¥ Universiteit
4] Leiden

Master Computer Science

[Salary Prediction Using Graph Attention Networks and
Mixture Density Network]

Name: [Zhipei Qin]

Student ID: [3977226]

Date: [August 2025]

Specialisation: [Computer Science: Data Science]
1st supervisor: [Niels van Weeren]

2nd supervisor: [Frank Takes]

Master’'s Thesis in Computer Science

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University

Niels Bohrweg 1

2333 CA Leiden

The Netherlands

Abstract

Accurate salary prediction is a significant challenge due to the complex and heterogeneous nature of job
market data. Traditional predicting models typically yield a single point estimate for salaries. This approach
often fails to capture the inherent uncertainty and multi-modal distributions of compensation. Additionally,
these models are generally incapable of leveraging the complex relational and hierarchical structures between
key predictive attributes. This paper proposes a framework that combines graph attention networks (GATs)
[38] with a mixture density network (MDN) [5] to model the full conditional probability distribution of
salaries. We construct distinct graphs for three key attribute domains: location, occupation, and industry.
Each node in our graphs is represented by a unique, low-dimensional embedding vector to capture its
core semantic content. The edges that connect these nodes are defined by two principles: Hierarchical
edges, which link parent-child attributes, and (Weighted) Similarity Edges, which connect peer-level nodes
based on semantic relatedness. Our multigraph GAT architecture learns rich, contextual representations for
all nodes by leveraging information propagated along explicitly defined hierarchical and similarity-based
edges. The resulting node representations from each attribute domain are then integrated to form a single,
comprehensive feature vector, which is subsequently mapped by the MDN head to the parameters of a
Gaussian Mixture Model (GMM). A priority-based hierarchical selection method is employed to select the
most granular available feature representation for any given input sample. Experimental results show that
our GAT-based model achieves significantly higher prediction accuracy compared to the simple MLP-MDN
baseline model that does not exploit graph information. This approach allows us to quantify prediction
uncertainty and identify complex salary structures, offering a more transparent and insightful tool for
analyzing the labor market.

Keywords: Salary Prediction, Graph Attention Networks (GATs), Mixture Density Network (MDN),
Gaussian Mixture Model (GMM) Hierarchical Edges, Weighted Similarity Edges, Multi-Graph Model.

Contents

[L__Introductionl

2_Related Workl
2.1 Data-Driven Salary Prediction|]
2.2 Graph-Based Model
2.3 Mixture Density Network]

I3__Preliminaries|
3.1 Graph-Based Data Representation| . . .

3.4 Training Objectivel

|4 Methodology|

[4.1 Data Preprocessing]
[42 " Graph Construction for Each Domain]|. .
4. raph Attention Networks|.

[4.3.1 GAT Feature Preparation|

[4.3.2 Graph Attention-based Representation Learning|

[4.4 Priority-based Hierarchical Selection| . .

[4.5 Mixture Density Network]

4.9 Ablation Study|.

9 Descriptive Data Analysis|

[6 Experiment Results|
6.1 Experimental Environment|
6.2 Fixed Parameters Settings|.
6.3 Hyperparameter Optimization|.
[6.4 Ablation Study: MLP Baseling]

[6.6.1 Single Combination|
[6.6.2 Multiple Combinations|
[6.6.3 Combinations with Empty Values|

[Conclusionl

8 Future Work

IA" Major Notations|

[B_Data Schemal

22

26
26
26
26
27
27
28
28
29
31

32
32
33
35

1 Introduction

The Human Resources and recruitment industry takes on an intermediary role in the labor market, ideally
matching the right talent to the appropriate organizational role. In this dynamic, salary operates as the most
significant mechanism through which skills and experience are valued and directly related to an organization's
ability to attract talent and manage operational costs. Thus, determining the right and fair market value for
any specific position stands as one of the most precarious tasks in this field.

A primary manifestation of this challenge is the salary information gap between job seekers and employers, a
persistent problem where applicants often lack clarity on compensation until a final offer is made, while employers
risk either losing candidates with uncompetitive offers or inflating labor costs with overly high ones. Bridging this
gap, where the objective market value of a position is determined, ensures minimization of job mismatches and
enhanced hiring outcomes for both sides. [34] In addition, the effective integration of heterogeneous salary data
improves the accuracy of salary prediction and the transparency of the labor market. Beyond the improvement in
salary prediction accuracy that could be achieved, integrating heterogeneous salary data sources gives a holistic
view of salary structures in various industries and regions. [29] Addressing these challenges will improve salary
estimation models, improve labor market efficiency, and support better career decision-making. Salary prediction
models have been extensively studied using various methodologies. Traditional salary prediction approaches,
such as regression models and even advanced machine learning techniques, often fall short in two critical aspects.
Firstly, by predicting a single value (point estimate), they are insufficient to represent the full conditional
distribution of salaries, which may be multi-modal or exhibit significant variance even for individuals with similar
job profiles. Secondly, these models typically treat predictive attributes as independent features, thus failing
to exploit the valuable information embedded in the complex hierarchical and relational structures within the data.

These limitations directly motivate the central research questions of this thesis. First, to what extent can we
improve salary prediction accuracy by explicitly modeling the hierarchical and similarity-based relationships
between attributes using a graph-based framework? Second, how can a probabilistic model be designed to
capture the full, often multi-modal, distribution of salaries, thereby providing a more realistic and insightful
output than a single point estimate?

This limitation is particularly pronounced when dealing with real-world recruitment data, which is the focus of
our work. Our study uses a dataset of real-world job postings where the hierarchical and similarity structure
of a domain is evident. We focus mainly on three domains in job and contract information: Location (the
geographical location of the job position), Industry (the industry to which the job position belongs), and
Occupation (the professional title corresponding to the job position). A key characteristic of these data is its
inherent hierarchical nature; for instance, the Location domain contains multiple levels of granularity, such
as provinces and the cities nested within them. Furthermore, there are also similarity relationships between
nodes at the same level, e.g., all cities, and different attribute values may exhibit varying degrees of similarity.
For instance, the similarity between Amsterdam and Rotterdam is higher than that between Rotterdam and
London. These two types of structured information, which are often overlooked by traditional models, provide
a unique opportunity to build a more context-sensitive predictive framework.

To seize this opportunity and address the above limitations, this study proposes a novel framework for predicting
salary distribution via the relational and hierarchical information encoded in the different salary-influencing
attributes like geographic location, occupation, and industry sector. Moving beyond point estimates, the
framework combines domain-specific graph representation learning through GAT with an MDN head. It first
establishes a multi-graph structure in which edges record information about explicit hierarchical containment
and functional similarity. Next, the GAT architecture dynamically learns the importance of these diverse relations,
focusing solely on those that matter most. A masked self-attention mechanism achieves this by letting the
model compute attention coefficients for each node in its local, first-order neighborhood. Based on features
from nodes and edge types, these coefficients determine the weight a given neighbor’s contribution bears
during the subsequent feature aggregation step. This multi-head attention mechanism allows the model to learn
different relational patterns in parallel, creating a powerful yet highly cohesive representation per node. The
model integrates a priority-based, feature selection logic in terms of hierarchical over-writing. In the process of
selecting features for each sample, it prioritizes the most specific information, using a hierarchical overwrite logic
that enables the model to use the most granular attribute values while being robust to broader attribute ranges
or even missing inputs through general representations. Finally, the MDN head uses such richly context-aware

features to model the conditional probability of salaries as a flexible Gaussian Mixture Model. The number of
components in this mixture is a tunable hyperparameter. Therefore, our framework can better fit the actual,
often complex, salary distribution, captured prediction uncertainty, and potential multimodality than a single
distribution.

In the following sections, our study firstly introduces the related work in Sect. 2] Then, we formally introduce
the preliminaries and define the problem of salary prediction with the GAT-MDN framework in Sect. [3] Sect[4]
provides a detailed description of our research methodology and specific model architecture. Following this,
Sect. [B] presents an exploratory data analysis in our experiments. The complete experimental setup and the
results of our salary predictions are then reported in Section [6] Finally, our study presents our discussions in
Sect[7l and discuss our future work in Section

2 Related Work

This section reviews the literature in three key areas that form the foundation of our proposed model. Our
study begins by surveying the field of salary prediction to contextualize our work and highlight existing
challenges. Subsequently, our study discusses the literature on multiple forms of graph models, which are
central to our relational feature extraction methodology. Finally, our study discusses prior research on mixture
density networks, the Gaussian mixture model, and the mechanism that enables our model’s probabilistic output.

2.1 Data-Driven Salary Prediction

Predicting salary changes involves applying various analytical techniques to estimate how salaries will evolve
over time, considering factors like economic conditions, industry trends, and job market dynamics. These
methods are used to forecast salary growth, fluctuations, and the impacts of specific events on compensation
levels. Recent studies have increasingly employed data-driven approaches to examine the factors that influence
salary levels [43]. A linear regression approach could be used for the problem. However, statistical models
often struggle with non-linearity, high-dimensional features, and data sparsity, whereas machine learning, deep
learning and time series models excel at capturing intricate patterns in salary data. These models integrate
data sources including job postings, employee surveys, company attributes, and regional economic indicators,
allowing for more accurate and dynamic salary estimations. [25] predicts workforce salaries in the Saudi Arabian
economy evaluated by five machine learning algorithms, finding that non-linear models significantly improve
the goodness-of-fit for the regression task across all positions, economic activities, and organization sizes. [1]
applied the Support Vector Machine technique to demographic data of talent in order to forecast income levels.
[44] predicts the salary of data science professionals using decision trees, random forests, and gradient boosting,
and the Decision Tree Regression model is most efficient when it comes to salary prediction. For forecasting
the univariate time series salary data, [32] discusses the effectiveness of five different machine learning and
time series methods (Autoregression, Moving Average ARIMA, MLP, and CNN) for salary prediction, where
autoregression achieved the best results with the fewest parameters. [42] introduces a salary dynamic fluctuation
trend prediction model based on multivariate time series, the BP neural network was constructed, factors
affecting salary fluctuations were analyzed and future salary trends were predicted. Meng et al.(2018)[29]
proposes a data-driven approach for intelligent salary benchmarking using large-scale, fine-grained online
recruitment data. It addresses the challenges of traditional methods that struggle with dynamic scenarios
and timely benchmarking by framing the salary benchmarking problem as a matrix completion task and
developing the Holistic Salary Benchmarking Matrix Factorization (HSBMF) model. Meng et al.(2022)[28]
further aim at the problems of data sparsity, cold start and poor model interpretability in traditional salary
benchmarking (JSB), a data-driven model based on nonparametric Dirichlet process (NDP-JSB) was proposed.
Sun, Y.et al. (2021)[35] propose a novel data-driven model called Salary-Skill Combination Network (SSCN),
which transforms the salary prediction task into a collaborative process to separate and evaluate the value
of individual skills without direct value labels. [18] introduces LGDESetNet, a set-based neural prototyping
method that, by combining a skill graph-enhanced disentangled subset selection layer and set-oriented prototype
learning, is able to identify influential skill subsets and provide clear insights into the composition effects
of these skill sets. A significant body of research has also been dedicated to predicting salaries from the
unstructured text within job descriptions. In a novel application for salary prediction from text, Wang et

al. (2019)[40] developed a Bi-directional GRU-CNN model, a deep hybrid architecture that surpasses the
performance of established models such as TextCNN and RCNN. While these data-driven salary predicting
studies primarily focus on predicting a single point estimate or leveraging specific feature types, our work
introduces a GAT-MDN framework that enables our model to not only learn from complex hierarchical and
relational structures within job attributes but also to predict the full conditional probability distribution of salaries.

