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Abstract

RNA transcripts generated in Next Generation Sequencing experiments require accurate coding potential
classification, given the increasing evidence that long non-coding RNAs (lncRNAs) play crucial regulatory
roles. Despite the availability of a wide variety of lncRNA classifiers, none of the purely sequence-based
algorithms proposed in previous works outperform the most advanced feature-based approaches. We
present lncRNA-BERT, an RNA language model pre-trained on 0.5 million human mRNA/lncRNA
sequences that achieves state-of-the-art performance in classifying coding and long non-coding RNA. A
large collection of features proposed in previous works is used to demonstrate the potential of an RNA
language model for this task, while also establishing a random forest baseline model with outstanding
performance. The pre-trained lncRNA-BERTmodel is shown to generate biologically relevant embeddings
that distinguish mRNA from lncRNA without supervised learning, confirming that coding potential is
a sequence-intrinsic characteristic. We compare lncRNA-BERT to other Nucleotide Language Models
and demonstrate the benefit of pre-training on human data compared to the commonly used RNAcentral
dataset. In addition, our novel Convolutional Sequence Encoding method is shown to be more effective
and efficient than K-mer Tokenization and Byte Pair Encoding for pre-training on long sequences that
are otherwise above the common context size.

The methods and results presented in this thesis were generated as part of an internship project at the
Sequencing Analysis Support Core (SASC) at Leiden University Medical Center (LUMC).

A paper version of this thesis (available through pre-print: Romeijn, Cats, et al. 2025) has been sub-
mitted to the journal: ‘RNA Biology’.
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Chapter 1

Introduction

1.1 The Definition and Relevance of Long Non-Coding RNA

The central dogma of molecular biology (Crick 1958) is often misinterpreted as the inevitable conversion
of a gene into a functioning protein. Contradicting this misconception is the fact that the majority
(76–97%) of the human genome encodes for RNA molecules that do not translate into protein products
(Nemeth et al. 2023). While initially overlooked, these non-coding RNAs (ncRNAs) are now known to
have important regulatory functions. For most types of short RNAs, we also know their mode of action.
For example, microRNAs (miRNAs) inhibit gene expression by binding to the 3’ untranslated region
(UTR) of coding messenger RNA (mRNA), and Piwi-interacting RNA (piRNA) can induce the silencing
of transposons by binding to Piwi proteins (Ender et al. 2010).

On the other hand, the functions and mechanisms of most long (≥200 nt) non-coding RNAs (lncRNAs)
remain largely unknown (Mattick et al. 2023). In fact, the lack of a better categorization for these
transcripts explains why they are simply labelled as ‘lncRNA’ in most literature. Despite that, lncRNAs
are a highly prevalent type of RNA, underlined by the 173,112 human lncRNA transcipts stored in the
NONCODE (v6) database versus the 197,151 mRNAs in RefSeq (r225).

While a systematic characterization of lncRNAs does not yet exist, an increasing number of studies
show that lncRNAs have significant and highly diverse regulatory functions across various genomic levels.
As depicted in Figure 1.1, specific lncRNAs can interact with DNA, RNA, and/or proteins (Nemeth et al.
2023). Such interactions allow them to control chromatin architecture, modulate enhancer activity, and
modify the composition of biomolecular condensates (large protein-RNA complexes) in the cell (Mattick
et al. 2023).

Because of their regulatory functions, lncRNAs are often associated with disease. Notable examples of
such lncRNAs are LINCMD1 and HOTAIR. LINCMD1 acts as a miRNA competitor for muscle-specific
transcription factors, hence its expression levels can be related to Duchenne Muscular Dystrophy (Cesana
et al. 2011). HOTAIR regulates cell proliferation by interacting with the YBX1 protein, resulting in an
association with several cancer types (S. Li et al. 2021). These examples indicate that studying lncRNAs
can lead to an improved understanding of disease phenotypes, which may help in the development of
drug therapies.

1.2 Limitations of LncRNA Classifiers for Novel Transcripts De-
tected in NGS

Predicting whether a novel transcript is coding or non-coding is an important step in many Next Gen-
eration Sequencing (NGS) pipelines. The output of this task, from hereon referred to as ‘lncRNA clas-
sification’, provides researchers with crucial context to newly discovered, unannotated RNA sequences,
often identified through RNA-Seq experiments (e.g. Barriocanal et al. 2015; C. Fan et al. 2023; Weikard
et al. 2013).

Nowadays, researchers can choose between over 40 lncRNA classification algorithms. Most of these
classifiers are Machine Learning (ML) models that have been trained on annotated RNA data from
resources such as RefSeq and GENCODE. Famous examples of these methods are CPC, CNCI, CPAT,
and CPC2 (Y.-J. Kang et al. 2017; Kong et al. 2007; Liang Sun et al. 2013; L. Wang et al. 2013). These
algorithms are more advanced than simply detecting the presence of an Open Reading Frame (ORF),
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2 CHAPTER 1. INTRODUCTION

as many lncRNAs contain short ORFs, which are sometimes translated into important protein products
(Figure 1.1e, Pang et al. 2018). Non-coding isoforms of mRNAs further complicate the distinction between
the two RNA types (Nam et al. 2016). The difficulty and inherent ambiguity of this classification problem
stimulates continuous development of novel lncRNA classifiers, leveraging the latest available annotations
and methodological advancements.

The majority of lncRNA classification methods use a set predefined sequence features such as ORF
length, k-mer frequencies, and isolectric point that can serve as predictors for coding potential. Early
lncRNA classifiers were mostly based on support vector machines (Kong et al. 2007; Liang Sun et al.
2013), whereas recent algorithms are powered by boosting models or neural networks (Camargo et al.
2020; Feng et al. 2023). Data resources such as RefSeq and GENCODE are commonly used as training
input. Additionally, some studies increase performance by maximizing data diversity (Feng et al. 2023;
S. Liu et al. 2019) or by carrying out feature selection procedures (Han, Liang, Ma, et al. 2018; Y.-J.
Kang et al. 2017; Yu Zhang et al. 2020).

Multiple benchmarking studies have shown that the performance of these existing methods is quite
good: top models can achieve an F1-score of 93-96% on independent test sets (Han, Liang, Y. Li, et al.
2016b; D. Singh et al. 2022; Zheng et al. 2021). However, while a model that relies on a predetermined
set of predictors may learn the relationship between these features and the target, it may fail to capture
the true underlying signal. Purely sequence-based deep learning methods for lncRNA classification have
been proposed in previous works (Baek et al. 2018; Hill et al. 2018; Meng, Q. Kang, et al. 2021), but these
were outperformed by feature-based or hybrid methods in a recent benchmark (D. Singh et al. 2022).
These approaches utilized convolutional and/or recurrent neural networks, which suffer from limited
receptive fields and exploding/vanishing gradients, respectively. The transformer architecture improves
upon these designs by employing an attention mechanism and being non-recurrent (Vaswani et al. 2017).
We demonstrate that this more advanced architecture can improve sequence-based lncRNA classifiers.

Figure 1.1: The main functions of lncRNAs (Nemeth et al. 2023, Figure 2) a) Several lncRNAs were found
to interact with DNA, modulating enhancer activity or causing epigenetic modifications that influence
gene expression. b) Some lncRNAs affect the translation levels of mRNAs through interactions with
mRNA or RNA-bound protein complexes. c) LncRNAs (e.g. HOTAIR) can act as miRNA sponges,
causing the upregulation of certain genes. d) Specific lncRNAs bind proteins and act as scaffolds or
guides. e) lncRNAs may contain short ORFs that encode for small, functional peptides.
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1.3 Developments in Nucleotide Language Models

Nucleotide Language Models (NLMs) are emerging as novel analysis tools for DNA/RNA data, capable
of various downstream tasks such as variant prioritization, splice site detection, and secondary structure
prediction of RNA (Dalla-Torre et al. 2023; Penić et al. 2024). Their development is stimulated by the
success of the transformer-based Large Language Models (LLMs) in Natural Language Processing (NLP)
and various other domains. NLMs are usually presented as general-purpose foundation models: they are
pre-trained on large collections of nucleotide data with the Masked Language Modeling (MLM) objective
to generate informative sequence embeddings.

Different types of NLMs are available, specializing in DNA or RNA based on their pre-training data.
Examples of DNA language models are DNABERT-2 (Z. Zhou, Ji, et al. 2023), GENA-LM (Fishman
et al. 2023), and Nucleotide Transformer (Dalla-Torre et al. 2023). RNA language models include RNA-
FM (Chen et al. 2022), RNAErnie (N. Wang et al. 2024), and RiNALMo (Penić et al. 2024). DNA
LMs are usually pre-trained on genomic data. For RNA LMs, the most popular resource is RNAcentral,
containing mostly short non-coding RNA of multiple species. We anticipate that using data from resources
like GENCODE and RefSeq can improve the performance of RNA LMs on mRNA and lncRNA.

Another crucial component of an NLM is its encoding method, which determines the type of linguistic
units (tokens) that the model receives as input. Different encoding methods affect the model in its max-
imally accepted input length, resolution, and learned capabilities. So far, Nucleotide-Level Tokenization
(Akiyama et al. 2022), K-mer Tokenization (Dalla-Torre et al. 2023), and Byte Pair Encoding (Z. Zhou,
Ji, et al. 2023) have been proposed, each having its own set of (dis)advantages in one or more of the
aforementioned aspects. Increasing model/data size and applying the latest architectural advancements
has led NLMs to where they are now in terms of performance (Dalla-Torre et al. 2023; Fishman et al.
2023; Penić et al. 2024). Nevertheless, we wonder whether the encoding methods used by these models
truly reflect the nature of DNA and present a novel technique in this study.

1.4 Scope of This Thesis

In this thesis, we propose lncRNA-BERT (Long Non-Coding RNA Bidirectional Encoder Representations
from Transfomers), an RNA language model pre-trained on human mRNA/lncRNA data and fine-tuned
for sequence-based lncRNA classification. LncRNA-BERT utilizes a novel Convolutional Sequence En-
coding (CSE) technique. Specifically, we address the following Research Questions:

1. How accurately can lncRNA-BERT distinguish coding from long non-coding RNA in comparison
to existing methods?

2. To what extent do previous lncRNA classifiers and their respective coding potential predictor fea-
tures motivate the use of an RNA language model for lncRNA classification?

3. Does an RNA language model for lncRNA classification benefit from pre-training, specifically on
human data?

4. Can we design a more effective and efficient sequence encoding method for long nucleotide se-
quences?

By addressing these research questions, we aim to develop an improved sequence-based lncRNA classifi-
cation method, while also assessing its biological relevance and limitations. In doing so, we aim to gain
an improved understanding of lncRNA and further advance the development of NLMs.
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Chapter 2

Related Work

An extensive collection of scientific research precedes our approach to lncRNA classification. On the one
hand, a significant body of research (40+ studies) is dedicated to the advancement of lncRNA classifiers.
Section 2.1 serves as an overview of these algorithms. On the other hand, specific to our approach, recent
years have witnessed a growing amount of research on Nucleotide Language Models (NLMs), described
in Section 2.2.

2.1 LncRNA Classifiers

Numerous prior studies have investigated how pcRNAs can be distinguished from lncRNAs. These studies
differ in 1) what kind of features are used as predictory variables; 2) the datasets that are used for training;
and 3) the machine/deep learning models and methods that are applied. We shall addresses these three
components in this order. An extensive overview is given in Table 2.2.

2.1.1 Features

A wide range of sequence-derived features have been proposed as possible coding-potential predictors in
previous works. Similar to (Han, Liang, Ma, et al. 2018; J. Li et al. 2020; Zheng et al. 2021), we provide
a categorization of these features. Six main feature types are identified and listed in Table 2.1. Note that
a sequence’s Open Reading Frame (ORF) and other patterns are purely sequence-intrinsic, and most
physicochemical and secondary structure features can be indirectly inferred from sequence data. Hence,
these features motivate the use of an NLM w.r.t. Research Question 2. Nevertheless, numerous methods
enrich these sequence-intrinsic features with extrinsic data, for example through database alignments
and genome mapping. This provides these feature-based algorithms with data that cannot be learned by
NLMs.

Feature type Example Relevance
1 ORF ORF length PcRNAs are more likely to consist of longer

ORFs than lncRNAs.
2 Sequence patterns K-mer frequencies,

Fickett score
Some (combinations) of nucleotides appear more
often in pcRNA than in lncRNA.

3 Database alignment BLASTX hits PcRNAs will yield more protein database hits
than lncRNAs.

4 Genome mapping Conservation score Some features can only or more efficiently be
deduced from a reference genome.

5 Physicochemical Isoelectric point PcRNAs can exhibit different physicochemical
properties than lncRNAs.

6 Secondary structure Unpaired-paired
bases frequency

The secondary structure can aid in determining
how likely an RNA is to be protein-coding.

Table 2.1: The six main feature types as used by existing lncRNA classification methods.
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2.1.1.1 Open Reading Frame

The most simple example of a feature used by lncRNA classifiers is the length of a transcript’s longest
ORF. While introduced in 2007 by an early coding potential tool called CPC (Kong et al. 2007), the ORF
length is a popular explanatory variable, even in more recent studies (Camargo et al. 2020; Yu Zhang
et al. 2020). The intuition behind this feature is simple: transcripts with long ORFs are likely to be
protein-coding. The same applies for ORF coverage, where pcRNAs are expected to be mostly covered
by an ORF. Note that the presence of ORFs in a transcript alone is not sufficient for distinguishing
between pcRNAs and lncRNAs, as lncRNAs are known to have short ORFs (Section 4.2.1), which may
encode for functional micro-peptides (Pang et al. 2018).

The applied ORF identification method and the quality and completeness of a transcript are of crucial
influence in whether or not an ORF is found within a sequence. Hence, FEELnc introduces 5 alternative
definitions, each with different selection criteria (Wucher et al. 2017). The most strict variant, in which
both a start and stop codon must be present, is most often used in the literature and also in NCBI’s
online ORFfinder tool (https://www.ncbi.nlm.nih.gov/orffinder). Other definitions proposed in
that study are more relaxed, allowing for missing start and/or stop codons, or even reverting back to
the full transcript in case of a lack of both. A downside to this method is that higher relaxation levels
increase the chance of false positives. Alternatively, a different work successfully applied a CNN for
the identification of ORFs (Baek et al. 2018), allowing for a data-driven identification of ORFs beyond
hard-coded rules.

2.1.1.2 Sequence Patterns

A second and widely used class of discriminative features comprises nucleotide patterns, or specifically
the occurrence bias of certain patterns in pcRNA compared to lncRNA. This bias can be expressed in
terms of pattern frequencies, scoring systems, distance measures, sequence distribution, and identifying
most-like coding sequences.

2.1.1.2.1 Pattern frequencies

The most straightforward way of representing sequence bias is by counting pattern frequency. CONC was
the first method to incorporate monomer, dimer, and trimer nucleotide frequencies (J. Liu et al. 2006).
FEELnc developed a fast k-mer counting algorithm to enable the inclusion of 12-mers (Wucher et al. 2017).
PLEK introduced a normalization scheme, multiplying k-mer frequencies by a factor w = 1/(45−k) to
correct for high probabilities of short k-mers (A. Li et al. 2014). Another example is LncFinder, which
applies k-mer frequencies to the ORF (Han, Liang, Ma, et al. 2018). Assuming a correct reading frame
allows LncFinder to count codons, using a step size of k = 3. Finally, DeepCPP calculates the frequencies
of discontinuous k-mers, which was shown to lead to an increased performance (Yu Zhang et al. 2020).

2.1.1.2.2 Scoring systems

An alternative manner to utilize nucleotide pattern bias for sequence classification is through scoring
systems, which assign higher scores to transcripts with subsequences that occur more often pcRNA than
lncRNA. This way, k-mer frequencies can be summarized into a single value, reducing the number of
covariates in a model. CPAT (L. Wang et al. 2013) was the first to propose the hexamer score, formulated

as the mean log ratio
Fpc(Wi)
Fnc(Wi)

of the occurrence frequencies of hexamers Wi in a sequence. The hexamer

score and variations thereof were utilized by several later classifiers (Simopoulos et al. 2018; C. Yang
et al. 2018; J. Zhao et al. 2016).

The Fickett testcode statistic (or Fickett score) adds another level to nucleotide pattern bias by adding
a positional component (Fickett 1982; L. Wang et al. 2013), which reflects the extent to which a certain
base is favored in a specific reading frame. Usage and position values are derived from look-up tables
which have been calculated from a very small dataset of pcRNAs and ncRNAs in a study dating from
1982 (Fickett 1982). Hence, it is notable that many RNA classification methods successfully apply the
Fickett score as a predictor for protein-coding capability (K. Sun et al. 2013; L. Wang et al. 2013; C.
Yang et al. 2018).

DeepCPP (Yu Zhang et al. 2020) utilizes a new type of scoring system, assigning scores based only
on nucleotides around the start codon of the identified ORF. The authors developed this metric based
on biological findings that indicated the importance and conservation of bases in this area.

https://www.ncbi.nlm.nih.gov/orffinder
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2.1.1.2.3 Distance measures

LncFinder calculates a distance measure between the k-mer frequency spectrum of a query and that of
the average pcRNA or ncRNA in a training dataset (Han, Liang, Ma, et al. 2018), to be less reliant on
pre-calculated log ratios e.g. used in the hexamer score. While the use of this feature was proven to
be highly successful, it is based on a false intuition: lncRNAs are expected to be closer to the average
lncRNA spectrum than pcRNAs. We show that this is not the case and demonstrate that LncFinder’s
distance measure is mostly an indication of sequence entropy (Section 4.2.3).

