
Master Computer Science

Translation as a Bridge: Assessing the Feasibility of
English BERT for Low-Resource Languages

Name: Giulia Rivetti
Student ID: s4026543
Date: [04/06/2025]
Specialisation: Artificial Intelligence
1st supervisor: Marco Spruit
2nd supervisor: Marcel Haas

Master’s Thesis in Computer Science

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

2



Abstract

BERT models represent a significant advancement in Natural Language Processing
(NLP), establishing themselves as state-of-the-art due to their robust ability to handle un-
structured text across diverse languages and domains. However, developing high-quality
BERT models for non-English languages remains a major challenge, often requiring ex-
tensive computational resources and large annotated datasets, resources that are scarce
for many minority or low-resource languages. A promising alternative to building sepa-
rate language-specific models is to translate non-English data into English and leverage
existing, pre-trained English BERT models. Because these English models are typically
trained on broader and more diverse corpora, they often offer improved generalization
and robustness. Although initial studies suggest that translation-based approaches can
yield competitive or even superior results compared to native-language models, research
in this area remains limited, with most efforts still focused on developing dedicated mod-
els for each language. This thesis investigates whether translating text into English and
fine-tuning English BERT models can serve as a viable and scalable strategy for multi-
lingual NLP. We evaluate this approach across six core NLP tasks (Sentiment Analysis,
Hate Speech Detection, Question Answering, Named Entity Recognition, Part-of-Speech
Tagging, and Natural Language Inference), using datasets translated from five typolog-
ically diverse languages: Bulgarian, Chinese, Dutch, Italian, and Russian. Our findings
indicate that translation-based models match or surpass native-language BERT models
in many cases, particularly in tasks like POS tagging and QA, where lexical semantics and
structural alignment are less sensitive to translation artifacts. Performance was especially
promising for Dutch, likely due to its linguistic proximity to English. In contrast, results
for Chinese were consistently weaker, reflecting the greater typological distance from
English and the presence of strong native models trained on extensive Chinese corpora.
Moreover, tasks requiring fine-grained token-level precision or cultural nuance, such as
NER and Hate Speech Detection, tended to suffer under the translation-based method,
revealing clear limitations. While this approach proved effective in 57% of the evaluated
cases and demonstrates real potential for scalable, resource-efficient multilingual NLP,
this thesis also highlights its boundaries. The results show that translation isn’t a uni-
versal solution and requires careful consideration, particularly in contexts where it could
introduce ambiguity or when robust native-language models already exist. Nonetheless,
the translation-based strategy remains a valuable tool for extending NLP capabilities to
underrepresented languages and contributes to ongoing efforts toward linguistic inclusiv-
ity and sustainability in AI.
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1 Introduction

In recent years, advances in Natural Language Processing (NLP) have led to revolutionary
progress in how machines process, understand, and generate human language. Central to
this growth are deep learning models like BERT (Bidirectional Encoder Representations from
Transformers), which have significantly improved performance across a wide range of NLP
tasks. However, much of this development has been concentrated in high-resource languages
such as English, where vast amounts of annotated data and computational resources are
readily available. In contrast, most of the world’s languages remain largely underrepresented
in NLP research and tools, reinforcing digital inequality and limiting the global applicability of
state-of-the-art models.
Efforts to develop language-specific BERT models for non-English languages have shown
promising results. However, training these models from scratch is resource-intensive, demand-
ing significant computational power, specialized hardware, and extensive human annotation
efforts. As a response to this challenge, recent studies have proposed a translation-based alter-
native: translating non-English text into English and then fine-tuning an English BERT model
on the translated text. Preliminary findings suggest that this method can offer performance
comparable to, or even better than, native-language models for certain tasks. The advantage
of this approach lies in its potential efficiency, which comes from reusing a powerful English
model instead of training individual models for each language, and its scalability across a
broader range of linguistic contexts.
Despite its promise, this translation-based approach remains underexplored. Prior studies have
typically focused on individual languages or isolated tasks, offering limited insight into broader
generalizability. Furthermore, the effectiveness of translation varies depending on linguistic
distance, cultural context, and task sensitivity, raising questions about when and why this
method succeeds or fails. There is a clear need for more comprehensive research that evaluates
the strengths and limitations of this strategy across diverse languages and NLP tasks.
This thesis addresses that gap by evaluating the feasibility and effectiveness of using a translation-
based strategy instead of fine-tuning language-specific BERT models for multiple low-resource
languages. Specifically, we investigate whether translating datasets from languages such as
Bulgarian, Chinese, Dutch, Italian, and Russian into English and fine-tuning a pre-trained En-
glish BERT model can deliver performance comparable or superior to that of language-specific
BERT models. We consider six key NLP tasks: Sentiment Analysis, Hate Speech Detection,
Question Answering (QA), Named Entity Recognition (NER), Part-of-Speech (POS) Tagging,
and Natural Language Inference (NLI). This selection allows for a broad evaluation across both
classification and token-level tasks.

1.1 Research Objectives

This thesis seeks to explore the feasibility and effectiveness of leveraging a translation-based
approach to enhance the performance of NLP tasks for low-resource languages. These lan-
guages often face challenges due to lack of linguistic resources and pre-trained models, which
limits their NLP development. The main objective of this research is to evaluate whether trans-
lating datasets from low-resource languages into English, followed by fine-tuning a pre-trained
English BERT model, can achieve performance comparable to, or even surpass, models trained
on native-language data. Specifically, we aim to determine whether this method can serve as
a practical and scalable solution for adapting powerful English NLP tools to underrepresented

6



languages.
This study evaluates the effectiveness of this approach across a variety of NLP tasks and, to
ensure a comprehensive analysis, it includes languages from diverse linguistic families: Indo-
European Romance (Italian), Indo-European Germanic (Dutch and English), Sino-Tibetan
(Chinese), and Indo-European Slavic (Russian and Bulgarian). This diversity allows us to assess
the generalizability of the translation-based method and to explore how linguistic characteristics
and data availability affect performance.
Beyond scientific contributions, this project aims to make a meaningful societal impact by
offering a more sustainable and inclusive approach to NLP. If translating text and fine-tuning
English BERT models proves effective, it could significantly reduce the computational cost
and energy consumption associated with training separate models for each language, while
also accelerating NLP development for underrepresented linguistic communities.
Ultimately, this thesis seeks to lay the groundwork for adaptable, resource-efficient NLP so-
lutions, contributing to the long-term goal of reducing language-based inequality in AI tech-
nologies.

1.2 Research Questions

In order to achieve our predefined objectives, we investigate several key research questions,
designed to assess the overall effectiveness, generalizability as well as limitations of using
translation as a strategy for improving NLP performance across different language families
and tasks.

Main Research Question: To what extent can a translation-based approach using the
English BERT model achieve robust performance across NLP tasks in low-resource languages,
and potentially surpass native-language BERT models?

To address the main research question, this thesis will explore several sub-questions:

1. Does a translation-based approach using English BERT perform consistently across lan-
guages from different linguistic families?

2. Are there specific NLP tasks where this approach is more effective?

3. How does fine-tuning English BERT on translated text compare to using pre-trained
native-language BERT models?

To answer these sub-questions we will apply a translation method to all datasets, and then
evaluate: the consistency across languages (Q1), the effectiveness on specific NLP tasks (Q2),
and finally the comparative performance with native-language models (Q3).

1.3 Thesis Organization

This thesis follows the CRISP-DM (CRoss-Industry Standard Process for Data Mining) method-
ology [141], a structured and widely adopted framework for managing data mining projects.
Introduced in 1999 to standardize data mining processes across industries, CRISP-DM has since
become the most popular methodology for data mining analytics and data science projects.
The CRISP-DM framework consists of six sequential phases, as illustrated in Figure 1. The
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Figure 1: Phases of the CRISP-DM Process Model for Data Mining [141].

first phase, business understanding, focuses on defining the project objectives and formulating
the data mining goals. This phase is addressed Section 1, where we establish the research
objectives as well as the research questions that we aim to answer. Further discussion is pro-
vided in the Background (2) and Systematic Literature Review (3) sections. Section 4 also
falls under the Business Understanding phase, as it outlines the experimental design decisions,
including model selection, hyperparameter configuration and training strategy. The next step,
data understanding, involves collecting, describing, exploring and assessing the data. This is
presented in Section 5, where we report the dataset selection process and description for each
task, with further exploratory analysis in Section 5.3. Next, in the data preparation phase,
we apply several preprocessing techniques to make the data suitable for model training. This
process is detailed in Section 5.2. The modeling phase of CRISP-DM corresponds to Section
6, where the results of our experiments are presented, while the fifth stage, evaluation, is cov-
ered in Section 7, where the results are analyzed and discussed. The final phase, deployment,
involves implementing the model in a real-world application. Here, this phase is not treated
as a separate step, but rather forms the core of the research itself: the work presented here
can be seen as the practical application of the CRISP-DM process. The final chapters of this
thesis include future work (Section 8), where we report the current limitations and propose
improvements, followed by a conclusion (Section 9), that summarizes the key findings and
contributions.
The code used in this research is available at https://github.com/GiuliaRivets01/
Master-Thesis.
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2 Background

This section provides essential background knowledge to understand the research presented
in this thesis. In particular, we touch the fundamentals of Natural Language Processing, the
set of NLP tasks considered in this work, the Transformer architecture, BERT, and machine
translation.

2.1 Natural Language Processing (NLP)

Natural Language Processing is a subfield of Artificial Intelligence that enables computers to
read, analyze, interpret and derive meaning from human language. This practice combines
linguistics, statistics, and machine learning to allow computers to understand language in a
meaningful way [35]. Over the past decade, NLP has become deeply embedded in everyday
technologies: it is used to filter spam emails, get relevant results on search engines, and it is
applied in the autocorrect features of messaging platforms. These are only a few examples of
how NLP impacts one’s daily life. By facilitating human-machine communication in natural
language, NLP offers benefits across many industries and applications, such as the automation
of repetitive tasks, improved data analysis and insights, and content generation [49].
Until recently, NLP tasks were typically addressed by designing separate models for each task.
However, this changed with the introduction of BERT in 2018 [29], which demonstrated that
a single model could achieve state-of-the-art performance across multiple NLP tasks. This
marked a turning point in the field, positioning BERT as a foundational model for general-
purpose language understanding.

2.2 NLP Tasks

In this thesis, we fine-tune BERT on six NLP tasks: Sentiment Analysis, Question Answering,
Hate Speech Detection, Natural Language Inference, Part-Of-Speech Tagging and Named
Entity Recognition. Each task is briefly introduced below to provide the necessary context.

Sentiment Analysis Also known as opinion mining, sentiment analysis refers to the task
of identifying the emotional tone conveyed in a piece of text, typically categorized as positive,
negative, or neutral. It is widely used in applications like product reviews, customer feedback
analysis, and social media monitoring. As a classification task, it requires models to associate
textual cues with sentiment labels. Key challenges include handling sarcasm, negation, and the
presence of mixed sentiments (multi-polarity) [9].

Question Answering QA involves automatically providing answers to questions posed in
natural language. It plays a key role in many applications such as virtual assistants, customer
support systems, and search engines [20]. This thesis focuses on extractive QA, where the
model identifies an exact span from a given context that answers the question. While effec-
tive for fact-based questions, extractive QA struggles with queries that require reasoning or
synthesizing information across multiple sentences.

Hate Speech Detection This task aims to identify language that expresses hatred, dis-
crimination, or violence toward individuals or groups based on characteristics like race, religion,
gender, or nationality. With the rise of social media and online platforms, automatic hate speech
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detection has become vital for content moderation [86]. Typically treated as a binary or multi-
label classification task, it presents major challenges due to the subjective nature of hate, the
use of subtle language, and cultural variability in offensive expressions.

Natural Language Inference (NLI) Also known as textual entailment, NLI determines
whether a given hypothesis logically follows from a premise. Specifically, the relationships are
classified as entailment, contradiction, or neutral. NLI plays a critical role in tasks such as
fact-checking, text summarization, semantic search, and question answering [81].

Part-Of-Speech tagging (POS) POS tagging assigns grammatical categories—such as
noun, verb, adjective, or adverb—to each word in a sentence. As a sequence labeling task, it
provides essential information about syntactic structure and is important for many downstream
tasks, including parsing and information extraction. Challenges include dealing with ambiguous
word forms, polysemy, and the morphological complexity of certain languages.

Named Entity Recognition (NER) NER is a sequence labeling task, focused on iden-
tifying and classifying named entities in text, such as persons, organizations, locations, and
dates. NER is widely used in tasks like information extraction, question answering, and knowl-
edge base construction. Difficulties arise from nested entities, ambiguous boundaries, and
language-specific naming conventions.

2.3 The Transformer Architecture

The Transformer architecture, introduced by Vaswani et al. in 2017 [135], revolutionized the
field of NLP by replacing the recurrent mechanisms of previous models, like RNNs and LSTMs,
with a self-attention mechanism. This shift enabled models to process all input tokens simul-
taneously and capture long-range dependencies more efficiently.
At a high level, the Transformer consists of two main components: an encoder, which processes
input text, and a decoder, which generates output text. BERT, the model used in this thesis,
leverages only the encoder for language understanding tasks.
The core building blocks of the Transformer architecture, which is sketched in Figure 2, include:

1. Input encoding: each input token is mapped to a vector representation using an em-
bedding matrix. Since the Transformer lacks inherent recurrence, positional encodings
are added to these embeddings to capture the order of tokens.

2. Transformer blocks: these consists of multi-head self-attention layers, which enables
the model to focus on different parts of the input sequence simultaneously, and feed-
forward neural networks, applied independently to each position. Layer normalization
and residual connections are used to stabilize training.

3. Language modeling head: in generation tasks, the final hidden states are projected
back into the vocabulary space using an output matrix followed by a softmax layer to
predict the next token [53].

This architecture forms the backbone of almost all modern NLP models, including BERT, GPT,
and T5, enabling them to learn rich, contextual representations from large-scale corpora.
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Figure 2: The architecture of a left-to-right Transformer model. Each input token is en-
coded and passed through a series of stacked Transformer blocks, followed by a language
modeling head that predicts the next token in the sequence.

2.4 BERT

BERT (Bidirectional Encoder Representations from Transformers), introduced by Devlin et
al. in 2018 [29], is one of the most influential applications of the Transformer architecture in
language understanding. While the original Transformer includes both encoder and decoder
stacks, BERT uses only the encoder. Its core innovation lies in its bidirectional self-attention
mechanism, which allows the model to consider both the left and right context of every word
in a sentence simultaneously, which is something unidirectional models like GPT cannot do.
This enables BERT to capture richer semantic representations, crucial for tasks like question
answering, sentiment analysis, and named entity recognition.
A key innovation behind BERT’s effectiveness lies in its two-phase training strategy. The first
stage is pre-training, where the model is trained on large-scale unlabeled corpora using two
objectives:

• Masked Language Modeling (MLM): Random tokens are masked and the model learns
to predict them based on surrounding context.

• Next Sentence Prediction (NSP): The model predicts whether a second sentence logically
follows a given first sentence.

The second phase is fine-tuning: after pre-training, BERT can be adapted to specific tasks
(like sentiment analysis or NLI) by adding a task-specific output layer and training on labeled
data. This greatly reduces the need for training task-specific models from scratch.
Before input text (e.g., a sentence, paragraph, or document) can be processed by BERT, it
must be tokenized, or in other words, it needs to be split into smaller units called tokens.
These tokens can be words, subwords, or characters, depending on the tokenization method
used. BERT uses WordPiece tokenization, a subword-based approach that enables it to handle
rare or unseen words by breaking them into smaller known units [74]. For example, the word
"apples" would be tokenized into ["apple", "s"], and "unhappiness" would be split into ["un",
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"##happiness"], where "##" indicates that the subword is a continuation of the previous
token. This helps the model generalize to words outside its vocabulary. Tokenization is the
first step in converting text into a format the model can understand. Once tokenized, each
subword is mapped to a unique integer ID from BERT’s vocabulary, then converted into a
vector embedding, and padded or truncated as needed.

