Universiteit

ik4; Leiden
The Netherlands

Evaluating the Effectiveness of Multi-Striding on the Raspberry Pi 5 and
Banana Pi F'3.

Steffan Radojevic

Supervisors:
Miguel O. Blom & Rob V. van Nieuwpoort

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)
www.liacs.leidenuniv.nl 29/08/2025

www.liacs.leidenuniv.nl

Abstract

Multi-striding defines a transformation that enables higher hardware prefetch utilization
to tap into the underutilized memory bandwidth, improving memory-bound kernels. An
initial evaluation on x86-64 micro-architectures yields results on-par with modern hand-
optimized solutions. However, evaluations on alternative architectures with distinct hardware
implementations, like ARM and RISC-V have not yet been carried out. In this thesis, we
evaluate the effectiveness of multi-striding on two single-board computers, the Raspberry
Pi 5 (ARM Cortex A76) and the Banana Pi BPI-F3 (RISC-V SpacemiT K1). We modify
the original approach to map out larger spaces of striding configurations and adjust input
sizes as a measure to reduce the number of address collisions, improving the accuracy of the
measurements. These measurements show that configurations must enforce accesses to each
cache line to be contained within a single loop iteration, i.e., preventing any cache line from
being shared across iterations. For both architectures, we see that multi-striding improves
throughput in our micro-benchmarks. We see an improvement of 1.03x for scalar writes from
multi-striding when compared to the single-strided configurations, on the RISC-V SpacemiT
K1. On the more sophisticated ARM Cortex-A76 we achieve up to 83% of the theoretical
maximum bandwidth, and compared to the single-strided baselines, we find speedup factors
of 1.51x for scalar loads, 1.47x for scalar stores and 1.54x for vector stores. Most notably,
when compared to the ubiquitous memset from the standard C library, we achieve a speedup
of 1.55x on the Raspberry Pi 5 using vector stores.

Contents
1 Introduction
2 Related Work

3 Background

3.1 Hardware Architectures
3.1.1 General-purpose registers and Stacko 0oL
3.1.2 Floating-point registers
3.1.3 Vector registers
3.1.4 Stack
3.2 ARM . . e
3.2.1 Registers, Calling Conventions and Vectors
3.2.2 Implemented Assembly Instructions
3.3 RISC-V . e
3.3.1 Registers, Calling Conventions and Vectors
3.3.2 Implemented Assembly Instructions
3.4 Multi-striding L
3.4.1 Stride-unrolls and Portion-unrolls
3.5 Address Collisions e
4 Methodology
4.1 Micro-kernels
4.2 Addressing mode
4.3 x86_64 and CISC-based architectures
5 Approach
5.1 Reshaping Input Size
5.2 Code generation
5.2.1 Loading Large Immediate Values into Registers
5.2.2 Assembly Prologue Generation
5.2.3 Loop Design for Strided Memory Access
5.2.4 Maximum Striding Configuration
5.3 Throughput and Validation
6 Experimental Setup
6.1 Micro-kernels
6.2 Hardware and Software Specifications
6.3 Experimental Method
7 Results
T.1 OVErvIeW o o oo
7.2 ARM . . . e
7.3 RISC-V . e
7.4 Performance Comparison with memset

11
11
12
12

13
14
14
14
15
16
18
19

19
19
20
21

8 Discussion

9 Conclusion

10 Future Work

References

A Appendix

Appendix

Al
A2
A3
A4
A5
A6

ARM readKernel Scalar One Array Size
ARM writeKernel Scalar Worst Performing Array
ARM writeKernel Vector Difference Best and Worst Performing Array
RISC-V readKernel Scalar Difference Best and Worst Performing Array
ARM Assembly
RISC-V Assembly

34

35

36

38

1 Introduction

Many fields in Computer Science, such as artificial intelligence and high-performance computing,
perform memory-bound computations. Although computing power is increasing at a tremendous
pace, improvements in memory have not been as rapid, thus affecting big data workloads [.
Furthermore, in artificial intelligence, the performance bottleneck seems to be shifting towards
memory due to being limited by the traffic between CPU and memory as seen in matrix-vector
operations, which indicates the importance of bandwidth utilization |].

Convolutions, Matrix Vector Multiplication, and other memory-bound kernels take advantage
of the hardware prefetcher to retrieve data from memory into the cache. By detecting memory
access patterns in memory-bound kernels, the hardware prefetcher can fetch data into the cache in
advance, thus resulting in fewer cache misses and improving bandwidth utilization, and therefore,
throughput.

A recent paper by Miguel O. Blom, Kristian F. D. Rietveld, and Rob V. van Nieuwpoort demon-
strated that by transforming memory access patterns from single strides to multiple strides, we
can improve the utilization of the hardware prefetcher | |. This novel idea, which involves
transforming memory access patterns to multiple strides, is named in the paper as multi-striding.
The paper shows that memory-bound kernels using multi-striding outperform single-strided memory-
bound kernels for memory throughput up to a factor of 2.18x and also state-of-the-art kernels
like 1.98x over OpenBLAS, 1.08x over Halide, 2.99x over Intel’s MKL, and 1.87x over OpenCV.
The compute kernel is transformed so that multiple contiguous sequences of memory accesses
occur, or in other words, multiple strides occur in the access pattern. As a result, more cache
lines are brought ahead of time into the cache, improving cache hits and effective memory bandwidth.

The experiments in the paper by Blom et. al., were conducted on x86-64 architectures. Hard-
ware prefetchers differ between architectures, and therefore, further research is required to see the
effects on different architectures like RISC-V and ARM, so that these architectures could potentially
also benefit from multi-striding. In this thesis, we will evaluate the effectiveness of multi-striding on
the ARM (AArch64) and RISC-V (RV64) architectures. This is done on two devices: a Raspberry
Pi 5 equipped with an ARM Cortex-A76 processor, and a Banana Pi BPI-F3 equipped with a
RISC-V SpacemiT K1 processor.

Section 3 provides the background information required for understanding this thesis. In Sec-
tion 4, we will discuss which micro-kernels are implemented. We examine an example of an x86_64
memory access instruction implemented in the paper by Blom et. al., and explain the reason why
this is not feasible for the ARM and RISC-V architectures. In Section 5, we show our approach of
implementing and evaluating multi-striding for the ARM and RISC-V architectures. In Section 6.3,
we discuss our experimental setup and the hardware and software specifications of the tested devices.
Finally, in Section 8 and in Section 9, we discuss the results and evaluate whether multi-striding
improves performance on the ARM and RISC-V devices.

2 Related Work

Many kernels have a low arithmetic intensity, and are therefore bound by memory bandwidth.
Benchmarking this feature is crucial for the analysis of its scalability and suitability. By utiliz-
ing four simple kernels, the STREAM benchmark is a widely used tool for evaluating memory

bandwidth | |. Volokitin et. al. |] measured the memory bandwidth on RISC-V
micro-architectures using this benchmark. Other researchers implemented their own benchmark,
such as arm-bench by Burth et. al. | |, achieving throughput results closer to the limit of the

hardware architecture. While these benchmarks are run on multiple devices, some studies focus on
a single device, such as the Raspberry Pi 5, running many benchmarks to evaluate features beyond
memory bandwidth |].

Since numerous kernels are memory-bound, increasing memory bandwidth throughput is essential
for computational performance. Various studies investigate techniques and optimizations for increas-
ing this throughput, such as the paper by Liu et. al. | |, which developed a new automatic
vectorization technique achieving speedups of 1.20x over GCC[CITES5]. Pirova et. al |],
implemented four micro-kernels using band matrices, achieving speedups of 1.5x up to 10x compared
to openBLAS for RISC-V micro-architectures, such as the Banana Pi BPI-F3. The paper by Li et.
al. |], applied a new hardware prefetcher selection algorithm named Alecto, outperforming
other state-of-the-art RL-based selection algorithms.

Extensive research has been conducted on hardware prefetchers. For example, showing the effec-
tiveness of hardware prefetching for B*-Trees and binary search loads []. A recent study
by Ho et. al. | |, investigated the impact of hardware prefetchers on ARM-based high-end
processors, reporting an extensive evaluation of hardware prefetchers on various kernels. They
analyzed the memory access patterns, and evaluated these kernels using relevant prefetching tech-
niques. Despite being the least accurate, the Next-Line prefetcher achieves the highest bandwidth
utilization compared to other hardware prefetchers, such as the stride prefetcher. Additionally, the
impact of prefetching aggressiveness is investigated. They reported that more aggressive prefetching
for the Next-Line prefetcher, which increases useless prefetches, does not lead to performance
degradation.

Most micro-architectures include multiple hardware prefetchers. Examples of hardware prefetchers
are adjacent-line-prefetchers (automatically fetches neighboring cache lines), stream prefetchers
(detecting linear sequential memory accesses and prefetches next cache lines), and stride prefetchers
(which detect memory access patterns based on strides and predict future memory accesses). Some
hardware prefetchers are characterized by certain features. Schliiter et. al. [] identify these
features, and the hardware prefetchers present in 19 different ARM and x86_64 micro-architectures,
including those for the Cortex A-76. One important feature is the minimal stride in bytes and the
number of cache lines prefetched into the cache when the hardware prefetcher is triggered. For the
Cortex A-76, the minimal stride in bytes has to be 64 bytes, corresponding to one cache line. When
this stride prefetcher is triggered, it brings between one and sixteen cache lines into the cache.

While several studies investigated performance optimizations, such as boosting hardware prefetcher
utilization on the ARM and RISC-V architectures, none examined the effectiveness of multi-striding

by changing the memory access pattern on these architectures.

3 Background

In this section, we present the necessary background required to understand this thesis. First, we
will give a brief explanation of hardware architectures, including registers and stacks. Second, we
will provide information about the ARM and RISC-V architectures, as well as descriptions of all
the instructions used in our approach. Finally, we will explain multi-striding and provide a brief
description of address collisions.

3.1 Hardware Architectures
3.1.1 General-purpose registers and Stack

The general-purpose registers can be viewed as generic integer registers. The size of general-purpose
registers depends on the processor architecture, which can be either 32-bit or 64-bit. Most processors
have sixteen or thirty-two general-purpose registers, such as Intel processors, which typically have
sixteen registers in their x86_64 architecture '. These registers are typically used for temporary
storage of data during program execution. This saves time because intermediate data can be kept
in the registers instead of repeatedly reading from or writing to memory (RAM). Some registers are
unique, such as the zero registers (hardwired to zero). These special registers are not available for
use. In addition, the ARM and RISC-V architectures include callee-saved and caller-saved registers.
Callee-saved registers hold values that have to be preserved across function calls. Therefore, these
values have to be restored before the functions return. Caller-saved register does not have to be
preserved across function calls.

3.1.2 Floating-point registers

The floating-point registers (often referred to as FP registers) are special registers that typically hold
single-precision floating point values (32-bit) or double-precision floating point values (64-bit). These
floating-point registers contain representations floating point numbers, and therefore, these registers
have a limited precision, and a maximum range they can accurately represent. In some architectures,
such as ARM, the floating-point registers are combined with the vector/SIMD registers 2.

3.1.3 Vector registers

Vector registers are single instruction, multiple data (SIMD) registers used to hold and process
multiple data elements simultaneously, such as integers or single-precision floating points. One vector
instruction processes multiple data elements simultaneously, enabling SIMD processing. These vector
registers are typically defined as an architectural extension, such as the "V” extension in the RISC-V
architecture. It is important to note that, although vector registers are part of a micro-architecture,

Microsoft, x64 Architecture, https://learn.microsoft.com/en-us/windows-hardware/drivers/debugger/
x64-architecture

2ARM, Registers in AArch64 - general-purpose registers, https://developer.arm.com/documentation/102374/
0102/Registers-in-AArch64---general-purpose-registers

https://learn.microsoft.com/en-us/windows-hardware/drivers/debugger/x64-architecture
https://learn.microsoft.com/en-us/windows-hardware/drivers/debugger/x64-architecture
https://developer.arm.com/documentation/102374/0102/Registers-in-AArch64---general-purpose-registers
https://developer.arm.com/documentation/102374/0102/Registers-in-AArch64---general-purpose-registers

not all micro-architectures support vector registers. Modern micro-architectures typically include
vector registers, as they often contribute to significantly improved performance |]. Most
micro-architectures have between sixteen and thirty-two vector registers with a standard size (e.g.,
128-bit, 256-bit). However, some vector extensions support scalable vectors, allowing the register
size to exceed the fixed standard size, such as the scalable vector extensions (SVE) in the ARM
architecture.

3.1.4 Stack

The number of available general-purpose registers is limited, thus we need a place to store values,
including callee-saved registers, when they are not in use (i.e. spilling). The stack is an allocated
memory segment within main memory (RAM). The stack pointer register keeps track of the top
of the stack. Data can be placed on top of the stack, and this data can also be removed from the
stack. In most architectures, the stack grows towards lower memory addresses.

3.2 ARM

The ARM architecture is a RISC (Reduced Instruction Set Computer) based architecture licensed
by ARM Ltd., and is not open-source. Some important characteristics of RISC-based architecture
are: instructions are simple and fixed format, most instructions execute in one clock cycle, and
fewer instructions and addressing modes are supported | |. Popular in mobile devices and
embedded systems, where approximately 99% of mobile smartphones are powered by ARM 2, the
ARM architecture in recent years also gained traction in High-Performance Computing | |.
In 2020, Apple Inc. introduced its first ARM-based processor for laptops, making a transition from
the Intel x86 *. Different architecture versions are available (e.g., ARMv7-A, ARMv8-A), and each
version operates in either AArch32 (32-bit) or AArch64 (64-bit) mode. For the purpose of this
thesis, we will only discuss the AArch64 (64-bit) mode °.

3.2.1 Registers, Calling Conventions and Vectors

General-purpose Registers The AArch64 architecture provides thirty-one 64-bit general-
purpose registers °. Each general-purpose register can be used as either x0-x30 (64-bit register), or
as w0-w30 (32-bit register). In Table 1, the Procedure Call Standard for the AArch64 architecture.
Registers x0-x7 are parameter and result registers. The XR register (x8) is an indirect result register
that holds a memory address pointing to a value larger than the typical 64-bit general-purpose
register. Registers x9-x15 are corruptible registers, the called function can overwrite these registers
without needing to restore. Register x16 and x17 are intra-procedure-call corruptible registers.
Linkers use these registers to insert small pieces of code between the caller and the callee, for

3ARM, Consumer Technologies Smartphones, https://www.arm.com/markets/consumer-technologies/
smartphones

4Apple, Apple unleashes M1, Press Release, November 10, 2020, https://www.apple.com/newsroom/2020/11/
apple-unleashes-ml/

SARM, Learn the architecture - A64 Instruction Set Architecture Guide 1.2, https://developer.arm.com/
documentation/102374/latest/

6Registers in AArch64 - general-purpose registers, https://developer.arm.com/documentation/102374/0102/
Registers-in-AArch64---general-purpose-registers

https://www.arm.com/markets/consumer-technologies/smartphones
https://www.arm.com/markets/consumer-technologies/smartphones
https://www.apple.com/newsroom/2020/11/apple-unleashes-m1/
https://www.apple.com/newsroom/2020/11/apple-unleashes-m1/
https://developer.arm.com/documentation/102374/latest/
https://developer.arm.com/documentation/102374/latest/
https://developer.arm.com/documentation/102374/0102/Registers-in-AArch64---general-purpose-registers
https://developer.arm.com/documentation/102374/0102/Registers-in-AArch64---general-purpose-registers

example, for branch range extension. The PR register is the platform register. Registers x19-28 are
callee-saved registers. The FP register (x29) is the frame pointer, and the LR register(x30) is the
link register, for function calls. The zero register in the AArch64 is xzr and wzr, these register
always reads zero and ignore writes. The register alias for the stack pointer is sp.

Register \ Caller/callee-saved \ Alias ‘

x0-7 Caller-saved -

x8 Caller-saved XR
x9-15 Caller-saved -
x16 Caller-saved IP1
x17 Caller-saved IP2
x18 Caller-saved PR
x19-28 Callee-saved -
x29 Callee-saved FP
x30 Callee-saved LR

Table 1: Calling convention for the general-purpose registers in the ARM architecture.
ARM, Procedure Call Standard,
https://developer.arm.com/documentation/102374/0102/Procedure-Call-Standard

Floating-point /Vector Registers The AArch64 architecture do not have dedicated floating-
point registers, instead it has thirty-two registers used for both floating-point and vector operations.
The registers are 128-bit. These registers can be accessed in several ways. Bx (byte) is 8 bits, Hx
(half) is 16 bits, Sx is 32-bit, Dx is 64-bit, and Qx is 128-bit.

Advanced SIMD In the AArch64 architecture, there are two types of vector processing: Advanced
SIMD, also known as NEON, and Scalable Vector Extension (SVE and SVE2) 7. In this thesis, we
will utilize the Advanced SIMD vector processing. Advanced SIMD uses the floating-point /vector
registers.

3.2.2 Implemented Assembly Instructions

All the instruction encodings in the following paragraphs are described in the ARM reference
manual |].

