Supervisors:
Tobias Kappé & Liam Chung

BACHELOR THESIS

Bachelor Data Science

and Artificial Intelligence

Completeness and Decidability of
(Guarded) Kleene Algebra (with Tests)
under the Hypothesis e = 0

Jip Raven

Leiden Institute of Advanced Computer Science (LIACS)

www.liacs.leidenuniv.nl

01/07/2025

www.liacs.leidenuniv.nl

Abstract

Kleene Algebra (KA) is a framework for reasoning algebraically about the control flow of
programs. It consists of regular expressions and axioms defining the equivalence of the
expressions. Kleene Algebra with Tests (KAT) is an extension of KA that adds Boolean tests.
Guarded Kleene Algebra with Tests (GKAT) is a restriction of KAT that models strictly
deterministic control flow. Decidability says there exists an algorithm that determines whether
two expressions are provably equivalent. The decidability of KA under the hypothesis e = 0 was

proved by Cohen |

]. This proof has been adapted to KAT but cannot easily be adapted

to GKAT. We present an alternative proof for the decidability of KA under the hypothesis
e = 0 that can more easily be adapted to GKAT. We then show that this proof strategy is not
valid for GKAT.

Contents
1 Introduction
1.1 Thesis overview
2 Definitions
2.1 Kleene Algebra
2.2 Finite State Automata
2.3 Completeness and Decidability of KA . .
24 Hypothesise=0
2.5 Guarded Kleene Algebra with Tests . . .
2.6 Automaton Model for GKAT
2.7 Completeness and Decidability of GKAT
3 Decidability of KA under e = 0
3.1 Proof Sketch
3.2 Removal Operation
3.3 Equivalence of Removal Operation . . .
3.4 Construction of Corresponding KA . . .
3.5 Completeness and Decidability
4 Decidability of GKAT under e =0
4.1 Removal Operation for GKAT
4.2 Non-Equivalence of Removal Operation for GKAT
5 Conclusions and Further Research
References

A GKAT Counter Model

B Counter Model Mace4 Query

15
15
15
16
18
21

21
22
27

29

32

32

34

1 Introduction

Kleene Algebra (KA) is a framework for reasoning algebraically about the control flow of programs.
It consists of reqular expressions and axioms that define the equivalence of those expressions.
The expressions are made up of abstract primitive actions and the operations +, - and (—)*. The
expression f+ g corresponds to a non-deterministic choice between executing f or g, f-¢ corresponds
to executing f followed by g and f* corresponds to executing f zero or more times.

KA admits several important models such as formal languages |] and binary relations |].
For KA, the completeness of a model says that if two expressions are equal in that model then
they are also provably equivalent. Decidability says that there exists an algorithm that determines
whether two expressions are provably equivalent. The equational theory of KA is complete with
respect to the language model, decidable and PSPACE-complete | |. However, reasoning under
assumptions, i.e. whether a set of hypotheses entails an equation, is undecidable for arbitrary
hypotheses |]. Under some restricted forms of hypotheses, such as e = 0, KA remains de-
cidable []. In KA, the hypothesis e = 0 can be intuitively understood as knowing that the
program e never terminates successfully. KA is also decidable under other kinds of hypotheses such
as S =1, where S is a sum of letters | .

One extension of KA is Kleene Algebra with Tests (KAT), which combines KA with Boolean
Algebra. Boolean tests can be used to model if then else statements, and with the combination
of Boolean tests and the operation (—)*, the control flow of while loops can be modelled |].

The equational theory of KAT is decidable [] and PSPACE-complete | |. Furthermore,
the equational theory of KAT is also decidable under the hypothesis e = 0 | .
One use case of KAT is the verification of compiler optimisations |]. We can also use KAT

to reason about Hoare triples. A Hoare triple is a triple { P}S{Q} where P and @) are assertions
and S is a program. It states that if P holds, then after executing S,) holds. In KAT Hoare triples
can be encoded as hypotheses of the form e = 0. This allows for reasoning under the assumption

of the partial correctness of a program in KAT | |. KAT has also been used to reason about
packets in networks |]
Smolka et al. | | identify a fragment of KAT that allows for deciding program equivalence

in near linear time, while still being sufficiently expressive to model typical imperative programs.
This fragment is called Guarded Kleene Algebra with Tests (GKAT). GKAT replaces union (f + g)
and iteration (f*) with guarded versions (f 44 g) and (f®*)) where b is a Boolean test. Here guarded
means that for f +, g, whether f or ¢ is executed and for f®, the amount of times that e is
executed, both depend on the guard (Boolean test) b.

We can model the program while b do f; if b then g using GKAT as f®) - (g 4+, 1). Intuitively,
we know that g will never be executed and that the program should therefore be equivalent to the
program while b do f that does not contain the if statement. This program can be modelled in
GKAT as f® and the GKAT expressions f®) - (g 44 1) and f® are provably equivalent using the
axioms of GKAT.

The axioms model fundamental equivalences of programs. For example, the axiom f+,9 = g+3 f
models flipping the branches of an if-statement by negating the condition. Concretely it models
that the programs if b then f else g and if not b then g else f are equivalent.

While GKAT is complete and decidable, its axioms are not fully algebraic because one of the
axioms has a side condition prohibiting arbitrary substitutions | |. Kappé et al. |]
provide an algebraic axiomatisation for what they call the skip-free fragment of GKAT and prove

completeness for this fragment. Whether GKAT is also decidable under the hypothesis e = 0 has
been left unanswered.

Cohen’s proof | | has been adapted to prove the decidability of KAT under the hypothesis
e=0] |. A similar adaptation to GKAT is not possible. Cohen’s proof works via eliminating
the hypothesis by “adding” e to the expressions for which equivalence is being decided. Under the
hypothesis e = 0, the resulting expressions are equivalent to the original expressions. Then because
both expressions contain e, the hypothesis is irrelevant for their equivalence. This “addition” is
done using the + and cannot be adapted to the 4+, in GKAT. In this thesis we first provide an
alternate proof for the decidability of KA under the hypothesis e = 0 inspired by Cohen’s proof.
This alternate proof works by “removing” e instead of “adding” it. As a consequence the proof
does not rely on the + and can therefore be adapted to GKAT. Subsequently, we attempt to adapt
this proof to GKAT and show that GKAT expressions with e “removed” are not always equivalent
to the original expressions. Therefore the proof cannot be adapted to GKAT.

1.1 Thesis overview

In Section 2 we give an overview of KA, GKAT and the lemmas used in our proofs. Then in Section 3
we construct a novel proof of the decidability of KA under the hypothesis e = 0 inspired by Cohen’s
proof []. Subsequently in Section 4 we attempt to adapt this proof to GKAT and show that a
crucial step does not hold there. Finally in Section 5 we discuss our results and offer suggestions
for further research.

2 Definitions

This section starts by introducing KA, its axioms, the language model and the relational model.
Then we introduce both deterministic and non-deterministic finite automata. We discuss solutions
to automata and the connection between expressions and automata. We end the section about KA
by discussing its completeness and decidability both in general and under the hypothesis e = 0.

Subsequently, we introduce GKAT, its axioms, its language model and its relational model. We
present the automaton model for GKAT, solutions to automata and the connection with GKAT
expressions. Finally, we discuss existing completeness results about GKAT and how they relate to
the objective of this thesis.

2.1 Kleene Algebra

KA is a framework that allows us to represent programs in an algebraic way. More concretely it
allows us to model the execution traces of programs, i.e. model all possible valid ways a program
can be executed. As we will see later, expressions in KA are precisely the regular expressions.
The syntax of KA consists of expressions made up of abstract primitive actions from some set
Y, called an alphabet, and the operations +, - and (—)*. Here f + g means non-deterministically
executing either f or g, f - g means first executing f then executing g and f* means executing f
zero or more times. We also have a 0 and a 1, where 0 denotes some program that immediately
terminates unsuccessfully and 1 denotes a program that immediately terminates successfully without

doing anything. Expressions in KA are generated by the following grammar:

frg=0]1]laeX|[f+gl|f-g]f

As a notational convention we use a, b, ¢ to denote actions and e, f, g, h to denote expressions. Below
we formally define KA.

Definition 2.1 (Kleene Algebra |). A KA is a tuple (K,+,-,(—)*0,1) where for all
x,1y, 2z € K the following axioms hold:

r+0=2 z+z=2 gcst+y=y+r r+@y+tz)=(@+y +=z
r-(y-2)=(x-y) -z z-(y+z2)=x-y+z-z (x+y)-z=x-2+y-z
r-l=x=1 2 - 0=0=0-x l+z-2z"=2"=142"2
rty-z2<z=y" x<z r+y-z<y=uz-z2"<y
Here x < y is syntactic sugar for x +y = y.

We use f = g to denote provability in KA. Therefore f = ¢ says we can construct a proof using
just the axioms of KA that f = g. Furthermore we use f < ¢ as syntactic sugar for f + g = ¢ and
it can be proved that < forms a partial order on expressions. We can use these axioms to prove
some basic equivalences such as the following lemma.

Lemma 2.2. For any f,g,h € Exp, f+g < hif and only if f < h and g < h.

Proof. We first prove f ShAg<h = f+g<h.

fEhANgSh = f+h=hAg+h=h definition <
— f+(g+h)=h g+h=h
= f+g=h definition <

Now we prove f+g=<h = g < h.

fro9=f+9 = f+9+9=F+yg rTHr=1
= g+ (f+9)=f+y T+y=y+uw
== g=f+yg definition <
= g=h f+ g £ h, transitivity of <

Finally we prove f+g<h — f < h.

fr9=f+9 = F+(+9)=Ff+y ttr=uw
= f=f+g definition <

= f<h f + g < h, transitivity of <

[

Throughout this thesis, unless otherwise specified, when talking about the semantics of KA we
will use the language model, which we will introduce shortly. In the language model expressions
are interpreted as languages, which are sets of strings. A string, also called a word, is an ordered
sequence of symbols from an alphabet. We use X* to denote all words over the alphabet ¥ and use
€ to denote the empty word. Furthermore we use - to denote concatenation, where v - v is a string
consisting of the symbols of u followed by the symbols of v. For languages we also use - for language
concatenation, where Ly - Ly := {u-v | u € L,v € Ly}. Often we will drop the - and denote
concatenation of both strings and languages simply as uv or Ly Ly. We define exponentiation for
both strings and languages as repeated concatenation where: 2"+ := 2" - x and 2° := € for strings
and 2° := {e} for languages. Finally we have an operation (—)* for languages, where L* := |, -, L".
Now we can formally define the language model. -

Definition 2.3 (Language Model |]). The tuple (2¥",U, -, (—)*, 0, {e}) is a KA and is called
the language model. An interpretation of an expression in the language model is defined inductively
by the function [—] : Exp — 2% as follows:

[a} :={a} [0]:=0 [1]:={e}
[F+gl =10l 1f-al:=1-To1 1F1:=UT"

The above definition defines the interpretation of an expression in the language model as
a language. Therefore, two expressions are equal in the language model precisely when their
corresponding languages are equal. Not every language can be represented by a regular expression,
for example the language {a"b" | n € N} cannot be represented by a regular expression |].
The languages that can be represented by a regular expression are called reqular languages.

Usually a model requires a separate interpretation function that defines the interpretation of the
primitive actions. In this definition we use the standard interpretation for the language model, i.e.
we interpret an action a as {a}. In the following example we demonstrate how we can informally
reason about the language of an expression.