2.1.1.2.4 Sequence distribution

CPPred investigates the use of CTD (Composition, Transition, Distribution) features for lncRNA clas-
sification (Tong et al. 2019), from which the distribution feature is the most novel (composition and
transition are similar to k-mer frequencies). This feature describes, for each base, the proportion of times
that it occurs in the first 25%, 50%, 75%, and 100% of the sequence, relative to the sequence length. One
of the outcomes of the work is that the proportion of T’s in the first half of the sequence is a key feature
for predicting the coding capability of a transcript. This hints at the presence of long-ranging nucleotide
patterns, which features discussed so far fail to capture.

Another feature related to sequence distribution is based on the intuition that long ORFs cannot be
interrupted by stop codons. In the case of a pcRNA, we should see a discrepancy between the number of
stop codons in each reading frame, expecting the number of stop codons in one of these frames (that of the
ORF) to be less than the others. Therefore, lncRScan-SVM proposes to use the standard deviation of the
stop codon reading frame distribution as a feature for distinguishing coding from non-coding transcripts
(Lei Sun et al. 2015).

2.1.1.2.5 Most-Like Coding Sequence

To address the challenges that come with identifying ORFs in transcripts, CNCI identifies a so-called
Most-Like Coding Sequence (MLCDS) based purely on nucleotide pattern bias (Liang Sun et al. 2013).
The procedure for identifying an MLCDS is described by the following steps: 1) calculating the usage
frequency bias (log ratio) of Adjoined Nucleotide Triplets (ANTs); 2) generating six arrays of ANT scores
based on the ANTs of six possible transcript reading frames; and finally 3) applying dynamic programming
for identifying the subarray with the largest consecutive sum value. This yields six MLCDSs with different
scores, corresponding to three reading frames in two possible directions. The functional relevance of the
reverse direction is questionable in our opinion. RNA transcripts are single-stranded and sequenced from
5’ to 3’. Furthermore, the authors do not mention reverse complementing the sequence, nor do they
mention the calculation of the ANT usage bias for these reversed sequences. MLCDS is utilized by
CNCI, CNIT, and LncADeep (Guo et al. 2019; Liang Sun et al. 2013; C. Yang et al. 2018).

2.1.1.3 Database Alignment

Some lncRNA classification tools search a protein reference database to identify whether RNAs encode
for known protein products. CPC and PLncPro deploy BLASTX for a database search against Uniref90
and Swiss-Prot, respectively, using the number of hits as the main feature (Kong et al. 2007; U. Singh
et al. 2017). Additionally, both studies reason that protein-coding transcripts should have higher quality
matches that reside mostly in the same reading frame. Hereto, CPC and PLncPro aggregate the e-values
of BLASTX hits into a single score, and also describe the variance or entropy of hits across different
reading frames. Furthermore, PLncPro uses the total bit score as a final BLAST-derived feature. As
an alternative to BLAST, LncADeep and LncRNA-ID deploy the Hidden Markov Model-based HMMER
as a database search method (Achawanantakun et al. 2015; C. Yang et al. 2018), and CREMA uses
DIAMOND as a faster BLAST alternative (Simopoulos et al. 2018).

Despite its proven discriminatory power, results of a database search are not often used as predictive
features for lncRNA classifiers. Reasons for this are the computational complexity of algorithms like
BLAST, and the dependence on a reference protein database. CPC’s successor, CPC2, steps away from
BLASTX to achieve a significant speed-up and to make the model more species-neutral (Y.-J. Kang et al.
2017). Nevertheless, BLASTX hits can serve as evidence for the classification of pcRNAs, which is not
offered by CPC2 and other reference-free classifiers.
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2.1.1.4 Genome Mapping

We define genome mapping as a fourth feature category, indicating features that have been derived from
genomic rather than transcriptomic sequence data. In order to calculate such features, transcripts must
be mapped or aligned to a reference genome. Consequently, algorithms with predictors in this category,
like COME, iSeeRNA, and LncRScan-SVM (Hu et al. 2016; K. Sun et al. 2013; Lei Sun et al. 2015),
require a GTF file with genome coordinates as input. The benefit of using genome-mapped transcript
data is that it enables the inclusion of some additional features, as explained below.

The most common genome-derived feature is the DNA conservation score, derived from PhastCons
annotations. PhastCons is a program that, given a multiple sequence alignment, determines how well
certain parts of a sequence are conserved across evolution. Coding sequences tend to be better conserved
than non-coding ones, as their functioning is more crucial for an organism’s fitness.

Besides the conservation score, COME adds experiment-derived features as extra predictors and uses
a unique decompose-compose method for feature extraction (Hu et al. 2016). In the decompose step,
the reference genome is divided into bins of equal width. This allows for features to be calculated only
once, server-side, providing clients with annotated genome bin data. During inference, the compose step
is executed, in which transcripts aggregate the data from their corresponding bins.

2.1.1.5 Physicochemical Features

Given a transcript, we can calculate the theoretical physicochemical characteristics of the predicted
peptide sequence and utilize these as features for distinguishing pcRNA from lncRNA. The isoelectric
point (pI) is a frequently appearing feature in lncRNA classifiers, e.g. used by PORTRAIT, CPC2, and
CPPred (Arrial et al. 2009; Y.-J. Kang et al. 2017; Tong et al. 2019), where the hypothetical pI is found
to be higher for ncRNAs than for pcRNAs. Other examples of peptide-based physicochemical features
include solvent accessibility (J. Liu et al. 2006) and predicted hydropathy (Arrial et al. 2009).

To be independent of the accuracy of the predicted peptide sequence (which can be limited due to the
ORF finding algorithm), LncFinder directly operates on the sequence of EIIP values for a given transcript
(using a known mapping) (Han, Liang, Ma, et al. 2018), extracting physicochemical features from this
sequence of numbers. To do so, LncFinder first transforms the EIIP sequence into a power spectrum
with FFT. A pcRNA contains sequences of nucleotide triplets (codons), hence its power spectrum has a
notable peak at a third of its length. This peak is generally not observed in lncRNAs, and is therefore
highly suitable as a predictive feature. On top of that, LncFinder calculates several power spectrum
statistics like the signal-to-noise ratio and quantiles, using those as additional features.

2.1.1.6 Secondary Structure

Several methods have investigated the use of secondary structure information of transcripts for their
classification as protein- or non-coding. Even the early classification algorithm CONC included secondary
structure features as predicted by the PROFsec algorithm, although these features were part of the less
contributing ones in their importance analysis (J. Liu et al. 2006).

LncFinder’s feature selection procedure identified multiple secondary structure-related features to be
relevant for lncRNA classification (Han, Liang, Ma, et al. 2018). LncFinder and lncRNA-MFDL use
a program called RNAfold, as part of the ViennaRNA package, to find the secondary structure of a
transcript based on minimum free energy. This results in a sequence of bases that are either paired (P) or
unpaired (U) to a base elsewhere in the transcript (e.g. creating hairpin structures). LncFinder explores
several features derived from this secondary structure sequence and uses the minimum free energy, UP
frequency, and two sequence pattern distance measures in their final model. Free energy is also used by
RNAplonc (Negri et al. 2018).

2.1.2 Data

Another important aspect of lncRNA classifiers is the data that is used for training and evaluation. Com-
monly used public databases are RefSeq (NCBI), GENCODE/Ensembl (EMBL-EBI), and NONCODE,
few studies use in-house datasets. The composition of these databases is explained in Section 3.1.

RefSeq, Ensembl, and GENCODE combine automated annotation with manual curation (Frankish
et al. 2022; O’Leary et al. 2015). For RefSeq, manually curated sequences are marked as ‘VALIDATED’
or ‘REVIEWED’. The manual curation of the GENCODE and Ensembl databases is performed by the
‘HAVANA’ group, with reviewed sequences labeled like that. GENCODE contains only human and
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mouse data, whereas Ensembl also contains other species. Nevertheless, their human/mouse annotation
is exactly the same. Ensembl is therefore omitted from this study.

Finally, NONCODE is an integrated knowledge database of non-coding RNAs, mostly lncRNAs, for
17 species (L. Zhao et al. 2020). Data is obtained from public databases and literature through an auto-
matic pipeiline and contains an advanced annotation, including e.g. expression profiles.

The majority of lncRNA classification methods undersample the majority class (pcRNA) to obtain a
balanced dataset, as machine learning methods are often sensitive to class imbalance. Random sam-
pling is a straightforward way to obtain a balanced dataset. Some previous works have aimed to handle
this problem with extra care, maximizing data diversity. For example, PredLnc-GFStack and LncCat
use clustering algorithm CD-HIT for this purpose (Feng et al. 2023; S. Liu et al. 2019). Alternatively,
PlncRNA-HDeep clusters data based on k-mer frequencies. Another notable data manipulation tech-
niques is applied by mRNN, which introduces mutations to training sequences as to increase the model’s
robustness (Hill et al. 2018).

2.1.3 Models and Methods

The third and final aspect that distinguishes an lncRNA classifier is the underlying model type, sometimes
in combination with a feature selection method. Most classification tools use a machine learning or a deep
learning method, but there are some that do not fall in either of these categories. For example, PhyloCSF
calculates two phylogenetic trees based on a multiple sequence alignment: one under a protein-coding
model, one under a non-coding model (Lin et al. 2011). The log ratio of the two phylogenetic likelihoods
is used directly as a predictor for coding potential.

2.1.3.1 Machine Learning

The early lncRNA classifiers, such as CONC, CPC, and PORTRAIT, based their algorithms on support
vector machines (Arrial et al. 2009; Kong et al. 2007; J. Liu et al. 2006). SVMs learn a hyperplane
that maximizes the margin between the to-be-separated classes. SVMs can learn non-linear boundary
functions due to the so-called kernel trick, which maps input features into a higher dimension. This does
not apply to logistic regression, which can only learn linear decision boundaries, and is used by CPAT
and lncScore (L. Wang et al. 2013; J. Zhao et al. 2016).

LncRNA-ID was the first of many tree-based lncRNA classification algorithms (Achawanantakun et
al. 2015), using a random forest for its predictions. A random forest is an ensemble of decision trees, each
trained using a slightly different feature set. This makes random forests more robust against overfitting
than single decision trees or SVMs. At every node, tree-based classifiers learn to optimally distinguish
two classes by creating a split that results in the highest reduction of impurity (measured in entropy,
for example). This allows them to model non-linear decision boundaries, like SVMs. Random forests
and decision trees were used in many later algorithms, such as PredLnc-GFStack, FEELnc, COME, and
PLncPro (Hu et al. 2016; S. Liu et al. 2019; U. Singh et al. 2017; Wucher et al. 2017). LncRNA-ID
stands out as it trains each of the trees in the ensemble with a different subset of coding RNAs, thereby
addressing the issue of class imbalance in pcRNA/lncRNA data.

With the increasing success of boosting algorithms, three later works have based their models on
XGBoost (Guo et al. 2019; M. Li et al. 2022) or CatBoost (Feng et al. 2023). Boosting creates an
ensemble of learners, with each learner being trained on a dataset where each sample is given different
weight. The data weights for a new learner are determined by the previous classifier’s accuracy: the
less accurate a previous classifier was, the more weight is assigned. This can make boosting models very
powerful, but may also make them susceptible to overfitting.

2.1.3.2 Deep Learning

In recent years, deep learning-based lncRNA classification methods have started to appear more fre-
quently. LncRNA-MFDL was the first to use deep neural networks (X.-N. Fan and S.-W. Zhang 2015),
whilst still being a feature-based classification method. Other feature-based deep learning lncRNA clas-
sifiers are LncADeep and NCResNet (C. Yang et al. 2018; S. Yang et al. 2020).

Due to their ability to learn complex representations by themselves, neural networks need not to
rely on a predefined set of features. As first argued by the authors of LncRNAnet (Baek et al. 2018),
training networks directly on sequence data allows them to learn novel, non-canonical signals that cannot
be described using traditional features. Nevertheless, neural networks require a numeric input, therefore
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RNA sequences must be encoded into a sequence of numbers before training/inference. PlncRNA-HDeep
combines two encoding techniques, k-mer and one-hot encoding, for their RNN and CNN, respectively
(Meng, Q. Kang, et al. 2021). While neural networks are often considered to be black boxes, it is possible
to get some insight into the learned features. Along these lines, mRNN performed a sequence perturbation
analysis to find out which patterns are most influential for the predicted output (Hill et al. 2018).

Besides feature-based and sequence-based deep learning lncRNA classifiers, there are also those that
use a combination of pre-engineered features and raw sequence data as their input (Camargo et al. 2020;
X.-N. Fan, S.-W. Zhang, et al. 2020; Feng et al. 2023). The reason for this is that it is challenging
for purely sequence-based networks to live up to the high performance of feature-based methods, as
pointed out by a recent benchmarking paper (D. Singh et al. 2022). There are many ways in which
such multimodal neural networks can be designed. RNASamba uses a so-called IGLOO network that
learns embeddings for the full RNA sequence as well as the ORF, and then combines those embeddings
with traditional features such as k-mer frequencies and ORF length to make a final decision (Camargo
et al. 2020). Alternatively, LncCat uses a BERT model to learn embeddings for the ORF only, and then
concatenates this information to traditional nucleotide and peptide features.

2.1.3.3 Feature Selection

The risk of overfitting a machine learning model increases with the dimensionality of the feature space.
Therefore, several of the prior lncRNA classification studies have applied feature selection algorithms
to deduce an optimal feature subset. Longdist investigated the principal components of the feature
space to determine which features explained most of the data variance (Schneider et al. 2017). DeepCPP
presented mDS, which selects features for which the pcRNA/lncRNA distributions are most different from
each other, using relative entropy as a distance measure (Kullback-Leibler divergence). Alternatively,
PredLnc-GFStack utilized a genetic algorithm for feature selection (S. Liu et al. 2019). CPC2 and
LncFinder used recursive feature elimination, in which models are trained on feature subsets that shrink
in size, eliminating the least contributing feature with every step.

2.2 Nucleotide Language Models

The success of BERT and other LLMs in various domains (e.g. AlphaFold in proteomics, Jumper et
al. 2021) initiated the development of nucleotide language models (NLMs), pre-training on genomic
data instead of natural language. Multiple of such DNA/RNA foundation models have been proposed
over the past four years, and have proven to be capable of various downstream tasks such as promotor
identification, variant prioritization, splice site detection, and RNA secondary structure prediction.

Table 2.3 provides an overview of existing DNA and RNA foundation models, which are further
explained in this section. Both NLM types have progressed significantly, training on increasingly large
datasets and incorporating the latest architectural advancements to increase efficiency and accepted input
length. NLMs have also improved in terms of the applied sequence encoding method, which determines the
definition of input tokens. NLMs require efficient tokenization methods to accommodate long sequences
in their limited context window, causing the shift from Nucleotide-Level Tokenization (NUC) to K-mer
Tokenization to Byte Pair Encoding (BPE). However, we have yet to identify a sequence encoding method
that divides DNA/RNA in optimal linguistic units, especially for long sequences, which is addressed in
this thesis with Research Question 4.

Note that many of the studies that are discussed here remain in pre-print, allowing them to be
validated by the community and improve upon themselves through updated versions of the same work.
Novel (versions of) NLMs are released every year, which indicates that this field is developing rapidly
and has not converged to an optimal solution yet.

Noteworthy mentions of NLM-like models excluded from Table 2.3 are Enformer (Avsec et al. 2021),
RNA-MSM (Yikun Zhang et al. 2023), MycoAI (Romeijn, Bernatavicius, et al. 2024), and DNABERT-S
(Z. Zhou, Wu, et al. 2024). Reason for their exclusion is that they are released as task-specific models
instead of general-purpose models, or in the case of RNA-MSM operate on multiple sequence alignments
instead of single sequences.

1Estimated based on architecture hyperparameters, exact amount not provided in Akiyama et al. 2022
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Method #Params Context length EM Data Reference
D
N
A

DNABERT-1 89M 512 (0.5 kbp) K-mer H Ji et al. 2021

DNABERT-2 117M Variable (ALiBi) BPE
H

Z. Zhou, Ji, et al. 2023
M

GENA-LM 110M-336M
512 (4.5 kbp)

BPE H*/M Fishman et al. 20234096 (36 kbp)
Variable (RMT)

GROVER 86M 510 (2 kbp) BPE H Sanabria et al. 2024
HyenaDNA 0.44-6.6M 64 kbp - 1 Mbp NUC H Nguyen et al. 2023
LOGO 1M 2000 (2 kbp) K-mer H M. Yang et al. 2022
NT-v1 486M-2,547M 1,024 (6 kbp)

K-mer H*/M Dalla-Torre et al. 2023
NT-v2 54M-496M 2,048 (12 kbp)

R
N
A

BiRNA-BERT 117M Variable (ALiBi) Adaptive M Tahmid et al. 2024
ERNIE-RNA 86M 1024 (1 kbp) NUC M Yin et al. 2024
RiNALMo 650M 1024 (1 kb) NUC M Penić et al. 2024
RNABERT <10M1 440 (0.4 kbp) NUC H Akiyama et al. 2022
RNAErnie 105M 512 (0.5 kbp) NUC M N. Wang et al. 2024
RNA-FM 100M 1024 (1 kbp) NUC M Chen et al. 2022
Uni-RNA 25M-400M 4096 (4 kbp) NUC M X. Wang et al. 2023

Table 2.3: Overview of DNA/RNA Nucleotide Language Models (NLMs). Context length indicated in
tokens (and bp, if applicable). EM refers to encoding method. In data column: H indicates human
genome, H* indicates multiple human genomes, M indicates multi-species. Alphabetically sorted per
molecule type.

