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Abstract

This thesis presents the development of a procedural content generation (PCG) pipeline tailored
for the 2D platformer Celeste. The project leverages a Markov Chain-based model to generate
individual rooms within levels, focusing on maintaining structural coherence and enhancing playa-
bility. By employing existing Celeste levels as training data, the model captures essential gameplay
patterns to generate new, challenging, and engaging content. Key post-processing steps, including
exit refinement and the strategic placement of respawn points, are applied to ensure that generated
rooms are not only playable but also align with the gameplay experience expected in Celeste. The
generated levels are evaluated based on metrics such as playability, difficulty, and interestingness,
focusing on the quality and challenge of the generated content. The project aims to contribute
to the field by offering a customizable and robust tool for level generation applied to Celeste, and
potentially be used as a foundation to create a Celeste Al framework.
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1 Introduction

1.1 Cleleste and context of the project

Celeste is a 2D platformer released in 2018. The concept of this game is quite simple: you have
to progress through various well-designed levels to climb successfully Mount Celeste, relying on 4
mechanics only: move, jump, dash and grab. You can combine these mechanics to perform more
advanced gameplay (if you move vertically while you grab a wall, you will end up climbing the wall;
more advanced combinations can be done but listing them would be time consuming and not really
interesting within the scope of the project). Just like other platformers, you might interact with a lot
of different entities (fatal, like spikes or monsters, or friendly, like bouncers or dash refills) that are
really part of the identity of a level. Even more, some levels can just become unbeatable if you remove
the entities. So level conception in Celeste is not only about the structure/the foreground of a level,
but the harmony between structure and entities.

For the rest of this report, I need to make a vocabulary precision: each level is subdivided into rooms.
Procedural content generation concerns the latter: I first generate rooms procedurally, then I assemble
them to make a whole level. T am not generating whole levels at once as I am willing to make use of
all the available information and potentially extract low-level structures. From a structural point of
view, rooms contain exits connecting them together, while a level is a set of rooms assembled together
and has a starting point and an ending point.

1.2 Video Games PCG - Level Generation

Over the past years, people got interested in level generation in video games, and a few approaches
have been considered to that end. A lot of this work concerns the video game Super Mario Bros.
since a framework has been specially developed for using AI methods within a version of this game.
This Mario AI framework has been used in the context of Reinforcement Learning applied to video
games, by training an agent to play Mario. But this framework also has been used to develop an-
other part of video games AI, that is level generation. For platform games (such as Celeste or
Super Mario Bros), levels are usually hand-crafted by developers whose task is to make sure that
they are as interesting as challenging (beyond the obvious requirement that a level should be clear-
able). Level generation-oriented PCG is a field of research where AI is used to try to generate levels
that meet both requirements stated before.

1.3 PCG in Celeste

When it comes to level generation applied to Celeste, a natural question that comes to mind is whether
I should use a supervised or unsupervised method. While the latter requires to define somehow scores
to evaluate the interestingness and difficulty of a room to quantify how good a level is, the former
allows generating levels from data (in this case, the multiple levels of the game that already exist) and
then the main concern is no longer to define obscure evaluation functions but to develop a model that
manages to seize as best as possible what characterizes a good level - id est, the ones that already
exist. There are two major difficulties in Celeste level generation:

e Unlike Mario, Celeste levels do not always consist of an entrance on the left and an exit on the
right! Some rooms do even have exits on the ground and the ceiling and are meant for more
vertical gameplay (cf. figure 1). One of my major concerns is that I have to make sure that the
rooms that will be generated are clearable; that is, that there is always a way to reach the exit.

e There is no ” Celeste Al framework” , meaning that I can not, in the short amount of time allowed
to this thesis, count on developing an Al agent that would actually play the game; I need to
develop an agent-free model. As far as I know, there is no existing work on an agent that plays
Celeste that could be used in the context of this project.

Existing methods using Machine Learning to that end consist of two elements: a representation of
the data structure as well as a training algorithm type. A survey [Summerville et al., 2017] describes
different types of data structures used in PCG via Machine Learning and the five training algorithms
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(a) Horizontal gameplay (b) Vertical gameplay

Figure 1: Two rooms of Celeste with different gameplay

under consideration. The workflow that I have developed (cf. section 4.2.1 to 4.2.5) makes me think
that the grid representation, id est representing rooms using arrays/matrices, is the most straightfor-
ward and efficient way to work with Celeste rooms. However, some papers using other representations
are very interesting and could be worth spending some effort on replacing arrays with other data
structures. In section 2, I will present some of these different studies related to level generation and
how it could connect to PCG in Celeste.

2 Related work & existing methods

After a quick review of around 40 papers, no unsupervised method seemed really promising for such
complex level generation (complex in the sense that there is no chance that a random generator
consistently creates a playable level for Celeste - there is a need for structure). Also, it would be a
bit of a loss not to exploit all the available data. I decided to focus on methods that would put an
emphasis on finding the underlying structures in existing levels which would be the foundations for
some brand new Al-generated rooms. The core idea here is that I really need a robust model that
can grasp what makes a playable level so that it would be easier to tweak it to explore a bit more
the search space of possible levels rather than having a model that is really creative but struggles at
making clearable levels. Procedural Content Generation (PCG) encompasses a variety of techniques
for creating game content algorithmically, and it has been applied extensively to level design in both
2D and 3D games. This state-of-the-art review is organized by level representation methods, including
grid-based, grammar-based, and other hybrid techniques.

2.1 Grid-Based Representation

Grid-based representations involve levels being modeled as a matrix of cells or tiles, where each cell
represents a specific type of terrain or object. This approach is commonly used in both 2D platformers.

2.1.1 Random Generation with Constraints

Some games like Baba Is You use a combination of handcrafted levels and procedural generation to
create puzzles. The procedural aspects involve random generation of puzzle elements within certain
constraints to ensure solvability of created levels [Charity et al., 2022]. Another great example is the
work from [Kazemi, 2008], that employs a random dungeon generation approach with predefined rules
and constraints applied to the 2D platformer Spelunky. The grid-based levels are generated using
Perlin noise and random number generators, ensuring each playthrough offers a unique experience
while maintaining playability. This study inspired me the skeleton generation for room assembling
(discussed in 4.2.2).

2.1.2 Markov Chains based methods

A good model is a model that can learn what makes a good level through patterns detection in existing
levels. Markov Chains are useful to model probabilistic transitions between different states and are



also used in level generation in 2D video games like Mario Bros. [Snodgrass and Ontanon, 2013]
Levels are then represented as 2D arrays and the probabilities of each tile/entity are computed from
a set of existing maps to generate new ones. In another paper from the same authors dealing with
Markov models-based level generation [Snodgrass and Ontandn, 2017], they applied their models to
other games like Kid Icarus that present more vertical/mixed gameplay and even tackled the playability
issue. That method seems very promising for Celeste level generation but needs to be handled with
care because of the game specificities: because Celeste has rooms that are meant to be played vertically,
mixing up all the levels in the process could harm the performance of the model. The same thing goes
for the difficulty; some rooms are way more difficult than others, and it might be really interesting
to split the training rooms by difficulty levels or some other parameter, hence creating several well-
performing models rather than one that mixes up everything.

2.1.3 Cellular Automata

Cellular Automata have been used to model and generate complex structures in grid-based environ-
ments. Due to its low complexity and runtime, the work from [Johnson et al., 2010] makes great use of
the self-organization characteristics of cellular automata to generate interesting, playable, and efficient
2D maps.

2.2 Grammar-Based Representation

Grammar-based representations utilize formal grammars to generate levels by applying production
rules to a starting configuration. This approach allows for the creation of levels with specific structures
and constraints.

Initially developed for natural language, generative grammars have been adapted to procedural content
generation for video games. Graph grammars are adapted to model dungeon levels, where nodes
represent rooms and edges represent connections. Adams [Adams, 2002] used this approach to generate
FPS levels, focusing on topological control but facing limitations due to hard-coded rules. Dormans
[Dormans, 2010] extended this by introducing mission grammars to generate adventure game dungeons,
adding gameplay-based control. Van der Linden et al. further refined this in [Linden et al., 2013] with
gameplay grammars, allowing designers to create generic graph-based dungeon layouts tied to player
actions, demonstrated in Dwarf Quest.

2.3 Metric-centered methods

Some studies focused on trying to generate coherent and playable levels using some smart hand-
crafted metrics like the ones defined in A Comparative Evaluation of Procedural Level Generators in
the Mario AI Framework [Dahlskog et al., 2014], where for example leniency is basically illustrating
the ratio between platforms and gaps in a Mario level, hence a metric related somehow to the difficulty
of a level. While this approach alone is incomplete to generate levels, it can be interesting to couple
it with a level generator model to influence some characteristics of the created rooms, as in the very
interesting paper Intentional Computational Level Design [Khalifa et al., 2019], where metrics are used
in order to restrict/influence gameplay of the new levels.

2.4 Hybrid evolutionary approaches

A lot of studies around level generation in Mario used methods based on Generative Adversarial
Networks (GAN). Among them, the work discussed in [Volz et al., 2018] is one of the most interesting I
found, since it is well documented, the experiments are well described and available for reproducibility.
This study presents a method for procedurally generating Super Mario Bros. levels by combining
Generative Adversarial Networks (GANs) with evolutionary algorithms. A GAN is first trained on
existing levels to learn their structural patterns, creating a latent space that represents various level
features. Evolutionary algorithms are then used to explore this latent space by optimizing latent
vectors based on objectives like playability and complexity, effectively evolving new and diverse level
designs. This approach successfully generates novel, playable levels that adhere to the game’s style,
demonstrating the potential of integrating deep learning and evolutionary computation for advanced
procedural content generation applied to game design. This work goes even beyond the scope of GANs



by showing additional methods to enhance GAN-generated levels. It definitely is a robust method
that shows a lot of potential for video games level generation, even though a lot of efforts is required
to ensure a decent playability rate and an accurate capture of what really makes a level challenging or
enjoyable to play.