Example 2.4. The expression (b + ab*a)*ab* is interpreted in the language model as the set of
strings over {a, b} that have an odd number of a’s. We can read this expression as follows. Every
string starts with zero or more times (b + ab*a) which represents either the string b or the strings
that start and end with an a and have any number of b’s in the middle. If we repeat those strings a
number of times we always add zero or two a’s and therefore the number of a’s is always even. By
choosing the b any number of times at the start we can control the number of b’s before the first a.
The b* then controls the number of 0’s in the middle and by choosing the b a number of times after
the second a we can control the number of b’s at the end. Therefore, (b + ab*a)* contains all words
over {a,b} with an even number of a’s. Finally, at the end of the full expression we have ab* which
adds one a making the total number of a’s odd. The b* at the end then ensures that the expression
contains all possible strings over {a, b} that have an odd number of a’s.

Another model of KA that is of interest is the relational model. The relational model deals with
sets of binary relations over a set S. The relational model can be used to reason about programs in
terms of the effect a program has on a state from S. In this view, an interpretation of an expression
is the relation between states before and after executing the program. Before we can formally

introduce the relational model we must first introduce several operations for relations. For two
binary relations R; and R, we have the relational composition R, o Ry where:

Ry o Ry :={(s1,53) | 352 (51,52) € Ry, (52,53) € Ro}

We use idg to denote the identity relation over a set S, i.e. for all s € S we have (s, s) € idg. We
can then inductively define exponentiation for relations as follows:

R°:=idg R"!':=RoR"
Furthermore, we use R* to denote the reflexive-transitive closure of R, which can also be characterised

by the following union:
R =|JR"

n>0

Now we can formally define the relational model.

Definition 2.5 (Relational Model |]). The tuple (2575 U, 0, (=)*,0,ids) is a KA that is
called the relational model. An interpretation for a symbol in the relational model is a pair (S, o)
where 0 : ¥ — 25%% interprets a symbol from ¥ as a relation on S. The interpretation of an
expression is then defined inductively by the function [~], : Exp — 25%% as follows:

[a], := o(a) [0],:=0 [1], :=ids
[f +glo = [f]o U glo [f - glo == [f]s o [9]o [f*]6 = [f15
The lemma below states the connection between the relation model and the language model.

Lemma 2.6 (]). For all KA ezpressions f and g, [f] = [g] if and only if for all relational
interpretations o, [f]o = [9]o-

This lemma states that an equality holds in the language model if and only if it holds for all
relational interpretations.

2.2 Finite State Automata

Finite state automata are abstract devices that accept or reject inputs by reading the input, symbol
by symbol, and transitioning between states. After reading an entire input we either end up in an
accepting state and accept, or we do not and reject the input.

Definition 2.7 (Finite State Automata). A finite state automaton is a tuple (@, d, F, qo), where Q)
is a set of states, 0 :) x X — @ is the transition function, F' C (@) is the set of accepting states and
qo € @ is the initial state.

We use the notation ¢ %4 ¢’ to denote 6(g,a) = ¢. If § is clear from the context we will simply
write ¢ — ¢’. We now define what words are accepted by a state inductively.

Definition 2.8. The words accepted by a state ¢ are given by the following conditions:

e The empty word is accepted if and only if ¢ is an accepting state.

e The word a - w is accepted if and only if there is a transition ¢ —s ¢’ where ¢’ accepts w.

This definition corresponds precisely to starting in state ¢, reading a word, symbol by symbol,
taking the corresponding transitions and ending up in an accepting state after reading the entire
word. Finally, a word is accepted by an automaton if it is accepted by the initial state of that
automaton. We can then define the language of a state or automaton as the set of words that are
accepted by that state or automaton. We will use L(q) and L(A) to denote the language of a state
and an automaton respectively.

Another way to characterise strings accepted by an automaton is in terms of the extended
transition function.

Definition 2.9. The extended transition function 6* : @) X ¥* — @ defines transition for strings in-
stead of just symbols. It is defined inductively as follows: §*(q, €) = ¢ and §*(q, w-a) = 6(5*(q, w), a).

Using the extended transition function we can characterise L(q) as the set of words w where
0*(q,w) is an accepting state.

An automaton is drawn with circles representing states and arrows between the states repre-
senting the transitions. The initial state is marked by an arrow without source and accepting states
are drawn as a double circle.

Example 2.10. The automaton below has two states: ¢y and g;. The state qq is the initial state
and not an accepting state. The state ¢; is an accepting state. We can read the word bbab and
check if its accepted as follows. We start in ¢y and take the transition corresponding to the first
symbol in the string. This is the b transition. After taking this transition we are still in gy. Then
we check which transition corresponds to the next symbol. Once again this is the b transition and
we stay in qg. Next we read an a and and after taking the a transition we end up in ¢;. Finally we
read b, take the b transition in ¢; and stay in ¢;. Now that the entire word has been read we check
if we are in an accepting state, which we are and therefore we accept.

The automaton above accepts exactly all strings over the alphabet {a, b} with an odd number
of a’s. It is a deterministic finite state automaton (DFA). We now define a non-deterministic finite
state automaton (NFA).

Definition 2.11 (NFA). A non-deterministic finite state automaton is a tuple (@, d, F, qo), where
Q is a set of states, § : Q x ¥ — 29 is the transition function, F C Q is the set of accepting states
and ¢p € @ is the initial state.

The difference between a DFA and an NFA is that a DFA transitions to a state while an NFA
transitions to a set of states. Therefore, when you read the symbol a in a state there can be multiple
transitions to different states for the same input symbol or no transitions at all. We now inductively
define the words accepted by a state in an NFA as follows.

Definition 2.12. The words accepted by a state ¢ in an NFA are defined by the following conditions:
e The empty word is accepted if and only if ¢ is an accepting state.
e The word a - w is accepted if and only if w is accepted by a state in d(q, a).

Note that there only needs to be at least one path of transitions that reaches an accepting state,
not every path. NFAs are related to DFAs by the following theorem.

Theorem 2.13 (Subset construction |]). For every NFA A = (Q, 9, F, qo) if we define the Ay as
Ag= (29,00, {S | FNS #0},{q0}), where 0a(S,a) = U,eq (g, a) then it holds that L(A) = L(Ag).

This theorem states that for every NFA there is a DFA that accepts the same language. We
can achieve the inverse, i.e. for every DFA construct an NFA that accepts the same language, by
converting every state into the set containing that state. Therefore NFA and DFA are equivalent.

An important result regarding the connection between automata and expressions is the following
theorem.

Theorem 2.14 (Kleene’s Theorem | |). For every expression e in KA there is a finite state
automaton A. that accepts the same language and for every finite state automaton A there is an
expression e in KA that accepts the same language.

A well known algorithm for constructing finite state automata for regular expressions is the
Thompson construction | |. The Thompson construction creates an NFA, from which we can
then obtain an equivalent DFA using Theorem 2.13.

We can describe properties of the expression corresponding to an automaton by defining the
notion of a solution.

Definition 2.15. A solution to an automaton, (Q,d, F, qo), is a function, s : Q — Exp, that assigns
an expression to every state. This function must satisfy the following equivalence for all ¢ € Q:

We use the notation [¢ € F] to represent 1 if ¢ € F' and 0 otherwise. We use the ¥ in this
equivalence to denote a summation over the transitions from state g. By summation we mean
adding up all the elements using the 4. The summation does not describe the order in which the
elements are added but, because KA is commutative and associative, this is not relevant.

The least solution s to an automaton is a solution such that for every solution ¢ to the same
automaton and state ¢, it holds that s(q) < t(q). The following lemma connects solutions to
Theorem 2.14. An example of a proof of this lemma can be found in | .

Lemma 2.16. If s : Q — Exp is the least solution to the automaton (Q,9, F,qy) then for every
q € Q it holds that [s(q)] = L(q).

In particular this lemma states that the least solution to the initial state has the same language
as the automaton, i.e. for an automaton A = (Q, d, F, qo) and a least solution s of A, it holds that
[s(q0)] = L(A). We also know the following about least solutions.

Lemma 2.17 (| |). For every automaton there exists a least solution and this least solution
can be computed.

Another important theorem about least solutions is the following:

Theorem 2.18 (Round Trip |). Let A=(Q,0,F,q) be an automaton constructed for the
expression [and let s be the least solution to A. Then s(qy) = f.

This theorem states that after constructing an automaton for an expression we can recover the
expression by finding the least solution to the automaton.

2.3 Completeness and Decidability of KA

For KA, completeness of a model says that if two expressions have the same semantics in that model,
then they are provably equivalent. The completeness of KA refers specifically to the completeness
of KA with respect to the language model. Therefore the completeness of KA says that if two
expressions have the same language we can construct a proof from the axioms of KA to prove their
equivalence.

Theorem 2.19 (Completeness of KA |). For any two KA ezpressions f and g, if [f] = [4]
then f = g.

This is not true for all systems. For example there are true statements in any consistent mathe-
matical system capable of describing basic arithmetic that cannot be proven [|. Decidability
says there exists a terminating algorithm that decides if two expressions are provably equivalent.
The decidability of KA follows from its completeness and the decidability of equality for regular
languages. The equality of two regular languages can be decided by checking the equality of the
automata corresponding to the languages.

2.4 Hypothesis ¢ =0

The hypothesis e = 0 allows us to prove new equivalences. As an example take the equivalence
f+ e = f. Without the hypothesis this equivalence is not true for arbitrary expressions. However,
when we use the hypothesis e = 0, the equivalence follows from e = 0 and f = f. Therefore the
completeness of KA is not sufficient to guarantee decidability under the hypothesis e = 0. However
KA is actually still decidable under the hypothesis e = 0 | |. Cohen proves the decidability of
KA under the hypothesis e = 0 by proving the completeness of a specific model and interpretation
where e = 0 and showing that equality is decidable in that model. When we write that e = 0 in a
model K and interpretation oy we mean that [e]ys, = [0],-

As an equation the completeness of a model K and interpretation ox under the hypothesis
e=01is:

KoxklEf=9g = KAle=0Ff=g

Here we use K,0x = f = g to denote that [f],, = [¢9]ox- Furthermore we use KA,e =0F f =g
to denote that f = ¢ is provable from the axioms of KA and e = 0. Without a hypothesis the
notation KA F f = g is equivalent to f = g.

An example of a practical use of a hypothesis e = 0 is the encoding of a Hoare triple in KAT.
In KAT we can encode a Hoare triple {b}S{c} as bS¢ = 0 | |. The partial correctness of

8

a Hoare triple {0}S{c} denotes that if the test b holds at the start and we run the program S
(and S terminates), then the test ¢ holds at the end. Therefore the completeness of KA under the
hypothesis e = 0 means we can prove statements under the assumption of the partial correctness of
certain programs using KA.

2.5 Guarded Kleene Algebra with Tests

GKAT | | differs from KA in two aspects. Firstly, it adds Boolean tests which are used
in expressions as assertions. An assertion immediately terminates either with failure or success
depending on whether the test is true or not. Secondly, it changes the operations + and (—)* into
deterministic variants. The + becomes f +, g which models if b then f else g. The (—)* becomes
f® which models while b do f. This allows GKAT to very directly model imperative programs.
The Boolean expressions (BExp) used in GKAT expressions are generated by the following grammar:

becx=0|1|teT|b-c|btcl|b

Here T is a set of abstract primitive tests, 0 is used to mean false and 1 is used to mean true. As a
convention we use b and ¢ to denote Boolean expressions. We now formally define Boolean algebra.