2.2.1 DNA Language Models

In a pioneering study for NLMs, Ji et al. 2021 pre-trained the BERT-base architecture from Devlin
et al. 2018 on sequences of 10-510 bp from a single human genome. Their model, DNABERT, has
89M parameters and outperformed state-of-the-art methods in the identification of promotor regions,
splice sites, and transcription factor binding sites (at the the time of publication). Nucleotide sequences
are converted into tokens through overlapping K-mer Tokenization: all k consecutive nucleotides in the
sequence are considered as single tokens. Masked Language Modeling (MLM) is used as pre-training
procedure, masking out k contiguous tokens in order to prevent information leakage by surrounding
k-mers. The limited context length of 512 bp is addressed with the modified DNABERT-XL, which
concatenates the embeddings of 512 bp subsequences. While this enables DNABERT-XL to handle
longer sequences, it is still blind to long-range interactions.

A year later, a 1M parameter method named LOGO (M. Yang et al. 2022) proved that even light-
weight NLMs can achieve state-of-the-art performance on tasks such as chromatin feature prediction,
while being much more parameter efficient than methods like DNABERT and the CNN-based DeepSEA
(J. Zhou et al. 2015). Unfortunately, LOGO was not directly compared to DNABERT or other NLMs in
future works. Due to a smaller model size, LOGO could be trained on longer DNA sequences (up to 2
kbp) than DNABERT.

The Nucleotide Transformer (NT) took a much more extensive approach, training large models of up
to 2.5B parameters on data from 3,202 human genomes (from the 1000 Genomes Project) and 850 multi-
species genomes (Dalla-Torre et al. 2023). In their work, the authors show that increasing model size
and including more (diverse) data leads to better performance on downstream tasks. The multi-species
NT model performed well at prioritizing genetic variants without any fine-tuning, as it was discovered
that the impact of mutations could be estimated by calculating the distance between embeddings of the
sequence with and without the mutation. Finally, note that NT was trained on 12 times longer sequences
(up to 6 kbp) than DNABERT due to the use of non-overlapping K-mer Tokenization (with k = 6) and
a 2 times longer context length (1024 vs 512).

DNABERT-2 outperforms its predecessor and achieves results comparable to the 21 times larger NT-
v1 with the help of an alternative sequence encoding method, multi-species pre-training, and multiple
architectural improvements (Z. Zhou, Ji, et al. 2023). The authors propose the use of Byte Pair Encoding
(BPE) for tokenization, a technique originally designed for data compression, which was already widely
used in NLP. BPE is more efficient and less sensitive to frameshifts than K-mer Tokenization, allowing
NLMs to achieve similar results with smaller models. DNABERT-2 also adapted flash attention and



2.2. NUCLEOTIDE LANGUAGE MODELS 13

low-rank adaptation to limit computational expenses, as well as Attention with Linear Biases (ALiBi) to
accommodate for longer sequences. Even though ALiBi enables inference and fine-tuning on longer DNA
sequences, DNABERT-2 was pre-trained on sequences of only 700 bp long. Nevertheless, DNABERT-2
is shown to outperform DNABERT-1 and NT-v1 on two downstream tasks that involve long sequences:
predicting enhancer-promotor interaction and species classification.

Despite its advancements, DNABERT-2 was quickly surpassed in performance by HyenaDNA (Nguyen
et al. 2023) and an updated Nucleotide Transformer, NT-v2 (Dalla-Torre et al. 2023). HyenaDNA
achieved impressive results while being trained only on the human genome and with even fewer pa-
rameters than DNABERT-2 (6.6M vs 117M), which can be attributed to the use of the novel Hyena
architecture (Nguyen et al. 2023). A Hyena model performs long, gated convolutions, mimicking the
attention mechanism in a highly efficient manner. This enabled HyenaDNA to process sequences of up
to 1 Mbp in length at nucleotide resolution, making it stand out in ultra-long range genomics tasks such
as biotype and species classification. However, it was outperformed by the updated NT-v2 on multiple
shorter-range tasks like chromatin profile prediction and splice site recognition. The advancements of
NT-v2 in comparison to v1 include the use of rotary position embeddings, SwiGLU activation, and flash
attention. This also enabled Dalla-Torre et al. 2023 to train for more epochs, on a two times longer
context length (2048 tokens).

The most recent DNA language model, GENA-LM (Fishman et al. 2023) has a base context length of
36 kbp mainly due to 1) BPE tokenization with a large vocabulary size; and 2) using a sparse attention
mechanism called BigBird (Zaheer et al. 2020). GENA-LM uses a BPE vocabulary size of 32,000 tokens,
leading to a median token length of 9. This significantly reduces sequence length as well as model
resolution. While such a large vocabulary size may introduce sampling efficiency problems (Sanabria
et al. 2024), the model achieves similar performance to NT-v2 while being smaller in size (336M vs
2.5B parameters). Furthermore, a long-range GENA-LM model, which uses the Recurrent Memory
Transformer technique, outperforms HyenaDNA in its own species classification benchmark. Note that
GENA-LM, like NT and unlike DNABERT and HyenaDNA, was trained on data that included multiple
human genomes, likely attributing to its superiority.

2.2.2 RNA Language Models

NLMs that specialize in RNA molecules have gone through similar development trajectories as DNA
language models, although the amount of cross-references between the two is limited. We note that DNA
and RNA LMs have not yet been thoroughly compared in literature, which is a missed opportunity since
DNA language models might perform well on RNA data (indicated in Section 4.5). Regardless of that,
NLMs for RNA distinguish themselves from their DNA counterparts as RNA is a single-stranded, 3D
molecule that has a defined beginning and end. Furthermore, RNA data is limited to the transcriptome,
excluding non-transcribed DNA regions. For these reasons, the RNA models discussed below are expected
to excel at RNA-specific tasks such as secondary structure prediction and splice site detection.

The first RNA NLM, RNABERT (Akiyama et al. 2022), used a relatively small BERT architecture
and pre-trained on 76,237 short, human, non-coding RNA sequences from RNAcentral. The consider-
ably larger RNA-FM (100M parameters) was published soon thereafter (Chen et al. 2022). RNA-FM
was trained on the entire multi-species RNAcentral dataset, unlike RNABERT, and accepted longer se-
quences than its predecessor due to a larger context length (1024 vs 440 bp). Note that both models
use Nucleotide-Level Tokenization (NUC). RNA-FM was shown to be capable of modeling RNA-protein
interactions and outperformed 12 state-of-the-art methods for RNA structure prediction.

The same transformer-related developments that helped improve DNA language models also con-
tributed to better RNA language models. By utilizing rotary position embeddings and flash attention,
Uni-RNA (25M-400M parameters) increased the accepted sequence length to 4096 bases (X. Wang et al.
2023). The model improved upon RNA-FM for secondary structure prediction by a large margin (F1-
score of 0.82 vs 0.69), and performed well at other fine-tuning tasks such as splice site prediction and
ncRNA functional classification. Unfortunately, Uni-RNA is not publically available. The RiNALMo
method (650M parameters), which applies roughly the same modifications to the transformer architec-
ture (+ SwiGLU activations), outperformed Uni-RNA on multiple downstream tasks and is available
from GitHub (Penić et al. 2024). Like Uni-RNA, RiNALMo was trained on the RNAcentral dataset, but
RiNALMo clustered the sequences using MMSeqs2 before pre-training, in order to maximize sequence
diversity. One downside in comparison to Uni-RNA is that RiNALMo has a four times smaller context
length of 1024 bp.

Recently, two RNA language models based on the Enhanced Representation with Informative Entities
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(ERNIE) framework were published, each integrating a different type of knowledge into the method.
ERNIE-RNA uses a special attention calculation in which pairwise position bias based on RNA structural
information is integrated (Yin et al. 2024), the use of which was proven in an ablation study. The
ERNIE-RNA model achieved state-of-the-art performance on multiple downstream tasks, although a
thorough comparison with other RNA language models is not provided in the work. The benefit of
knowledge integration was further underlined by RNAErnie (N. Wang et al. 2024), a model that takes
RNA type information as extra input. Furthermore, the method applies a clever multi-level masking
strategy during pre-training, in which it masks out a mix of individual nucleotides, subsequences, and
database-extracted motifs. RNAErnie was found to outperform RNA-FM on tasks like RNA sequence
classification, RNA-RNA interaction, and secondary structure prediction. However, a comparison to
RiNALMo is not included. Even though using ERNIE was shown to improve upon a BERT-based
approach, we argue that ERNIE is not suitable for the problem of lncRNA classification, as there is no
additional knowledge/annotation that can be integrated into the model.

The latest model, BiRNA-BERT, addresses an issue that all previous methods shared: a limited con-
text length (Tahmid et al. 2024). To mitigate this problem, BiRNA-BERT utilizes BPE and ALiBi, two
techniques that we know from DNABERT-2 (Z. Zhou, Ji, et al. 2023). However, a unique advancement of
BiRNA-BERT is that it was trained on both NUC-encoded and BPE-encoded data, such that it can han-
dle tokens from either of the encoding methods. This way, fine-tuning tasks that involve long sequences
can use the more efficient BPE-encoding method, while nucleotide-level tasks can also be approached
with the same pre-trained model. In their work, the authors show that this dual tokenization scheme
does not compromise the model’s learning capability. Furthermore, BiRNA-BERT reaches a performance
similar to that of RiNALMo, even though the latter is six times larger (650M vs 117 M parameters) and
was trained for more epochs.



Chapter 3

Methods

We train lncRNA-BERT (Long Non-Coding RNA Bidirectional Encoder Representations from Trans-
fomers), a Nucleotide Language Model (NLM) for classifying RNA as coding or long non-coding. We
evaluate this method in comparison to existing lncRNA classifiers and NLMs (Research Question 1) as
well as a solely feature-based approach (Research Question 2). We compare two pre-training datasets
and four encoding methods to address Research Question 3 and 4, respectively. Figure 3.1 provides an
overview of our method.

A specification of the utilized datasets is given in Section 3.1. Section 3.2 explains our feature-based
approach to analyzing the data and performing lncRNA classification. The different encoding methods for
the sequence-based NLM approach, including the novel Convolutional Sequence Encoding (CSE) method,
are described in Section 3.3. Other components of our method, involving the neural architecture and
training procedure, are explained in Section 3.4 and 3.5, respectively. The experimental setup is detailed
in Section 3.6.

The described methodology is implemented in the Python package lncRNA-Py, which is available from
GitHub (https://github.com/luukromeijn/lncRNA-Py) and documented on https://luukromeijn.

github.io/lncRNA-Py/. Commands related to specific sections or results are specified throughout the
text for the sake of replicability.

3.1 Data

RNA data from GENCODE, NONCODE, RefSeq, RNAcentral, and two lncRNA classification studies
is used. Table 3.1 provides an overview of these data sources, Figure 3.2 shows their sequence length
distributions. Section 3.1.1 specifies for every data source how the data is retrieved. For each task
or experiment, we base the choice of dataset on the nature of the task, the size and reliability of the
data, test set independence, and time/resource management. We distinguish between datasets used for
pre-training, fine-tuning, and evaluation, which are described in Section 3.1.2.

The majority of our models are trained on human RNA data, we find that using the cross-species
RNAcentral dataset for pre-training leads to a reduced performance in the downstream lncRNA classi-
fication task (Section 4.3). Moreover, from a medical perspective, we are generally more interested in
human RNA than that of other species. Additional motivations for only utilizing human RNA are that
these datasets 1) are believed to have higher quality annotations than other organisms; 2) contain the
largest variety of (lnc)RNA sequences; and 3) are manageable in size.

3.1.1 Data Retrieval

Human pcRNAs and lncRNAs are collected from GENCODE (v46) (Frankish et al. 2022) through
https://www.gencodegenes.org/human/release_46.html. We retrieve human non-coding RNAs from
NONCODE (v6) (L. Zhao et al. 2020) via http://v6.noncode.org/download.php. Human RNA se-
quences are extracted from RefSeq (release 225) (O’Leary et al. 2015) through https://ftp.ncbi.nlm.

nih.gov/refseq/H_sapiens/mRNA_Prot/, we then filter for ‘mRNA’ and ‘long non-coding RNA’ to iso-
late the pcRNAs and lncRNAs. RNA sequences from the cross-species RNAcentral (v24) (Sweeney
et al. 2020) database are obtained from their FTP archive https://ftp.ebi.ac.uk/pub/databases/

RNAcentral/current_release/sequences/. Sequences with fewer than 100 nucleotides are removed
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Figure 3.1: Methods overview. We pre-train lncRNA-BERT on data from GENCODE, RefSeq, and
NONCODE (or alternatively, RNAcentral) and fine-tune it for lncRNA classification. Four encoding
methods are compared. LncRNA-BERT is compared to a feature-based approach as well as to existing
classifiers and Nucleotide Language Models. The corresponding subsections, indicated in parentheses,
provide additional information.

from all of the aforementioned datasets because of our interest in long RNA molecules and to guarantee
training stability.

We use two publicly available benchmarking datasets in our evaluation. The test set from CPAT (L.
Wang et al. 2013) is publicly available on SourceForge (https://sourceforge.net/projects/rna-cpat/
files/test_files/). The RNAChallenge set contains 27,283 RNA sequences which were found to be
hard to classify by 48 different classification models (obtaining a maximum F1-score of 0.46) (D. Singh et
al. 2022). This cross-species dataset is downloaded from https://github.com/cbl-nabi/RNAChallenge.

3.1.2 Definition of (Pre-)Train, Validation, and Test Sets

An overview of datasets utilized in different tasks is presented in Table 3.1. The main pre-training
dataset is a human set of 297,724 coding and 238,470 non-coding RNA sequences from GENCODE (v46)
Frankish et al. 2022, NONCODE (v6) L. Zhao et al. 2020, and RefSeq (v255) O’Leary et al. 2015. A
randomly selected 5% of GENCODE sequences is held out for validation. The NONCODE and RefSeq
datasets are used in their entirety as to maximize the number of pre-training samples. We experiment

Task Name # pcRNA # ncRNA Origin Source
Pre-train

Human
297,724 238,470

Human
GENCODE, RefSeq,
NONCODEValidation 5,583 2,998

Pre-train
RNAcentral

0 37,942,367
Cross-species RNAcentral

Validation 0 2,500
Fine-tune

GENCODE /
RefSeq

101,270 48,785

Human
CD-HIT (90% id.)a:
GENCODE, RefSeq

Validation 5,650 2,686

Test
5,634 2,703

CPAT 4,000 4,000 L. Wang et al. 2013
RNAChallenge 16,243 11,040 Cross-species D. Singh et al. 2022

Table 3.1: Overview of the utilized datasets and the number of protein-/non-coding RNAs they contain.
Section 3.1.1 describes how the data is retrieved, Section 3.1.2 explains what the different resources were
used for and why. aThe three GENCODE/RefSeq datasets are obtained by first clustering the data
with CD-HIT (90% identity threshold), and then randomly selecting 90%, 5%, and 5% for fine-tuning,
validation, and testing, respectively.

https://sourceforge.net/projects/rna-cpat/files/test_files/
https://sourceforge.net/projects/rna-cpat/files/test_files/
https://github.com/cbl-nabi/RNAChallenge
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with RNAcentral (v24) Sweeney et al. 2020, containing 37 million ncRNAs, as alternative multi-species
pre-training data source and keep aside 2,500 sequences for validating this model.

For fine-tuning the model to perform lncRNA classification, we use the CD-HIT algorithm Fu et al.
2012 to ensure non-redundancy and test set independence, similar to Feng et al. 2023; S. Liu et al.
2019. This addresses the problem of overlap between train and test sets, which is pointed out in a large
lncRNA classification benchmark study (D. Singh et al. 2022). We run the CD-HIT algorithm with a 90%
sequence identity threshold on the combined human pcRNA/lncRNA data from GENCODE and RefSeq,
and randomly select 90% of representative sequences for training, 5% for validation, and 5% for testing.
The obtained fine-tuning set contains 101,270 protein-coding and 48,785 non-coding RNAs. NONCODE
was deliberately excluded during fine-tuning as to maximize data reliability.

