 2019 PRS 0.131 0.396 0.284
bpi 2019 Precision 0.73 0.074 0.696
bpi 2019 Recall 0.667 0.066 0.626
bpi 2019 F1Score 0.662 0.068 0.623
bpi 2019 Reported F1-Score – – –

54

Figure 1: Comparison of the average reduction in F1-score penalty across ten event logs for test instances where some attribute value was
not observed in the training data (attribute drift). Each subplot compares the average decrease in F1-score (F1-score penalty) for three
approaches: ProcessTransformer (orange), a naive baseline (light blue), and a distance baseline (darker blue). The y-axis indicates the
attribute, the x-axis shows the average F1-score penalty. Lower F1-score penalty values signify a model is more capable of dealing with
attribute drift for the given attribute.

-0.03 -0.02 -0.01 0.00

case:AMOUNT REQ

bpi 2012

-0.30 -0.20 -0.10 0.00 0.10

org:resource

monitoringResource

question

action code

activityNameEN

activityNameNL

concept:name

case:last phase

bpi 2015 1

0.00 0.05 0.10 0.15 0.20

question

action code

activityNameEN

activityNameNL

concept:name

case:last phase

case:Responsible actor

bpi 2015 3

-0.01 -0.01 -0.01 -0.00 0.00

id

case:DeclarationNumber

bpi 2020 domestic

-0.04 -0.02 0.00 0.02

id

case:RfpNumber

case:Task

case:Project

bpi 2020 payments

-0.20 0.00 0.20

org:resource

monitoringResource

question

activityNameEN

activityNameNL

concept:name

case:last phase

case:parts

bpi 2015 5

-0.20 0.00 0.20

id
case:RfpNumber

case:Task
case:Project

case:Permit travel permit number
case:Permit ProjectNumber

case:Permit id
case:Permit ActivityNumber
case:Permit BudgetNumber

case:Permit OrganizationalEntity
case:OrganizationalEntity
case:Permit TaskNumber

bpi 2020 travel cost

0.00 0.20 0.40

org:resource

concept:name

customer

Variant

Variant.1

product

helpdesk

-0.05 0.00

org:resource

EventID

bpi 2017

0.00 0.20 0.40 0.60

org:resource

case:Sub spend area text

case:Purchasing Document

case:Vendor

case:Name

User

case:Item

bpi 2019

F1Score Penalty

D
ri
ft

A
tt
ri
b
u
te

ProcessTransformer naive baseline distance baseline

55

Figure 2: Comparison of the average reduction in mean absolute error score (MAE Penalty) across twelve event logs for test instances where
some attribute value was not observed in the training data (attribute drift). Each subplot compares the average decrease in MAE (MAE
penalty) for two approaches: ProcessTransformer (orange) and a baseline model (blue). The y-axis indicates the attribute, the x-axis shows
the average MAE penalty. Higher MAE penalty values signify a model is more capable of dealing with attribute drift for the given attribute.