2.2 Graph-Based Model

Graph-based models offer a powerful paradigm for salary prediction because they have the unique ability to go
beyond the limitation of treating attributes as independent inputs. By representing job market data as networks,
these models can explicitly learn from complex hierarchical and relational structures. [45] presents HetGNN, a
model designed for representation learning on heterogeneous graphs, which contain diverse types of nodes and
content. It addresses the limitations of traditional methods by using a random walk-based strategy to sample
different types of neighbors, followed by a neural network to aggregate their features. In the context of salary
prediction, it can effectively model career progression by treating job positions as nodes and transitions as edges,
helping to handle sparse data by inferring salary trends from related career movements. Furthermore, its ability
to aggregate diverse information makes it suitable for integrating various data sources like job descriptions and
company details to improve prediction accuracy.

There are techniques for identifying and extracting meaningful patterns (subgraphs) within large graph structures
— subgraph mining. In the context of salary modeling, subgraph mining can be applied as a powerful technique for
discovering complex, structural patterns within the labor market that are not apparent from analyzing individual
attributes alone. This technique can identify frequent and significant substructures in graph data, providing a rich
source of features for graph-based models. By representing the entire dataset as a large, interconnected graph
of jobs, skills, industries, and locations, subgraph mining can identify " career archetypes” or "economic clusters”
as frequently recurring subgraphs. [16] proposes a novel frequent subgraph mining algorithm, FFSM, which
uses a vertical search strategy within an algebraic graph framework to reduce redundant candidate subgraphs.
[41] proposes a new graph-based pattern mining algorithm called gSpan, which discovers frequent subgraphs
without candidate generation by building a new lexicographic order among graphs and using depth-first search.
The method first constructs a lexicographically ordered collection of graphs, then assigns a canonical label to
each one by transforming it into its unique minimal DFS code. This code is a string representation of the graph,
generated by listing the edges in the order they are visited during a depth-first search. By finding the lexico-
graphically smallest of all possible strings for a given graph, this " minimal” code provides a unique and canonical
identifier, ensuring that structurally identical graphs can be easily and efficiently compared. Additionally, many
methods exist for searching for information-rich subgraph patterns, such as AGM [17], Gaston [31], and MoFal6].

Chen et al. (2020) [8] propose a novel semi-supervised approach to job salary prediction by constructing a graph
database from job postings and leveraging both metadata, e.g., job type and skills, and relational features,
i.e., connections between similar positions. They demonstrate that these two feature sets are conditionally
independent yet each sufficient for prediction, and integrate them as dual “views” within a Graph Convolutional
Network (GCN) framework. By exploiting large amounts of unlabelled data alongside a smaller labelled set,
their GCN model significantly outperforms baseline methods that simply concatenate all features. This work is
among the first to formally cast salary estimation as a machine learning task and to employ semi-supervised
deep learning on graph-structured job data for improved accuracy. [24] further proposes an enhanced Gate
Graph Neural Network (GGNN) that incorporates gated recurrent units (GRUs) and modern optimization
techniques to effectively process graph structures and generate sequence outputs. [30] introduces a CNN
framework, PATCHY-SAN for arbitrary graphs, where the key technique is a universal approach to extracting
locally connected regions, thus generalizing the convolution operation to graph data.

Our model employs the Graph Attention Networks (GATSs) architecture proposed by Velitkovi¢ et al. [38]. Unlike
the aforementioned methods, which typically aggregate neighborhood information uniformly, the core innovation
of the GAT architecture is its ability to dynamically learn and assign a different " attention” weight to each neigh-
boring node, thereby enabling it to selectively focus on the most influential attributes and relationships for a more
nuanced prediction. There are also some non-spectral graph convolution methods that are in the same category
as GATs and provide good context for other ways of defining convolutions directly on the graph, see [10] and [3].

2.3 Mixture Density Network

The mixture density network (MDN) approach, originally proposed by Bishop [5], enables the network to
predict the parameters of a probability distribution for the target variable, conditioned on the input features.
This makes it exceptionally well-suited for problems where the target variable has a complex, non-Gaussian
relationship with the inputs, such as multi-modal or having input-dependent variance data. [2I] proposed
a hybrid speech enhancement framework, in which the core role of the MDN is to receive noisy speech
and predict the complete probability distribution of all possible clean speeches, thus providing critical prior
knowledge containing uncertainty information for the subsequent step of VTS-based enhancement. In the
field of handwriting synthesis, [I2] combined MDN with LSTM neural network to generate realistic cursive
handwriting by predicting a single data point, where MDN used a mixture of bivariate Gaussian distribution
and Bernoulli distribution to model the complex probability distribution of pen coordinates at the end of a
stroke. More recent developments on the MDN model can be found in [7].

The Gaussian Mixture Model, which stands out as one of the most powerful and widely used models within the
MDN framework, serves two basic purposes: a semi-parametric approach of unknown data distribution and
probabilistic data clustering. However, determining the appropriate number of components for a GMM is a core
research problem in itself, as it directly impacts model performance. This topic has been extensively reviewed
in [26]. In many applications, the GMM proved to be very flexible; for example, in computer vision, in [33], a
classical real-time background subtraction method was proposed in which the color distribution for each pixel is
modeled using a GMM, allowing a good separation of foreground objects from dynamic background scenes. In
bioinformatics, the GMM covariance structure has been extended to better cluster gene expression data while
acquiring intergene correlation in small samples [27].

The integration of GMMs with deep learning is a prominent and active research direction. Rather than applying
GMMs as standalone models, modern approaches leverage deep neural networks to first learn meaningful,
low-dimensional feature representations from complex data, which then serve as a more effective input for
GMM-based modeling and clustering. For example, the Variational Deep Embedding (VaDE) framework embeds
a GMM as a prior distribution within the latent space of a Variational Autoencoder (VAE), jointly optimizing
for both deep representation learning and clustering parameters to achieve state-of-the-art results and generate
realistic samples for each cluster [19]. GMMs are also used as output heads for Recurrent Neural Networks
(RNNs), where an RNN compresses past observations into a state representation which an MDN then uses to
predict the probability distribution of the next state [13]. In other applications, a framework by Belciug et al.
uses GMM clustering as part of a collaborative voting system with multiple deep learning algorithms to classify
fetal morphological scan view planes [4]. Our model is based on a similar concept, which innovatively uses
multi-graph GATs to extract deep features from the inherent hierarchical and relational structures of salary
data. These features are then fed into the head of an MDN to directly predict the parameters of a GMM that
can describe complex salary possibilities.

3 Preliminaries

This section formally defines the salary prediction task and details the architecture of our proposed GAT-MDN
model. The methodology is presented in a structured manner to clearly distinguish between the foundational
techniques we adopt from prior work and the novel adaptations we introduce to solve the specific challenges
of our task. We will begin by defining our graph-based data representation, then formalize the probabilistic
prediction goal, describe the model’s architecture, and finally, specify the training objective.

3.1 Graph-Based Data Representation

To address the limitation that predictive attributes are treated as independent features, we adopt a graph-based
representation here and formally model the job market data for the attribute domains of Location, Occupation,
and Industry. In this framework, the graph’s nodes (V},,) represent the unique attribute values themselves, e.g.,
"Amsterdam’, 'Software Engineer’, 'Retail’, thereby allowing the model to learn about the context representations
and not from the data points’ isolation.

The expressiveness of this approach will be to define the edges F,,. In previous studies, edges were often
constructed as a single type. As our primary contribution in data representation, we construct the edge set as a
union of two complementary types to capture the full complexity of our specific dataset: E,,, = Ehier,m U Fsim,m.,
which is the union of Hierarchical Edges (Ehier,m) and weighted Similarity Edges (Esim). First, there are
Hierarchical Edges, which encode all explicit structural parent-child relationships that the data express. Then,
to express the next-level implicit relationships among nodes at the same level, our study adds Similarity Edges
based on the semantic similarity quantified by pre-trained language models. This dual-edge strategy provides
a rich structural foundation for our model, the formal implementation of which is detailed in the following
definitions.

Let A ={aj,as,...,an} represent the set of N specific attribute values defining an instance of interest, e.g.,
a1 = ’Rotterdam’,ag = ’Dairy Farmer’,a3 = ’Administrative And Support Service Activities’.
These N attributes belong to M = (m1, ma, ..., my,) distinct domains. In our research, we set n = 3, presenting
three domains: Location myoc, Occupation mecc, and Industry mjng.

For each attribute domain m € M, our study constructs a corresponding graph G,,, = (Vin,, E,). Here, V,,, is
the set of all possible unique values (nodes) for the attribute in domain m. Each node v € V,,, is associated
with an initial feature vector z,,, forming the feature matrix X,,, for graph G,,. The specific attribute value
apm, for the instance A corresponds to a node in V;,,. The edge set E,, = Ehier.m U Esim,m is the union of
Hierarchical Edges (Ehier,m) and weighted Similarity Edges (Esim,m)-

Hierarchical Edges: Let Dy, be the dataset of all instances. Let L, , and L,, . be two adjacent hierarchical
levels within domain m, where p denotes the parent level and c denotes the child level, e.g., Lioc, province and
Lioc, city- For any instance d; € Dy, let d;(Lyy,) and d;(Lyy,,.) be the attribute values for these levels. The
set of hierarchical edges for domain m, Ehier,m, is defined as:

Ehier,m = U Hu,v} |u=di(Lmp),v =di(Lm,),u,v #null} (1)
d;eD

Weighted Similarity Edges: The set of weighted similarity edges for all levels in domain m, Egim,m, is defined as
the union of edges for each level I:

Esim,m, = U {(u,v,wuv) | u,v € Vm,hu 7é Uy Wyy > T} (2)
l

where the weight w,,,, is the cosine similarity between the embedding vectors produced by a large pre-trained
model for the node names u and v:
D(u) - O(v)

Wy = Sim(u’v) - W (3)

Here, 7 is a predefined similarity threshold to filter out weak or noisy connections.

Given a user-defined query consisting of sets of desired attribute values for each domain, Qjoc, Qocc, Qind, OUr
study first defines the complete set of attribute combinations Aq as their Cartesian product:

.AQ = Qloc X roc X Qind (4)

Our goal is twofold: first, to predict the salary distribution and the point estimate for each individual combination
A; € Ag; and second, to derive an aggregate distribution and point estimate for the entire queried group.

3.2 Probabilistic Prediction Goal

For each individual instance subset A € Ag, our study aims to learn a parametric model fy that maps the
input attributes A (leveraging the context provided by the graphs {G,,} and features {X,,}) to a predicted
probability distribution py(y|A), which approximates the true underlying distribution p(y|A). Here, y € R
denotes the target variable, a continuous value representing the salary associated with the instance A.

Our study models this predicted conditional distribution pg(y|A) using a Gaussian Mixture Model (GMM)
with K components:

K
Po(ylA) =D mi(A;0) N (ylui(4; 0), 01 (4;0)°) (5)
k=1

where, for each component k:

o 7;(A;0) is the mixture weight (prior probability) of the k-th Gaussian component, conditioned on A and
model parameters 6. Zszl mx = 1 and 7, > 0.

o i (A;0) is the mean of the k-th Gaussian component.
o1 (A;8) is the standard deviation of the k-th Gaussian component (oj, > 0).
o N (y|u,?) denotes the probability density function of a Gaussian distribution.

While the primary output of our model is the full conditional probability distribution py(y|A), a single-value
point estimate E[y|A] can also be derived. This point estimate is the predicted average salary for the

combination A.
K

Ely|A] = Zﬁk (A;0) - pu(A;0) (6)

k=1

To analyze the queried group as a whole, our study also computes an aggregate salary distribution and an aggre-
gate point estimate. This is achieved by calculating a weighted average over all individual combinations A4; € Aq.