LDR - Load (immediate/SIMD&FP) There are numerous variants for this instruction (e.g.,
LDR register, LDR immediate, LDR literal). We will only discuss the immediate variant used
in this thesis. The LDR (immediate/SIMD&FP) instruction has three indexing modes, Post-index,
Pre-index, and Unsigned offset. In this thesis, we will only use the Post-index encoding. In Listing 1
the (immediate/SIMD&FP) Post-index encoding. The instruction reads a value from memory and
stores it in the general-purpose register Xt. The Xt register can also be other register types, such
as a 32-bit floating-point register (e.g., S0) or a 128-bit vector register (e.g., Q0). The <Xn|SP> is
the 64-bit general-purpose base register, which either holds the address of the memory to be read

TARM Data processing - vector and matrix data, https://developer.arm.com/documentation/102374/0102/
Data-processing---vector-and-matrix-data

https://developer.arm.com/documentation/102374/0102/Procedure-Call-Standard
https://developer.arm.com/documentation/102374/0102/Data-processing---vector-and-matrix-data
https://developer.arm.com/documentation/102374/0102/Data-processing---vector-and-matrix-data

or the stack pointer. The #<simm> indicates that we use the Post-index encoding. For the AArch64
architecture, this immediate value must be a multiple of eight and fall within the range 0 to 32760.
When using Post-index encoding, the immediate value is added to <Xn|SP> after the value is read
from memory.

LDR <Xt>, [<Xn|SP>], #<simm>

Listing 1: Encoding for the 64-bit variant of the load instruction LDR (immediate) in the AAarch64
architecture.

STR - Store (immediate/SIMD&FP) In Listing 1 the LDR (immediate/SIMD&FP) Post-index
encoding. The instruction stores the value of the general-purpose register Xt to memory. All
encoding components in this instruction share the same definition as the LDR (immediate/SIMD&FP)
instruction. Therefore, they will not be discussed here.

STR <Xt>, [<Xn|SP>], #<simm>

Listing 2: Encoding for the 64-bit variant of the store instruction STR (immediate) in the AAarch64
architecture.

LD1 - Load multiple single-element structures There are four variants of this instruction
(i.e., LD1,LD2, LD3 and LD4), indicating how many single-element structures are loaded. We will
focus on the LD1 instruction used in this paper. This instruction has two indexing modes, No offset
and Post-index modes. We will discuss the Post-index mode. The LD1 instruction is part of the
Advanced SIMD extension of the AArch64 architecture. In Listing ??, the encoding is shown for the
LD1 (Multiple Structures) instruction. This instruction reads multiple single-element structures from
memory and loads these elements into the vector register Vt. The <T> indicates the arrangement
specifier (i.e., element type). We will use the 43 arrangement specifier, representing four 32-bit
floating-point values. The [<Xn|SP>] is the 64-bit general-purpose base register or stack pointer.
This is the memory address from which the data will be read. At last, the <imm> represents the
Post-index immediate value. This value is added to the <Xn|SP> general-purpose register after the
elements are read from memory. For example, when stream data sequentially from memory with
128-bit vector registers, the immediate value is #16, since four 32-bit floating-points (i.e., 16 bytes)
are read.

LD1 { <Vt>.<T> }, [<Xn|SP>], <imm>

Listing 3: Encoding one register (LD1), immediate offset variant of the vector load instruction LD1
(Multiple Structures) in the AAarch64 architecture.

ST1 - Store multiple single-element structures There are numerous variants and encodings
for this instruction, similar to the LD1 instruction. The only difference between the LD1 (Multiple
Structures) and the ST1 (Multiple Structures) instruction is that the ST1 instruction stores the
elements from vector Vt to the memory address in 64-bit general-purpose register [<Xn|SP>]. All
the encoding components share the same definition. In Listing 4 the encoding for the ST1 (Multiple
Structures) instruction.

-

ST1 { <Vt>.<T> }, [<Xn|SP>], <imm>

Listing 4: Encoding for the 64-bit variant of the store instruction STR (immediate) in the A Aarch64
architecture.

MOVZ - Move wide with zero The encoding of the MOVZ is shown in Listing 5. The <Xd> specifies
the 64-bit general-purpose destination registers. The <#imm> encoding is a 16-bit value, ranging
from 0 to 65535. The MOVZ instruction clears all the bits in the general-purpose register by zero,
then the immediate value is loaded into the least significant bits of the general-purpose register
<Xd>. If desired, an additional immediate value can be encoded in the instruction to shift the loaded
immediate to the left using the #<shift> encoding.

MOVZ <Xd>, #<imm>{, LSL #<shift>}

Listing 5: Encoding for the 64-bit variant of the MOVZ instruction in the AAarch64 architecture.

MOVK - Move wide with zero The encoding of the MOVK is shown in Listing 6. The <Xd> specifies
the 64-bit general-purpose destination registers. The <#imm> encoding is a 16-bit value, ranging
from 0 to 65535. The MOVK instruction keeps all the bits in the general-purpose. The immediate
value is loaded into the least significant bits of the general-purpose register <Xd>. If desired, an
additional immediate value can be encoded in the instruction to shift the loaded immediate to the
left using the #<shift> encoding.

MOVK <Xd>, #<imm>{, LSL #<shift>}

Listing 6: Encoding for the 64-bit variant of the MOVK instruction in the AAarch64 architecture.

3.3 RISC-V

The RISC-V architecture is an extension of the RISC-based architecture. A well-known feature of
RISC-V is its open-source licensing model. The RISC-V development started in May 2010 at UC
Berkeley ®. The RISC-V architecture is relatively new compared to other architectures, with the
vector processing specification only being released in 2021 ?. Moreover, RISC-V is actively being
explored in many areas, such as Automotive AI'® and Embedded Edge Computing |].

3.3.1 Registers, Calling Conventions and Vectors

Three register widths version are available, RV32 (32-bit), RV64 (64-bit) and the RV128 (128-bit)
version '!. For the purpose of this thesis, we will only discuss the RV64 (64-bit) mode.

8RISC-V, History of RISC-V, https://riscv.org/about/

SRISC-V, riscv-v-spec, https://github.com/riscvarchive/riscv-v-spec/releases/tag/v1.0

ORISC-V, RISC-V for Automotive Al Use Cases, https://riscv.org/wp-content/uploads/2025/04/RISC-V_
AIOpportunitiesChallenges_042825.pdf

HUWikiChip, Overview, https://en.wikichip.org/wiki/risc-v/registers

https://riscv.org/about/
https://github.com/riscvarchive/riscv-v-spec/releases/tag/v1.0
https://riscv.org/wp-content/uploads/2025/04/RISC-V_AIOpportunitiesChallenges_042825.pdf
https://riscv.org/wp-content/uploads/2025/04/RISC-V_AIOpportunitiesChallenges_042825.pdf
https://en.wikichip.org/wiki/risc-v/registers

General-purpose Registers The RISC-V (RV64 variant) architecture defines thirty-two 64-bit
general-purpose registers. Each general-purpose register can be used as x0-x31. In Table 2, a list
of the assembler mnemonics and Saver (i.e., value saved across function calls). Register x0 is
hard-wired to zero, which means that store operations to this register have no effect, and it always
reads a zero. The ra register is utilized for the return address. The sp register is used for the stack
pointer, which keeps track of the top of the stack. The global pointer (i.e., gp register) points to the
middle of the global data area (GDA) in memory. The tp register is the thread pointer, pointing to
the thread-local storage. Both these registers are considered persistent registers: their values must
not be modified during runtime. The t0-6 are temporary values. These registers may be used freely
within a function. The a0-7 contain the function arguments, used to pass function arguments, with
the a0 and al registers also functioning as registers for return values. The s0-11 are callee-saved
registers, with the addition of s0 serving as the frame pointer fp.

’ Register \ Caller/callee-saved \ ABI Name ‘

x0 - Zero
x1 Caller-saved ra

x2 Callee-saved sp

x3 - gp
x4 - tp
x5-7 Caller-saved t0-2
x8 Callee-saved s0/fp
x9 Callee-saved s1
x10-17 Caller-saved a0-7
x18-27 Callee-saved s2-11
x28-31 Caller-saved t3-6

Table 2: Calling convention for the general-purpose registers in RISC-V architecture.
RISC-V, Calling Convention, https://riscv.org/wp-content/uploads/2024/12/riscv-calling.pdf

Floating-point Registers The floating-point registers are part of the "F” extensions in the
RISC-V architecture. The registers are a fixed set size of 32-bit. The registers are defined as £0-31.
Some floating-point registers are callee-saved. However, in this thesis, only f£0 register is used.
Therefore, the remaining register will not be discussed. The £0 register is caller-saved.

Vector Registers The vector registers are part of the ”V” extensions in the RISC-V architecture.
This extension adds thirty-two vector registers to the RISC-V architecture, defined as vO-v31. The
vector registers have a fixed set of bits, denoted as VLEN. In this thesis, the vector register width
(VLEN) is 256-bits. Every time vectors are used in RISC-V, the vector configuration must be set
using the Vector Configuration Setting. In this thesis, we will only discuss the vector configurations
presented in Listing 7.

vsetivli rd, imm, vsew, vmul

Listing 7: Vector Configuration Setting instruction for the ”V” vector extension in RISC-V.

The vsetivli has many configurations and arguments, we will only discuss those relevant to this
thesis. The imm value indicates the desired number of elements processed. The vsew, or Vector

https://riscv.org/wp-content/uploads/2024/12/riscv-calling.pdf

Selected Element Width, defines the size of the element that will be processed. For example, 32
indicates 32-bit elements. The vmul is the vector multiplier. Vector registers can be grouped and one
instruction can process multiple vector registers. For example, m1 means each vector corresponds to
one full vector register (256-bits) and no vector register grouping is used. Based on these setting,
the destination register rd will hold the total number of elements that can be processed. If this
value is set to x0 (zero register), the result will not be stored.

3.3.2 Implemented Assembly Instructions

All the instruction encodings in the following paragraphs are described in the RISC-V reference
manual | .

flw - Single-precision Load The flw instruction load a 32-bit single-precision floating point
from memory to the floating-point destination register rd. The encoding of the f1lw instruction is
shown in Listing 8. The rs1 is a general-purpose register holding the memory address. Optionally,
an offset can be provided, which will be added to the memory address contained rs1.

flw rd, offset(rsl)

Listing 8: Encoding for the flw load instruction in the "F” extension on the RISC-V architecture.

fsw - Single-precision Store The fsw instruction stores a 32-bit single-precision floating point
from the floating-point destination register rd to memory address stored on general-purpose register
rs1. The encoding of the fsw instruction is shown in Listing 9. Similarly to f1w, an offset can be
provided, which will be added to the memory address contained rsi.

fsw rd, offset(rsl)

Listing 9: Encoding for the fsw store instruction in the "F” extension on RISC-V architecture.

vle32.v - Vector Load The instruction encoding for the v1e32.v vector instruction is shown
in Listing 10. The v1e32.v instruction loads a 256-bit vector from memory to the vector register
encoded in vd. The general-purpose register rs1 hold the memory address. An offset can be added
to the rsi register. However, in this thesis, we will not use this because immediate offset value is
too limited for practical use, and therefore we will not discuss this encoding. The number thirty-two
in the v1e32.v encoding specifies that 32-bit elements (single-precision floating points) are read.

vle32.v vd, (rsil)

Listing 10: Encoding for the vle32.v store instruction in the "V” extension on the RISC-V architec-
ture.

vse32.v - Vector Store The instruction encoding for the vse32.v vector instruction is shown
in Listing 11. The v1e32.v instruction stores a 256-bit vector from memory to the vector register
encoded in vd. All encoding components in this instruction share the same definition as the v1e32.v
instruction.

-

vse32.v vd, (rsil)

Listing 11: Encoding for the vse32.v store instruction in the ”V” extension on the RISC-V
architecture.

3.4 Multi-striding

In this section, we will discuss the transformation of memory access patterns in the compute kernels,
defined as multi-striding. The paper by Blom et. al. |], transformed a single-strided memory
access pattern into multiple contiguous sequences of memory addresses, in other words, strides.
We hope that the hardware stride prefetcher detects these strides at multiple positions in our
memory-bound kernel, resulting in more prefetching of data from memory into the cache, expecting
an increase in cache hits, and therefore memory throughput.

An example of multi-striding is shown in Figure 1, representing the start of two stride unrolls. In
this example, we sequentially access array elements starting at index 0 and at index % In the case
of four strides, we start at index 0, %, %, and %N . This same concept can also be applied to other
powers of two, such as eight strides.

Currently Currently
loading loading

0 1 2 3 4 5 6 T 12N e e e N

Currently Currently
loading loading

o 1 2 3 4 5 86 712N NA

Currently Currently
loading Stride detected loading Stride detected

0 1 2 3 4 5 6 71N N1
Hardware Hardware
Prefetcher Prefetcher
_—r e
0 1 2 3 4 5 6 7 M2N N1

Figure 1: A schematic view of the memory access patterns sequentially accessing array elements at
two strides.

10

3.4.1 Stride-unrolls and Portion-unrolls

The stride-unroll number indicates the number of distinct starting positions for memory accesses.
The portion-unroll number indicates the number of memory accesses executed within this stride-
unroll. To illustrate this concept, we will present one of the multi-striding implementations presented
in the paper by Blom et. al. |]. A total of 32 loop bodies is unrolled in various ways, as
defined by the striding configuration, e.g., (1, 32), (2, 16), ..., (32, 1). Keeping the number of
total unrolls as an invariant also causes the number of executed instructions (including branches)
and code size to remain equal, eliminating these as sources of variations in the measurements.
While this approach is able to demonstrate the presence of effects originating from multi-striding,
ongoing research showed that a minimum number of portion unrolls is required to trigger hardware
prefetchers to establish and enforce a pattern. In addition, the configuration space of this setup is
very limited and allows only very few specific configurations to be evaluated. Therefore, in this
thesis, we will diverge from this approach and explore a larger, more complete set of configurations,
while being aware of the consequences given varying code sizes and loop overhead. We hypothesize
these should not have a significant impact on detecting the effects of multi-striding, while on the
other hand, they become slightly noticeable.

3.5 Address Collisions

Blom et al. | | describe the occurrence of concurrent memory accesses competing for the
same cache sets. Specifically, caches are divided into cache sets, each containing a fixed number
of cache lines, corresponding to the “way” or “associativity” of the cache. Each memory address
maps to a specific cache set, and thus, when multiple addresses that map to the same set are in
use, they may conflict when this number exceeds the set size. The authors reason that, for example,
with an 8-way associative cache where each cache set contains 8 lines, a 10-strided configuration,
with specifically aligned memory accesses, will experience a performance penalty due to 10 accesses
consistently competing for the same 8 slots of the cache set. We generalize the notion of performance
degradation due to conflicting addresses to include all resources and will refer to this as ”address
collisions”.

4 Methodology

In this section, we discuss three main topics. First, we give an abstract description of the micro-
kernels implemented to evaluate the effectiveness of multi-striding. Second, we demonstrate how
memory access in the multi-strided memory patterns is produced. Third, we give a brief explanation
of how multi-striding is implemented on the x86_64 architecture by Blom et. al. | |, and why
this setup cannot be achieved on the ARM and RISC-V architectures.

4.1 Micro-kernels

We implemented two micro-kernels, and these micro-kernels will be tested on the ARM and RISC-V
architectures. One kernel for load accesses, and one kernel for store accesses, in this thesis referred to
as the readKernel and writeKernel, respectively. The objective of the micro-kernels is to measure
the throughput of memory accesses among striding configurations.

11

4.2 Addressing mode

Memory access patterns typically consist of a single stride. We transform these memory access
patterns along multiple strides. Stride unroll zero corresponds to the start of the base of the memory
address. The remaining stride unrolls represents displacements from the base memory address, each
beginning at its own stride. The Formula (1) is used to determine the memory address of each
stride unroll. The array size represented in bytes is denoted as B. This value is divided by the total
number of stride unrolls n. By multiplying this value by the stride unroll index i, we obtain the
offset corresponding to Stride;. Adding the base memory address B results in the memory address
for Stride;.

A = Array Size In Bytes
B = Base Memory Address (1)

A-
Vo<i<n (Stride;) = TZ +B

Each stride-unroll consists of one or more portion-unrolls. Portion-unroll values correspond to the
number of memory accesses performed within a single loop. Each extra portion unroll produces
n additional memory accesses, with n denoting the number of stride unrolls. All memory access
corresponds to a stride unroll and a portion unroll. The formula for calculating the memory
addresses for each memory access within the loop is given in formula (2). The memory access
address is denoted as Memory Access Address (i, j). The variable ¢ represents the stride unroll
number, and j represents the portion unroll number within this stride unroll. Multiplying the
memory access size by the portion unroll index yields the displacement within a stride unroll.
By adding this value to the memory address for Stride;, calculated in formula (1), we obtain the
memory address for a memory access for a given stride and portion unroll.

j = Portion Unroll Index
i = Stride Unroll Index (2)
Memory Access Address (i,j) = j x Memory Access Size + Stride;

The example provided below demonstrates how the memory address for a memory access corre-
sponding to a stride unroll ¢ and portion unroll j is calculated.