-1.00 -0.50 0.00

case:AMOUNT REQ

bpi 2012

-150.00 -100.00 -50.00 0.00

org:resource

monitoringResource

question

action code

activityNameEN

activityNameNL

concept:name

case:last phase

bpi 2015 1

-150.00 -100.00 -50.00 0.00

org:resource

monitoringResource

question

action code

activityNameEN

activityNameNL

concept:name

case:last phase

case:Responsible actor

bpi 2015 2

0.00 0.50 1.00

concept:name

IncidentActivity Number

Interaction ID

KM number

Assignment Group

bpi 2014

-75.00 -50.00 -25.00 0.00

question

action code

activityNameEN

activityNameNL

concept:name

case:last phase

case:Responsible actor

bpi 2015 3

-20.00 0.00 20.00

org:resource

question

concept:name

case:last phase

bpi 2015 4

-0.01 -0.00 0.00

id

case:DeclarationNumber

bpi 2020 domestic

-20.00 0.00 20.00

org:resource

monitoringResource

question

activityNameEN

activityNameNL

concept:name

case:last phase

case:parts

bpi 2015 5

0.00 2.00 4.00 6.00

concept:name

id

case:RfpNumber

case:Task

case:Project

case:Activity

bpi 2020 payments

-20.00 0.00

id
case:RfpNumber

case:Task
case:Project

case:Permit travel permit number
case:Permit ProjectNumber

case:Permit id
case:Permit ActivityNumber
case:Permit BudgetNumber

case:Permit OrganizationalEntity
case:OrganizationalEntity
case:Permit TaskNumber

bpi 2020 travel cost

-20.00 -10.00 0.00

org:resource

concept:name

customer

Variant

Variant.1

product

helpdesk

0.00 0.05 0.10 0.15

org:resource

EventID

bpi 2017

MAE Penalty

D
ri
ft

A
tt
ri
b
u
te

ProcessTransformer baseline

56

Figure 3: Comparison of predictive performance across eleven event logs grouped by the fraction complete of the test prefix. Each subplot
compares F1-score for three approaches—ProcessTransformer (orange), a naive baseline (light blue), and a distance baseline (darker blue)-as
the fraction completed increases (x-axis). Higher F1-scores signify better predictive performance.