The weight for each combination, W (A;), is derived from its prevalence in the source dataset, e.g., based on
sample counts. The aggregate salary distribution for the entire query set A is then defined as the weighted
mixture of the individual predicted distributions:

PoylAg) = D W(A;) - po(yl4;) (7)
AjeAq

Correspondingly, the aggregate point estimate is the weighted average of the expected values of all individual
combinations:

ElylAgl = > W(4A))- Elyl4] (8)
AjeAq
or
ymode(AQ) = Z W(Aj) . gmode(A) (9)
AjeAq

3.3 Model Architecture

The architecture of our model represents a novel synthesis of graph representation learning and probabilistic
prediction, specifically tailored to overcome the limitations of prior approaches. While graph-based models have
been applied to relational data, our framework introduces a key innovation by constructing a multi-relational
graph with both hierarchical and similarity-based edges. This provides the Graph Attention Network (GAT)
feature extractor with a far richer and more realistic structural context than models that rely on a single type
of relationship. Furthermore, whereas most salary prediction models yield a single point estimate, our approach
distinguishes itself by employing a Mixture Density Network (MDN) as the predictive head.

The model fy(go,,dp,) consists of two main parts:

1. A multi-graph GAT feature extractor, gy, . This extractor itself operates in two main stages:

g,m?!

(a) Parallel Representation Learning: For each attribute domain m, a dedicated GAT sub-module, gy
is employed. This process begins by creating an augmented feature matrix, X/, = concat(X,,,e.,),
by concatenating the initial node features X, with a dedicated matrix of learnable embeddings ¢/ ,
in order to provide a richer signal. The GAT sub-module then operates on these augmented features
and the edge set E,,, = Ehjer,m U Esim,m to produce a final matrix of learned, context-aware node
representations:

Hn = 9o, ., (X7, Em) (10)

Here, H,, contains the learned high-dimensional embeddings for all unique nodes within that
attribute domain, enriched by both structural and semantic relationships among nodes.

(b) Feature Integration: Based on the specific attribute values in the input instance A = {a1,...,an},
a selection function retrieves the corresponding node representation vector h,,, from each matrix
H,,. These vectors are then concatenated to form the final integrated feature representation, heomp:

hcomb == Concat(hloca hocc; hind) (11)

2. An MDN head, dy,, which maps the integrated representation hcompb to the GMM parameters:
{7‘-’ H, CT} = d@,i (hcomb)-

The overall model parameters are 6 = {0,,04}.

3.4 Training Objective

Given a training dataset D = {(A(®), y(i))}fvjl’"p'“ consisting of attribute sets and corresponding single observed
salaries, the model parameters 6 are learned by minimizing the combination of negative log-likelihood (NLL)
loss and mean squared error (MSE) loss over the dataset. The foundation of our training objective is the
standard Negative Log-Likelihood (NLL) loss, which is defined as:

Ngamples

L (0) ==) logpe(y™|AD)
i=1
Nsamples

K
== log< m-(A@‘);9)N(y<i>|uk<A<i>;e>,ak<A<i>;e>2>> (12)
=1 k=1

However, relying solely on NLL can sometimes lead to slower convergence, particularly when anchoring the mean
of the distribution. To address this for our specific task of salary prediction, we introduce a supplementary Mean
Squared Error (MSE) loss component as our novel adaptation. This term explicitly penalizes the difference
between the true salary and the expected value of the predicted distribution, which helps to stabilize the
training process and guide the model towards a more accurate point estimate.

Nsam ples

Luse@ = Y- (4 — ElyAa®))’ (13)

i=1

10

where the expected value E[y|A®D] is Yr | mx(AD;0) -, (AD;).
The final combined loss, Lcombined(6), is therefore:

Nsamples

EComblned Z IOg (Z 7Tk A() ()|))

NLL Component

Nsamp\es

2
oo Y (Zm e (AY))) (14)

i=1

MSE Component

where « is a hyperparameter that balances the two objectives. This objective function trains the model fy to

output GMM parameters that assign high probability density to the observed salaries given their corresponding
attribute combinations.

For a comprehensive list of the major notations used in this paper, please refer to major notations [3]in the
appendix.

11

4 Methodology

This section is an in-depth technical description of our proposed Graph Attention Networks - Mixture Density
Network (GAT-MDN), an end-to-end methodology from data ingestion to probabilistic prediction. The selection
of this specific GAT-MDN architecture is a direct response to two fundamental challenges inherent in salary
prediction. First, the predictive attributes are not independent; they possess a rich relational structure (e.g.,
hierarchical and similarity-based connections) that traditional models fail to exploit. We chose a Graph Attention
Network (GAT) specifically to address this problem, as it is designed to learn context-aware representations
by modeling these explicit relationships. Second, a salary is rarely a single, deterministic value but rather a
distribution, often with multiple modes (e.g., for junior vs. senior roles). To solve this, we chose a Mixture
Density Network (MDN) as the model's head, enabling it to predict the full, flexible probability distribution
of a salary instead of an insufficient single point estimate. This combined GAT-MDN setup is therefore a
principled choice, tailored to solve these core issues presented by our research question and the nature of our data.

Our study first discusses the pipeline for cleaning, transforming, and standardizing raw job market data. This
is followed by a description of one of the essential components of our work: graph construction, in which
we derive a rich multi-graph structure for each domain from relational attribute data. Then, we discuss the
model's architecture when the data is represented as graphs. First, our study introduces the key engine, GAT,
responsible for learning contextually rich representations from the graphs, and we explain how the priority-based
hierarchical selection is used to deal robustly with inputs at different levels of granularity. The output of this
graph-based feature extractor will be fed into an MDN head, which will produce the final probabilistic salary
predictions. For optimization of the entire system, our study creates a hybrid loss function to account for the
different objectives underlying the training process. Then, we provide an overall framework that illustrates how
these pieces fit together, and we finally discuss the model’s inherent capability for generalization over unseen
combinations of attributes.

4.1 Data Preprocessing

To prepare the raw job posting data for our graph-based model, our study applies a systematic preprocessing
pipeline. This section details the critical steps taken to ensure data quality and suitability for training, including
outlier removal, the calculation of a representative target salary, and a two-step transformation to standardize
the salary data.

Outlier Removal and Data Cleaning: The raw dataset's salary_from (salary lower bound) and salary_to
(salary upper bound) fields were both first converted to numeric types, with any unconvertible values being set
to missing (NaN). Subsequently, a series of filtering criteria is applied to identify and remove anomalous or
invalid salary records. The specific filtering logic is as follows:

10,000 < Sy < 1,000,000
10,000 < S; < 1,000, 000
Sy < Sy

e Sy represents salary lower bound.
e S, represents salary upper bound.

Average Expected Salary: The original data does not include the salary value (average) of each data item.
To convert the salary range [salary_from, salary_to] into a single, representative numerical value, our study
computed the average of the salary range for each job posting:

_Sf-i-St

5 2

e S represents average expected salary.

Salary Data Log-transformation and Standardization: To create a more normally distributed target variable,
which is better suited for model training, and to prevent the large scale of salary values from adversely affecting
the model training process, e.g., leading to large gradients, slow convergence, our study applies a two-step

12

transformation process: a logarithmic transform followed by Z-score standardization. The entire transformation
for the i-th data point is defined by:

S/ _ 1Og(Sz) — Hlog

1= S Poe

Olog

(15)
where:

e S;: represents the raw average salary value for the i-th data point.

log(.S;): is the log-transformed salary.

[iog: is the mean of all log-transformed salary data, defined as fog = & vazl log(S;).

Olog: is the standard deviation of all log-transformed salary data.

e S!: represents the final log-transformed and standardized salary value used for training the model.

4.2 Graph Construction for Each Domain

This section describes how our study builds the graphs upon which our model will be based. We decided to take
a graph-based approach because of one key limitation in traditional models: processing predictive attributes as
a flat, independent feature vector. This does not allow for capturing the rich, contextual interplay of factors
that determine a salary. For example, the market value of a 'Data Scientist’ position is very different across
industries such as 'FinTech’ and the 'Public Sector’ and then again in different geographical locations like
"Amsterdam’ or smaller towns.

To explicitly model these critical interactions, our study represents each attribute domain as a distinct graph:
Mioc — Gloc, Moce — Goce, and ming — Ging. This process, illustrated in fig. [1} involves defining a compre-
hensive set of nodes and establishing a rich edge structure composed of two distinct types of relationships:
hierarchical and similarity-based.

Node definition: For each attribute domain m our study previously constructed a distinct graph, denoted
G = (Vin, Er). The graph construction process begins by initializing an empty graph object. We then iterate
through each row of the source dataset. For a given domain m, unique attribute values across all of its defined
hierarchical levels are identified. Each unique value is added as a node v € V,,, to the graph if it does not
already exist, and its level is stored as a node attribute. This set of nodes (V,,,) comprises all unique categorical
values present within a given domain. For example, in our location-based graph, the vertices represent both
provinces, such as >Zuid Holland’, and cities, such as ’Amsterdam’.

Edge construction: The edge set (E,,) encodes the structured relationships between these vertices, allowing
the GAT model to effectively learn from the attribute's inherent structure. The relationships between job
attributes are twofold. There are explicit, formal structures, but there are also implicit, functional similarities. A
robust model must understand both types of relationships to grasp the nuances of the job market. Therefore,
in our study, the nature of these relationships depends on the domain and includes two types:

e Hierarchical relationships (Ehier,m): A hierarchical edge (i,5) € Ehjer,m is created between the
corresponding nodes i and j if a parent-child relationship is observed within a single data record. This is
determined by the co-occurrence of non-null values in adjacent hierarchical fields (e.g., industry_1_name
and industry_2 name, for the Industry domain), the full schema for which is provided in the appendix.
For example, in a job posting data row, an edge may connect a general job category to a more specific
role, e.g., {Engineer, Software Engineer} € Ehier,occ, OF a province may connect a city within it, e.g.,
{Zuid Holland, Amsterdam} € Eher loc-

¢ Similarity relationships (Esim ,,,): Edges can link nodes that often share a similar context in domain m to
capture peer-level relationships. An example in the occupation domain is to connect job titles that require
a similar skill set, e.g., {Data Scientist,Data Analyst} € Egmocc. The construction of the Egm ., is
achieved through the following computational steps: (1) Peer-Level Grouping: For each hierarchical level
within a domain, e.g., all nodes with type="city’, our study groups the nodes together. (2) Semantic
Embedding: our study uses the pre-trained Sentence-Transformers model as our embedding function ¢.
This model generates a dense, 384-dimensional vector representation for the name of each node in the

13

group. The base model of sentence-transformers is introduced in [39]. (3) Similarity Calculation: The
pairwise cosine similarity sim(vg,,ve,;) is then computed for all vector embeddings within the group.
(4) Edge Creation: A similarity edge Egim m (4,) is added to the graph between any two nodes if their
similarity score sim(vg,,vy,) exceeds a predefined hyperparameter threshold 7.

Raw Attribute
Data in Domain m

Y
Define Node Set V'
(Unique At-
tribute Values)

Y Y
Create Hierarchical For All Levels,
Edges Ehnier,m Select Nodes
(from parent-child within This Level
co-occurrence)
Y
Get Pre-trained
Word Embed-
dings ®(v)
Y

For nodes i and j,

Calculate Pairwise

Cosine Similarity
Sim(v¢i’ Ud>7‘)

Y
Create Similarity
Edges Egim,m if
sim(vg,,vg;) >
7 (Threshold)

Final Graph
for a Domain
Gm = (vaEvn)
where £ =
Ehier,m U Esim,m

Figure 1: The construction process for a single domain graph G,,.

4.3 Graph Attention Networks

In this section, our study will introduce the process of learning node representations from each attribute graph
G = (Vin, En) using GAT architecture, which involves two main stages: GAT Feature Preparation, followed
by using Graph Attention-based Representation Learning. The decision to employ an attention mechanism is
crucial given the heterogeneous nature of our graph's edge structure. Our graphs contain both hierarchical
and similarity-based connections, and not all neighbors provide equally valuable information for a given prediction.