Three test sets are used to assess the performance of lncRNA-BERT and other classifiers: GEN-
CODE/RefSeq, CPAT, and RNAChallenge. The GENCODE/RefSeq test set (5,650 pcRNAs, 2,686
lncRNAs) is guaranteed not to overlap with our fine-tuning data because of the above-described redun-
dancy removal with CD-HIT. The CPAT set (4,000 pcRNAs, 4,000 lncRNAs) is a published and widely
used test setL. Wang et al. 2013, although some overlapping with training sets of each of the evaluated
classifiers is expected. Finally, we use another published benchmark, RNAChallenge D. Singh et al.
2022, containing 27,283 hard-to-classify RNA sequences, to assess the generalizability of our model to
ambiguous RNA sequences from animal, plant, and fungi species.

python -m experiments.create_train_test_sets

3.2 Feature-Based Approach

Many coding potential predictory features from previous lncRNA classifiers (Section 2.1.1) are imple-
mented in the lncRNA-Py package, resulting in 35 feature extractor classes as well as 13 end-to-end
algorithm re-implementations. Having access to a library of traditional features allows us to address
Research Question 2, serving two different purposes: 1) carrying out a feature-based Exploratory Data
Analysis (EDA); and 2) fitting machine learning algorithms on an optimal feature set and using these as
baselines for our lncRNA-BERT model. Hereto, we extract a total of 8610 features (listed in Appendix
A, Table A.3) from the GENCODE training dataset with the thesis.feature extraction script.

We define two feature-based baselines of different model complexities: lncRNA-LR and lncRNA-RF,
based on Logistic Regression and a Random Forest, respectively. LncRNA-LR is the simplest model
trained in this work as it utilizes only 10 features, resulting in 11 trainable parameters (10 coefficients
+ bias). Logistic regression can be quite effective for this problem (Section 4.2, L. Wang et al. 2013)
but is not capable of modeling multivariate or non-linear relationships. A random forest can model more
complex decision boundaries and handles a higher number of input features with less overfitting due to its
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Figure 3.2: The distribution of sequence lengths per data resource, medians are highlighted. On average,
pcRNAs are longer than ncRNAs, except for the RNAChallenge dataset (which likely contributes to why
these RNAs are hard to classify).
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ensemble-based bootstrap approach. LncRNA-RF bases its predictions on 100 features. Implementations
from scikit-learn are used for both baselines, using class weights that are inversely proportional to the
class size to compensate the data imbalance.

A modified Recursive Feature Eliminiation (RFE) algorithm is applied to select the most informative
feature sets for lncRNA-LR and -RF (Algorithm 1), iteratively removing the 25% least important features
from the feature set after fitting the model to the current set of features. Feature importance is expressed
in terms of absolute coefficient size for LR and Gini importance for RF, where the Gini importance
refers to the impurity reduction caused by the feature in question. Our RFE approach removes a relative
(instead of fixed) number of features from the feature set per iteration, allowing the algorithm to greedily
remove features in early iterations while being more considerate in later ones.

A third intended purpose of our feature library was that it enabled lncRNA-Py to serve as a standard-
ized comparison environment to train and evaluate different ‘classical’ methods under the same conditions.
However, we could not fully replicate all results from previous works with lncRNA-Py (Appendix A.3)
due to ambiguities in the corresponding publication and/or implementation. We therefore use the official
implementations of these methods in our comparison (Section 4.1).

python -m experiments.fit_lncrna_ml

Algorithm 1 Relative Recursive Feature Elimination

Input: Input matrix (X), target vector (y), features, number of features to select (s)
Output: Fitted model, features
procedure RFE(X, y, features, s)

model ← fit model(X, y, features)
importances ← get importances(model, features)
features ← reorder(features, argsort(importances)) ▷ Sort features by importance
n← max(⌈0.75 · |features|⌉, s) ▷ Keep 75% of features, no less than s
if |features| > n then

features ← select(features, n) ▷ Recursive case: select features & repeat
return RFE(X, y, features, s)

else
return model, features ▷ Base case: return

end if
end procedure

3.3 Encoding Methods

An efficient sequence encoding method is required for a transformer-based neural network to handle
long RNA sequences (Research Question 4). This requirement is imposed by the transformer’s attention
mechanism which is quadratic in memory complexity and can therefore only be calculated on a GPU
for a limited number of input positions, usually set to 512 or 1024. The number of accepted input
positions is also referred to as the model’s ‘context length’ or ‘context window’. Previous works have
shown that implementing architectural changes like flash attention and ALiBi can increase the accepted
context length to accommodate longer sequences (Tahmid et al. 2024; Z. Zhou, Ji, et al. 2023). K-mer
Tokenization and Byte Pair Encoding have been proposed as encoding methods beyond Nucleotide-Level
Tokenization (Dalla-Torre et al. 2023; Z. Zhou, Ji, et al. 2023), grouping multiple nucleotides into single,
pre-defined tokens. These tokens are embedded through a linear layer into dmodel dimensions, which the
transformer takes as input.

We argue that the sequence encoding methods presented in literature so far do not result in efficiently
trainable representations of nucleotide sequences as they are based on large vocabularies of completely
independent tokens. The novel Convolutional Sequence Encoding (CSE) method presented in this thesis
can accommodate longer RNA sequences without making changes to the standard BERT architecture
while maintaining nucleotide-level resolution. This is achieved by directly embedding subsequences into
high-dimensional representations by means of a convolution.

We provide an extensive comparison between CSE and each of the aforementioned encoding methods
(Section 4.4), which are explained in Section 3.3.1-3.3.4. An overview is provided in Table 3.2. The effect
of different encoding methods on the encoded sequence length is visualized in Figure 3.3.
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Method Explanation Example(s) Advantages Disadvantages
NUC Each nucleotide

is a token
(A,C,T,G).

1) AGCTGCAGCGCGGGCCGC
= [0,2,1,...,1,2,1]

Allows attention at
highest resolution.

No sequence length
reduction makes
attention
computationally
infeasible for long
sequences.

K-mer Each k-mer is a
token.

1) AGCTGCAGCGCGGGCCGC
= [638, 619, 2654]

2) GCTGCAGCGCGGGCCGCC

= [2537, 2463, 2410]

Consistent token
size.

Large vocabulary
(4k), token
independency, k
possible reading
frames.

BPE Most occurring
subsequences
are tokens.

1) AGCTGCAGCGCGGGCCGC
= [54, 234, 2334]

2) GCTGCAGCGCGGGCCGCC

= [98, 234, 2334]

Efficient
vocabulary, more
robust to
frameshifts.

Inconsistent token
size, token
independency.

CSE Subsequences
are matched
against learned
motifs using
convolutions.

1) AGCTGCAGCGCGGGCCGC
= [[0.14,0.00],

000[0.25,0.63],

0000000...

000[0.01,0.51]]

Highly efficient
‘vocabulary’,
forgiving for
mutations.

k possible reading
frames.

Table 3.2: Overview of DNA/RNA encoding methods used in NLMs: Nucleotide-Level Tokenization
(NUC), K-mer Tokenization, Byte Pair Encoding (BPE), and Convolutional Sequence Encoding (CSE).

NUC (4) 10% 90%

pcRNA
44% 56%

ncRNA

3-mer (256) 38% 62% 84% 16%

6-mer (4096) 71% 29% 95% 5%

9-mer (4^9) 87% 13% 97% 3%

BPE (256) 45% 55% 87% 13%

BPE (1024) 55% 45% 91% 9%

BPE (4096) 63% 37% 93% 7%

0 256 512 768 1024 1280 1536 1792 2048
encoded sequence length

CSE k=10 90% 10%

0 256 512 768 1024 1280 1536 1792 2048
encoded sequence length

98% 2%

Figure 3.3: Density plots of sequence lengths from the pre-training dataset when encoded with NUC,
K-mer Tokenization, BPE, and CSE. Vocabulary sizes are provided in parentheses. The percentages
indicate the number of encoded sequences that fall within a medium-sized context length of 768 input
positions.
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3.3.1 Nucleotide-Level Tokenization

Most RNA NLMs utilize Nucleotide-Level Tokenization (NUC) as sequence encoding method (Table
2.3), having a vocabulary of four nucleotide tokens (A,C,T,G). This technique allows the transformer to
calculate attention at nucleotide resolution and works well for short sequences such as the majority of
RNAs in the RNAcentral dataset (Figure 3.2). However, Figure 3.3 shows that NUC is insufficient for
longer RNA sequences such as pcRNAs and lncRNAs. As shown in the figure, only 44% of the non-coding
RNA data in our pre-training set would fully fit into a medium-sized context length of 768 when NUC-
encoded. A recent lncRNA review paper even proposed to move lncRNA’s definition threshold from 200
to 500 nt, arguing that transcripts below this value are likely to correspond to different ncRNA types
(Mattick et al. 2023). Hence, NUC would be insufficient for most lncRNA sequences.

3.3.2 K-mer Tokenization

K-mer Tokenization considers all possible nucleotide combinations of length k as token vocabulary and
tokenizes the input as non-overlapping consecutive k-mers (Dalla-Torre et al. 2023). This reduces the
sequence length by a factor of k and yields a vocabulary of size 4k.

The method is simple and intuitive, but requires an exponentially large vocabulary size to achieve a
large sequence length reduction (Figure 3.3). This introduces token sampling efficiency problems (Z. Zhou,
Ji, et al. 2023) and results in an explosion of parameters in the transformer model, as each of the tokens in
the vocabulary needs to have a learnable embedding. For example, for k = 9 and dmodel = 768 we require
49×768 ≈ 201 million parameters for the linear embedding layer alone. Besides the computational efforts
that it would take to train such a model, one could argue whether all these parameters truly reflect the
complexity of the data. For example, two highly similar k-mers are treated as completely independent
tokens even though this may not be necessary.

Another possible limitation of this method is that it is susceptible to frameshifts. A deletion or
insertion in the input causes a different k-mer reading frame and therefore a totally different sequence of
tokens (Table 3.2, example 2). This means that the model has to learn k reading frames for each data
signal, taking up parameters/dimensions that would preferably be dedicated to other patterns.

3.3.3 Byte Pair Encoding

The above-described downsides of K-mer Tokenization were first identified by (Z. Zhou, Ji, et al. 2023),
who propose Byte Pair Encoding (BPE) as the better alternative. BPE aims to find important linguistic
units by considering the most often co-occurring sets of characters (Sennrich et al. 2016). For example,
the sequence ‘the’ is a highly common combination in English, and may be used to (partially) represent
words like ‘the’, ‘therefore’, and ‘thesis’. BPE is trained on an input corpus, iteratively expanding its
vocabulary (initialized with the alphabet), with the most often occurring pair of subwords that are already
part of the vocabulary. This process is repeated until a prespecified vocabulary size is reached. During
segmentation, BPE tokenizes sequences by merging subsequences in the same order as during training.

BPE yields a fixed-size vocabulary of tokens of variable length, which gives it three advantages over K-
mer Tokenization. Firstly, it can achieve a larger sequence length reduction than K-mer Tokenization with
the same vocabulary size (Figure 3.3), since BPE’s vocabulary contains only those k-mers that frequently
occur in the data. For the same reason, BPE has a higher token sampling efficiency during pre-training.
Moreover, the variable-length tokens of BPE make the method more robust against frameshifts. This is
because insertions and deletions hardly affect the token merging order, causing tokenized sequences to
remain largely unchanged after such events (Table 3.2, example 2).

While BPE’s superiority over K-mer Tokenization has been proven multiple times in the past (Romeijn,
Bernatavicius, et al. 2024; Z. Zhou, Ji, et al. 2023), it is unclear how well the BPE algorithm truly
translates from application on human language to genomic language. In NLP, frequently occurring com-
binations of characters can be considered linguistic units, but for DNA/RNA this may not be the case.
A crucial difference is that the genome has a much smaller number of characters than the human alpha-
bet, which makes combinations of characters less rare by definition. Hence, tokens may not represent
biologically informative entities, which can complicate the learning process. Also, like with K-mer To-
kenization, treating all tokens as completely independent units disregards sequence similarity and may
not be efficient.

Lastly, an inconsistent token length poses challenges during pre-training and fine-tuning. When using
BPE with MLM, the model is tasked to predict both which and how many nucleotides appear under the
mask. At the fine-tuning stage, BPE does not support nucleotide-level predictions since input positions
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Figure 3.4: A toy example of Convolutional Sequence Encoding for sequence ‘ACGATC’. Using a 1D
convolutional layer with n kernels of size k and a stride of k, we can directly embed the PWM of a
nucleotide sequence into an n-dimensional embedding on which a transformer can operate.

can contain a varying number of nucleotides. In contrast, K-mer embeddings can be converted back to
nucleotide resolution for fine-tuning due to a fixed token size (Dalla-Torre et al. 2023).

3.3.4 Convolutional Sequence Encoding

With Convolutional Sequence Encoding (CSE, Figure 3.4), we prepend a convolutional layer to the
transformer architecture to directly embed nucleotide sequences into a high-dimensional space. This way,
we can effectively reduce the embedded sequence length with an efficient number of trainable parameters
while maintaining nucleotide-level resolution. The idea is highly inspired by the Vision Transformer (ViT)
(Dosovitskiy et al. 2020), which encodes patches of images with a small CNN before inputting them to a
regular transformer architecture. A similar design has been explored before in (He et al. 2023). To the
best of our knowledge, we are the first to apply this technique to accommodate long RNA sequences.

To enable a CNN to operate on an input nucleotide sequence x of length l, we can represent x as
the 4× l probability distribution matrix over the four possible nucleotide bases: A, C, G, and T/U. We
shall refer to this representation as xPWM or the Position Weight Matrix (PWM) of x. For example, let
x =‘ACGATC’, then:

‘ACGATC’PWM =


1 0 0 1 0 0
0 1 0 0 0 1
0 0 1 0 0 0
0 0 0 0 1 0


This notation is similar but not equal to one-hot encoding, the only difference being that our definition
allows for IUPAC nucleotide symbols other than ‘ACGT’ such as ‘N’, which indicates equal chances for
either of the four nucleotides (‘N’PWM = [0.25, 0.25, 0.25, 0.25]⊤).

A one-dimensional convolution layer with four input channels can be directly applied to PWMs of
nucleotide data. Multiple previous studies have utilized this idea to enable the training of Convolutional
Neural Networks (CNNs) on biological sequences (Bosco et al. 2017; Busia et al. 2018; Helaly et al. 2019).
However, CNNs do not have an attention mechanism and are thus limited in their capability of modeling
the long-range dependencies that are present within DNA/RNA (Ji et al. 2021).

The output of CSE can be fed directly into a transformer, which allows for attention to be calculated
between each of the individual convolutions. Using n kernels of size k leads to ⌊l/k⌋ input positions
embedded in n dimensions, when the stride is also k. A transformer with dmodel = n can operate on this
high-dimensional representation without requiring further embedding. An example for k = 3 is given in
Figure 3.4. We find that activating the CSE output with ReLU increases performance (Appendix C) and
add a n× dmodel linear layer whenever n ̸= dmodel. Zero-padding is added to the PWM matrix to allow
mini-batch training, these positions are masked out during the attention operation.

The benefits of CSE over K-mer and BPE tokenization are related to efficient parameter usage and
maintaining nucleotide-level resolution. Firstly, CSE can achieve a large sequence length reduction while
requiring much fewer parameters than BPE and K-mer Tokenization. E.g., the GENA-LM model uses
BPE and reduces sequence length by about 9× with a vocabulary size of 32, 000 tokens (Fishman et al.
2023). This requires 32, 000 · dmodel parameters for the embedding layer. The same length reduction
with 9-mer encoding would result in 49 · dmodel parameters, while CSE can do the same with only 4 · 9 ·
dmodel parameters. Thus, to increase a transformer’s accepted DNA/RNA length 9 times, CSE requires
approximately 888× and 600k× fewer parameters than BPE and K-mer Tokenization, respectively.
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Figure 3.5: Architecture schema of lncRNA-BERT with Convolutional Sequence Encoding (CSE), which
is an adaptation of the transformer encoder architecture as presented in (Vaswani et al. 2017). Fine-tuning
tasks such as lncRNA classification are performed using an output head connected to the transformed CLS

embedding. A dedicated MLM output head performs a transposed convolution, which enables masking
and prediction at nucleotide resolution.

The increased efficiency and effectiveness of CSE is achieved by incorporating into its design that
k-mers are combinations of nucleotides instead of completely independent units. For example, two k-
mers with a single nucleotide difference will be modeled closely together with CSE by design, while a
BPE or K-mer based model might need several training epochs to learn this information. Of course, a
single mutation could be highly impactful for the meaning of a subsequence, but this meaning is context-
dependent and cannot be fully captured in the initial embedding layer, regardless of the encoding method.

A final advantage of CSE is that it has a consistent token size, unlike BPE. This allows nucleotide-
resolution training tasks, such as nucleotide level MLM during pre-training (Section 3.5.1) and fine-tuning
for splice site prediction (Tahmid et al. 2024).

Downsides to the CSE approach include frameshift sensitivity, fine-tuning convergence issues, and
mutation insensitivity. The frameshift sensitivity problem is similar to that of K-mer Tokenization, as
sequences can be observed in k different reading frames. In Section 4.4.1, we show that this does not
affect the overall embedding of a sequence, as long as k mod 3 ̸= 0. We attribute fine-tuning convergence
issues to the BERT model’s reliance on the CSE encodings, the latter of which are constantly updated
during training. Finally, we anticipate that the model might be slightly insensitive to local mutations, as
subsequences with mutations will be encoded in close proximity of the original.

3.4 Neural Architecture

We adapt the transformer encoder architecture from (Vaswani et al. 2017) as used by BERT (Devlin et al.
2018) with some minor adjustments to incorporate CSE (Figure 3.5). The embeddings generated by CSE
are enriched with positional information by adding a fixed sinusoidal positional encoding (Vaswani et al.
2017). The CLS token from BERT is replaced with a learnable CLS embedding, like in ViT (Dosovitskiy
et al. 2020), as CSE does not tokenize the input but directly embeds it. The CLS embedding is always
inserted as the first input position. The transformed embedding of the CLS token is used as input to the
lncRNA classification output head, which is a sigmoid-activated linear layer containing a single node.