Definition 2.20 (Boolean Algebra [|). A Boolean algebra is a tuple (B, +,-,—,0, 1) where
for all b, c,d € B the following axioms hold:

b+0=0> b-1=0 b+c=c+b b-c=c-b
b+ (c-d)=(b+c)-(b+4d) b-(c+d)=(b-c)+(b-d) b+-b=1 b-=b=0

We will use =g, to denote provability in Boolean algebra. Notably both the - and the + are
associative as well, but these properties are not axioms themselves because they are provable from
the stated axioms |]-

Expressions in GKAT are then generated by the following grammar:

flgu=peS |bEBExp| f-g|f+sg]|f?

Here X is a set of abstract primitive actions. In a GKAT expression an action p means do p and a
Boolean test b means assert b. As a convention we will use e, f, g and h to denote expressions in
GKAT. Lastly we introduce an auxiliary function F that is used in the axiomatisation.

Definition 2.21 (| |). The function E : Exp — BExp is defined inductively as follows:
EG)i=b E@)=0 E(f+u) = bE(H)+BEG) E(f-g)i= E(f)-E(g) E(f) =D

The function E(f) assigns to the expression f a test that determines whether f terminates
without performing an action. If F(f) = 0 then some action p is executed during the execution

of f. If E(f) = b then if b is true no action is executed during the execution of f. We can now
formally define GKAT.

Definition 2.22 (Guarded Kleene Algebra with Tests |]). A GKAT is a tuple

(K7B7 +b7) (_)(b)707]-7 +7 N F)

9

where (B,+,-,7,0,1) is a Boolean algebra, F' : K — BExp is a function such that for every
interpretation ok, F([f]sx) = E(f), and for all z,y,z € K and b, c € B the following axioms hold:

Tty =2x THyy =y -+ (T 4pY) +e 2= +pe (Y +e 2)
Ty =b-x+py r-z+py-z=(r+py) -2 (x-y)-z=a-(y-2)
0-z=0 rz-0=0 l-z=2x r-1l==x

() _ po® ®) — (o ETTZRY _
¥ =z 44 1 (x +.1)" = (cx) pp—C if F(z)=0

Furthermore, because B is a Boolean algebra, Boolean equivalence still holds in GKAT, i.e. if
b =p4 c then b = c. Here we use = to denote provability in GKAT and =g4 to denote provability
in Boolean algebra.

These axioms are quite intuitive when thought of as representing programs. For example take
the axiom x 4+ y = y 4+ «. The left hand side models the program if b then z else y and the right
hand side models the program if not b then y else x. In terms of programs it corresponds to the
expectation that we obtain an equivalent program if we flip both the condition and the branches.
Another example is the axiom z(® = z2® 4+, 1. The left side of the equality models the program
while b do x and the right side models the program if b then (z; while b do z) else skip. This
axiom unrolls the loop. Either the condition does not hold and we terminate immediately or we
execute the loop once and go back to the start of the loop.

The last axiom has the side condition F'(z) = 0. This side condition states that we can only
apply the rule when the loop’s body x is productive. This is to prevent situations like in the
following example.

Example 2.23. From the axioms we can prove that 1 = 1- 144 1. If we then apply the last axiom,
ignoring the side condition, we obtain 1 = 1(M) . 1. The problem is that 1Y) = 0 because 1) never
terminates or performs any action. Therefore 1 = 1) . 1 becomes 1 = 0, which is false.

For GKAT unless otherwise specified we will use the language model. The language model for
KA and the language model for GKAT are quite different. The language model for GKAT interprets
expressions as guarded languages, i.e. sets of guarded strings. A guarded string is a string that
alternates between atoms and actions. An atom describes the state of a program. Formally an
atom of a set of tests T = {by, ...} is a Boolean expression ¢, - ¢y...c;, where ¢; € {b;,b;}. This
represents a truth assignment on 7" as follows: if ¢; = b; then b; is true and if ¢; = b; then b, is false.
We use At to denote the set of all atoms and as a convention we use a and 3 to denote atoms.
Furthermore we use a < b to denote that b is true for the truth assignment a. A guarded string is
then an element of the regular language GS := At - (X - At)*. This alternation between atoms and
actions describes a trace of an abstract program. In other words it describes the state of a program
over time and the actions that changed the state.

We can sequentially compose guarded strings through a partial fusion product ¢ : GS x GS — GS.
The partial fusion product is defined as follows:

o
oo By = {xay ifa=p

undefined otherwise

10

Here xa and [y are guarded strings. This definition states that we can only sequentially compose
two guarded strings if the last atom of the first guarded string and the first atom of the second
guarded string are identical. If we were to define composition of guarded strings identical to
composition of normal strings we could have traces where the state changes without any action
occurring in between.

Before we can define the language model we need to introduce several more operations. We lift the
partial fusion product to languages with the following definition: Ly ¢ Ly := {zx oy | x € L1,y € Lo}.
We can then inductively define exponentiation for guarded languages as L™ := L" o L where
L° := At. For a guarded language B C At we use B to denote At \ B. Subsequently we define two
more operations for guarded languages.

Ly4p Ly = (Bo L) U(Bo L) LP .= J(BoL)"oB

n>0

The result of L; +p L+ 1s the set of traces from L; that start with an atom from B and the traces
from Lo that start with an atom from B. The result of L(®) is the set of traces in which each trace
consists of a sequence of traces from L, where the traces from L start and end with an atom from
B, and this sequence ends with an atom from B. Now we can finally define the language model.

Definition 2.24 (Language Model |]). The tuple (25 2% 45 o, (—)B) 0, At, +, -, F),
where F(L) = L N At, is a GKAT that is called the language model. An interpretation of an
expression in the language model is defined inductively by the function [—] : Exp — 2°° as follows:

[b+c]:=[]uled [o] = ([2])
Ip] := {apB | a, 8 € At} [b] :={a € At | a < b} [o]:=0 [1] :=At
f+o9) =1 +mle) [F-9l:=0eldd L= 1AM

In this definition an action p is interpreted as all traces that start in an arbitrary state, do p
and end in an arbitrary state. Actions are interpreted in this way because we do not make any
assumptions about the behaviour of primitive actions. A test is interpreted as any atom for which
the test holds and the Boolean algebra of the language model consists of sets of atoms. The three
operations are interpreted via the three operations we defined for guarded languages. In conclusion,
an interpretation in the language model is a set of traces that represent valid executions of an
expression.

Furthermore, GKAT has a relational model in which expressions are interpreted as binary
relations over a set of states S. A primitive action is interpreted as the relation between states
before and after executing the action. This interpretation is given by the function eval : ¥ — 25%,
A primitive test is interpreted as the identity relation over the states for which the test holds. The
set of states for which a test holds is given by the function sat : T — 2°. Before we can formally
introduce the relational model we must first introduce some new operations. For a relation B C idg
we use B to denote idg \ B. We then define two more operations for relations:

Ri+p5 Ry :=BoR, UBoR, R(B)::(BOR)*OE

The result of Ry +p Ry consists of pairs (s1,82) from Ry where (s1,$1) € B and pairs (s3, s4) where
(s3,83) € B. The results of R®) consists of pairs (s, s;) from the reflexive-transitive closure of
B o R where (s3,s2) € B. Now we can formally define the relational model.

11

Definition 2.25 (Relational Model |]). The tuple (25%9,2ids 45 o (—)B) 0, idg, +, -, F),
where F(R) = RNidg, is a GKAT that is called the relational model. The interpretation of an
expression for the relational interpretation o = (.S, eval, sat) is defined inductively by the function
[-1]o : Exp — 29%5 as follows:

[b+clo == [0o Ulcls [b]s := ([b]o)
Dl = eval(p) [y = {(s,5) | s €sat®)} [0, =0 [i], = ids
Lf +5 9o = [f1o +pp. [9de [F-9lo = [floolgle [f] =[]

The Boolean algebra for the relational model consists of subsets of the diagonal and a test is
interpreted as the pairs (s, s) where b holds in s. Analogous to KA, there is a connection between
the relational model and the language model in GKAT.

Lemma 2.26 (]). For all GKAT expressions f and g, [f] = [g] if and only if for all
relational interpretations o, [f]o = [g]o-

2.6 Automaton Model for GKAT

GKAT has an automaton model resembling the automaton model of KA. The automaton models
are quite similar but the GKAT model is slightly more complicated in order to allow it to handle
both tests and actions. A GKAT automaton reads a guarded string as input. Unlike KA automata,
a GKAT automaton has explicit transitions for accepting and rejecting. Furthermore, transitions
between states specify both an atom and an action. We use 0 to denote rejection, 1 to denote
acceptance and 2 to denote the set {0,1}. A guarded string is accepted if after reading the string
until the last atom we end up in a state that has an accepting transition for the last atom.

Definition 2.27 (GKAT automata |]). A GKAT automaton is a tuple (@, d,¢), where @ is
a set of states, § : Q X At — 2U X x () defines transitions between states or acceptance or rejection
and ¢ € () is the initial state.

It is important to note that in the definition above, 2 and ¥ x) are disjoint and therefore it
is always clear whether § specifies a termination or a transition to a state. We define acceptance
formally as follows.

Definition 2.28 (| |). The guarded words accepted by a state ¢ in a GKAT automaton are
defined inductively by the following conditions:

e An atom « is accepted by a state ¢ if and only if §(¢)(«) = 1.

e A guarded string apz is accepted by a state ¢ if and only if d(q)(a) = (p,q’) where z is
accepted by ¢'.

As in KA, the language of a state is the set of all words accepted by that state and the language of
an automaton is the language of the initial state of that automaton.

A GKAT automaton is depicted by drawing arrows between the states and an arrow pointing
towards the initial state. An accepting transition is denoted with a double arrow pointing towards
an atom and all atoms not covered by a transition are implicit rejections. Transitions between

12

states are labelled with both an atom and an action. When reading an input we can only take a
transition if both the atom and the action match. Automata are often drawn with tests on the
transitions instead of atoms. In this case we can take the transition labelled with the test b if we
read an atom o« where o < b. It is important to note that tests on transitions from the same state
are not allowed to overlap. In other words for every state, every atom should only match with a
single transition.

Example 2.29. In the following automaton we start in the initial state ¢;. If we read the input
aqf where o < b and 8 < ¢ we first transition to ¢ after reading g and then accept using the ¢
transition after reading 3. If we read the input agfpa instead, we would still take the accepting
transition after reading [but because the string has not been fully read we do not accept. In
the state ¢ there is a transition for b and ¢ but not for b - ¢. Therefore this transition would be
an immediate rejection. Finally, the string apf would be rejected because @ means we take the
transition to ¢ but the action does not match.

clr

()

q3

As with KA there is a correspondence between automata and expressions in GKAT. However,
contrary to KA not every GKAT automaton has a corresponding GKAT expression |]. There is
a Kleene Theorem for a subset of GKAT automata called well-nested automata.

Theorem 2.30 (Kleene Theorem GKAT | |). For every expression e in GKAT there is a
well-nested GKAT automaton A, that accepts the same guarded language and for every well-nested
GKAT automaton A there is an expression e in GKAT that accepts the same guarded language.