2.5 Machine Translation

Machine Translation (MT) refers to the use of computational systems to automatically trans-
late text from one language into another. Since its first appearance in 1947, Machine Transla-
tion has been considered one of the most complex challenges in the field of natural language
processing [137]. Over the decades, MT systems have evolved from rule-based systems to
statistical methods, and more recently, to deep learning approaches.
Today, Neural Machine Translation (NMT) represents the state of the art in MT. NMT sys-
tems employ deep neural networks, typically based on the Transformer architecture, to model
translation as a sequence-to-sequence learning task. The strength of NMT lies in its ability
to learn directly, in an end-to-end fashion, the mapping from input text to associated output
text [145]. Although initially viewed by many as an inconsistent translation tool for translating
important or high-visibility content, especially at scale [117], NMT has rapidly matured over
the past decade, gaining widespread adoption across industry and academia due to its ability
to handle subtle linguistic nuances and deliver high-quality results.
In the context of low-resource languages, where labeled data, linguistic tools, and pretrained
models are often lacking, MT offers a promising alternative. By translating data into English,
researchers can exploit powerful, well-established models like BERT for downstream NLP tasks.
This translation-based strategy allows for high performance without the overhead of training
language-specific models from scratch. In this thesis, we adopt this approach as a practical
and scalable solution to address resource limitations in multilingual NLP.
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3 Systematic Literature Review (SLR)

We perform a Systematic Literature Review (SLR) to understand the current state of research
on key topics, including current translation-based approaches used to extend the resources of
minority languages in NLP, their limitations, and the benchmarks used in NLP for non-English
languages. This assessment helps identify advancements and gaps in existing studies, while
ensuring a comprehensive, standardized, and transparent analysis of relevant findings.
While systematic reviews provide valuable insights, they are also known to be time-consuming
and resource-intensive processes [127], often requiring a significant level of expertise [152]. To
address these challenges, this SLR will follow the SYMBALS (SYstematic review Methodology
Blending Active Learning and Snowballing) procedure proposed by van Haastrecht et al.[132].
This approach can speed up the process of finding relevant papers by employing machine learn-
ing techniques combined with backward snowballing, reducing the risk of omitting important
studies. The SYMBALS procedure, which is reported in Figure 3, will be followed in the next
sections of this literature review.

Figure 3: SYMBALS pipeline. The methodology consists of the SYMBALS core (dashed
box), supplemented with elements of the stages of planning and conducting a review [132].
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3.1 Develop and Evaluate Protocol

The first step of SYMBALS involves defining a protocol and formulating research questions that
justify the need for the systematic literature review. This SLR aims to investigate the current
state of research on BERT models for non-English languages and translation-based approaches
in NLP. The review seeks to identify advancements and research gaps, while evaluating the
potential of translation-based methods as an alternative to native-language BERT models.
The insights gained will play a crucial role in defining the scope and direction of this thesis.
To guide the review process, the following research questions have been formulated:

1. What is the current state of research on translation-based approaches for extending
English BERT models to NLP tasks in low-resource languages?

2. What are the primary challenges in performing NLP tasks in low-resource languages with
BERT models?

3. Which benchmarks and datasets have been used in prior research for the NLP tasks and
the languages considered in this thesis?

Search strategy The search process begins by identifying relevant keywords related to
BERT models, NLP tasks, translation methods and the target languages. Using these keywords,
structured queries will be formulated and applied to three major academic databases: IEEE
Xplore1, ACM Digital Library 2 and Web of Science3. This will provide an initial collection
of relevant studies. Next, the ASReview framework [130] will be employed to perform Active
Learning with a machine learning model, systematically identifying the most relevant studies
from the initial pool. To further ensure proper coverage, backward snowballing will be applied,
incorporating additional relevant studies cited in the selected papers. Since the final number of
selected papers is expected to remain manageable, a final validation step is deemed unnecessary.
Therefore, we will follow the SYMBALS methodology until the backward snowballing step.

Selection criteria Throughout the screening process, both during Active Learning and
backward snowballing, specific selection criteria will be applied to determine the relevance of
each study:

• SLR Question 1: Papers were included if they used translation from a specific language
into English to apply English BERT models for NLP tasks.

• SLR Question 2: Papers were selected if they focused on challenges in NLP tasks
for low-resource languages, particularly those involving BERT models. Papers address-
ing NLP tasks in low-resource languages without discussing associated challenges were
excluded.

• SLR Question 3: Studies were excluded if they did not cover the selected languages
or if they involved tasks different from the target tasks. For instance, studies on Aspect-
Based Sentiment Analysis (ABSA) and implicit sentiment analysis were not considered.

These criteria will be applied to the titles and abstracts of each paper during the review process.
A complete overview of the adopted SLR protocol is provided in Figure 4.

1https://ieeexplore.ieee.org/Xplore/home.jsp
2https://dl.acm.org/
3https://www.webofscience.com/wos/woscc/basic-search
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Figure 4: The SLR protocol adopted, which follows the SYMBALS methodology. The
process is composed of a database search, active learning and screening, and backward
snowballing.

SLR Question 4 Unlike the first three SLR questions, SLR Question 4 does not require
a separate database search. Instead, we will extract relevant information from the papers
retrieved during the database search and screening process for SLR Questions 1, 2, and 3. This
approach ensures that preprocessing techniques are examined within the context of studies
already deemed relevant to our research, reducing redundancy and maintaining consistency
across the review process.

3.2 Database Search

The second step in the SYMBALS pipeline involves conducting a database search to iden-
tify relevant studies. As previously mentioned, we employed three academic databases: IEEE
Xplore, Web Of Science and ACM Digital Library. These databases provide advanced search
functionalities, allowing us to apply well-structured queries to retrieve papers relevant to the
SLR research questions. The queries used for each SLR question are as follows:

SLR Q1 query:

(
("Abstract": BERT OR "Abstract": mBERT OR "Abstract": transformer∗)
AND ("Abstract": minority language∗ OR "Abstract": low−resource language∗

OR "Abstract": low−resource NLP OR "Abstract": underrepresented language∗)
AND ("Abstract": translated)
AND ("Abstract": NLP OR "Abstract": natural language processing)

)

SLR Q2 query:

(
("Abstract":BERT OR "Abstract":mBERT)
AND ("Abstract":minority language OR "Abstract": low−resource language

OR "Abstract": Italian OR "Abstract": Dutch OR "Abstract": Mandarin
OR "Abstract": Russian OR "Abstract": Bulgarian)

AND ("Abstract":NLP OR "Abstract": natural language processing OR "Abstract": NER
OR "Abstract": POS OR "Abstract": Part−Of−Speech OR "Abstract": Tatoeba
OR "Abstract": sentiment analysis OR "Abstract": textual entailment
OR "Abstract": Hate Speech Detection OR "Abstract": Question Answering)

)
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SLR Q3 query:

(
("Abstract":BERT)
AND ("Abstract":Question Answering OR "Abstract":Textual Entailment

OR "Abstract":Natural Language Inference OR "Abstract":NLI
OR "Abstract":Sentiment Analysis OR "Abstract":Hate Speech Detection)

AND ("Abstract":Italian OR "Abstract":Bulgarian OR "Abstract":Dutch
OR "Abstract":Russian OR "Abstract":Chinese

)

The database queries were specifically designed to retrieve studies related to BERT and its
multilingual version (mBERT), as these are the models used in this thesis. As a result, BERT
variants such as RoBERTa, ALBERT, or DistilBERT were not explicitly included in the search
criteria, to ensure alignment between the literature reviewed and the model architecture used in
the experiments. Future work could expand the queries to include additional transformer-based
models for a broader comparative analysis.
For SLR Question 3, not all target tasks were included in the query. For Part-Of-Speech
tagging, Named Entity Recognition and Sentence alignment we will rely on datasets from the
XTREME benchmark [47], which already covers the five languages considered in this study,
namely Bulgarian, Chinese, Dutch, Italian and Russian. The choice of these five languages was
guided by two main criteria: the linguistic diversity, aiming to include languages from different
language families to better assess cross-lingual generalization; and the dataset availability, as
these languages are among those consistently supported across multiple tasks in the XTREME
benchmark.
Table 1 presents the number of papers retrieved from each database for the first three research
questions. In total, we obtained 29 papers for the first research question, 230 for the second
and 171 for the third after removing duplicates.

Database SLR Q1 SLR Q2 SLR Q3
ACM Library 18 32 25

Web Of Science 4 142 96
IEEE xplore 7 83 62

Total (without duplicates) 29 230 171

Table 1: Number of papers found after the database search on the three considered
databases for the first three SLR research questions.

3.3 Screening Using Active Learning

The third step in the SYMBALS pipeline involves active learning, a machine learning method
where the algorithm selects the most informative data points to learn from [132]. This approach
is particularly effective for systematic literature reviews, as it allows the model to achieve high
accuracy with fewer training samples by prioritizing the most relevant papers [114]. By using
active learning, researchers can significantly reduce the number of papers they need to manually
review, which is especially valuable when dealing with a large number of related studies.

16



To implement this, we used ASReview [130], an open-source machine learning tool designed
for screening and labeling large amounts of data. The screening process for the first three
research questions began by exporting the papers retrieved during the database search, and
organizing them using Mendeley4, a reference manager software. Since ASReview requires ini-
tial labeled examples for classification, we manually labeled five to ten papers as relevant or not
relevant for each query to establish prior knowledge. A full list of these prior-labeled papers is
provided in Appendix B. For model training, we employed the default ASReview configuration,
as it has been shown to outperform alternative configurations on multiple datasets [37]. The
configuration includes: TF-IDF as feature extraction technique, Näıve Bayes classifier as
the machine learning model, Maximum as the query strategy and Dynamic Resampling
(double) as the balance strategy.
Once the model was trained, we screened the papers based on their titles and abstracts to
confirm their relevance to our research. A stopping criterion was applied to determine when to
stop the screening process: for the first two SLR questions, screening stopped after finding ten
consecutive non-relevant papers. For the third SLR question, this criterion proved insufficient,
as the query was more specific, resulting in a higher proportion of relevant papers. Had we
followed the same stopping rule, we would have needed to review all retrieved papers, as it
was unlikely to encounter ten consecutive irrelevant ones. Instead, we set a fixed limit of 100
reviewed papers for this question. Table 2 summarizes the number of papers obtained after
the active learning screening phase.

Number of Papers SLR Q1 SLR Q2 SLR Q3
Labeled papers during screening 31 59 100
Relevant papers after screening 10 11 72

Table 2: Number of papers found after active learning for the three SLR research questions.

Challenges for SLR Question 3 During this phase, we encountered a major challenge
related to the third SLR question: the results obtained after active learning lacked diversity. The
majority of relevant papers identified by the ASReview model focused on sentiment analysis,
particularly for the Chinese language. This created an imbalance, with a lack of studies on
other target languages, particularly for Bulgarian, which has significantly fewer NLP resources
compared to Chinese. It is important to note that this bias was already present in the initial
literature retrieved from the databases, where the majority of available studies concerned
Chinese NLP tasks, especially sentiment analysis. ASReview subsequently amplified this bias,
as the prior knowledge provided to the model predominantly consisted of studies focused on
Chinese sentiment analysis.
Figure 5 shows the distribution of relevant papers across task-language combinations at this
stage, with more than 80% of papers focusing on Chinese NLP. To address this issue, we
have modified the search query (see Appendix A) and retrained the ASReview model, carefully
selecting a more diverse set of papers as prior knowledge. Indeed the studies selected as prior
knowledge for the original SLR Q3 query mostly focused on sentiment analysis, which have
contributed to bias the model towards this category. However, even with these modifications,
the issue persisted, as the model continued prioritizing studies on Chinese sentiment analysis.
At this point, it became evident that while the SYMBALS approach effectively structures the

4https://www.mendeley.com/reference-management/reference-manager
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Figure 5: Pie chart depicting the proportion of papers found during screening for different
task-language combinations in SLR Q3. The covered datasets include: Sentiment Analysis
(SA), Question Answering (QA), Hate Speech Detection (HSD) and Natural Language
Inference (NLI).

review process, it alone cannot fully counteract the underlying biases present in the available
literature—particularly when the initial seed papers used to train the ASReview model are them-
selves unbalanced. In retrospect, selecting a more diverse and representative set of seed papers
might have mitigated the model’s tendency to prioritize studies on Chinese sentiment analysis.
However, due to the dominance of such studies in the initial search results, identifying a suf-
ficiently varied set of seed papers would have required additional manual screening—precisely
the kind of effort that SYMBALS and active learning aim to reduce. This underscores a key
trade-off in using automated review tools: while they enhance efficiency, their performance is
still sensitive to the quality and diversity of the initial prior knowledge.

Alternative strategy for SLR Question 3 To attenuate this limitation, we took the
following steps. First, we analyzed the relevant papers identified during active learning and
selected only those that used publicly available datasets. Since the dataset list was still incom-
plete, we manually reviewed the first 100 papers outputted by ASReview after applying the
modified query. This helped identify additional relevant studies. To mitigate this, we reviewed
the first 100 papers outputted by the ASReview model using the modified query for the third
SLR question, identifying additional relevant papers. Although this step expanded the list of
relevant studies, the dataset selection remained biased toward sentiment analysis and question
answering in Chinese and Russian, leaving other tasks and languages underrepresented. To
address this issue, we conducted a targeted search for each language-task pair that lacked
sufficient datasets. The final dataset selection results are presented in Appendix D, which
comprises tables listing the datasets obtained for sentiment analysis, question answering, hate
speech detection, and natural language inference across the target languages.
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3.4 Backward Snowballing

As previously mentioned, the SYMBALS methodology combines active learning with backward
snowballing, to identify additional relevant studies by examining the references of relevant
papers found after the active learning phase. This step helps expand the pool of relevant
literature, but since it increases the number of papers to review, it requires an appropriate
stopping criterion. In SYMBALS, the proposed stopping criterion is based on three parameters:
Nr, which is the number of most recent references checked; rr, representing the number of
newly identified relevant papers within Nr references; and S, which is the minimum number
of snowballed papers required before stopping. The screening process stops when, in the last
Nr references, the number of new relevant additions rr is less than some constant C, provided
that at least S papers have already been snowballed [132]. For this literature review, we set
the parameters as follows: we have snowballed at least S = 3 papers and then we stopped
when, in the last Nr = 50 references, fewer than 5 relevant papers were found.
All relevant studies identified through this process are reported in the Appendix C. As previously
mentioned, given the limited number of relevant studies retrieved, we decided not to proceed
with the quality assessment step of the SYMBALS methodology, as the dataset remained
manageable without further filtering.

3.5 Related Work

Developing effective NLP systems for low-resource languages remains a difficult challenge
due to the lack of annotated data, linguistic tools, and language-specific pre-trained models.
This section synthesizes the findings from our Systematic Literature Review, which aimed to
answer two core questions: To what extent have translation-based approaches been used to
apply English BERT models to non-English or low-resource languages? What are the main
challenges in applying BERT-based models to such languages?

3.5.1 Challenges in NLP for Low-Resource Languages (SLR Q2)

Numerous studies have highlighted the limitations that low-resource languages face in NLP
development. As observed by Joshi et al. [52], there is an evident disparity between high-
resource and low-resource languages, with many languages having little to no digital presence.
This issue extends beyond rarely spoken tongues: even widely spoken languages such as Span-
ish face data scarcity in specific domains [17]. Similarly, morphologically rich or structurally
complex languages, such as Turkish [109], Thai [67, 56], and Amharic [149], present significant
challenges for cross-lingual transfer and pretraining.
A major obstacle is the lack of annotated datasets for supervised learning, especially in spe-
cialized domains. For instance, in biomedical NLP, languages like Italian and Spanish remain
under-resourced despite their widespread use [14, 16]. In other domains such as cultural her-
itage, fake review detection [19], and hate speech detection [4, 92], similar challenges are
evident. Sentiment analysis and NLI tasks are also hindered by the high cost of manually
compiling lexicons [26], which leaves many low-resource languages without essential linguistic
resources.
While multilingual models such as mBERT offer some relief, their performance is often sub-
optimal for truly underrepresented languages. Wu and Dredze [144] showed that mBERT’s
performance declines sharply for languages with minimal training data. Even monolingual
models built for these languages often fail to reach competitive accuracy without extensive
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pretraining or domain-specific corpora [72]. The situation is further complicated in tasks like
intent detection and slot filling, where data labeling remains both expensive and inconsistent
[112]. Notably, even high-resource languages like Russian remain disadvantaged when models
are optimized for English-centric domains, such as social media sentiment analysis [65].
In summary, the main challenges in applying BERT-based models to low-resource languages
include insufficient labeled data, underdeveloped domain-specific resources, limitations in cross-
lingual transfer, and high costs of linguistic resource development. These barriers collectively
motivate the exploration of translation-based approaches as a more scalable alternative.