Our experiments are performed with a model configuration like BERTmedium, withN = 12 transformer
blocks, a dimensionality of dmodel = 768, dff = 3072 nodes in the feed-forward layers, and h = 12
attention heads.

LncRNA-BERT uses a medium-sized context length of c = 768 input positions. Hereto, we set the
zero-padded PWM input length to k · (c− 1), such that we obtain c input positions when prepending the
CLS token.
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To perform Masked Language Modeling (MLM) with CSE, a transposed convolution layer is used
to deconvolve the transformed embedding for every input position (except CLS) into k predictions at
nucleotide level, using a stride/kernel size of k. When Softmax-activated, the output represents a prob-
ability distribution (PWM) over the four possible nucleotides for k · (c − 1) input bases. This enables
Masked Language Modeling at the nucleotide level. We find that first performing a linear transforma-
tion (dmodel × n) of the transformer output before the transposed convolution operation is beneficial for
convergence (Appendix C).

3.5 Training

We pre-train lncRNA-BERT for 7 days, after identifying an optimal model configuration based on pre-
training, fine-tuning, and probing. Optimal model checkpoints are stored based on validation set perfor-
mance.

3.5.1 Pre-training

To pre-train our RNA model, we adapt the Masked Language Modeling (MLM) task (Devlin et al. 2018)
to CSE. The convolutional input layer of our network and the transposed convolution within its MLM
output head allows us to introduce masks at nucleotide resolution. Analogous to the dedicated MASK

token used in most BERT models, we use the IUPAC symbol ‘N’ to mask out specific nucleotides. This
character lends itself naturally for the purpose of masking as it indicates an equal chance of being either
of the four canonical bases.

Like in standard MLM, a pmask = 0.8 proportion of the selected nucleotides are masked out (using
‘N’), while a prandom = 0.1 part is randomly changed. These operations are arguably more meaningful
for DNA than for natural language. Uncertainly sequenced bases (‘N’) and random mutations are highly
common in DNA data, while the MASK token or random replacement of words do not occur in natural
language. Hence, MLM does not only pre-train our model, it also makes it more robust to sequencing
errors and mutations.

The model is pre-trained for 7 days using a cross entropy loss function, a batch size of 8, and the
Adam optimizer in combination with a learning rate schedule proposed in (Vaswani et al. 2017), with
32,000 warmup steps. The pre-training dataset (Section 3.1) consists of a total of 536,194 RNA samples
and is seen approximately 20 times during training. An important detail is that when using CSE, a
random number of up to k − 1 bases is removed from the input, such that every sequence in the data
is seen in multiple reading frames. This is a countermeasure to the reading frame sensitivity of CSE
described in Section 3.3.4. In addition, when a sequence does not fully fit into CSE’s context length, a
random subsequence is input to the model, as in (Penić et al. 2024).

The pre-training script is called via the following command (only basic arguments listed, see https:
//luukromeijn.github.io/lncRNA-Py/scripts.html for full documentation).

python -m lncrnapy.scripts.pretrain \

--encoding_method {cse ,bpe ,kmer ,nuc}] \

[--n_kernels N_KERNELS] \

[--kernel_size KERNEL_SIZE] \

[--bpe_file BPE_FILE] \

[--k K]

fasta_train fasta_valid

3.5.2 Fine-tuning

The model is fine-tuned for lncRNA classification on the fine-tuning dataset (Section 3.1) containing
100,587 coding and 53,868 long non-coding RNAs. Optimization is done for 100 epochs of 10,000 samples,
using Adam, a fixed learning rate of 10−5, and a batch size of 8. We use a binary cross entropy loss
function with the reciprocal class sizes as weights to counteract the class imbalance. Like in MLM, the
CSE-based model is randomly input with one of k possible reading frames.

python -m lncrnapy.scripts.train \

[--pretrained_model PRE -TRAINED_MODEL]

[--encoding_method {cse ,bpe ,kmer ,nuc}]

[--learning_rate LEARNING_RATE]

https://luukromeijn.github.io/lncRNA-Py/scripts.html
https://luukromeijn.github.io/lncRNA-Py/scripts.html
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[--bpe_file BPE_FILE]

[--k K]

fasta_pcrna_train fasta_ncrna_train

fasta_pcrna_valid fasta_ncrna_valid

3.5.3 Probing

We report probing performance to assess the informativeness of the embeddings generated by our models
without fine-tuning them, similar to (Dalla-Torre et al. 2023). Hereto, we train a small Multi-Layer
Perceptron (MLP) with a single hidden layer of 256 nodes on the mean-pooled output embeddings of
our models (using the --freeze network and --hidden cls layers flags of lncrnapy.scripts.train,
with an increased learning rate of 0.0001).

3.6 Experimental Setup

In our experiments, we identify an optimal configuration of lncRNA-BERT and compare it to eight al-
ternative lncRNA classification algorithms. These include lncRNA-LR and -RF (Section 3.2), as well as
six algorithms presented in previous works, three of which are based on deep learning. Algorithms are
selected from Table 2.2 based on their relevance to this thesis as well as to ensure a diverse comparison
set. CPAT, a feature-based logistic regression algorithm (L. Wang et al. 2013, downloaded from https:

//sourceforge.net/projects/rna-cpat) is included because it is currently integrated into LUMC’s
RNASeq pipeline. LncFinder is based on an SVM (Han, Liang, Ma, et al. 2018, downloaded from https:

//cran.r-project.org/package=LncFinder) and uses features that obtain a high ranking in our feature
selection procedure (Section 4.2.3). PredLnc-GFStack (PredLnc) is the most complex ML-based approach
included in this comparison, using an ensemble of random forests with optimal feature sets (S. Liu et al.
2019, downloaded from https://github.com/BioMedicalBigDataMiningLab/PredLnc-GFStack). The
deep learning methods in our analysis include the feature-based LncADeep (C. Yang et al. 2018, down-
loaded from https://github.com/cyang235/LncADeep), sequence-based mRNN (Hill et al. 2018, down-
loaded from https://github.com/hendrixlab/mRNN), and feature/sequence hybrid method RNAsamba
(Camargo et al. 2020, accessed through web server https://rnasamba.lge.ibi.unicamp.br). Both
LncADeep and RNASamba were ranked among the top five lncRNA classification algorithms in a recent
benchmark (D. Singh et al. 2022). Out-of-the-box models are used, without re-training.

Hyperparameter tuning (Appendix C, https://luukromeijn.github.io/lncRNA-Py/experiments.
html#hyperparameter-tuning) as well as extensive comparisons between different encoding methods and
pre-training datasets are conducted to identify an optimal configuration for lncRNA-BERT. All models
in the comparisons were pre-trained and fine-tuned for 500 and 100 epochs of 10,000 samples, which
takes roughly 2 and 0.5 days, respectively. During training, we store optimal model checkpoints by
evaluating performance on the validation set after every training epoch, assessed via MLM accuracy
during pre-training and macro-averaged F1-score during fine-tuning.

Based on our results, two lncRNA-BERT models with optimal encoding methods (3-mer tokenization
and CSE with k = 9) and pre-training data (human mRNA/lncRNA) for lncRNA classification were
pre-trained for an extra long period of 7 days (automatically terminated by workload manager) and fine-
tuned for 100 epochs. Training was carried out using the compute resources from the Academic Leiden
Interdisciplinary Cluster Environment (ALICE) provided by Leiden University (CPU: AMD EPYC 7513
2.6GHz, GPU: A100 MIG 4g.40GB). Other experiments were conducted on ALICE, the HPC cluster
SHARK from LUMC, or HPCs from LIACS’ DSlab.

https://sourceforge.net/projects/rna-cpat
https://sourceforge.net/projects/rna-cpat
https://cran.r-project.org/package=LncFinder
https://cran.r-project.org/package=LncFinder
https://github.com/BioMedicalBigDataMiningLab/PredLnc-GFStack
https://github.com/cyang235/LncADeep
https://github.com/hendrixlab/mRNN
https://rnasamba.lge.ibi.unicamp.br
https://luukromeijn.github.io/lncRNA-Py/experiments.html#hyperparameter-tuning
https://luukromeijn.github.io/lncRNA-Py/experiments.html#hyperparameter-tuning
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Results

We identify pre-training on human data and using CSE (k = 9) or 3-mer tokenization as encoding
methods as optimal model configurations for lncRNA-BERT and demonstrate that these model achieve
performance competitive with six previously proposed classifiers.

We shall discuss the results in the following order. Section 4.1 evaluates the performance of lncRNA-
BERT in comparison to existing lncRNA classifiers (Research Question 1). Section 4.2 describes the
feature-based baselines and highlights several results from our exploratory data analysis (Research Ques-
tion 2). Section 4.3 discusses the effect of pre-training data on the behaviour of the model (Research
Question 3). An in-depth comparison of alternative sequence encoding methods is given in Section 4.4
(Research Question 4). We then compare lncRNA-BERT to NLMs presented in previous works in Section
4.5 (expanding upon Research Question 1). Finally, Section 4.6 assesses the potential meaning of the
embeddings learned by lncRNA-BERT (related to Research Question 3).

4.1 Comparison to Established LncRNA Classifiers

Figure 4.1 shows that our lncRNA-BERT models achieve a performance (F1 ≈ 0.94 on GENCODE/Ref-
Seq, ≈ 0.95 CPAT) similar to the best algorithms included in our comparison, proving that using an
NLM is a valid approach for the problem of lncRNA classification. However, lncRNA-BERT does not
improve upon the established methods by a large margin. Interestingly, our feature-based lncRNA-RF
model consistently outperforms all of the benchmarked methods on all three test sets (in terms of F1-
score), including lncRNA-BERT. LncADeep obtains the most consistent and high ranking out of all of
the classifiers presented in previous works, but is outperformed by lncRNA-RF.

The remaining methods show varying performances for different test sets, e.g. CPAT performs par-
ticularly well on its own test set. We attribute these differences to overlap and similarities between train
and test sets, i.e. CPAT’s test set is likely to be similarly distributed as the training set. This bias in
our analysis is mitigated for lncRNA-BERT, -LR, and -RF by generating an independent train/test split
after redundancy removal with CD-HIT (Section 3.1.2).

In general, the three test sets exhibit varying difficulty levels, with RNAChallenge being the most
difficult (mean F1: 0.15), followed by GENCODE/RefSeq (mean F1: 0.91), and CPAT (mean F1: 0.96).
The low scores on the RNAChallenge dataset are caused by it being a multi-species test set containing
transcripts that most algorithms fail to classify correctly (D. Singh et al. 2022). A high performance is
therefore unexpected, but the obtained scores are an indication of the (cross-species) generalization capa-
bilities of a model. LncRNA-RF obtains the highest F1-score on the RNAChallenge set (0.316), followed
by lncRNA-BERT with CSE (0.242) and 3-mer tokenization (0.235). The superior F1-scores of our mod-
els on RNAChallenge relate to the obtained values for precision and recall on ncRNA, which are zero for
all methods in the analysis except for ours. The cause of this may be related to the GENCODE/RefSeq
training set, as it is the only aspect that overlaps between our BERT, RF, and LR models.

4.2 Feature-Based Exploratory Data Analysis and Classification
Baselines

The performance of our two feature-based classification baselines, lncRNA-LR (logistic regression, 10
features) and lncRNA-RF (random forest, 100 features) is shown in Figure 4.1. LncRNA-RF demonstrates

25
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Figure 4.1: Performance of lncRNA classifiers on three test sets: 1) 5,634 pcRNAs and 2,703 lncRNAs
from GENCODE/RefSeq, held out from the training sets of lncRNA-BERT, -LR, and -RF, after redun-
dancy removal with CD-HIT; 2) test set from CPAT, containing 4,000 pcRNAs and 4,000 lncRNAs; and
3) the cross-species RNAChallenge dataset (D. Singh et al. 2022). LncRNA-BERT ranks among the
best-performing classifiers. LncRNA-RF consistently outperforms the other methods. Values are listed
in Appendix B, Table B.1.
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Method # Parameters
F1 (macro)

GENCODE/RefSeq CPAT RNAChallenge
lncRNA-LR 11 0.870 0.939 0.037
lncRNA-RF 6.2M 0.960 0.973 0.316
lncRNA-BERT (3-mer) 88.9M 0.940 0.963 0.235
lncRNA-BERT (CSE k=9) 88.9M 0.943 0.947 0.242

Table 4.1: Number of trainable parameters for each of our models, and their macro-averaged F1-scores
on the GENCODE/RefSeq, CPAT, and RNAChallenge test sets.

an improved performance in comparison to lncRNA classifiers from previous works and also outperforms
lncRNA-BERT on all three test sets. This is noteworthy, as lncRNA-RF is a purely feature-based
approach and has 14× fewer trainable parameters (Table 4.1).

Optimal feature sets are selected for both classifiers using recursive RFE (Section 3.2, Algorithm 1).
The 25 most important features are listed in Table A.2 (Appendix A) and mostly include ORF- and
alignment-based features. This affirms the intuition that the presence of an ORF and the number of
alignment hits with a protein database can be used to predict coding potential. This is similar to what
has been reported in many previous works.

The Exploratory Data Analysis (EDA) as reported in this section focuses on sequence-intrinsic features
that can help to identify the limitations of feature-based lncRNA classifiers and motivate the use of a
NLM for this task. We first show that ORF detection alone is not sufficient to distinguish coding
from non-coding transcripts. Then, we identify the importance of k-mers and the limitations of using
their occurrence frequencies as coding potential predictors. Finally, we show that pcRNA and lncRNA
exhibit a different high-level organization, with pcRNA having a higher entropy and a stronger three-
base periodicity. The EDA is carried out on a dataset of solely GENCODE sequences, instead of the
GENCODE/RefSeq training set, as the latter was defined at a later stage in the development of our
method.

python -m experiments.eda

4.2.1 Most LncRNAs Contain ORFs of Limited Length

Inspecting the ORF lengths of GENCODE transcripts (Figure 4.2) affirms previous findings that lncRNAs
can have (short) ORFs (Pang et al. 2018). Our most strict ORF finding algorithm looks for the longest
possible subsequence of nucleotide triplets between a start and stop codon and identifies ORFs in 94%
and 95% of the pcRNAs and lncRNAs in GENCODE, with a mean length of 1195 and 218 nucleotides,
respectively. The presence of an ORF does not necessarily imply translation into a functional protein, as
this is also dependent on other factors such as regulatory signals and the secondary structure of the RNA
molecule. Nevertheless, these findings underline that ORF identification is not sufficient for distinguishing
coding from non-coding transcripts.

Figure 4.2 shows that ORF coverage is an informative feature for longer RNAs, as the ORF length of
lncRNAs is limited to about 1000 nt regardless of the full sequence length. In contrast, the ORF length
of pcRNA increases with the length of the sequence (Pearson’s R = 0.81 for pcRNA versus R = 0.24 for
lncRNA).

4.2.2 PcRNA and LncRNA Differ in K-Mer Composition

Figure 4.3 shows that the occurrence of specific k-mers can be a useful variable for predicting coding
potential, as also reported in previous works (A. Li et al. 2014; J. Liu et al. 2006; Wucher et al. 2017).
The left panel of Figure 4.3 shows that pcRNAs and lncRNAs somewhat segregate within the 6-mer
frequency space (even though in Section 4.6 we find that lncRNA-BERT can obtain more informative
embeddings). We fit a random forest on 6-mer spectra of the GENCODE training set and report a
macro-averaged F1-score of 86% on the validation dataset. This score demonstrates the usefulness of k-
mer features, despite not being competitive with other lncRNA classifiers that use additional covariates.
The score also sets a lower-bound for the performance of an NLM, in which k-mer features are enriched
with positional and contextual information.

The two right panels of Figure 4.3 show density plots of the most important 3-mer (‘CGA’) and 6-mer
(’GGCGGC’) frequencies in random forests (evaluated with Gini importance) that we fit solely on those
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Figure 4.2: Scatter plot (left) and density plots (middle, right) of length and ORF length of pcRNA and
lncRNA in GENCODE. Both pcRNA and lncRNA contain ORFs, but the ORFs in lncRNA are limited
in length (< 1000 nt) compared to those in pcRNA. Consequently, the average ORF coverage is higher
in pcRNA than in lncRNA.

pcRNA
ncRNA

0.00000.00250.00500.00750.01000.0125
CGA

0
25
50
75

100
125
150
175

De
ns

ity

pcRNA
ncRNA

0.000 0.001 0.002 0.003
GGCGGC

0

1000

2000

3000

4000

De
ns

ity

pcRNA
ncRNA

Figure 4.3: T-SNE visualization of the 6-mer frequency space of the validation dataset (left) and density
plots of the most discriminative 3-mer (‘CGA’, middle) and 6-mer (‘GGCGGC’, right) frequency features
of pcRNA and lncRNA in GENCODE. There are certain k-mers with a different occurrence frequency in
coding versus non-coding RNA, yet these are not sufficient to fully distinguish between the two classes.

frequencies. We report a statistically significant difference between their means for pcRNA and lncRNA
(P = 0 for both ‘CGA’ and ‘GGCGGC’) and count 63 and 3508 statistically significant associations for
all 3-mers and 6-mers, respectively (using α = 0.05/4k) . The biological significance of these k-mers
could not be verified via literature and may be explored in future work. ORF-based k-mer frequencies
correspond to in-frame occurrences (when assuming a correct ORF identification) and therefore rank
higher in the feature importance list of lncRNA-LR and lncRNA-RF (Appendix A, Table A.2).