A standard graph convolution would aggregate information from these diverse neighbors uniformly, failing to
distinguish between the influence of a parent node and a semantically similar peer. In contrast, the attention
mechanism addresses this by allowing our model to dynamically learn the relative importance of each neighbor,
assigning higher weights to more influential nodes and lower weights to less relevant ones. The overall process
involves two main stages: GAT feature preparation, followed by Graph Attention-based representation learning.
The complete workflow of the GAT module is depicted in fig. 2]

14

4.3.1 GAT Feature Preparation

With the graph structure defined, our study prepares the initial feature representation for each node v;. A
distinctive feature of our model is the creation of an augmented feature vector, x}, which serves as the input to
the GAT layers. For each node v; € V},,, we first assign an initial feature vector z; € R typically a one-hot
encoding corresponding to its unique ID, which forms the initial feature matrix X,,,. If a given domain graph
contains NN, unique nodes, the initial node feature matrix X, is constructed as an N, X N,, identity matrix.
Additionally, a dedicated embedding layer learns a unique, dense vector e; € Rfem<d for each node, capturing
latent characteristics related to the node’s identity directly from the salary prediction task. The final augmented
feature vector a is then created by concatenating the initial feature with the learned embedding, as expressed
by the equation z} = concat(X;, e;). This combined representation, with dimension Fi, + Fembed, provides
a rich and expressive input for the subsequent representation learning stage. In this paper, we prepare the
augmented feature vector for our three domains.

4.3.2 Graph Attention-based Representation Learning

Graph Attention Networks (GATs) are a class of graph-based neural networks, which were first proposed by
Petar et al [38]. Unlike standard GCNs which assign fixed, uniform weights to all neighbors, GAT uses a masked
self-attention mechanism. This allows the model to dynamically compute and assign different importance
weights to each node in a neighborhood, enabling a more expressive and powerful feature aggregation.

The core mechanism of our GAT is a masked self-attention strategy, which adapts the powerful attention
concept for graph-structured data. While a general self-attention mechanism could theoretically compute
interactions between every pair of nodes in a graph, this would be computationally prohibitive and would ignore
the relational structure we have defined. Therefore, GAT constrains this process. For any given node i, the
model only computes attention weights, ozgj, for nodes j that belong to its local neighborhood A;. In our
model, this neighborhood N is defined as the set of first-order neighbors of node i, i.e., all nodes directly
connected to i by an edge. Consequently, the edge set F,, that we construct serves as the definitive set of
permissible pathways for information flow. The GAT layer does not attend to nodes where a pre-defined edge
does not exist.

The operation of a single graph attentional layer can be broken down into the following steps. The input to our
layer is a set of node features in domain m, x' = {#}, &), ..., @y}, T} € RFintFembed where N,, denotes the
number of nodes in G,,, and Fl, + Fembeq denotes the number of the node features. First, a shared, learnable
linear transformation, parameterized by a weight matrix W, is applied to every node's input feature vector
7, € REntFemed 1o enhance its expressive power. Following this, for a given node 4, the model computes the
raw attention weights «;;, for each of its neighbors j in AV;. To make the attention mechanism aware of the
different types of relationships (hierarchical vs. similarity), this weight is calculated by an attention mechanism

—

a that considers not only the features of the two nodes but also the features of the edge :vgj connecting them:
;= a(Wa';, Wa' j, Wga!| 16
aij = a(Wa';, Wa';, Exm) (16)

where f’ij is a feature vector for the edge and WE is a dedicated learnable transformation for edge features.
The attention mechanism a can be implemented as:

e - -
LeakyReLU(a" [Wa/;|Wa/;|Wga/,;]) (17)
where & is a learnable weight vector and || represents the concatenation operation.

These raw scores are then normalized across all of node i's neighbors using the softmax function to produce
the final attention weights, o;;:

exp(LeakyReLU(a7 [Wa/;|Wa/ ;| Wgéi;]))

= = 18
> ke, exp(LeakyRelLU(a” [Wa'; W' |[WgéEix])) (18)

;= softmax;(«vij) =

The new feature vector for node 1, E; is computed as an attention-weighted sum of its neighbors’ transformed

15

features, followed by a non-linear activation o

hy=o| > al;Wh; (19)
JEN;

To stabilize the learning process and capture diverse relational patterns, each GAT layer employs a multi-head
attention mechanism. This involves executing K, independent attention mechanisms in parallel. For intermediate
layers, the feature vectors resulting from these K, heads are concatenated to form the final node representation.
This preserves the information learned from each attention head independently:

K K
—/ a Aﬁ/k a k k‘)
A = dehi - Hk:f EXA:[oW, (20)
J i

ﬁ{ € RE X Fhiaeen represents the concatenated output for node i from the K attention heads, where Fhigden is
the feature dimension of each head. || represents concatenation and a;’; are the attention weights computed by
the k-th attention head.

Finally, to ensure the output conforms to the precise dimensionality required for subsequent stages of our
model, for the final layer of the model, the outputs from the attention heads are passed through a linear layer.
This provides a final, aggregated node representation, forming the rows of the ultimate node representation
matrix H; € RF« for node 3 in graph G,y,:

(21)

where P & RFoux (K Fiiasen) js the learnable weight matrix of the final linear layer, which projects the concate-
nated vector to the final output dimension, Fy;.

For a given attribute domain m, the set of representations for all nodes is formed by stacking the individual
node representation vectors ﬁi for all nodes v; € V,,,. This forms the node representation matrix, H,,. If
the domain m contains a total of N,,, = |V},,| nodes, and the dimension of each representation vector is Fyy,
then the matrix H,, has the dimensions N,, X Fyut. This matrix is formally defined as:

H,
H
Hy=| 7 | e RNmxFou (22)

—

Hy

m

4.4 Priority-based Hierarchical Selection

A key component of our model’s forward flow is the priority-based hierarchical selection, a mechanism designed
to robustly handle input samples with varying levels of attribute specificity. This logic ensures that the model
always leverages the finest-grained (most specific) information available for each attribute category (region,
occupation, and industry) when building the final integrated feature vector. The process for each attribute in
h_comb first initializes the feature representation of each sample in the batch with the corresponding learnable
"unknown” embedding. The model then systematically checks the attributes for the presence of lower-level
data, allowing embeddings from more specific levels to override embeddings from more general levels.

1

For example, when selecting occupation features, the model first populates the representation with Level 1
(major-level category) embeddings, if available. It then checks Level 2 (sub-category) embeddings, and if present
for a given sample, it overrides the Level 1 embedding for that sample. Next, it checks the most granular Level
3 (minor-level category) embedding, and if present, it replaces any Level 1 or Level 2 information. and finally,
resorts to a general " Unknown" representation. This strategy applies to all three attribute domains, enabling the
model to gracefully handle incomplete data while maximizing the use of the most precise descriptive features
available for each prediction.

16

/

Input Graph Data G = (V, E) /

Node Features X

\4

Learn

beddings e;

able Em-

\4

Augment
9 ’
2’ = co

ed Features
ncat(X, e;)

Graph Attention Layer

Y

Compute atten-
tion weights oy
(Masked Self-Attention)

A

Edge Features FE

\4

Aggregate Neigh-
bor Features
(Weighted by Attention)

A

Multi-Head

A
Aggregation

Y

Linear Layer
(nn.Linear)

A

4

[Output: Node Representations H]

Figure 2: Detailed architecture of a GAT module.

17

4.5 Mixture Density Network

To move beyond single point estimates and capture the inherent uncertainty and potential multimodality in
salary prediction, we extend the core Graph Attention Network (GAT) architecture, described in fig. |2 by
incorporating a Mixture Density Network head that outputs the parameters of a Gaussian Mixture Model
(GMM). The complete workflow of the model is depicted in fig.

For each attribute domain, the corresponding learned representation vector h,, is selected from the GAT output
matrix H,,. These individual vectors, each encapsulating the relevant information learned from its graph'’s
context and node characteristics, are then concatenated to form the final integrated feature representation,
heomp- Subsequently, the head of the MDN receives heonmp as input and is responsible for mapping it into the
parameters of the GMM. This process involves two stages: first, h.omp is passed through a hidden layer, which
is a standard Multi-Layer Perceptron (MLP) with a ReLU activation function. This hidden layer transforms the
integrated features into a hidden vector with a dimension of F};q4en. Second, this hidden representation is then
fed into a final linear output layer that computes the parameters defining the GMM. Assuming a mixture of K
Gaussian components, the MDN head outputs 3K values for each input h. These values parameterize: 1. The
means (uy) of the K Gaussian components. 2. The standard deviations (o) of the K Gaussian components.
3. The mixture weights () for combining the K components.

To ensure the parameters are valid, specific activation functions are applied to the raw outputs (a) of the final
linear layer:

e The outputs for standard deviations (o) are passed through an exponential function (o, = exp(af)) to
guarantee positivity.

e The outputs for mixture weights (7) are passed through a Softmax function (m; = %) to
=1 J

ensure they are positive and sum to unity (Zle e = 1).

e The outputs for the means (uy,) typically use a linear activation, i.e., s, = a};, allowing them to take any
real value.

These parameters (u(h), o (h), w(h)) together define the conditional probability density function p(y|h) for the
target salary y given the representation h:

=

pylh) = Y- m(WN (ylur(h), ox(h)?) (23)

k=1

where N (y|u,o%) denotes the Gaussian probability density function with mean p and variance o2.

4.6 Loss Function

We employ a hybrid loss function that combines two distinct objectives: the primary Negative Log-Likelihood
(NLL) loss to accurately model the distribution’s shape, and a supplementary Mean Squared Error (MSE) loss
to explicitly anchor the distribution’s expected value.

The primary objective is to minimize the NLL of the true target salaries i, under the predicted conditional
mixture distribution:

K
Ly = — logp(ytrue‘h) = —log <Z Wk(h)N(ytrue“Jk(h)aUk(h)2)> (24)
k=1

This loss function encourages the model to assign high probability density to the true target values.
To further guide the training process and ensure that the mean of the predicted distribution is a precise point

estimate, we introduces a secondary MSE loss. This loss measures the squared difference between the true
salary and the expected value of the predicted GMM, Ely|h], which is calculated as:

K
Elylh) = mi(h) - p(h) (25)
k=1

18

Input Node Representations:hw@

Y
Hidden Layer(s) (MLP)
Output dim Fy;qden

Y

Linear Output Layer(3K Outputs)

l \, l

! / /
H o 71'

K raw putputs K raw putputs K raw putputs
for mdans for stdglevs o’ for weights 7’
Y
Lineér Exponential Softmax

(Identity) (exp(-))

l l l
@

GMM Distribution
p(ylh) = > TN (ylpw, of)

Figure 3: Simplified architecture of the GMM with K Gaussian Components.

19

The MSE loss is then defined as:
Luse = (Yrwe — Ely|h])* (26)

The entire GAT-MDN model is trained end-to-end by minimizing the combined loss of the true target salaries
Yirue under the predicted conditional mixture distribution:

Lcombined = LnLL + @ - Lmse (27)

where « is the MSE weight that manages the contribution of the MSE loss components. This hybrid approach
trains the model to learn not only the shape and uncertainty of the salary distribution but also to produce an
accurate expected value.

4.7 Framework Outline

This section outlines the overall architecture of our proposed model for salary distribution prediction, visually
summarized in fig. [The framework adopts a multi-graph approach to capture diverse relational information
from various attribute domains (m1,ma, ..., mar) known to influence salary levels. The core pipeline proceeds
as follows: First, for each relevant attribute domain m;, i € (1,2,..M), a specific graph (G;) is constructed,
defining the nodes (representing attribute values, denoted X; in the diagram’s node definition) and the edges
(E;) that capture relationships within that domain. Following graph construction, learnable embeddings (e;) are
associated with each node, initialized via an embedding layer. Subsequently, each domain’s graph structure (E;),
the embedding lookup e;, and associated initial node features (X;) are processed by a dedicated Graph Attention
Network module (GAT Module i). As detailed in Section 4.3, each GAT module uses graph convolutions,
feature concatenation (combining X,,, and e,,), and activation functions to generate contextualized node
representations (H,,). To generate a prediction for a specific instance characterized by a set of attribute values
across the domains, the corresponding learned node representations (h,,) are retrieved from the outputs (H,,)
of each relevant GAT module. These domain-specific representations are then integrated via concatenation into
a unified feature vector (heomb) in the Feature Integration step. Finally, this integrated representation Acomb
is fed into a Mixture Density Network (MDN) head. As detailed in Section 4.4, the MDN head receives and
maps the integrated features to the parameters (u, o, 7) of a Gaussian Mixture Model. These parameters
collectively define the model’s final output: the conditional probability distribution (and point estimate) of
salaries (p(y|hcomb)) for the given input attribute combinations.