Similarly, one could mention the paper from [Thakkar et al., 2019] using autoencoders and Evolution-
ary Algorithms applied to level generation in video games. An autoencoder, a type of neural network
used for dimensionality reduction, is first trained on existing Lode Runner levels to capture and com-
press their essential features into a lower-dimensional latent space. This latent space is then explored
using an evolutionary process similar to what was done in [Volz et al., 2018]. This work was definitely
interesting because of the similarities between levels and their representations in Lode Runner (the
game studied in the paper) and Celeste.

If the evolutionary characteristic of the above method lied in the exploration of the latent space of Super
Mario Bros. levels, some approaches use evolutionary methods as the main component of their PCG
model. For example, [Balali Moghadam and Kuchaki Rafsanjani, 2017] explores the use of genetic
algorithms to automatically generate levels for 2D platformer games. The method involves representing
game levels as sequences of tiles, which can be manipulated through typical genetic operations like
mutation and crossover to evolve towards new levels over successive generations. The fitness function,
which guides the evolution, evaluates levels based on gameplay-based criteria like playability, difficulty,
and diversity. This approach aims to create levels that are both playable and varied, and ultimately
demonstrates that genetic algorithms can effectively generate engaging and playable platformer levels,
offering a flexible and adaptive method for PCG.

2.5 Summary of the SOTA and choice for Celeste PCG

After reviewing various approaches on PCG applied to game design and more specifically to level
generation, it became evident that unsupervised methods are not suitable for generating playable
levels in complex games like Celeste . Instead, methods that leverage existing level structures offer
more promise. Of these, Markov chains methods stood out due to their ability to efficiently learn
structures from existing levels in grid-based representations, which aligns well with how Celeste levels
are structured and handled from a coding perspective. This inspired the choice of a Markov chains-
based PCG model for Celeste, as it provides a robust and flexible - yet rather simple - framework for
generating structured, and hopefully playable levels.

3 Research question

I initially started this project with the intent of making it a modding tool usable by the community;
that is, players should be ultimately able to use this tool to procedurally generate random, unique, and
most importantly, playable levels. Building an entire workflow able to generate a level from a few entry
parameters is already a challenge of its own, given that nearly nothing exists to that end besides a
Julia repository originally developed for a visual map editor project [Cruor et al., 2018]. However, the
player-oriented aspect is very important to me in this project and I definitely want to push this project
a bit further than basic generation. Once the generator workflow is operational, I want to evaluate its
performance through several aspects which, to me, are critical when it comes to player experience in a
platformer, like the complexity, the interestingness, or most importantly the playability of a level. The
evaluation will provide insights into the effectiveness of the tool and its impact on player experience
and how the generated levels meet criteria for these aspects, with special care for playability. A level
can be incredibly interesting and amusing; at the end of the day, if the game is not clearable, the
player leaves with nothing but frustration.

In this thesis, I aim to develop a comprehensive, configurable procedural content generation pipeline
applied to the 2D platformer Celeste, while being able to evaluate the produced levels, hence enabling
a finer control on the characteristics of the output of this pipeline. I hope this study will eventually
contribute to the field by offering a revised tool for level generation and providing foundations for a
new Al framework for assessing procedural content applied to Celeste.



4 General idea and setup

Due to its important and active modding community, a visual map editor Ahorn has been developed
to help people create their own levels in Celeste. For my project, I adapt some of the Julia code behind
this interface (a project named Maple [Cruor et al., 2018]) to generate rooms and levels through some
lines of code, making room and level generation automation possible.

This wrapper code actually allows to read the binary files containing the original levels of the game.
I was hence able to notice that a level is nothing more than a set of rooms assembled in space using
the right coordinates. All the interesting information and all the details of a level were contained
and divided in each of the rooms. A room consists of many things, and I can actually summarize its
most important components below (I will ignore what I call decals in the room data, which is purely
aesthetic and will not be considered for the scope of this project):

e a foreground: the set of tiles which composes the ground, ceiling, and walls of a room

e the entities: all additional items that the player can interact with, can be helpful, neutral, or
even deadly depending on the entity (just like a mushroom or a Goomba if T was to find the
equivalent in Super Mario Bros.)

e a background: the set of decorative tiles that are in the background, only aesthetic, does not
interact with the gameplay

e metadata: special settings of a room, like wind (will alter considerably gameplay) or a specific
music track (will not change gameplay but can be chosen accordingly with level difficulty for
example)

Knowing this, the initial scope of my project consists in generating foregrounds and sets of entities
that are well structured and make sense in their interaction when it comes to playability. Those are
the base requirements for room generation in Celeste. Backgrounds and metadata like custom music
tracks can be added at a later point and are not a difficult part of the workflow once a running
pipeline is established, but I want to keep it as simplified as possible to introduce the general idea
of my solution. As I will discuss in a subsection dedicated to the PCG model below, background
can be generated the same way foreground is some ideas about music integration, like choosing music
according to the difficulty of a level (epic tracks for epic rooms of course), will be discussed at the
very end of the project, when the relevant quantities, naming, and metric are introduced. My focus is
definitely on foreground and entities so far, since both elements constitute the core of each room and
make it playable, or not. Integration of additional elements will be discussed later at relevant times or
in the conclusion as potential further improvements.

4.1 General idea: model and workflow

As stated in the section 2 dedicated to studies dealing with procedural content generation applied to the
generation of levels of video games, I need structure. Structure is even more important in platformers
than in other genres, where level structure and design is critical at both high- and low-levels as it
impacts directly the gameplay experience, as showed in [Sweetser and Johnson, 2004] which conducts
an extensive study on correlations between level design and player engagement. I chose to implement
a model heavily inspired by [Snodgrass and Ontanon, 2013] and [Snodgrass and Ontanén, 2017]: the
representation of a room as an array whose elements are symbols corresponding to specific tiles or
entities makes perfectly sense when considering Celeste, and by essence, Multi-dimensional Markov
Chains are a powerful mathematical tool which takes structure into account as it will be discussed in
the subsection dedicated to the PCG model. But then, another problem soon arises: even though I
can generate a plethora of rooms, connecting them is nothing but easy: indeed, the exits of a room
are not part of the data or metadata of a level; they are given by the general structure of a level
and how the rooms are placed at a high-level. T solved this issue by adopting an approach inspired
from [Kazemi, 2008]: rather than trying hopelessly to recombine rooms in space, I first generate the
high-level layer of a level, its skeleton. The generation therefore comes in two parts:

e | first generate the high-level layer, the skeleton of a level. This object was specifically created
for this project and displays some interesting characteristics: the skeleton of a level consists of a



given number of boxes organized in space such that all boxes are connected to at least one other
box through ”exits” and there is no overlapping at all between any pair of boxes. The skeleton
generation process, input parameters and characteristics will be detailed in the subsection 4.2.2
dedicated to the Celeskeleton module. To sum it up, the first stage of the level generation
pipeline outputs a random, empty level: T have at disposition a set of empty boxes/rooms and
their respective exits well-organized in space, such that there exists a high-level path from the
starting to the ending room, no matter the input parameters chosen.

e At this point, what is left is to fill the skeleton previously generated: for each room composing
the skeleton, I use the Markov chains based model (briefly mentioned above, and detailed in the
subsection 4.2.3) to generate a set of foreground tiles and entities matching the size of the room
to fill. Of course, playability is no longer ensured at a low-level after the filling, but after this
two-step generation the output is a set of rooms, filled with foreground tiles and entities, and
connected in 2D space through exits without any overlap, which is both necessary and sufficient
to be converted into a playable binary file.

Beyond the generation part of the project, I clearly identified and split this project into steps, into
modules, on which I worked separately in order to build a continuous, streamlined, and relatively
tunable workflow. I will share a brief overview of the different steps composing the pipeline before
diving into each module in details. The first step is to extract the information from the game and
create a ”database” with all levels from Celeste as training data to feed the Markov chains based
model. A first module is the Data loader described in subsection 4.2.1. Then, moving towards the
generation; I described the two-part level generation right above. The subsection 4.2.2 is focusing
on the procedural generation of the skeleton object freshly introduced, and on the elaboration of two
Python classes designed to that end: Room and Celeskeleton. The subsection 4.2.3 describes precisely
the model used to generate the data filling the rooms of a level skeleton. The fourth module described
in 4.2.4 is deeply interconnected with the model module, as it deals with the post-processing of every
single generated room, like adding necessary entities to make the level launchable by the game, or
assessing the playability of a generated room in accordance with the exits defined by the skeleton.
Finally, when the generation is final - skeleton created, filled, and each room post-processed - I want to
convert this output data into a single binary file, such that the game can process this freshly generated
data into a level one can play. The room encoder described in subsection 4.2.5 is the last module of
this project, and serves this purpose.

4.2 Modules
4.2.1 Data loader

Thanks to the existing Julia wrapper, Maple [Cruor et al., 2018], T was able to extract the data from
the level files. I used and adapted some parts of this code originally made to encode data into playable
binary files, to decode existing files containing hand-designed levels. I thought it was really interesting
to make it a real customizable module instead of a one-time work, as this allows me to consider
a dynamic database; Celeste is a video game which benefits of a very active modding community
which designs brand new and original hand-crafted levels frequently. At this point, it is important to
understand that, from the game point of view, a level is equivalent to a vector of rooms, and each room
is an object made of several attributes like foreground /background tiles, entities, necessary metadata
like the room size and origin in the 2D grid of the level. Some additional information can be also
extracted, like the music track, the wind force, gravity, number of dashes available, etc.

Given a level file, I designed a function in Julia that decodes and returns for each room the foreground
tiles, the background tiles, and the entities. The tiles are simply represented by 2D arrays of symbols
stored into .csv files and the dictionary of entities is stored into a .json file.