4.2.3 LncRNAs Are Organized Differently than PcRNAs

We show that sequence entropy is an important variable for distinguish coding from non-coding RNA
(also see Appendix A.2, Table A.2) and prove that LncFinder’s k-mer distance feature is a useful metric
to describe this information (Figure 4.4). The difference in ORF 3-mer frequency entropy between coding
and non-coding transcripts is attributed to pcRNA having a more equally distributed k-mer spectrum
than lncRNA, while lncRNA contains more copies of the same k-mers. These unequally distributed k-
mer spectra may be related to repeat regions or a less complicated organization of lncRNA compared to
pcRNA in general. One could suspect sequence length to be an influential factor here, but we report a
correlation between length and entropy of only R = 0.34.

The k-mer distance was designed to describe the similarity between an input RNA and the average
(long non-)coding RNA, using k-mer spectra as high-dimensional sequence representations (Han, Liang,
Ma, et al. 2018). However, the high correlation between entropy and k-mer distance (Figure 4.4, left)
indicates that this feature merely describes the entropy of a sequence. This is underlined by the obser-
vation that the k-mer distance of pcRNAs to the average lncRNA is lower than that of most lncRNAs
(Figure 4.4, right). In other words, the metric fails to capture the idea of similarity that (Han, Liang, Ma,
et al. 2018) designed it for, yet effectively models the entropy of a sequence. This makes it an important
feature in our lncRNA-LR and lncRNA-RF models.

Three-base periodicity is another feature related to sequence organization that helps discriminate the
two RNA classes and is of high importance in lncRNA-LR and lncRNA-RF. The biological interpretation
of this feature is that most lncRNAs do not code for functional proteins and therefore do not adhere to
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Figure 4.4: Scatter plot (left) and density plots (middle, right) of the ORF 3-mer entropy and 6-mer
distance of pcRNA and lncRNA in GENCODE. Left: The two features are negatively correlated (R =
−0.82). Middle: The ORF 3-mer frequency spectrum of pcRNA tends to have a higher entropy than
that of ncRNA, indicating that coding RNA contains a higher variety of 3-mers. Right: This causes the
distance to the average ncRNA to be lower for pcRNA than for ncRNA itself.
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Figure 4.5: Density plot of pcRNA and lncRNA in GENCODE (left) and power spectrum plots for a
randomly chosen pcRNA (middle) and lncRNA (right) of the Electron Ion Interaction Profile (EIIP)
feature as used by LncFinder (Han, Liang, Ma, et al. 2018). PcRNA tends to have a peak at 1/3 position
of the power spectrum due to its 3-base periodicity, leading to a higher signal-to-noise ratio than lncRNA.

the codon structure that pcRNAs exhibit. It is quantified by using the Electron Ion Interaction Potential
(EIIP) spectrum, which for pcRNA usually contains a peak at 1/3 position (Han, Liang, Ma, et al. 2018).
Figure 4.5 shows the density plot of the Signal-to-Noise ratio of this spectrum, as well as example spectra
for a coding and non-coding transcript.

4.3 Pre-Training

This section shows the importance of pre-training and demonstrates the benefits and downsides of using
the alternative multi-species RNAcentral dataset in comparison to the human dataset for pre-training.

4.3.1 Pre-Training on Human RNA Data Leads to Highest Classification
Performance

Figure 4.6 shows that our models converge faster and achieve the highest lncRNA classification perfor-
mance when pre-trained on human data. This confirms that pre-training helps to achieve the highest
downstream performance. The figure also indicates that our human pre-training dataset is more suitable
than RNAcentral for the downstream classification task. The performance difference is explained by the
high similarity between the human pre-training and fine-tuning datasets, which are both comprised of
only human pcRNA and lncRNA. On the other hand, the RNAcentral dataset contains all types of non-
coding RNA across a wide range of species. The underrepresentation of (human) lncRNA and complete
lack of pcRNA makes the RNAcentral model less familiar with the fine-tuning data (see Figure 4.7),
leading to a decreased convergence rate and F1 score.
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Figure 4.6: Macro-averaged F1-score on the validation set during (left) and after (right) training for 100
epochs on the lncRNA classification task, for different pre-training configurations and encoding methods.
The models benefit from pre-training, leading to faster convergence and increased performance. Pre-
training on human data leads to the highest downstream performance.

4.3.2 RNAcentral Pre-Training Causes Model to Prioritize Different RNA
Types

The difference between pre-training on human/RNAcentral data becomes more apparent when inspecting
the model’s embeddings and predictions. Figure 4.7 visualizes the latent space and MLM performance of
a model pre-trained on RNAcentral, in comparison to the human model (both using 3-mer tokenization).

Figure 4.7 shows that the human model has learned to distinguish pcRNA from lncRNA in its em-
bedding space after pre-training. The emergence of such distinction is noteworthy, as our pre-training
task (MLM) is a self-supervised procedure that is independent of target labels. This finding therefore
indicates that coding potential is a prominent, sequence-intrinsic signal. While lncRNA-BERT is not
the first method to solely base its predictions on sequence patterns (Hill et al. 2018; A. Li et al. 2014;
Liang Sun et al. 2013), it is the first to be capable of discriminating between pcRNA and lncRNA in a
fully self-supervised manner.

In comparison, a model pre-trained on RNAcentral generates a less convincing distinction between
the two classes and is shown to specialize into different RNA types instead. RNAcentral does not contain
data annotations for all of its sequences. Therefore, we inspect the model’s performance on other RNA
types by visualizing a labeled dataset of 3,992 RNA sequences across 10 structural families (Sloma et al.
2016, data access granted upon author’s request). Here, we show that the embeddings generated by our
RNAcentral model successfully separates the different families, while the human model fails to obtain a
similar separation. BiRNA-BERT and RiNALMo have used the same dataset to show that their models,
which use RNAcentral as main pre-training resource, can also distinguish the different families within
the ArchiveII dataset (Penić et al. 2024; Tahmid et al. 2024).

Inspecting the MLM accuracy (% of correctly predicted masked nucleotides) per sequence also shows
that an RNAcentral pre-trained model performs well on certain RNA sequences (mean: 80%) but does
not achieve the same accuracy on human pcRNA/lncRNA data (mean: 43%). It is clear from Figure 4.7
that the model learns, but the learned patterns do not generalize to lncRNA. A higher MLM accuracy
on human RNA is achieved when using our human dataset for pre-training instead of RNAcentral, even
though this accuracy (mean: 18%) is far from the high values that an RNAcentral model achieves when
evaluating on the RNAcentral validation set. We attribute this to the sequences in the RNAcentral
dataset, which are higher in number, more evolutionary diverse, smaller in size, and lower in complexity.
We also anticipate that certain RNAs are highly overrepresented in the dataset, making the model prefer
those sequences over lncRNA.

The results in Figure 4.6 and 4.7 expose a potential weakness of RNA language models that have only
been trained on RNAcentral data, like ERNIE-RNA, RNABERT, RNAErnie, and RNA-FM (Akiyama et
al. 2022; Chen et al. 2022; N. Wang et al. 2024; Yin et al. 2024). These models are likely to underperform
on lncRNA/mRNA, leading to a diminished lncRNA classification performance. It is unclear whether
BiRNA-BERT, RiNALMo, and Uni-RNA suffer from the same issue. These works also utilize the RNA-
central dataset but augment it with data from RefSeq (Tahmid et al. 2024), Rfam/Ensembl (Penić et al.
2024), and Genomic Warehouse (X. Wang et al. 2023). We anticipate that a cross-species pre-training
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Figure 4.7: The effect of pre-training data on lncRNA-BERT. Left: T-SNE visualizations of the em-
bedding spaces of the human validation set and the ArchiveII dataset after pre-training lncRNA-BERT
with 3-mer tokenization on human data or on multi-species data from RNAcentral. The human model
better distinguishes pcRNA from ncRNA than the RNAcentral model, while the latter generates an
improved separation between structural families in ArchiveII. Right: Density plot of the MLM ac-
curacy per sequence (% correctly predicted tokens) for lncRNA-BERT with 3-mer tokenization when
pre-trained/evaluated on human pcRNA/ncRNA data or cross-species ncRNA from RNAcentral. The
RNAcentral model achieves a high MLM accuracy (mean: 70%) on the RNAcentral validation set but
performs worse than the human model on lncRNA from the human validation set (mean: 15% versus
18%). The models slightly favor pcRNA over ncRNA.

dataset could enhance performance but should be of good quality, well-balanced, non-redundant, and
include RNA of all types.

4.4 Encoding Methods

We compare nucleotide encoding methods (Section 3.3) and show that 1) our novel CSE method improves
upon NUC, K-mer, and BPE for pre-training on long sequences; and 2) 3-mer tokenization leads to the
highest fine-tuning performance. CSE with k = 9 and 3-mer tokenization are chosen as optimal encoding
methods based on these results, which shall be elaborated in this section. Figure 4.8 shows the obtained
F1-scores after probing and fine-tuning, both setups are explained in Section 3.6. All models are trained
under the same conditions (Section 3.6). Figure 4.9 shows latent space visualizations of the validation
set for all encoding methods. The findings of the comparison are explained below.

4.4.1 Three-Base Periodicity Affects Model Performance and Sequence Em-
beddings

Encoding methods that align with the three-base periodicity in coding RNA are shown to better dis-
tinguish coding from non-coding RNA after pre-training, due to their sensitivity to biological reading
frames. These methods include K-mer Tokenization and CSE with k mod 3 = 0, i.e. encoding methods
that always tokenize or embed a multiple of three nucleotides per input position.

The latent space visualizations in Figure 4.9 reveal that three-base periodic encoding methods lead
to more clusters in the data and a clearer distinction between pcRNA and lncRNA. The latter is also
reflected by the achieved F1-scores after probing. The embedding output represents the meaning of a
sequence, good models therefore assign similar embeddings to sequences with similar functions or char-
acteristics, such as genomic elements in DNA (Dalla-Torre et al. 2023) and structural families of RNA
(Penić et al. 2024; Tahmid et al. 2024). Hence, the improved distinction between pcRNA/lncRNA for
encoding methods with k mod 3 = 0 indicates that these configurations model the data more successfully.
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Figure 4.8: Macro-averaged F1-scores on the lncRNA classification task for different encoding methods,
using probing (left) or fine-tuning (right). K-mer Tokenization with k = 3 leads to the highest perfor-
mance for both probing (0.93) and fine-tuning (0.94) . CSE outperforms BPE when probed, meaning that
CSE-based models better intrinsically distinguish pcRNA and lncRNA after pre-training. BPE models
can achieve a larger performance gain than CSE when fine-tuned, leading to a better classification per-
formance.

F1: 0.86
NUC

F1: 0.93
k-mer (k=3)

F1: 0.91
k-mer (k=6)

F1: 0.79
k-mer (k=9)

F1: 0.88
BPE (vs=256)

F1: 0.89
BPE (vs=1024)

F1: 0.88
BPE (vs=4096)

F1: 0.9
CSE (k=3)

F1: 0.91
CSE (k=4)

F1: 0.93
CSE (k=6)

F1: 0.92
CSE (k=7)

F1: 0.93
CSE (k=9)

F1: 0.86
CSE (k=10)

F1: 0.9
CSE (k=13)

pcRNA
ncRNA

Figure 4.9: T-SNE visualizations of the embedding spaces of the validation set after pre-training models
with different encoding methods. K-mer Tokenization with k = 3 and CSE with k ∈ {6, 9} lead to the
best distinction between pcRNA and lncRNA, reflected in the achieved F1-score when probed (0.93).
Mean pooling is used to retrieve sequence-level embeddings.
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Figure 4.10: T-SNE visualization of how the embedding spaces of lncRNA-BERT models (and Nucleotide
Transformer) with different encoding methods change depending on the reading frame of the input.
Assessed by removing up to 9 nucleotides from 10 randomly selected sequences (indicated by color)
in the validation set. The sequence-level embedding does not change for NUC, BPE, and CSE when k
mod 3 ̸= 0. Sequence embeddings jump across three different coordinates when using K-mer Tokenization
or CSE with k divisible by 3. The same is observed for the Nucleotide Transformer.

Figure 4.10 raises concerns about the biological significance of the clustering obtained by encoding meth-
ods with k mod 3 = 0, as duplicate sequences jump between three groups when observed in different
reading frames. Such sensitivity was anticipated for K-mer Tokenization and CSE (Section 3.3) be-
cause sequences can be observed in k distinct windows, causing k distinct embeddings at token-level. At
sequence-level, good models should not generate different embeddings for the same sequence in different
reading frames, since the aggregated (average) meaning of input positions has not changed. Figure 4.10
shows that this applies to models using NUC, BPE, or CSE with k ∈ [4, 10]. However, sequence-level
embeddings change per reading frame when using K-mer Tokenization or CSE with k as a multiple of 3.
This is shown to also apply for the Nucleotide Transformer, which uses 6-mer tokenization as encoding
method.

Specifically, sequences change position in the embedding space depending on whether 1/4/7, 2/5/8 or
3/6/9 nucleotides are removed from the original sequence, alternating between 3 latent space coordinates
instead of a single or k different coordinates. This is reminiscent of but not equal to the biological reading
frame, which has the same periodicity but is defined by a start codon instead of the start of the sequence.

It is clear that biological reading frames in the data have an effect on the behavior of three-base
periodic models. We believe these models to favor in-frame signals during training. These signals are
easier to learn (and predict) because of their periodic organization (Figure 4.11) and because they do not
require the model to infer k-mers from different input positions. E.g. from ‘ACT TGA ACT’ it is easier
to learn that ‘TGA’ follows ‘ACT’ than that ‘GAA’ follows ‘CTT’ as the latter requires the model to
combine multiple 3-mers. During prediction of sequences in different reading frames, the presence/absence
of these easy-to-learn signals is likely to cause the observed shifts between embeddings in Figure 4.10.
Note that these in-frame signals do not occur in ncRNA altogether, explaining why their embeddings are
more consistent. Frameshift sensitivity is mitigated by setting k mod 3 ̸= 0 (e.g. k ∈ [4, 7, 10]), which
breaks up the three-base periodicity. In these cases, the model is forced to combine input positions for
its predictions and cannot easily develop a bias towards in-frame patterns.

We acknowledge that the sensitivity of our models towards the reading frame of the input indicates
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Figure 4.11: Density plot of MLM accuracy per sequence by CSE models with k ∈ [6, 7]. Both models
are better at predicting pcRNA than lncRNA. Setting k = 6 leads to a slightly increased performance on
pcRNA in comparison to k = 7, while the ncRNA performance is similar. The latter can be explained
by the 3-base periodicity of coding RNA, which aligns better to k = 6 than to k = 7.

their understanding of the data is limited. We anticipate that a better model will recognize biologically
relevant ORFs in the data and will generate consistent embeddings for every possible input reading frame.
We discuss possible steps towards obtaining such a model in Chapter 5.

While the reading frame sensitivity of models with three-base periodic encoding methods might seem
problematic, our results indicate that it actually helps to distinguish coding from non-coding RNA. We
know from our feature-based approach that three-base periodicity can be an effective predictor of coding
potential (Section 4.2.3, Figure 4.5). This explains why models with k divisible by three achieve a better
probing and fine-tuning performance than models with k mod 3 ̸= 0 in Figure 4.8. We compare the
MLM accuracy per sequence for k = 6 and k = 7 in Figure 4.11 and verify that setting k mod 3 = 0
leads to a slightly better pcRNA MLM accuracy while leaving the lncRNA accuracy mostly unaffected.

4.4.2 CSE Is the Most Effective Encoding Method for Pre-Training on Long
Sequences

Our results show that CSE leads to the best trainable models for encoding methods with a large sequence
length reduction (≥ 6×). This is concluded from Figure 4.8, where CSE and K-mer Tokenization obtain
a probing F1-score of 0.93 versus 0.91 for k = 6, and 0.93 versus 0.79 for k = 9, respectively. The
fine-tuning scores are also higher for these CSE and k-mer configurations.

We attribute CSE’s superiority in these use cases to the complete independency between tokens in
K-mer Tokenization. Learning the meaning of every token in a large vocabulary (4k) introduces sampling
efficiency issues (Sanabria et al. 2024; Z. Zhou, Ji, et al. 2023) and blows up the number of parameters
(Section 3.3). In contrast, CSE sees k-mers as combinations of nucleotides and prioritizes important
patterns based on the data. Figure 4.12 shows a selection of learned kernels for a pre-trained model
with CSE k = 9, which includes both short as well as longer, more complicated patterns, the latter of
which somewhat resemble biological motifs. Like the k-mer approach, BPE encodes sequences into fully
independent tokens, explaining why it is outperformed by CSE when probed.

4.4.3 K-Mer and BPE Allow for Better Fine-Tuning for LncRNA Classifica-
tion than CSE

CSE is outperformed on the lncRNA classification task by fine-tuned models based on 3-mer tokenization
and BPE, as shown in Figure 4.8. We identify several causes supported by the results.