4.8 Model Generalization

A crucial capability of the proposed multi-graph GAT-MDN framework is its inherent ability to generalize and
provide predictions for combinations of attributes that were not explicitly present in the training dataset. In
real-world scenarios, the number of possible attribute combinations, e.g., specific job role within a specific
industry in a specific city can be vast, making it infeasible to observe examples for every single combination
during training. Methods relying solely on memorization or direct lookups would fail in such cases. Our
framework addresses this challenge through a combination of component-based representation learning and
functional mapping. The framework's generalization power stems from its two-stage process:

Component Representation Learning: Instead of learning a representation for each complete attribute
combination, the model first learns representations for individual attribute values within their respective domains
using dedicated GAT modules. For instance, the location GAT learns vector representations (o) for cities and
regions, capturing similarities based on geographical relationships and potentially shared characteristics learned
from salary patterns associated with them during training (even when they appear in different combinations).
Similarly, the occupation GAT learns representations (hoc) for job roles, and the industry GAT learns repre-
sentations (hing) for industries. Crucially, a representation is learned for every attribute value, e.g., every city,
every job title present somewhere in the training data.

Composition and Functional Mapping: When predicting for a potentially unseen combination, A,,¢,,,the model
first retrieves the learned representations for each constituent attribute value. These component representations
are then concatenated, to form a composite feature vector hcomp. The MDN head, dy,, subsequently acts as a
learned function that maps this (potentially novel) hcomb vector to the parameters of the GMM describing the

20

@ttributes Al Ay A, € @

Graph G, Graph Go Graph Gy
(Node Features X1, (Node Features Xo, R (Node Features X s,
Edge Features Ej) Edge Features Eg) Edge Features Ejpr)
Embedding e; Embedding es Embedding ey,
GAT Model 1 GAT Model 2 GAT Model M

(X1, E1,e1, (X9, Eg, eg, (XnEnroenrs

Concat, Conv) Concat, Conv) Concat, Conv)

Node Node Node

Reps H; Reps Hy Reps Hjs

Feature Integration:

heomb = concat(hy...hn)

Mixture Density Network

Output: Salary Distribution@

Figure 4: The whole framework of the salary prediction model. In our study, we set M=3.

21

salary distribution. Because the MDN head learns a continuous mapping function over the space defined by
heomb based on diverse examples seen during training, it can effectively interpolate or reasonably extrapolate to
generate parameter estimates for new heomp vectors corresponding to unseen attribute combinations.

Illustrative Example

Consider predicting the salary distribution for a ’Data Scientist’ in ’Amsterdam’ within the ’Consulting’
industry. Suppose this specific combination did not appear in the training dataset. However, assume the training
data did include instances such as:

— (’Amsterdam’, ’Data Scientist’, >ICT?)
— (?Utrecht’, ’Data Scientist’, ’Consulting’)
— (’Amsterdam’, ’Software Engineer’, ’Consulting’)

The framework would proceed by first retrieving the learned representations for each attribute from their
respective GATS: hamsterdam (having learned about Amsterdam from other job/industries), hps (having
learned about this role from other locations/industries), and Aconsuiting (having learned about this indus-
try from other locations/occupations). These vectors are then concatenated to form a composite vector:
heomb = concat(hamsterdam; PDs; Rconsulting)- Although this heomb vector may be unique, its components capture
characteristics from related instances, placing it within the learned feature space. Finally, the trained MDN head
takes this vector and is still able to output the GMM parameters (u, o, m) based on the continuous function it
learned from all training data.

4.9 Ablation Study

Our study designed and implemented an ablation study baseline model, called ” Embedding-only MLP-MDN” .
This baseline model aims to answer a core question: "How will the model perform if it only learns independent
embedding representations of each attribute value without leveraging their connections in the graph?”

In contrast to our full GAT-MDN model, this baseline model completely removes the graph-convolutional
modules. For a given prediction instance A = {aq,...,ap}, instead of computing the context-aware node
representation matrix H,, through message passing, we directly retrieve the 'raw’ embedding vector e, for
each attribute value a,, from its corresponding learnable embedding matrix E/.. These embedding vectors,
retrieved independently from each attribute domain, are then concatenated to form a composite vector:

hcomb,mlp = Concat(eh €2,..., e]W) (28)

This concatenated vector is subsequently fed into a standard Multi-Layer Perceptron (MLP). The role of the
MLP is to learn the interactions between these independent features within a non-structured vector space.
Finally, the output of the MLP is passed to the same MDN head, dg,, to predict the salary’s probability
distribution. By directly comparing the performance of our GAT-MDN model against this Embedding-only
MLP-MDN baseline, we can isolate and quantify the performance gain attributable to graph convolution.

5 Descriptive Data Analysis

In this section, our study conducted a series of data introductions and exploratory data analyses to gain a deeper
understanding of the inherent characteristics and distribution of our dataset. The data is called the NL salaries
source dataset, which consists of real-world job postings from the Netherlands, provided by the labor market
data platform Jobdigger [20]. We first provide a high-level overview of the salary data, including its origin,
basic statistics, and overall distribution. We then provide a more detailed analysis of the three core attribute
domains: Location, Occupation, and Industry. In detail, within each domain, the internal hierarchical structure
is also explored—for instance, the level of province versus city within the Location domain. Furthermore, counts
of unique attribute values at each level within the hierarchy are reported, sizes of resultant graphs in terms of
nodes and edges, and top followed by bottom average salaries across respective criterion values for each domain

22

hierarchy are discussed and depicted in graphs, thus presenting a very initial view into the drivers of market value.

The structured dataset is derived from real-world job postings. Each job posting provides detailed salary infor-
mation, including the upper and lower salary bands, payment category, and currency. Additionally, the postings
contain descriptive contextual data, such as job and contract information, e.g., city, province, occupation,
language, alongside specific skill requirements, such as the minimum education level and a list of explicitly
required skills. We use salary data where the values are not empty, from January 1, 2022, to January 1, 2025.
This selection gives us a total of 1040918 unique records, with each record having a unique salary value and
corresponding attribute indices and values.

The average salary for the whole dataset is €42604.05 per year. fig. [bal shows the distribution of the salary.
The salary distribution is right-skewed, indicating that most of the salary data is concentrated in the lower
range, while there are a few high-paid jobs. In addition, the distribution is multimodal, which may mean that
there is more than one core salary group in the data. After logarithmic transformation, the distribution is close
to a normal distribution, shown in fig.

le—s Distribution of Salary with KDE Distribution of Log-Salary with KDE

W Salary Average W Salary Average

2 208
g 20 g
8 8 06
15
0.4
10
05 I 0.2
0.0 I 0.0 — o
20000 40000 60000 80000 100000 9 10 11 12 13 14
Salary Log-Salary
(a) Distribution of Salary with KDE. (b) Log Distribution of Salary with KDE.

Figure 5: Comparison of salary distributions before and after log transformation.

As mentioned in Section [3] our model performs the prediction task using a set of three engineered job-related
features, which include Location, Occupation, and Industry. To capture the varying levels of granularity within
these domains, we define each with a specific hierarchical structure. The Location domain mj, pertains to
the geographical area of a job posting, modeled with two levels: a broader provincial scope, e.g., ’Zuid
Holland’ and a more specific city scope, e.g., ’Rotterdam’. The Occupation domain mg represents the job
title through a three-tiered hierarchy, ranging from a major-level functional category, e.g., *Transportation
and Logistics’, to a sub-category, e.g., >Transportation’), down to a granular role, e.g., ’Bus Driver’.
Finally, the Industry domain m; specifies the economic sector to which the job belongs, structured with
two levels following the international standard for the classification of economic activities (NACE Rev. 2)
[II]: a major industry group, e.g., >Administrative And Support Service Activities’ and a specific
sub-sector, e.g., ’Payrolling’. The statistics of each domain graph are shown in the Table]

Table 1: Statistics of the three constructed graphs

Graph Name Number of Nodes Number of Edges
Region Graph 478 10177
Occupation Graph 3,128 605767
Industry Graph 98 1159

Locations: We consider 12 Dutch provinces and 408 cities in the dataset. The provinces with the highest
averaged salaries are " Zuid-Holland” " Utrecht” and "Noord-Holland”, which are all well above €45000. The
lowest salaries are in " Drenthe” and " Limburg”, which are both below €37000. Approximately 3.9% of cities
(16 in total) feature an average salary below €30,000, with the lowest recorded on the northern island of
Terschelling at €21,672. In contrast, 4.9% of cities (20 in total) have an average salary exceeding €50,000.

23

The highest average salary was observed in the southern city of Haaren at a significant €139,828.

Average Salary by province with Sample Size

47841
48000 - Average Salary

i ° 46595 - 97535
e Sample Size . o

960007 84107 45029 . Ay

74794 T

244000 - . ;

= 55700 . - 49861 0

A 48365 o

wn 42000 - s10t6 i

5 ® ° 39706 40009 9

© 40000 - 29137 39543 g

— 26150 | ooss >

g 37944 38087 38226 .

Z 38000 - o . . . 2

10978 36261 10617 10812 11284 . -8060

36000 - 35391 w06t 8
34000 -

@ S S & S o > > > < N
< & & &
F & 5 ¢ & F F F F & &
@ & & < K & i & Q@) & S
Q O & N\ & S \ A & s X
O < & 2 0@ q/&b o@
~° N
Province

Figure 6: Average Salary by Province with Sample Size.

Top 10 Lowest and Highest Average Salary by city with Sample Size

32552
0]

140000 - Lowest 10 Average Saiary 130828 32552
Highest 10 Average Salary
_ @ Sample Size I
120000 N0s o
g 8
S 100000 - 95605 ©
©
Y 50000 - 81110 IZHSE
g [}
? 61710 61764 N
& 60000 - 53340 54548 55656 56190 56676 5622 (0
g @
< 40000 - 773 Q
24255 24g07 26874 27004 27381 27501 27809 e o, - 1586 E
21672 21789 23817 70 [-]
20000 - 216 [73 313 348 369
w a wm % P % o J O g * o
. . S] . # () . 2
0-
© & © & O & & O P F N & & L O AN P S
SIS FT T T ET T T S
FE FTEFLHP T TS T F @ FTF &
& © & & E T & & Sl
~ & N & S &8
3 & &
? %
Q
&
)
&
o
&
X
&
R

Figure 7: Top 10 Lowest and Highest Average Salary by City with Sample Size.

Industries: The dataset contains a total of 20 major and 83 minor industry categories, and among the major
categories, the top three highest-paying industries are Government and Military (€51501), Environmental
Services (€50844) and Information and Communication (€48620). The least three paying industries are
Home-based employment (€28287), Hospitality (€31336) and Agriculture (€33728).

Occupations: The dataset contains a total of 17 major, 42 mid-level, and 3,389 minor occupation categories,
and among the major categories, the top three highest-paying occupations are Finance (€63,105), ICT
(€52,819), and Social Care (€52,138). The least three paying occupations are Cleaning (€24461), Agriculture
and Gardening (€27271), and Transportation and Logistics (€31245).

Our exploratory analysis of the dataset evidences large and predictable variance in average salaries when
disaggregated along the three main attribute domains, as would be expected from the very complicated Dutch
labor market. The disparities within each domain are substantial. For instance, the average salary in the
highest-paying province is 37% greater than in the lowest, and this gap widens dramatically at the city level,
where the highest-paying city commands a salary more than six times that of the lowest. Clearly, geographical
context emerges as a crucial variable with respect to empirical expectations with regard to higher remuneration
levels in large metropolitan areas and economically strong regions.