3.5.2 Translation-Based Approaches to Extend English BERT (SLR Q1)

To address these challenges, an increasing number of studies have explored the potential of us-
ing machine translation to bridge the resource gap. A key strategy involves translating datasets
from low-resource languages into English, enabling the use of powerful English-language mod-
els such as BERT. This method has shown encouraging results across several NLP tasks,
suggesting it may serve as a practical alternative to developing language-specific models.
In sentiment analysis, for instance, Balahur et al. [10] found that machine-translated corpora
yielded accuracy within 8% of native-language models, demonstrating the viability of this
approach. Similarly, Demirtas et al. [26] reported that translation noise had minimal effect on
polarity classification. Refaee and Rieser [106] further showed that translated Arabic tweets,
when analyzed using English sentiment tools, could outperform native baselines, illustrating
how English-centric resources can be extended to support underrepresented languages.
In domain-specific contexts, translation has proven particularly effective. Borchert et al. [14]
and Buonocore et al. [16] successfully translated English biomedical corpora into French,
Spanish, Dutch, and Italian, leading to significant performance gains over native-language
training. Gallego et al. [40] also leveraged translation to expand concept recognition across
multiple languages without requiring costly manual annotation.
Moreover, MT has been used not only to generate training data but also to enhance seman-
tic diversity through auxiliary inputs. Amplayo et al. [6] demonstrated that using multiple
translations of the same input can enrich model training, while Sohn et al. [119] showed that
transformer models can compensate for moderate translation errors through contextual em-
beddings. Pamungkas et al. [92] similarly observed gains when combining MT with fine-tuned
transformers for hate speech detection. Hybrid and ensemble methods further underscore this
trend: Miah et al. [79] achieved high accuracy (86%) by combining translation-based prepro-
cessing with a fusion of transformers and large language models.
However, not all studies report consistent success. The effectiveness of translation-based ap-
proaches is highly dependent on task complexity and translation quality. For example, while
Balahur et al. [10] found translation useful for basic sentiment tasks, they also noted perfor-
mance drops in traditional models like SVMs when translation noise affected feature quality.
In code-mixed and morphologically rich languages, the semantic integrity of texts often suf-
fers during translation. Pravalika et al. [100] highlighted how syntactic mismatches degrade
sentiment analysis outcomes in such settings.
In more structure-sensitive tasks like question answering, translation introduces alignment is-
sues. Canete et al. [17] reported that nearly half of the examples in the MLQA dataset had
mismatched answer spans due to poor translation, undermining model evaluation. Similarly,
Schuster et al. [112] found that translated training data was less effective than multilingual em-
beddings or contextual encoders when limited target-language data was available. Yamaguchi
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et al. [148] confirmed this finding in prompt-based models, noting that translation-induced
noise reduced performance for languages like Swahili and Japanese.
Generative and lexical alignment tasks also face translation issues. Soni et al. [120] found
that translating QA blueprints introduced errors that hindered model training. Meng et al.
[77] observed that bilingual sentiment lexicons created via MT had limited coverage and
ambiguity, reducing their effectiveness. In biomedical NLP, Dorendahl et al. [30] reported
suboptimal results when using English tools like MetaMap on German texts translated with
MT. Even dataset augmentation via translated corpora, as shown by Demirtas et al. [26], does
not always lead to performance gains due to corpus divergence and translation inaccuracies.
Taken together, these findings suggest that while translation-based approaches offer a promis-
ing and resource-efficient alternative for extending English BERT to low-resource languages,
their effectiveness is task- and language-dependent. This thesis builds on this line of work by
systematically evaluating translation-driven BERT fine-tuning across multiple NLP tasks and
linguistic families, seeking to determine when and how such methods can match or exceed the
performance of native-language models.

3.6 Conclusion

The Systematic Literature Review conducted for this thesis provides a foundational understand-
ing of the research landscape surrounding translation-based NLP strategies and the application
of BERT to low-resource languages. Employing the SYMBALS methodology allows for a thor-
ough and efficient retrieval of relevant studies, combining the precision of active learning with
the extensive coverage of backward snowballing. A notable challenge during the review process
was the limited diversity in studies retrieved for the third SLR question, where an overwhelming
focus on Chinese sentiment analysis created a skew in the literature pool. This was partly a
reflection of the field’s current research bias, and partly a side-effect of the active learning
model reinforcing dominant patterns. To counter this, we adapted our approach by modifying
search queries and manually diversifying the dataset list. Despite these challenges, the insights
gained through the SLR played a crucial role in shaping the direction of this thesis. They
informed the selection of languages and tasks used in the experimental design and highlighted
key considerations, such as typological proximity and task sensitivity, that became central to
our evaluation framework. Ultimately, this phase not only deepened our understanding of cur-
rent research trends but also clarified the methodological and practical gaps that this thesis
aims to address.
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4 Methodology

This section presents the experimental framework adopted in this thesis, corresponding to
Business Understanding phase of the CRISP-DM methodology. In particular, we first introduce
the models used in our experiments, then we describe the hyperparameter tuning process used
to optimize model performance, followed by details on fine-tuning and the evaluation metrics
applied.

4.1 Models

This section outlines the models used in our experiments. We first describe the translation
system used to convert non-English datasets into English. Then, we detail the English BERT
model employed as a core component of our translation-based approach. Finally, we present the
language-specific BERT models used to fine-tune directly on the original non-English datasets,
which serve as baselines for comparison.

4.1.1 Translation Model

To translate non-English datasets into English, we employ the Helsinki-NLP/opus-mt mod-
els from the OPUS-MT project [126], an initiative focused on developing accessible and high-
quality machine translation tools, especially for low-resource and minority languages. The
models are built using the Marian-NMT framework, a production-ready neural machine trans-
lation system optimized for efficiency and scalability. Architecturally, OPUS-MT models adopt
a standard Transformer setup, consisting of 6 encoder and 6 decoder layers with 8 attention
heads each. They are trained on large-scale parallel corpora sourced from the OPUS bitext
repository, which provides diverse and multilingual text data. OPUS-MT models offer compet-
itive translation quality in the open-source landscape, often achieving performance comparable
to state-of-the-art commercial systems for many language pairs [88]. Although commercial sys-
tems such as DeepL5 are frequently reported to outperform open-source alternatives in terms
of translation fluency and contextual accuracy, we chose OPUS-MT for this study due to its
open-source availability, ease of integration, and ability to run locally without API limitations
or cost. These qualities make it a practical and reproducible choice for this research.

4.1.2 English BERT

To perform hyperparameter tuning and then fine-tuning on the translated datasets, we employ
the pre-trained BERT model, specifically BERT-Base. This variant consists of 12 transformer
layers and 110 million parameters and was pre-trained on a large English corpus. Although the
larger BERT-Large model, with 24 transformer layers and 340 million parameters, is able
to capture more complex contextual information, we opt for BERT-Base due to its lower
computational requirements and strong performance on a wide range of tasks [75]. BERT
comes in two variations: cased and uncased. The cased model is sensitive to letter casing (e.g.,
distinguishing between "Dutch" and "dutch"), while the uncased model is not. Depending on
the requirements of each task, we selected the most appropriate BERT variant.

5https://www.deepl.com/nl/translator
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4.1.3 Non-English BERT Models

To validate the effectiveness of the translation-based approach, we run experiments also with
the original, non-translated datasets using language-specific BERT models. These serve as
baselines to assess whether translation and English fine-tuning offer performance advantages
over native processing. We selected publicly available models from Hugging Face for each
language, ensuring comparability in size and training architecture. Below is a breakdown of
the models chosen for each language:

• Bulgarian: we use bert-web-bg, a cased model with 109M parameters developed by
Marinova et al.[70], that is shown to outperform bert-base-bg, another cased model
that we found on Hugging face. For the uncased setting, we employ
AIaLT-IICT/bert_bg_lit_web_base_uncased, which closely follows the original BERT
architecture and objective.

• Dutch: we use GroNLP/BERTje, a standard BERT base architecture trained from
scratch on Dutch corpora. It represents the most widely used and validated BERT vari-
ant for Dutch, comparable in size and training setup to bert-base-cased. De Vries et
al. showed that BERTje was able to outperform the multilingual BERT model on sev-
eral downstream NLP tasks, including part-of-speech tagging, named-entity recognition,
semantic role labeling, and sentiment analysis [24]. Due to the absence of a modern
uncased BERT model for Dutch, and because alternatives like GysBERT are based on
historical texts, we used BERTje for both cased and uncased scenarios to maintain
consistency.

• Italian: we use models developed by the dbmdz team, which offers standard BERT
base architecture pretrained from scratch on large Italian corpora including Wikipedia
and OPUS. Both the cased (bert-base-italian-cased) and uncased (bert-base-italian-
uncased) models were proved to outperform both Multilingual BERT (M-BERT) and
XLM-RoBERTa [113].

• Chinese: we employ bert-base-chinese, the official Google BERT model trained using
WordPiece tokenization. Since Chinese does not use case distinctions, the same model
was used in both cased and uncased configurations.

• Russian: for the cased model, we use DeepPavlov/rubert-base-cased, a widely adopted
Russian BERT variant pretrained on Russian Wikipedia and news texts. This model was
shown to outperform M-BERT on several NLP tasks [58]. For the uncased setting, we
selected deepvk/bert-base-uncased, one of the few available uncased models for Russian.

A summary of the selected models is provided in the following table:

4.2 Hyperparameter Tuning

Hyperparameter tuning plays a crucial role in improving model performance by identifying the
optimal configuration of parameters set before training begins[22].
To automate this process, we employ Optuna[3], an efficient hyperparameter optimization
framework based on Bayesian optimization. For each dataset, we defined a search space over
key hyperparameters, including learning rate, batch size, number of training epochs and weight
decay. During each optimization trial, Optuna samples a set of hyperparameters, trains the
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Language Cased Uncased
Bulgarian bert-web-bg 6 bert_bg_lit_web_base_uncased 7

Chinese bert-base-chinese 8 bert-base-chinese 9

Dutch bert-base-dutch-cased 10 bert-base-dutch-cased 11

Italian bert-base-italian-cased 12 bert-base-italian-uncased 13

Russian rubert-base-cased 14 bert-base-uncased 15

Table 3: Hugging Face BERT models employed on the original, non-translated datasets.

model, and evaluates its F1 score on a validation set. This score is used as the objective
metric. Optuna then refines its sampling strategy based on past trials, balancing exploration
with exploitation.
Hyperparameter tuning is performed for question answering, hate speech detection, POS tag-
ging and NER, while the NLI and sentiment analysis datasets are only fine-tuned. Even though
this may not guarantee a fair comparison across tasks, we deemed it necessary due to time
limits, especially since the datasets found for sentiment analysis and NLI are among the biggest
among the considered data.
We perform 10 trials per task, selecting the configuration that yields the highest validation F1
score. This approach enables a consistent and reproducible tuning process across languages
and tasks.

4.3 Fine-tuning

We fine-tune all BERT-based models using Hugging Face’s Trainer API, which simplifies
the process of training and evaluating transformer-based models. The Trainer class automates
key steps, including forward passes, backpropagation, optimization, evaluation, and checkpoint
management. This training configuration allow us to maintain a clean and modular training
pipeline while ensuring reproducibility and consistency across experiments.

4.4 Evaluation metrics

We evaluate model performance using standard classification metrics widely adopted in NLP
research:

• Accuracy: it represents the proportion of correct predictions over all predictions.

• Recall: also known as True Positive Rate, it indicates the proportion of actual positive
instances correctly identified.

• Precision: it measures the proportion of predicted positive instances that are actually
positive.

• F1-score: this is the harmonic mean of precision and recall, balancing both metrics in
a single value.

• Exact Match (EM): this metric, used for extractive question answering, measures the
percentage of predictions that exactly match the ground truth answer string[59].
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4.5 Experimental Settings

This section outlines the computational resources and general experimental configuration used
throughout this study. The setup was chosen to ensure reproducibility, scalability, and efficient
handling of multilingual NLP tasks involving large pre-trained transformer models.
All experiments in this study are conducted using a combination of local and high-performance
computing resources. For translation tasks, we make use of the resources of the Data Science
Lab of LIACS, equipped with 256 GB of RAM, 24 Intel Xeon Silver 4214 cores, and two
NVIDIA GeForce RTX 3090 GPUs with 24 GB of memory each. For more compute-intensive
tasks, including hyperparameter tuning and fine-tuning of transformer models, we rely on
the Dutch national supercomputer Snellius, which offers access to AMD CPUs and GPGPU
accelerators. Model training is implemented using the Hugging Face Trainer API, which allows
for streamlined fine-tuning and evaluation across tasks. Hyperparameter tuning is performed
using the Optuna framework with Bayesian optimization. For most tasks, this includes up to 10
optimization trials; however, for sentiment analysis and natural language inference, we employ
a fixed set of hyperparameters to reduce computational cost, with a learning rate of 5e− 5, a
batch size of 16, weight decay of 0.01, and 3 training epochs. All experiments use the AdamW
optimizer, as implemented in the Trainer API. Because of its popularity, we employ NLTK to
handle preprocessing. Only later did we realize that NLTK does not support Bulgarian, so for
that language we use Stanza. We did not switch all preprocessing to Stanza because NLTK
was already included in the experimental pipeline of the translated datasets. All models employ
Hugging Face tokenizers and custom PyTorch Dataset classes for input preparation. Training,
validation and test sets are created using an 80/10/10 split. To ensure reproducibility across
all experiments, the random seed is fixed to 42.
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5 Data Understanding and Preparation

Following the CRISP-DM methodology, we proceed with the data understanding and prepara-
tion phase. This stage is crucial for ensuring that the data used in our experiments is well-suited
for the research objectives. First, we select and describe the datasets for each task-language
pair and then we apply preprocessing techniques to prepare the data for model training and
evaluation. Finally, we conduct an Exploratory Data Analysis (EDA) to gain insights into the
structure, distribution and additional characteristics of the datasets. This step helps to identify
potential challenges such as class imbalances, missing data, or inconsistencies that may impact
model performance.

5.1 Dataset Selection and Description

In this section, we provide an overview of the datasets identified during the literature review
and justify the selection of the most appropriate ones for each task-language pair considered
in this study. The dataset selection process is based on multiple factors, including dataset size,
structure, and availability of information about the dataset creation and intended use.
During systematic literature review, we found the XTREME benchmark [47], which is charac-
terized by POS tagging and NER datasets for all the five languages that we are considering
in this thesis. Therefore, for these two tasks, we have chosen datasets belonging to such
benchmark.

5.1.1 Sentiment Analysis

We identify and evaluate publicly available sentiment analysis datasets for each language. The
selection is based on several criteria, among which the availability of clear sentiment polarity
labels (positive, negative, and optionally neutral); general-domain applicability (i.e., avoiding
domain-specific or emotion-focused datasets); sufficient documentation about dataset cre-
ation. Additionally, when multiple datasets satisfy the criteria, the largest is selected unless
deemed computationally impractical. Table 24 in Appendix C provides a full list of the consid-
ered datasets. Table 4 includes representative examples of selected data samples. Below, we
briefly describe the selected datasets for each language.

Bulgarian We select the Cinexio Movie Reviews dataset 16, which belongs to the bgGLUE
benchmark [55], and which contains 9,827 movie reviews labeled as positive, neutral, or nega-
tive. It is preferred over alternatives due to its clearer documentation and well-defined structure.
This dataset will be referred to as Cinexio in the remainder of the thesis.

Dutch We choose the Dutch Book Reviews Dataset (DBRD) v3.0 17 [131], which provides
21,895 labeled book reviews for binary sentiment classification. It is selected over the Dutch
Sentiment Analysis dataset due to its larger size and inclusion in the DUMB benchmark.

16https://bgglue.github.io/tasks/task_info/cinexio/
17https://github.com/benjaminvdb/DBRD/tree/master?tab=readme-ov-file
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Dataset Review English Translation Label

Cinexio Това беше един от най-яките
филми!!!

It was one of the coolest movies
!!! Positive

DBRD

Dit is vast een impopulaire
mening maar jeetje wat een
saai boek! Een hoop irritaties...
De schrijfstijl, de personages. Ik
dacht de hele tijd mens doe iets,
kom voor jezelf op! Het eind was
gelukkig wel oké en maakte het
eea goed maar nee wat mij betreft
geen aanrader.

This is probably an unpopular
opinion but gosh what a boring
book! A lot of irritations... The
writing style, the characters. I
kept thinking woman do some-
thing, stand up for yourself! The
ending was fortunately okay and
made up for it but no, as far as
I’m concerned, not recommended.

Negative

Weibo
Senti 100k

好样儿的！严重的支持！[顶]
@李小孩儿_生如夏花: [鼓掌][赞]

Attaboy! Serious support! Lee
Child: [applause] [applause] Positive

Italian
Tweets
Dataset

Volevo anche segnalare che Offi-
cialRadja in tutto ciò ha anche
sospeso il suo profilo Instagram.
#Nainggolan

I also wanted to point out that
OfficialRadja has also suspended
his Instagram profile in all of this.
#Nainggolan

Neutral

RuReviews Заказ не пришёл, жду возврат
средств

The order didn’t come, I’m wait-
ing for the money back. Negative

Table 4: Sentiment Analysis Datasets Examples.

Italian The Italian Tweets Dataset 18 [69] is selected, comprising 165,815 tweets labeled
using AWS Comprehend API. It is the only dataset meeting the labeling and general-domain
criteria, as others are either emotion-based or focused on aspect-level sentiment. Tweets are
classified into four categories: positive, negative, neutral or mixed.

Chinese We select Weibo Senti 100k [123] 19, containing 119,988 labeled posts from
Sina Weibo with balanced binary sentiment classes. It is the most suitable in terms of size and
label clarity, while others are excluded for domain specificity or emotion-based labels.

Russian The RuReviews dataset 20 [118] is selected and it contains 180,000 product
reviews derived from a major Russian e-commerce site. It strikes a balance between size and
general applicability. Larger datasets (e.g., RuTweetCorp) are avoided due to computational
constraints.