0.
02
5

0.
07
5

0.
12
5

0.
17
5

0.
22
5

0.
27
5

0.
32
5

0.
37
5

0.
42
5

0.
47
5

0.
52
5

0.
57
5

0.
62
5

0.
67
5

0.
72
5

0.
77
5

0.
82
5

0.
87
5

0.
92
5

0.
97
5

0.2

0.4

0.6

0.8

bpi 2012

0.
02
5

0.
07
5

0.
12
5

0.
17
5

0.
22
5

0.
27
5

0.
32
5

0.
37
5

0.
42
5

0.
47
5

0.
52
5

0.
57
5

0.
62
5

0.
67
5

0.
72
5

0.
77
5

0.
82
5

0.
87
5

0.
92
5

0.
97
5

0.1

0.2

0.3

0.4

0.5

0.6

bpi 2015 1

0.
02
5

0.
07
5

0.
12
5

0.
17
5

0.
22
5

0.
27
5

0.
32
5

0.
37
5

0.
42
5

0.
47
5

0.
52
5

0.
57
5

0.
62
5

0.
67
5

0.
72
5

0.
77
5

0.
82
5

0.
87
5

0.
92
5

0.
97
5

0.1

0.2

0.3

0.4

0.5

0.6

bpi 2015 3

0.
02
5

0.
07
5

0.
12
5

0.
17
5

0.
22
5

0.
27
5

0.
32
5

0.
37
5

0.
42
5

0.
47
5

0.
52
5

0.
57
5

0.
62
5

0.
67
5

0.
72
5

0.
77
5

0.
82
5

0.
87
5

0.
92
5

0.
97
5

0.2

0.4

0.6

0.8

1.0

bpi 2020 domestic

0.
02
5

0.
07
5

0.
12
5

0.
17
5

0.
22
5

0.
27
5

0.
32
5

0.
37
5

0.
42
5

0.
47
5

0.
52
5

0.
57
5

0.
62
5

0.
67
5

0.
72
5

0.
77
5

0.
82
5

0.
87
5

0.
92
5

0.
97
5

0.0

0.2

0.4

0.6

0.8

1.0

bpi 2020 payments

0.
02
5

0.
07
5

0.
12
5

0.
17
5

0.
22
5

0.
27
5

0.
32
5

0.
37
5

0.
42
5

0.
47
5

0.
52
5

0.
57
5

0.
62
5

0.
67
5

0.
72
5

0.
77
5

0.
82
5

0.
87
5

0.
92
5

0.
97
5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

bpi 2015 5

0.
02
5

0.
07
5

0.
12
5

0.
17
5

0.
22
5

0.
27
5

0.
32
5

0.
37
5

0.
42
5

0.
47
5

0.
52
5

0.
57
5

0.
62
5

0.
67
5

0.
72
5

0.
77
5

0.
82
5

0.
87
5

0.
92
5

0.
97
5

0.2

0.4

0.6

0.8

1.0

bpi 2020 travel cost

0.
02
5

0.
07
5

0.
12
5

0.
17
5

0.
22
5

0.
27
5

0.
32
5

0.
37
5

0.
42
5

0.
47
5

0.
52
5

0.
57
5

0.
62
5

0.
67
5

0.
72
5

0.
77
5

0.
82
5

0.
87
5

0.
92
5

0.
97
5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

helpdesk

0.
02
5

0.
07
5

0.
12
5

0.
17
5

0.
22
5

0.
27
5

0.
32
5

0.
37
5

0.
42
5

0.
47
5

0.
52
5

0.
57
5

0.
62
5

0.
67
5

0.
72
5

0.
77
5

0.
82
5

0.
87
5

0.
92
5

0.
97
5

0.0

0.2

0.4

0.6

0.8

1.0

traffic fine

0.
02
5

0.
07
5

0.
12
5

0.
17
5

0.
22
5

0.
27
5

0.
32
5

0.
37
5

0.
42
5

0.
47
5

0.
52
5

0.
57
5

0.
62
5

0.
67
5

0.
72
5

0.
77
5

0.
82
5

0.
87
5

0.
92
5

0.
97
5

0.2

0.4

0.6

0.8

bpi 2017

0.
02
5

0.
07
5

0.
12
5

0.
17
5

0.
22
5

0.
27
5

0.
32
5

0.
37
5

0.
42
5

0.
47
5

0.
52
5

0.
57
5

0.
62
5

0.
67
5

0.
72
5

0.
77
5

0.
82
5

0.
87
5

0.
92
5

0.
97
5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

bpi 2019

Fraction Completed

F
1S

co
re

ProcessTransformer naive baseline distance baseline

57

Figure 4: Comparison of predictive performance across thirteen event logs grouped by the fraction complete of the test prefix. Each
subplot compares mean absolute error (MAE) for two approaches—ProcessTransformer (orange) and a baseline model (blue)—as the fraction
completed increases (x-axis). Lower MAE values signify better predictive performance.