24

Average Salary by Industry Level 1 with Sample Size

50000

45000

40000

35000

Average Salary

30000

25000

20000

e Sample Size

248.352 50844 51501

Average Salary 16520

46353 46940 47288 es
44806 45325 45425

42384 42448 42821

36208
33728
31336

63732
.

28287

300505

192956

5
2
Iy

49034

12661

Figure 8: Average Salary by Industry Level 1 (major category) with Sample Size.

Average Salary by Occupation Level 1 with Sample Size

—_
W
x Average Salary 63105
o 600001 e Sample Size 101815
o N 52138 52819
5 45357 45550 (2222 _—
g 42898 43130 #4912 T
> 40000 1 5 30302 °
= 33350 33593 37203 =2
© ﬁiﬁ% L] ° SR o 33009
T 271271 o °
a 24461
L) 20000 11264 16233 15:44
1 10093 10232
g O e y O 6548 7699 6679
_ ¢ °
g
< 0
SR I S & @S O & ¢
S F L L & & \'Jb S AP S PO
& & P @ &S E P @ <
RENICAP G P T N
N N & @ & &
\\9‘ Q@\ & & (\Q% o & O (,)@\ &
& ¢ & & e &
S & & & & 3 &
¥o«e & & & & &
= R Q
o"Q b‘(\\o ((“\Q\ &
A S S »
§¢ o
&

101814
73685
50094
31041
16525
6548

ze

Sample Si

Sample Size

Figure 9: Average Salary by Occupation Level 1 (major category) with Sample Size.

25

Similar trends are observed in the industry and occupation domains. The highest-paying industry offers an aver-
age salary 82% higher than the lowest, with roles in sectors like 'Government Military' being far more lucrative
than home-based work. The gap between professional fields is equally pronounced; occupations traditionally
considered high-paying, such as Finance and Information Technology, show average salaries more than double
those in fields like Cleaning or Gardening. These strong disparities underscore that industry and occupation
are primary drivers of market value, and any predictive model must be capable of capturing these powerful signals.

Finally, an analysis of the target variable itself reveals crucial characteristics. The log-transformed salary
distribution, represented in fig. indicates that the distribution was not entirely normal and there was
a prominent spike at about 13.6, reflecting a small cluster of extremely high salaries. This pointed to a
possible case of extreme outliers or a distinct subpopulation of high earners, underscoring the need for robust
pre-processing and a modeling approach such as our Mixture Density Network that can directly accommodate
non-standard, multi-modal distributions.

6 Experiment Results

This section presents the comprehensive experimental evaluation of our proposed GAT-GMM framework, which
is about establishing its performance and robustness for practical purposes. Our study begins by by a detailed
overview of the experimental environment, including the hardware and software configurations. To ensure our
work is reproducible, we first present all fixed parameters, which provide the architecture underpinning our core
model. We then discuss hyperparameter optimization, in which we follow a systematic approach to optimizing
the most sensitive parameters—Ilearning rate and number of Gaussian components. To rigorously assess the
contribution of the graph-based components, our study introduces an ablation study centered on an MLP-MDN
baseline and details its experimental setup. The model results section provides a quantitative comparison of the
learning dynamics and ultimate performances of our GAT-GMM model against the baseline, based on NLL
and MSE loss metrics. Finally, we conduct several case studies to demonstrate the real applicability of the
model and qualitatively assess its predictive power under conditions of single-attribute queries, combinations of
multi-attributes, and instances of missing data.

6.1 Experimental Environment

The experiments were conducted on a single server running Windows Server 2022. This server was equipped
with 1 x NVIDIA RTX 4000 Ada GPU, 16 vCPUs, and 62 GB of RAM. The primary software environment was
Python 3.10.

Implementation Details: The entire deep learning architecture was built using the PyTorch framework, with
a specific reliance on the PyTorch Geometric (PyG) library for all layers and operations of the graph-based
neural network. The initial construction of graph structures was managed using the NetworkX [I4] libraries. For
creating similarity-based edges, semantic embeddings were generated using the sentence-transformers library.
Standard machine learning tasks, such as data standardization and splitting, were handled by scikit-learn.
The hyperparameter optimization process was systematically conducted using Optuna, and all visualizations
were created with Matplotlib.

6.2 Fixed Parameters Settings

To ensure a fair and reproducible hyperparameter search and reduce the model's computational cost, architectural
parameters of the GAT-MDN model below were held constant across all trials. These fixed parameters, which
define the core capacity and structure of the network, are summarized in Table

6.3 Hyperparameter Optimization

To systematically determine the optimal hyperparameters for our GAT-MDN model, we want to set an ob-
jective function, which receives a set of experimental hyperparameters and returns the performance of the
model evaluated on the validation set. Therefore, our study employed Optuna [2], a specialized framework for
automated hyperparameter optimization. The primary objective was to find the hyperparameter combination
that minimizes the model’'s combined loss on a held-out validation set. In our model, the number of gaussian

26

Table 2: Model Architectural and Fixed Hyperparameters

Parameter Value Description

embedding dim 32 The dimension of the learnable embedding
vector (e;) for each node in GAT.

GAT_hidden_channels 64 The number of output feature channels
from the first GAT convolution layer.

GAT_out_channels 32 The output dimension of the final node rep-
resentation (H,,) from each GAT module.

head 3 The number of independent attention mech-
anisms in multi-head attention.

mdn_hidden_dim 128 The dimension of the hidden layer within
the MDN head.

GAT Layers 2 The number of sequential convolution layers
in each GAT module.

Batch Size 512 The number of samples processed in each
training iteration (batch).

MSE Weight 0.5 The contribution of the MSE loss compo-
nents.
Optimizer Adam The optimizer used during training.

components num_gaussians and learning rate (1r) of our Adam optimizer are the two hyperparameters that
have the greatest impact on the training results. Therefore, our study only performs optimal search for these
two hyperparameters: the learning rate was selected from the discrete set 5e — 4,1e — 4,5e¢ — 5, 1le — 5, 5e — 6,
and the num_gaussians was sampled from the integer range of 1 to 10. Other architectural parameters
described in the previous section are kept constant during this process. For each trial, Optuna selected a new
set of hyperparameters, and a corresponding model was instantiated and trained for up to 100 epochs. To
improve efficiency, an early-stopping mechanism known as pruning was used, allowing the study to terminate
unpromising trials that showed poor performance on the validation loss compared to others. A total of 60 trials
were conducted to thoroughly explore the search space and identify the configuration that yielded the best
model performance. Best parameters found after 50 trials are: 1r = le — 4, num_gaussians = 9.

6.4 Ablation Study: MLP Baseline

Experimental Setup. To ensure a fair comparison, the Embedding-only MLP-MDN baseline was trained under
the same experimental conditions as the primary GAT-MDN model. The training and validation data sets were
used identically and the training was performed in the same computational environment. Key architectural hy-
perparameters were kept consistent where applicable to isolate the impact of the graph convolution. Specifically,
the dimension of the learnable node embeddings (embedding dim) was set to 32, and the hidden dimension of
the MDN head (mdn_hidden_dim) was set to 128. For the new Multi-Layer Perceptron component, its hidden
layer dimension (mlp_hidden dim) was also set to 128. For hyperparameter optimization, our study uses the
same method as GAT-MDN to explore the hyperparameter space. Best parameters found after 50 trials are: 1r
= 0.0001, num_gaussians = 7.

6.5 Model Results

Our study performed a comparative analysis of the learning process between our proposed GAT-MDN model
and the Embedding-only MLP baseline. Both models were trained for 500 epochs on the dataset, which was
partitioned into an 80% training set and a 20% validation set. We record the negative log-likelihood loss (NLL)
and mean squared error loss (MSE) of the two models respectively. During the training process, the three types
of average training loss (LnLL, Lmse and Leombined) Were recorded respectively at the end of each epoch for

27

both models, and the validation losses were recorded for each of the three epochs. The resulting learning curves
illustrating the training and validation losses for both the GAT-MDN and the MLP baseline throughout the
training process are presented in fig.

As shown in fig. from the initial epochs onward, the training NLL losses for the GAT-MDN are substantially
lower than those of the MLP-MDN baseline. In terms of validation loss, the gap between the two models is
initially small. However, after the 200-epoch mark, the MLP baseline’s performance improvement stagnates,
whereas the GAT-MDN model's loss continues to register a marginal yet consistent decline. This significant
and persistent performance gap strongly validates our central hypothesis: that explicitly modeling the relational
and hierarchical structures within the attribute data is crucial for this task. Furthermore, according to fig.
our model demonstrates similar superiority regarding the MSE loss component. By the end of the 500-epoch
training period, both the final training and validation MSE losses for the GAT-GMM are markedly lower than
those achieved by the baseline model.

Training & Validation Loss Comparison Training & Validation MSE Loss Comparison
—— Training Loss (GAT-MDN) —— Training Loss (GAT-GMM)
1.2 Validation Loss (GAT-MDN) Validation Loss (GAT-GMM)

a —— Training Loss (MLP Baseline) —— Training Loss (MLP Baseline)
S Validation Loss (MLP Baseline) 0.8 Validation Loss (MLP Baseline)
§ 1.0 |

= i o

< Sos6

5

S 0.8 %

. °

[

= 804

506 5

g E

=4

&

@ 0.4 0.2

g

<

0.2
0.0
0 100 200 300 400 500 0 100 200 300 400 500
Epoch Epoch

(a) NLL Loss Comparison Between GAT-MDN and (b) MSE Loss Comparison Between GAT-MDN and
MLP Baseline. MLP Baseline.

Figure 10: NLL and MSE Loss Comparison Between GAT-MDN and MLP Baseline.

6.6 Case Study

Our study presents a series of case studies designed to evaluate our GAT-MDN's predictive performance
under various input scenarios. The first set of cases (Case 1 and Case 2) examines the core capability of the
model: generating salary distributions for specific, fully defined instances where only one attribute value is
provided per attribute domain. Building on this, Cases 3 and 4 demonstrate the model's advanced capabilities
for handling queries involving multiple attribute values, computing overall salary distributions for a wider
range of population groups. Finally, Cases 5 and 6 analyze the model’s resilience to incomplete information by
evaluating its predictions when key attribute domains are intentionally unspecified, testing the effectiveness
of our priority-based hierarchical selection. For each case study, we will present the full predicted salary dis-
tribution. To detail its composition, we will explicitly report the mixture weights (7) of each Gaussian component.

Case-Insensitive Matching: When a user provides an attribute value for prediction , e.g., 'amsterdam’ or
'"AMSTERDAM'’, the case-insensitive function first converts the input to a consistent lowercase format. It
then iterates through the keys of the corresponding node mapping dictionary, similarly converting each key
to lowercase for comparison. If a match is found, the function retrieves the original, correctly-cased key from
the dictionary, e.g., 'Amsterdam’ to ensure that the proper node ID is selected from the graph, thereby
accommodating variations in user input capitalization without sacrificing lookup accuracy.

6.6.1 Single Combination

Case 1 (fig. [L1)): 'region’: 'ROTTERDAM’ (city level, all uppercase letters), "industry’: 'Other Service
Activities’ (major level), 'occupation’: 'Administrative, Secretarial and HR' (major level). The salary point
estimate in this case is €54091. fig. shows the predicted distribution. fig. shows that the salary is

28

mainly composed

Probability Density

N
n

[[N
) 0)

o
0

of three Gaussian distributions.

Aggregate Salary Distribution for Selected Group

" Agaregate Predicted Salary Distrbution (POF)

20000 40000 60000 80000 100000

Predicted Salary (Real Value)

GMM Component Weights
10

GMM Component

Component Weight

ROTTERDAM
Other Service Activities
Administrative, Secretarial & HR

(a) Salary Prediction Distribution for Case 1. (b) Component Weights.

Figure 11: Salary Prediction Results for Case 1.