Since there is no overlapping possible between any entity and the foreground, the choice of 2D ar-
rays/matrices is very reasonable for level representation in Celeste. Essentially, the representation of
a room including background is done using 3D matrices for this project (or equivalently a collection
of two matrices of the same size - one for the foreground/entities mix, the other for the background).
After the extraction, a second step is therefore to recombine the foreground and the entities within a
single matrix. I extended an existing dictionary in Maple to map entities from the game to symbols
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Figure 2: A typical Celeste room, is shown on the right when split between foreground, background,
and entities in that order

to represent them in the arrays. An entity is so far represented by its name, its origin, and potentially
its size (amongst other attributes specific to each entity that I will not present here). In the matrix
representation, entities can be 0D - just one tile - when entity size is None, 1D for entities whose size
has only one component, or 2D for the entities having a non-zero size along both axis. Furthermore,
while positions and sizes of the entities are in pixels, Celeste rooms are measured in tiles, which are
simply 8 x 8 pixels squares. An entity ¢ can be represented simply by

(Sia L4, Y04, Wiy h’L)

where S; is the symbol assigned to entity 4, (zo;,Yo;) is its origin and (w;, h;) its width and height.
Let M be the matrix containing the foreground tiles information of a room. For all entities ¢, and for
all (z,y) € {zos, ..., To; +hi} X {Yos- - Yo; +w; }, I simply set Mg, = S;. Since there cannot be any
overlap between any entities and the foreground tiles, I am assured that this step fills at most empty
tiles (symbol 0), and therefore I am able to recombine all the foreground tiles and entities within a
single 2D array.

First of all, I wanted to check whether I could use existing maps as training data or not. Since the
source code of Ahorn is designed to encode data into playable rooms, I wanted to use it to decode
rooms into data. And that is exactly what the Import Data Function (IDF) does. Given a file of a
level, I designed a function that decodes and returns for each room its data: the foreground tiles, the
background tiles, entities, and even extra information like its coordinates in the level, but also music,
wind, gravity, or the number of dashes (you can have up to 2 dashes in some levels). Actually, I even
extract both foreground and entities of a room in a single matrix since tiles and entities do not overlap
as detailed right above, making the use of 2D arrays really convenient for room representation.

This means that I can constitute a database of existing rooms - not only the 700+ rooms from the
game but also any level designed by the community - that can be used for training a PCG model.

4.2.2 Room & Celeskeleton

As mentioned above when describing the general workflow idea, the level generation is a two-step
process, and generating its global structure, its skeleton, is the first important part of it. This skeleton
of a level has to obey a certain set of rules and specifications in order to be considered as a potential



candidate for future valid levels. Decomposing levels in sub-parts is interesting from a diversity per-
spective, but soon a major question arises: how to assemble generated rooms in a whole level such that
the resulting arrangement makes sense from a game design point of view? The Room and Celeskeleton
objects are Python classes I introduced and designed to address this central point.

When encoding a level (id est converting data into a binary file that can be interpreted by Celeste),
the coordinates of each room need to be specified so that the game can correctly place the room in a
2D space. Each room is basically a rectangle that can be described by four different attributes:

Origin: (Zroom, Yroom) indicates the position of the bottom-left corner of a room.

Size: (Wroom, room) indicates the width and height of a room.

Data: a 2D-array of size Wyoom X Rroom containing symbols representing all the tiles and entities
filling the room.

e Exits: a 4-keys dictionary (one per side) indicating the coordinates of the different exits present
in the room.

The first class I designed, the Room class, serves this sole purpose of storing all the information related
to a room object, but I also extended it to enable some post-processing and playability functionalities
discussed in 4.2.4. Overall, this class allows to create, store and modify room objects that will be used
for level generation.

Now concerning the assembling of the rooms: to design a level, I am facing two unavoidable require-
ments.

e First, two rooms are said to be connected if they have juxtaposed exits. That being said, each
room composing a level needs to be connected to at least one room.

e Rooms can never overlap.

Simply put, a level is a set of Room objects meeting the requirements stated above. And that is where
the Celeskeleton object intervenes. The Celeskeleton is a collection of Room objects, augmented
with information about which rooms are the starting and ending room. When I experimented and
created my own levels through code, I made the calculations and hand-crafted the coordinates of each
room so that they would be well assembled and the resulting level would hence be playable. But of
course, I wanted to automatize this process and it definitely is the reasoning behind the creation of
the Celeskeleton class. This approach was deeply inspired by looking at Celeste levels using the debug
mode, as one can see in figures 3 and 4.

Algorithm 1 Celeskeleton generation algorithm

Initialize Celeskeleton object
Set initial room size (from input or random)
Initialize empty Room object and add first room to skeleton
while number of rooms in Celeskeleton < nb_rooms do
Generate new Room
Choose connection side and choose Room to connect with (with probabilities py, p2)
Attempt to connect and place new room
if no overlap then
Add Room to Celeskeleton
end if
: end while
Set start and end rooms
Return the skeleton

e e
LN e

4.2.3 Markov Chains-based model

As mentioned in the section 2, the model I designed for Procedural Content Generation applied to
level generation in Celeste has been inspired from [Snodgrass and Ontanon, 2013]. Since I needed to
build the whole AI framework for Celeste , I wanted the PCG core model to be simple and flexible. I
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Figure 3: Example of a level seen in debug mode
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Figure 4: Example of a Celeskeleton object generated with 20 rooms

think this Markov Chains-based approach that I adapted to Celeste was the best compromise I could
find with respect to these constraints I set. I will present in this part all the details related to the
model designed for Celeste PCG.

Multi-dimensional Markov Chains (MdMC) To completely understand how the procedural
generation works in my work, I will start with a short mathematical parenthesis about Markov Chains
(MC). A MC is a stochastic process that transitions from one state to another within a finite or
countably infinite set of states; for this study, the set of states is the set of possible tiles and entities
in the grid representation of Celeste rooms and is hence finite. The key property of a first-order MC
is that the probability of transitioning to the next state depends only on the current state and not on
the sequence of events that preceded it. Introducing some mathematical formalism, it gives:

Let S = {Sl}fil be a finite set of states, and P be conditional probability distribution such that
P(S¢|S¢—1) represents the probability of transitioning to a state S; given that the previous state was
S;_1. These two elements are what a first-order Markov Chain consists of. The Markov property for
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first-order MC can be translated as:
P(S|Si-1,S5i-2,...,50) = P(5¢S¢-1)

However, higher-order MC are definitely essential to the model I use. Let r be a strictly positive
integer. An MC of order r therefore takes into consideration r previous states:

P(St|5t71> St72> RS} SO) = P(St‘St717 L) Stf’r’)

To generalize the basic concept of Markov Chains to a 2D-space, let R = {Rm-}(i NeEfL o NYx{L,...,M}

be a 2D room of shape (N, M), and § = {Si}?;l be the set of the possible states, accounting for the
T possible types of tiles or entities one can find in Celeste . For any pair of coordinates (i, j), the tile
R; ; is in a given state Sy, where k € {1,...,T}. Simply put, a room is represented by a 2D-array of
given states among all the existing tiles and entities within Celeste.

Learning with MdMC Let’s consider a MdMC representing the probability of a tile in a room
according to the surrounding tiles. This set of surrounding tiles used for learning probabilities will be
called a configuration and can be represented using a 3 x 3 configuration matrix C:

Coo Co1 Co2
C=|Cw Ci1 Ci2
Cyp Con 2

where Cay = 2 is by default representing a tile R, , to learn, and for all other (¢, j) pairsin C, C;; =1
means that the probability of the tile R, , depends on the tile Ry4i—2y+j—2; else Cj; = 0. Let’s
consider an example. The configuration matrix

0 0 O
Coooo11012 = [0 1 1
01 2

considers the tiles on top, on left, and on top-left of the tile considered. Each configuration will be
identified by a unique 9-digits sequence corresponding to the values of its matrix read line-by-line. The
example above represents the 000011012 configuration.

For the sake of clarity, I will introduce the concept of adjacent tiles. For example, I consider the
configuration 001001112 whose matrix is given by:

—_

Coot001112 =

= o O
= O O
DN —

and a example 5 X 5 room given by:

=

1
— = = = =
—ocooco
—oooo
—ggoco
—ggoco

For a given position (z,y) in the room R, the tiles of interest given by Cpp1001112, the adjacent tiles,
are the two tiles above, and the two tiles on the left of R, ,. These adjacent tiles, being read from left
to right, then from top to bottom, constitute a n-gram that will prove useful for practical training of
this MdMC-based model. Therefore, if I look at R45 = D, the adjacent tiles are represented by the
n-gram made of (Ra 5, R3,5, Ra3, Ra4) = 0D0D.

Now for the learning process: let C be a configuration matrix, and R a dataset of rooms R that are
considered for the training. The MdMC model is learned in two steps:
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e The method begins by counting the occurrences of each tile type w.r.t. the adjacent tiles in the
whole training dataset, with adjacent tiles being defined by the configuration matrix C. These
counts are called absolute counts, and are defined for each tile type .S; by

N(Si‘si717 L) Sift)
where t represents the number of 1’s in C.

e Using the absolute counts, transition probabilities are calculated. These probabilities represent
the likelihood of a tile type following a specific arrangement of adjacent tiles, the tiles considered
for this arrangement being once again defined by the chosen configuration C. The transition
probability of a tile type S; is computed as:

N(Si|Si—1,...,Si—t)

P(S|Si_1,...,Si) =
(Sif:9i-1 ) > N(S;ISj-1,- -, Sj—1)

In practice, I coded a function which, for a given configuration and a given training dataset, builds a
dictionary whose keys are all the possible n-grams of adjacent tiles encountered in the training set, and
whose values are also dictionaries, where this time the key/value pairs are given by all the possible tile
types and their associated transition probability computed following the above algorithm. Training
a model is therefore equivalent to building this dictionary of probability transitions, and depends of
course on the choice of both the configuration and the set of rooms considered for the training.