18https://github.com/charlesmalafosse/open-dataset-for-sentiment-analysis/tree/
master

19https://github.com/SophonPlus/ChineseNlpCorpus/blob/master/datasets/weibo_senti_
100k/intro.ipynb

20https://github.com/sismetanin/rureviews/blob/master/women-clothing-accessories.
3-class.balanced.csv
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5.1.2 Question Answering

We select one question answering dataset per target language, prioritizing datasets with an
open-ended question format and a clear structure that includes the question, context, and
answer. Datasets based on translations or without full context information are excluded to
maintain consistency and quality. When multiple datasets satisfy the criteria, the largest suit-
able one is selected unless impractical to use.
Representative samples for each dataset are reported in Table 5, and a full list of the datasets
found appears in Table 25.

Bulgarian : We select the Multi-Subject High School Examinations, or EXAMS dataset,
from the bgGLUE benchmark 21 [45], which contains 3,349 QA pairs from high school exams.
Although originally formatted as multiple-choice, we adapt it to an open-ended format by
extracting the correct answer and its context. Other candidates are excluded due to pre-
translation or incompatible formats.

Dutch : The Vraag-en-antwoord dataset Rijksportaal Personeel (P-Direkt dataset for short)
22 [134] is selected, comprising 323 real-world QA examples from a government contact cen-
ter. It includes question, answer, and context fields and follows a structure similar to SQuAD.
Other datasets lack context or are created via translation.

Italian : We select QA-ITA-200k, which includes 202,471 QA pairs primarily sourced from
Wikipedia. It is the largest suitable Italian QA dataset found, with well-structured triplets and
comprehensive coverage.

Chinese : The CMRC2018 dataset 23 [41] is chosen, consisting of 14,363 QA pairs anno-
tated on Wikipedia paragraphs. It is selected over others due to its span-extraction format and
inclusion of both context and manually curated answers, whereas alternatives lack context or
are inaccessible.

Russian : We select SberQuAD 24 [33], a reading comprehension dataset with 74,300 QA
entries. It includes both answerable and unanswerable questions based on Wikipedia texts. It
is preferred over smaller alternatives like RuBQ and XQuAD.

Dataset QA Example

EXAMS
Context: Хемоглобин. Хемоглобинът или хемоглобулинът е белтък с
четвъртична структура и молекулна маса около 66000–68000 Da. ...

Question: Кое от изброените химични съединения е белтък?

Answer: хемоглобин

Continued on next page...

21https://bgglue.github.io/tasks/task_info/exams/
22https://data.overheid.nl/dataset/vraag-en-antwoord-dataset-rijksportaal-personeel
23https://github.com/ymcui/cmrc2018
24https://huggingface.co/datasets/kuznetsoffandrey/sberquad
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Dataset QA Example

EXAMS
translated

Context: Hemoglobin or hemoglobin is a protein with a fourth structure
and a molecular mass of about 66000–68000 Da. ...

Question: Which of the listed chemical compounds is protein?

Answer: Haemoglobin

CMRC2018
Context: 广茂铁路是中国广东省一条起自广州市广州西站，向西跨
越北江、西江，经佛山、三水、肇庆、云浮、阳江至茂名市茂名站
的铁路，全长364.6公里，

Question: 广茂铁路全长多少公里？

Answer: 364.6公里

CMRC2018
translated

Context: The Guangmao Railway, which runs 364.6 kilometres from
Guangdong Province, China’s Guangzhou West Station, ...

Question: How many kilometers is the Hiroshima Railway?

Answer: 364.6 kilometres

P-Direkt
Context: Deelname aan de PAS-regeling heeft geen gevolgen voor uw
wettelijke vakantie-aanspraak.

Question: Wat zijn de gevolgen voor mijn vakantie-uren als ik gebruik
maak van de PAS-regeling?

Answer: Deelname aan de PAS-regeling heeft geen gevolgen voor uw
wettelijke vakantie-aanspraak

P-Direkt
translated

Context: Participation in the PAS scheme has no consequences for your
statutory holiday entitlement.

Question: What are the consequences for my holiday hours if I use the
PAS scheme?

Answer: Participation in the PAS scheme has no consequences for your
statutory holiday entitlement

QA-ITA-200k
Context: Alien - La clonazione Alien - La clonazione (Alien Resurrection)
è un film del 1997 diretto da Jean-Pierre Jeunet. Dopo un’anteprima a
Parigi il 6 novembre 1997 ...

Question: Chi è il regista del film ’Alien Resurrection’?

Answer: Il regista del film ’Alien Resurrection’ è Jean-Pierre Jeunet.

QA-ITA-200k
translated

Context: Alien - Cloning Alien - Cloning (Alien Resurrection) is a 1997
film directed by Jean-Pierre Jeunet. After a preview in Paris on November
6, 1997 ...

Question: Who is the director of the film ’Alien Resurrection’?

Continued on next page...
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Dataset QA Example

Answer: The director of the film ’Alien Resurrection’ is Jean-Pierre Je-
unet.

SberQuAD
Context: Троллейбусы используются преимущественно в городах, но
также существуют междугородные и пригородные троллейбусы ...

Question: Где преимущественно используют троллейбусы?

Answer: Троллейбусы используются преимущественно в городах

SberQuAD
translated

Context: Trolleybuses are mainly used in urban areas, but there are also
long-distance and suburban trolleybuses ...

Question: Where are the trolley buses mostly used?

Answer: Trolleybuses are mostly used in cities

Table 5: Question Answering Datasets Examples.

5.1.3 Hate Speech Detection

We select one hate speech detection dataset per target language, prioritizing datasets that
include the full text of labeled content. Datasets that only provide content IDs (e.g., Tweet
IDs) are excluded due to API limitations and the inability to retrieve text at scale. Among
datasets with accessible content, we select the largest suitable dataset, unless major quality
concerns existed.
All datasets that we found during the SLR are listed in Table 26, and representative examples
are shown in Table 6.

Bulgarian: We select the Hate Speech Classification in Bulgarian dataset 25 [104], which
includes over 100,000 manually annotated comments from Bulgarian online forums. It is chosen
over smaller alternatives due to its size and accessible text. For simplicity, this dataset will be
referred to as HS-bg in the remainder of this thesis.

Dutch: The Dutch HateCheck dataset 26 [48], which is part of the Multilingual HateCheck
(MHC) suite [107], is selected. It contains 3,765 manually designed test cases created by native
speakers. Other Dutch datasets are excluded as they provide only Tweet IDs without full text
access.

Chinese: We select the Chinese Offensive Language Dataset (COLD) 27 [27], which con-
tains 37,480 annotated comments labeled for offensive language relating to race, gender, and
region. It is preferred over larger alternatives like TOCAB due to concerns over low-content
entries (e.g., single-word comments).

25http://www.pfeffer.at/data/bulgarian/
26https://huggingface.co/datasets/Paul/hatecheck-dutch
27https://github.com/thu-coai/COLDataset/tree/main/COLDataset
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Italian: We select the Multilingual Hate Speech Dataset 28 [83], which includes 6,839 Italian
entries translated from Arabic. While the translation-based origin may introduce bias, it is the
only viable dataset with fully accessible content. This dataset will be referred to as HS-it in
the remainder of this thesis.

Russian : The Russian South Park 29 [108] dataset is chosen, with 15,875 annotated
examples derived from television transcripts. It is selected based on its size and availability of
text, whereas other datasets are excluded for small scale or misaligned objectives.

Dataset Review English Translation Label

HS-bg за мен вера си остава боклук For me, vera is still trash Hateful

COLD 任天堂新主机Nintendo Switch
是否有潜力成为成功的主机？

Does Nintendo Switch have the
potential to be a successful
host?

Non-hateful

Dutch
HateCheck

Zwermen transgenders in-
festeren onze regering.

Transgenders are infesting our
government. Hateful

HS-it

@user I soliti immigrati che o
rubano o diversamente delin-
quono,ma per i nostri gover-
nanti va bene cos̀ı’.

@user The usual immigrants
who either steal or otherwise
delinquote, but for our rulers
it’s okay.

Hateful

South
Park

Молодец, непросто было
доказывать свою правоту в
такой ситуации.

Well done, it wasn’t easy to
prove yourself right in a situ-
ation like this.

Non-hateful

Table 6: Hate Speech Detection Datasets Examples.

5.1.4 Natural Language Inference (NLI)

For NLI, we prioritize datasets with a standard premise-hypothesis-label structure and select
one dataset per language. When multiple options exist, we choose the largest suitable dataset,
excluding translated versions if a higher-quality or benchmark-supported version is available.

Bulgarian, Chinese and Russian For these languages, we select the XNLI dataset 30,
which is part of the XTREME benchmark [47]. XNLI is a professionally translated subset of
MultiNLI, covering 14 languages. Each language subset contains 400,202 examples (see Table
10), ensuring consistency and comparability across languages. For the remainder of this thesis,
we will refer to Bulgarian XNLI, Chinese XNLI and Russian XNLI as XNLI-bg, XNLI-zh,
XNLI-ru, respectively.

28https://huggingface.co/datasets/ysenarath/moosa2022multilingual
29https://github.com/Sariellee/Russan-Hate-speech-Recognition
30https://huggingface.co/datasets/facebook/xnli
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Italian : The SLR identified two Italian datasets: a manually translated version of RTE-3
[116] and a machine-translated version of LingNLI [116]. Due to the limited size of the RTE-
3 dataset, we select LingNLI 31, acknowledging the fact that it was machine translated to
Italian.

Dutch : We select SICK-NL 32, used in the DUMB benchmark [25]. This dataset is a man-
ually corrected translation of the original SICK dataset, ensuring high quality while preserving
the premise-hypothesis-label format required for NLI.

Dataset Premise Hypothesis Label

XNLI-bg
дейв хенсън , ти никога не си
умрял !

дейв хенсън , ти умря в края
на краищата . Contradiction

Dave Hanson, you’re never
dead!

Dave Hanson, you died after
all.

XNLI-zh
’变化即将到来. 什么都不会改变.

Contradiction
’Change is coming. Nothing’s gonna change.

SICK-
NL

De man rent op de weg Een hond rent op de weg
Neutral

The man is running on the
road

A dog is running on the road

LingNLI
Potrebbe essere una strategia
a lungo termine, ma Dole è
molto indietro.

Dole è molto lontano dal 1 °
posto. Entailment

It could be a long-term strat-
egy, but Dole is way behind.

Dole is very far from the 1st
place.

XNLI-ru
Ну конечно . Дэниэл
посмотрел вокруг .

Дэниелс взгляд не был
устойчивым . Entailment

Of course, Daniel looked
around.

Daniels’ eyes weren’t steady.

Table 7: NLI Datasets Examples.

5.1.5 POS tagging

We select the Universal Dependencies v2.5 treebanks [87] 33, used in the XTREME benchmark,
where each word is assigned one of 17 universal POS tags. Among the datasets present for
each language, we prioritize datasets of larger but also similar size.

31https://huggingface.co/datasets/maximoss/lingnli-multi-mt
32https://huggingface.co/datasets/maximedb/sick_nl
33https://universaldependencies.org/
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Bulgarian : We select UD_Bulgarian-BTB [91], based on the HPSG-based BulTreeBank
and composed by sentences mainly from Bulgarian newspapers, but also from fiction and
administrative documents.

Chinese : As our traditional Chinese Universal Dependencies Treebank, we select UD_Chinese-
GSD [1], annotated and converted by Google.

Dutch : We select Alpino [15], containing samples from various treebanks annotated at
the University of Groningen using the Alpino annotation tools and guidelines.

Italian : We choose PoSTWITA-UD [110], a collection of Italian tweets annotated in
Universal Dependencies.

Russian : We select Taiga [68], a Universal Dependencies treebank based on data samples
extracted from Taiga Corpus and MorphoRuEval-2017 and GramEval-2020 shared tasks col-
lections. It is characterized by sentences from several domains: blogs and social media, poetry,
news and Wikipedia.

Dataset POS Example

UD_Bulgarian-BTB

Sentence: Да не би да съм закъснял ?

Annotated sentence: (’Да’: AUX), (’не’: PART), (’би’: AUX),
(’да’: AUX), (’съм’: AUX), (’закъснял’: VERB ), (’?’: PUNCT)

Translated sentence: Am I late ?

Annotated translated sentence: (’Am’: AUX), (’I’: PRON),
(’late’: ADJ), (’?’: PUNCT)

PoSTWITA-UD

Sentence: RT @user : Non esiste una strada verso la felicità . La
felicità è la strada .

Annotated sentence: (’RT’: SYM), (’@user’: SYM), (’:’:
PUNCT), (’Non’: ADV), (’esiste’: VERB), (’una’: DET), (strada:
’NOUN’), (’verso’: ADP), (’la’: DET), (’felicità’: NOUN), (’.’:
PUNCT), (’La’: DET), (’felicità’: NOUN), (’è’: AUX), (’la’: DET),
(’strada’: NOUN), (’.’: PUNCT)

Translated sentence: RT @user : There is no way to happiness
. Happiness is the way .

Annotated translated sentence: (’RT’: PROPN), (’@user’:
PROPN), (’:’: PUNCT), (’There’: PRON), (’is’: VERB), (’no’:
DET), (’way’: NOUN), (’to’: ADP), (’happiness’: NOUN), (’.’:
PUNCT), (’Happiness’: NOUN), (’is’: AUX), (’the’: DET), (’way’:
NOUN), (’.’: PUNCT)

UD_Chinese-GSD

Sentence: 島嶼長度約為11 公里，寬度6 公里。

Continued on next page...
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Dataset POS Example

Annotated sentence: (’島嶼’: NOUN), (’長度’: NOUN), (’約’:
ADV), (’為’: AUX), (’11’: NUM), (’公里’: NOUN), (’,’: PUNCT)
(’寬度’: NOUN), (’6’: NUM), (’公里’: NOUN), (’。’: PUNCT)

Translated sentence: The island is about 11 km long and 6 km
wide .

Annotated translated sentence: (’The’: DET), (’island’:
NOUN), (’is’: AUX), (’about’: ADV), (’11’: NUM), (’km’: NOUN),
(’long’: ADJ), (’and’: CCONJ), (’6’: NUM), (’km’: NOUN), (’wide’:
ADJ), (’.’: PUNCT)

Alpino

Sentence: Avondvluchten gingen wel redelijk op tijd weg .

Annotated sentence: (’Avondvluchten’: NOUN), (’gingen’:
VERB), (’wel’: ADV), (’redelijk’: ADJ), (’op’: ADP), (’tijd’:
NOUN), (’weg’: ADV), (’.’: PUNCT)

Translated sentence: Evening flights did leave fairly in time .

Annotated translated sentence: (’Evening’: NOUN), (’flights’:
NOUN), (’did’: AUX), (’leave’: VERB), (’fairly’: ADV), (’in’: ADP),
(’time’: NOUN), (’.’: PUNCT)

Taiga

Sentence: ума ни в какие помышления "

Annotated sentence: (’ума’: NOUN), (’ни’: PART), (’в’: ADP),
(’какие’: DET), (’помышления’: NOUN), (’"’: PUNCT)

Translated sentence: I’m not thinking about anything . "

Annotated translated sentence: (’I’: PRON), ("’m": AUX),
(’not’: PART), (’thinking’: VERB), (’about’: ADP), (’anything’:
PRON), (’.’: PUNCT), (’"’: PUNCT)

Table 8: POS Dataset Examples.

5.1.6 NER

Following the XTREME benchmark, we select the Wikiann dataset 34 [93], which contains
named entities from Wikipedia automatically annotated in IOB2 format. This dataset is used
for all five considered languages: Bulgarian (wikiann-bg), Chinese (wikiann-zh), Dutch
(wikiann-nl), Italian (wikiann-it), Russian (wikiann-ru).

5.1.7 Datasets Dimensions

Table 10 compares the sizes of the selected datasets for each task-language pair. We can
observe that the sizes vary significantly both across tasks and across languages. The Ques-
tion Answering task shows large datasets for Italian and Russian, while Dutch has a notably
small dataset in this task, with only 323 examples, which may affect model performance and
generalization. Similarly, NLI datasets are large for Bulgarian, Chinese, and Russian (all over

34https://huggingface.co/datasets/unimelb-nlp/wikiann

34

https://huggingface.co/datasets/unimelb-nlp/wikiann


Language NER Example

wikiann-bg
Tokens: ’пренасочване’, ’Мащеха’, ’(’, ’теленовела’, ’)’
Translated Tokens: ’re-routing’, ’Stepmother’, ’(’, ’telenovela’, ’)’
Tags: "O", "B-ORG", "I-ORG", "I-ORG", "I-ORG"

wikiann-zh
Tokens: 前

Translated Tokens: ’Front’, ’Town.’, ’Zone’
Tags: "B-LOC", "I-LOC", "I-LOC"

wikiann-nl
Tokens: ’2’, ’etappes’, ’in’, ’Ronde’, ’van’, ’Frankrijk’
Translated Tokens: ’2’, ’stages’, ’in’, ’Round’, ’of’, ’France’
Tags: "O", "O", "O", "B-ORG", "I-ORG", "I-ORG"

wikiann-it
Tokens: "’", "”", ’Sandra’, ’Cecchini’, ’(’, ’campionessa’, ’)’
Translated Tokens: "’", "’", ’Sandra’, ’Snipers’, ’(’, ’sample’, ’)’
Tags: "O", "O", "B-PER", "I-PER", "O", "O", "O"

wikiann-ru
Tokens: ’Паро’, ’(’, ’река’, ’)’
Translated Tokens: ’Pair’, ’(’, ’River’, ’)’
Tags: "B-LOC", "I-LOC", "I-LOC", "I-LOC"

Table 9: NER Datasets Examples.