Non-well-nested automata encode control flows that use goto or break statements which cannot
be encoded in GKAT expressions. For a formal definition of well-nested automata we refer to Smolka
et al. | |. The expression corresponding to a GKAT automaton is given by the solution to
that automaton. We define a solution to a GKAT automaton as follows:

Definition 2.31 (Solution |]). Let A =(Q,d,t) be a GKAT automaton. We call s : Q — Exp
a solution to A if for all a € At and ¢ € @ the following holds:

a-s(g)=a-[0g)(@))s where [0];:=0 [1];:=1 [(p.g)]s:=p-s(q)

13

Not every automaton has a corresponding expression and therefore not every automaton has
a solution. In the case that an automaton has a solution, it is unique up to equivalence. The
construction used to create automata from expressions always yield well-nested automata and
these automata always have a solution. As stated in the following theorem this solution is in fact
equivalent to the original expression.

Theorem 2.32 (Round-Trip Theorem |). For any GKAT expression f the corresponding
automaton Ar = (Q,,1) has a solution such that f = s(1).

2.7 Completeness and Decidability of GKAT

Analogous to KA, the completeness of GKAT is with respect to its language model. Before we discuss
the completeness of GKAT we must introduce another axiom that was left out of Definition 2.22.
This is the uniqueness axiom which makes a statement about left-affine systems, which are systems
of the following form:

T1 = €11T1 Ty " oy gy €1nTn Toin d;

Ly = €p11 +bn1 T +bn(n,1) Ennn +bnn dn

where z; are variables, e;; are GKAT expressions and b;; and d; are Boolean guards. In these
equations all the guards in a row are disjoint, i.e. for all j and k, b;; - by =pa 0 and b;; - d; =pa 0.
A system is called Salomaa if for all e;; it holds that E(e;;) =0 |]. The term Salomaa is a
reference to Salomaa’s axiomatisation of regular languages which contains an equivalent property
called the empty-word property [|. The uniqueness axiom then states that all left-affine
systems that are Salomaa have at most one solution. Finally, when we combine the axioms from
Definition 2.22 with the uniqueness axiom the following theorem holds.

Theorem 2.33 (Completeness of GKAT |). For any two GKAT exzpressions f and g, if
[/]=1g] then f=g.

Following from the completeness of GKAT and the decidability of equality of guarded languages
[| we deduce that equivalence in GKAT is decidable. The uniqueness axiom is less convenient
than the algebraic axioms from Definition 2.22. For example, checking if a model satisfies the
uniqueness axiom would require verifying that a possibly infinite number of systems of equations
has at most one solution, which is often not feasible. There is a fragment of GKAT, called skip-free,
that is complete without this uniqueness axiom |] but we will not be using this fragment.

Finally, contrary to KA, the decidability of GKAT under the hypothesis e = 0 has not been proven.
Cohen | | proves this for KA by characterising provability in KA under the hypothesis e = 0
as equality in a model M with interpretation m, where for all expressions f, [f]. = [f + X*eX*].
The decidability of KA under the hypothesis e = 0 then follows from the decidability of equality
for regular languages. In GKAT, however, we have +;, instead of +. Therefore, a characterisation
as in Cohen’s proof is not possible in GKAT. In this thesis we create a similar proof in which
we characterise provability in KA under the hypothesis e = 0 as equality in a model K, with
interpretation ., where for all expressions f, [f],. = [f] \ [eX*].

14

3 Decidability of KA under e =0

In this section we prove the decidability of KA under the hypothesis e = 0. We start with KA
because we know that KA is decidable under the hypothesis e = 0 and because KA is simpler to
work with than GKAT. This allows to us to determine if this strategy is a suitable way to prove
decidability under the hypothesis e = 0 before attempting to create the proof for GKAT.

3.1 Proof Sketch

We prove the decidability of KA by characterising provability in KA under the hypothesis e = 0 as
equality in the model K, and interpretation o.. The proof consists mainly of the creation of two
new expressions f and ¢ that satisfy the following two properties. Firstly that KA,e =0F f = f
and KA, e = 0 F g = §. Secondly that [f],, = [f] and [¢].. = [9].

Intuitively the expressions f and g are created by “removing” e from f and g, where by
“removing” e from f and g we mean removing all words from f and ¢ that contain a word from
e. Under the hypothesis e = 0 we know that for all words x that contain a word from e we have
x = 0. Therefore “removing” x from f will not change f. After “removing” all words x from f, the
hypothesis e = 0 will no longer be relevant because e will not occur anywhere in f. Then because
the hypothesis has become irrelevant, proving the equivalence of those expressions is solved by
Theorem 2.19.

Concretely our proof consists of the following steps. Firstly, we show that KA,e =0F f = f
and KA, e = 0 F g = §. Secondly, we construct a KA K, and interpretation o, where [e],. = [0],.
such that [f].. = [f] and [¢].. = [§]. This allows us to conclude that:

[/To. = dle. = [f1=14]

Note that the equality [f] = [9] does not depend on our hypothesis. Therefore we can use
Theorem 2.19 to conclude that f = §. Combined with KAje =0F f = f and KA,e=0Fg =g
this results in KA,e = 0 F f = g, which concludes our proof.

3.2 Removal Operation

The construction for f and ¢ is the same. Therefore we write proofs about an arbitrary expression
f. Before we can prove that KAje =0F f = f, we first have to define exactly what we mean by
“removing” words containing a word in e from f. The expression ¢/ = ¥*eX* corresponds to all
words that contain a word in e. We create f by removing ¢’ from f. By “removing” ¢’ from f we
intend that the language of f contains all the words from f without any of the words from ¢’. In
other words for any expression f we want the language of f to be [f] \ [¢]. For our proof however,
we need an expression, not merely this description in terms of the difference of languages.

To accomplish this we first use the Thompson construction to create an automaton for f
and then use the construction from Theorem 2.13 to obtain a DFA that accepts the same lan-
guage. Theorem 2.18 states that the least solution to this automaton is equivalent to f. We use
A = (Qy, 0y, Fr,qr) to denote this automaton. We then go through the same steps to obtain a
deterministic automaton for €’ that we denote with A, = (Q., 0., F’, ¢.). Finally, we use the product

er e’

construction | | to construct an automaton that accepts the difference of these two automata,

15

which is exactly [f] \ [¢']. The product construction produces the following automaton:

A=(QrxQ.,0,F (q7.q.)) where
0((p,q),a) = (05(p,a),0.(q,a)) and F={(p,q) [pe€ FyANq¢ F}

This automaton works by simulating both Ay and A, and only accepting words that are accepted
by Ay but not by A.. It is able to simulate both automata by having a state space that consists of
tuples. Each tuple contains the states from A; and A, that we would be in if we read the input in
those automata. Before we prove the correctness of the construction we must first prove a property
of the extended transition function of the product automaton.

Lemma 3.1. Let Ay = (Qo, do, Fv, qo) and Ay = (Q1, 91, F1,q1) be DFAs and let A = (Q, 0, F, (qo, q1))
be the product automaton for Ay and Ay. Then §*((p,q),w) = (05(p, w), 87 (q, w)).

Proof. We prove the lemma by induction. The base case is that for strings of length 0, the lemma
holds by the definition of §*. This follows from §*((p, q),€) = (p,q), 65(p,€) = p and §7(q, €) = q.
Assume as induction hypothesis that the lemma holds for strings w. We now show the lemma then
also holds for a string wa.

We know from the induction hypothesis that §*((p, q¢), w) = (§5(p, w), 07(q, w)). Then by the

definition of ¢:
0" ((p, @), wa) = (3(d5(p, w), a), 6(07 (¢, w), a))
Finally by the definition of 6* we obtain §*((p, q), wa) = (65(p, wa), 07 (q, wa)). [

Now we can prove the correctness of the product construction.

Lemma 3.2. Let Ay = (Qo, o, Fo, q0) and Ay = (Q1, 61, F1,q1) be DFAs and let A = (Q, 0, F, (qo, q1))
be the product automaton for the difference of Ay and Ay. Then L(A) = L(Ap) \ L(A1).

Proof. The language of A is precisely the words w such that §*((qo, q1),w) € F. Lemma 3.1 states
that:

0" (g0, ¢1), w) = (d5(q0, w), 07 (g1, w))
From the definition of F' we know that (0(qo, w), d](q1,w)) € F precisely when d5(qo, w) € Fy and
07 (q1,w) ¢ Fy. Finally, because {w | 63(qo, w) € Fo} = L(Ag) and {w | §7(q1,w) € F1} = L(A;) we
conclude that L(A) = L(Ap) \ L(A;). |

Lemma 2.16 states that we can obtain an expression for A by computing the least solution of A.
We call this expression f, because it accepts exactly the language we desired. Therefore the least
solution of A gives us the expression f.

3.3 Equivalence of Removal Operation

Now that we have constructed the expression f we have to prove that KA,e =0 f = f We
divide the proof into two parts, in the first part we prove that f < f and in the second part we
prove that KA,e =0+ f < f Combining the results proves that KA,e =0F f = f

We first prove that f < f. Note that we do not use the hypothe51s e = 0 because f is created by
“removing” things from f. Therefore, it is to be expected that f < f regardless of what is “removed”.
We prove this by proving that the least solution to Ay can be used to construct a solution for A.
Let s(p) be the least solution to Ay and let s'(p, ¢) = s(p), where (p, q) is a state in A and p is a
state in Ay. The following lemma then holds.

16

Lemma 3.3. If s(p) is a least solution to Ay and s'(p,q) = s(p) then s' is a solution to A.

Proof. To prove that s'(p, ¢) is a solution to A we must prove that it satisfies the equivalence from

Definition 2.15:
(o) e Fl+ Y. a-s0.¢)=5Pp0q
(p.) =50 0")
Due to Lemma 2.2 we can split the proof into two separate steps:

[(p.q) € F] = '(p,g) and Y a-dW.q) =5 (pq)
(p.0)>s('.a")

The equivalence on the left can be proven as follows. If (p,q) ¢ F then [(p,q) € F] =0 = §'(p,q)
and if (p,q) € F then p € Fy by the definition of F' and therefore [(p,q) € F| < [p € Fy]. Finally,
because s is a solution we know that [p € Fy| < s(p) = s'(p, q) and therefore [(p,q) € F| = s'(p, q).

The equivalence noted on the right can be proven as follows. Because s(p) is a solution to Ay
we know it satisfies the equivalence from Definition 2.15:

peFl+ Y a-s@)<sp)
pi>5fp/

Due to Lemma 2.2 we know that for all transitions p —; ;'
a-s(p') < s(p)

The next step is to show that the above also holds for all transitions (p,q) s (p/,¢'). From the
definition of ¢ we know the following:

{(a,p") 1 6((p,q),a) = (v, 4")} € {(a,p) | 05(p,a) = p'}

The equivalence a - s(p') < s(p) holds for all transitions p —; ; 0 and (p, q) %5 (', q) is a subset of

those transitions when we only consider p and p’. Therefore, we know that for all (p, q) =5 (p',¢')
we have a - s(p’) < s(p). Using the definition of s'(p, ¢) we obtain that for all ¢ and ¢

s'(p',q') £ 5 (pq)

Lemma 2.2 then gives us:

Y adW.d) S5 g
(p.a)—>s(0'a)

Finally, because both equivalences hold we have proved that s'(p, ¢) is a solution to A. [
Now we can prove our desired result using Lemma 3.3.
Lemma 3.4. For any expression f and the corresponding expression f it holds that f < f.