0.
02
5

0.
07
5

0.
12
5

0.
17
5

0.
22
5

0.
27
5

0.
32
5

0.
37
5

0.
42
5

0.
47
5

0.
52
5

0.
57
5

0.
62
5

0.
67
5

0.
72
5

0.
77
5

0.
82
5

0.
87
5

0.
92
5

0.
97
5

6

8

10

12

14

bpi 2012

0.
02
5

0.
07
5

0.
12
5

0.
17
5

0.
22
5

0.
27
5

0.
32
5

0.
37
5

0.
42
5

0.
47
5

0.
52
5

0.
57
5

0.
62
5

0.
67
5

0.
72
5

0.
77
5

0.
82
5

0.
87
5

0.
92
5

0.
97
5

20

30

40

50

60

70

80

bpi 2015 1

0.
02
5

0.
07
5

0.
12
5

0.
17
5

0.
22
5

0.
27
5

0.
32
5

0.
37
5

0.
42
5

0.
47
5

0.
52
5

0.
57
5

0.
62
5

0.
67
5

0.
72
5

0.
77
5

0.
82
5

0.
87
5

0.
92
5

0.
97
5

50

60

70

80

90

100

bpi 2015 2

0.
02
5

0.
07
5

0.
12
5

0.
17
5

0.
22
5

0.
27
5

0.
32
5

0.
37
5

0.
42
5

0.
47
5

0.
52
5

0.
57
5

0.
62
5

0.
67
5

0.
72
5

0.
77
5

0.
82
5

0.
87
5

0.
92
5

0.
97
5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

bpi 2014

0.
02
5

0.
07
5

0.
12
5

0.
17
5

0.
22
5

0.
27
5

0.
32
5

0.
37
5

0.
42
5

0.
47
5

0.
52
5

0.
57
5

0.
62
5

0.
67
5

0.
72
5

0.
77
5

0.
82
5

0.
87
5

0.
92
5

0.
97
5

10

15

20

25

30

35

40

45

bpi 2015 3

0.
02
5

0.
07
5

0.
12
5

0.
17
5

0.
22
5

0.
27
5

0.
32
5

0.
37
5

0.
42
5

0.
47
5

0.
52
5

0.
57
5

0.
62
5

0.
67
5

0.
72
5

0.
77
5

0.
82
5

0.
87
5

0.
92
5

0.
97
5

35

40

45

50

55

60

65

70

75

bpi 2015 4

0.
02
5

0.
07
5

0.
12
5

0.
17
5

0.
22
5

0.
27
5

0.
32
5

0.
37
5

0.
42
5

0.
47
5

0.
52
5

0.
57
5

0.
62
5

0.
67
5

0.
72
5

0.
77
5

0.
82
5

0.
87
5

0.
92
5

0.
97
5

4

5

6

7

8

bpi 2020 domestic

0.
02
5

0.
07
5

0.
12
5

0.
17
5

0.
22
5

0.
27
5

0.
32
5

0.
37
5

0.
42
5

0.
47
5

0.
52
5

0.
57
5

0.
62
5

0.
67
5

0.
72
5

0.
77
5

0.
82
5

0.
87
5

0.
92
5

0.
97
5

20

30

40

50

60

70

bpi 2015 5

0.
02
5

0.
07
5

0.
12
5

0.
17
5

0.
22
5

0.
27
5

0.
32
5

0.
37
5

0.
42
5

0.
47
5

0.
52
5

0.
57
5

0.
62
5

0.
67
5

0.
72
5

0.
77
5

0.
82
5

0.
87
5

0.
92
5

0.
97
5

2

4

6

8

10

bpi 2020 payments

0.
02
5

0.
07
5

0.
12
5

0.
17
5

0.
22
5

0.
27
5

0.
32
5

0.
37
5

0.
42
5

0.
47
5

0.
52
5

0.
57
5

0.
62
5

0.
67
5

0.
72
5

0.
77
5

0.
82
5

0.
87
5

0.
92
5

0.
97
5

14

15

16

17

18

19

20

21

bpi 2020 travel cost

0.
02
5

0.
07
5

0.
12
5

0.
17
5

0.
22
5

0.
27
5

0.
32
5

0.
37
5

0.
42
5

0.
47
5

0.
52
5

0.
57
5

0.
62
5

0.
67
5

0.
72
5

0.
77
5

0.
82
5

0.
87
5

0.
92
5

0.
97
5

12.5

15.0

17.5

20.0

22.5

25.0

27.5

30.0

helpdesk

0.
02
5

0.
07
5

0.
12
5

0.
17
5

0.
22
5

0.
27
5

0.
32
5

0.
37
5

0.
42
5

0.
47
5

0.
52
5

0.
57
5

0.
62
5

0.
67
5

0.
72
5

0.
77
5

0.
82
5

0.
87
5

0.
92
5

0.
97
5

100

200

300

400

500

traffic fine

0.
02
5

0.
07
5

0.
12
5

0.
17
5

0.
22
5

0.
27
5

0.
32
5

0.
37
5

0.
42
5

0.
47
5

0.
52
5

0.
57
5

0.
62
5

0.
67
5

0.
72
5

0.
77
5

0.
82
5

0.
87
5

0.
92
5

0.
97
5

10.25

10.50

10.75

11.00

11.25

11.50

11.75

12.00

12.25

bpi 2017

Fraction Completed

M
A
E

ProcessTransformer baseline

58

Figure 5: Comparison of predictive performance across eleven event logs grouped by the test prefix distance from the closest train prefix.
Each subplot compares F1-score for three approaches—ProcessTransformer (orange), a naive baseline (light blue), and a distance baseline
(darker blue)—as the training sequence distance increases (x-axis). The dashed gray line in each subplot indicates the fraction of total samples
at each distance (right-hand y-axis). Higher F1-scores values signify better predictive performance.