400k examples), but much smaller for Dutch and Italian. The Hate Speech task also shows
wide variation: Bulgarian has over 100k samples, while Dutch and Italian have fewer than
7k. In contrast, the NER datasets are balanced across languages, with exactly 40k samples
each, since part of the same benchmark. POS tagging datasets are relatively large and more
comparable across languages. Finally, Sentiment Analysis datasets range broadly, from under
10k in Bulgarian to over 165k in Italian. These discrepancies in dataset sizes are important
to consider, as they may impact the difficulty of the tasks across languages and the relative
performance of models trained under different data availability conditions.
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Task Bulgarian Chinese Dutch Italian Russian

Sentiment Analysis 9,827 119,988 51,069 165,815 90,000
Question Answering 3,349 14,363 323 94,105 74,300
Hate Speech 102,750 37,480 3,765 6,839 15,875
NLI 400,202 400,202 9,840 34,878 400,202
POS 156,149 123,291 208,747 129,668 197,001
NER 40,000 40,000 40,000 40,000 40,000

Table 10: Number of rows in each dataset for different NLP tasks and languages.

5.2 Data Preprocessing

Text preprocessing is a crucial step in NLP that involves cleaning and transforming raw text
data into a format suitable for analysis and machine learning models [2]. Effective preprocessing
not only helps cleaning and standardizing the data, but also enhances the model’s performance
by removing noise, ensuring uniformity, and facilitating better generalization. The preprocessing
pipeline adopted in this work is illustrated in Figure 6 and consists of the following key steps:

1. Dataset splitting: each dataset is divided into training (80%), validation (10%) and
test (10%) subsets.

2. Handling missing values: any missing data, whether originally present or introduced
during translation, is addressed by removing examples containing NaN values.

3. Dropping unnecessary columns: non-essential columns that are not required for
BERT fine-tuning are removed.

4. Text cleaning: dataset-specific cleaning procedures are applied to the text fields to
remove unwanted characters, artifacts, or formatting issues.

5. Label adjustment: labels are reviewed and converted into integer format if necessary,
ensuring compatibility with model training.

6. Class imbalance handling: techniques are applied to mitigate skewed class distribu-
tions where appropriate.

7. Tokenization: text is tokenized in preparation for input into the BERT model.

After outlining the general preprocessing pipeline, we now describe in more detail some of its
key steps. The following subsections provide task-specific insights into how data cleaning, label
alignment, and other adjustments are handled to ensure appropriate inputs for fine-tuning.

5.2.1 Text Cleaning

For NER, we observe that translation often hallucinates by appending punctuation marks to
translated words, that, however, are not present in the original text. This issue arises because
the translation model is trained on full sentences, but for NER, we translate the text word-
by-word, leading to potential translation artifacts. To address this, we remove such spurious
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Figure 6: Data processing pipeline.

characters, while also ensuring that the number of translated tokens matches the number of
original NER tags.
For Question Answering, we reformat all datasets to match the structure of the SQuAD
dataset. This includes introducing a consistent format for questions, contexts, and answers,
as well as adding a unique identifier to each example to facilitate further processing.
For POS tagging, we observe that the translation model occasionally ignores whitespace de-
limiters. For example, punctuation marks that are treated as separate tokens in the original
text, are sometimes merged with adjacent words in the translation. Therefore, we post-process
the translated text to separate such punctuation, ensuring alignment with the original token
structure.
In the cases of hate speech detection and sentiment analysis, we apply a more intensive data
cleaning process. These datasets contain noise such as hashtags and user mentions, which may
hinder model performance. Therefore, we apply the following preprocessing steps specifically
to the datasets of these two tasks:

• Lowercasing, which converts all text to lowercase, thus reducing the vocabulary size.
This step ensures that variations such as "Word" and "word" are treated as the same
entity [2].

• Removing URLs, special characters, and HTML tags, to eliminate non-linguistic elements
that can introduce noise into the dataset, thus improving sentiment or hate classification
accuracy.

• Removing non-ASCII characters, to clean potential artifacts resulting from translations
or encoding mismatches.

• Removing extra whitespace, to standardize text formatting and ensure consistent spac-
ing.
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• Removing excessive punctuation, while ensuring that critical elements like negations
(e.g., "can’t") are preserved.

• Handling missing values, by removing examples with missing information, to addresses
inconsistencies in data.

• Removing usernames, (i.e., words preceded by "@"). This steps is applied to the Italian
Tweets Dataset, where usernames are frequent but irrelevant for sentiment classification.

5.2.2 Label Adjustment

The original HS-bg dataset includes six distinct classes: one neutral, and five classes represent-
ing different forms of hate speech—namely, sexism, racism, profanity, rudeness, and others.
To simplify the classification task and to align with a binary hate speech detection framework,
we group all hateful categories into a single class labeled as "1", indicating hate speech. The
neutral texts are assigned the label "0", representing non-hateful content. This binary labeling
allows for a more straightforward and consistent training process.
Additionally, for datasets such as Dutch HateCheck, South Park, Italian Tweets Dataset and
RuReviews, categorical labels are first mapped to integer values to ensure compatibility with
model training requirements.

5.2.3 Handling Class Imbalance

Class imbalance is a common issue in machine learning, where some classes are significantly
underrepresented compared to others. Training models on imbalanced datasets can lead to
biased predictions, as the model may favor the majority class and perform poorly on the
minority class. To address this, we compute class weights and incorporate them into the loss
function during training for those datasets that are found to have an unbalanced distribution.
Class weights are calculated based on the frequency of each class in the dataset. Specifically,
less frequent classes are assigned higher weights, while more common classes receive lower
weights, to ensure that the model pays more attention to underrepresented classes. Once
computed, these class weights are incorporated into the loss function used during training. By
doing so, the model is encouraged to treat all classes more equally, preventing it from simply
optimizing for the most frequent class. This strategy is applied only to datasets where the class
distribution ratio is approximately 60:40 or more imbalanced. By incorporating class weights
into the loss computation, we aim to improve the model’s generalization and robustness.

5.2.4 Tokenization

Tokenization is a fundamental step in preparing textual data for transformer-based models like
BERT. Depending on the task, different strategies and levels of granularity are required to
ensure correct alignment between input tokens and labels or target spans.
For the Question Answering task, each training example consists of a question-context pair.
The model must predict the start and end positions of the answer span within the context.
During tokenization, if the context is too long to fit within the model’s maximum input length,
it is divided into overlapping chunks using a sliding window mechanism known as stride.
This approach ensures that potential answer spans are not truncated at chunk boundaries.
After tokenization, two additional steps are necessary: tracking which original example each
tokenized chunk corresponds to; and aligning token indices with the character-level answer
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span to correctly map the start and end positions of the answer within the tokenized input.
This alignment is crucial, as the model relies on it to accurately predict the answer span in
the context.
For hate speech detection, each input consists of a single piece of text - such as a tweet,
or a comment - which is tokenized using BERT’s tokenizer and converted to tensors. Then,
the corresponding label is attached to each tokenized input. Since this is a sentence-level
classification task, there is no need to align tokens with individual word-level labels.
In the case of NER, word-level tokenization is performed. Because BERT’s tokenizer may split
words into multiple subwords, it becomes necessary to align each original entity label with the
corresponding subwords. This is done by assigning the entity label to the first subword and
replicating it for the remaining subwords. This alignment ensures that the model learns to
make predictions at the appropriate positions in the sequence.
The POS Tagging task follows a similar tokenization strategy to NER. Each sentence is to-
kenized at the word level, and when a word is split into subwords, all resulting subwords are
assigned the same POS tag. This approach maintains the consistency of syntactic labeling
across the tokenized inputs.
In the sentiment analysis task, the input consists of a single sentence or paragraph of text
(e.g., a review or social media post). Each tokenized sequence is then paired with a single
sentiment label, making label alignment straightforward.
For the NLI task, each example consists of a pair of sentences: a premise and a hypothesis.
The tokenizer processes both sequences simultaneously, using BERT’s special token format
that separates the two texts with a [SEP] token. This format is essential for enabling BERT
to capture inter-sentence dependencies effectively.

5.2.5 Additional Preprocessing

In addition to general preprocessing steps applied across all tasks, certain task-specific chal-
lenges require specialized handling. Below, we detail the additional preprocessing steps that
we perform for the Question Answering and POS Tagging tasks.

Question Answering An essential step in the preprocessing pipeline of the question an-
swering datasets that were translated to English, is to recompute the answer start index within
the translated context. This step is crucial because models like BERT depend on accurate
character-level start and end indices to learn span-based predictions. However, translation of-
ten alters sentence structure, word order, or phrasing, invalidating the original indices defined
in the source language. To address this, we use Hugging Face’s transformers library and apply
a Question Answering pipeline built on the pretrained model distilbert-base-uncased-distilled-
squad. For each translated question-context pair, the pipeline predicts the most likely answer
span, from which both the answer text and its new starting index were extracted. These re-
computed values are then used to fine-tune the BERT-Base model. In cases where the model
fails to return a valid result, the samples are discarded.
Some datasets, such as EXAMS, QA-ITA-200k and CMRC2018, are missing answer start
indices even in their original form. For these, we first attempt a direct substring match of
the answer within the context. When that fails, we apply fuzzy string matching to locate a
similar phrase in the context. If a match is found above a similarity threshold, we compute
the corresponding start and end indices. This approach achieves full alignment for CMRC2018
and good coverage in EXAMS, where the answer start index is found for 92% of the entries.
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However, it proves ineffective for QA-ITA-200k, where approximately 78% of examples lacks
a detectable match. As a result, we adopt the same strategy used for translated datasets:
applying a QA pipeline based on the xlm-roberta-large-squad2 model to infer the answer span
and starting index. For datasets such as SberQuAD and P-Direkt, the original annotations
already includes answer start indices. However, since the test set of SberQuAD lacks answer
annotations, we use only the training and validation sets, which contain complete information,
and then re-split them to create new training, validation, and test sets.
When using the QA pipeline, so for the cases of the translated datasets and the Italian original
dataset, the method always predicts a valid answer span, allowing us to recompute and replace
the original annotations in 100% of cases. No examples are discarded in these scenarios. How-
ever, it is important to note that while the pipeline consistently returns results, the correctness
of these predictions is not guaranteed. As such, some degree of noise or misalignment may
persist despite the technical completeness of the preprocessing step.

POS Tagging For the POS tagging task, a critical challenge emerges from the translation
of datasets that were originally annotated with Universal POS (UPOS) tags at the word
level. The translation model used (Helsinki-NLP/Opus-MT ), is optimized for sentence-level
translation. While this improves fluency and reduces hallucinations, it also means that the
translated sentences no longer have a one-to-one correspondence with the original tokenized
forms. As a result, the original UPOS annotations become misaligned or unusable. To overcome
this, we opt to recompute POS tags directly on the translated English text using the spaCy
library. Each translated sentence is processed with spaCy’s pretrained English pipeline, which
outputs POS tags for each token based on linguistic analysis. This ensures that the number
of tokens matches the number of predicted POS tags, restoring alignment and making the
dataset suitable for supervised training.
For POS tagging, since spaCy’s English pipeline assigns a POS tag to every token, the re-
annotation process succeeded on 100% of the translated examples, without the need to discard
or manually adjust any samples. However, also in this case we acknowledge the fact that, even
though all tokens are annotated with this method, it is still subject to errors.
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5.3 Exploratory Data Analysis (EDA)

Exploratory Data Analysis (EDA) is a crucial step in any data-driven project. It involves system-
atically examining datasets to uncover underlying patterns, identify anomalies, test hypothesis
and verify assumptions. This process is typically carried out using a combination of summary
statistics and graphical representations [76]. The primary goal of EDA is to gain a comprehen-
sive understanding of the data’s structure, distribution, and quality, insights that are essential
for guiding preprocessing choices, feature engineering, and model selection. In the context of
this thesis, EDA is performed separately for each task to highlight dataset-specific character-
istics and challenges.

5.3.1 Sentiment Analysis

Figure 7, depicting the label distributions in the sentiment analysis datasets, reveals varying
degrees of class balance and imbalance across the corpora. The Cinexio dataset is notably
skewed, with a dominant proportion of positive samples (68.4%), while negative and neutral
sentiments are underrepresented at approximately 16.41% and 15.2%, respectively. In contrast,
the Weibo Senti 100k and DBRD datasets are almost perfectly balanced between positive
and negative classes. The Italian Tweets Dataset shows a strong skew toward the neutral
class (81.5%), with relatively few positive (14.2%) and even fewer negative (3.9%) or mixed
(0.3%) samples, which could present challenges for detecting minority sentiments and may bias
models toward predicting the majority class. Finally, RuReviews is constructed with perfect class
balance across positive, negative, and neutral sentiments (each 33.3%). This plot suggests that
imbalanced datasets like Cinexio or the Italian Tweets require special rebalancing techniques.

Figure 7: Label distribution across the considered sentiment analysis datasets.

5.3.2 Question Answering

Table 11 reports the average lengths of answer spans and contexts across the various Question
Answering datasets used in this thesis. As shown, the average context length varies signifi-
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cantly, ranging from 80 words in the Dutch HateCheck dataset to 191 words in the HS-bg
dataset. Similarly, answer lengths also vary, with HS-bg and South Park containing relatively
short answers (averaging 3–4 tokens), while HS-it has notably longer answer spans, averaging
44 tokens. Recognizing these dataset-level differences is important for interpreting model per-
formance, as context and answer lengths can affect how well the model captures and predicts
the correct spans. Additionally, after inspecting the distribution of context lengths across the
QA datasets, we found it necessary to address cases where the context exceeded the model’s
maximum input length. This was done by applying a sliding window mechanism, as previously
described in Section 5.2.4.

Dataset Avg answer length Avg context length

EXAMS 3 191
CMRC2018 10 143
P-Direkt 21 80
QA-ita-200k 44 141
SberQuAD 4 105

Table 11: Average length of answers and contexts for each Question Answering dataset.

5.3.3 Hate Speech Detection

As part of our exploratory data analysis for the hate speech detection task, we examine the
class distribution of labels across the five selected datasets: HS-bg, Dutch HateCheck, COLD,
HS-it, South Park. Figure 8 presents the proportion of hateful and non-hateful comments for
each dataset. The y-axis represents the proportion (ranging from 0 to 1), while the x-axis
displays two bars per dataset, indicating the relative frequency of the two classes.
HS-bg is highly imbalanced, with 98.2% of comments labeled as non-hateful and only 1.8%
labeled as hateful. This skewness may pose challenges for model training, as classifiers tend to
favor the majority class in such settings. In contrast to Bulgarian, the Dutch dataset, Dutch
HateCheck, exhibits a strong imbalance in the opposite direction. 70.1% of the comments
are labeled as hateful, while only 29.9% are non-hateful. The class distribution of COLD is
relatively balanced, with 48.1% hateful and 51.9% non-hateful comments, The HS-it dataset
also presents a moderate imbalance, with 58.5% of comments labeled as non-hateful and
41.5% as hateful. South Park leans toward non-hateful content, with 67.2% of comments in
the non-hateful class and 32.8% labeled as hateful.
Overall, these results underscore the importance of accounting for class distribution in model
development. For highly imbalanced datasets, such as Bulgarian or Dutch, standard training
may lead to suboptimal performance on the minority class. To address this, we perform class
weighting as explained earlier in Section 5.2.3.

5.3.4 POS Tagging

To understand the label distribution for the POS tagging task, we conduct an exploratory
analysis across the five datasets. Figure 9 presents a grouped bar chart showing the proportion
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Figure 8: Label distribution across the considered hate speech detection datasets.

of each POS tag within each dataset. Each group corresponds to a dataset (UD_Bulgarian-
BTB, UD_Chinese-GSD, Alpino, PoSTWITA-UD, Taiga), and within each group, individual
bars represent the relative frequency of POS tags such as NOUN, VERB, ADJ, etc. The full
set of POS labels used follows the Universal POS tagset standard 35, which includes 17 unique
tags. Overall, the distribution of POS tags is reasonably consistent across languages. Common
categories like NOUN, VERB, and PUNCT are among the most frequent in all datasets, with
NOUN consistently occupying a large proportion (e.g., 18.3% in UD_Bulgarian-BTB, 19.1%
in UD_Chinese-GSD). Some variation is observed for less frequent categories like INTJ, SYM,
and X, which appear sparsely or are nearly absent in several datasets. Due to this skewness,
class balancing techniques are applied, as reported in Section 5.2.3.