Proof. Let s be the least solution to A;. Lemma 3.3 then states that s’ is a solution to A.
Furthermore, we know that ¢t < s’ where ¢ is the least solution to A. More specifically, it follows that
t(qr,q.) = $'(qf,¢.) and Consequently that t(qr, q.) < s(qy). Finally, because both ¢ and s are least

solutions to the automata for f and f respectively, it follows from Theorem 2.18 that f <f. N

17

Now we prove that KA,e =0F f < f Note that this time we do need the hypothesis e = 0.
We accomplish this by proving an equivalence about the least solutions of Ay, A, and A, which we
denote with sy, s, and § respectively. Concretely we prove that 5(p, q) + s.(¢) = sy(p). Intuitively
this should be true because we created A by “removing” A, from Ay, therefore if we “add” back A.,
the result should contain everything from A;. Then, because of Theorem 2.18 and our hypothesis

e = 0 we deduce that KA,e =0F f < f . We start by proving the following lemma.

Lemma 3.5. Let 5(p,q) be the least solution to A, let s¢(p) be the least solution to Ay and let s,(q)
be the least solution to A.. Then 5(p,q) + s.(q) = s¢(p).

Proof. Due to Theorem 2.19 we know that if the lemma is true for the languages corresponding to
the solutions it is provable in KA. Therefore it suffices to prove the following:

L(5(p,) U L(sc(q)) 2 L(s¢(p))

Lemma 2.16 states that the language of the least solution of a state is the language of that state.
Therefore we can prove the above by reasoning about the languages of states. The language
L(5(p,q)) is precisely the words w where 6*((p, ¢), w) € F. Due to Lemma 3.1 and the definition
of F' we know this is when 07(p, w) € Fy and 6}(q,w) ¢ F,. For every word w € L(ss(p)) we
know that 0%(p, w) € Fy. Then either 6}, (¢, w) € F and therefore w € L(s(q)) or 6;,(q, w) & F; so
*((p,q),w) € F and w € L(5(p,q)). In both cases the lemma holds. |

Now we are ready to prove our desired lemma.
Lemma 3.6. For any f € Exp and the corresponding f it holds that KA,e =0F f < f

Proof. Theorem 2.18 states that the least solution of the first state of an automaton is equivalent
to the expression for that automaton. Therefore we know that s.(¢.) = €¢’. Combined with the
hypothesis e = 0 we can deduce that KAje = 0 - s.(¢.) = 0. Then, Lemma 3.5 states that
5(p,q) + sL(q) = ss(p) and specifically for p = ¢ and ¢ = ¢, we have 5(qr,q.) + sL(q.) = s(qy)-
If we then use KA,e = 0 F s.(q)) = 0 we obtain KA,e =0+ 5(qr,q.) + 0 > s(qy) and therefore
KA,e =0F 5(qr,q.) > s¢(qr). Finally, because ¢; and ¢, are the initial states states and § and sy

are least solutions, we conclude from Theorem 2.18 that KA,e =0F f < f . [
Combining Lemma 3.4 and Lemma 3.6 yields the following lemma.
Lemma 3.7. For any expression f and the corresponding f it holds that KA,e =0F f = f

This concludes the first part of our proof.

3.4 Construction of Corresponding KA

Now we proceed with the second part of the proof. Our aim is to create a KA K, and interpretation
o such that [e],, = [0],, and [f],. = [f]-

Let K, = (2°°,U,",0,{¢ | if € ¢ [e]}, (—)*). The interpretation of expressions is defined
inductively by the function [—],, : Exp — 2*" as follows:
[alo. :={a}\[€] [0]o. :=0 [o. :={e|if e & [e]}
[F + o =l Ulldlo. 1f - 9lo = [fo. ' [olo. 1f Do =15,

18

*/

where the operations U, and (—)* are defined as follows:

Ly U Ly = (Ly U Ly) \ [€] Ly Ly := (L1 - Ly) \ [€] LT, =L\ [€]

Before we can prove a connection between interpretations by o, and interpretations in the language
model we have to prove the following lemma.

Lemma 3.8. For any two languages Ly and Lo the following holds:

(LD - (LN [T\ [€T = (L1 - L2) \ [€]

Proof. We prove the lemma with a double inclusion starting with:

(LD - (L2 \ [€]) N [€T 2 (La - L) \ [€]

For every « € (L - L) \ [¢'] let © = x1 - x5 such that z; € L; and xy € Ly. We know the following
statements are true:

vdle] [€1=17-11 [€]=1=7T-[€]

If 21 € [¢'] then x € [¢] because zo € [¥*] and [¢'] = [€¢'] - [£*]. This is a contradiction and
therefore x; ¢ [¢'] and z; € Ly \ [¢']. In an analogous manner we have that xzo € Ly \ [¢/]. Then
we deduce that x € (Ly \ [¢]) - (L2 \ [€']). Finally because = ¢ [¢'] we know that:

z € (L \[eD) - (L2 \[€T) \ [€]

Therefore we have proved that:
(LoD - L2\ [€T) N €T 2 (La - L) \ [€]
The other inclusion is proved as follows. Because L; \ [¢'] C L; and Ly \ [¢/] C Ly we know that:
(Li\ [€T) - (L2 \ [€']) € Ly - Ly

and therefore:
(LD - L\ [€D) N €T S (La - L) \ [€]

Consequently, the lemma holds. [

Now we can prove the following lemma about the relation between an interpretation by o, and
an interpretation in the language model.

Lemma 3.9. For all expressions f it holds that [f],. = [f] \ [€¢]-

Proof. We prove the lemma by induction on the structure of expressions. As a base case this holds
for a letter a and for 1 by the definitions of their interpretations. For 0 it holds because 0\ [¢'] = 0.

19

Assume as induction hypothesis that the lemma holds for two expressions f and g. Then f + ¢

results in:

[f + dlo. = [fTo. U [9]o.
= ([f1o. U lglo) \ [€T
= ((IANED U\ [eT) \ €T
= (([AVIgD \I€D N\ [eT
= (IATVlgD \ [T
=[f+gl\[€]

For f - g it follows that:

[f - glo. = [f]o. " [9]o.
= ([fToe - [9o.) \ [€]
= (([/T\IT) - (Mol \ [€'D) \ [€]
= ([/1- LoD \ [€T]
=[f-gl\[€]
For f* it holds that:

1o = [f1Z
=[£Iz \ [€]
= ([/I\ [eD* \ [€]

= <U ([T [[6’]])”) \ €T

n>0

= JWANIED" \ IeD)

n>0

= JWI\ D

n>0

= (U [[f]]”) \ €T

n>0

= [\ Ie]

Definition [—],.

Definition U’

Induction Hypothesis
(A\C)U(B\C) = (AUB)\ C
(A\NC)\C=A\C

Definition 2.3

Definition [—],.,
Definition -/
Induction Hypothesis
Lemma 3.8
Definition 2.3

Definition [—],,
Definition (—)*
Induction Hypothesis

Definition L*

(Uxes X) \ A= UXES(X \ A)

I

(Uxes X) \ A= UXES(X \ A)

Definition L*

The line marked with { follows from applying Lemma 3.8, n times in each term of the union. W

From Lemma 3.9 we can conclude that [e],, = [e] \ [¢'] = [0]s.. Now all that is left to prove is

that K. is a KA.

Lemma 3.10. The definition of K. is sound for the azioms of KA.

Proof. For K. to be sound it must be that for all axioms f = g of KA we have [f],. = [¢].., by
Lemma 3.9 this is the same as [f]\[¢/] = [g]\[€']- Then because f = g is an axiom of KA and because
the language model is sound we know that [f] = [¢]. Finally, because A= B — A\ C =B\ C
holds for all sets A, B and C', the equation holds. Therefore K, is a KA. []

20

3.5 Completeness and Decidability

Now we are finally equipped to prove the completeness of KA under the hypothesis e = 0 with
respect to the model K, and interpretation o,.

Theorem 3.11. For all expressions f and g, if Ke,0. = f = g then KAje =0F f=g.

Proof. Let f and g be expressions such that K.,o. = f = g, then we have:

[[f]]ae = [[g]]ae
[T\ [T = [g] \ [€] Lemma 3.9
[[f]] = [4l Lemma 3.2

Using Theorem 2.19 we know that f = ¢. Lemma 3.7 states that KAje = 0 F f = f and
KA,e = 0 g = g. Using this we obtain: KA;e = 0 -+ f = g. Therefore we have proved the
completeness of KA under the hypothesis e = 0 with respect to K, and o,. |

The inverse of Theorem 3.11 is also true.
Lemma 3.12. For all expressions f and g, if KA,e =0+ f =g then K.,0. = f=g.

Proof. Let f and g be expressions such that KAje = 0 = f = g. Then, by definition of being
sound it must be that in every model X with interpretation ox where [e],, = [0]s, We also have
[flox = [9]ox- Lemma 3.10 and Lemma 3.9 show that K. is a KA where [e],, = [0]s.. Therefore
we know that [f],. = [9]..- |

Theorem 3.11 and Lemma 3.12 together prove that provability in KA under the hypothesis e = 0
is characterised by equality in the model K, and interpretation o.. In other words KA,e =0+ f =g
if and only if [f]s, = [¢]s.. Furthermore we showed that [f],. = [¢]o. if and only if [f] = [9].
Therefore we have reduced the decidability of KA under the hypothesis e = 0 to the decidability
of equality of the languages of two expressions, which is decidable | |. Consequently, we have
proved the following theorem.

Theorem 3.13. KA s decidable under the hypothesis e = 0.

Concretely we can check whether two expressions f and g are probably equivalent in KA under
the hypothesis e = 0 by constructing the automata for f and ¢ and checking whether the automata
accept the same language.

4 Decidability of GKAT under e =0

Now we know the proof strategy is valid for KA we can adapt it to GKAT. We start by constructing
an expression f that “removes” words in e from f. This requires some extra work because, in
contrast to KA, no product construction is known for GKAT and there does not exist a GKAT
automaton that accepts /. We then show that KA,e =0t f = f with a counter model.

21

4.1 Removal Operation for GKAT

We first create a construction for a GKAT automaton that accepts the difference of two GKAT
automata. Subsequently we adapt this construction to make a construction for the automaton of f .

Let Ay = (Qf,0f,¢7) and A. = (Qe, O¢, te) be GKAT automata. Then A = (Q, 0, (¢f,¢¢)) is a
GKAT automaton such that L(A) = L(Ay) \ L(A.), where we define) and ¢ as follows:

Q@ = Qs x (Qec + qo)

;

1 or(ar)(a) =1 A e(ge)(a) # 1
0 0r(qr)(a) =0 V (6¢(gr)(a) =1 A be(ge)(e) = 1)
0(qr; ge)(a) = § (1, (q}.90)) (97(gr)(a) = (p1,q}) A belge)(a) €2) V
(05(qr)(@) = (p1,q;) A de(ge)(a) = (p2,q.) A p1 # p2)
(D, (d:q0)) Op(ap)(@) = (p,d}) A delge)(@) = (P, qz)

The idea behind this construction is the same as rationale behind the product construction for KA.
The automaton simulates both A; and A. by having a state space consisting of tuples of states
from Ay and A.. If both automata terminate at the same time we accept if A; accepts and A,
rejects, otherwise we reject. One crucial difference between KA automata and GKAT automata
is how they terminate. For GKAT automata termination occurs via an explicit transition while
for KA automata termination only occurs when the entire string has been read. In the case that
A, has rejected the input but A; has not terminated yet, we do not know whether the string is
accepted by A. The states Qf x {qo} are added specifically to resolve this. We assume that ¢o ¢ Q.
and we define d.(qgop)(a) = 0 for the transition function of A. Then if A, rejects and A; has not
yet terminated we transition to some state (g, qo). In such a state our transition function is fully
determined by the transition function for Ay.