Classification of rooms is at least suggested in order to train such a model. I will also experiment
and try to figure out if a single model training on the whole set of rooms is efficient enough, but
my first intuition is that Celeste presents by essence a great diversity in terms of level design, and
mixing altogether this plethora of well-designed levels would probably result in a sub-optimal pattern
extraction and to a confused level generation. A simple example would be that some levels are meant
to be more vertical than others (one could think of rooms that have exits on their top and bottom
exclusively), and therefore the underlying structures display more verticality as well. When it comes
to the gameplay, it can be a tough task for some rooms that present dynamics that are neither totally
vertical nor horizontal. I could think of creating a third class to label rooms with mixed gameplay. A
simple way to classify rooms is to consider the level to which they belong; as one would except some
continuity within a same level, I believe that training a Markov Chains-based model on separate levels
could enhance the pattern extraction and consequently make it really good at understanding what
composes a good room, at least for every single level. On the other hand, I would definitely assume
that training one model on the whole set of rooms would be counterproductive, as patterns and
gameplay-defining structures might get mixed up, and the probabilities of given entities that appear
on specific levels only would get drowned, leaving the floor to only a couple omnipresent entities like
spikes.

Some extension of this study would be to find some alternative training data splitting, like classifying
the rooms depending on their difficulty. To that end, one could think of using the extensive classification
made for the Randomizer mod introduced earlier. Although it is a subjective classification, it is a good
estimate of how hard a room is to clear and could be a good starting point to split existing rooms into
several training sets.

Room generation Once the model has learned a given MdMC for a pair configuration/training
dataset, meaning that I have built a dictionary of probability transitions (DPT), I create an room
array full of zeros R that I update using an iterative process, starting from the top-left tile Rs
(accounting for the size of the configuration matrix), the following steps are done for every single tile,
from left to right, and then top to bottom:

e I extract the adjacent tiles n-gram
e The corresponding probability distribution in the DPT is
e The next tile is picked randomly among this probability distribution

However, a major issue encountered using this process in [Snodgrass and Ontanon, 2013] was the
handling of unseen states, preventing this method from being used in-game as the PCG model would
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eventually fail. I adapted this process so that the room generation would go through; if the model
ever encounters an unseen state (id est a n-gram that has not been faced during the training step), I
introduced a backtracking possibility: the generation process goes back, and tries generating another
tile until the updated n-gram is known. If all the tile types have been tried unsuccessfully, the process
goes one more step back until one of the two outcomes is reached:

e A combination of tiles is finally found such that the model no longer faces an unseen state, the
generation process resumes normally

e There is no possible combination of tiles avoiding an unseen state and the model reached the
backtracking maximum depth (I set a limit such that room generation does not become indecently
time consuming): I solved the unseen state issue by simply setting a random tile type

One could think that backtracking is therefore useless and that I could simply solve any unseen state
issue through random generation; however, experiences confirmed that this would inevitably lead
to frequent degeneration as random tile generation often leads to some more unseen states, and an
apparently local problem results in a global generation failure. Combination of both random generation
and backtracking allows the model to achieve complete room generation while avoiding the generation
of random diagonals.

(a) with backtracking (b) without backtracking

Figure 5: Comparison of room generation with and without backtracking

4.2.4 Post-processing and playability

After generating rooms for Celeste using a Markov Chain-based method, a crucial step involves post-
processing the generated layouts to ensure that they are not only structurally coherent but also
playable. This post-processing stage focuses on refining the generated rooms by creating accessi-
ble exits and adding mandatory gameplay elements like respawn points, which significantly enhance
the playability rate of the rooms.

Creating Accessible Exits Given that the coordinates of the exits are predetermined during skele-
ton generation, the first post-processing step involves ensuring these exits are unobstructed and func-
tional. This is achieved by clearing an small area around each exit, setting the corresponding tiles to
0 (air/empty space). By doing this, I guarantee that the player can seamlessly transition from one
room to another locally, without encountering any obstacles that would render the exit inaccessible.
Ensuring clear exits is critical for maintaining the flow of the game, as obstructed exits can lead to
frustration and disrupt players experience. However, this is definitely not a guarantee of global playa-
bility, this measure should rather be seen as a safeguard that does not necessarily alter the global
room structure as level design common sense tends to leave the exits rather clear and unobstructed.
Still, since the PCG model has no reason to have any knowledge related to exits structure, it is a
post-processing measure that proves itself quite necessary; otherwise, most of the generated rooms are
simply unclearable just because the exits are obstructed.

Adding Respawn Points To ensure a room is readable by the game, it is mandatory to place
respawn points, represented by the symbol P. These points are strategically placed within each room
near the exits. Beyond their mandatory aspect because of Celeste game desgin, respawn points are
also essential for player progression, as they define locations where the player will respawn after dying,
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reducing the potential for frustration by minimizing the distance the player must travel after a failure
if the player loses at the very end of a room by accident. In addition to respawn points, small
platforms made of dream blocks, represented by the symbol D, are placed below each respawn point.
Dream blocks serve as temporary platforms that allow the player to regain control and plan their next
move after respawning. Dream blocks have also very convenient gameplay properties in Celeste , like
the ability of being dashed through at no cost, making it a structure that is particularly safe and
permitting. The inclusion of these elements ensures that the room is not only playable but also fair
and engaging, as it provides players with a fallback structure and reduces the likelihood of them being
stuck in difficult or unfair scenarios, or worse: stuck in a deathloop.

Ensuring playability To make sure a whole level is playable, I wanted to make sure that all rooms
were independently playable; because of the way I created the Celeskeleton module, rooms are properly
connected by design, and if all rooms are playable, it ensures the whole level is playable too. Playability
details will be extensively discussed in section 5.1. As far as the PCG pipeline is concerned, if a room
is determined as not playable during the generation process, then it is generated again until playability
is finally achieved.

4.2.5 Room encoder

The Room Encoder module serves as the critical counterpart to the data loader module presented in
4.2.1. While the data loader decodes existing rooms into data matrices that are used for training, the
Room Encoder performs the reverse operation: it encodes generated level data into a format that is
interpretable and playable within Celeste . Essentially, this function takes the output from the level
generation process—including every single room generated but also the metadata contained in the
level skeleton mentioned in 4.2.2, necessary for the spatial arrangement of rooms—and converts it into
a binary file compatible with Celeste ’s engine.

The encoding process involves multiple components. First, the room’s primary data, which includes
the layout of foreground tiles, entities, and any interactive elements, is translated into a structured
format. This ensures that the generated room maintains the gameplay mechanics and environmental
interactions expected in Celeste . Additionally, the Room Encoder manages the metadata associated
with each room through the encoding of the level skeleton. This includes the room’s origin within
the level, its dimensions, the placement and functionality of exits, ensuring that rooms are arranged
and connected within the overall level, thus enabling seamless navigation from one room to another.
Moreover, other less critical gameplay parameters like wind conditions, gravity, and music settings
could be integrated here, leaving the door open to a more complete level generation.

The functionality of the Room Encoder has been validated through testing, where rooms and even
entire levels generated via coding were successfully encoded and played in Celeste. This capability
makes the Room Encoder module a central and indispensable component of the project, as it bridges
the gap between abstract data and concrete, playable game content. Without it, the transition from a
procedurally generated level design to an actual gaming experience would not be possible, underscoring
its importance in the conception of an end-to-end workflow.

4.3 From CLI to playable binary files

The entire procedural content generation (PCG) pipeline described in the previous section can be
initiated with a single, parametrizable command line. Here follows a brief summary of the input
parameters that can be modified:

e ——config, -c (str): Configuration matrix used to train the MdAMC model
e —-training-dataset, -td (str): Room dataset used to train the MdAMC model
e --nb-rooms, -nr (int): Number of rooms to generate

e —-proba, -p (float): Probability-ps introduced in algorithm 1-of generating a labyrinth-style
level. O creates a pathway, 1 results in a completely random room order

e —-room-size, -rs (list of two ints): Room dimensions, specified as width and height
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e —-bt-depth, -btd (int): Maximum backtracking depth for room generation
e ——tries-limit, -t1 (int): Maximum number of attempts to generate a playable room

e --reset-skeleton, -r (bool): Whether to reset and regenerate or not the entire skeleton if
room generation fails

This command loads the necessary training dataset and builds the corresponding DPT based on the
specified configuration. The DPT helps in structuring the generation process by defining how different
tiles and entities transition within the game environment.

Once the DPT is established, the pipeline generates a level skeleton using the specified number of rooms
and probability ps, which outlines the layout and connections between rooms. The MdMC model then
fills each room with appropriate gameplay elements, using the specified backtracking depth.

For each room generated, post-processing steps ensure that each room is playable, re-generating any
rooms that fail to meet playability criteria (discussed in section 5.1). Sometimes, because of the
randomness introduced in the Celeskeleton module, some room arrangements considerably hurts the
likelihood of generating playable rooms; the last two arguments are actually introduced to make sure
the level generation process avoids such loops and eventually even reset a level skeleton which seems
to be problematic.

Finally, the Room Encoder module converts the entire level into a binary file that is ready to be played
in Celeste, making the entire process from command input to a playable level both streamlined and
efficient.

5 Evaluation of generated rooms

Generating rooms and levels is, of course, the main objective of this project, and that is what I achieved
through the pipeline I built and described in the previous section. However, to create a truly effective
PCG system, especially for a game like Celeste, having robust evaluation tools is essential. Even simple
metrics or scores enable valuable feedback that can be used to fine-tune the various control parameters
throughout the generation process. Evaluation is not just about model optimization; it’s a crucial
step for refining the output product and gaining a deeper understanding of how different parameters
influence the results.