Example 4.1 We want to calculate the Memory Access Address (2, 6). The total number of stride-
unrolls n is 10. The base address B is 0x200. The array size in bytes A is 400 bytes. The memory
access size is 4 bytes. This results in calculation in demonstrated in (3):

400 x 2
Stridey = X

+ 02200 = 0x250 (80 = 0x50 in hexadecimal) 3)
Memory Access Address(2,6) = 6 x 4 4+ 02250 = 02268 (24 = 0x18 in hecadecimal)

4.3 x86_64 and CISC-based architectures

The paper by Blom et. al. evaluated the effect of multi-striding on the x86_64 architecture. Each
memory access corresponds to portion-unroll, and each stride-unroll corresponds to an additional

12

[w

© oo ~ (=] (o))

10

11

concurrent data stream added to the access pattern. These memory accesses within these stride and
portion unrolls are represented by an offset. A fragment of the vector read kernel implemented on
x86_64 by Blom et. al. is given in Listing 12. The vmovaps is an aligned AVX2 vector load. It loads
data from memory into vector register ymm;, from a base address in rax with a displacement (offset).
This example demonstrates two stride unrolls, and four portion unrolls. The offset corresponds to
the stride and portion unrolls. This instruction is possible because the x86_64 is based on the CISC
(Complex Instruction Set Computer) architecture. Therefore, instructions can exceed 64 bits in
size, allowing large immediate values (i.e., 252645120) to be encoded within a single instruction,
such as the displacements encoded within the memory access instructions.

stride 1

vmovaps (%rax), %ymmO # portion 1

vmovaps 32(%rax), %ymml # portion 2

vmovaps 64(Y%rax), %ymm2 # portion 3

vmovaps 96(%rax), %ymm3 # portion 4

stride 2

vmovaps 252645120 (%rax), %ymmé # portion 1
vmovaps 252645152 (%rax), ’%ymm5 # portion 2
vmovaps 252645184 (Y%rax), %ymmé # portion 3
vmovaps 252645216 (%rax), %ymm7 # portion 4

Listing 12: A fragment of the vector read kernel implemented on x86_64 architecture, implemented
by Blom et. al. vmovaps is an AVX2 vector load instruction, loading data into vector register ymm;.

Architectures based on the RISC design (e.g., ARM and RISC-V) are constrained by a fixed
instruction size, defined by the architecture. Therefore, an instruction consists of either 32-bits or
64-bits. The displacement required can not be encoded within a single instruction. Therefore, we
are limited in applying this addressing mode. We need to utilize a different addressing mode to
implement similar kernels for evaluating multi-striding on the ARM and RISC-V micro-architectures.

5 Approach

In this section, we will describe our approach for implementing multi-striding on the ARM and
RISC-V micro-architecture. We generate the assembly files using Python scripts. The evaluation
and validation of these assembly files consist of several steps. First, the kernels operate on arrays in
memory. To reduce address collision and ensure that each striding configuration fits, we reshape
the array size. Next, we discuss the code generation. This includes the scripts that generate the
assembly files, how to load large immediate values into the registers, and how the addressing modes
are implemented on the ARM and RISC-V architectures. Last, we describe the post-execution
steps, the calculation of throughput, and the validation of the micro-kernels. All these steps are
implemented within a framework. This framework is open source and available on GitHub 2.

12Multi-striding Framework for the ARM Raspberry Pi 5 and RISC-V Banana Pi BPI-F3, https://github.com/
steffanradojevic/MFRB

13

https://github.com/steffanradojevic/MFRB
https://github.com/steffanradojevic/MFRB

5.1 Reshaping Input Size

Before array initialization, the dimensions of the input sizes are determined. We aim to reduce
address collisions by multiplying the selected array size by %. By doing so, we aim to avoid cache
lines being mapped to the same cache set. Additionally, to not be left with remainders of our array
that need to be processed separately, we ensure the dimensions in the directions of the stride and
portion unrolls are multiples of their respective step sizes. In Formula (4), we demonstrate how we
fit an input size to a striding configuration. First, we determine the memory access size in bytes and
for which striding configuration we have to reshape the array size. Second, we calculate the number
of elements processed within one loop. Finally, we establish the new array size by performing floor
division of the old array size by E;..p, and then multiplying the result by Ejop.

Mpytes = Memory Access Size in Bytes
S = Stride Unroll
P = Portion Unroll
Bloop = Mygics x S x P @)

Id A i
New Array Size = LO El;ray Size J X Eioop
loop

5.2 Code generation

The assembly codes are generated using Python scripts. These scripts create classes where instance
variables can be configured to define our parameter space. Our parameter space includes the striding
configuration, vector register length (in bits), selected element width (in bits), and the type of
micro-kernel. Within the generated assembly kernels, we initialize the assembly prologue, the loop
body, and the function’s return. In the following sections, we will discuss these components in
detail.

5.2.1 Loading Large Immediate Values into Registers

In the generation of assembly files, we must work with large immediate values (e.g., storing the
loop bound). In Section 4.3, we explained that the ARM and RISC-V architectures are constrained
by a fixed instruction size, hence why we cannot load large immediate values. Thus, a method is
required for both architectures to load these large values. This section provides a brief explanation
of how these instructions are generated for both architectures.

ARM In Section 3.2.2, we briefly discussed the two instructions MOVZ and MOVK. These two
instructions are utilized to load large immediate values in the ARM architecture. Using bit masks,
we extract the 16-bits segments of each equally divided part of the immediate value. The first 16-bit
segment is loaded using the MOVZ instruction, ensuring all other bits are set to zero. The other
16-bit segments are loaded using the MOVK instructions, along with their appropriate left shift. An
example of loading a large offset in the ARM architecture using this method is given in Listing 13.
In this example, we want to load the immediate value 1768515840. The bit representation of this
value is given on the right-hand side of the first row. The MOVZ loads in the first sixteen bits of
the immediate value, while setting all other bits to zero. The second instruction, MOVK, loads bits

14

ot - w Y

[32:16] of the immediate value into the appropriate position. The remaining two instructions have
no effect.

// immediate value = 1768515840 [0110100101101001 0110100100000000]
movz x14, #26880 [0110100100000000]
movk x14, #26985, LSL #16 [0110100101101001]

movk x14, #0, LSL #32
movk x14, #0, LSL #48

Listing 13: Instruction sequence for loading 64-bit immediate values using four instructions on the
ARM architecture.

RISC-V For loading large immediate values, we use two instructions; addi, loading an immediate
value into a general-purpose register, and lui, loading an immediate value into bits [32:12]. By
using bit-masks, we split the 32-bit immediate value into two segments: the upper 20 bits and the
lower 12 bits. The upper 20-bits are loaded using the 1lui instruction. The lower 12-bits are loaded
using the addi instruction. Since the addi instruction adds a 12-bit sign-extended immediate value,
any large immediate value where the twelfth bit is set must be encoded in the addi instruction as
a negative number to ensure that the twelfth bit remains set in the register. An example loading
an immediate value using this method in RISC-V is given in Listing 14. In this example, we want
to load the immediate value 1768515840 into register t4. Using bitmasks, we split the value into
two segments. The first instruction addi loads one of the segments, representing bits [11:0], into
the appropriate position. The second instruction lui loads the other segment, representing bits
[32:12], into the correct position.

immediate value = 1768515840 [01101001011010010111 100100000000]
addi t4, x0, -1792 L 100100000000]
lui t4, 431767 [01101001011010010111]

Listing 14: Instruction sequence for loading a 32-bit immediate value using two instructions on the
RISC-V architecture.

5.2.2 Assembly Prologue Generation

Callee-saved registers To maximize register availability, the callee-saved registers are stored
on the stack at the beginning of the generated assembly files. Both architectures and individual
processors differ in which set of registers must be saved on the stack. The ARM processor allows us
to freely use 31 registers when storing all the callee-saved registers onto the stack. For the RISC-V
register, we have a total of 30 available registers when storing all callee-saved registers onto the
stack.

Loop Bound We store the loop counter in a register, which we increment and compare to the
value of the loop bound. Thus, one register is reserved for the loop bound, and one register is
reserved for the loop counter. To generate the immediate value, we use formula (5). To calculate

15

the loop bound value, we divide the array size in elements by the array elements accessed within
each loop.

Array Size

(5)

L B d Val =
OOp BOUnAG Valle = o ments Accessed per Loop

Loading stride memory addresses Besides placing callee-saved registers on the stack, and
storing the loop bound and loop increment into the designated registers, we will also store all the
generated stride memory addresses into registers.

5.2.3 Loop Design for Strided Memory Access

The loop consists of two components: memory accesses, which correspond to the striding configura-
tion dimensions, and the update of the loop counter and loop bound. In the following paragraphs,
we will discuss how the addressing modes are implemented in the memory access instructions for

ARM and RISC-V, respectively.

Generating Memory Accesses Listing 15 illustrates the starting points of a generated loop in
ARM using scalar loads, without portion-unrolls. This loop consists of two strides, therefore two
registers (x3 and x4) are reserved to hold the memory address of the starting point of the stride.
At the start of execution, the stride memory address x3 contains the start address of the allocated
data. Register x4 contains the memory address at exactly half of the allocated data. The following
two paragraphs describes the generation of portion-unrolls within these strides for both architectures.

.Loop:
// stride 1
ldr sO0, [x3] // portion 1

// stride 2
ldr s4,[x4] // portion 1

Listing 15: Two stride-unrolls using the two registers that hold the stride memory addresses on the
ARM architecture. Additionally, these memory accesses correspond to the first portion-unroll.

ARM For all memory accesses on the ARM architecture, a post-indexed encoding exists, which
we will utilize to advance to the next portion-unroll. The immediate value of the post-indexed
encoding corresponds to the size of the memory access. Because we use post-indexed encoding, the
registers holding the starting point of the stride are automatically updated, and by the end of the
portion-unroll, this register correctly points to the next stride memory address. An example of two
stride-unrolls, four portion-unrolls, and a memory access of 4 bytes is given in Listing 16. This
example consists of two strides. In each portion unroll (memory access), we increment the register
holding the memory address of the stride by four, thus the register holds the memory address of
the next portion unroll.

16

10

11

10

11

12

13

14

// stride 1

1ldr sO0, [x3], #4 // portion
ldr s1,[x3], #4 // portion
1ldr s2,[x3], #4 // portion
ldr s3,[x3], #4 // portion

S W N -

// stride 2

1ldr s4,[x4], #4 // portion
ldr sb, [x4], #4 // portion
1dr s6,[x4], #4 // portion
ldr s7,[x4], #4 // portion

W N -

Listing 16: A generated loop using post-indexed encoding for two stride-unrolls, four portion-unrolls
and a memory access size of 4 bytes on the ARM architecture.

RISC-V For the scalar memory accesses in the RISC-V architecture, no instruction encoding
exists for incrementing the register within a single instruction. Therefore, we use an offset encoded
within a single instruction, which is added to the base registers. An example for scalar stores
using two stride-unroll, four portion-unroll, with a memory access size of 4 bytes is illustrated
in Listing 17. This example consists of two strides. In each memory access, we add an offset
representing the portion unroll to the stride memory address. This way, we access the correct
memory in our allocated data.

stride 1

flw £f0, 0(x4) # portion 1
flw f0, 4(x4) # portion 2
flw £f0, 8(x4) # portion 3
flw £f0, 12(x4) # portion 4
stride 2

flw f0, 0(x5) # portion 1
flw £f0, 4(x5) # portion 2
flw f0, 8(x5) # portion 3
flw £f0, 12(x5) # portion 4

addi x4, x4, 16
addi x5, x5, 16

Listing 17: A generated loop using base address + offset, for two stride-unrolls, four portion-unrolls
and a memory access size of 4 bytes on the RISC-V architecture

Since the registers holding the stride memory addresses are not incremented directly within the
instruction, we need to increment the register at the end of the loop. We use the following formula
for incrementing the registers for scalar memory accesses in RISC-V:

New Value Register = (Old Value Register) + ((Total Portion-unrolls) x (Memory Access Size))

17

[w

© oo ~ (=] (o))

10

11

The vector memory accesses in RISC-V do not support an offset encoding that can add or increment
a register within a single instruction. Therefore, to implement vector memory accesses, the registers
holding the stride memory address are incremented after each memory access. By adding an extra
instruction to increment the register after each memory access, we eliminate the need to increment
the registers at the end of the loop. An example for a memory access of 32 bytes, two stride-unrolls,
and two-portion unrolls is shown in Listing 18. In this example, the two stride memory addresses
are in x4 and x5. Both registers are incremented by a single instruction after each memory access.
By using this implementation, we do not have to increment the registers after all memory accesses
have been executed.

stride 1

vse32.v vO, (x4) # portion 1
addi x4, x4, 32

vse32.v vO, (x4) # portion 2
addi x4, x4, 32

stride 2

vse32.v vO, (x5) # portion 1
addi x5, xb, 32

vse32.v v0, (x5) # portion 2
addi x5, xb, 32

Listing 18: A generated loop using an extra instruction to advance to the next portion, for two
stride-unrolls, four portion-unrolls and a memory access size of 32 bytes on the RISC-V architecture

5.2.4 Maximum Striding Configuration

When abstractly outlining the addressing modes in Section 4.2, we noted that there is a limit to
the number of stride-unrolls and portion-unrolls that can be generated with the implementation
described above on the ARM and RISC-V architectures. In the next two paragraphs, we will briefly
discuss the limits of these configurations.

Stride-unrolls FEach stride-unroll memory address is stored in a register. Consequently, the limit
on the number of stride-unrolls corresponds to the number of available registers in the architecture.
Our implementation requires reserving two registers, one for storing the loop bound, and one for
the loop counter. The formula (6) defines the maximum number of stride unrolls utilizing our
addressing mode for the ARM and RISC-V architectures.

Maximum Number of Stride-unrolls = Maximum Number of Available Registers —2 (6)

Portion-unrolls Portion-unrolls do not rely on dedicated registers, but instead make use of
encoded offsets, or an extra increment instruction in the case of RISC-V vector memory accesses.
Therefore, there is no limit to the maximum number of portion-unrolls, provided that it fits within
the allocated array size, alongside the stride-unrolls.

18

5.3 Throughput and Validation

Throughput Before calling the micro-kernels, a timer is started. Once execution is completed,
the elapsed time is used to compute the throughput. The throughput is measured in gigabytes per
second (GB/s). Formula (7) describes how the throughput is computed:

Array Size in Bytes
Th hput (GB/s) = 7
roughput (GB/s) Elapsed time in Seconds x 109 ")

Validation Addressing modes between load and store memory accesses are identical. Therefore,
a validation code is implemented for the writeKernel, which thus covers both micro-kernels. The
writeKernel writes the loop counter into the array. After execution of the writeKernel, the
content of the written array can be verified to ensure that all indices hold the correct values.

6 Experimental Setup

In this section, we discuss the experimental setup for the ARM and RISC-V devices. First, we
will explain all the instructions implemented in the micro-kernels. Second, we will define the
tested devices and present their hardware and software specifications. Finally, we will discuss our
experimental method.

6.1 Micro-kernels

We evaluate two micro-kernels. A readKernel, performing load memory accesses, and a writeKernel,
performing store memory accesses. All memory accesses operate on 32-bit single-precision floating
point values, equivalent to four bytes per element. In Table 3 an overview of all the instructions
utilized in the readKernel and writeKernel for the ARM micro-architecture. Descriptions of these
instructions are provided in Section 3.2.2. For the readKernel, we implemented three instructions.
The scalar load instruction LDR and the two vector load instructions LDR and LD1. Subsequently, for
the writeKernel, we implemented the scalar store instruction STR and the two vector instructions
STR and ST1.

Instruction | Micro-Kernel | Instruction Type | Memory Access Size
LDR Load Scalar 4 bytes

STR Store Scalar 4 bytes

LDR Load Vector 16 bytes

LD1 Load Vector 16 bytes

STR Store Vector 16 bytes

ST1 Store Vector 16 bytes

Table 3: Overview of the instructions implemented in the micro-kernels for evaluating multi-striding
on the ARM micro-architecture.

An overview of the implemented instructions utilized in the micro-kernels for the RISC-V micro-

architecture is illustrated in Table 4. A description of these instructions is given in Section 3.3.2.
Four instructions are implemented. Two instructions for the readKernel, the scalar load f1w and

19

the vector load v1e32.v instruction. The writeKernel is implemented with a scalar store fsw and
vector store vse32.v instruction.

Instruction | Micro-Kernel | Instruction Type | Memory Access Size
flw Load Scalar 4 bytes

fsw Store Scalar 4 bytes

vle32.v Load Vector 32 bytes

vse32.v Store Vector 32 bytes

Table 4: Overview of the instructions implemented in the micro-kernels for evaluating multi-striding
on the RISC-V micro-architecture.