If both Ay and A, make a transition the result depends on the corresponding actions. If the
action on the transition of Ay does not correspond to the action in the input, we reject. The reason
for this is that in both cases that A transitions, it does so with the action from Ay. Therefore if the
action does not match with Ay, it does not match with the transition in A and we reject. If the
actions do correspond, the result is determined by whether the actions also correspond to the action
on the transition of A.. If the action on the transition of A, differs, the input is not accepted by A,
and therefore we transition to a state in Q¢ x {qo}. If all actions match we transition to a state
given by both their transition functions. We illustrate this construction in the following example.

Example 4.1 (Product Construction GKAT). We execute the GKAT product construction on the
following two automata:

q3

5V

— Q1 Blp2 ? Ga

- qﬂ Yo

o

alpy
\
7

3 Blp1

22

We call the left automaton Ay and the right automaton A.. The automaton below then accepts

L(Af) \ L(Ae).

Blp2

()

B
(g3, 90) Rl (g2, 90) == «

e

— (q17 Qa)

Om

(CJ2, o)

Blp2

This automaton is created as follows. We start with the initial state (¢1,q,). Then for every
atom we compare the transitions of Ay and A.. For (q1,¢,) and 8 we get 67(q1)(8) = (p2,¢3) and
9e(¢a)(B) = 0. Because A, has terminated unsuccessfully we only have to keep simulating A and
therefore we transition to (g3, go). Given a we have d7(q1)(a) = (p1, ¢2) and 6.(q1)() = (p1, @). Both
automata transition with the same action, thus we take both their transitions and go to (g2,). In
the case of (g2, ¢y) and « it follows that d7(¢g2)(a) = 1 and d.(gs)(a) = 1. As both automata accept,
we reject the input. The atom [results in d7(g2)(8) = (p2, ¢2) and c(g)(5) = (p1, ¢). The actions
on the transitions do not match, consequently we only have to keep simulating A; and we transition
to (g2, o) with the action from Ay. For (g3, qo) and 8 we get 6(qs3)(8) = (p2,¢2) and by definition
9e(q0)(B) = 0, therefore we go to (g2, qo) with po. Then for o we get d¢(gs)(a) = 0 and therefore we
reject. Finally, for (¢, qo) and a we obtain d¢(g2)(«) = 1 and by definition d.(qo)(cr) = 0, therefore
we accept. Then, 5 gives us 67(q2)(8) = (p2,¢2) and by definition d.(qp)(3) = 0, therefore we
transition to (g2, qo) with ps.

For KA we first created automata for f and ¥*eX* and then used the product construction to
construct an automaton that accepts [f] \ [2*eX*]. This approach cannot be adapted to GKAT
because the KA expression »*eX* does not have a corresponding GKAT expression. To resolve this
problem we directly define a construction for an automaton that accepts all words from f that
do not contain a guarded subword that is in e, where a guarded subword is any subword that is
itself a guarded word. This approach yields an automaton for precisely the language we want but
only requires an automaton for f and e, not for ¥*eX*. The construction is based on the product
construction we introduced previously and the subset construction for KA automata.

This construction is defined as follows. Let Ay = (Qy, dr,¢s) be a GKAT automaton for f and
let A, = (Qe, 6c, te) be a GKAT automaton for e. Then A = (Q, 9, (tf, {te})) is a GKAT automaton
that accepts the words accepted by f that do not contain a guarded subword that is accepted by e.
We define () and ¢ as follows:

Q=Qx{S|t€SNSCQ.}

I 51a0)(@) =1 A 1¢ {6.(a)(@) | g. € S}
o (@) =0 1€ 8.0 - €5}
5 =9 0 .5 8a)(@) = (.5) A

S ={} U{d g €S N dl(g)(a)=(p,q)}

23

In the initial state we have ¢, € S and for any transition to (¢’,S’) it holds that ¢, € S’ by definition.
Therefore the automaton always stays within its defined state space.

The states are tuples where the first element is a state in A; and the second element is a set of
states S from A.. If we have read part of an input in A then S contains all possible states we can
end up in after reading a suffix of this partial input in A.. If a state in S accepts a suffix of the
partial input in A, then the input contains a subword accepted by A.. Therefore the input will be
rejected by A. If this is not the case and the input is accepted by A, we accept. Finally, if no state
in S accepts and Ay transitions, we take the following transitions: we take the transition in Ay,
take all transition from states in .S in A, where the action matches with the action from A; and we
start again in the initial state of A.. We illustrate this construction in the following example.

Example 4.2. We apply the construction for the automaton for f to the automata below where
the left automaton is Ay and the right automaton is A..

q3
Blp
/ 0 a\m) . Qﬂlm
— Q1 Blp2 « ﬂ
ol 0 o
O‘|pl Oé‘pl
Qo — Q4
Blp2 Blp1

This yields the following automaton:

Blp2 Blp1
() ()
(qh {a}) (QQ, {CL b}) (q47 {CL}) = «

5\pzl Tﬁlm

(Q37 {a}) (Q2> { }) (Q47 {CL b})

Blp2

This automaton is constructed as follows. For every state and atom we compare both transition
functions. Following a transition we always start over in g,. We start in the initial state (¢1, {q.})-

For 8 we get d¢(q1)(B) = (p2, ¢3) and 0(q,) () = 0, therefore we only take the transition from Ay
and transition to (g3, {¢.}). Given a we have 0¢(q1)(a) = (p1,¢2) and d.(¢a) () = (p1, q»), because
the actions match we take both transitions and go to (ge,{qa, ¢ }). In the case of (¢s,{q.}) and S
we obtain 07(g3)(8) = (p2, ¢2) and d.(¢.)(B) = 0, consequently we only take the transition from A;
and go to (g2, {¢.}). Then, for a we get 0;(¢3)(a) = 0, therefore we reject. With (g2, {¢a, ¢ }) and
B we have d¢(q2)(8) = (P2, ¢2), 0e(qa)(B) = 0 and 0¢(qs)(5) = (p2, @), the action from g, matches
and as a result we transition to (g2, {qa, ¢ }). Given a we get d.(gy)(a) = 1 and therefore we reject.
For (¢2,{¢.}) and B we obtain d¢(¢2)(5) = (p2,¢2) and 6.(q.)(5) = 0, consequently we take the
transition from ¢, and go to (¢2,{¢a}). Then, o gives us d¢(ga) () = (p1,qq) and 6.(q.) () = (p1,).

24

Because the actions match we transition to (qa, {qa, ¢ }) With py. From (g4, {qa, ¢ }) and 5 it follows
that d7(q4)(5) = (p1,q4), 9e(¢a)(B) = 0 and 6.(q) () = (p2, ¢»). The actions do not match, therefore
we only take the transition from Ay and go to (gu, {¢.}) with p;. The atom « gives us d(qp) () =1
and as a result we reject. For (¢4, {¢.}) and 8 we have 6¢(qs)(8) = (p1,qs) and 9.(¢,)(8) = 0 and
therefore we go to (¢4, {¢a}). Finally, for a we obtain d¢(gs)(a) = 1 and d.(¢.) () = (p1, g»). Because
only Ay accepts, we accept.

We prove the correctness of the construction in the following lemma.

Lemma 4.3. The GKAT automaton A accepts all the words from Ay that do not contain a guarded
subword accepted by A,

Proof. We prove the lemma by induction on the length of guarded words. We use the following
strengthened induction hypothesis. The words in the language of a state (¢, S) in A are exactly the
words w such that:

1. w is accepted by state ¢ in Ay
2. w is not accepted by any ¢, € S in A,
3. w does not contain a guarded subword that is accepted by A,

The second property of the induction hypothesis is needed to prove the third property but not
needed for the lemma itself. We start by proving that all words w accepted by a state (¢, S) in A
satisfy the three criteria.

As a base case we take the guarded word a. We know « is accepted by state (¢, S) if and
only if 6(¢, S)(a) = 1. This is the case when d(q)(e) =1 A 1 ¢ {0c.(¢.)() | ¢ € S}. The first
requirement is satisfied because d7(q)(c) = 1 states that « is accepted by ¢ in Ay.

The right side of the conjunction, 1 ¢ {d.(¢.)(a) | ¢. € S}, states that « is not accepted by any
state ¢, € S in A.. Therefore the second requirement is satisfied.

In particular ¢, is always in S and therefore the state ¢, does not accept a. Because the strings
accepted by ¢, are exactly the strings accepted by A, « is not accepted by A.. Finally, because
« is the only guarded subword of «, a contains no guarded subwords that are accepted by A..
Therefore the third requirement is satisfied.

Assume as induction hypothesis that the three properties hold for all states (¢, S) in A and
words w with length less than k. The word apw, where |w| < k, is accepted by state (¢, .S) if and
only if 6¢(q)(a) = (p,¢') N S"={e} U{d | g €S N d¢(¢)() = (p,q.)} and w is accepted by
(.).

The induction hypothesis states that w is accepted by ¢’ in A;. Combined with d;(q)(«) = (p, ¢')
we can conclude that apw is accepted by ¢ in A;. Therefore the first property is satisfied.

If there is a ¢, € S in A, that accepts apw then there must be a transition d.(¢.)(a) = (p, ¢.)
where ¢, accepts w. The definition of § states that S’ contains for every ¢, € S, all states ¢/, where
de(qz) () = (p, ¢,). Therefore ¢, € S’. The induction hypothesis shows that w is not accepted by
any ¢, € S’ in A,. This is a contradiction and therefore apw is not accepted by any state ¢, € S in
A.. Therefore the second property is satisfied.

The induction hypothesis states that no guarded subword of w is accepted by A.. Therefore a
guarded subword of apw that is accepted by A, would have to start at «. If the guarded prefix is
just « itself, property three holds by the same argument as used in the base case.

25

If the guarded prefix is not just a there would have to be a transition from ¢, such that
de(te)(a) = (p,q.) and some guarded prefix v of w is accepted by ¢, in A.. Assume that v looks
like copoapy...0—1pp—100,. We use vy, to denote the subword agpy...cx—1pr—1 and ¢, to denote the
state we end up in after reading apuvy in A.. Then for every k < n we know that apg...a,_1pn_100p
is accepted by ¢., in A.. Finally we use (gy,, Si) to denote the state in which we end after reading
apyy in A, starting from (g, S).

We know that ¢, € S and the definition of § states that therefore g., € Sp. Assume that ¢., € Sk,
then again the definition of 0 states that g, , € Sk4+1 and therefore it holds for all k that g, € Sj.

Because apuv is accepted by A, we know that d.(ge,)(a,) = 1. Then by the definition of ¢ and
because ¢., € S, we deduce that 6(qy,,S,)(a,) = 0. Finally, because reading apv in (¢, S) in A
results in 0, we know that apw is not accepted by (g, S). Therefore the third property holds.

Now we prove the opposite direction, i.e. any guarded word that satisfies these three properties
is accepted by (¢, S) in A.