5.3.5 NER

The plot in Table 10 presents the distribution of NER labels across the WikiAnn datasets for
Bulgarian (bg), Dutch (nl), Italian (it), and Russian (ru). Each bar represents the proportion of
tokens assigned to a specific label, such as B-PER, I-ORG, or O. All datasets show a strong class
imbalance, with the O label (non-entity tokens) dominating, and ranging from approximately
56.5% in wikiann-ru to 74.0% in wikiann-nl. Despite this, differences in the distribution of entity
labels are evident. For example, wikiann-ru shows a notably high proportion of I-PER tokens
(10.7%), indicating that person entities in Russian tend to span multiple tokens. Similarly,
Italian and Russian both exhibit relatively high proportions of I-ORG tokens (over 10%),
suggesting a prevalence of multi-token organization names. In contrast, Dutch has fewer B-
PER and B-ORG tokens, which may suggest either fewer named entities or shorter entity spans
in the dataset. Bulgarian displays a higher proportion of B-LOC tokens compared to other
languages, indicating more frequent mentions of locations. These differences are important,
as they can affect the learning dynamics of NER models, particularly in terms of entity recall
and boundary detection. Models trained on such imbalanced and varied datasets may become

35https://universaldependencies.org/u/pos/
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Figure 9: Proportion of each POS Tag in the five considered datasets.

biased toward predicting the dominant O label or struggle with correctly identifying long, multi-
token entities. For this reason, dataset balancing techniques are applied to these datasets (see
Section 5.2.3).

Figure 10: Length distribution of each text across the considered NER datasets.

5.3.6 NLI

Figure 11 shows the class distribution for the NLI datasets used in this study. As seen in the
plot, the XNLI datasets (Bulgarian, Chinese, and Russian) and LingNLI exhibit balanced label
distributions, with each class accounting for approximately one-third of the examples. This
balanced setup is ideal for training models without introducing bias toward a specific label.
In contrast, the SICK-NL dataset displays a notable imbalance: the neutral class dominates,
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followed by entailment and contradiction. Since this skewed distribution could potentially affect
model performance by biasing predictions toward the majority class, we handle this issue as
proposed in Section 5.2.3.

Figure 11: Length distribution across the NLI datasets.
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6 Results

This section, which corresponds to the Modeling phase of CRISP-DM, presents the results
obtained from fine-tuning BERT on the translated datasets and their original-language coun-
terparts. By comparing the performance of English BERT models trained on translated text
with that of native-language BERT models, we aim to evaluate the extent to which transla-
tion can serve as a viable alternative to language-specific modeling. For each table we have
also reported the signed difference in F1 score (expressed in percentage points), between the
original and translated methods, where a negative value indicates lower performance from the
translation approach.

Hate Speech Detection : Table 12 presents the results for the hate speech detection
task across the five considered languages, reported in terms of accuracy, precision, recall, and
F1-score. Overall, these results reveal varying levels of success in using BERT to detect hate
speech, with performance largely dependent on the language and dataset characteristics.
For Bulgarian (HS-bg), both the original and translated models achieve very high accuracy
(above 97.8%), suggesting strong overall classification capability. However, the considerably
lower precision, recall, and F1-scores (all below 0.74) indicate difficulty in correctly identifying
hate speech instances, likely due to class imbalance. This means that while the model is good
at predicting the majority class, it struggles with minority (i.e. hate) cases.
The largest performance gap is observed for Chinese (COLD), where the translated model
significantly underperforms the original-language BERT by more than 7% across all metrics.
The translated model reaches an F1-score of 0.8303, compared to 0.9063 in the original.
For Dutch (HateCheck), the original-language model demonstrates the best performance across
all metrics, achieving an F1-score of 0.9829, the highest among all evaluated hate speech
datasets. The translated model also performs well, suggesting that both configurations are
quite effective. These strong results, especially in recall, suggest that the model can reliably
identify hate speech in this dataset.
In the case of Italian (HS-it), both models show more modest results, with F1-scores below
0.79. While the original-language model performs slightly better (by about 3–4% in recall and
F1), the overall performance suggests moderate effectiveness. The models appear to capture
hate speech patterns to some extent but with noticeable limitations in distinguishing subtle
cases.
For Russian (South Park), the differences between the translated and original versions are
relatively minor, with the translated model reporting a drop of only about 1.5% across most
metrics. Both versions yield F1-scores in the 0.86–0.88 range, indicating solid performance.

Question Answering Table 13 presents the results for the Question Answering task,
evaluated using Exact Match (EM) and F1-score. The EM score measures the percentage
of predictions that match the ground truth answer exactly, while the F1-score accounts for
partial matches by evaluating the overlap between the predicted and true answers. Overall,
the results reveal significant variability in performance across languages and datasets, driven
by factors such as dataset size, context complexity, and preprocessing challenges related to
answer alignment.
For Bulgarian (EXAMS), the performance is low across both metrics, regardless of whether
the original or translated version is used. The highest EM recorded is just 21.1%, and the F1
score reaches 33.3%. These modest scores suggest that the model struggles with this dataset,
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Lang Dataset Accuracy Precision Recall F1-Score ∆F1 (p.p.)

bg
HS-bg Translated 0.9817 0.7163 0.6889 0.7016

-2.36
HS-bg Original 0.9782 0.7104 0.7424 0.7252

zh
COLD Translated 0.8303 0.8303 0.8307 0.8303

-7.6
COLD Original 0.9064 0.9065 0.9066 0.9063

nl
Dutch HateCheck
Translated

0.9469 0.9574 0.9081 0.9291
-5.38

Dutch HateCheck
Original

0.9867 0.9911 0.9755 0.9829

it
HS-it Translated 0.7596 0.7522 0.7511 0.7516

-3.71
HS-it Original 0.8002 0.8008 0.7833 0.7887

ru
South Park Trans-
lated

0.8797 0.8560 0.8685 0.8617
-1.34

South Park Original 0.8911 0.8683 0.8835 0.8751

Table 12: Results on the test sets of the Hate Speech Detection datasets obtained after
fine-tuning.

possibly due to the relatively small size of the dataset (3,349 examples) and the fact that the
dataset was originally created for multiple choice answers. These factors likely make it difficult
for the model to accurately locate and extract answer spans. The low EM and F1 scores
reflect this challenge, though we do not measure the average positional error directly; further
span alignment analysis could clarify whether the errors are due to mislocation or semantic
mismatch.
For Chinese (CMRC2018), results are noticeably better. The original-language model achieves
an EM of 46.1 and an F1-score of 46.9, demonstrating moderate success. In contrast, the
translation-based approach suffers a noticeable drop in EM (to 29.5), although the F1-score
remains relatively close (42.5). These results suggest that the model can handle Chinese
QA with reasonable competence in its native form, but translating to English introduces
degradation, possibly due to changes in sentence structure or alignment errors in long answers.
For Dutch (P-Direkt), the translated model achieved an EM of 21.4 and an F1-score of 50.9.
The original-language model, by contrast, produces no exact matches, highlighting alignment
or formatting issues in the original version. Given the translated model’s performance, partic-
ularly its solid F1-score, the model demonstrates reasonable capability for Dutch QA despite
the dataset’s limited size.
In Italian (QA-ITA-200k), the results are especially strong for the translated version, which
achieves the second-highest F1-score overall (70.1) and a high EM of 58.3. The original-
language model performs substantially worse, likely due to alignment issues. The translated
setup, supported by reliable English QA span inference using distilBERT, enables effective
model training and prediction.
Russian (SberQuAD) delivers the best results among all datasets, with the translated version
reaching an EM of 65.2 and an F1-score of 76.3. Even the original version performs well,
suggesting the dataset’s high quality and suitability for span-based QA. The short average
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answers (4 tokens) and moderate context length (105 tokens) likely help the model focus its
predictions.

Lang Dataset Exact Match F1-Score ∆F1 (p.p.)

bg
EXAMS Translated 21.1155 29.9204

+3.38
EXAMS Original 16.1812 33.2970

zh
CMRC2018 Translated 29.4774 42.4524

+4.45
CMRC2018 Original 46.0682 46.9045

nl
P-Direkt Translated 21.4286 50.9458

-4.50
P-Direkt Original 0.0 46.4448

it
QA-ITA-200k Translated 58.2868 70.1191

-13.3
QA-ITA-200k Original 8.6920 56.7849

ru
SberQuAD Translated 65.2105 76.3440

-2.14
SberQuAD Original 53.5835 74.2025

Table 13: Results on the test sets of the Question answering datasests obtained after
fine-tuning.

Sentiment Analysis Table 14 presents the results for the Sentiment Analysis task. Perfor-
mance varies across languages and datasets, shaped by classification setups, label distributions,
and dataset characteristics.
For Bulgarian (Cinexio), the model demonstrates moderate performance, with an original-
model accuracy of 79.5% and an F1-score of 66.6%, which is lower likely due to the imbalanced
nature of the dataset. The translated version shows a decline across all metrics, particularly in
precision (from 69.6% to 63.3%), suggesting more false positives.
In Chinese (Weibo Senti 100k), the model achieves near-perfect accuracy and F1-score in the
original-language setting. The dataset is balanced between positive and negative sentiments
and is large in size, making it ideal for training. The translated version sees a notable drop, but
performance remains high overall. This demonstrates that the model performs exceptionally
well on this dataset in the original language and reasonably well post-translation.
Dutch (DBRD) also yields very strong performance, with the original and translated models
achieving nearly identical results, both around 92.9% accuracy and F1. The dataset is binary
and balanced, further supporting the model’s success.
For the Italian Tweets Dataset, results are more nuanced. The translated model achieves
slightly higher accuracy, but both models converge at an F1-score around 56%. The low F1
is likely influenced by the extreme class imbalance: over 81% of samples are labeled neutral,
while mixed and negative classes together make up less than 5%. This imbalance reduces recall
and precision for minority classes. Despite this, the relatively high accuracy and consistent F1
suggest the model performs adequately, though class-level performance (especially for rare
sentiments) may be weak.
Lastly, for Russian (RuReviews), the model shows solid performance in both configurations,
with the original achieving accuracy and F1-score above 77%. The dataset is evenly split
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across three sentiment labels, and the model maintains balanced performance across classes.
The translated version shows only a modest drop in all metrics, maintaining an F1 of 74.4%.
These scores reflect that the model is effective in performing sentiment analysis on this dataset,
even after translation.

Lang Dataset Accuracy Precision Recall F1-Score ∆F1 (p.p.)

bg
Cinexio Translated 0.7620 0.6332 0.6432 0.6380

+2.76
Cinexio Original 0.7945 0.6963 0.6632 0.6656

zh
Weibo Senti 100k
Translated

0.8294 0.8297 0.8293 0.8293
+15.49

Weibo Senti 100k
Original

0.9842 0.9846 0.9843 0.9842

nl
DBRD Translated 0.9283 0.9284 0.9282 0.9283

+0.07
DBRD Original 0.9293 0.9295 0.9290 0.9290

it
Italian Tweets
Dataset Translated

0.8341 0.5745 0.5861 0.5603
+0.05

Italian Tweets
Dataset Original

0.7993 0.5063 0.6815 0.5608

ru
RuReviews Trans-
lated

0.7417 0.7621 0.7414 0.7439
+3.1

RuReviews Original 0.7719 0.7833 0.7715 0.7749

Table 14: Results on the test sets of the Sentiment Analysis datasests obtained after
fine-tuning.

POS Tagging Table 15 presents the results for the POS tagging task, showing varying
effects of machine translation across different languages and datasets. Across all datasets, the
models generally achieved high performance.
In Chinese, translation significantly improved performance. The F1-score rose from 80.4% with
the original data to 93.7% with the translated version, indicating a substantial gain of over
13 points. Accuracy and all other metrics also increased notably, making this the dataset with
the most pronounced improvement from translation.
The Dutch dataset Alpino also benefited from the translation approach. The F1-score increased
from 78.3% in the original to 87% in the translated version, along with a boost in overall
accuracy.
In Bulgarian (UD_Bulgarian-BTB), performance remained relatively stable across original and
translated versions. The F1-scores were similar, and accuracy showed only a slight drop.
By contrast, PoSTWITA-UD saw a significant performance decline when using the translated
dataset. The F1-score dropped from 93.3% to 78.8%, and accuracy fell from 96.2% to 74.9%.
This represents the largest drop in performance among all languages in this task.
Russian Taiga also experienced a drop in all metrics with the translated data. The F1-score
decreased from 89.4% to 81.2%, and accuracy fell from 94.1% to 86.8%, though the drop was
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less drastic than in the Italian case.

Lang Dataset Accuracy Precision Recall F1-Score ∆F1 (p.p.)

bg
UD_Bulgarian-BTB
Translated

0.9745 0.9114 0.9528 0.9285
+0.28

UD_Bulgarian-BTB
Original

0.9764 0.9144 0.9806 0.9257

zh
UD_ChineseGSD
Translated

0.9819 0.9230 0.9573 0.9369
+13.31

UD_ChineseGSD
Original

0.8569 0.7637 0.8791 0.8038

nl
Alpino Translated 0.9643 0.8505 0.9138 0.8699

+8.68
Alpino Original 0.8442 0.7741 0.8116 0.7831

it
PoSTWITA-UD
Translated

0.7492 0.8057 0.8258 0.7881
-14.47

PoSTWITA-UD Orig-
inal

0.9621 0.9256 0.9411 0.9328

ru
Taiga Translated 0.8681 0.8052 0.8445 0.8122

-8.13
Taiga Original 0.9407 0.8678 0.9338 0.8935

Table 15: Results on the test sets of the POS datasests obtained after fine-tuning.

NER Table 16 presents the results for the Named Entity Recognition task.
Looking at the overall results for each language, the model demonstrates strong performance
on the original datasets for Bulgarian, Italian, and Russian, with F1-scores above 87%. This
indicates that the model can effectively perform NER when trained on high-quality, original
language data. Bulgarian and Italian both show solid results, with F1-scores of 90.25% and
87.42% respectively, suggesting reliable entity recognition. The translated datasets for Bulgar-
ian and Italian, despite showing some performance degradation compared to the originals, still
maintain reasonably strong F1-scores . This implies that the model retains some capacity to
perform NER on these translated datasets, though with reduced reliability. Russian translated
version suffers a drastic drop, indicating that translation severely impacts model effectiveness
for this language.
For Dutch, the model achieves moderate performance on both original and translated datasets,
with a slight improvement on the translated version (77.01% vs. 74.26%). This suggests that
the model is relatively robust to translation noise in Dutch, and can even benefit from translated
data in some cases.
Chinese presents lower performance, with F1-scores of 59.79% on the original dataset and
52.25% on the translated one. These results indicate challenges in modeling NER for Chinese,
potentially due to the complexity of the language or dataset characteristics, and suggest that
the model struggles to generalize well in this case regardless of translation.
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Lang Dataset Accuracy Precision Recall F1-Score ∆F1 (p.p.)

bg
wikiann-bg
Translated

0.9291 0.6906 0.8388 0.7575
-14.5

wikiann-bg
Original

0.9513 0.8829 0.9230 0.9025

zh
wikiann-zh
Translated

0.8296 0.4063 0.7317 0.5225
-7.54

wikiann-zh
Original

0.8578 0.4803 0.7917 0.5979

nl
wikiann-nl
Translated

0.9363 0.7439 0.7982 0.7701
+2.75

wikiann-nl
Original

0.8961 0.7011 0.7892 0.7426

it
wikiann-it
Translated

0.9141 0.7421 0.8030 0.7713
-10.29

wikiann-it
Original

0.9486 0.8526 0.8969 0.8742

ru
wikiann-ru
Translated

0.8172 0.2685 0.6446 0.3791
-50.05

wikiann-ru
Original

0.9450 0.8593 0.9008 0.8796

Table 16: Results on the test sets of the NER datasests obtained after fine-tuning.

NLI Table 17 shows the results for the Natural Language Inference task, which demonstrate
relatively stable model performance across both original and translated datasets, with only
modest variations in most cases.
For Bulgarian, the model performs well on both the original and translated versions of XNLI,
with F1-scores of 78.48% and 77.73%, respectively. The difference is minimal, indicating that
the model can maintain robust inference capabilities regardless of whether the data is in the
original language or translated.
In Chinese, performance is slightly lower overall, but the model still reaches an F1-score of
77.29% on the original dataset and 73.82% on the translated version. While the drop is more
pronounced here than for Bulgarian, the results remain reasonably strong, suggesting that the
model can still effectively perform NLI, though with some sensitivity to translation quality or
linguistic complexity.
Dutch also shows strong and consistent results, with F1-scores of 82.90% on the original and
82.48% on the translated dataset. Interestingly, while accuracy is slightly higher on the original
data, the translated version has a slight edge in precision.
For Italian, the translated dataset (LingNLI) actually outperforms the original, with an F1-score
of 64.34 % compared to 62.07%. Though both scores are lower than in other languages, this
small improvement implies that translation may help mitigate some limitations in the original
data quality or structure. Nevertheless, the relatively modest scores suggest that the model
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struggles somewhat more with this dataset overall.
Russian is another case where the translated version marginally outperforms the original: F1-
scores are 77.04% (translated) versus 75.91% (original). This again reflects the model’s re-
silience to translation in the NLI setting and suggests effective generalization.