6.2 Hardware and Software Specifications

In our setup, we use two devices. The device for the ARM micro-architecture is a Raspberry Pi
5, equipped with a Cortex-A76 (ARM) processor. The theoretical maximum bandwidth is 17.1
GB/s. Each core has a 128KB L1 cache, 512KB L2 cached, and a shared 2MB L3 cache. The
Raspberry Pi 5 supports vector operations via the Advanced SIMD (NEON) extension. The RISC-V
micro-architecture is a Banana Pi BPI-F3 equipped with a Spacemit(R) X60 (RISC-V) processor.
The theoretical maximum bandwidth is 10.6 GB/s. Each core has a 64KB L1 cache, and a 1MB
shared L2 cache. The Banana Pi BPI-F3 supports vector operations via the RVV 1.0 standard
extension (i.e., ”V” Extension). An overview of the hardware and architecture specifications of
these devices is given in Table 6.2.

Table 5: Hardware and architecture specifications for the ARM and RISC-V device.

| Component | ARM! | RISC-V?
Device Name Raspberry Pi 5 Model B Rev 1.0 | Banana Pi BPI-F3 SpacemiT K1
Architecture AArch64 RV64
CPU Model Cortex-AT6 SpacemiT® X60
CPU max MHz 2400MHz 1600MHz
RAM Size ~ 8 GB ~ 16 GB
Memory Bandwidth | 17.1 GB/s 10.6 GB/s
Cache Size L1, L2, L3 | 128KB, 512KB, 2MB (shared) 64 KB, 1MB (shared)
Cache Line Size 64 B 64 B
SIMD Support Advanced SIMD (Neon) RVV 1.0 standard
Vector Length 128-bit 256-bit
L ARM Hardware Specifications, https://www.cpu-monkey.com/en/compare_

cpu-raspberry_pi_5_b_broadcom_bcm2712-vs-raspberry_pi_4_b_broadcom_bcm2711

2 RISC-V Hardware Specifications, https://docs.banana-pi.org/en/BPI-F3/SpacemiT_K1

The Raspberry Pi 5 operates under the Debian GNU 12 operating system. To enable vector
operations, the target architecture flag must be specified. For the Raspberry Pi 5, we used the
compiler flag -march=armv8.2-a. To compile the C++ programs, we use the g++ version 12.2.0.
The assembly file generation is done in Python, and we use Python version 3.11.2. The Banana
Pi BPI-F3 operates under the Bianbu 2.2 operating system. To enable vector operations, we use

20

https://www.cpu-monkey.com/en/compare_cpu-raspberry_pi_5_b_broadcom_bcm2712-vs-raspberry_pi_4_b_broadcom_bcm2711
https://www.cpu-monkey.com/en/compare_cpu-raspberry_pi_5_b_broadcom_bcm2712-vs-raspberry_pi_4_b_broadcom_bcm2711
https://docs.banana-pi.org/en/BPI-F3/SpacemiT_K1

the compiler flag -march=rv64gcv zba zbb zbs. We use g++ version 13.2.0 and Python version
3.12.3. For both micro-architectures, we applied the optimization flag -00, in order to enforce that
the generated assembly micro-kernel remains unchanged. Additionally, we will use the vsetivli
x0, 8, €32, ml configuration for the RISC-V vector kernels. An overview of all the software
specifications for the Raspberry Pi 5 and Banana Pi BPI-F3 is shown in Table 6.

Table 6: Software specifications for the ARM and RISC-V device.

’ Software \ ARM \ RISC-V ‘
Operating System Debian GNU/Linux 12 (bookworm) | Bianbu 2.2
Target Architecture Flag | -march=armv8.2-a -march=rv64gcv_zba_zbb_zbs
Compiler Flags -00 -00
g++ Version g+-+ (Debian) 12.2.0 g++ (Bianbu) 13.2.0
C++ Version C++17 CH++17
Python Version Python 3.11.2 Python 3.12.3

6.3 Experimental Method

Our configuration space uses striding configurations consisting of 1 up to and including 20 stride
unrolls, and 1 up to and including 32 portion unrolls. Furthermore, we aim to prevent measuring
effects from address collisions, as described by Blom et. al. [cite] by choosing allocated memory with
sizes that do not line up with powers of two. As our initial experiment showed signs of outliers, we
implemented an additional countermeasure, where we use ten different sizes for our measurements
in our configuration space. These sizes are 23529411, 23537182, ..., up to and including 23599350.
These sizes are 7771 elements apart from one another, then adjusted to be divisible by the step
sizes made by the striding configuration. The base array size is roughly 94.1 MB. This exceeds
the total private cache capacity (including the shared cache) of the ARM device by a factor of
about 36, and the RISC-V device by a factor of about 88. Each experiment is configured using a
striding configuration and array size, which performs 7 function invocations upon each run. From
these measurements, the first 2 are discarded as these act as warm-up runs, and we compute the
mean throughput for the remaining 5 measurements. The program is invoked 5 times, and for each
measurement, an average is obtained. The maximum throughput of these 5 measurements is taken,
each representing the throughput of a given configuration.

7 Results

In this section we show and discuss the evaluation of our readKernel and writeKernel micro-
benchmarks on the ARM and RISC-V micro-architectures. The results of all the micro-kernels
for both architectures are available on GitHub 2. In this thesis, all the results are represented
using heatmaps, where we find the number of stride unrolls on the x-axes and the number of
portion unrolls on the y-axes. Each cell contains the throughput in GB/s, where higher values
are better, corresponding to the striding configuration as indicated by the x- and y-axis, and is

I3Multi-striding Framework for the ARM Raspberry Pi 5 and RISC-V Banana Pi BPI-F3, https://github.com/
steffanradojevic/MFRB

21

https://github.com/steffanradojevic/MFRB
https://github.com/steffanradojevic/MFRB

additionally colored according to a gradient to represent the magnitude of the throughput for
this value. To evaluate if multi-striding is effective, we compare the best performing single-strided
baseline configuration to the best performing multi-strided configurations.

7.1 Overview

An overview of the results for the ARM micro-architecture is given in Figure 2, showing the
performance for the best performing baseline configuration compared to the best multi-strided con-
figuration. On the y-axis, the throughput achieved by the best performing baseline and multi-strided
configurations. Multi-striding configuration outperforms baseline configuration for all micro-kernels,
except the vector load kernels. We find speedup factors of 1.51x for the scalar loads, 1.47x for
scalar stores, and 1.54x for vector stores.

In Section 7.2, the results of all striding configurations are represented as a heatmap, for all
the micro-kernels on the ARM micro-architecture. Portion unroll values do not significantly influ-
ence throughput for the scalar store kernel. In contrast to the store micro-kernels, one apparent
pattern emerges. A prerequisite for multi-striding to be effective, portion unroll values for the scalar
store have to be divisible by sixteen. For vector stores, portion unroll values have to be divisible by
four. A key condition is that the total memory access size within a stride unroll equals one cache
line. The best multi-strided micro-kernel is the writeKernel Vectors ST1. The optimal striding
configuration is stride-unroll seven, paired with portion-unroll thirty-two. This configuration yields
a throughput of 14.157 GB/s. The theoretical maximum bandwidth is 17.1 GB/s, the achieved
performance achieved 83% of this maximum bandwidth.

22

17 ARM: Best Performing Baseline and Multi-striding Configurations

Configuration
mmm Baseline

mmm Multi-strided
16 +

154

1.54x speedup 1.54x speedup

1.51x speedup 1.47x speedup

14

-
w
1

Throughput GB/s
N
N

114

10 A

Scalar readKernel Scalar writeKernel Vector readKernel (LD1) Vector readKernel (LDR)

Micro-kernel

Vector writeKernel (ST1) Vector writeKernel (STR)

Figure 2: Comparison of the best single-strided baseline configurations to the best multi-strided
configuration for all the implemented micro-kernels on the ARM Cortex-AT76.

An overview of the results for the RISC-V micro architecture is given in Figure 3. Multi-striding
achieved a higher throughput compared to baseline configuration for the scalar store kernel, achiev-
ing a speedup of 1.03x. For all other micro-kernels, baseline configuration performed better than
multi-strided configurations. In Section 7.3, the results of all striding configurations are represented
as a heatmap, for all the micro-kernels on the RISC-V micro-architecture. A similar pattern emerges
for the store micro-kernels. A prerequisite for multi-striding to be effective, or to achieve reasonable
performance, portion unroll values for the scalar stores have to be divisible by sixteen. For the
vector stores, values have to be divisible by two. Therefore, the total memory access size within
stride unrolls equals one cache line. The optimal multi-strided configuration for the scalar store
kernel is stride-unroll sixteen, paired with portion-unroll thirty-two, achieving a throughput of 4.172
GB/s. For the Banana Pi BPI-F3, the theoretical maximum bandwidth is 10.6 GB/s. Therefore,
the achieved performance for this micro-kernel achieved 39% of the maximum bandwidth. One
speculation for the significantly lower performance of the scalar micro-kernels compared to the
vector micro-kernels, may be attributed to the bottleneck in the front-end, such as the instruction
decoder. Scalar operations can access one element per instruction, while a vector operation accesses
eight elements per instruction, reducing the total instructions issued for the memory accesses by a
factor of eight.

23

RISC-V: Best Performing Baseline and Multi-striding Configurations

Configuration
mmm Baseline
mm Multi-strided

Throughput GB/s
o

1.03x speedup

Scalar readKernel Scalar writeKernel Vector readKernel Vector writeKernel
Micro-kernel

Figure 3: Comparison of the best single-strided baseline configurations to the best multi-strided
configuration for all the implemented micro-kernels on the RISC-V SpacemiT K1.

7.2 ARM

ARM readKernel Scalars LDR In Figure 4 we show the results of the readKernel benchmark
with scalars and the LDR instruction on the ARM Cortex-A76. Depending on the exact striding
and memory size configuration, an array size between 23529411 and 23599350 single-precision
floating points is used. Multi-strided configurations up to and including ten strides outperform all
single-strided baseline configurations and generally outperform all configurations past ten strides.
Based on the best performing single-strided ((1,19)), yielding a throughput of 9.271 GB/s, and
multi-strided ((3,3) configurations achieving a throughput of 13.996 GB/s, we find a maximum
speedup factor of 1.51x. This significant improvement in throughput entirely relies on transforming
the access pattern to make more efficient use of the available memory bandwidth through better
hardware prefetch utilization, which lines up with Blom et. al. [BRN25]. In addition, increasing the
number of portion unrolls past thresholds specific to each number of stride unrolls will decrease
performance. For example, performance for the 6-strided configuration decreases when eleven or
more portion unrolls are used. Also, it is noteworthy that using two, instead of one, portion unrolls
or stride unrolls already greatly benefits throughput compared to a single portion or stride unroll.
Furthermore, we observe powers-of-two related striding configurations to behave slightly differently.
More specifically, for stride unrolls, this results in a decreased throughput, most possibly due to
the address collisions discussed in Blom et. al. [BRN25].

24

ARM readKernel Scalar LDR

13.241 13.386 12.436 13.336 12.949 13.208 12.070 12.887 12.654 11.518 11.911
13.332 13.423 12.188 13.391 12.151 12.714 11.722 12.208 12.487 9.796
13.368 13.424 11.906 13.438 12.789 13.070 12.192 12.640 12.447 9.992 9235
13.307 13.533 12.058 13.472 12.606 13.253 11.977 12.191 12.027 9.828 9.731
13.501 13.516 11.979 13.640 13.016 13.268 12.397 12.307 11.489 10.051 10.050) J
13.490 13.629 11.861 13.601 12.914 13.015 11.698 12.017 11.622 [GN:yARE-K1v-R:K:1:] 7 6 d -2
13.530 13.724 12.688 13.756 12.522 12.900 | 11.479 11.844 12.685 BUACLIN [L -RE A1)

13.637 13.729 12.236 13.785 12.819 13.001 12.024 12.297 12.885 BLIRTINECR: ¥l E-NENE

13.643 13.818 12.010 13.485 12.876 12.698 11.534 11.997 11.840 BUGRVLES (R F AR RT]]

13.835 13.921 12.229 13.494 12.863 12.765 11.756 11.729 12.254 BGR:TEEER-ET. BN V]

13.858 13.806 [11.765| 13.613 12.280 12.959 12.541 11.946 11.738 EE:R:LER-RT -1

13.879 13.758 12.920 13.224 12.823 12.715 11.568 12.011 12.671 BGRCTTENEIT R AN

13.828 13.720 12.333 13.602 12.974 12.569 12.030 12.066 11.917 BURYLRE [A-EyRE-R{i)

13.886 13.435 12.417 13.262 12.468 12.970 11.875 11.521 plif-yp (T RE-R:[V:) 5.108
13.689 13.306 12.007 13.229 12.241 11.868 12.224 9.384 10.190 9.189 6.072
13.665 13.538 11.843 13.385 12.462 12,731 12.053 12.028 PULILLES IS R 81 6.277
13.623 13.653 12.302 13.099 12.297 12.916 12.207 11.688 12.496 [LIy/(: 10.152 8.050
13.971 13.751 12.261 12.976 12.725 12.851 11.890 12.043 12.176 [ER:[:EN-ReyhRE-X-11i] 6.537
13.629 13.734 12.520 12.843 12.587 12.483 11.704 11.944 12.482 Ru:R:1:VAN: i1 I-R-L12) 6.558
13.605 13.644 12.670 12.736 12.688 11.780 11.748 12.460 12.608 WUNUIERSGECTILE S LiFyc):] 6.967
13.849 13.628 12.261 13.228 12.723 12.370 11.389 PR} 9.672 9.864 - 7.586
13.735 13.694 12.857 13.151 12.641 12.525 11.535 EER:EL - 9.615 7.552
13.991 13.776 13.287 13.356 13.225 12.679 11748 12.666 12.940 Uli:yamm(iRsrl i (V:y] 8.054
13.976 13.857 12.981 13.494 13.265 12.876 13.087 FIRZ273N [1kcxh] - 10.394 7.957
13.925 13.950 12.979 13.559 13.324 13.314 [11.562" 12.827 [11:SET W:R:[{JRN KRN LEY[] 9.410
13.905 13.944 13.273 13.524 13.555 13.510 11.921 13.094 12.210 pPUREER 11.947 8.427

portion
12 3 456 7 8 91011121314 1516 17 18 19 20 21 22 23 24 2526 27 28 29 30 31 32

Throughput GB/s

13.913 13.993 13.257 13.869 13.503 13.387 12.077 13.302 12.789 11.448 12.017 8.871
13.875 13.941 13.141 13.882 13.553 13.482 12.517 13.491 13.217 11.475 11.224 i 9.067
13.878 13.988 13.009 13.903 13.509 13.594 12.540 13.284 11.39412.338 9.380
13.899 13.996 13.144 13.610 13.537 13.521 12.639 13.431 13.418 11.438 12.092 12.083 9,519
13.985 13.941 13.165 13.840 13.525 13.469 11.616 13.295 11.607 11.213 "LJEEl 12.591 10.101
12,078 13.816 13.089 13.814 13.310 13.234 12.154 13.335 12.794 11.27612.346 10.722
2 3 4 5 6 7 8 s 1 1 12 13
stride

Figure 4: Throughput (GB/s) per striding configuration for readKernel using scalar registers with
single-precision floating points and instruction LDR for the ARM Cortex-A76.

ARM writeKernel Scalars STR In Figure 5 the results of the experiment. Based on the best
performing single-strided ((1, 26)), yielding a throughput of 9.596 GB/s, and multi-strided ((6, 16)
configurations achieving a throughput of 14.068 GB/s, we find a maximum speedup factor of 1.47x.
Portion unrolls divisible by 16 demonstrates an increased throughput, presumably due to filling up
until the exact size of a cache line. This increase in throughput is most likely due to the address
collisions discussed in Blom et. al. [BRN25]. Portion unroll configurations 16 and 32 correspond
to filling up exactly one and two cache lines each iteration, respectively, and therefore perform
best. This extends to other configurations that align periodically with the cache line size, where
the periodicity of this occurrence determines how much of this benefit is reflected in our results.