As a base case we take the guarded word a. Because the first property holds we know that
d¢(¢)(a) = 1. Because the second property holds we know that for all ¢. € S, d.(¢ge)(a) # 1 and
therefore 1 ¢ {0.(qe)(c) | ¢ € S}. The definition of 0 then gives us that §(g, S)(a) = 1 and therefore
(g, S) accepts a.

Assume as induction hypothesis that any guarded word w, with |w| < k, that satisfies these
three properties is accepted by (g, S) in A.

Assume that apw satisfies the three properties for the state ¢ and the set of states S. For apw
to be accepted by (g, S) there must be a transition 6(q, S)(a) = (p, (¢, 5")). First we show that w
must then also satisfy these properties for (¢, S’). From the first property we deduce that there
must be a transition d;(q)(«) = (p, ¢') where w is accepted by ¢’ in A;. Therefore the first property
holds for w and (¢, 5").

From the second property we know that for all transitions d.(q.)(«) = (p, q.) where g, € S, it
must be that w is not accepted by ¢ in A.. From the third property we know that w is not accepted
by ¢, in A, because w is a guarded subword of apw. Finally, we know the second property holds
for (¢',S") because S = {t.} U{d | ¢. € SN d.(q.)(a) = (p,q.)}. The third property immediately
holds because w is a subword of apw. Because all three properties hold for w and (¢’, S’) we know
by our induction hypothesis that w is accepted by (¢’,S’) in A.

We concluded that d(q, S)(a) = (p, (¢, S")) where " = {t.} U{q. | ¢, € S Nc(qe)() = (p, L)}
and that w is accepted by (¢’,.5"). Consequently, apw is accepted by (¢, S). Therefore we have
proven that all words that satisfy the three properties are accepted by (¢, .S) in A.

For the initial state of A, (¢f, {¢}), the second property simply states that no words accepted
by A, are in its language. In this case the third property implies the second property. Therefore,
the language of the initial state consists exactly of the words accepted by ¢y in A that do not
contain a guarded subword accepted by A.. Finally, because the language of the first state is the
language of the automaton, we have proved that the language of A is exactly the words from Ay
that do not contain a guarded subword accepted by A.. [

Omne important thing to consider is that not all automata have solutions |]. We do not
know whether this construction always yields well-nested automata, i.e. solvable automata.

26

4.2 Non-Equivalence of Removal Operation for GKAT

For KA, the step after creating the automaton for f was to prove KA,e =0F f = f . In this section
we show that this does not hold for GKAT. We demonstrate this by applying our construction to
some simple automata. We then derive concrete expressions f and f for which GKAT,e =0t/ f = f .
We accomplish this by showing there is a counter model where the implication e = 0 = f = f
does not hold.

Example 4.4. In this example we apply the automaton construction for f to the automata A; and
A, corresponding to the expressions f = p1p, and e = bpyc. These automata are depicted below.

1p1 1]p2 blp2
> Qo > 1 >y o —— 1 > Qo > —— C

Applying the construction yields the following automaton A.

(90,{90}) — (@1,{q0}) — (@2, {90, 01}) == ¢

Wz\,x

(32, {q0}) =—=1

We obtain the expression f by computing the solution s for the state (qo,{qo}) using the
equivalence from Definition 2.31. This gives us s(qo, {qo}) = p1(p2€ +4 p2). Our aim was to prove
GKAT,e=0F f = f . For the concrete expressions of the previous example this corresponds to
GKAT, bpsc = 0 F p1ps = p1(pa€ +p p2). However this equivalence is not provable. We show this with
a counter model, where the implication bpec =0 = p1ps = p1(p2C +4 po) is false, in Appendix A.
If a statement is provable using the axioms of GKAT then it must be true in every model. Thus,
the existence of a GKAT model in which the implication does not hold shows that it cannot be
provable.

Lemma 4.5. There exists an expression f such that for f and the corresponding expression f it
does not hold that:)
GKAT,e=0F f=f

The implication bpsc =0 = pip2 = p1(p2C +4 p2) is, however, true in the language model.

Lemma 4.6. For any two tests b and ¢ and any two actions p; and ps the following is true:

[bpac] = [0] = [pip2] = [p1(p2€ +b p2)]

Proof. We first compute the interpretation of the hypothesis:

[bpac] = [0]
[6] o [p2] o [c] = 0

We know that [p2] = {ap2f | «, 5 € At}. For the fusion product to result in the empty set it must
therefore be that [b] = 0 or [¢] = 0. We now compute the interpretation of the consequent of the

27

implication:

[p1p2] = [p1(p2C +b p2)]
[p1] © [p2]l = [p1] © [pac +5 p2]
[p1] © [p2] = (o1l © (Ip2e] +op [p2])
[p1] o [p2] = [pa]l o (([6] © [p22l) U ([6] © [p2]))
[p1] o [p2]l = [pa] o (([6] © [p2] [€]) U ([0] © [p2]))

We now show that both if [b] = () and if [c] = the consequent of the implication reduces to a
tautology. If [b] = 0 then [b] = At and this results in:

[pi] © [p2] = [p1] © (0o [p2] © [e]) U (At o [p]))
[p1] © [p2] = [p2] © (D U [p2])
[p1] © [p2] = [p1] © [p2]

If [c] = 0 then [¢] = At and this results in:
[p1] < [p2] = [pa] © (([6] [p2] © At) U ([B] © [p2]))
[p1] 0 [p2] = [pall © (([6] < [p:1) U ([8] © [p-]))

[p:] © [p2]l = [p1] © [p2]

Finally, if the hypothesis holds then either [0] = () or [¢] = 0. In both of those cases the consequent
of the implication holds, therefore the implication holds. [

Furthermore, we can prove GKAT, bpac = 0 = p1py = p1(pac+ppe) if we add bec = 0 = be = bec
as an axiom.

Lemma 4.7. If we add bec =0 = be = bec as an axiom to GKAT then the following holds:

GKAT, bpac = 0 p1p2 = p1(pat +4 p2)

Proof.
pip2 = p1(p2 +b p2) THpr =2
= p1(bp2 +p p2) THy=b-r+py
= p1(bp2C +4 p2) bpec =0, = bpy = bpye
= p1(paC +b p2) T y=b-z+Hpy
[|

The implication bec = 0 = be = bec encodes the following fundamental property of Hoare
triples. If a program e is executed from the precondition b and it never terminates with postcondition
¢, then it must be that all terminating executions of e that start with b end with the postcondition
¢. In KAT this implication is a theorem. Furthermore, the language model remains sound if this
implication is added as an axiom to GKAT.

28

Lemma 4.8. For any two tests b and ¢ and expression e, [bec]| = [0] = [be] = [bec].

Proof. We first compute the interpretation of the antecedent:

[bec] = [0]
[o] o [e] o [c] =0
For the fusion product to result in the empty set it must be that for every guarded string in [e]
either the first atom does not match with any atom from [b] or the last atom does not match with

any atom from [c]. Therefore either [b] ¢ [e] = 0 or [e] ¢ [¢] = 0. We now show that in both cases
the consequent reduces to a tautology.

[be] = [bec]
[o] o [e] = [o] o [e] « []
[B] © [e] = [o] o [e] o []
If [6] © [e] = 0 we obtain:

o[

D=0
D=0

If [e] o [¢] = 0 then we know that X N [c] = 0, where X is the set of atoms at the end of a guarded
string in [e]. We also know that X C [c] because all atoms not in [c] are in [c] and [c] N X = 0.
Therefore [e] ¢ [¢] = [e] and we obtain:

[8] © [e] = [6] © [e] © [c]
[6] o el = [b] © [e]

Because in both cases the consequent reduces to a tautology the lemma holds. [

Finally, Lemma 2.26 states that because the axiom is sound for the language model it is also
sound for the relational model.

5 Conclusions and Further Research

The initial objective of this thesis project was to prove the decidability of GKAT under the hypothesis
e = 0. Prior to our attempt to prove this for GKAT, we proved it for KA because we know KA is
decidable under the hypothesis ¢ = 0 and KA is simpler to work with than GKAT. We proved this
by characterising provability in KA under the hypothesis e = 0 as equality in a model K, with
interpretation o.. This characterisation consisted mainly of proving the completeness of KA under
the hypothesis e = 0 with respect to K. and o.. This proof was split into two steps. Firstly, we
proved that under the hypothesis e = 0, an expression f is equivalent to f with e “removed”. We
“removed” e by creating an automaton using the product construction that accepts the words from
f that do not contain a word from e. Secondly, we proved that the interpretation of an expression
by o, is equal to a language model interpretation of the same expression with e “removed”. The

29

completeness of K. and o, then follows from the completeness of the language model and the
equivalence of f and f with e “removed”.

We proceeded with adapting the proof to GKAT. We created a product construction and
subsequently a construction for an automaton that “removes” e from f. Then we attempted to
prove that under the hypothesis e = 0, every expression f is equivalent to f with e “removed”.
However, this led to a counterexample. Therefore the proof is not valid for GKAT.

We concluded the section on GKAT by exploring a possible solution to this flaw. We proposed
adding a new axiom to GKAT that would allow us to defuse the counterexample. Furthermore, we
proved that adding this axiom would be sound for both the language and the relational model.
However, it is unclear whether adding this axiom only allows us to defuse the counterexample or if
it also enables us to prove that under the hypothesis e = 0 every expression f is equivalent to f
with e “removed”.

Further research is needed determine whether this equivalence can be proved with this axiom,
and if so whether the decidability of GKAT under the hypothesis e = 0 can be proved using our
strategy. It could also address the question of the decidability of GKAT under different hypotheses,
such as S = 1, where S is a sum of letters.

References

[AFG*14] Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-Baptiste Jeannin, Dexter Kozen,
Cole Schlesinger, and David Walker. NetKAT: semantic foundations for networks. POPL
14, page 113-126. Association for Computing Machinery, 2014.

[Ard61] Dean N. Arden. Delayed-logic and finite-state machines. In 2nd Annual Symposium on
Switching Circuit Theory and Logical Design (SWCT 1961), pages 133-151, 1961.

[CKS96] Ernie Cohen, Dexter Kozen, and Frederick Smith. The Complexity of Kleene Algebra
with Tests. Technical report, 1996.

[Coh94] Ernie Cohen. Hypotheses in Kleene Algebra. 03 1994.

[DKPP19] Amina Doumane, Denis Kuperberg, Damien Pous, and Pierre Pradic. Kleene Algebra
with Hypotheses. In Foundations of Software Science and Computation Structures, pages
207-223. Springer International Publishing, 2019.

[G631] Kurt Godel. Uber formal unentscheidbare Sétze der Principia Mathematica und ver-
wandter Systeme 1. Monatshefte fir Mathematik und Physik, 38(1):173-198, December
1931.

[HMUO06] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to Automata
Theory, Languages, and Computation. Addison-Wesley, 3rd edition, 2006.

[Hun04] Edward V. Huntington. Sets of Independent Postulates for the Algebra of Logic.
Transactions of the American Mathematical Society, 5(3):288-309, 1904.

[Kap23] Tobias Kappé. Kleene Algebra - Lecture 4 ESSLLI 2023, 2023. https://tobias.kap.
pe/esslli/lectures/lecture-4.pdf [Accessed: 13/05/2025].