0 5 10 15 20 25 30 35

0.0

0.2

0.4

0.6

0.8

1.0

bpi 2012

0 20 40 60 80

0.0

0.1

0.2

0.3

0.4

0.5

0.6

bpi 2015 1

0 10 20 30 40 50 60 70

0.0

0.2

0.4

0.6

0.8

1.0

bpi 2015 3

0 1 2 3 4 5 6 7

0.0

0.2

0.4

0.6

0.8

1.0

bpi 2020 domestic

0 2 4 6 8 10 12

0.0

0.2

0.4

0.6

0.8

1.0

bpi 2020 payments

0 20 40 60 80 100

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

bpi 2015 5

0 1 2 3 4 5

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

bpi 2020 travel cost

0 1 2 3 4 5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

helpdesk

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.2

0.4

0.6

0.8

traffic fine

0 10 20 30 40 50

0.0

0.2

0.4

0.6

0.8

1.0

bpi 2017

0 10 20 30 40 50 60 70

0.0

0.2

0.4

0.6

0.8

1.0

bpi 2019

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Train Sequence Distance

F
1S

co
re

F
ra
ct
io
n
of

T
ot
al

S
am

p
le
s

ProcessTransformer naive baseline distance baseline Fraction of Total Samples

59

Figure 6: Comparison of predictive performance across thirteen datasets grouped by the test prefix distance from the closest train prefix.
Each subplot compares mean absolute error (MAE) for two approaches—ProcessTransformer (orange) and a baseline model (blue)—as the
training sequence distance increases (x-axis). The dashed gray line in each subplot indicates the fraction of total samples at each distance
(right-hand y-axis). Lower MAE values signify better predictive performance.

0 5 10 15 20 25 30 35

4

6

8

10

12

bpi 2012

0 10 20 30 40 50 60 70 80

10

20

30

40

50

60

70

bpi 2015 1

0 20 40 60 80

20

40

60

80

100

bpi 2015 2

0 20 40 60 80 100

2.5

5.0

7.5

10.0

12.5

15.0

17.5

bpi 2014

0 10 20 30 40 50 60 70

5

10

15

20

25

30

35

bpi 2015 3

0 10 20 30 40 50 60

20

40

60

80

bpi 2015 4

0 2 4 6 8 10

2

4

6

8

10

12

14

bpi 2020 domestic

0 20 40 60 80

20

40

60

80

100

bpi 2015 5

0 2 4 6 8 10 12

2

4

6

8

10

12

14

bpi 2020 payments

0 1 2 3 4 5 6 7

10

15

20

25

30

35

40

bpi 2020 travel cost

0 1 2 3 4 5

14

16

18

20

22

24

helpdesk

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

150

175

200

225

250

275

300

325

traffic fine

0 10 20 30 40 50 60

5

10

15

20

25

bpi 2017

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Train Sequence Distance

M
A
E

F
ra
ct
io
n
of

T
ot
al

S
am

p
le
s

ProcessTransformer baseline Fraction of Total Samples

60

Appendix 3: Remaining time fraction completed re-

sults

Figure 7: Comparison of predictive performance across seven BPIC datasets grouped by the fraction complete of the test prefix. Each
subplot compares mean absolute error (MAE) for three approaches—ProcessTransformer (orange), PGTNet (green), and a baseline model
(blue)—as the fraction completed increases (x-axis). Lower MAE values signify better predictive performance.