Figure 4.8 indicates that tokenizers work better than CSE when the token size is small and fine-tuning
is allowed. CSE with k = 3 results in a fine-tuning F1-score of 0.926, while 3-mer and BPE (for vs = 256)
achieve 0.944 and 0.931, respectively. Shorter tokens enable attention at a higher resolution, which
may lead to improved contextualized embeddings. In addition, the vocabulary size of these methods is
relatively small, diminishing the issue of sampling inefficiency and increasing the effectivity of considering
tokens as independent units. During fine-tuning, these issues are of even smaller concern than during pre-
training, as the model can more easily prioritize tokens that are important for the lncRNA classification
task over less important ones.
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Figure 4.12: A selection of CSE (k = 9) kernels after pre-training. Some kernels are dedicated to recog-
nizing nucleotides at specific positions, others match subsequences of different lengths and complexities.

Another factor that affects classification performance is sequence length coverage, which differs per
encoding method as shown in Section 3.3, Figure 3.3. A longer sequence coverage allows the model to
consider a larger part of the sequence in its predictions. This is a trade-off, as it can improve fine-tuning
but complicate pre-training. Pre-training on longer sequences forces the model to consider a wider context
in generating embeddings, possibly distracting it from important local signals. During fine-tuning, the
model can more easily prioritize important input positions, which may sometimes occur near the end of
a sequence. Hence, the model benefits from a longer sequence coverage. This trade-off is observed when
studying the performance of CSE-based models for different k in Figure 4.8. These models benefit from
larger values of k up to k = 9. The performance starts to deterioriate for k > 9.

The context length of a model with 3-mer tokenization (3× 768 = 2304) is shown to be sufficient for
classifying coding potential. The biological implication here is that the coding potential of long RNA
transcripts is usually inferrable from the first 2304 nucleotides. This, in combination with its small
vocabulary, explains why a model with 3-mer tokenization achieves a similar fine-tuning performance as
CSE with k = 9 (0.944 versus 0.941), despite having a smaller context length. Both configurations are
demonstrated to be highly effective for both probing and fine-tuning.

4.5 Comparison to Existing NLMs

We compare lncRNA-BERT with 3-mer tokenization to previously released NLMs by visualizing their
embedding spaces of the validation set in Figure 4.13. All of the models distinguish pcRNA and lncRNA
to some extent, but RiNALMo, lncRNA-BERT, and DNABERT-2 seem to be more effective than BiRNA-
BERT and GENA-LM. The embedding quality does not seem to be molecule-specific, as DNABERT-2
succesfully separates pcRNA from ncRNA while being trained on DNA data. BiRNA-BERT, RiNALMo,
and DNABERT-2 are of equal model size (≈ 110M parameters, Table 2.3) but generate different em-
beddings, as each of these methods has its own training procedure and sequence encoding method. The
embeddings generated by lncRNA-BERT indicate its competitiveness with other NLMs on this dataset
despite being the smallest model (85M parameters).

The high-quality separation of coding and non-coding RNAs in the embedding space of RiNALMo
is noteworthy, as the authors claim that it has only been trained on non-coding RNA data (Penić et al.
2024). Its superiority may be attributed to the large model size (650M parameters) or the unique data
sampling procedure, which involves clustering the data into groups of similar sequences, taking samples
from each cluster with equal probability. Nevertheless, RiNALMo should be unfamiliar with mRNA data.
The fact that it assigns distinct embeddings to mRNA indicates that the model generalizes well to unseen
types of data.
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Figure 4.13: T-SNE visualizations of the embedding spaces of the validation set, generated by differ-
ent NLMs. RiNALMo generates the clearest distinction between coding and non-coding transcripts, with
ncRNAs clustered into two groups. LncRNA-BERT (3-mer), DNABERT-2, and BiRNA-BERT also sepa-
rate the two classes. GENA-LM’s embedding space seems to be less informative for lncRNA classification.



4.6. LATENT SPACE INSPECTION 37

1

2 3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18 19

20

21
22

pcRNA
ncRNA

# nucleotides removed
1/4/7
2/5/8
3/6/9

Figure 4.14: Manual labeling of clusters in the t-SNE visualization of the validation set embedding space
of lncRNA-BERT with 3-mer tokenization (left) and the frameshift sensitivity of 10 randomly selected
pcRNAs (right). Cluster sets {1, 2, 10}, {17, 18, 19}, and {11, 12, 20} appear to be related, as sequences
jump between different clusters within these sets when applying different reading frames to the same
input. Reading frames are simulated by removing nucleotides from the start of the sequence.

4.6 Latent Space Inspection

LncRNA-BERT’s latent space visualization of the validation set in Figure 4.14 (generated by the 3-mer
tokenization model) shows distinct clusters of pcRNAs, which are mostly well-separated from lncRNA.
LncRNA clusters also exist, although these are less well distinguished (e.g. cluster 5, 6, 7, 14, and 22).
Observing more clusters in pcRNA aligns with Section 3.3 and indicates a preference of lncRNA-BERT
towards pcRNA. As discussed in that same section and shown in Figure 4.14, most pcRNA sequences
iterate between three different groups depending on their input reading frame.

Aside from that, it is unclear what exactly the clusters represent. The model assigns similar contex-
tualized embeddings to specific sets of sequences, but its black box nature does not facilitate a direct
interpretation of the embedding space. We know from Figure 4.7 that our RNAcentral model recognizes
different types of RNA, which motivates the search for relevance in the latent space of our human RNA
model. Unlike the ArchiveII data visualized in Figure 4.7, the RNA data in our validation set is not clas-
sified into different types. Instead, we use Gene Ontology (GO) annotations to investigate the embedding
space.

We first confirm that the clustering is not directly based on sequence length, although Figure 4.15
points out that a length gradient exists. PcRNA and lncRNA sequences at the upper half of the visual-
ization are shorter in comparison to the lower half.

Figure 4.15 also indicates a significantly higher MLM accuracy for sequences in cluster 9. We do not
know what is causing the model to perform particularly well on these sequences. Figure 4.14 shows that a
sequence in this cluster does not change its position when frame-shifted. This hints toward the resolution
of the frameshift sensitivity problem when MLM accuracy is improved.

The contextualized embedding space does not strictly correspond to sequence similarity, as embeddings
are based on the meaning of a sequence instead of its composition (although the two are related). The
mean pairwise Euclidian distance between 6-mer spectra of sequences within each cluster is used as a
proxy for intra-cluster sequence similarity. The average pairwise 6-mer distance between all sequences
in the dataset equals 4.57e-02. The mean distance for each cluster is listed in Table 4.2, showing that
most clusters have a lower mean distance than the dataset average. Therefore, we conclude that these
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Figure 4.15: T-SNE visualization of the sequence-level embedding space of the validation set by lncRNA-
BERT w.r.t. sequence length (left) and MLM accuracy (right). Clusters in the bottom half of the
embedding space contain sequences of varying lengths, but clusters in the upper half are exclusively
comprised of short sequences. The model obtains low MLM accuracies (<0.3), except for two clusters
with a significantly higher score (≈0.6).

sequences are more similar to each other than to the rest of the data. Some clusters (6, 15, 17, 19,
21, 22) are exceptions to this conclusion and exhibit a relatively high intra-cluster 6-mer distance. This
emphasizes that the embedding space is not merely a representation of sequence similarity. Note that
using pairwise alignment distances to express sequence similarity would be preferred over using 6-mer
spectra, but this would cost significant computational resources to calculate.

We use the online g:GOSt tool from g:Profiler (https://biit.cs.ut.ee/gprofiler/gost) to per-
form a functional enrichment analysis on the lists of gene names for each cluster labeled in Figure 4.14.
The most significantly enriched GO terms are listed in Table 4.2. Only driver terms are reported to
prioritize the GOs that induce other significant terms, these are identified using a greedy filtering algo-
rithm built into g:GOSt. We assess the validity of this approach by running g:GOSt five times with 200
randomly selected gene names from the validation set. This results in statistically significant findings for
5/5 repetitions, although never resulting in Padj < 10−6. Hence, we shall focus only on highly significant
findings.

Most of the enriched GO terms are broad (e.g. ‘protein binding’, ‘cytoplasm’) or of low limited statis-
tical significance The most significant findings are those of clusters 3, 10, and 11, respectively identifying
‘regulation of DNA-templated transcription’, ‘anatomical structure development’, and ‘regulation of de-
velopmental process’ as enriched biological processes, with a Padj of 6.75e-37, 2.96e-14, and 2.24e-10.
These findings support the biological relevance of different clusters in the latent space. Cluster 9, which
has a high MLM accuracy (Figure 4.15), seems to contain pcRNAs that are related to ‘nervous system
development’. Table 4.2 indicates that clusters with highly significant enriched GO terms often exhibit
a low mean 6-mer distance. Sequence similarity may thus have affected the enrichment results. On the
other hand, some clusters with highly diverse sequences (16, 19) also result in significant findings, whereas
some clusters with highly similar sequences (7, 8) do not.

The enrichment results can also be used to further investigate the frameshift sensitivity problem of
three-base periodic encoding methods, as explained in Section 4.4.1. Figure 4.14 identifies the following
clusters sets where sequences seem to jump within depending on their input reading frame: {1, 2, 10},
{17, 18, 19}, and {11, 12, 20}. Similar GO terms are enriched for clusters 1 and 2 (‘organelle organization’),
which may indicate that these clusters are frameshifted variants of each other. Contrastingly, cluster sets
{17, 18, 19} and {11, 12, 20} report different GO terms. Different reading frames may thus cause different
types of signals to be extracted.

Clusters containing lncRNA transcripts do not result in highly significantly enriched GO terms, as
lncRNAs are less well annotated than pcRNAs. However, our pcRNA-related findings indicate that these
clusters may also be of biological relevance.

https://biit.cs.ut.ee/gprofiler/gost
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Chapter 5

Discussion

The human RNA language model proposed in this thesis, lncRNA-BERT, is demonstrated to obtain
state-of-the-art performance in distinguishing coding from long non-coding RNA (Section 4.1). The fine-
tuned lncRNA-BERT model outperforms five of the six previously published lncRNA classifiers in our
comparison, with LncADeep being the only previous method that obtains a higher F1-score than both
lncRNA-BERT configurations on one of the three test sets. In addition, lncNRA-BERT generates an
improved distinction between pcRNA and lncRNA in its embedding space in comparison to NLMs of
equal model size (Section 4.5). This answers Research Question 1.

A large set of RNA predictory features, originating from various previous studies, has been re-
implemented in the lncRNA-Py package. We show that some of these features (k-mer frequencies, entropy,
three-base periodicity) indicate the presence of unique linguistic patterns for mRNA/lncRNA, strongly
motivating the applicability of an RNA language model for this task. We also establish two feature-based
machine learning baselines to compete with lncRNA-BERT (Section 4.2). LncRNA-RF, our random
forest baseline model with relative Recursive Feature Selection, achieves a higher F1-score than all of the
classifiers from previous works, and also outperforms lncRNA-BERT on all three test sets. This indi-
cates that despite the potential of sequence-based models, lncRNA classifiers benefit from incorporating
sequence-extrinsic information. This answers Research Question 2.

In comparison to other NLMs, lncRNA-BERT is specialized in human mRNA and lncRNA, whereas
alternative RNA foundation models are often pre-trained on the cross-species RNAcentral dataset, which
contains mostly short ncRNAs. We show that pre-training on human RNA from GENCODE, RefSeq,
and NONCODE results in learning a sequence-intrinsic distinction between pcRNA and lncRNA, leading
to a higher downstream performance in comparison to using RNAcentral (Section 4.3). The learned
embeddings are indicated to contain biologically relevant information beyond coding potential, indicating
lncRNA-BERT’s potential for fine-tuning on different tasks (Section 4.6). This answers Research Question
3.

Furthermore, we introduce Convolutional Sequence Encoding (CSE), which encodes long nucleotide
sequences in a more effective and parameter-efficient way than K-mer Tokenization or BPE (Section
4.4). CSE obtains its increased effectivity for long sequences by convolving position weight matrices to
directly embed k-mers into a high-dimensional representation, instead of considering them as fully inde-
pendent tokens. In an extensive comparison, 3-mer tokenization yields comparable lncRNA classification
results, indicating that full sequence length coverage is not a requirement for this task. Nevertheless, our
lncRNA-BERT model with CSE and k = 9 accommodates sequences of almost 7000 nt while using the
standard BERT architecture as base model. An additional result of our encoding method comparison is
the discovery of a frameshift sensitivity issue when using three-base periodic encoding methods, which
also applies to the widely-used Nucleotide Transformer (Section 4.4.1). This answers Research Question 4.

A reflection upon the results and applied methods is provided below. Section 5.1 addresses the benefits
and limitations of the NLM approach for discriminating between mRNA/lncRNA. We then discuss how
data clustering can improve our methodology in Section 5.2. Section 5.3 comments on the competitiveness
of our model in comparison to other available NLMs. Finally, we provide recommendations for future
work on NLMs in Section 5.4.
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5.1 Benefits and Limitations of NLMs for LncRNA Classifica-
tion

The NLM approach to distinguishing coding from non-coding RNA is shown to be effective, but fails
to consistently outperform the feature-based lncRNA-RF and LncADeep algorithms. This questions the
added value of using NLMs for this task. In machine learning, the principle of Occam’s razor states that
when two models achieve a similar performance, the simpler model is preferred. This preference towards
simpler is mainly motivated by the notion that models with less parameters are less likely to overfit
on the data. LncRNA-RF has 14× fewer trainable parameters (6M vs 89M) than lncRNA-BERT, but
achieves a similar F1-score (0.95, on GENCODE). Based on the obtained performances shown in Figure
4.1, we therefore cannot conclude that using the sequence-based lncRNA-BERT is beneficial over using
the feature-based lncRNA-RF.

A possible explanation for why our NLM does not always outperform existing lncRNA classification
algorithms is that some of these methods might have already reached the best possible performance.
Judging from the F1-scores (0.94, on CPAT) obtained by the highly simplistic lncRNA-LR algorithm
(11 parameters), we believe that achieving a seemingly reasonable performance on this task is trivial.
At the same time, we anticipate a performance plateau due to the lack of a strict binary separation
between pcRNA and lncRNA. For example, lncRNA contains short ORFs (Figure 4.2) which may encode
functional micro-peptides (Pang et al. 2018) and mRNA can have ncRNA-like regulatory functions (Kloc
et al. 2011; J. Li et al. 2020; Mustoe et al. 2018). The true function of a transcript may very well be
context-dependent, e.g. varying between tissues or developmental stages. This information is not incor-
porated in any lncRNA classifier, as such data is not available. The annotation systems in databases like
RefSeq and GENCODE falsely assume an unambiguous distinction between the two classes, complicating
the training and testing of ML models. Consequently, it is impossible to reach 100% accuracy without
overfitting to the human labeling system. Given the vast number of lncRNA classifiers that have been
published in the past 15 years (Table 2.2), it does not seem unlikely that their maximal performance
(F1≈0.95) corresponds to the described plateau, which would explain why we do not outperform them.

A benefit of lncRNA-BERT over traditional classifiers is that its pre-training procedure does not
utilize human-assigned labels but still clearly distinguishes coding from non-coding RNA, based solely
on the transcript sequence. The clusterings in Figure 4.14 show that lncRNA-BERT largely succeeds in
separating pcRNA and lncRNA in the dataset. Some pcRNA clusters are polluted with lncRNAs, and
vice versa. These data points could indicate inaccuracies of our model, but also motivate reconsideration
of the database-assigned label. Using an unsupervised approach might lead to a more nuanced view on
the two RNA classes. This idea could be pursued in future work by using an NLM like lncRNA-BERT
to assign novel RNA classes, e.g. with the TURTLE framework (Gadetsky et al. 2024).

5.2 Data Clustering Holds Potential For Future Work

Many lncRNA classification studies, including ours, suffer from overlap between train and test sets (D.
Singh et al. 2022). This introduces bias in the comparison between different classification algorithms.
Our method of mitigating this bias, clustering with CD-HIT, may also positively affect pre-training in
future work.

Each previous lncRNA classifier has a unique definition of train and test datasets, which means that
our test sequences might have been part of their training data (e.g. PredLncGF-Stack was trained on
GENCODE). To guarantee a fair evaluation, one should re-train each of the compared methods with our
training set. This is a time-consuming effort that would have led to the inclusion of fewer algorithms, also
because not all methods offer a re-training option in their official software release (e.g. PredLnc-GFStack,
LncADeep). This type of overlap positively affects the performance of previous lncRNA classifiers relative
to ours. We decide to neglect this bias, as it does not favor our own method.

Data redundancy removal is required to mitigate a second type of train/test overlap, caused by
duplicate or similar sequences present in both the training and evaluation datasets. Similar to our
approach, previous works have used clustering algorithms like CD-HIT and MMSeqs2 to remove sequences
that occur multiple times in the same dataset (Feng et al. 2023; S. Liu et al. 2019), preventing them from
being present in both train and test data.