At this stage of the project, I can generate levels from a simple command line as presented in the
subsection 4.3, but I only have a rough idea of how each control parameter affects the final output,
let alone how to set them to create great, playable rooms. Thinking even ahead of this project, I
built this pipeline leaving enough room for flexibility, especially when it comes to room generation. I
believe that the PCG model I designed for this thesis is definitely far from being optimal, and I am
convinced that other hybrid approaches mentioned in 2, while being more complicated to implement
and adapt to Celeste, would produced more elaborated and coherent levels. My choice, as explained
earlier, has definitely been highly motivated by the implementation subjective simplicity-I still had to
write around 2000 lines of code for this project-and this part also aims to finding the limitations of
such a ”simple” PCG model.

But first things first: what makes a room ’great’? And what does it even really mean for a room to
be 'playable’? To address these questions, I'm introducing three key metrics that I want to evaluate
for every room generated: playability, interestingness, and difficulty. These metrics will guide the
fine-tuning process and help determining to what extent generated rooms are not only functional but
also engaging and appropriately challenging for players. In the following subsections, I will describe
more precisely each one of these metrics and properly define them using some mathematical formalism,
why and how I think they matter for the player experience, and I will present experiments set up to
evaluate the current PCG model performance with respect to these three key aspects.
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5.1 Playability
5.1.1 Definition & Justification

When introducing the research question in section 3, I emphasized the importance of playability in
my project; many papers dealing with PCG applied to level generation in platformers present only a
low playability rate in the generated levels - it has nothing to do with the quality of their generators,
the approach is just completely different. As my project was initially thought of as a mod usable by
the Celeste community, I initially wanted to achieve a decent playability rate to keep the generating
time rather low. I still stand by this idea and the whole architecture of my generator has been heavily
influenced because of this choice.

In the context of procedural content generation (PCG) for 2D platformers such as Celeste, assessing
the playability of generated rooms is crucial for ensuring that they are navigable and engaging. The
playability metric focuses on evaluating whether a room’s exits are connected by a viable path, which
is fundamental to the gameplay experience. In my analysis, I consider rooms as 2D arrays with exactly
two exit points. My goal is to determine whether a path exists between these exits, adhering to the
physics and movement constraints of the game.

To achieve this, I use an adapted A* pathfinding algorithm, tailored specifically for platformer games.
Standard A* algorithms, while efficient for general pathfinding tasks, do not account for the unique
physics dynamics of games like Celeste , where gravity and player movement significantly influence
gameplay. Traditional A* may find paths that are technically valid but impractical due to the game’s
specific physics constraints, such as gravity affecting jump trajectories and platform interactions as
shown in figure 6b.

(a) Example of room used for A* refinement (b) Heatmap of paths found, base A* - 50 runs

Figure 6: Base version of A* - no directional weighting and no custom heuristic

While being functional, this algorithm is definitely not suitable for playability assessment as the paths
found lacks of realism. My custom A* implementation addresses these challenges by incorporating
game-specific adaptations. Firstly, I introduced randomness in neighbor selection by shuffling potential
next steps, which encourages diverse pathfinding outcomes and mimics the exploratory nature of
gameplay. Additionally, I assign varying weights to movement directions to reflect the game’s gravity.
For instance, movements that go against gravity are penalized more heavily, making paths that align
with the natural gameplay mechanics more favorable. These weights were then added to the heuristic,
making the path generation way more diverse as one can see in figure 7. However, this is not completely
satisfying as the variance is now too high and some paths are definitely not really aligned with the
Celeste gameplay.

To constraint the paths to be more aligned with the gameplay, I added to the directional weighting
a penalty score to the heuristic being the distance to the closest non-lethal entity (NLE), id est the
closest tile one player could reach. Indeed, in a platformer, the player needs to go from a platform
to another, sometimes reaching some in-between entities to get some help. A gameplay-accurate path
could not reasonably be far away from all NLEs available in a room. The results of this final adaptation
is shown in figure 8, and is very satisfying, as this adapted version of A* presents some variance in the
paths found, while looking realistic in terms of feasibility from a player point of view.

This adaptation within the heuristics of A* aims to generate more realistic paths that are feasible
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Figure 7: Heatmap of paths found, A* with weighted directions - 50 runs

Figure 8: Heatmap of paths found, A* with weighted directions and adapted heuristic - 50 runs

within the game’s physics constraints, but this approach can also become quite consuming both in
terms of memory and time and hence requires to find some balance in the weights and the heuristic that
are ultimately chosen, as suggested by the work from [Iskandar et al., 2020] on reviewing pathfinding
algorithms for platformers. Ultimately, this project was aimed to be a real-time module for Celeste,
so I want to keep the computing time as reasonable as possible. Figure 9 shows that, modifications in
the pathfinding algorithm lead to exponential gaps in computing time, and this effect is even amplified
with the size of the investigated room.

Iran all two versions of A* presented above, base-A* vs the final tailored-A* (let me call it Celeste-A*
to avoid any confusion), on the same set of 150 rooms, with room sizes being 40 x 23, 80 x 46, and
120 x 69 (50 rooms for each size). Another conclusion came from this experiment. While each iteration
of Celeste-A* is indeed more computationally demanding, I noticed that this version of the pathfinding
algorithm required less iterations to actually find a path because of the more elaborated heuristic. It
has little impact on small rooms, but as I experimented for larger rooms, I noticed that Celeste-A*
actually even achieved better runtimes as the base A* was taking so many iterations. In fact, base
A* often reaches the iterations limit (set by default to the area of the room) to solve the pathfinding
problem in large, complex rooms filled with obstacles. In figure 9, the third experiment with 120 x 69
rooms displays this issue, with room 23 being the perfect example of what happens there. While it
occurs rarely for smaller rooms, third plot shows that base A* is less efficient than Celeste-A* for
around half of the rooms, I showed the explicit values for room 23 in 1. If high generating times for
both algorithms show that the room is most likely unplayable, some rooms with seemingly complex
gameplay show that Celeste-A* can find a room when base A* fails to do so. However, for rooms with
simpler geometry, A* still works fine, if I let the path realism component on the side.

Beyond the need of gameplay-accurate paths for better room evaluation, it somewhat proves that the
PCG generator does a decent job in capturing the global structure of a room, and manages to produce
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Algorithm 2 A* Pathfinding Algorithm adapted to Celeste

1: Initialize start and end nodes

2: Create open_list (priority queue) and closed_list
3: Add start node to open_list

4: Define movement options and costs

5: while open_list is not empty do

6: Remove node with lowest f from open_list (current_node)
7:  Add current_node to closed list

8:  if current_node is the end node then

9: Return path from start to end
10:  end if
11:  for each adjacent node do
12: if node is within bounds then
13: Calculate costs and heuristic for this node
14: if node is not in closed_list or has a better path then
15: Add node to open_list
16: end if
17: end if
18:  end for
19:  if iteration limit exceeded then
20: Return None (no path is found)
21:  end if

22: end while
23: Return None (no path is found)

Room | Algorithm | avg. nb_iter | avg. time (s)
23 A* 30420 329.4
23 Celeste-A* 7384 15.3

Table 1: Comparison of base A* and Celeste-A* performances on a complex room - average on 50 runs
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Comparison of A* implementations - 50 paths per room
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Figure 9: Running time of pathfinding algorithms and effect of the room size

coherent rooms from a player perspective, as suggesting Celeste gameplay elements to the heuristic
enhances pathfinding performances.

The pathfinding algorithm’s output is not uniquely about finding a path but ensuring that it aligns
with gameplay realism. Of course, not finding a path is definitely a good indicator of the unplayable
nature of a room, but finding a path does not ensure playability. However, paths that respect the
game’s gravity and movement constraints are more indicative of a playable room. Furthermore, such
paths can be used to compute metrics like interestingness and difficulty, as they are quite representative
of room areas in which a player is expected to go through. To further evaluate playability, I introduce
a path evaluation metric based on the proximity of the path to Non-Lethal Entities (NLEs). This
metric is defined as:

1 N
s = — Distance;
path Z 7
N i=1

where Distance; represents the distance from each point 7 on the path to the nearest NLE, and N is
the total path length. This metric quantifies how well-supported a path is by nearby NLEs, which are
essential for player progress in the game. A lower score indicates that the path is surrounded by NLEs,
enhancing playability, while a higher score suggests a path that is less supported and potentially less
playable.

As mentioned previously, I also used paths to evaluate other metrics than simply playability. To that
end, I defined an area of interest which simply consists in all the tiles from path, enhanced with the
n tiles below and above each tile of the path. It is an estimate of the area that a player will most
likely visit to cross the room. Therefore, this zone, noted AOI,, can be used as a mask to extract
lethal /non-lethal entities, safe spots, or even holes that will be used in the next sections for evaluation
purposes.

(a) Example of room used for reference (b) Same room with path and AOI displayed

Figure 10: Example of an AOI,, with n =2

In summary, this playability metric combines advanced pathfinding techniques with game-specific
adaptations to assess room connectivity and environmental support. By integrating these methods
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and evaluating paths with respect to NLE proximity, I provide a robust framework for ensuring that
generated rooms are not only navigable but also align with the gameplay experience of Celeste.

5.1.2 Maximizing the playability

When evaluating the playability of procedurally generated rooms in Celeste, it’s essential to identify
the parameters that significantly influence this aspect. Understanding which factors most impact
playability will enable us to refine the generation process, ensuring that subsequent rooms not only
meet aesthetic and design standards but are also functional and engaging for players. I am looking for
parameters that are satisfying enough to generate baseline rooms for interestingness and complexity
evaluation.