25

ARM writeKernel Scalar STR

11.544 g . g 13504 13.469
5291 4.109 ! .4) 2.090

6.057 4.067 X 2. 147 2.155

4799 4.075 7 6 2. 2.080

3.817 d 222 2.257

3692 4.079 d 2. 2.078

4296 4.088 6

3138 4.093

3.039 4102

5353 4.062

3.902 4.059

3.929

3713 4.072 2.004

5215 4.087 2.078 2.0 X .06 0 } } .09 0 2.121

5.565 4.060 6. 2 .029 2.005

portion
1 2 3 45 6 7 8 91011121314 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

9.829

4.094 4.034 b b 76 5 6 .17 2.154
4.086 3.962 o 9 .169 o .18 .252 .20 .20 .235 2.269
4.087 3.960 .709 .17 5 d .24 2.160 2.211
4.094 3.855 4 4 .48 7 .5(.532 468 3 2.492 2.506
4.092 3.998
4.111 3.933 .4 d 2.422
4.063 4.007 .249 2 .16 4 2.492 2.492

3.739 o 2 LA p o 2525 2.537 2574 2. 2.634 2.648 2.642
4.051 3.978 02 o a 4 44 2.524 2 2619 T 2.690 781 2.712
4.070 3.924 236 2. 25 426 2. 2.639 8 2.682 2. 2.733 2.826 2.786
4.007 3.946 6 2.085 o o 4 2.502 2.604 .66 2.700 J77 2.766
3.923 3721 o 2 2 d 2673 2.665 2787 2.851 2.938 2905 2935 2. .946
3.991 3931 .025 2.039 2.275 336 2.483 2.469 2.679 2.664 2.728 2.831 2.781 2.8 .868
3.938 3791 2 2.29 2506 2.747 2.656 2. 2,703 2746 2.825 2.797 2.859 2.t 2,918
3.951 3810 2.039 2.024 p. 2436 2.585 2.605 2.674 2794 2.696 2.691 2.719 2.741

Throughput GB/s

stride

Figure 5: Throughput (GB/s) per striding configuration for writeKernel using scalar registers
with single-precision floating points and instruction STR for the ARM Cortex-AT76.

readKernel Vectors LD1 In Figure 6 the results of the experiment. Based on the best performing
single-strided ((1, 2)), yielding a throughput of 14.007 GB/s, and multi-strided ((2, 16) configurations
achieving a throughput of 13.932 GB/s, we find no multi-strided speedup compared to single-strided
baseline.

26

ARM readKernel Vector LD1

T14.003 13.831 12.660 12.674 MEI-ElASEIEE) 11.371 10. 10.655 11.002 10.829 7 10.648 11.409 11.073 10.584
14.003 13.910 11.228 11.274 11.537 10.759 10.851 10.756 10.584 [11.382 11.341 10.457

1 2 3 4

14.002 13.901 [12.666 13.017 RANCrl] 11.934 11.960 -4

Mo 13.998 13.911 12.756 phERES 10.526 10.729 11.142 11.591 11.744 11.488 11.696 11.678

- 14.001 13.916 12.953 REEGIES 10.489 10.546 11.001 11.421 11.381 11.327 11.528 11.564 11.519

i : 14.001 13.888 12.918 phyety 10.625 10.498 10.967 11.329 11.459 11.449 11.336 11.449 11.382 - 13

; 1 14.004 13.837 12.979 phypk:] 10.803 10. 10.781 11.155 11.243 11.088 11.279 11.302 11.292

: 1 14.006 13.886 13.026 phNGEES 10.544 10.469 10.694 10.971 11.204 11.099 11.144 11.126 11.197

g 1 14.003 13.882 13.000 BRGELES 10.735 10.176 10.593 10.743 11.056 10.774 11.046 11.057 11.020

:] 14.004 13.850 prR:-Frl 11.685 10.682 10.202 10.158 10.648 11.250 10.654 10.968 10.899 10.918 12

: 1 14.000 13.915 12.855 RhNGES 11.279 : 10.699 10.772 11.389 11.248 11.206 11.290 11.412

:] 14.004 13.908 13.008 by 10.557 : 10.554 10.829 11.228 10.993 11.111 11.195 11.140

: 1 14.007 13.914 12.997 phR:1:{3 11.874 11.518 10.922 L 10.569 10.414 10.973 11.520 11.187 11.122 10.902 1

:] 14.005 13.899 13.036 phR:Fi} 11.954 11.685 10.910 10.416 10.211 10.176 10.727 10.703 10.805 10.754 10.677

:] 14.003 13.868 13.134 phR:15% 11.906 10.975 10.104 10.010 10.221 10.592 10.762 10.752 10.940 10.905

: 1 14.002 13.886 12.684 13.056 11.921 11.746 10.834 10.036 10.105 10.254 10.870 10.701 10.715 10.881 10.890 »

:] 14.000 13.919 F12.7008 13.128 REN:Fi:} 11.650 11.425 10.218 10.106 10.0 10.437 10.424 10.707 10.702 10.508 10 g
5 : | 14.003 13.872 [12.616 13.128 phbwyi:: 11.772 11.648 11.374 10.034 9 10.007 10.033 10.398 ‘::1
E :] 14.002 13.932 FI2:5848 13.214 pENGrEs 11.785 11.661 11.723 11.939 857 1 10.653 11.071 '§,

: 1 14.002 13.910 12.925 13.068 BEELLE 11.726 11.572 11.206 10 E 9 R:1 10.159 10.145 9 E

:] 14.001 13.879 12.809 12.968 BESyE-SE 11.673 11.433 11.562 10.597 9 9.852 9 9. 10.217 10.139 =

;] 14.003 13.892 [12.717 13.038 mhSych] 11.598 11.244 11.311 10.699 9.899 9.4 9.474 9 9 9.727

:] 14.002 13.890 [12.866 12.949 BRI kR Fl) 11.572 11.226 11.167 10.944

:] 14.003 13.892 F12:6201 12.972 WENGYEENER:Y) 11.475 11.223 11.269 10.788 8

g 1 14.002 13.911 [12.9127 12.906 BN bR L] 11.354 11.134 11.076 10.709 10.150

~14.002 13.906 - peN:LIE 11.554 11.650 11.376 10.900 11.137 10.971 10.471

" 14.003 13.927 [12.630 13.082 RERILERENAY) 11.262 10.774 10.902 11.364 11.264

] 14.001 13.911 [12.764 12.883 mENCyi- Tk NGl 11.213 10.709 11.185 10.928 10.647 7

™ 14.001 13.907 [12.774 12.852 WUy b Y] 11.967 11.021 10.488 10.582 10.594

© " 14.002 13.877 12.726 12.782 [EENCIEREEICLY) 11.918 10.842 10.443 10.529

o i 14.000 13.902 - pPR:ER 11.103 11.364 10.733 7 10.595 10.722 10.613 10.519 10.600 7.495 6

N 13.996 13.852 PNE7S 11.447 11.686 11.684 10.931 10.394 10.875 10.3 11.563 11.649 10.695 10.177

m

o~

—

Figure 6: Throughput (GB/s) per striding configuration for readKernel using vector registers with
four single-precision floating points and instruction LD1 for the ARM Cortex-A76.

readKernel Vectors LDR In Figure 7 the results of the experiment. Based on the best
performing single-strided ((1, 10)), yielding a throughput of 14.008 GB/s, and multi-strided ((2, 30)
configurations achieving a throughput of 13.924 GB/s, we find no multi-strided speedup compared
to single-strided baseline.

27

ARM readKernel Vector LDR

14.004 13.890 12.828 13.039 RARyi] 11.906 11.943 11.963 -4

Mo 14.006 13.902 - 12.809 RERGES 0.480 10.698 11.107 11.527 11.720 11.438 11.626 11.654

- 14.007 13.924 [12.580° 12.978 RG] 10.543 10.981 11.390 11.341 11.286 11.489 11.524 11.529

i : 14.003 13.868 12.840 phWvi:3 10.472 10.928 11.262 11.415 11.425 11.321 11.420 11.345 - 13

; 1 14.003 13.855 12.935 phivpk:} 10.809 10.141 10.736 11.141 11.223 11.046 11.267 11.275 11.290

: 1 14.000 13.867 12.996 phrpl] 10.519 10.461 10.673 10.945 11.165 11.069 11.114 11.094 11.217

g 1 14.002 13.871 [12.701 12.983 RENGNVS 10.707 10.163 10.549 10.691 11.022 10.740 11.050 11.022 10.999

:] 14.001 13.875 [12.647 12.920 RANGEL] 10.666 10.192 10.135 10.591 11.267 10.586 10.941 10.848 10.853

: 1 14.004 13.906 12.648 13.018 BANCEL] 11.290 10.673 10.662 10.772 11.360 11.210 11.175 11.241 11.366

:] 14.003 13.913 - 12.919 k-t d 10.551 6 10.528 10.800 11.191 10.952 11.075 11.169 11.084

: 14.004 13.919 [12.804" 13.025 EuR-LE I W11 R bW 1Y RRI 55 1 11.923 11.501 10.875 10.529 10.382 10.930 11.497 11.156 11.073 10.920

: : 14.004 13.884 12.586 13.158 d 11.927 11.662 10.865 10.162 10.141 10.684 10.671 10.785 10.714 10.656

g] 14.003 13.864 12.551 13.124 5 11.968 11.928 10.959 10.095 9.995 10.185 10.568 10.711 10.730 10.905 10.857

: 1 14.002 13.870 12.873 13.037 11.906 11.741 10.788 10.010 10.068 10.197 10.834 10.643 10.674 10.826 10.841 o

;] 14.004 13.918 12.665 13.173 11.648 11.439 10.230 10.067 10.020 10.652 10.651 g
5 : | 14.002 13.867 12.629 13.154 11.759 11.634 11.363 6 9.740 6 10.310 1€ 5 é
E :] 14.005 13.932 12.652 13.223 11.783 11.640 11.738 11.291 C C 10.630 11.049 'g,

: 1 14.007 13.909 12.967 13.009 11.724 11.549 11.212 9.914 9 F 10.106 E

:714.003 13.873 12.819 12.928 11.909 11.765 11.441 11.595 10.572 6 gig 9.84 L 10.096 =

:] 14.005 13.902 12.761 12.974 11.953 11.587 11.248 11.299 10.717

:] 14.004 13.921 12.691 12.941 11.929 11.912 11.623 11.225 11.197 10.951

:] 14.005 13.884 12.664 12.992 11.859 11.869 11.428 11.226 11.258 10.775

g 1 14.008 13.908 12.878 12.892 11.815 11.687 11.377 11.158 11.078 10.685 10.156 1

~ 14.005 13.914 12.607 12.879 11.684 11.709 11.389 10.922 11.190 10.967 10.429 8.119

" 14.004 13.902 12.664 13.011 11.557 11.503 11.284 10.787 10.857 11.359 11.267 10.461

] 14.003 13.893 12.829 12.885 11.638 11.436 11.103 10.689 11.078 10.918 10.646 99 40

™ 14.001 13.940 12.847 12.875 11.476 11.967 11.426 10.982 10.615 10.638 10.626 10.398 10.261 5

© 14003 13.897 12.839 12.770 11.563 11.902 11.336 10.888 10 10, 10.559 10.291 10.378 10.681

7 14.000 13.921 - 12.780 11.365 11.200 10.740 10.281 10.581 10.870 10.629 10. 10.527 10.606

M 14.004 13.860 12.601 12.654 11.649 11.675 11.550 10.931 10.325 10.870 4 10.560 | 11.547 11.636 10.686

"7 13.997 13.884 12.669 11.388 11.419 11.154 10.988 10.674 10.970 10.840 10. 11.426 11.074

™" 14.004 13.820 - 12.599 11.396 11.638 11.281 11.208 10.811 10.850 10.766 10.592 |11.397 11.320 10.499

- - | | i

1 2 3 4

stride

Figure 7: Throughput (GB/s) per striding configuration for readKernel using vector registers with
four single-precision floating points and instruction LDR for the ARM Cortex-A76.

writeKernel Vectors ST1 In Figure 8 the results of the experiment. Based on the best
performing single-strided ((1, 30)), yielding a throughput of 9.180 GB/s, and multi-strided ((7, 32)
configurations achieving a throughput of 14.157 GB/s, we find a maximum speedup factor of 1.54x.
Similarly to all other store micro-kernels, striding configurations must align periodically with the
cache line size for multi-striding to be effective.

28

ARM writeKernel Vector ST1

11.699 d 5 5 5 13.758 13.202 12.949 pUN:¥ky 12.560 8 b B -14
3.710 .6 3.714 H 3.738

11.671
11.648

11.649 . . 976 4.036 4 4 : 029 4 4109 4.0 4. 3832 -1
11.635 4 33 3. . 699 3.725 36 729 48 6 ! ! 3714
11.736 13. g r X X X z X 3 ! 10.205
11.694

11.698
11.669
11.674

3.818

3.749
11.675
11.681

portion
1 2 3 45 6 7 8 91011121314 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Throughput GB/s

11.663 49 3.764 3.t 9 32 3.826
11.659 a J g b b 14.131
11.654 3

11.697
11.642
11.642

11.661 o 3.690

PRRGELY 3.885 3.723
|

2 3 4

stride

Figure 8: Throughput (GB/s) per striding configuration for writeKernel using vector registers
with four single-precision floating points and instruction ST1 for the ARM Cortex-AT76.

writeKernel Vectors STR In Figure 9 the results of the experiment. Based on the best
performing single-strided ((1, 31)), yielding a throughput of 9.201 GB/s, and multi-strided ((7, 8)
configurations achieving a throughput of 14.165 GB/s, we find a maximum speedup factor of 1.54x.
Similar to all other store micro-kernels, striding configurations must align periodically with the
cache line size for multi-striding to be effective.

29

ARM writeKernel Vector STR

11.750 13.314 13.936 14.112 14.152 14.155 14.113 13.742 13.217 12.981 12.659 10.272 10.354 b b - 14
IRREER 3.613 3.656 3.696 3.685 3.682 3529 3.701 3.723 3723 3.684 3.727 3.545 3.644
11.691 13.219 EERFLEEES i) 9 .198 4.230 4.186 4.225 6 4.183 216

605 3.7 3.654 . . 3.631 43 4 3.581

11.660 14.096 11.651
11.652 2 1 96 38 3 3.619

11.667 13. ! 4 4 0 4106 4 4. 089 4.1 . 4 -12
3.707 8
12.746
3619]
956

11.660 62 3736 3. . . 5 3,761 3. 3702 3.
11.684 13. 14.095 14. . .]]] 10.470 10.068 10.364
11.644 X 3755 3.746 3. 746 3739 3.] 3. 72 3.679 3733 3, 3.695 3.669
11.665 [IEX 3.720 3 3,789 3 5 . 3.86 6 868 3.876 3.779
11.651 [IEX 3819 3. 36 3. 3. 38 3 3 6 3. ! 3.651
11.693 14.102 14. . .]] 9.946
11.652 [EEEE 3.788 3.79 25 3. 765 3. 1] 3. 3.707

3.639

3.797

portion
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Throughput GB/s

11.685
11.672
11.667
11.646
11.683
11.662
11.643
11.676 gEXLyl
11.660 13.276 13.874
IORGERR 3.924 3.771
11.683 13.252 gENaV]

11.672 EEX-NVENNCYED]
|

2 3 4

12 3 45686 78 9

Figure 9: Throughput (GB/s) per striding configuration for writeKernel using vector registers
with four single-precision floating points and instruction LDR for the ARM Cortex-AT76.

7.3 RISC-V

In Figure 10 we show the results of the readKernel benchmark with scalars and the flw instruction
on the RISC-V SpacemiT K1. Depending on the exact striding and memory size configuration, an
array size between 23529411 and 23599350 single-precision floating points is used. Based on the
best performing single-strided ((1,28)), yielding a throughput of 3.707 GB/s, and multi-strided
((2,33) configurations achieving a throughput of 3.710 GB/s, we find a maximum speedup factor of
1.008x. Low portion-unrolls (i.e., one and two) appear to significantly impact the performance of
stride-unroll one, more so than higher neighboring stride-unroll values (e.g., two, three, four). For
high stride-unroll values, paired with portion-unroll values divisible by sixteen, the performance is
slightly worse than other portion-unroll configurations.

30

RISC-V readKernel Scalar flw

3.706 3.710 3.688
3.685 3.675 3.662
3.691 3.692 3.657
3.683 3.679 3.671
3.707 3691 3.674
3.681 3668 3.683

3.663 3.673 3.644
3.620 3.649 3.582
3.586 3.506 3.578
3.586 3.596 3.614
3.625 3.638 3.611
3.586 3.630 3.592

-35

~
m
—
m
R
o
~
]
~
~ -
N 3687 3671 3665 3631 3.635 3.609 2.069
o 3677 3674 3671 3581 3.610 3.586 2.497
° 73703 3677 3688 3613 3.625 3.627 2.423
™ 3681 3669 3.673 3567 3.599 3.605 2.441
™~ 3
© 3682 3683 3661 3548 3.655 3.586 2,954 2.332
© 3670 3698 3.681 3582 3.616 3.611 2.908 .398
o 73701 3677 3672 3553 3.625 3.619 2.907 .355
o 3682 3665 3674 3589 3.645 3.587 2.918 .379 w
T 3678 3672 3.698 3584 3.601 3.594 2.865 .290 2
§ T 3660 3672 3672 3551 3.645 3.608 2.732 .258 E
5 =" 3508 3709 3674 3575 3.629 3.613 5 1.900 2.566 164 £
a o - 2
~ 3656 3683 3.694 3542 3581 3.599 2.902 .161 8
] E
~ 3665 3657 3.653 3551 3.588 3.571 2.492 254 2.223 =
%7 3651 3664 3660 3559 3.599 3.584 2954 311 2271 2.236
= y ! ! ! ! 1 X T
=7 3682 3681 3.650 3540 3.625 3.560 ! 2.484 059 2.055 2.123
~
=7 3624 3700 3.670 3576 3.593 3.581 g 2.876 2205 2.174 2.144
— -
T 3617 3660 3679 3550 3.611 3.560 2.796 1977 2.076 2.065
=7 3620 3673 3651 3547 3.603 3.548 2.916 2.765 2.087 2.084 2.028
o
3547 3.685 3.647 3551 3.592 3.548 2.348 2. 2.512 1.897
® 7 3617 3688 3.637 3555 3.559 3.519 2.416 |12 2.509 1.952
"7 3619 3702 3.663 3517 3.560 3.514 1 2.827 2. 2.447 1725
®” 3689 3656 3.660 3507 3.551 3.522 2.910 2. 2.703 1727
73437 3681 3.691 3484 3507 3.471] 1 2.098 2.346 2. 2.411
¥ 7 3536 3.645 3.593 3480 3475 3.389 2135 [2.597 13! 2.444
" 3640 3631 3. 3347 3372 3301 1841 2.058 2177 2. 2.213
o 3064 3240 3. 3130 3.007 3.089 5 824 2,069 1861 2. 2.163
— | | i i i i

1 2 3 4 5 6 7

stride

Figure 10: Throughput (GB/s) per striding configuration for readKernel using scalar registers
with single-precision floating points and instruction £lw for the RISC-V SpacemiT KI1.

writeKernel Scalars In Figure 11 the results of the experiment. Based on the best performing
single-strided ((1, 32)), yielding a throughput of 4.072 GB/s, and multi-strided ((16, 32) configura-
tions achieving a throughput of 4.172 GB/s, we find a maximum speedup factor of 1.03x. Similarly
to the ARM writeKernels, a prerequisite for multi-striding to be effective is that the total memory
access size within one stride unroll aligns with the cache line size.