The application of a clustering algorithm may also be the key to properly including cross-species
data during pre-training, due to an increased data diversity. Section 4.3 shows that pre-training on
RNAcentral data does not lead to a well-performing model on mRNA/lncRNA, exposing a potential
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weakness of some existing RNA NLMs. Nevertheless, models pre-trained on RNAcentral achieve high
MLM accuracies on specific overrepresented types of RNA (Figure 4.7). Previous works have shown that
NLMs benefit from multi-species data (Dalla-Torre et al. 2023; Z. Zhou, Ji, et al. 2023). Moreover, the
RNAcentral dataset contains significantly more sequences than our pre-training set (37M vs 0.5M). We
therefore anticipate that removing the redundancy from RNAcentral with a clustering algorithm might
mitigate the currently faced issues and lead to a superior RNA foundation model. To ensure optimal
performance on the lncRNA classification task, one would also have to include pcRNA data during pre-
training. The pre-training procedure could sample from clusters obtained by CD-HIT/MMSeqs2 from
the combined dataset, similar to the approach taken by RiNALMo (Penić et al. 2024).

5.3 Addressing the Competitiveness of LncRNA-BERT with
Other NLMs

Section 4.5 shows that, based on the obtained embeddings, lncRNA-BERT is better adapted to human
mRNA/lncRNA data than most other NLMs included in our analysis. This is not a surprising observation
as lncRNA-BERT was specifically trained on this type of data, and its encoding method was optimized
for lncRNA classification (Section 4.4). The results highlight how the behavior of NLMs will change
depending on what type of DNA/RNA data is given to them during training and inference (also seen in
Section 4.3). For a more thorough comparison, we recommend fine-tuning other NLMs for the lncRNA
classification task, as well as fine-tuning all methods (including lncRNA-BERT) for alternative tasks that
focus on long RNA sequences, such as splice site detection.

Other NLMs utilize several architectural advancements that are currently not implemented by lncRNA-
BERT but could lead to improvements. In this work, we specifically focus on the choice of encoding
method to increase the accepted sequence length, while keeping the BERT architecture as is. Figures 4.8
and 4.9 show that CSE can adapt to longer sequence lengths more effectively than K-mer Tokenization
and BPE. Section 4.5 indicates that lncRNA-BERT obtains a pcRNA/lncRNA embedding split compa-
rable to that of RiNALMo despite being 8× smaller in size. Future improvements to lncRNA-BERT can
be realized by incorporating the advancements proposed in other NLMs. These include Rotary Positional
Embeddings (RoPE, Dalla-Torre et al. 2023; Penić et al. 2024; Su et al. 2021; X. Wang et al. 2023) or
Attention with Linear Biases (ALiBi, Press et al. 2021; Tahmid et al. 2024; Z. Zhou, Ji, et al. 2023)
for improved generalization to longer sequences, Flash Attention for an increased efficiency (Dao et al.
2022; Penić et al. 2024; Z. Zhou, Ji, et al. 2023), and SwiGLU activations for better training convergence
(Dalla-Torre et al. 2023; Penić et al. 2024). Making these modifications and/or increasing the size of the
BERT architecture by modifying its hyperparameters is likely to further increase performance.

5.4 Recommendations for Improving NLMs

The findings in this thesis indicate that lncRNA-BERT and other existing NLMs have a limited un-
derstanding of the data. We anticipate that NLMs can be significantly improved in future work by
continuing to study effective encoding methods and training on larger and more diverse datasets. Pre-
vious studies have shown that NLMs can obtain state-of-the-art performance in tasks such as splice site
detection (Dalla-Torre et al. 2023) and chromatin profile prediction (Fishman et al. 2023). In our work,
we show that lncRNA-BERT achieves state-of-the-art performance in lncRNA classification and generate
biologically informative embeddings. Nevertheless, the low MLM accuracy (< 0.5, Figure 4.11) indicates
that the model makes a substantial amount of mistakes in predicting masked nucleotides (or tokens).
Furthermore, the embedding space of lncRNA-BERT suffers from a reading frame bias (Figure 4.10)
and other NLMs do not convincingly distinguish additional lncRNA clusters beyond the mRNA/lncRNA
split, despite literature indicating that multiple types of lncRNA exist (Figure 1.1).

One way to improve NLMs would be to further pursue the search for an optimal sequence encoding
method, i.e. finding the best definition of a linguistic unit in DNA/RNA. While developments such as
ALiBi and Flash Attention can extend the context length of a transformer model with Nucleotide-level
Tokenization, we advise a more compressive encoding method for a more efficient NLM. Section 4.4 iden-
tifies 3-mer tokenization as optimal encoding technique for lncRNA classification, but a comparison on
different downstream tasks is required to come to a general conclusion. Because lncRNA classification
is relatively simple (Section 5.1), it may not be the most suitable task to highlight differences between
the compared techniques. In addition, it may induce bias towards three-base periodic encoding meth-
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ods (Section 4.4.1). Finally, alternative downstream tasks might require the processing of longer input
sequences, which favor CSE. The non-existence of a single optimal method for all tasks is referred to as
the ‘no free lunch’ theorem in machine learning.

Our CSE method is shown to be more effective and parameter efficient than BPE and K-mer Tok-
enization for pre-training on long sequences, but may need to be improved for utilization in future NLMs.
Despite numerous efforts, we could not find a way to achieve the same fine-tuning performance gain for
CSE (relative to its probing performance) as for BPE and K-mer tokenization. It is unclear which factors
attribute to the observed instability in CSE’s fine-tuning, although the highly flexible kernels in the input
layer may play a role. Solving the fine-tuning stability issue of CSE may also increase its pre-training
performance. Another shortcoming of CSE is that it does not outperform K-mer tokenization for k = 3,
indicating that tokens are more suitable than our convolutional encodings when k is low. CSE and K-mer
Tokenization encode the same number of nucleotides per input position and should therefore, in theory,
be able to achieve the same performance. This may be achieved through architectural optimizations of
the CSE layer.

We anticipate that NLMs, especially RNA LMs, can be greatly improved by increasing the amount
of pre-training data and the genetic diversity within it. Adding intra- and inter-species diversity to the
pre-training task can cause a model to generalize over subtle signals between different individuals and
phylogenetic signals between species. These beneficial effects have been demonstrated for other NLMs,
e.g. the Nucleotide Transformer is able to perform variant prioritization (Dalla-Torre et al. 2023) and
GENA-LM can be used for taxonomic classification (Fishman et al. 2023). It is unlikely that NLMs will
be trained with genomic data from a large (>> 1, 000) number of individuals within the near future,
as this data is not (publicly) available and using it for this purpose would bring up several ethical and
privacy-related concerns. Nevertheless, existing NLMs can be improved by incorporating more of the
available data. Specifically for RNA, the RNAcentral dataset is limited to non-coding RNA, even though
resources like Ensembl also contain multi-species mRNA data. Using this data in combination with a
proper clustering algorithm will likely lead to more informative embeddings than currently generated by
RiNALMo and lncRNA-BERT.

Perhaps a ChatGPT-like breakthrough, which has not occurred for NLMs so far, can only be achieved
with an advanced sequence encoding method and a significant increase in data size and diversity. Such
a breakthrough could then lead to novel discoveries in genetics, such as an improved characterization of
long non-coding RNA.
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Appendix A

Supplementary Information on
Feature-Based Approach

A.1 List of Features Included in Analysis

Table A.3 describes all 8610 features extracted from the GENCODE training set by the lncRNA-Py pack-
age that were used in the EDA and feature selection procedure (Section 3.2, 4.2). The majority of features
correspond to frequencies of specific k-mers. Some features in the ‘Secondary Structure’ category based
on the ViennaRNA package were left out from the analysis as they could not be calculated within 7 days
on SHARK, even though they are implemented in the lncRNA-Py package (lncrnapy.features.sse).
Note that lncRNA-Py does not contain feature extractor classes for features based on genome mapping,
as this would require a GTF input format and cannot be applied to novel transcripts directly.

A.2 LncRNA-LR and LncRNA-RF Feature Importance

The 25 most important features of lncRNA-LR and lncRNA-RF are listed in Table A.2. Importance
is evaluated using the coefficient size for logistic regression and Gini importance for the random forest.
Relative RFE (Section 3.2, Algorithm 1) is applied to select 10 and 100 features (resp.) for lncRNA-LR
and lncRNA-RF.

A.3 Validating the CPAT Re-Implementation

To validate the reliability of the lncRNA-Py package, we compare our re-implementation of the CPAT
algorithm to the results presented in (L. Wang et al. 2013) and official software (https://sourceforge.
net/projects/rna-cpat/), which should show similar behaviour. The results in Figure A.1 and Table
A.1 indicate a discrepancy between the results presented in the publication, the current software release,
and the re-implementation by lncRNA-Py. We identify the following possible reasons for these differences,
which generally apply to all features and algorithms that lncRNA-Py contains:

1. The work does not specify all details about the feature or implemented methods.

2. The specified methods deviates from the implemented methods in the code.

CPAT variant F1 (macro)
Precision Recall
pcRNA ncRNA pcRNA ncRNA

lncRNA-Py 0.95 0.96 0.95 0.95 0.96
Paper 0.97 0.97 0.96 0.96 0.97
Software 0.96 0.95 0.98 0.98 0.95

Table A.1: Macro-averaged F1-score, precision, and recall for the re-implementation of CPAT in the
lncRNA-Py package, for the results presented in its publication (L. Wang et al. 2013), and for the
predictions obtained using the official software.
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Name Extractor class Description
- Length Length Transcript length

1

ORF ORFCoordinates ORF coordinates, for 5 relaxation levels (Wucher et al.
2017)

ORF length ORFLength ORF length, for 5 relaxation levels
ORF coverage ORFCoverage ORF / sequence length, for 5 relaxation levels
UTR length UTRCoordinates 5’ UTR and 3’ UTR length
UTR coverage UTRLength UTR / sequence length

2

Fickett score FickettScore (Fickett 1982; L. Wang et al. 2013)
Complexity Complexity Local compositional complexity (entropy)
ORF amino acid frequency KmerFreqs -
GC content GCContent Proportion of C/G in sequence
Nucleotide distribution SequenceDistribution Nucleotide proportion (in sequence/ORF) for every

1/4 transcript length
SCS StdStopCodons Standard deviation of stop codon counts between

reading frames (Lei Sun et al. 2015)
1-mer frequency KmerFreqs In sequence & ORF
2-mer frequency KmerFreqs In sequence & ORF
2-mer EDP (ORF) EntropyDensityProfile 2-mer entropy density profile of ORF
1-gapped 2-mer frequency KmerFreqs Discontinuous k-mers (Yu Zhang et al. 2020)
2-gapped 2-mer frequency KmerFreqs Discontinuous k-mers
3-mer frequency KmerFreqs In sequence & ORF
3-mer frequency (PLEK) KmerFreqs PLEK-corrected frequencies (A. Li et al. 2014)
3-mer entropy Entropy 3-mer frequency entropy, in sequence & ORF
6-mer frequency KmerFreqs In sequence & ORF
6-mer score KmerScore Hexamer bias (L. Wang et al. 2013)
Zhang score ZhangScore Nucleotide bias around start codon (Yu Zhang et al.

2020)
MLCDS MLCDS 6 Most-Like Coding Sequence (+ scores) (Liang Sun

et al. 2013)
MLCDS length MLCDSLength Length of top 6 MLCDS (Liang Sun et al. 2013)
MLCDS length-percentage MLCDSLengthPercentage Length of top MLCDS / lengths of other 5 MLCDSs
MLCDS length std MLCDSLengthStd Standard deviation between top 6 MLCDS lengths

(Guo et al. 2019)
MLCDS score-distance MLCDSScoreDistance Sum of difference between top MLCDS score and

others
MLCDS score std MLCDSScoreStd Standard deviation between top 6 MLCDS scores (Guo

et al. 2019)
6-mer ORF distance (ratio) KmerDistance Euclidian distance (ratio) of 6-mer ORF frequency to

average pcRNA/ncRNA spectrum (Han, Liang, Ma,
et al. 2018)

3

BLASTX hits BLASTXSearch Number of BLASTX hits in UniRef90 protein
database (Kong et al. 2007)

BLASTX hit score BLASTXSearch Mean of mean log e-value over three reading frames
BLASTX frame score BLASTXSearch Mean of deviation from BLASTX hit score
BLASTX S-score BLASTXSearch Sum of logs of significant scores (U. Singh et al. 2017)
BLASTX bit score BLASTXSearch Total bit score
BLASTX frame entropy BLASTXSearch Entropy of probability of hits in i-th reading frame
BLASTX identity BLASTXSearch Sum of the identity percentage
BLASTX hits >0 BLASTXBinary Binary indicator of whether or not a hit is found

(suggested by H. Mei)

4

ORF pI ORFProteinAnalysis Isoelectric point of ORF-encoded protein
ORF MW ORFProteinAnalysis Molecular weight of ORF-encoded protein
ORF aromaticity ORFProteinAnalysis Aromaticity of ORF-encoded protein
ORF instability ORFProteinAnalysis Instability index of ORF-encoded protein
ORF gravy ORFProteinAnalysis Gravy of ORF-encoded protein
EIIP 1/3 EIIPPhysicoChemical Power at 1/3 of Electron-Ion Interaction Profile power

spectrum (Han, Liang, Ma, et al. 2018)
EIIP SNR EIIPPhysicoChemical Signal-to-noise ratio of EIIP 1/3
EIIP Q1 EIIPPhysicoChemical First quantile of EIIP power spectrum
EIIP Q2 EIIPPhysicoChemical Second quantile of EIIP power spectrum
EIIP min/max EIIPPhysicoChemical Of EIIP power spectrum

6
ORF helix ORFProteinAnalysis Fraction of amino acids that tend to be helix
ORF turn ORFProteinAnalysis Fraction of amino acids that tend to be turn
ORF sheet ORFProteinAnalysis Fraction of amino acids that tend to be sheet

Table A.2: Description of the 8610 features extracted from the GENCODE dataset used in the ex-
ploratory data analysis and feature selection procedure of lncRNA-LR and lncRNA-RF. The first column
refers to feature types: 1) ORF; 2) sequence patterns; 3) database alignment; 4) genome mapping (not
implemented and excluded); 5) physicochemical; 6) secondary structure. Extractor classes are part of
the features module of lncrnapy. Many of the features listed here are used by multiple lncRNA clas-
sification algorithms, works that introduced the feature or are characterized by it are cited.
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Rank
Logistic Regression (lncRNA-LR) Random Forest (lncRNA-RF)
Feature Coefficient Feature Gini importance

1 ORF1 length 21.978 BLASTX hit score 0.074
2 Y (ORF,aa) -13.080 ORF3 length 0.070
3 ORF length -11.199 BLASTX S-score 0.066
4 TAT (ORF) s=3 9.112 ORF1 length 0.058
5 TAC (ORF) s=3 8.513 BLASTX bit score 0.048
6 EIIP 1 3 -7.532 ORF2 length 0.041
7 TGG (ORF) s=3 -6.111 ORF4 length 0.041
8 W (ORF,aa) 5.998 BLASTX identity 0.033
9 EIIP SNR 3.777 BLASTX hits >0 0.032
10 ORF MW 0.944 ORF MW 0.031
11 BLASTX hits 0.029
12 ORF length 0.029
13 BLASTX frame entropy 0.027
14 ORF 6-mer eucDistRatio s=3 0.022
15 ORF3 coverage 0.021
16 ORF 6-mer eucDist pc s=3 0.017
17 ORF1 coverage 0.017
18 ORF 6-mer eucDist nc s=3 0.016
19 ORF4 coverage 0.016
20 Fickett score 0.014
21 EIIP SNR 0.013
22 EIIP 1 3 0.012
23 BLASTX frame score 0.011
24 3-mer ORF entropy 0.010
25 MLCDS5 score 0.009

Table A.3: The 10 and 25 most important features of the feature-based lncRNA-LR (Logistic Regression)
and lncRNA-RF (Random Forest) models, fit on the GENCODE training dataset. Features based on
BLAST, ORF, and sequence organization (EIIP, 6-mer distance) are considered as most important. 10
and 100 features (out of 8610) were selected for lncRNA-LR and -RF respectively using relative Recursive
Feature Elimination (Section 3.2, Algorithm 1).
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Figure A.1: Density plots for CPAT’s four basic features as presented in their paper (left) (L. Wang et al.
2013, Figure 1)) and by our own re-implemented versions (right).

3. The data may be preprocessed in a way that is not specified in the paper.

4. The feature is re-implemented wrongly.

The implementation of the Fickett score feature was verified with an online tool https://gcat.davidson.
edu/DGPB/testcode.html, so we are confident that the last reason does not apply here. Reason 2 may
be caused by software updates over time. For example, inspecting CPAT’s source code reveals that its
current implementation identifies multiple ORF candidates and evaluates the Fickett score for each of
them. This contrasts the description given in (L. Wang et al. 2013), which states that ‘The Fickett score
is independent of the ORF’. The performance obtained by lncRNA-Py’s variant of CPAT is comparable
yet slighter lower (Table A.1) than the scores reported in the original paper.

For the above listed reasons, we anticipate that deviations between re-implemented features and algo-
rithms and those in official software releases are likely to occur for any lncRNA classifciation algorithm.
For the sake of credibility, we thus choose to only report performances of officially released software in
our results.

python -m experiments.cpat_validation

https://gcat.davidson.edu/DGPB/testcode.html
https://gcat.davidson.edu/DGPB/testcode.html


Appendix B

LncRNA Classifier Comparison
Table

The values displayed in Figure 4.1 are listed in Table B.1.
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Appendix C

Hyperparameter Tuning

A description of our hyperparameter tuning procedure is provided on our GitHub, specifically at https:
//luukromeijn.github.io/lncRNA-Py/experiments.html#hyperparameter-tuning.
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