To achieve this, I will assess playability across several key parameters:
e Configuration: the matrix used to train the MdAMC model

e Training Set: the source data from which the Markov Chain model learns, as the diversity and
underlying structures in this data are likely to affect the generated rooms

Backtracking Depth: to find a balance between stable generation and exploration of unseen states

Room Size: from what I observed in figure 9, size might definitely affect the navigability of a
player as more room means potentially more structures and difficulties to overcome

Configuration Among all possible configurations using a 3 x 3 matrix, they have not really been
evaluated from a playability point of view in [Snodgrass and Ontanon, 2013]. The idea here was to
verify if my intuition about the configuration 0000010112 was correct: configurations not taking all
3 tiles around the tiles of interest will eventually lack of coherence when it comes to generation.
Let’s think about 000000012, this configuration only considers one tile on the left, meaning that
there cannot be any coherence between generated lines, and I would expect generated rooms to be
chaotic, hence not playable. Then, I would expect the configurations considering too many tiles to
be too restrictive, and mainly generating a lot of unseen states everywhere, resulting in an almost
completely random generation, leaving only little room for playable rooms. I evaluated the playability
here generating 100 rooms of two different sizes. Given the non-deterministic nature of Celeste-A* 1
ran the pathfinding algorithm 10 times per room, and considered a room to be playable as long as at
least one of these occurrences succeeded in finding a path. Determining a real playability threshold
will be done in a further section. As shown in figure 11, the only outstanding configuration is indeed
0000010112, validating our intuition. The only configuration I consider for the rest of the experiments
is 0000010112. Looking at the generated rooms, I even validate the hypothesis one step further: most
of the generated rooms for all other configurations are full of symbols randomly distributed.

Playability over different training configuration matrices - 50 rooms, 10 paths
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Figure 11: Playable rooms ratio achieved by different configurations over two generated sets of 50
rooms - 10 Celeste-A* iterations
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Training Set As mentioned earlier in 4.2.3, I grouped data from Celeste by levels. All rooms from
the first level are in the training set 1, and so on, for all 9 levels of Celeste, representing almost 800
rooms in the global training set. An assumption I had when mentioning this grouping was that, I
think the model would most likely benefit from learning from a subset of the dataset. Indeed, as a
player, I can see the continuity in the rooms of a same level. They are not identical, but present
similar structure and elements of gameplay. While some levels could be interesting to combine, I think
training the MdMC model on the whole dataset would be sub-optimal for two reasons:

e Some entities, like dream blocks, appear only in a fraction of Celeste levels. Training on all
available levels would inevitably lead to a dilution problem; probability of rare entities would be
so little that such elements would almost never be generated, let alone in a playable room. This
reduces considerably the diversity of generated rooms. I would rather train several models, and
use a different model for each room, to keep this diversity in the generation process.

e Some levels have completely different designs. From the pathway-like levels that could remind
one of basic platformers like Super Mario Bros., to the levels that have a very vertical progression
(cf. figure 1), some levels even present a labyrinth-like design, mixing vertical and horizontal
gameplay. From a player perspective, the structural elements composing such levels are very
different and I believe mixing them altogether would bring some confusion in the pattern learning.

To experiment with training sets, I trained a model for each selected set, then generated 50 rooms per
model. For each room, I ran Celeste-A* exactly 10 times and just like for configuration, considered a
room as playable if at least one path was found among the 10 iterations. Room size chosen was 40 x 23,
because it is the most common format in the game, as it is the largest size displayable at once.

For the training sets, I considered each individual level of course, but also all 2, 3, and 4-levels
combinations; for the sake of understanding the experiment results, a training set made of rooms from
levels 2, 3, and 8 will be named 238, so will the model trained using this dataset. Finally, I also trained
a model on the global training set for the comparison. That makes in total 256 training sets considered,
and as many models trained-and 128000 runs of Celeste-A* for this experiment alone. Each one of
the 256 trained models has been evaluated on 50 rooms, 10 paths; I therefore computed 256 resulting
playable rooms ratios. As representing all results in a plot or a table would be highly unreadable, T
decided to group the results by levels, as seen below in figure 12.

Playable rooms ratio per dataset index - averaged on all possible combinations - 40x23 rooms, horizontal exits
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Figure 12: Impact of levels as training datasets in the playable rooms ratio - 10 Celeste-A* iterations
- playability of model trained on all datasets: 0.31

Blue dots represent the performance achieved by training the PCG model on individual levels, the
dataset index being the level number. For the other colors, some clarifications are necessary: let
n € {2,3,4} be the number of datasets considered for the grouping. For each level k € {1,...,9},
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I computed the average of the playable rooms ratios achieved by all models trained on n-datasets in
which k appears. For example, the level 2 appears in 12, 23, 24, 25, 26, 27, 28, and 29; so the green
dot for level 2 is computed as the average playability of these eight models. Therefore, what you can

see in figure 12 is the average contribution of every single level when augmented with other datasets.
The main takeaways of this experiment are the following:

Overall, it seems than models trained on individual models perform well in terms of playability. There
are clear exceptions, but they are definitely expected:

e Level 4 and level 7 have a lot of moving en-
tities that have been ignored since they are
not easily compatible with the grid repre-
sentation of rooms. But more importantly,
there is a lot of vertical gameplay (exits are
mostly on top/bottom instead of left/right).
The learned structures are not well-adapted
to horizontal gameplay, which explains the
poor playability.

e Finally, level 6 features very complicated
rooms with many spikes, requiring the player
to adopt very precise gameplay. These rooms
often contain floating spikes (unlike other lev-

Figure 13: Celeste spiky sixth level els where spikes are attached to a wall), bias-

ing the model into placing walls and spikes
everywhere, which likely lowers playability.

These single levels exceptions aside, it seems that training a model on the whole 9-levels set indeed
lowers the achieved playability: with a value which seems to converge to 0.31 (cf. figure 14), it seems
that models trained on smaller, coherent subsets are doing better. Models 1 and 2 achieve great results
with a playability near 0.5, and model 3 and 5 even display playability above 0.55. Of course, it seems
that combining these training sets harms their playability ratio, as results achieved with more datasets
are a bit lower; however, it also accounts for ”undesirable” combinations, like model 57, achieving a
miserable playability rate of 0.28 due to the antinomic design of the two levels (and model 7 alone
achieves merely 0.14), and, while playability seems to be affected negatively, combining training sets
bring some diversity in generated tiles; e.g. model 25 enables dream blocks (specific to level 2) to be
associated with red boosters (specific to level 5), bringing some more diversity and potentially exclusive

gameplay associations in the generated rooms. Sacrificing a little playability for the sake of diversity
and originality seems to me a fair price to pay.

Playability achieved by model 123456789 - 40x23 rooms, 20 paths
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Figure 14: Convergence of the playability ratio for the model trained on all nine levels data

One more thing I had a look at is the path evaluation defined above as the average distance of a path
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to the closest safe tile, the closest NLE. The results are shown in figure 15; please note that I made
the same grouping than the one explained for the figure 12.

Path evaluation per dataset index - averaged on all possible combinations - 40x23 rooms, horizontal exits
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Figure 15: Impact of levels as training datasets in the average path evaluation - 50 rooms, 10 Celeste-
A* iterations; average on all found paths

From a data point of view, the training set 2 looks very promising: the playability ratio was satisfying,
and now the average path score is by far one of the lowest, meaning that in average all rooms generated
using this model are well supported by NLE, providing safe spaces for the player to progress through
such rooms, this is the training set I chose for the backtracking and room size experiments. Model 2
produces simple, yet coherent rooms, and is perfect as a baseline model to experiment the impact of
other parameters.

Backtracking depth & room size When investigating the impact of backtracking on room gen-
eration, it did not appear that the value really mattered as one can see in figure 16a. For rooms that
are bigger, the absence of backtracking starts to have a given weight: degeneration like the one shown
in figure 5 happens more frequently, and if it happens in one of the first rows in the generation pro-
cess, chances are this randomly generated diagonal prevents any path from existing. This experiment
confirms that the use of backtracking is necessary to generate coherent and playable rooms, but there
is no clear sign of a trend giving an optimal value. I would keep it to 2, to still allow for some more
variety in the generation.

However, what really strikes me in figure 16a is the fact that playability was consistently higher for
bigger rooms. I hence decided to generate a few rooms of different sizes. As displayed in figure
16b, playability seems to increase with room size until a certain point. As a room gets bigger, it is
definitely more complicated to prevent the existence of paths, the ways and means of completing a room
are exponentially increasing. But remember figure 9, when Celeste-A* runtime seems to dramatically
increase. This loss of playability does not come from the room size itself, but rather from the limitations
of the Celeste-A* algorithm. A decent fraction of the 120 x 69 rooms that were marked as unplayable
would have been, in fact, marked as playable had I given enough budget to the pathfinding algorithm
to find a path.

Mathematically, the bigger a room, the less plausible it is that exits are truly not connected. Indeed,
the probabilities learned by a model make very unlikely that it creates a structure splitting the room
in two, making the exits completely disconnected, because this is not happening in the training set.
More specifically, it can happen because of the randomness underlying in such a generative stochastic
process, but it is rare. And the bigger the room the model tries to fill, the bigger this "unlucky”
splitting structure needs to be, and therefore the less it will happen.
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Impact of backtracking depth - 50 rooms, 10 paths Impact of room size - 200 rooms, 10 paths
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Figure 16: Impact of backtracking depth and room size on playability

5.1.3 Discussion about playability

It seems that I found a setup which produces results that are in phase with the announced objectives of
this part. Training my PCG model using the configuration 000011012 and training set 2, if I consider
generating 80 x 46 rooms using a backtracking depth of 2, my PCG generator achieves a playability
ratio of 0.76, and still 0.64 for 40 x 23 rooms, which looks great in theory.