31

RISC-V writeKernel Scalar fsw
4072 4111 4124 4146 4151 4136 4150 4152 4158 4158 4165 4.166 4165 4167 4171 4172 3.937 3.937 3938 3.939

4.024 NKEER] .04 1.099 J o 1.065 1.026 1.017 1056 1.063 3 2 1.153 0.977 -4.0
BEXVEN 0964 .10 118 1218 a 3 1141 1 1.075 1289 1.124 6 1117 1118
" a010 [ELE .824 1.090 o o . LI5S 1.114 1.005 1.048 1.006 o 1117 1011
" 4045 [EREE a 1 1643 3 Y d 1492 1.662 3 1384 1.649 J 3 1.689 1371
3994 KIS g 0.894 g bz 1.004 B J 0.783 bz 0919 1105 .056 1.090 0.827 -35

3.940 [EEr] d 1.188 .14 ol 1163 196 1126 .2 d .184 1.086 1.104 .10 1 1.003 0967 1.059
3.976 QRN . E 0.970 0.848 1.005 0.970 X 0.907 X : 0.967 : € 1026 0.971 1026 0772
4.016 pREEF J 2.198 1.921 2.160 £ 2.126 d a 1.905 2.088 a 2,195 2.202 2.086
3.955 A € . . 0952 0780 O. .804 0.809 . 777 ! . 0.764 .777 0.964 0.78 b 0.743
EX:L=lUN 0.966 .954 .9 1.107 1.038 1.037 .958 1.031 .86 £ 0.848 . 0.853 .829 0.811 1.033 .854 0.909
3.930 e 772 0.894 . 74 ! 0.848 0.802 .719 0.726 L 0.755 3 0.778 0.774 0.695 . 0.716
3.974 a 1251 5 1370 1.386 o 1391 -2 .336 1.423 6 1427 1.403 Y 1404
3.900 .856 A 1.040 .752 d 0.659 . . . 4 . . .616 0.
3.820 0.756 0.840 : . 9 € . . k: 0.907
3.864 b 1.524 1.695
3917 3990 4.017 4.064 4.069 4.041 4.067 4.070 4.084 4.086 4.092 4.097 4101 4103 4109 4110 3.670 3.669 3671 3.675
1.629 .628 3 3 1548 1.538 162 .569
1.859 3 J . 5 > o 1716 J d 4 1556 1.593 0.829
0.844 1828 J 3 d 3 J d 1674 1.600 3 .13 1004 1.002 1.008 1.286
0.777 1.846 4 3 5 d BEiE £ 1.903 1.873 £ 3 1795 1.215 1.268 1.257
1211 1686 J .466 € .52 i 4 J 1.673 1671 .518 .118 0. 0.656 0.684 0.570
0.714 | 1718 3 o o .62 3 o 1728 1725 o 3 1535 0.877 0628 0624
1423 1764 .588 3 £ .509 d 4 J 1.678 1.657 J .568 1.338 0.896 0703 0.625
0.661 0.671 .46 J J g .44 3 J d 1776 J o .84 1689 1159 1.158

portion
12 3 45 6 7 8 9101112 13 14 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
|

Throughput GB/s

1585 1.733 J 2 3 o2 d J d 1.595 3 .46 1.276
1759 1785 B 538 .598 J d 1.655 3 3 1457
1.665 1791 J 3 5 3 5 J d 1.581 .576 3 1451
0.813 3 2 o 5 5 2 1il: 1710 o 3 1476
1.429 3 2 X J 4 1.457 4 1234
1.428 3 J o 3 3 1.427 A 1.063
0.724 J -2 d a2l .44 1.087 .184 .276 0.693

Figure 11: Throughput (GB/s) per striding configuration for writeKernel using scalar registers
with single-precision floating points and instruction fsw for the RISC-V SpacemiT KI1.

readKernel Vectors In Figure 12 the results of the experiment. Based on the best performing
single-strided ((1, 2)), yielding a throughput of 7.222 GB/s, and multi-strided ((2, 28) configurations
achieving a throughput of 7.014 GB/s, we find no multi-strided speedup compared to single-strided
baseline.

32

RISC-V readKernel Vector vle32.v

7.148 6.877 6.786 6.345 6.483 6.426 6.116 9 b b 5.010 4.603

@ 7182 6957 6764 6235 6371 6.388 5978 . 4. 4.618 4.597 7

M 7168 6913 6791 6.363 6510 6384 6074 ; 4. 4.84 4.558 4.439

Ei 7.169 6.855 6.742 6.319 6.439 6.338 5.888 . 4. 4.442 4. 4.471

o 7173 7014 6772 6.230 6.418 6.323 6.063 4. 4. 4 4.539

o 7160 6.966 6714 6.066 6.391 6.249 5959 g ! b 4377

~ 7166 6985 6.778 6.126 6.286 6.201 4.696 4. 4 4.298

o _ 7169 6.936 6585 6210 6.279 6.206 .58 b 4190

: 7179 6934 6773 6225 6.379 6273 4.2 4. 4. 5 4.406

T 7176 6944 6.756 6.092 6.158 6.133 4. : 4.190

M 7183 6.894 6711 6.071 6337 6.190 4. 4. 425 4.125

© 7172 6996 6.655 588l 6249 6315

o _ 7169 6954 6711 6123 6403 6208 6.107

© 7142 6970 6.646 5949 6.283 6.109 6113 @

~ 7157 6.980 6.753 5987 6.408 6.407 5.930]
5 E_ 7.149 6.975 6.832 6.359 E
E : 7153 6.968 6.767 6.236 5.306 -%

T 7184 6994 6763 |5953 [CEA 5.262 g

:7 7.162 6.980 6.783 6.482 5.625 . . . 4.94 . 4304 =

= 7222 6978 6.654 6.448 | Lok 4.482 i b b f 248 4.161

27 7194 6997 6.836 | 6.014 4122

~7 7178 6.964 6.798 | 6.008 NI b } ! b) b 4.014

g T 7189 6999 6.849 6.427 6.340

=7 7208 6.977 6.811 6.369 6.305 6.265

7718 6.984 6767 6.291 6.294 6.196

] 6.761 6.451 6.311 5.983

-

6941 6453 5740 6335
7 6.842 6.280 5.949 6.221
n
6.879 6227 5813 6121

7 6.845 6.440 5.848 6.317

"7 6.803 6.431 5.909 5.862

~ 6.876 6.404 5912

[l | i |

3 4 5

Figure 12: Throughput (GB/s) per striding configuration for readKernel using vector registers
with eight single-precision floating points and instruction vse32.v for the RISC-V SpacemiT K1.

writeKernel Vectors In Figure 13 the results of the experiment. Based on the best performing
single-strided ((1, 12)), yielding a throughput of 7.180 GB/s, and multi-strided ((2, 14) configurations
achieving a throughput of 6.962 GB/s, we find a maximum speedup factor of 1.03x. Similarly
to the other store micro-kernels, a prerequisite for multi-striding to be effective is that the total
memory access size within one stride unroll aligns with the cache line size.

33

RISC-V writeKernel Vector vse32.v

7.168 6.899 6.920 6.838 6.847 6.894 6.831 6.739 6.875 6.859 6.874 6.888 6.830 6.876 6.841 6.680 6.839 6.828 6.875 6.837
7.147 m 5753 5964 5909 5768 5931 5880 5855 6.028 5873 5884 5825 5780 5785 5741 5719 5813 5874 6.014
7.176 6.922 6.892 6.779 6.819 6.848 6.813 6.768 6.864 6.848 6.847 6.884 6.829 6.863 6.817 6.689 6.793 6.789 6.843 6.802

7.175 BERSCREEREYEN 5845 5.950 6.001 | GRCELESLRVOESGHFER 5755 6.001 5998 5.779 mEALE 5771 5.761 5890 @ - kLl 5.886

7.172 6.937 6.887 6.819 6.822 6.832 6.842 6.701 6.832 6.860 6.846 6.865 6.820 6.883 6.808 6.708 6.830 6.785 6.841 6.819

7175 PEensEEERl-ly 5718 5.802 5889 5742 EALLE 5942 5763 5748 5730 5.940 m 5.739 BLXLyEN 5.928 5.890 5.741 5.788 -6
7.163 6.950 6.874 6.828 6.829 6.821 6.834 6.693 6.825 6.940 6.814 6.847 6.830 6.862 6.756 6.670 6.798 6.833 6.827 6.819

gAGEN 5311 5169 5487 5471 [GUREN GRPLL 5586 \Crlid 5440 [ECIERNCEEER 5616 BECEIMN GGG 5316 5.396 [GUECH 4.874 R

7.143 6.917 6.876 6.839 6.823 6.838 6.830 6.672 6.822 6.822 6.818 6.833 6.837 6.845 6.780 6.642 6.808 6.786 6.837 6.816

BRATN 5192 5630 5551 5637 5361 5339 4477 5024 | ooor 5575 5338 5338 5553 5506 4.853 5529 5313 5541 5478

77153 6919 6.881 6.816 6.821 6.842 6.795 6./20 6.835 6.872 6.785 6.802 6.808 6.838 6./67 6.663 6.789 6.799 6.813 6.803 5
BRAT 5934 5511 5.466 5397 5054 | 5608 5406 5363 5016 |-/ 5403 5010 5374 5286 5395 4.990 | -nfr)
7161 6.943 6.883 6.807 6.850 6.837 6.822 6.709 6.815 6.844 6.789 6.794 6.793 6.818 6.808 6.655 6.793 6.777 6.829 6.811
T 7157 4.915 "
" 7159 6.941 6.883 6.817 6.842 6.851 6.822 6.605 6.800 6.778 6.786 6.790 6.774 6.788 6.735 6.571 6.791 6.774 6.801 6.803 g
5§~ 7155 4539 af
£ -7 7164 6951 6.888 6.820 6.857 6.868 6.822 6.682 6.818 6.786 6.804 6.801 6.781 6.794 6.756 6.506 6.763 6.793 6.822 6.821 5
=3 7163 4,959 3
T 7150 6.962 6.886 6.872 6.883 6.864 6.817 6./11 6./87 6.759 6.770 6.778 6.753 6.779 6.728 6.553 6.725 6.754 6.760 6.773 F
T 7173 0 4.015 | 5.135 4000 4.564 4.001
" 7180 6.961 6.885 6.856 6.863 6.878 6.829 6./40 6./90 6.761 6.757 6.759 6.737 6.738 6.684 6.429 6.717 6.716 6.731 6.738 3
T 7161 3.832 4.016 4.633
" 7158 6.952 6.874 6.856 6.857 6.852 6.804 6.656 6.710 6.745 6.733 6.704 6.586 6.698 6.634 6.547 6.646 6.677 6.687 6.684
" 7167 2 4123 3.367 3.863
77157 6959 6.866 6.846 6.848 6.850 6.826 6.689 6.773 6.741 6.770 6.693 6.656 6.668 6.607 6.481 6.600 6.643 6.608 6.636
7 7174 3.2 - 3.616 2.767 2
"7 7171 6957 6.861 6.823 6.819 6.833 6.770 6.647 6.698 6.670 6.645 6.595 6.533 6.537 6.498 6.379 6.447 6.475 6.419 6.458
© 7 7169 1 2.781 2.369 2.846
7 7164 6955 6.853 6.809 6799 6.834 6.791 6.645 6.720 6.666 6.596 6.526 6.456 6.438 6.387 6.196 6.299 6334 6.227 6.268
7 7159 2.203 2.081 1.909 2.200
™7 7152 6941 6.842 6790 6739 6.782 6.690 6.597 6.626 6.591 6.598 6.484 6.367 6.340 6.221 6.091 6.109 6.059 6.013 5935 1
[~

6.684
'
1

1529 1504 1 1 1.901 1.898 1.831 1.902

stride

Figure 13: Throughput (GB/s) per striding configuration for writeKernel using vector registers
with eight single-precision floating points and instruction vse32.v for the RISC-V SpacemiT K1.

7.4 Performance Comparison with memset

The Standard C Library function memset'* writes a constant byte to a memory area. The imple-

mented store kernels in this thesis are equivalent in functionality. Therefore, we will compare the
throughput of the optimal multi-strided configuration for the best performing store kernel on the
ARM Cortex-A76 with that of memset. As with all other striding configurations, for memset, we
take the maximum throughput aggregated over the ten array sizes conducted in the experiments.
This results in a throughput of 9.149 GB/s. With the best multi-strided configuration ((7,8)) for
the vector writeKernel STR, we achieve a throughput of 14.165 GB/s, resulting in a speedup
factor of 1.55x over memset.

8 Discussion

The experiments are conducted on ten arrays with varying sizes. In Section 6.3, we hypothesized
that certain array sizes may lead to address collisions for some striding configurations. This effect
occurs on the ARM Cortex-A76. In Appendix A.1, an example of a conducted experiment for the
scalar load memory accesses on a single array size for the ARM Cortex-AT76. It can be observed
that some stride-unrolls perform worse than our baseline configurations, which performed better in

14Gtandard C Library, memset, https://man7.org/linux/man-pages/man3/memset.3.html

34

https://man7.org/linux/man-pages/man3/memset.3.html

the conducted experiments. In Appendix A.2, the worst performing array size is selected for each
striding configuration for the scalar writeKernel on the ARM Cortex-A76. In this case, the baseline
configuration outperforms all the striding configurations. Appendix A.3 shows a heatmap illustrating
the difference in throughput between the best and worst performing arrays, in GB/s for the vector
writeKernel on the ARM Cortex-A76. The single-strided baseline configuration shows almost no
differences in throughput between array sizes, indicating that selecting the appropriate array size
for reducing address collisions has minimal impact on the performance for these configurations. The
multi-strided configurations, which significantly improve performance in the conducted experiments,
show large differences in performance between array sizes. We hypothesize that these multi-strided
configurations may be more prone to address collisions, resulting in performance degradation. This
highlights the importance of selecting varying array sizes to avoid cache collisions and obtain more
accurate measurements.

Moreover, the RISC-V SpacemiT does not seem to be affected by varying array sizes. In Ap-
pendix A.4, a heatmap of the scalar read micro-kernel, representing the differences in throughput
between the best and worst performing array size. Except for a few striding configurations, the
differences in throughput across varying array sizes are almost identical.

Additionally, some stride-unroll values appear to achieve the highest performance, these results
might be skewed in their favor due to the fact that one of the ten tested array sizes was the smallest.
Our initial experiments demonstrated that smaller array sizes achieve higher throughput than
larger array sizes. and therefore result in a higher throughput. Therefore, we cannot conclude with
certainty which striding configurations achieve the highest throughput, because the throughput
shown in the heatmaps may originate from the smallest array size.

9 Conclusion

In this thesis, we evaluated the effectiveness of multi-striding for the Raspberry Pi 5, equipped with
an ARM Cortex-A76, and the Banana Pi BPI-F3, equipped with an RISC-V SpacemiT K1. For
the ARM Cortex-AT76, multi-strided configurations significantly improve throughput compared to
single-strided baseline configurations. We find speedup factors of 1.51x for the scalar loads, 1.47x
for scalar stores, and 1.54x for vector stores. Additionally, we showed that the vector writeKernel
achieved a speedup factor of 1.55x over the Standard C Library function memset. Moreover, we
demonstrated the importance of input sizes for the ARM Cortex-AT76, hypothesizing that address
collisions significantly reduce throughput for striding configurations.