Lang Dataset Accuracy Precision Recall F1-Score ∆ F1 (p.p.)

bg
XNLI-bg Translated 0.7771 0.7776 0.7771 0.7773

-0.75
XNLI-bg Original 0.7847 0.7868 0.7849 0.7848

zh
XNLI-zh Translated 0.7390 0.7384 0.7389 0.7382

-3.47
XNLI-zh Original 0.7723 0.7749 0.7722 0.7729

nl
SICK-NL Translated 0.8333 0.8166 0.8377 0.8248

-0.42
SICK-NL Original 0.8394 0.8100 0.8558 0.8290

it
LingNLI Translated 0.6451 0.6434 0.6440 0.6434

+2.27
LingNLI Original 0.6210 0.6256 0.6207 0.6207

ru
XNLI-ru Translated 0.7702 0.7707 0.7702 0.7704

+1.13
XNLI-ru Original 0.7599 0.7600 0.7600 0.7591

Table 17: Results on the test sets of the NLI datasests obtained after fine-tuning.
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7 Discussion

This section synthesizes the results presented in Section 6 by addressing the research questions
outlined earlier. The goal is to evaluate the consistency and reliability of a translation-based
approach using English BERT across different languages and NLP tasks. We analyze how lin-
guistic factors and task characteristics influence performance, and assess whether this method
can serve as a viable alternative to native-language models.

7.1 RQ1: Does a translation-based approach using English BERT
perform consistently across languages from different linguis-
tic families?

To address the first research question, we classify the languages in our study according to their
linguistic families and genera, using the WALS (World Atlas of Language Structures) phylo-
genetic tree [31]. This typologically informed framework groups languages based on shared
historical and structural features. According to this classification, Bulgarian and Russian be-
long to the Slavic genus within the Indo-European family; Dutch and English are part of
the Germanic genus, also within Indo-European; Italian belongs to the Romance genus, again
within the same family. Chinese, by contrast, falls under the Sino-Tibetan family, entirely
distinct from Indo-European languages.
The results reported in Section 6 indicate that performance is not uniform across languages,
though certain patterns emerge when considering linguistic relatedness. Most notably, Chinese
consistently underperforms in the translation-based setting. This likely stems from two key
factors. First, the typological distance between Chinese and English, spanning differences in
syntax, morphology, and word order, poses challenges for machine translation systems, which
may fail to preserve linguistic features critical to downstream tasks. Second, Chinese benefits
from a high-quality monolingual BERT model, trained on abundant native data and optimized
for its unique linguistic properties, which can outperform English BERT applied to translated
text, especially when translation introduces noise.
In contrast, Dutch consistently shows strong results with the translation-based approach, often
matching or outperforming native-language models, particularly in QA, POS tagging, and
NER. This can likely be attributed to the shared linguistic lineage between Dutch and English.
As members of the same genus (Germanic) and family (Indo-European), they exhibit similar
syntactic structures and morphosyntactic features that are more likely to be preserved in
translation, making English BERT’s learned representations more transferable.
However, linguistic proximity alone does not guarantee consistent outcomes. Bulgarian and
Russian, though both Slavic languages, display divergent performance across tasks. This in-
consistency may arise from differences in dataset size, morphological complexity, or the quality
of the translation systems employed for each language. These findings suggest that while shared
phylogenetic roots can support effective transfer, other factors, such as translation quality and
language-specific characteristics, also play a critical role.

7.2 RQ2: Are there specific NLP tasks where this approach is
more effective?

The effectiveness of the translation-based approach varies substantially across NLP tasks.
Some tasks show strong performance transfer when using English BERT on translated text,
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while others suffer significant degradation. Below, we evaluate each task with respect to its
suitability for cross-lingual transfer via translation.

Question Answering QA yields some of the most promising results for the translation-
based approach. In particular, datasets such as QA-ITA-200k, SberQuAD, and P-Direkt showed
improved or comparable performance when using translated data with English BERT, often
outperforming native-language models. A likely explanation is the strength of English BERT
models on QA, largely due to extensive pretraining on large-scale datasets like SQuAD.
Moreover, in cases like Dutch and Russian, where original datasets included labeled answer
spans, the translated versions, despite requiring automatic re-annotation, still outperformed
the native versions. This suggests that even with possible span alignment errors, the robust
generalization capabilities of English BERT compensate effectively.
Chinese presents a notable exception: the translated version underperformed significantly. This
may stem from several issues: limitations in our method of computing post-translation an-
swer spans, and the overall strength of the native Chinese BERT model, which benefits from
language-specific pretraining. Additionally, the considerable typological distance between Chi-
nese and English likely increases translation difficulty, introducing semantic and syntactic in-
consistencies that degrade QA performance.
In summary, QA appears particularly well-suited to translation-based transfer. Its format aligns
well with English BERT’s strengths, and the use of automatically annotated datasets minimizes
disparities introduced through translation.

Part-of-Speech Tagging The translation-based models also performed well in POS tag-
ging, particularly for Dutch and Chinese. English BERT’s pretraining includes extensive syn-
tactic exposure, which appears to translate effectively even when the data is non-native.
These results suggest that lower-level linguistic tasks like POS tagging are relatively robust to
translation-induced distortions.

Sentiment Analysis For sentiment analysis, translation-based models achieved perfor-
mance roughly comparable to native-language models in most cases. While native models
generally had a slight edge, the differences were often minor, especially in datasets with binary
classification and balanced class distributions (e.g., DBRD, RuReviews).
However, in more complex datasets like Italian Tweets or Cinexio, which feature multiple sen-
timent categories and imbalanced classes, the translation-based approach showed a noticeable
decline. This highlights its sensitivity to semantic nuance and label granularity, where even
slight mistranslations can shift sentiment cues.

Named Entity Recognition and Hate Speech Detection NER and hate speech
detection were the least compatible with the translation-based strategy. NER requires precise
token-level alignment and boundary preservation. Even minor changes introduced by transla-
tion, such as altered phrasing or reordering, can break entity spans, degrading model perfor-
mance. This issue was particularly evident in the WikiANN datasets, where our word-by-word
translation approach introduced artifacts that distorted named entity boundaries, leading to
lower F1-scores. Hate speech detection similarly relies on nuanced semantics, idiomatic ex-
pressions, and cultural context, all elements highly susceptible to distortion in translation.
Subtle shifts in tone or meaning can obscure offensive language, making this task ill-suited
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to a translation-based approach. These results suggest that tasks dependent on fine-grained
linguistic precision or cultural interpretation are poor candidates for cross-lingual transfer via
translation.

Natural Language Inference Natural language inference (NLI) generally produced fa-
vorable outcomes in the translation setting. Translated premise-hypothesis pairs preserved the
relational structure of inference tasks well enough that English BERT could still perform effec-
tively. In many cases, performance matched or exceeded that of native-language models. This
may reflect both the clarity of the NLI format and the strength of English BERT on inference
tasks, which involve pattern recognition more than domain-specific semantics or token-level
precision.

Summary In summary, translation-based approaches are most effective for tasks that are
less sensitive to token-level structure (e.g., POS tagging) and that are aligned with English
BERT’s pretraining strengths (e.g., QA, NLI), They are less effective for tasks that require
exact word boundaries (e.g., NER), depend on subtle semantics or cultural specificity (e.g.,
hate speech detection), and involve complex or imbalanced label spaces (e.g., multi-class
sentiment analysis).

7.3 RQ3: How does fine-tuning English BERT on translated text
compare to using pre-trained native-language BERT models?

To summarize the relative performance of the translation-based approach, Table 18 catego-
rizes results by language and task. Each language is classified into three categories per task:
translation-based results were worse than native-language BERT (✗), comparable (∼), or bet-
ter (✓). The performance of the translation-based approach is considered comparable to that
of native-language BERT models when it degrades by no more than 2–3 percentage points
across all evaluation metrics.
As shown, the translation-based method using English BERT performed comparably or better
than native models in 56.7% of all cases. This suggests that translation is a viable alternative
in over half of the settings studied, especially when native resources are limited or English
BERT has strong task-specific pretraining. Notably, languages such as Dutch and Bulgarian
achieved comparable or better performance in the majority of tasks.
However, in 43.3% of cases, native-language models outperformed the translation approach.
This was particularly evident for Chinese, which performed worse in 5 out of 6 tasks. This under-
performance reinforces the importance of considering typological distance, translation quality,
and the availability of strong native-language models when choosing between approaches.

7.4 Main Research Question

To what extent can a translation-based approach using English BERT obtain
comparable or better performance than native-language BERT models?
Our findings suggest that the translation-based approach can serve as a viable alternative to
native-language BERT models, but its effectiveness is highly dependent on both the language
and the specific NLP task. Across all evaluated settings, the translation-based method achieved
comparable or superior performance in approximately 56.7% of cases, indicating that it can
match or even exceed the performance of language-specific models under certain conditions.
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Bulgarian Chinese Dutch Italian Russian

Hate Speech Detection ∼ ✗ ✗ ✗ ∼
Question Answering ∼ ✗ ✓ ✓ ✓

Sentiment Analysis ✗ ✗ ∼ ∼ ∼
POS Tagging ∼ ✓ ✓ ✗ ✗

Named Entity Recognition ✗ ✗ ✓ ✗ ✗

Natural Language Inference ∼ ✗ ∼ ✓ ✓

Table 18: Performance of translation-based models compared to native-language models
across tasks and languages. Green ticks indicate better performance, red Xs indicate worse
performance, and tildes indicate comparable results.

This performance advantage is most evident in languages closely related to English, such as
Dutch, where shared linguistic structures like syntax and word order are more likely to be
preserved during translation. For Slavic languages like Russian and Bulgarian, the approach
was still competitive, with comparable or better results in four out of six tasks, despite greater
typological distance. On the other hand, Chinese consistently showed degraded performance
with the translation-based method. This can be attributed to the significant structural differ-
ences between English and Chinese, the potential loss of semantic nuances during translation,
and the high quality of the native Chinese BERT model, which likely captures language-specific
features more effectively.
The effectiveness of the translation-based approach also varied by task. It was particularly
well-suited to: question answering, where English BERT’s strong pretraining and robust span-
prediction capabilities transferred well; POS tagging, which relies more on syntactic patterns
than semantic nuance; and Natural Language Inference, where the premise-hypothesis format
is relatively translation-stable. In contrast, the method proved less effective for NER and hate
speech detection: NER is sensitive to token-level disruptions caused by translation, especially
when word boundaries and entity spans are not preserved, while hate speech detection, is
characterized by subtle, often culturally grounded expressions of offensive language that were
frequently lost or neutralized in translation.
In summary, while translation-based fine-tuning with English BERT cannot universally replace
native-language models, it is a promising approach in resource-constrained scenarios, especially
for structurally similar languages and tasks less reliant on precise lexical or cultural features.
Its success depends on the linguistic proximity to English, the task’s sensitivity to translation
artifacts, and the availability and quality of native-language resources.
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8 Future Work

While this study has demonstrated the potential and limitations of translation-based cross-
lingual transfer using English BERT, several aspects remain open for further exploration and
improvement:

• Statistical Significance Testing: One limitation of the current analysis is the ab-
sence of statistical significance testing. While performance differences were often clear,
formal significance tests would provide stronger evidence for the reliability of observed
trends. Incorporating statistical testing would help validate whether improvements or
degradations in performance are meaningful and consistent across multiple runs.

• Expanding Language Coverage: The experiments were limited to five target lan-
guages spanning a subset of language families. Future work could broaden the anal-
ysis to include a more diverse set of languages, particularly those from underrepre-
sented or low-resource families such as Afro-Asiatic, or Dravidian. This would enable a
more comprehensive understanding of how typological and genealogical factors influence
translation-based cross-lingual performance.

• Task Coverage in Hyperparameter Tuning: Hyperparameter tuning was performed
for four out of six tasks. A natural extension would be to fine-tune English BERT on
translated training data for all tasks, ensuring a uniform comparison across settings. This
could help clarify whether observed limitations stem from the translation process itself
or from the absence of task-specific adaptation.

• Model and Translation Quality: Further improvements may also come from explor-
ing different pretrained models or alternative translation techniques. This study relied on
OPUS-MT due to its open-source availability and ease of integration, but these models
may underperform compared to commercial systems like DeepL, particularly for complex
sentence structures or low-resource languages. While we did not perform a systematic
evaluation of translation accuracy, we observed notable artifacts in specific tasks. For
example, in the Named Entity Recognition task, where the input consists of isolated
words rather than full sentences, OPUS-MT frequently produced inconsistent or inac-
curate translations. This is likely due to the model being optimized for sentence-level
translation, making it ill-suited for word-level inputs. Future work could investigate the
impact of using higher-quality translation tools to improve the overall performance of
the methodology used in this thesis.

• Exploring Large Language Models: Although this study did not incorporate pro-
prietary large language models (LLMs) such as ChatGPT or GPT-4, future work could
investigate their capabilities in zero-shot or few-shot settings. These models have shown
strong performance in various NLP tasks without task-specific training. However, sev-
eral reasons justified their exclusion from this study. To begin with, the experimental
setup was particularly targeted towards evaluating translation-based transfer learning,
i.e., training and comparing fine-tuned models over original and translated data. This
level of experimental control is not achievable with proprietary LLMs, which operate
through prompt-based inference and not through supervised fine-tuning. In addition,
most of the tasks within this thesis, including POS tagging, Named Entity Recognition,
and Question Answering, require token-level or span-aligned predictions. These are not
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entirely backed by ChatGPT, which provides no structured outputs such as token in-
dices or IOB tags, and would require complex prompt engineering. GPT-based systems
also are not open-source, which limits reproducibility and transparency, essentially the
foundation of academic research. Their behavior may change over time due to backend
updates, and their outputs are stochastic in nature, so repeated testing is challenging.
Pragmatic constraints such as cost, API quotas, and privacy concerns regarding the data
also decrease the feasibility of relying on GPT-based systems for this study. For these
reasons, open-source models like multilingual BERT and OPUS-MT were adopted, of-
fering greater flexibility, full offline operation, and controlled fine-tuning. It is important
to notice that BERT and similar encoder-based architectures were originally developed
and optimized for downstream NLP tasks, while models like GPT are primarily designed
for generative tasks.

In summary, this study lays a foundation for understanding the efficacy of translation-based
transfer across languages and tasks, but also highlights the need for more rigorous and com-
prehensive evaluation in future research.
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9 Conclusion

This thesis investigated the central research question: "Does a translation-based approach
using English BERT perform consistently across languages from different linguistic families
and across different NLP tasks?"
To address this, we evaluated the effectiveness of fine-tuning the English BERT model on
machine-translated data for six NLP tasks: Sentiment Analysis, Hate Speech Detection, Ques-
tion Answering, Named Entity Recognition, Part-of-Speech Tagging, and Natural Language
Inference. For each task, we considered datasets from five different languages: Bulgarian, Chi-
nese, Dutch, Italian, and Russian. The goal was to assess whether translation can serve as a
viable cross-lingual strategy in scenarios where native-language models or resources are limited.
The results showed that the translation-based approach does not perform consistently across
all languages or tasks. In practice, its effectiveness is influenced by both the linguistic proximity
of the target language to English and the nature of the NLP task. This aligns partially with
theoretical expectations from prior work, which suggest that typological similarity can enhance
transfer learning. However, our findings also highlight exceptions and limitations.

9.1 Subquestion 1

Does a translation-based approach using English BERT perform consistently across languages
from different linguistic families?
The results indicate inconsistent performance across languages. For instance, Dutch, a Ger-
manic language closely related to English, benefited the most from translation, achieving
comparable or superior results to native-language models in most tasks. In contrast, Chinese,
from the Sino-Tibetan family, consistently underperformed, especially in tasks requiring precise
syntactic or token-level alignment. This suggests that linguistic distance and structural diver-
gence negatively impact the effectiveness of translation-based transfer. Nevertheless, languages
within the same family (e.g., Bulgarian and Russian) still showed varied outcomes, indicating
that other factors, such as translation quality and model robustness, also play a role.

9.2 Subquestion 2

Are there specific NLP tasks where this approach is more effective?
Yes. Translation-based models were most effective in tasks with lower reliance on precise se-
mantic or token-level information, such as Question Answering, POS tagging, and Natural
Language Inference. These tasks often preserved enough structural information through trans-
lation for English BERT to perform well. In contrast, tasks such as Named Entity Recognition
and Hate Speech Detection suffered significant degradation, largely due to alignment errors
and the loss of culturally or contextually grounded information. Therefore, task characteristics,
such as reliance on exact boundaries or cultural nuance, strongly influence transfer effective-
ness.

9.3 Subquestion 3

How does fine-tuning English BERT on translated text compare to using pre-trained native-
language BERT models?
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When compared to native-language BERT models, the translation-based approach achieved
comparable or better results in approximately 56.7% of evaluated cases, while native models
outperformed it in 43.3% of cases. This suggests that while translation is a viable alternative
when native resources are unavailable, it is not a universal substitute. Particularly for Chinese,
native models consistently outperformed the translated approach, highlighting the need for
language-specific models in certain cases.