However, I want to be precise here. This result looks fabulous, 76% is great! Still, it is a little
misleading because of the very definition of playability I adopted for the experiments. For such rooms,
the number I computed is an upper bound of the true playability. Indeed, I tried to adapt the behaviour
of Celeste-A* using a hand-crafted heuristic and directional weighting to make paths more accurate; but
when the rooms are truly unfeasible from a gameplay point of view while the exits are theoretically not
disconnected, paths will be found anyways. For very large rooms, it is even worse; since the limitations
did come from the budget allocated to the pathfinding algorithm, it is impossible to affirm that the
playability then computed is an upper bound too. Supposing I could spend all the time and memory
I want, then it would eventually find a path for very large rooms and the playability thus computed
would be an upper bound for any room generated.

How to determine the true playability? This question is very hard to answer without a proper
Al-agent able to test-play generated rooms. Path evaluation is a first good idea, but is not enough
in its actually form. This path scoring I computed for figure 15 only takes into account the average
distance the path to the closest NLEs. I tried to find a relevant threshold above which a path is not
considered as viable anymore through manual testing (id est playing the rooms myself), but in practice
this score is not characterizing enough to find a decent rule of thumb. The reason for this is, a path
can have very close NLEs locally, and then a section where literally nothing can help the player. And
while the average distance to the closest NLEs can be rather small because of local structures, a single
section where there is no close support at all and the whole path viability can be endangered.

One of my last progresses in this thesis was to add another score to the path evaluation. In addition
to the mean, I started considering the variance of the distance of a path to the NLEs. The underlying
idea is that the variance gives some indication concerning the distribution of this distance path/NLEs.
A small variance coupled to a reasonable average distance is almost the guarantee of having a safe path
as it is well and consistently supported. And, while the average distance never gets too large because
of the limited room sizes I considered, when the variance is abnormally large, it is often a good signal
that there is a zone where the path is definitely not supported, which should not happen because of
the way Celeste-A* is implemented, unless, there is effectively nothing to support such a path.

While extreme variance cases seem trivial to assess, this really gets complicated for paths whose
variance are near the median; and what about edge cases, like a floor full of spikes? Of course it is
unplayable, however the path evaluation metrics would be pretty good. And in the context of such a
project where one of the base ideas was to generate levels for real players, I would not mind so much
dropping a false negative, I classify a room as unplayable when it is, in fact, playable. However, a false
positive would be an absolute disaster. At the moment, the rooms which display a variance above
twice the median are usually getting very complicated to clear and a first rule of thumb would be to

25



(c) mean: 3.0 / var: 5.25 (d) Path is not consistently supported

Figure 17: Example of extreme variance paths found during the training of single level models - median
mean: 2.00 / median var: 1.65

exclude them. However, this approach does not put an emphasis on the precision but rather on the
recall, which is not really what is suited here.

It is still a decent result to be able to define these upper bounds, and I would definitely like to extend
this part of the work through bringing some more advanced AI/ML techniques, and to develop and
train a classifier aiming to assess rooms’ playability, with a special dedication for precision, as ideally
I would not let any false positive go through. Some deep learning approaches could prove interesting
here, and way more realistic than developing an Al-agent for Celeste which is performing well-enough
to be assigned to the room playability characterisation. The latter approach would definitely be a good
way not to let any false positive go through, but would have to come a long way before completing
interesting and challenging rooms. That is definitely a project of its own.

5.2 Interestingness
5.2.1 Definition & Justification

In the context of procedural content generation for 2D platformers like Celeste, the interestingness
metric serves as a critical measure for evaluating the quality of generated levels. This metric is designed
to quantify the level of engagement and variety within a room, reflecting how likely the room is to
captivate and challenge players. At its core, the interestingness metric considers several key factors:
the density of Non-Lethal Entities (NLEs) and the diversity of these entities.

I define the interestingness I of a level as:
I = wi X dNLE,global + W2 X ANLE local + W3 X Sdiversity

where:

® dNLE global Tepresents the global NLE density, calculated as the ratio of the total number of
NLEs Nyytq to the room total area A:

d _ Ntotal
NLE, global — A
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® dNLE locai Tepresents the local NLE density, calculated as the ratio of the number of NLEs in
the AOI = AOI, (defined in section 5.1.1) Naor NLE, to the area of interest AOI:

Naor
dNLE,local = AOT

® Sgiversity 1S the diversity score of NLEs, which can be computed using Shannon entropy, with p;
being the proportion of the NLE ¢ in a given room:

Sdiversity — — sz . log(pl)
%

and wi, wo, and ws are tunable weights.

The global NLE density is a foundational component, assessing the overall concentration of interactive
elements throughout the room. A high global density suggests that the room is rich in potential
interactions, encouraging exploration and offering multiple gameplay opportunities. Complementing
this is the local NLE density, which focuses on areas where the player is most likely to spend time.
Prioritizing local density ensures that key gameplay zones are populated with engaging elements,
directly influencing the player’s experience.

To further enhance the metric, I introduce a diversity score that measures the variety of NLE types
present in the room. Diversity is crucial in maintaining player interest, as it prevents monotony
and ensures that the gameplay feels dynamic and varied. These combined components make the
interestingness metric a comprehensive tool for assessing room quality, guiding the PCG system towards
generating rooms that are not only playable but also engaging and enjoyable.

This approach to evaluating interestingness aligns with previous research in PCG for video games,
where the balance between content richness and player engagement is emphasized. For instance,
[Shaker et al., 2010] explored similar metrics in the context of Super Mario Bros., assessing among
other criteria the influence of content variety and placement on player satisfaction. Additionally,
[Togelius et al., 2011] highlighted the importance of diversity in PCG systems, noting that varied con-
tent is essential for sustaining long-term player interest. By grounding this metric in these principles, T
ensure that the evaluation framework not only reflects established best practices but also adapts them
to the specific challenges and opportunities presented by Celeste.

5.2.2 Experiments

To begin with, if it is rather clear that dyrE.10cat < ANLE,globat < 1, it is maybe less easy to visualise
the diversity score through Shannon’s entropy. It is not the first time it is used in a context of diversity
evaluation, as a study from [Masisi et al., 2008] uses entropy as an indicator of structural diversity. I
wanted to have an overview and comparison between this entropy measures across different models.
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Figure 18: A peak into Shannon entropy to measure entity diversity - 200 rooms per model

As expected, while having more potential tiles in the training set, the global model has such little
probabilities for these special tiles to appear that there is definitely less diversity than in model 2,
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where less tiles are available but with a higher-one could even say realistic-probability distribution,
ensuring more diversity in the output rooms. It also seems that bigger rooms mean more diversity
through more opportunity for random generation and, once a rare tile happens, especially for tiles like
dream blocks in model 2, other occurrences of the same tiles are way more likely to appear.

Technically, Shannon entropy is not limited. However, it is well known that situations of equiprobability
actually maximize the entropy, and even if I considered having up to 100 entities uniformly distributed
in a room, the entropy would be:

L g > L 108100 = 100 x -2 =2
Sdiversity — — “hn 108 —— = -~ 10 = TAn

diversity 700 %100 ~ 4100 100
This could be normalized by dividing by the maximum entropy achievable given the number of entities
possible, but let’s say it is included in the weight ws; moreover, I is a score which is not necessarily

normalized on [0, 1].

I chose wy = we = w3z = 1 and ran an experiment to compare the interestingness of model 2 and
global model. Technically, I am expecting to see more diversity in model 2, as well as a better overall
capture of underlying structures in Celeste . I generated 200 rooms for each model and then computed
the mean interestingness of each room over 5 paths-from 1 to 5, depending on how many pathfinding
runs have succeeded. Figure 19 delivers again with our expectations; model 2 seems to produce overall
more interesting rooms than the global model.

Interestingness score computed over all playable rooms - 200 rooms
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Figure 19: Comparison of the interestingness score between model 2 and global model - 200 rooms, 5
paths

I asked a few players to play 4 rooms that were at the extremes in terms of the interestingness score, two
per model, and asked them to give a grade from 1 to 10 to the room interestingness: their engagement
with the room, whether they found it fun or not. The idea is to see if players’ opinion align well on
the score definition.

At first glance, I was not very satisfied, as a player, of the scores for the model 2 rooms, had I been
asked which score was paired to which room, I would have swapped both. But room in figure 20b
seems to be the most achieved after all; gameplay is clear but allows for some freedom, nice diversity
in the tiles; while room 20a appears almost unfinished, like a work in progress, with only a few tile
types. On the opposite, the scores seemed totally justified for rooms 20c and 20d, the diversity both
in the structures and in the apparent gameplay have been taken in consideration.

5.2.3 Results & Discussion

A panel of 12 players played and evaluated these rooms. From experts who spent thousands of hours
and created their own levels, to absolute beginners, I had a nice diversity within the profiles.

I grouped together the intermediate and expert players in the advanced group, as their evaluation were
similar. 8 players belong to this group, while the 4 others never played Celeste before.

28



,,,,,
,,,,,

(b) Model 2, I =1.08

,,,,,,,,,,,

(c) Model global, I = 0.33 (d) Model global, I = 0.81

Figure 20: Four rooms tested and evaluated by players; two rooms per model, one among top scores,
one among worst scores

Count | Grade room a Grade room b  Grade room ¢ Grade room d
Advanced players | 8 6.75 3.25 5.38 5.25
Beginner players | 4 4.25 7.75 2.25 7.50
All players 12 5.92 4.75 4.33 6.00

If T look at the results, there is one surprise to me: the fact that the expert group gave a similar note
for room 20c and room 20d. While room 20c was basically unbeatable for the beginners group as it
requires some advanced mechanic (explaining therefore the evaluation from their group), I was indeed
expecting the advanced group to find it more interesting from a gameplay point of view. The biggest
issue with this survey concerning experienced players is that since the level is in a brute format-no
music, no background-they had a hard time focus on anything else than the gameplay. I acknowledge
that at first glance I shared the advanced group’s opinion about rooms 20a and 20b, but if I look at it
from the beginners point of view, it seems this group is quite aligned with the interestingness definition
I came with for this study.