Case 2 (fig.[12): 'region’: 'UtrechT’ (province level, mixed-case), 'industry’: 'Overige specialistische zakelijke
dienstverlening (Other specialist business services)' (minor level), 'occupation’: 'Data Analyst’ (minor level).
The salary point estimate in this case is €52623. fig. [I2a] shows the predicted distribution. fig. [I2B] shows that
the salary is mainly made up of a Gaussian distribution.

GMM Component Weights
10

Aggregate Salary Distribution for Selected Group

— Aggregate predicted Salary Distribution (PDF)

nsity
Component Weight

Probabilty De

Overige specialistische zakelijke dienstverlening
Data Analyst

(a) Salary Prediction Distribution for Case 2. (b) Component Weights.

Figure 12: Salary Prediction Results for Case 2.

6.6.2 Multiple Combinations

Case 3 (fig. : 'region: 'ROTTERDAM' (city level, all uppercase letters), 'industry’: 'Other Service
Activities' (major level), 'occupation’: 'Administrative, Secretarial and HR','Security Inspector’ (two values,
minor level). The salary point estimate in this case is €46148. fig. shows the predicted distribution for
two combinations: ('ROTTERDAM'’,'Other Service Activities' , 'Administrative, Secretarial and HR'), and
('ROTTERDAM', Other Service Activities' , 'Security Inspector’). fig. [[3b] shows that combination 1 is mainly
composed of three Gaussian distributions, while combination 2 is mainly composed of two Gaussian distributions.

Case 4 (fig.[14): 'region’: 'Noord-Brabant’ (province level, mixed-case), 'industry’: 'Administrative And Sup-
port Service Activities’,'Professional, Scientific And Technical Activities’ (two values, major level), 'occupation’:
'ICT" (minor level). The salary point estimate in this case is €57892. fig. shows the predicted distribution
for two combinations: ('Noord-Brabant’,’Administrative And Support Service Activities' , 'ICT"), and ('Noord-
Brabant','Professional, Scientific And Technical Activities' , 'ICT"). fig. shows that combination 1 is mainly
composed of three Gaussian distributions, while combination 2 is mainly composed of one Gaussian distribution.

29

GMM Component Weights
10

Aggregate Salary Distribution for Selected Group
3542 £ GMM Component
" Agaregate rectcte Stary Distnbution (F0F) 2 mm Component 1
= = Component 2
3.0 2 W Component 3
2 W Component 4
5 == Component 5
225 g = Component 6
2 g = Component 7
820
Z
515
?
2
g
s 10
05 v
0.0
20000 80000 100000

0000
Predicted Salary (Real Value)

(a) Salary Prediction Distribution for Case 3. (b) Component Weights.

Figure 13: Salary Prediction Results for Case 3.

GMM Component Weights

10

Aggregate Salary Distribution for Selected Group GMM Component

== Component 1
06 = Component 2
W Component 3
= Component 4
= Component 5
== Component 6
-
-
L

— Agoragate Predicted salary Distrbution (POF)

Component 7

Component Weight

N
0

Component 8
Component 9

Probability Density
N
o

02
15
10
05 00
&S
FES
0.0 & &
& &
20000 30000 40000 _ 50000 60000 70000 80000 90000 100000 &

Predicted Salary (Real Value)

(a) Salary Prediction Distribution for Case 4. (b) Component Weights.

Figure 14: Salary Prediction Results for Case 4.

30

6.6.3 Combinations with Empty Values

Case 5 (fig. [15)): 'region: '"ARNHEM’ (city level, all uppercase letters), 'industry’: empty, 'occupation’:
'Engineering and Technology’ (major level). The salary point estimate in this case is €48333. fig. shows the
predicted distribution for this case. fig. [Ibb]shows that the salary is mainly made up of two Gaussian distributions.

GMM Component Weights

10

Tes Aggregate Salary Distribution for Selected Group
.
_ GMM Component
g W Component 1
N T 06 B Component 2
H W Component 3
= = Component 4
z g = Component 5
&3 = B Component 6
z £ 04 s Component 7
H s B Component 8
£ Component 9
.
02
.
20000 40000 60000 80000 100000 ” ARNHEM
salary (Real Value) Engineering & Technology
(a) Salary Prediction Distribution for Case 5. (b) Component Weights.

Figure 15: Salary Prediction Results for Case 5.

Case 6 (fig.[L6): 'region’: 'Friesland’ (Province level, mixed-case), "industry’: 'Other Service Activities (major
level), 'occupation’: empty. The salary point estimate in this case is €115195. fig. shows the predicted
distribution for this case. fig. [I6b] shows that the salary is mainly made up of three Gaussian distributions.

GMM Component Weights
10

Aggregate Salary Distribution for Selected Group

0000254 ggregate predicted Salary Distribution (PDF)

GMM Component
06 == Component 1
= Component 2
W Component 3
== Component 4
W Component 5
04 == Component 6
= Component 7

000020

2 000015

Component Weight

probabilty Den:

00010

000005

000000 00

Friesland
Other Service Activities

50000 65000 70000 75600 80000 85000 %000 95000 100000
Salary (Rea Value)

(a) Salary Prediction Distribution for Case 6. (b) Component Weights.

Figure 16: Salary Prediction Results for Case 6.

31

7 Conclusion

In this study, our study proposed and evaluated a new salary prediction framework, the GAT-MDN model,
which overcomes the limitations of traditional methods through an explicit representation of the rich relation
and hierarchy inherent in job market data. We have conducted a comprehensive experimental campaign to
demonstrate the strong advantages that this graph-based, probabilistic approach possesses.

The experimental results testify that our GAT-MDN model greatly outperforms the non-graph MLP-MDN
baseline. As can be seen from the learning curves, the GAT-MDN achieves a much lower NLL loss on both
training and validation sets. This is a powerful finding, as it indicates that our model is not only more accurate
at predicting the expected salary but is also superior at capturing the true underlying shape, spread, and
potential multimodality of the salary distribution. The enriched hierarchical and similarity-based edge graph
structure gave the model the right kind of context to learn a better and more appropriate representation of
salary uncertainty. The attention mechanism proves crucial in navigating this complex information landscape,
learning to weigh the influence of hierarchical parents and semantically similar peers to produce a more robust
and accurate final prediction.

Furthermore, the superiority of the GAT-MDN s also clearly reflected in the Mean Squared Error (MSE) loss.
This model showcases its strength in consistently achieving lower MSE loss due to its nature, which allows
for better prediction of a point estimate, or " center of mass,” of the distribution of salaries as compared to
the baseline. That is, the graph attention mechanism in aggregating contextual information allows the model,
from simple attribute-level correlation, to learn a complicated function for the market value of a position.
Although there exists a generalization gap between training and validation performances for the GAT-MDN, its
validation losses have consistently and significantly been placed under those recorded for the simpler MLP model.

In addition to quantitative metrics, multiple case studies demonstrate the applicability and robustness of our
framework. The model generates reasonable point estimates and true distributions for a wide range of use cases,
including for single attributes, multiple combinations, and cases with missing information. Overall, the predicted
distributions are non-unimodal, demonstrating that the model is able to capture the complex structure of
real-world salaries, which can be challenging for simpler models. Notably, while our model is configured with
nine Gaussian components, the final predictions are typically dominated by only two or three main components.
This demonstrates that the model learns to adapt its complexity to specific queries, using only the necessary
components to fit the underlying salary structure, rather than overfitting to all available capacity. This flexibility
is further demonstrated by its case-insensitive input and ability to work with different hierarchical attributes,
strongly suggesting its scalability and potential for real-world applications. However, as shown in the fitting
results for Cases 5 and 6, the model’s prediction accuracy for the finest-grained attributes and queries with null
attributes in a domain remains limited due to data sparsity.

In conclusion, this work validates our central hypothesis: that using the explicit structure of attribute data
through Graph Attention Networks provides a significant performance boost for the task of salary prediction.
Combining such a powerful representation learning technique with a Mixture Density Network, the framework
proposed here is more accurate, transparent, and insightful in analyzing labor markets and is able to provide
not just one value, but a complete view of salary ranges.

8 Future Work

While powerful, our model's generalization capability also has limitations. The model cannot predict for attribute
values that were entirely absent during training, e.g., a never-before-seen city or specific skills, due to the lack
of learned representations for such attributes. Furthermore, predictions for combinations whose combined vector
is very far from the distribution of vectors seen during training (far extrapolation) may be less reliable. Dealing
with novel entities requires a different strategy, such as a Graph Representation Learning with GraphSAGE
[I5]. This architecture addresses the challenge of unseen input by learning universal aggregator functions
that sample and combine feature information from a node’s local neighborhood. This means that instead of
memorizing a fixed embedding for each node, the model learns a process for generating embeddings, which
can then be applied on-the-fly to new nodes as they appear in the graph. Alternatively, we can leverage node

32

features from pre-trained language models (LMs), which creates initial node features directly from the attribute
names themselves rather than relying on one-hot encodings, making the model inherently open-world. When a
previously unseen attribute appears, its string is simply fed into a pre-trained model like BERT to generate an
initial feature vector. This vector is semantically meaningful and located in a similar feature space to related
attributes, allowing the GAT to process it effectively. gives a great example of a large-scale GNN that successfully
initializes node features from raw text using language models. [9] investigating how large language models
(LLMs) can act as powerful feature enhancers to enrich node text attributes before they are processed by a GNN.

Augmenting with Numerical Features: Our current study is limited to categorical attributes. A key direction
for future research is to integrate numerical attributes, such as years of experience and candidate age, which
are absent from our existing data. Enhancing the model to process these quantitative features alongside the
structural graph embeddings would likely yield a significant improvement in predictive performance. A direct
approach to incorporating numerical attributes is to integrate them at the node feature level, prior to the
graph convolution process. This strategy enables the adaptation of GNNs to rich tabular data, which inherently
involves a mixture of categorical and numerical characteristics [23]. Our future work would also include the use
of an advanced GNN for heterogeneous data. [36] introduces Collaborative Graph Neural Networks (CONN), an
advanced architecture designed to create a richer and more comprehensive node embedded in the learning process.

Real-world salary distributions can have complex shapes that may be difficult for even the GMM to perfectly
capture. A more advanced research direction is to design a model capable of learning and adapting to arbitrarily
complex distributional forms. One of the most relevant state-of-the-art techniques for this is Normalizing Flows.
A Normalizing Flow learns a complex distribution by starting with a simple base distribution and applying a
series of invertible, learnable neural network transformations to progressively "warp” it into the shape of the
true data. This flexible mechanism makes it possible to replace our current MDN head with a Normalizing
Flow-based predictive head, enabling the model to learn more expressive and accurate salary distributions. The
principles of normalized flow, various model variants, and their applications in various fields are introduced in
detail in [22]. [37] directly explores how to use normalized flows to solve the conditional density estimation
problem.

A Major Notations

33

Table 3: Major notations in this paper

Symbol Short Description

General and Instance-Level Concepts

A Set of attribute values for a single instance.

am A specific attribute value for domain m.

M The number of distinct attribute domains.

Yy The target variable (salary).

S The raw average expected salary.

S’ The transformed salary value used for training the model.

Graph Structure

Gm The graph for attribute domain m, G,,, = (Vin, Ep).

Vi The set of all unique nodes in graph G,,.

E., The set of all edges in graph G,,.

Ehier,m The set of hierarchical edges in graph G,,.

Egim,m The set of weighted similarity edges in graph G,,.

T The similarity threshold.

Model Architecture and Features

fo The complete parametric model parameterized by 6.

90, The GAT-based sub-model.

do, The MDN head sub-model.

Xm The matrix of initial node features for graph G,,.

em The matrix of learnable node embeddings for graph G,,.

a The attention mechanism.

o The attention weight.

K, The number of independent attention mechanisms in multi-head attention.
H,, The final node representation matrix from a GAT sub-module.
hcomb The integrated node representation vector.