For the RISC-V SpacemiT K1, multi-striding for the scalar writeKernel achieves a speedup
of 1.03x over single-strided baseline configurations. The striding configurations seems not sensitive
to varying array sizes, making the selection of input sizes conducted in the experiments less critical.
For all the store micro-kernels on both the ARM and RISC-V micro-architectures, the total memory
access size within stride unrolls must align with cache line sizes to maximize throughput for striding
configurations.

35

10 Future Work

This thesis evaluated multi-striding on the ARM Cortex A-76 and RISC-V SpacemiT K1, and
we are interested in how it affects other ARM and RISC-V micro-architecture, such as the Apple
Silicon processors. Furthermore, many embedded processors lack vector processing support, and
therefore rely on scalar memory accesses. Multi-striding has been shown to significantly increase
performance for scalar load and store memory accesses on the Cortex A-76 micro-architecture.
Further research is required to determine how multi-striding for scalar memory accesses affects
performance on these embedded processors. Moreover, the results for all the store micro-kernels
for both micro-architectures showed that the total memory access size must align with the cache
line size. The readKernel on the ARM Cortex-A76 is not affected by this. Additional study is
necessary to understand the underlying mechanics.

Additionally, another one of our speculations is that some array sizes cause address collisions
for certain striding configurations, and therefore reduce performance. Further study is needed to
investigate how varying array sizes influence multi-strided performance, and whether our speculation
on cache conflicts is responsible. The paper by Sato. et. al. |], implemented a cache-line conflict
simulator revealing cache-line conflicts during execution, and demonstrated that cache-line conflict
misses can be avoided by padding the array. We also require a profiling tool for identifying address
collisions for multi-strided configurations, and generate the appropriate padding for the array sizes
in order to reduce address collisions.

Furthermore, we are interested in how the best multi-strided configurations on the ARM Cortex-76
compare against memcpy'® and the STREAM |] benchmark. Moreover, we are interested in
the performance of multi-striding in vector operations, such as vector-matrix multiplications, and
would like to compare this to OpenBLAS.

References

[Ale92] Samuel O. Aletan. An overview of risc architecture. In Proceedings of the 1992 ACM/SI-
GAPP Symposium on Applied Computing: Technological Challenges of the 1990’s, SAC
'92, page 11-20, New York, NY, USA, 1992. Association for Computing Machinery.

[ARM24] ARM Limited. Arm(®) Architecture Reference Manual for A-profile architecture, 2024.

[BRN25] Miguel Blom, Kristian Rietveld, and Rob Nieuwpoort. Multi-strided access patterns to
boost hardware prefetching. pages 204-215, 05 2025.

[BVS25] Cyrill Burth, Markus Velten, and Robert Schone. Introducing the Arm-Membench
Throughput Benchmark, page 99-112. Springer Nature Switzerland, 2025.

[CDK"15] Russell Clapp, Martin Dimitrov, Karthik Kumar, Vish Viswanathan, and Thomas Will-
halm. Quantifying the Performance Impact of Memory Latency and Bandwidth for Big

15Standard C Library, memset, https://man7.org/linux/man-pages/man3/memcpy.3.html
16openBLAS, An optimized BLAS library, http://www.openmathlib.org/0OpenBLAS/

36

https://man7.org/linux/man-pages/man3/memcpy.3.html
http://www.openmathlib.org/OpenBLAS/

Data Workloads. In 2015 IEEE International Symposium on Workload Characterization,
pages 213-224, 2015.

[GYK"24] Amir Gholami, Zhewei Yao, Sehoon Kim, Coleman Hooper, Michael W. Mahoney, and

Kurt Keutzer. Al and Memory Wall. IEEE Micro, 44(3):33-39, 2024.

[HFP*25] Nam Ho, Carlos Falquez, Antoni Portero, Estela Suarez, and Dirk Pleiter. Memory

prefetching evaluation of scientific applications on a modern hpc arm-based processor.
IEEFE Access, 13:85898-85926, 2025.

[JTW*19] Adrian Jackson, Andrew Turner, Michele Weiland, Nick Johnson, Olly Perks, and Mark

[KP02]

[LLT+23

[Lon24]

Parsons. Evaluating the arm ecosystem for high performance computing. In Proceedings
of the Platform for Advanced Scientific Computing Conference, PASC 19, New York,
NY, USA, 2019. Association for Computing Machinery.

C. Kozyrakis and D. Patterson. Vector vs. superscalar and vliw architectures for embedded
multimedia benchmarks. In 35th Annual IEEE/ACM International Symposium on
Microarchitecture, 2002. (MICRO-35). Proceedings., pages 283-293, 2002.

Bangtian Liu, Avery Laird, Wai Hung Tsang, Bardia Mahjour, and Maryam Mehri
Dehnavi. Combining run-time checks and compile-time analysis to improve control
flow auto-vectorization. In Proceedings of the International Conference on Parallel
Architectures and Compilation Techniques, PACT 22, page 439450, New York, NY,
USA, 2023. Association for Computing Machinery.

Roy Longbottom. Raspberry pi 5 benchmarks and stress tests, 01 2024.

[LZRX25] Mengming Li, Qijun Zhang, Yongqing Ren, and Zhiyao Xie. Integrating Prefetcher

[McCO07]

Selection with Dynamic Request Allocation Improves Prefetching Efficiency . In 2025
IEEE International Symposium on High Performance Computer Architecture (HPCA),
pages 204216, Los Alamitos, CA, USA, March 2025. IEEE Computer Society.

John D. McCalpin. Stream: Sustainable memory bandwidth in high performance com-
puters. Technical report, University of Virginia, Charlottesville, Virginia, 1991-2007. A
continually updated technical report. http://www.cs.virginia.edu/stream/.

[MWR25] Fabian Mahling, Marcel Weisgut, and Tilmann Rabl. Fetch me if you can: Evaluating

[0L23]

cpu cache prefetching and its reliability on high latency memory. In Proceedings of the
21st International Workshop on Data Management on New Hardware, DaMoN "25, New
York, NY, USA, 2025. Association for Computing Machinery.

Hyun Woo Oh and Seung Eun Lee. The design of optimized risc processor for edge artificial
intelligence based on custom instruction set extension. IEEE Access, 11:49409-49421,
2023.

[PVK*25] Anna Pirova, Anastasia Vodeneeva, Konstantin Kovalev, Alexander Ustinov, Evgeniy

Kozinov, Alexey Liniov, Valentin Volokitin, and lIosif Meyerov. Performance optimization
of blas algorithms with band matrices for risc-v processors. Future Generation Computer
Systems, 174:107936, 06 2025.

37

[SCH*23] Till Schliiter, Amit Choudhari, Lorenz Hetterich, Leon Trampert, Hamed Nemati, Ahmad
Ibrahim, Michael Schwarz, Christian Rossow, and Nils Ole Tippenhauer. Fetchbench:
Systematic identification and characterization of proprietary prefetchers. In Proceedings
of the 2023 ACM SIGSAC Conference on Computer and Communications Security, CCS
23, page 975-989, New York, NY, USA, 2023. Association for Computing Machinery.

[SE17] Yukinori Sato and Toshio Endo. An accurate simulator of cache-line conflicts to exploit
the underlying cache performance. pages 119-133, 08 2017.

[VKK*23] Valentin Volokitin, Evgeny Kozinov, Valentina Kustikova, Alexey Liniov, and Tosif
Meyerov. Case Study for Running Memory-Bound Kernels on RISC-V CPUs, page 51-65.

Springer Nature Switzerland, 2023.

[WA19] Andrew Waterman and Krste Asanovi¢. The RISC-V Instruction Set Manual, Volume I:
User-Level ISA, Document Version 20191214-, 2019. Draft version.

38

A Appendix

A.1 ARM readKernel Scalar One Array Size

In Figure 14, a heatmap is shown representing the throughput in an adapted experiment for the
scalar load micro-kernel on the ARM Cortex-A76. Instead of evaluating the performance on ten
arrays, varying in size, the performance is evaluated on one array size. This demonstrates that
evaluating on a single array size can bias the results in favor of striding configurations that pairs well
to that array size. In this example, the selected array size appear to pair well with low stride-unroll
values that are odd.

ARM readKernel Scalars

11,050 13.156 FEXIEN 13.393 8.613 9,930] 10.262
11.274 12.897 [EEriW 13.092 8.720 9.637 ! 6.737

13.022 EXFLEN 13.470 8.478 9.313] 7.827

13.084 [EMCEN 13.428 8.450 9.206 ! 7.497
SHEN 13,124 [RCECH 13.500 8.090 9.612 ! 6.769 2.4 g 1
Ak 13,290 [ECEM 13.652 CRELN 11.024 JECEE]

13.245 RPN 13.705 8.543 8.836

13.307 ERBEN 13.205 8.345 9.370
IR 13,322 KRV 12.331 8.146 9.272
11.112 13.332 [ERGGH 11.761 8.294 9.231

13.340 [RARLY 13.144 8.087 8.941

13.132 [RATLH 11.289 8.037 8.881
11.248 13.088 [WALYM 11.336 8.564 8.881
11.007 13.116 [AFEM 12.133 8.034 8.625

12.857 [RALEN 12,501 7.790 8.738
11.137 12.822 [EKIVM 11.847 7.956 8.935
11.074 13.251 [RAICH 12.455 7.757 9,508
11.464 13.253 ERPLN 12.489 7.907 9.412
11.056 12.938 Ayl 12.279 7.603 8.814] 6.228
11.239 13.108 JERECN 12.944 | 11.291 RN 9.224
11.085 13.295 WAECH 12.890 7.636 8.369] 6.711
11.410 13.403 [ERGEUN 13.012 7.688 9.221 T 6.820
11.460 13.321 [EANEN 12.562 7.701 8.842 ! 7.497
11.405 13.613 [ERLYM 12.515 7.700 9.647 ! 7.472
11.663 13.471 [WAEEN 13.108 7.5 8.714 1 8.023
11.554 13.641 RPN 13.178 7.861 9.568 E 8.103
11.458 13.607 [0 12.858 7.929 9.329 y 8.478
11.479 13.703 [ENOEFN 13.082 8.578 2.046 ! 8.462
11.509 13.761 RPN 13.309 8.171 9.192 ! 8.388
11.471 13.747 VRN 13.023 GRLTA 11.001 JEREL]) 8.313
11.546 13.666 [RAIEN 13.139 8.774 9,041] 8.732
11.187 13.610 [RKLEN 12.717 8.049 9.204 1658 8.412

portion
1 2 3 45 6 7 8 91011 1213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Throughput GiB/s

5

stride

Figure 14: Throughput (GB/s) of a single array size for the scalar STR writeKernel on the ARM
Cortex-AT6.

39

A.2 ARM writeKernel Scalar Worst Performing Array

In Figure 15, a heatmap is shown representing the throughput for the scalar store micro-kernel
on the ARM Cortex-AT76. For each striding configuration, the throughput is reported of the worst
performing array size. These results further support our hypothesis about the impact address
collisions on performance, as discussed in Section ?7?.

ARM writeKernel Scalar STR

. 9551 . 9 3.702 3216 2. d 2.675 | 5,957 | 6. : 5.113
M 9555 } .966 54 1.843 1.956 1.848 .849 018 1800 1993 196 4 2.010
o
o 9528 ¥ ! 1.869 1885 1953 1850 1 .844 . 2.077 1.99 C 2.030 1.74 1 -9
o 9570 3 .988 1869 1.803 1.902 1.813 1.809 178 .009 1780 1997 1.94 . 1.958
o 9571 .08 ! 1.877 1.825 2.012 1.879 1.86 . . 2133 2.0 1.805 1. 2.115
N 9568 ¥ d 1.799 1734 1.884 1743 1. .76 .99 744 2.002 1. 1711 1 1.975 1. 2.001
o " 9.568 b b 1.768 1773 1940 1752 1746 1776 2.04 . 2.036 1.9 1.704 1.6 2.038 1.6 2.037 8
~ 9564 [k . d 1705 1.666 1.860 1736 16 .9 .683 2.010 1944 1.658 1 1.969
:’ 9.550 . d 1734 1. 1 1.760 1. . .0 2.070 1.9¢ 1.677 1679 2.055
™ 9568 } ! .64 i .6 .6 1965 1.899 1578 1.564 1.973 | 5
™~ 9564 3 d .627 1.850 1. 638 1.64 .0 596 2.013 3 1567 1 2.016
o -
™ 9568 3 08!] 562 1787 1568 1.569 1.57 .90] 1952 1. 1.525 1.47 1.916
o " 9546 b b . .57 1925 1639 1. .6 2106 1 2.107 2. 1.554 1564 2.095
~ 9563 EE b b ! 494 1745 1.] 509 1. 4 1910 1.869 1.431 6
; 9.564 166 3.06 . .54 1779 1.4 .90 .44 1985 1.860 3
§ . 9551 . 026 1419 14 167 4 414 14 .82 405 1. 1854 E
£~ 9569 y K) .618 b I K 4 6.607 £
aw - =]
~ 9552 § i 1.652 418 1 d 05 58
n - =
~ 9555 3 ! .78 4 1771 4 349 1 d 1.951 [
o -
o 9551 b b .52 4 1709 8 . .89 ¥ 903 1826
: 9.555 5 y d . 2,023 1. ; X . 2.132 §
~ 9574 } .04 1.746 6 .978 .945 1977 0 1 d d 4
o
o 9570 b .036 9 1410 1.823 4 14 146 14 d 2.223
~ " 9568 3 ! .408 . .0 .9 2.020 . 2.080
- 4
9.575 249 3. 1.843 2.255 1.4 d 2.147
® " 9574 3 ! 2 1807 g ‘ 379 v 5 2186 1.4 4 5 473 2. 3
™ o567 6 2.189
.
9.552 ¥ d 4 764 9 6 .425 4 . 2.205
a
9.564 b b .54 d 4 1 4 4 4 2.254
< - 2
9.556
"
8.377
Bl 5251
-
1

Figure 15: Throughput (GB/s) of the worst performing array size for each striding configuration,
for the scalar STR writeKernel on the ARM Cortex-A76.

A.3 ARM writeKernel Vector Difference Best and Worst Performing
Array

In Figure 16, a heatmap is shown reporting the differences in throughput for the best and worst

performing array size for vector stores for the STR instruction, on the ARM Cortex-A76. Similarly

to the scalar stores, these results clearly shows the impact of selecting the appropriate array size
for each striding configurations.

40

Throughput Difference Best Array and Worst Array ARM writeKernel Vector ST1

0.088 | 5. 9661 10.273 [IEEEMN 10.356 10.116 ! 6.953 4.579 7.606 5.185 | 7.480 7.543
0.075 | 5. 0486 0.407 0471 0443 0626 0.654 9 . 0571 0.430 0.667 0.648 0.645 0.708
0.150 | 5. 1067 0.809 1.411 1231 1490 1.233 1.2 2 1 1102 1 1489 1427 1.351 1.285
0.101 | 5.389 4 0438 0565 0448 0404 0686 0.665 0511 0.4 . 0451 0492 O. 0462 0379 0773 0626 0.498 -10
0.073 | 5382 5.973 ! 5048 5.054 6.016 [[#765)| 2264 [7.268
0.088 | 5353 0567 0598 0533 0333 0586 0665 0325 0435 0.4 . 0.514 0493 0.601 0480 0.697 0.470 0.555 0.807
0.101 | 5.449 0.644 0860 0740 0938 0987 0.862 0.843 067 1011 0.814 1040 1210 1121 0785 1049 1328
0.057 | 5338 0556 0627 0574 0442 0454 0727 0515 0765 . 6 0568 0. 749 0590 0912 0357 0.844
0.055 | 5.444 5.708 . 6.911 30 6.020 2.455 G079
5479 0591 0.644 0507 0500 0.481 0.660 0.3 0.743 0195 O. 0.682 0565 0.539 5 0 0.636 0.425 0710
5.357 0753 0597 0431 0621 0569 0758 0602 0154 0607 0550 0.692 0589 1. 0.840 1.026 0738 0724
5487 0. 0714 0702 0556 0693 0791 0315 0734 0101 0.663 0719 0539 0.887 0653 O. 0196 0.797
5.456 9345 9873 10.428 WPl 4835 [JEEY s. 4.078 5.175 2.592 [7.000
5391 0.617 O. 0618 0491 0682 0703 0516 0678 0111 0.677 0484 0518 0758 0.620 O. 0.167 0.793
5429 0.647 0419 0621 0620 0826 0479 0505 6 0.742 0.825 0578 0753 08 . 0.484 0.765
5434 0. 0757 0681 0.639 0892 0726 0520 0615 O. 0534 0458 0539 0.618 . . 0.163 0.759

portion
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

5.456 9388 9979 10.385 EEEN 10.820 10.811 10.546 JEAEEN 250 IEREPRNEREERS T L R Z 2.889 170

0.102 | 5478 0641 0.798 0520 0.660 0.609 0827 0.530 0.791 . 0.578 0.531 0.624 0.603 78 .4 0.654 0.153 0.782
0.059 | 5397 pLE¥Fy 0.612 0564 0.617 0.890 0812 0805 0812 0709 0901 0.748 0904 0.96 0.994 0962 0.848 0.740 1135

Throughput Difference GB/s

0.097 | 5.456 9.418 10.083 10.509 JGREPN 10.876 11.091 10.590 EREIMVA [EESGERELNT: 5093 [JEEGAY 2660 [6.991

0.086 | 5485 0. 0756 0374 0495 0430 0566 0.628 0563 0119 0.694 0380 0. 0 0453 0955 0.493
0.083 | 5.458 0479 0343 0547 0655 1000 0774 0.809 1203 0798 0734 1258 6 0916 0993 0847 1338
0.109 | 5451 0.677 0745 0580 0576 0504 0713 0.626 0.616 0133 0175 0415 0657 0.893 0295 0801 0171 0.878
5520 7.018 3.609 5825 5164 [[ESEINTTIT 74360 2.742 [7056
5469 O 0763 0.662 0.875 0638 0993 0954 0.866 Y 0292 0534 0.869 0.927 45 1107 0261 0971
5.488 0698 0666 0811 0566 1068 1011 1.087 J 0403 1.099 1017 04 1086 0144 1169
5.452 | 0. 0723 0735 0848 0706 1062 1133 1131 0165 1. 0614 1. 1.236 44 1425 0187 1221
5.430 9.481 10.139 10.522 [AEr) 3.368 5751 5.074 2207 [[fEEE) 2.001 [7275
0.057 | 5475 0738 0688 0736 0800 0693 1093 1122 1173 0320 1.2 0415 0.660 1519 1527 1589 0236 1566
0.089 | 5549 0630 0799 0.810 0698 1005 1042 1276 0218 1541 0409 0650 1519 1L 0370 1593 0236 1615
5523 | 0. 0.674 0787 0.829 0742 1038 1095 1219 0214 1. 0584 0.674 1514 1635 0.407 1548 0279 1600

0.100 | 5484 0.649 0.769 0775 0.530 0.505 09 0612 0598 0406 0423 0.575 0467 0354 0.628 0518 0.753 0476 1047
0.