I would have two points that are to me worth discussing; first, even though the beginners group is
definitely too small to be statistically relevant (so is the advanced group), I believe that the observed
trend is no coincidence: the metric I came with only accounts for NLE density and diversity within
the tiles generated in a room. These are only very high-level consideration, and this does not really
account for more advanced elements of gameplay like advanced mechanics, precision of the trajectory,
and variety in the movements and actions. It seems quite realistic to me that a beginner would have this
high-level vision on a video game he never played before, while an experimented player has a different
approach when it comes to level design. It needs to be interesting, through originality, novelty, and
innovation. Finally, I would say that a next step is to gather more testers, and generate rooms of
distributed interestingness (not only top and bottom) and see if that metric is robust to a beginner
audience, and coming with a refined version of the metric targeted at an advanced public. This way, it
would enable the PCG model to tailor level generation to the target audience, adding one more layer
before even mentioning difficulty.
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5.3 Difficulty
5.3.1 Definition & Justification

The difficulty metric is another critical component in evaluating the effectiveness of a PCG system
for generating levels in Celeste. Difficulty in this context is not merely a measure of challenge but a
multifaceted assessment of how the generated rooms test the player’s skills, manage risk, and ultimately
contribute to the overall game experience. This metric considers various factors that contribute to the
challenge posed by a room, including the presence of hazards such as holes and lethal entities, the
scarcity of NLEs, as well as the spatial distribution of lethal entities.

I define the difficulty D of a level as:
D =2z x Hf + 22 X dLE,locul + 23 X Sscarcity

where:

e [ represents the hole frequency, calculated as the ratio of the number of holes H to the path
length L:

Hy=—

=T

® diE jocal Tepresents the local LE density, calculated as the ratio of the number of LEs in the AOI
defined in section 5.1.1 Naor, g to the area of interest AOI:

d _ Naor,Le
LE,local — Tm

® S.carcity measures the scarcity of NLEs, which can be computed as the inverse of the local NLE
density:
1

Sscarcity = ANLE toeal
Jloca

and 21, 29, and z3 are tunable weights.

A significant factor in the difficulty metric is the frequency and placement of holes—areas that cause the
player to fall to their death, often necessitating a room restart. The presence of lethal entities, which
confronts direct threats to the player, further contributes to the challenge, as navigating around or
through these hazards requires precise timing and skill. Additionally, the scarcity of NLEs is a critical
consideration; rooms with fewer safe zones or movement aids inherently demand greater precision and
increase the risk of failure, consequently elevating the room’s difficulty. By comprehensively evaluating
these factors, the difficulty metric provides a nuanced understanding of the challenges posed by the
generated levels, enabling the PCG system to fine-tune its algorithms to produce rooms that are
appropriately challenging but not unfairly punishing.

Additionally, considering dynamic hazards, such as moving platforms or timed obstacles, further height-
ens the difficulty by introducing elements of unpredictability and requiring the player to adapt quickly,
and could be also considered to enhance this metric; Celeste is full of dynamic entities, and even
though I did not include such entities in the training because of representation incompatibilities, this
is one more potential improvement to explore further. One could even think of considering adding the
number or required inputs or the gameplay complexity, had I an Al-agent able to play Celeste.

The importance of difficulty metrics in PCG has been widely recognized in the literature. The work
of [Sorenson and Pasquier, 2010] on dynamic difficulty adjustment in game AI underscores the role
of difficulty in maintaining player engagement and satisfaction. The concept of adaptive difficulty is
also becoming more and more central in recent video games, where the system adjusts the challenge
based on player performance, highlighting the need for accurate difficulty assessment if one wants to
integrate relevant adaptive difficulty within a PCG model. By integrating these insights, the difficulty
metric is designed not only to measure the challenge level but also to ensure that it aligns with the
intended player experience in Celeste.
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5.3.2 Experiments

The current design of the difficulty metric seemed to be incompatible with the playability requirements;
there was only a limit of difficulty achievable using this metric, and the results were very inconsistent.
It was not really possible to run the same experiment than the one designed for playability. I ran
again an experiment generating 200 rooms, for each one of team I computed each component of the
difficulty score D, as well as the path metrics, like 5,4, and path variance. Due to the very unstable
nature of the scarcity, the difficulty score explodes alongside the scarcity, which I tried to investigate
in 21. However, a very high scarcity means a very low local NLE density, hence a path which is not
supported at all. I displayed the scarcity over the rooms generated from model 2 and model global
to investigate the behaviour of this measurement. Moreover, I tried to look into potential correlations
between difficulty and path characteristics in figure 22.

5.3.3 Results & Discussion
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Figure 21: Scarcity score investigation

One can see that the scarcity values really explode for some room from the global model, while it
seems more stable for model 2. As mentioned previously, a high scarcity is a marker of very low local
NLE density, and by extension, a decently high spq:p. I looked into most of these rooms manually, and
they were simply unplayable. Maybe scarcity, among other metrics, could be of help to characterise
better true playability. At the end of the day, such rooms should not even be considered for the
difficulty /interestingness evaluation, but it requires again a precise playability assessment algorithm.

Correlation between path evaluation and difficulty
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Figure 22: Correlation investigation between difficulty and spq¢r - 200 rooms, 5 paths
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Finally, I discovered that with the current difficulty metric, difficulty and spq:, are moderately pos-
itively correlated, and that, to me, is a problem of definition/conception of the difficulty metric. I
mentioned it earlier for interestingness, but I think it makes even more sense to consider integrating
advanced mechanics and precise gameplay within this concept, as those two elements are truly the
foundations for a player progression framework. I think that it might be beneficial to further pursue
this study by classifying training rooms not only by levels, but also by difficulty. Therefore, I might be
able to train models able to extract patterns related to difficulty, instead of the structural continuity
that I was looking for by classifying rooms by levels.

6 Conclusions & Discussion

This thesis presents the development and implementation of a robust procedural content generation
pipeline specifically designed for the 2D platformer Celeste. The primary focus of this work was to
create a method capable of generating playable, challenging, and engaging levels that adhere to the
design principles of Celeste. Leveraging a Markov Chain-based model, I rather successfully captured
the underlying structures and gameplay dynamics of existing levels, allowing the generation of new
rooms that maintain both the aesthetic and functional qualities of the original game.

The Markov Chain-based approach, while not revolutionary in itself—having been previously applied
to games like Super Mario Bros.—was tailored here to address the specific challenges and nuances
of Celeste and proved effective in modeling the probabilistic transitions between tiles and gameplay
elements, enabling the creation of rooms that are structurally coherent and varied. Post-processing
steps, including exit refinement and the strategic placement of respawn points and platforms, were
crucial in enhancing the playability of the generated rooms. These steps ensured that the rooms not
only met the functional requirements for Celeste but also provided a fair and enjoyable challenge to
players.

In terms of evaluation, the generated levels were assessed using several metrics, including playability
and interestingness mainly, while the difficulty component was tough to define properly. The results,
coupled to manual testing, indicated that the rooms generated by the pipeline were for the most
part successful in replicating the desired gameplay experience. The playability metric, in particular,
showed a high success rate, with most rooms being fully navigable and meeting the expected challenge
levels. The complexity of the generated rooms varied, with some rooms exhibiting novel configura-
tions that introduced new challenges, while others closely mirrored traditional level designs. Player
engagement and interestingness, measured through playtesting, further validated the effectiveness of
the PCG pipeline, as testers reported decently high levels of satisfaction with their engagement with
the generated levels, in particular when addressed to a beginner audience.

However, despite the successes, there were some limitations observed. The Markov Chain model, while
effective, occasionally produced levels that lacked the creativity and diversity seen in handcrafted
levels. While the difficulty of the generated rooms was also for the most part satisfying, I realized that
having a close control of the difficulty without taming the playability aspect totally was somewhat
bold, and could have been anticipated in the difficulty metric design. On another note, the general
level design was not so much matching experienced players’ expectations. This suggests that further
refinement, perhaps through the integration of additional generation techniques or hybrid approaches,
could enhance the creative potential of the pipeline and potentially capture finer details that make
the level design in Celeste so unique and appreciable. Additionally, the playability metric, although
generally high, did reveal occasional instances of rooms where difficulty spikes or poorly placed obstacles
detracted from the player experience. Addressing these issues may require several layers of room
generation techniques, more sophisticated post-processing techniques, and/or the inclusion of machine
learning methods to predict and correct potential playability issues during the generation process.

Looking forward, several avenues for future work have been identified. One potential direction is
the exploration of more advanced AI techniques, such as Generative Adversarial Networks methods,
to further refine the level generation process and improve the adaptability of the model to different
gameplay styles and player preferences. Additionally, expanding the evaluation framework to include
more comprehensive player feedback and integrating adaptive difficulty mechanisms could enhance
the overall player experience. I would definitely use this revised room generator to produce a reliable
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training set for a potential Celeste Al agent.

Moreover, the application of this PCG pipeline is not limited to Celeste; the underlying principles and
methods could be adapted to other platformers or even different game genres entirely. By tailoring the
Markov Chain model to the specific mechanics and aesthetic requirements of other games, this simple
approach could be extended to generate content for a wide variety of gaming experiences.

In conclusion, while this thesis does not pioneer the use of Markov Chains for 2D platformer level
generation, it does demonstrate their effective adaptation to the unique challenges of Celeste. While
there is room for further improvement and innovation, the results indicate that this method is a
promising tool for creating engaging and challenging game content that enhances the overall player
experience. I consider this pipeline as a proof of concept; this thesis is laying the foundation stones for
building what would be an equivalent to the famous Mario AI Framework, and hopefully adapt part
of the work that has been proven successful for Super Mario Bros. to this more complex platformer,
Celeste.
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