GMM and Prediction for a Single Instance
po(ylA) The model’s predicted GMM distribution for instance A.

K The number of Gaussian components in the GMM.

Tk, Uk, Ok Weight, mean, and standard deviation of the k-th Gaussian.
Ely|A] The expected salary for instance A.

Querying and Aggregate Prediction

Om A user-defined set of attribute values for a query in domain m.
Ag The set of all combinations generated from a user query.

W(A;) Weight for a combination A; in the query set.
ElylAg] The weighted average salary for the entire query set Ag.

Training

D The training dataset of {(A®,y(*)} pairs.
Ngamples The number of samples in the training dataset.
LNLL The Negative Log-Likelihood loss function.
LMSE The Mean Squared Error loss function.
Lcombined The Combined loss function of Ly, and Lyisk.
« The weight of Lysg in Lcombined -

34

B Data Schema

The following table provides a detailed schema of the key fields from the Jobdigger dataset used in this study.
It outlines the original field name, its data type, a brief description, and its specific role within our GAT-MDN

model.
Table 4: Data schema for the job posting dataset.
Field Name Data Type Description Role in Model
salary_from Numeric The lower bound of the provided salary Input for Target Vari-
range. All salary values represent post- able Calculation
tax annual salary in Euros (€).
salary_to Numeric The upper bound of the provided salary Input for Target Vari-
range. able Calculation
S Numeric The calculated average expected salary Intermediate Target
((Sg+5)/2). Variable
s’ Numeric The final log-transformed and standard- Final Target Vari-
ized salary value. able
geo_level 2_string Categorical The province where the job is located. Hierarchical At-
tribute (Parent)
geo_level 4 _string Categorical The city where the job is located. Hierarchical At-
tribute (Child)
occupation_level_1_name Categorical The highest-level job category. Hierarchical At-
tribute (Grandpar-
ent)
occupation_level 2 name Categorical The mid-level job category. Hierarchical At-
tribute (Parent)
occupation_level_6_name Categorical The specific job title. Hierarchical At-
tribute (Child)
industry_1_name Categorical The high-level industry sector. Hierarchical At-
tribute (Parent)
industry_2 name Categorical The specific industry sub-sector. Hierarchical At-
tribute (Child)
job_id String A unique identifier for the job posting. Identifier
job_description_text Text The full text of the job description. Future Work

References

[1] Lazar A. Income prediction via support vector machine. In /ICMLA, pages 143-149, 2004.

[2] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama.
next-generation hyperparameter optimization framework. CoRR, abs/1907.10902, 2019.

[3] James Atwood and Don Towsley. Diffusion-convolutional neural networks, 2016.

Optuna: A

[4] Smaranda Belciug and Dominic Gabriel lliescu. Deep learning and gaussian mixture modelling clustering
mix. a new approach for fetal morphology view plane differentiation. Journal of Biomedical Informatics,

143:104402, 2023.

[5] Christopher M. Bishop. Mixture density networks. Workingpaper, Aston University, 1994.

[6] Christian Borgelt and Michael R. Berthold. Finding relevant substructures of molecules: mining molecular
fragments. In Proceedings of the 2002 IEEE International Conference on Data Mining (ICDM 2002),

pages 51-58. IEEE Computer Society, 2002.

35

[7]

(8]

[9]

[10]

[11]

[12]
[13]
[14]
[15]
[16]

[17]

(18]

[19]

[20]

[21]

[22]

23]

[24]

25]

[26]

Axel Brando Guillaumes. Mixture density networks for distribution and uncertainty estimation. Master's
thesis, Universitat Politécnica de Catalunya, 2017.

Long Chen, Yeran Sun, and Piyushimita Thakuriah. Modelling and Predicting Individual Salaries in United
Kingdom with Graph Convolutional Network, pages 61-74. 01 2020.

Zhikai Chen, Haitao Mao, Hang Li, Wei Jin, Hongzhi Wen, Xiaochi Wei, Shuaigiang Wang, Dawei Yin,
Wengi Fan, Hui Liu, and Jiliang Tang. Exploring the potential of large language models (llms) in learning
on graphs, 2024.

David Duvenaud, Dougal Maclaurin, Jorge Aguilera-lparraguirre, Rafael Gémez-Bombarelli, Timothy
Hirzel, Alan Aspuru-Guzik, and Ryan P. Adams. Convolutional networks on graphs for learning molecular
fingerprints, 2015.

Eurostat. Nace rev. 2 - statistical classification of economic activities. https://ec.europa.eu/
eurostat/web/nace-rev2, 2008. Based on Regulation (EC) No 1893/2006 of the European Parliament
and of the Council.

Alex Graves. Generating sequences with recurrent neural networks. arXiv preprint arXiv:1308.0850, 2013.
David Ha and Jiirgen Schmidhuber. World models. CoRR, abs/1803.10122, 2018.

Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. Exploring network structure, dynamics, and
function using NetworkX. In Gael Varoquaux, Travis Vaught, and Jarrod Millman, editors, Proceedings of
the 7th Python in Science Conference (SciPy2008), pages 11-15, Pasadena, CA USA, Aug 2008.

William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large graphs,
2018.

J. Huan, W. Wang, and J. Prins. Efficient mining of frequent subgraphs in the presence of isomorphism.
In Third IEEE International Conference on Data Mining, pages 549-552, 2003.

Akihiro Inokuchi, Takashi Washio, and Hiroshi Motoda. An apriori-based algorithm for mining frequent
substructures from graph data. In Djamel A. Zighed, Jan Komorowski, and Jan Zytkow, editors, Principles of
Data Mining and Knowledge Discovery, pages 13-23, Berlin, Heidelberg, 2000. Springer Berlin Heidelberg.

Yang Ji, Ying Sun, and Hengshu Zhu. Enhancing job salary prediction with disentangled composition
effect modeling: A neural prototyping approach, 2025.

Zhuxi Jiang, Yin Zheng, Huachun Tan, Bangsheng Tang, and Hanning Zhou. Variational deep embedding:
A generative approach to clustering. CoRR, abs/1611.05148, 2016.

Jobdigger. Real-time labour market data and analysis. https://www.jobdigger.nl/, 2025. Data
provided for research purposes.

Keisuke Kinoshita, Marc Delcroix, Atsunori Ogawa, Takuya Higuchi, and Tomohiro Nakatani. Deep
mixture density network for statistical model-based feature enhancement. In 2017 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 251-255, 2017.

Ivan Kobyzev, Simon J.D. Prince, and Marcus A. Brubaker. Normalizing flows: An introduction and review
of current methods. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(11):3964-3979,
November 2021.

Cheng-Te Li, Yu-Che Tsai, Chih-Yao Chen, and Jay Chiehen Liao. Graph neural networks for tabular data
learning: A survey with taxonomy and directions, 2024.

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph sequence neural networks.
arXiv preprint arXiv:1511.05493, 2015.

Yasser T. Matbouli and Suliman M. Alghamdi. Statistical machine learning regression models for salary
prediction featuring economy wide activities and occupations. Information, 13(10), 2022.

Geoffrey J. McLachlan and Suren Rathnayake. On the number of components in a gaussian mixture
model. WIREs Data Mining and Knowledge Discovery, 4(5):361-372.

36

https://ec.europa.eu/eurostat/web/nace-rev2
https://ec.europa.eu/eurostat/web/nace-rev2
https://www.jobdigger.nl/

[27]

[28]

[29]

(30]

31]

32]

(33]

34]

[35]

[36]

(37]

(38]

39]

[40]

[41]

[42]

[43]

[44]

[45]

Paul D. McNicholas and Thomas Brendan Murphy. Model-based clustering of microarray expression data
via latent gaussian mixture models. Bioinformatics, 26(21):2705-2712, 08 2010.

Qingxin Meng, Keli Xiao, Dazhong Shen, Hengshu Zhu, and Hui Xiong. Fine-Grained Job Salary
Benchmarking with a Nonparametric Dirichlet Process—Based Latent Factor Model. INFORMS Journal on
Computing, 34(5), 2022.

Qingxin Meng, Hengshu Zhu, Keli Xiao, and Hui Xiong. Intelligent salary benchmarking for talent
recruitment: A holistic matrix factorization approach. pages 337-346, 11 2018.

Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. Learning convolutional neural networks for
graphs. In Proceedings of the 33rd International Conference on Machine Learning (ICML), volume 48 of
JMLR Workshop and Conference Proceedings, pages 2014-2023. PMLR, 2016.

Siegfried Nijssen and Joost N. Kok. A Quickstart in Frequent Structure Mining Can Make a Difference.
In Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD '04, pages 647-652. ACM, 2004.

Primoz Skledar. Forecasting univariate time series salary data with machine learning models, 2019. Faculty
of Civil and Geodetic Engineering, University of Ljubljana.

C. Stauffer and W.E.L. Grimson. Adaptive background mixture models for real-time tracking. In
Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat.
No PR00149), volume 2, pages 246—252 Vol. 2, 1999.

Rosanna Stofberg, Mark Bussin, and Calvin Mabaso. Pay transparency, job turnover intentions and the
mediating role of perceived organizational support and organizational justice. Employee Relations: The
International Journal, 44:162-182, 12 2022.

Yujun Sun, Fuzhen Zhuang, Hengshu Zhu, Deqing Wang, and Hui Xiong. Market-oriented job skill
valuation with cooperative composition neural network. Nature Communications, 12(1):1992, 2021.

Qiaoyu Tan, Xin Zhang, Xiao Huang, Hao Chen, Jundong Li, and Xia Hu. Collaborative graph neural
networks for attributed network embedding, 2023.

Brian L Trippe and Richard E Turner. Conditional density estimation with bayesian normalising flows,
2018.

Petar Veli¢kovi¢, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio.
Graph attention networks, 2018.

Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan Yang, and Ming Zhou. Minilm: Deep self-attention
distillation for task-agnostic compression of pre-trained transformers, 2020.

Zhongsheng Wang, Shinsuke Sugaya, and Dat PT Nguyen. Salary prediction using bidirectional-gru-cnn
model. Assoc. Nat. Lang. Process, 2019.

Xifeng Yan and Jiawei Han. gspan: graph-based substructure pattern mining. In 2002 IEEE International
Conference on Data Mining, 2002. Proceedings., pages 721-724, 2002.

Yuping Wang Yihui Cai Jiajun Liao Yuping Yan, Xiaoli Li. Prediction model of salary dynamic fluctuation
trends incorporating multivariate time series. Vol. 20 No. 10s (2024), 2024.

Quan T Z and Raheem M. Salary prediction in data science field using specialized skills and job benefits—a
literature. Journal of Applied Technology and Innovation, 6(3):70-74, 2022.

Gulnarida Zhalilova, Aliyma Mamatkasymova, Elnura Zhusupova, and Kunduz Zhalzhaeva. Forecasting
data science professionals’ salaries using machine learning methods based on real data. AIP Conference
Proceedings, 3244:030034, 2024.

Chuxu Zhang, Dongjin Song, Chao Huang, Ananthram Swami, and N. Chawla. Heterogeneous graph
neural network. Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, 2019.

37

	Introduction
	Related Work
	Data-Driven Salary Prediction
	Graph-Based Model
	Mixture Density Network

	Preliminaries
	Graph-Based Data Representation
	Probabilistic Prediction Goal
	Model Architecture
	Training Objective

	Methodology
	Data Preprocessing
	Graph Construction for Each Domain
	Graph Attention Networks
	GAT Feature Preparation
	Graph Attention-based Representation Learning

	Priority-based Hierarchical Selection
	Mixture Density Network
	Loss Function
	Framework Outline
	Model Generalization
	Ablation Study

	Descriptive Data Analysis
	Experiment Results
	Experimental Environment
	Fixed Parameters Settings
	Hyperparameter Optimization
	Ablation Study: MLP Baseline
	Model Results
	Case Study
	Single Combination
	Multiple Combinations
	Combinations with Empty Values

	Conclusion
	Future Work
	Major Notations
	Data Schema