0.
02
5

0.
07
5

0.
12
5

0.
17
5

0.
22
5

0.
27
5

0.
32
5

0.
37
5

0.
42
5

0.
47
5

0.
52
5

0.
57
5

0.
62
5

0.
67
5

0.
72
5

0.
77
5

0.
82
5

0.
87
5

0.
92
5

0.
97
5

4

6

8

10

12

14

16

18

bpi 2012

0.
02
5

0.
07
5

0.
12
5

0.
17
5

0.
22
5

0.
27
5

0.
32
5

0.
37
5

0.
42
5

0.
47
5

0.
52
5

0.
57
5

0.
62
5

0.
67
5

0.
72
5

0.
77
5

0.
82
5

0.
87
5

0.
92
5

0.
97
5

20

40

60

80

100

120

140

bpi 2015 1

0.
02
5

0.
07
5

0.
12
5

0.
17
5

0.
22
5

0.
27
5

0.
32
5

0.
37
5

0.
42
5

0.
47
5

0.
52
5

0.
57
5

0.
62
5

0.
67
5

0.
72
5

0.
77
5

0.
82
5

0.
87
5

0.
92
5

0.
97
5

20

30

40

50

60

70

80

90

bpi 2015 2

0.
02
5

0.
07
5

0.
12
5

0.
17
5

0.
22
5

0.
27
5

0.
32
5

0.
37
5

0.
42
5

0.
47
5

0.
52
5

0.
57
5

0.
62
5

0.
67
5

0.
72
5

0.
77
5

0.
82
5

0.
87
5

0.
92
5

0.
97
5

10

20

30

40

50

60

70

bpi 2015 3

0.
02
5

0.
07
5

0.
12
5

0.
17
5

0.
22
5

0.
27
5

0.
32
5

0.
37
5

0.
42
5

0.
47
5

0.
52
5

0.
57
5

0.
62
5

0.
67
5

0.
72
5

0.
77
5

0.
82
5

0.
87
5

0.
92
5

0.
97
5

20

30

40

50

60

70

80

bpi 2015 4

0.
02
5

0.
07
5

0.
12
5

0.
17
5

0.
22
5

0.
27
5

0.
32
5

0.
37
5

0.
42
5

0.
47
5

0.
52
5

0.
57
5

0.
62
5

0.
67
5

0.
72
5

0.
77
5

0.
82
5

0.
87
5

0.
92
5

0.
97
5

4

5

6

7

8

9

10

bpi 2020 domestic

0.
02
5

0.
07
5

0.
12
5

0.
17
5

0.
22
5

0.
27
5

0.
32
5

0.
37
5

0.
42
5

0.
47
5

0.
52
5

0.
57
5

0.
62
5

0.
67
5

0.
72
5

0.
77
5

0.
82
5

0.
87
5

0.
92
5

0.
97
5

20

40

60

80

100

bpi 2015 5

Fraction Completed

M
A
E

ProcessTransformer PGTNet baseline

61

	Introduction
	Research questions

	Background & Related Work
	Process mining
	Predictive process monitoring
	Model training

	Model evaluation
	Challenges in model evaluation
	Generalization
	Selection bias

	Methodology
	Design science
	Problem identification
	Solution objectives
	The model evaluation framework

	Design and development
	Demonstration and evaluation
	Demonstration of evaluation framework

	Communication

	Implementation
	Benchmark data selection
	Measuring generalization
	Next activity & next attribute prediction
	Next timestamp prediction & remaining time prediction
	Activity suffix & attribute suffix prediction
	Outcome prediction
	Comparing generalization between models

	Benchmark Framework
	DatasetLoaders
	DatasetNormalizers
	Metrics
	Configuration file
	Experiments
	TaskGenerator
	Evaluator

	Experiments & Results
	Experiment Setup
	PPM literature
	Model selection
	Final setup

	Results
	Relevance cycle
	Knowledge base
	Next activity prediction
	Design cycle

	Discussion
	Limitations
	Interpretation of results
	Debiasing strategy
	Measuring generalisation
	PRS metric

	Answers to the research questions
	Future research

	Conclusion
	Final Reflections