30

https://tobias.kap.pe/esslli/lectures/lecture-4.pdf
https://tobias.kap.pe/esslli/lectures/lecture-4.pdf

[Kle56]

[Koz94]

[Koz96]

[Koz00]

[KPOO]

[KS97]

[KSS23]

[KT08]

[Kuz23)]

[McC10]

[Pras0]

[RS59)

[Sal66]

[SFH*19]

S. C. Kleene. Representation of Events in Nerve Nets and Finite Automata, pages 3—42.
Princeton University Press, 1956.

D. Kozen. A Completeness Theorem for Kleene Algebras and the Algebra of Regular
Events. Information and Computation, 110(2):366-390, 1994.

Dexter Kozen. Kleene algebra with tests and commutativity conditions. In Tools and
Algorithms for the Construction and Analysis of Systems, pages 14-33. Springer Berlin
Heidelberg, 1996.

Dexter Kozen. On Hoare logic and Kleene algebra with tests. ACM Trans. Comput.
Logic, 1(1):60-76, July 2000.

Dexter Kozen and Maria-Cristina Patron. Certification of Compiler Optimizations
Using Kleene Algebra with Tests. In Computational Logic — CL 2000, pages 568-582.
Springer Berlin Heidelberg, 2000.

Dexter Kozen and Frederick Smith. Kleene algebra with tests: Completeness and
decidability. In Computer Science Logic, pages 244-259. Springer Berlin Heidelberg,
1997.

Tobias Kappé, Todd Schmid, and Alexandra Silva. A Complete Inference System for
Skip-free Guarded Kleene Algebra with Tests. In Programming Languages and Systems,
pages 309-336. Springer Nature Switzerland, 2023.

Dexter Kozen and Wei-Lung Dustin Tseng. The Bohm-Jacopini Theorem Is False,
Propositionally. In Mathematics of Program Construction, pages 177-192. Springer
Berlin Heidelberg, 2008.

Stepan L. Kuznetsov. On the Complexity of Reasoning in Kleene Algebra with Commu-
tativity Conditions. In Theoretical Aspects of Computing — ICTAC 2023, pages 83-99.
Springer Nature Switzerland, 2023.

W. McCune. Prover9 and Maced. http://www.cs.unm.edu/ "mccune/prover9/, 2005
2010.

V. R. Pratt. Dynamic algebras and the nature of induction. In Proceedings of the Twelfth
Annual ACM Symposium on Theory of Computing, STOC 80, page 22-28. Association
for Computing Machinery, 1980.

Michael Rabin and Dana Scott. Finite Automata and Their Decision Problems. IBM
Journal of Research and Development, 3:114-125, 04 1959.

Arto Salomaa. Two Complete Axiom Systems for the Algebra of Regular Events. J.
ACM, 13(1):158-169, January 1966.

Steffen Smolka, Nate Foster, Justin Hsu, Tobias Kappé, Dexter Kozen, and Alexandra
Silva. Guarded Kleene algebra with tests: verification of uninterpreted programs in
nearly linear time. Proc. ACM Program. Lang., 4(POPL), December 2019.

31

[Tho68] Ken Thompson. Programming Techniques: Regular expression search algorithm. Com-
mun. ACM, 11(6):419-422, June 1968.

A GKAT Counter Model

We now present the counter model that proves Lemma 4.5. This counter model was found by my
supervisor Tobias Kappé using Mace4 |], the query used is presented in Appendix B. The
query defines the axioms of GKAT (without the uniqueness axiom) and Boolean algebra and directs
Mace4 to find a model where the implication apsf =0 = py = poff +4 P2 is false. In this model
the implication that proves Lemma 4.5, apy = 0 == p1pa = p1(p2B +a p2), is also false. The
counter model is a GKAT with six elements. The elements ¢ through x3 are tests. The zero element
and the one element are confusingly named z; and x(respectively. The assignment o = g, ps = 24,
f = x3 and p; = xp results in: xg - x4 - T3 =] => Ty Ty = Ty - (T4 T3 +4, T4). Evaluating the
operations yields:

Lo Ty T3 =2T1 —> $2'$4=$2'($4'$_3+z0$4)
Ty X3 =T1 = Tqg=To- (Ty- To 4z Tq)
T1 =T1 —> Ty = Ty - (Il +x0 IL’4)
Tl =] —> T4 =To X1
T1 =1 — T4 =1

Therefore the implication does not hold.

The model is presented in the tables below. The tables contain the output of the Mace4 query
except for one difference. The operation f+ ¢ is only defined when f and g are tests. The operations
f® and f 4+, g are only defined when b is a test. The elements x4 and x5 are not tests and therefore
not every combination of operation and elements is defined. We mark the undefined values with —
but the output of the Mace4 query has assigned xy to all these values.

EaES x|
A EE:
E3E R
EaE 3|
Ly | — Ta| 1
Ea e Ea
(a) (b) E(x)

Figure 1: Table showing the negation of elements (a) and table showing F(z) (b).

32

(a) f+yg (d) f+pyg

To | X1 | T2 | T3 | Ty | Ts To | T1 | T2 | T3 | Ty | Ts
To | Lo |Xo | To | Lo | — | — Lo, Lo | Lo | Lo | Lo | Lo | — | —
L1 |To | X1 | X2 | T3 | — | — Lo, X1 | Lo | L1 | X2 | T3 | — | —
Ty | Ty | T2 | X2 | Xo| — | — Lo, T2 | Lo | L2 | X2 | To | — | —
T3 | Lo | X3 | Lo | T3 | — | — Lo, T3 | Lo | L3 | Lo | L3 | — | —
Ty | — | — | — | —| — | — Lo, Ty | To | Ly | X2 | X5 | — | —
Ts | — | — | — | — | — | — Lo, L5 | Lo | X5 | Lo | L5 | — | —

L1, Ty | L1 | Lo | T3 | T2 | — | —
1,1 | L1 | X1 | X1 | L1 | — | —
T1,To | X1 | T2 | X1 | L2 | — | —
T1,T3 | L1 | L3 | X3 |XT1 | — | —

X1, L4 | X1 | Xg | X1 | X4 | — | —

T1,T5 | L1 | L5 | X3 | Ta | — | —

(b> f g T, Lo | T2 | To | Ty | T2 | — | —

To | L1 | X2 | X3 | Ty | T To, X1 | X | X1 | T2 | Z1 | — | —

To | To | L1 | T2 | T3 | Ty | Ts To, Lo | Lo | Ty | To | Xo2 | — | —
T1 |1 |1 |21 |21 | X1 | X1 Lo, T3 | Xo | Ty | To | X1 | — | —
To | Ty | X1 | X2 | X1 | T4 | Ty Lo, Ty | To | Ty | Lo | Xy | — | —
T3 | T3 | L1 | X1 | T3 | X1 | X3 Lo, Ty | To | Ty | To | Tga | — | —
LTy | Ty | X1 | X1 |21 | X1 | X1 T3,To | T3 | Zo | T3 | Xo | — | —
Ty | T | X1 | X1 | T3 | X1 | X3 T3, L1 | T3 | X1 | X1 | X3 | — | —

T3,Ty | X3 | X2 | L1 |To | — | —
Xr3,T3 | X3 | X3 | T3 | T3 | — | —
X3, L4 | X3 | Xy | X1 | X5 | — | —

X3,y | X3 | X5 | L3 | T | — | —

Tg,To | Ta | To | L5 | T2 | — | —

Ly, X1 | Xg | X1 | X4 | X1 | — | —

(c) £ Ty, Ty | Ty |To | Ty | Ty | — | —

To | L1 | X2 | X3 | Ty | L5 Ty, T3 | Xg | X3 | T5 | X1 | — | —

ZTo | X1 |1 |21 |1 | X1 | X1 Ty, Ty | Xy | Ty | Ty | Ta| — | —
Ty | To | Lo | Lo | Zo | To | Lo Ty, T5 | Ty | X5 | X5 | Tg | — | —
Ty | X3 | X3 | T3 | X3 | T3 | T3 T5, Lo | X5 | To | X5 | X0 | — | —
T3 | T2 | X | X2 | X2 | o | T2 T5, X1 | X5 | X1 | X4 | 23 | — —
Ta| 7| 7| 7|7~ T5, Lo | Ts | Ta | Ty | To | — | —
Ts | == 1= 1= 1717 Ts5,T3 | T | T3 | X5 | T3 | — | —

T, Ty | X5 | Xa | Ty | T | — | —
T5,T5 | X5 | X5 | 5 | T | — | —

Figure 2: The values of f + ¢ (a) and the values of f - g (b), where the rows denote f and the
columns denote g. The values of f® (c), where the rows denote b and the columns denote f. The
values of f +, h (d) where the rows denote f and h, and the columns denote b.

33

B Counter Model Mace4 Query
op(400, infix_right, ";").

formulas(sos).

test (t_zero) & test(t_one).

test(u) & test(v) > test(u;v).

test(u) & test(v) -> test(u+v).

test(u) —> test(n(u)).

(utv)+w.

test(u) & test(v) & test(w) -> u+(v+w)
test(u) & test(v) -> utv = v+u.
test(u) & test(v) -> u;v = v;u.
test(u) & test(v) & test(w) -> u+(v;w) = (ut+v); (utw).
test(u) & test(v) & test(w) -> u; (v+w) (u;v)+(u;w) .

test(u) -> u;n(u) = t_zero.
test(u) -> u+n(u) t_one.
test(u) -> n(n(w)) = u.

test(u) & test(v) -> n(u+v)
test(u) & test(v) -> n(u;v)

n(u);n(v).
n(u)+n(v).

test(u) —> ite(u, x, x) = x.

test(u) -> ite(u, x, y) = ite(n(w), y, x).
test(u) & test(v) -> ite(v, ite(u, x, y), z) = ite(u;v, x, ite(v, y, z)).
test(u) -> ite(u, x, y) = ite(u, u;x, y).
test(u) -> ite(u, x;z, y;z) = ite(u, x, y);z.

x;7);z = x;(y;2).

t_zero;x = t_zero.

X;t_zero = t_zero.
t_one;xX = X.
X;t_one = X.

test(u) -> loop(u, x) = ite(u, x;loop(u, x), t_one).
test(u) & test(v) -> loop(u, ite(v, x, t_one)) = loop(u, v;x).

test (empty (x)) .

test(u) -> empty(u) = u.

test(u) -> empty(ite(u, x, y)) = u;empty(x)+n(u);empty(y).
empty(x;y) = empty(x);empty(y).

test(u) -> empty(loop(u, x)) = n(u).

34

test(u) & empty(x) = t_zero & ite(u, x;y, z) =y -> y = loop(u, x);z.
end_of_list.

formulas(goals) .

test(u) & test(v) & u;x;v = t_zero -> x = ite(u, x;n(v), x).

end_of_list.

35

	Introduction
	Thesis overview

	Definitions
	Kleene Algebra
	Finite State Automata
	Completeness and Decidability of KA
	Hypothesis e = 0
	Guarded Kleene Algebra with Tests
	Automaton Model for GKAT
	Completeness and Decidability of GKAT

	Decidability of KA under e = 0
	Proof Sketch
	Removal Operation
	Equivalence of Removal Operation
	Construction of Corresponding KA
	Completeness and Decidability

	Decidability of GKAT under e = 0
	Removal Operation for GKAT
	Non-Equivalence of Removal Operation for GKAT

	Conclusions and Further Research
	References
	GKAT Counter Model
	Counter Model Mace4 Query