12 3 45686 78 9

stride

Figure 16: Throughput (GB/s) difference of the best performing and worst performing array size
for each striding configuration, for the vector ST1 readKernel on the ARM Cortex-A76.

41

A.4 RISC-V readKernel Scalar Difference Best and Worst Performing
Array

In Figure 17, the results of the differences in throughput between the best and worst performing
array for the scalar load micro-kernel, on the RISC-V SpacemiT K1. Compared to the ARM
Cortex-AT6, throughput across varying array sizes appear to remain equal.

Throughput Difference Best Array and Worst Array RISC-V readKernel Scalar flw

0.006 0.012 0.109 0.046 0.134 0011 0.008 0015 0.054 0.050 J 0.001 0.001 0 0.001 0.001

0.007 0.015 0.084 ! 0.124 0018 0019 0. 0.040 y 1226 0.485 0. 0.015

6 0.0 0.007 0.051 0.086 0.050 0139 0.017 0.033 0013 0.029 .0 .0 4 SL379 1.165 | 0.073 0.007 0.040
0.006 0.008 0.017 0.071 0.085 0.031 .0 0110 0.015 0.029 0012 0.031 .04 1.266 0.528 0.122 0.032 0.020
0.010 0.006 0017 0032 0.091 0.032 0015 0067 0018 0027 0.037 0.047 .0 0.060 0.066 1.095 0.026 0.043 0.056
0.012 0.010 0011 0.071 0.078 003% 0014 0110 0025 0.037 0.024 0.020 0 0.050 0.060 0.190 @ 0.987 0.489 0.035 0.027
0.0 0.009 0.090 0119 0.054 0157 0.030 0.022 0041 0.031 .035 0.024 0.070 0.427 0.409 0.020 0.105

0.0 0.006 0.011 0.085 0.036 0.043 0.105 0023 0.048 0035 0.031 0.041 ! 0.118 0.436 1.037 0.025 0.080
0.011 0.006 0.015 0.081 0078 0.048 0024 0120 0041 0.039 0024 0.027 0.033 0.138 0.047 0.001 0.001 0.001
0.017 0.005 0.017 0.095 0043 0055 0022 0151 0013 0036 0025 0.033 04 0.018 0053 0090 0.053 0266 0694 0493
0.011 0.004 0.016 0077 0049 0043 0026 0171 0013 0038 0039 0018 .0 0.053 0.020 0.015 0.801 0.872 0.471
0.010 0.006 0.014 0.088 0.031 0031 0014 0079 0028 0.027 .04 0.019 0.054 .0 0.076 0.197 0.029 0.030 .0 0.152
0.003 0.009 0.088 0.041 0.036 0.177 0.024 0.035 . 0.039 0.039 . 0.070 0.137 0.055 1 C 0.001

0.0 0.005 0.013 0096 0.023 0.045 0029 0161 0.033 0.012 ! 0.064 0.047 .0 0.063 0.051 0.048 0.025 3 0.649
0.016 0.006 0020 0101 0.037 003% 0019 0154 0.02 0.024 0.021 0.044 .035 0.064 0.157 0.035 | 0.794 C 0.001
0.013 0.006 0.020 0.082 0.052 ! 0024 0154 0.034 0.055 0041 0.014 0059 0035 0076 0.107 0.048 0.561 0.001 0.001

-2.0

0.038 0.004 0.014 0075 0047 0032 0013 0167 0025 0016 0026 0025 0.046 0083 0055 0049 0.031 0.661 EE:EEN 0.002
0.014 0.007 0.013 0.077 0.028 0.022 0036 0150 0037 0.038 0.022 0.056 0.058 0.099 0076 0.034 0.019 0.020 0.024

portion
1 2 3 45 6 7 8 91011121314 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

0.011 0.078 0.028 0.023 0.166 0.034 0.051 . 0.025 0.069 0.030 0076 0.111 0.048 7 0.007 0018

0.004 0.015 0.080 0024 0.031 0.0 0136 0.055 0.047 0069 0030 0.076 0.048 0.090 0.095 0052 0.023 0.016 0.055

0.018 0.007 0.014 0.087 0.035 0.032 0022 0120 0022 0057 0.028 0.011 0074 0.026 0.062 0.083 0.033 0.014 0013 0014
0.012 0.006 0017 0022 0.025 0.030 0029 0180 0015 0033 0021 0.020 0056 0.027 0.074 0.097 0.039 0.020 0.014 0.016
0.012 0. 0.027 0.037 0 0.100 0.009 0.074 0.017 0.032 0.059 0.030 0.054 Y 0.024 0.017 0.012 0316

0.013 3 0.030 .0 0101 0.033 0.045 0021 0027 0.057 0.04% 0075 5 0.019 018 0.012 0.013

0.008 0.019 0.072 0.023 0.043 6 0.151 0.045 0.017 0030 0.032 0027 0.057 1 0.087 0.016 0.010 0.009

0.010 0.008 0009 0.079 0.046 0.033 0028 0160 0019 0063 0034 0026 0067 0.037 0070 0106 0.016 0.021 0012 0010
0.026 0.006 0012 0077 0.041 0.032 0029 0135 0026 0014 0.019 0.023 0047 0.025 0.090 0.094 0.024 0.010 0006 0.010
0.026 0.004 0.014 0.075 0.024 0.037 0024 0089 0138 0.043 . 0.028 0.080 0. 0.090 0068 0.021 0.018 0.022 0.012
0.007 0.018 0.031 0.042 5 0.108 ! 0.022 0.031 0.033 0.021 0056 0080 0.017 0.008 0.009 0.005

0.013 0.030 0.08 .0 . 0.050 0.107 0.057 0. 0.083 0.029 0 0.004

0.0C 0.010 0.019 0.021 0.123 0.021 0.024 0.038 0.098 0.022 0.104 0.014 0.004

0.010 0.019 0.035 0.005 0.086 0.032 0.035 0028 0033 0199 0.090 0 0108 0.018 0.001

Throughput Difference GB/s

stride

Figure 17: Throughput (GB/s) difference of the best performing and worst performing array size
for each striding configuration, for the scalar readKernel on the RISC-V SpacemiT K1.

42

A.5 ARM Assembly

In Listing 19, a generated assembly file for the ARM architecture. The assembly file starts with the
assembly prologue, then the loop body performing all the memory accesses, and then the return of

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

the function.

.text
.global readKernel // ARM

readKernel: // arr_length=500001660 | in bytes=2000006640

// put registers on stack

sub sp, sp, #128

stp x19, x20, [sp, #16]
stp x21, x22, [sp, #32]
stp x23, x24, [sp, #48]
stp x25, x26, [sp, #64]
stp x27, x28, [sp, #80]
stp x29, x30, [sp, #96]

// loop counter and loop bound

movz x1, #0

// loop bound=6250020
movz x2, #24100
movk x2, #95, LSL #16
movk x2, #0, LSL #32
movk x2, #0, LSL #48

// stride 1 | bytes offset: O
movz x3, #0
movk x3, #0, LSL #16
movk x3, #0, LSL #32
movk x3, #0, LSL #48
add x3, x3, x0

// stride 2 | bytes offset: 400001328

movz x4, #35120

movk x4, #6103, LSL #16
movk x4, #0, LSL #32
movk x4, #0, LSL #48
add x4, x4, x0

// stride 3 | bytes offset: 800002656

movz x5, #4704

movk x5, #12207, LSL #16
movk x5, #0, LSL #32
movk x5, #0, LSL #48

add x5, xb, x0

43

44

45

46

47

48

49

50

51

52

53

54

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

9

et

// stride 4 | bytes offset: 1200003984

movz
movk
movk
movk
add

#39824

#18310, LSL #16
x6, #0, LSL #32

x6, #0, LSL #48

x6, x6, x0

x6,
x6,

// stride 5 | bytes offset: 1600005312

movz
movk
movk
movk
add

.Loop:

// s
1ldr
ldr
ldr
ldr

// s
ldr
1ldr
ldr
1ldr

// s
ldr
ldr
ldr
ldr

// s
1ldr
ldr
1ldr
ldr

// s
ldr
ldr
ldr
1ldr

// loop

x7, #9408

x7, #24414, LSL #16

x7, #0, LSL #32

x7, #0, LSL #48

X7, x7, x0

tride 1

q0, [x3], #16 //array id:
ql, [x3], #16 //array id:
q2, [x3], #16 //array id:
q3, [x3], #16 //array id:
tride 2

94, [x4], #16 //array id:
95, [x4], #16 //array id:
96, [x4], #16 //array id:
q7, [x4], #16 //array id:
tride 3

q8, [x5], #16 //array id:
q9, [x5], #16 //array id:
q10, [x5], #16 //array id:
qll, [x5], #16 //array id:
tride 4

ql2, [x6], #16 //array id:
ql3, [x6], #16 //array id:
ql4, [x6], #16 //array id:
ql5, [x6], #16 //array id:
tride 5

qlé, [x7], #16 //array id:
ql7, [x7]1, #16 //array id:
q18, [x7], #16 //array id:
ql9, [x7]1, #16 //array id:
control

0 bytes=0

4 bytes=16
8 bytes=32
12 bytes=48

100000332 bytes=400001328
100000336 bytes=400001344
100000340 bytes=400001360
100000344 bytes=400001376

200000664 bytes=800002656
200000668 bytes=800002672

200000672 bytes=800002688
200000676 bytes=800002704

300000996
300001000
300001004
300001008

bytes=1200003984
bytes=1200004000
bytes=1200004016
bytes=1200004032

400001328
400001332
400001336
400001340

bytes=1600005312
bytes=1600005328
bytes=1600005344
bytes=1600005360

44

92

93

94

95

96

97

98

99

100

101

102

103

104

105

add x1, x1, #1
cmp x1, x2
BNE .Loop

.Eind:

// put registers on stack

1ldp
1dp
1dp
1dp
1dp
1ldp

x19,
x21,
x23,
x25,
x27,
x29,

add sp,

ret

x20, [sp, #16]
x22, [sp, #32]
x24, [sp, #48]
x26, [sp, #64]
x28, [sp, #80]
x30, [sp, #96]
sp, #128

Listing 19: Generated multi-striding assembly file for the vector readKernel on the RISC-V
architecture. In this assmebly file we use the LDR instruction.

A.6 RISC-V Assembly

In Listing 20, a generated assembly file for the ARM architecture. The assembly file starts with the
assembly prologue, then the loop body performing all the memory accesses, and then the return of

10

11

12

13

14

15

16

17

18

19

20

21

22

23

the function.

.te

Xt

.global microKernel # Scalar

microKe

rnel:

arr_length=505248 | in bytes=2020992

put registers on stack
addi sp, sp, -128

x1, 0(sp)

x3, 8(sp)

x4, 16(sp)

x8, 24(sp)

x9, 32(sp)

sd
sd
sd
sd
sd
sd
sd
sd
sd
sd
sd
sd
sd
sd
sd
sd

x10,
x18,
x19,
x20,
x21,
x22,
x23,
x24,
x25,
x26,
x27,

40 (sp)
48 (sp)
56 (sp)
64 (sp)
72(sp)
80 (sp)
88(sp)
96 (sp)
104 (sp)
112(sp)
120(sp)

45

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

51

52

53

54

55

56

57

58

60

61

62

63

64

65

66

67

68

69

70

71

loop counter and loop bound

addi x3, x0, O

loop bound=5263
Jui x1, 1

addi x1, x1, 1167

stride 1 | bytes offset:

lui x4, O
addi x4, x4, 0
add x4, x4, a0

stride 2 | bytes offset:

lui x5, 164
addi x5, x5, 1920
add x5, xb, x4

stride 3 | bytes offset:

lui x6, 329
addi x6, x6, -256
add x6, x6, x4

vsetivli x0, 8, €32, ml

.Loop:

fcvt.s.w £f0, x3
vimv.v.f vO, fO

stride 1

vse32.v v0, (x4)
addi x4, x4, 32
vse32.v v0, (x4)
addi x4, x4, 32

vse32.v v0, (x4) #array id:
addi x4, x4, 32

vse32.v v0O, (x4) #array id:
addi x4, x4, 32

stride 2

vse32.v v0, (x5) #array id:

addi xb, x5, 32
vse32.v v0, (xb)
addi xb, x5, 32
vse32.v v0, (x5)
addi x5, x5, 32
vse32.v v0, (x5)
addi x5, x5, 32

673664

1347328

#array id:

#array id:

#array id:
#array id:

#array id:

0 bytes=0
8 bytes=32
16 bytes=64

24 bytes=96

0 bytes=0
8 bytes=32
16 bytes=64

24 bytes=96

46

72

73

74

75

76

7

78

79

80

81

82

83

84

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

104

105

stride 3

vse32.v v0, (x6) #array id: 0 bytes=0
addi x6, x6, 32

vse32.v v0, (x6) #array id: 8 bytes=32
addi x6, x6, 32

vse32.v v0O, (x6) #array id: 16 bytes=64
addi x6, x6, 32

vse32.v v0O, (x6) #array id: 24 bytes=96

addi x6, x6, 32

loop control
addi x3, x3,
bne x3, x1,

.Eind:
1d
1d
1d
1d
1d
1d
1d
1d
1d
1d
1d
1d
1d
1d
1d
1d

ret

x1,
x3,
x4,
x8,
x9,
x10,
x18,
x19,
x20,
x21,
x22,
x23,
x24,
x25,
x26,
x27,

0(sp)
8(sp)

1
.Loop

16 (sp)
24(sp)
32(sp)
40(sp)
48(sp)
56 (sp)
64 (sp)
72(sp)
80(sp)
88 (sp)
96 (sp)
104 (sp)
112(sp)
120(sp)
addi sp, sp, 128

Listing 20: Generated multi-striding assembly file for the vector writeKernel on the RISC-V
architecture.

47

	Introduction
	Related Work
	Background
	Hardware Architectures
	General-purpose registers and Stack
	Floating-point registers
	Vector registers
	Stack

	ARM
	Registers, Calling Conventions and Vectors
	Implemented Assembly Instructions

	RISC-V
	Registers, Calling Conventions and Vectors
	Implemented Assembly Instructions

	Multi-striding
	Stride-unrolls and Portion-unrolls

	Address Collisions

	Methodology
	Micro-kernels
	Addressing mode
	x86_64 and CISC-based architectures

	Approach
	Reshaping Input Size
	Code generation
	Loading Large Immediate Values into Registers
	Assembly Prologue Generation
	Loop Design for Strided Memory Access
	Maximum Striding Configuration

	Throughput and Validation

	Experimental Setup
	Micro-kernels
	Hardware and Software Specifications
	Experimental Method

	Results
	Overview
	ARM
	RISC-V
	Performance Comparison with memset

	Discussion
	Conclusion
	Future Work
	References
	Appendix
	Appendix
	ARM readKernel Scalar One Array Size
	ARM writeKernel Scalar Worst Performing Array
	ARM writeKernel Vector Difference Best and Worst Performing Array
	RISC-V readKernel Scalar Difference Best and Worst Performing Array
	ARM Assembly
	RISC-V Assembly