9.4 Main Research Question

In conclusion, a translation-based approach using English BERT can be effective, but its per-
formance is not consistent across languages or tasks. Its success depends on multiple factors
including typological proximity to English, task-specific requirements, and the quality of trans-
lation. While it offers a practical alternative in low-resource settings, especially for syntactically
compatible languages and less semantically demanding tasks, it should not be assumed to be
universally applicable. Careful consideration must be given to both linguistic and task-specific
characteristics when adopting this strategy in cross-lingual NLP applications.
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[64] Daniele Licari and Giovanni Comandè. Italian-legal-bert models for improving natural
language processing tasks in the italian legal domain. Computer Law & Security Review,
52:105908, 2024.

[65] Sun Lina, Konstantin A Aksyonov, and Wu Shiying. Based on runewscorp: Improving
accuracy in long text classification. In 2024 International Russian Automation Conference
(RusAutoCon), pages 589–594. IEEE, 2024.

65

https://www.labelf.ai/blog/what-is-accuracy-precision-recall-and-f1-score
https://www.labelf.ai/blog/what-is-accuracy-precision-recall-and-f1-score


[66] Shuang Liu, Nannan Tan, Yaqian Ge, and Niko Lukač. Research on automatic ques-
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2004.

[92] Endang Wahyu Pamungkas, Valerio Basile, and Viviana Patti. A joint learning approach
with knowledge injection for zero-shot cross-lingual hate speech detection. Information
Processing & Management, 58(4):102544, 2021.

[93] Xiaoman Pan, Boliang Zhang, Jonathan May, Joel Nothman, Kevin Knight, and Heng
Ji. Cross-lingual name tagging and linking for 282 languages. In Proceedings of the 55th
annual meeting of the association for computational linguistics (volume 1: long papers),
pages 1946–1958, 2017.

[94] Petko Petkov. Question answering with books translated to bulgarian. https:
//huggingface.co/datasets/petkopetkov/QABGB. Accessed: January 27, 2025.

[95] Truong HV Phan and Phuc Do. Ner2ques: combining named entity recognition and
sequence to sequence to automatically generating vietnamese questions. Neural Com-
puting and Applications, 34(2):1593–1612, 2022.

[96] Antonio Piizzi, Donatello Vavallo, Gaetano Lazzo, Saverio Dimola, and Elvira Zazzera.
A natural language processing model for the development of an italian-language chat-
bot for public administration. International Journal of Advanced Computer Science &
Applications, 15(9), 2024.
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A Modified Query

As explained in Section 3, we have modified the query for SLR Question 3 to obtain more
diverse results, since most of the retrieved studies focused Chinese sentiment analysis, while
almost no relevant papers were found for Bulgarian tasks. The modified query we employed is
the following:
SLR Q3 modified query:

(
("Abstract":dataset)
AND ("Abstract":Question Answering OR "Abstract":Textual Entailment

OR "Abstract":Natural Language Inference OR "Abstract":NLI
OR "Abstract":Sentiment Analysis OR "Abstract":Hate Speech Detection)

AND ("Abstract":Italian OR "Abstract":Bulgarian OR "Abstract":Dutch
OR "Abstract":Russian OR "Abstract":Chinese

)

B Prior Knowledge Papers

In this section, we provide the list of papers manually labeled as relevant or not relevant in
order to supply prior knowledge to the ASReview model during the active learning phase of the
systematic literature review. These labels are used to guide the machine learning algorithm in
identifying relevant literature. The first column indicates whether each paper was selected to
support the first or the second SLR research question.

Table 19: List of papers manually labeled as prior knowledge to initialize the ASReview
model. These include both relevant and not relevant examples, used to guide the initial
training phase of the active learning process.

Used for Paper Title Label

SLR Q1

Extracting patient lifestyle characteristics from Dutch clinical text
with BERT models [84] Relevant

MLT-DFKI at CLEF eHealth 2019: Multi-label Classification of
ICD-10 Codes with BERT [5] Relevant

Deep Learning Methods for Sign Language Translation [7] Not Relevant
Recognition and normalization of multilingual symptom entities
using in-domain-adapted BERT models and classification layers
[40]

Relevant

NER2QUES: combining named entity recognition and sequence
to sequence to automatically generating Vietnamese questions
[95]

Not Relevant

New Italian Cultural Heritage Data Set: Detecting Fake Reviews
With BERT and ELECTRA Leveraging the Sentiment [19] Relevant

The Applicability of LLMs in Generating Textual Samples for
Analysis of Imbalanced Datasets [43] Not Relevant
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Used for Paper Title Label

SLR Q2

Unsupervised fine-grained hate speech target community detec-
tion and characterisation on social media [90] Not Relevant

ITALIAN-LEGAL-BERT models for improving natural language
processing tasks in the Italian legal domain [64] Not Relevant

A joint learning approach with knowledge injection for zero-shot
cross-lingual hate speech detection [92] Relevant

Automated Depression Detection from Tweets: a Comparison of
NLP Techniques [11] Not Relevant

Assessing language models’ task and language transfer capabili-
ties for sentiment analysis in dialog data [85] Not Relevant

Am I a Resource-Poor Language? Data Sets, Embeddings, Mod-
els and Analysis for four different NLP Tasks in Telugu Language
[72]

Relevant

An Efficient Deep Learning for Thai Sentiment Analysis [56] Relevant
Introducing Various Semantic Models for Amharic: Experimenta-
tion and Evaluation with Multiple Tasks and Datasets [149] Relevant

SLR Q3

Design and Development of a Sentiment Analysis System for
Chinese Online Comment Texts [158] Relevant

Semantic Parsing and Text Generation of Complex Questions
Answering Based on Deep Learning and Knowledge Graph [60] Relevant

A Syntax-based BSGCN Model for Chinese Implicit Sentiment
Analysis with Multi-classification [38] Relevant

ViReader: A Wikipedia-based Vietnamese reading comprehension
system using transfer learning [133] Not Relevant

V-SBERT: A Mixture Model for Closed-Domain Question-
Answering Systems Based on Natural Language Processing and
Deep Learning [159]

Relevant

Neural Network Sentiment Classification of Russian Sentences
into Four Classes [57] Relevant

Exploring the Utility of Dutch Question Answering Datasets for
Human Resource Contact Centres [134] Relevant

An Effective BERT-Based Pipeline for Twitter Sentiment Analy-
sis: A Case Study in Italian [99] Relevant

Enhanced Chinese named entity recognition with multi-
granularity BERT adapter and efficient global pointer [153] Non Relevant

Few-Shot Legal Knowledge Question Answering System for
COVID-19 Epidemic [143] Non Relevant

C Relevant Papers

In this section we report the tables showing the list of relevant papers obtained after applying
the SYMBALS methodology for the first two SLR questions.
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ID Paper Title
Number of

relevant
references

Q1.1 *Extracting patient lifestyle characteristics from Dutch clini-
cal text with BERT models [84] 1

Q1.2 *MLT-DFKI at CLEF eHealth 2019: Multi-label Classifica-
tion of ICD-10 Codes with BERT [5] 2

Q1.3
Recognition and normalization of multilingual symptom enti-
ties using in-domain-adapted BERT models and classification
layers [40]

3

Q1.4 Cross-lingual distillation for domain knowledge transfer with
sentence transformers [98] 6

Q1.5 Intent detection and slot filling for Persian: Cross-lingual
training for low-resource languages [151] 3

Q1.6
Semi-Supervised Low-Resource Style Transfer of Indone-
sian Informal to Formal Language with Iterative Forward-
Translation [140]

1

Q1.7
A Comparison of Lexicon-based and Transformer- based Sen-
timent Analysis on Code-mixed of Low-Resource Languages
[125]

5

Q1.8
Morphologically Motivated Input Variations and Data Aug-
mentation in Turkish-English Neural Machine Translation
[150]

0

Q1.9
Enhancing Multilingual Table-to-Text Generation with QA
Blueprints: Overcoming Challenges in Low-Resource Lan-
guages [120]

N/A

Q1.10 Cook Smarter Not Harder: Enhancing Learning Capacity in
Smart Ovens with Supplementary Data [80] N/A

Table 20: List of relevant papers obtained for SLR Q1 after active learning. The number
of relevant references found during backward snowballing for each paper is also reported.
N/A indicates that the stopping criterion for backward snowballing was met.

From
paper Papers Found

Q1.2
• Translations as additional contexts for sentence classification [6]

• Overview of the CLEF eHealth 2019 Multilingual Information Extraction [30]

Continued on next page
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From
paper Papers Found

Q1.3

• Overview of DisTEMIST at BioASQ: automatic detection and normalization
of diseases from clinical texts: results, methods, evaluation and multilingual
resources [82]

• xMEN: a modular toolkit for cross-lingual medical entity normalization [14]

• Spanish pre-trained BERT model and evaluation data [17]

Q1.4

• No language left behind: Scaling human-centered machine translation [23]

• An empirical study on cross-lingual vocabulary adaptation for efficient lan-
guage model inference [148]

• A comparative study of cross-lingual sentiment analysis [101]

• Localizing in-domain adaptation of transformer-based biomedical language
models [16]

• Cross-lingual learning for text processing: A survey [97]

• Reinforced transformer with cross-lingual distillation for cross-lingual aspect
sentiment classification [142]

Q1.5

• Cross-lingual transfer learning for multilingual task-oriented dialog [112]

• (Almost) zero-shot cross-lingual spoken language understanding [129]

• End-to-end slot alignment and recognition for cross-lingual NLU [147]

Q1.6
• Domain, translationese, and noise in synthetic data for neural machine trans-

lation [13]

Continued on next page
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From
paper Papers Found

Q1.7

• Multilingual sentiment analysis on social media disaster data [39]

• Sentiment analysis on monolingual, multilingual and code-switching Twitter
corpora [136]

• Domain-specific sentiment analysis approaches for code-mixed social network
data [100]

• Improved lexicon-based sentiment analysis for social media analytics [54]

• Benchmarking Machine Translated Sentiment Analysis for Arabic Tweets
[106]

Table 21: List of relevant papers obtained for SLR Q1 after backward snowballing. Column
From paper indicates the paper ID (see Table 20) that, during backward snowballing,
yielded to the list of papers on the right.

From
paper Papers Found

Q1.2

• Deep learning models for multilingual hate speech detection [4]

• Cross-lingual polarity detection with machine translation [26]

• Is machine translation ripe for cross-lingual sentiment classification? [32]

• The state and fate of linguistic diversity and inclusion in the NLP world [52]

• Lost in translations? building sentiment lexicons using context based machine
translation [77]

Q1.3 • Are all languages created equal in multilingual BERT? [144]

Q1.4
• WangchanBERTa: Pretraining Transformer-Based Thai Language Models

[67]

Table 23: List of relevant papers obtained for SLR Q2 after backward snowballing. Column
From paper indicates the paper ID (see Table 20) that, during backward snowballing,
yielded to the list of papers on the right.
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ID Paper Title
Number of

relevant
references

Q2.1
A New Italian Cultural Heritage Data Set: Detecting Fake Re-
views With BERT and ELECTRA Leveraging the Sentiment
[19]

0

Q2.2 A joint learning approach with knowledge injection for zero-
shot cross-lingual hate speech detection [92] 5

Q2.3
Am I a Resource-Poor Language? Data Sets, Embeddings,
Models and Analysis for four different NLP Tasks in Telugu
Language [72]

1

Q2.4 An Efficient Deep Learning for Thai Sentiment Analysis [56] 1

Q2.5
Introducing Various Semantic Models for Amharic: Experi-
mentation and Evaluation with Multiple Tasks and Datasets
[149]

N/A

Q2.6 A deep connection to Khasi language through pre-trained em-
bedding [124] N/A

Q2.7
Ensemble transfer learning on augmented domain resources
for oncological named entity recognition in Chinese clinical
records [157]

N/A

Q2.8 MC-BERT4HATE: Hate Speech Detection using Multi-
channel BERT for Different Languages and Translations [119] N/A

Q2.9 A multimodal approach to cross-lingual sentiment analysis
with ensemble of transformer and LLM [79] N/A

Q2.10 Impact of Transformer-Based Models in NLP: An In-Depth
Study on BERT and GPT [109] N/A

Q2.11 Based on RuNewsCorp: Improving Accuracy in Long Text
Classification [65] N/A

Table 22: List of relevant papers obtained for SLR Q2 after active learning. The number
of relevant references found during backward snowballing for each paper is also reported.
N/A indicates that the stopping criterion for backward snowballing was met.

D Datasets

This section reports the list of datasets obtained after conducting the systematic literature
review for the third SLR question. Each table shows the datasets, along with the papers in
which they were found, for a specific language, reporting the results of sentiment analysis,
hate speech detection, natural language inference and question answering.
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Table 24: Sentiment Analysis Datasets found during SLR.

Language Dataset Source Found During

Bulgarian
Cinexio Moview Reviews [46] Targeted Search

Sentiment Analysis Data for the Bulgarian
Language

[73] Targeted Search

Chinese

Weibo Dataset [158] Active Learning

ChnSentiCorp [51] Active Learning

Chinese Stock Reviews Dataset [62] Active Learning

waimai_10k, online_shopping, simplify-
weibo_4_moods

[121] Active Learning

weibo_senti_100k3 [123] Active Learning

Internet News Sentiment Analysi [115] Active Learning

Chinese Buzzwords [63] Active Learning

Book Reviews Dataset [36] Active Learning

bigboNed [155] Active Learning

THUNLPAIPoet [154] Active Learning

Dutch
Dutch Book Reviews Dataset v3.0 [25] Targeted Search

Dutch Sentiment Analysis [46] Targeted Search

Italian

Fallout Dataset [44] Active Learning

Italian tweets dataset [69] Targeted Search

Italian TripAdvisor Reviews Comment
Dataset

[12] Targeted Search

Italian Sentiment Analysis [21] Targeted Search

Russian
ROMIP2012, SentiRuEval-2015-banks,
SentiRuEval-2015-telecoms, SentiRuEval-
2016-banks, SentiRuEval-2016-telecoms

[42] Active Learning

RuTweetCorp, Twitter Sentiment for
15 European Languages, Kaggle Rus-
sian_twitter_sentiment, RuSentiment,
Kaggle Russian News Dataset, Kaggle
Sentiment Analysis Dataset, RuReviews

[118] Active Learning
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Table 25: Question Answering Datasets found during SLR.

Language Dataset Source Found During

Bulgarian
QABGB [94] Targeted Search

Sentiment Analysis Data for the Bulgarian
Language

[73] Targeted Search

Chinese

FAQ Dataset [159] Active Learning

DuReader [139] Active Learning

CMedQA, CMedQA2 [103] Active Learning

WebQA [66] Active Learning

NLPCC 2016 KBQA [61] Active Learning

CHIP-STS [156] Active Learning

CMRC2018 (Chinese Machine Reading
Comprehen- sion 2018), DRCD (Delta
Reading Comprehension Dataset)

[41] Active Learning

CMID (Chinese Medical Intent Dataset) [138] Active Learning

Dutch
Question and answer dataset National Per-
sonnel Portal

[134] Targeted Search

Automatic Quesion Answering of City Coun-
cil Question

[50] Targeted Search

SQuAD-NL [25] Targeted Search

Italian
SQuAD-IT [96] Active Learning

QUANDHO [78] Targeted Search

Russian
RuBQ Dataset [34] Active Learning

XQuAD dataset [8] Targeted Search

SberQuAD [33] Targeted Search

Table 26: Hate Speech Detection Datasets found during SLR.

Language Dataset Source Found During

Bulgarian
Hate Speech Classification in Bulgarian [104] Targeted Search

Toxic Language Classification [128] Targeted Search

Chinese COLD, TOCP, TOCAB, SWSR, CoLA,
TOXICN

[146] Targeted Search

Continued on next page...

81



Language QA Example Source Found During

Dutch
LiLaH-HAG [71] Active Learning

DALC v1.0 [18] Targeted Search

DALC v2.0 [25] Targeted Search

Italian

Religious Hate Speech [105] Active Learning

HONEST [89] Targeted Search

IHSC (Italian Hate Speech Corpus) [111] Targeted Search

Whatsapp Dataset [122] Targeted Search

Russian
RuEthnoHate [102] Active Learning

Automatic Toxic Comment Detection in So-
cial Media for Russian, Detection of Abusive
Speech for Mixed So- ciolects of Russian and
Ukrainian Languages, Russian South Park

[28] Targeted Search

Table 27: NLI Datasets found during SLR.

Language Dataset Source Found During

Bulgarian
Cross-lingual Natural Language Inference [45] Targeted Search

XNLI [47] Targeted Search

Chinese XNLI [47] Targeted Search

Dutch SICK-NL [25] Targeted Search

Italian RTE-3, LingNLI [116] Targeted Search

Russian XNLI [47] Targeted Search
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