Universiteit

ik4; Leiden
The Netherlands

Unveiling the Roof:

Anomaly Detection in Train Pantographs

Levi Ari Pronk

First supervisor and second supervisor:
Lu Cao & Arno Knobbe

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)
www.liacs.leidenuniv.nl 01/07/2025

www.liacs.leidenuniv.nl

Abstract

Currently, anomaly detection models are tested mostly on benchmark datasets with constant
backgrounds and minimal changes in lighting. This thesis presents a study comparing two
anomaly detection models, PatchCore and GLASS, on real-life datasets with images of train
roofs. Using computer vision models, the aim is to reduce manual labor in train maintenance
by detecting defects via unsupervised methods. By using both statistical and qualitative
results, the models were evaluated on their performance. PatchCore, known for its patch-level
anomaly detection, showed promise in handling small datasets, but was generally challenged
by background variation. Meanwhile, GLASS combined feature-level and image-level synthesis
strategies, offering less sensitivity to varying backgrounds, but also to anomalies in general.
This thesis primarily focuses on logical anomaly detection (detecting large objects that are
out-of-place) and found that PatchCore detects more anomalies at a cost of more false positives,
whereas GLASS shows narrow anomaly localization with less false positives but equally less
detection of weak (less visible) anomalies.

Keywords: Anomaly Detection, Train Pantographs, Machine Learning, Computer Vision,
PatchCore, GLASS, Unsupervised Learning.

Contents

1 Introduction

2 Definitions
2.1 Domain-specific definitions Lo
2.1.1 Pantographs
2.1.2 Overview of pantograph heads
2.2 Computer vision definitions Lo
2.2.1 Feature extraction
2.2.2 Feature adaptation
2.2.3 Image synthesis
2.3 Anomaly detection definitionso
2.3.1 Classes of anomalies
2.3.2 Anomaly score and threshold

3 Related Work
3.1 Benchmark datasets
3.1.1 MVTec AD

3.1.2 VISA L
3.1.3 MPDD . . . oo
3.1.4 WFEDD . . o oo
3.1, DTD .« o oo

3.2 Components of an anomaly detection model
3.2.1 Auto-encoders

3.2.2 Transfer learning 7

3.2.3 Global-local 7
3.2.4 Segmentation 7
3.2.5 Combining different components oo 8

3.3 PatchCore e 8
3.3.1 Pretrained encoder 9
3.3.2 Locally-aware patch features 9
3.3.3 Memory bank 10
3.3.4 Coreset subsampling 10
3.3.5 Anomaly score and nearest neighbor search 10
3.3.6 Known deficiencies 11

3.4 GLASS . . o e 11
3.4.1 Feature extraction 12
3.4.2 Feature adaptation 12
3.4.3 Discriminatoro 13
3.4.4 Feature-level Global Anomaly Synthesis Strategy (GAS) 13
3.4.5 Image-level Local Anomaly Synthesis Strategy (LAS) 13
3.4.6 Anomaly score 14
3.4.7 Known deficiencies 14

4 Methodology 14
4.1 Pre-processingo e e 15
4.1.1 Data filtering 15
4.1.2 Cropping 15
4.1.3 Flipping 15

4.2 Dataset setup L 16
4.3 General design 16
4.3.1 Smallest possible subset o oo 17
4.3.2 One pantograph type 17

5 Experiments 18
5.1 Experimental Details oo 18
5.2 Proof of Concept 20
5.2.1 Experiments on ICM_1_4 Hekendorpleft 20
5.2.2 Experiments on ICM_1_4 Hekendorp 1t 22
5.2.2.1 Original set-up. 23

5.2.2.2 Anomaly in validationset 0L 24

5.2.3 Experiments on ICM_ 1.4 27

5.3 Hyper-parameter optimizationo oL 30
5.3.1 Validation set evaluation oo 30
5.3.2 Test set evaluation 32

5.4 Comparative experiments on the entire dataset 33

6 Discussion

6.1 Summary of findings
6.2 Limitations
6.2.1 Lack of anomalies & limited intermediate evaluation
6.2.2 Model-specific adjustments 0oL
6.2.3 Pre-processing & data filtering oL

7 Conclusion
References

A Dataset distribution
A.1 Original dataset
A2 Target dataset L

B Binary classifier

C Model information
C.1 PatchCore e
C.1.1 Configuration e
C.1.2 Memory bank reduction algorithm
C.2 GLASS . . . e
C.2.1 Configuration

D Results on the entire dataset
D.1 Prediction SCores
D.2 Performance metrics

1 Introduction

The Train Maintenance department of NS (Dutch Railways) offers repair services to trains [nsD].
Currently, conducting controls of the state of the train is manual and happens mostly at night.
To reduce manual labor, NS also uses computer vision models to make accurate predictions about
possible defects on trains. This is important because manually checking every component of a train
is labor-intensive and the operation is relatively expensive because technical personnel working
at night receive a shift differential or premium pay. After successful implementation of computer
vision models, the work would shift to only double-checking the images that were marked defect
(digitization) or directly acting on computer predictions (automization). The specific problem
that this thesis will address is the detection of anomalies on train roofs, especially
around pantographs, the linkages between the train and the overhead lines that power
the train |].

Figure 1: Example of a train pantograph

In order to detect objects on the train roof, there is a range of different computer vision
models that can be used. For this research, an unsupervised anomaly detection model is devised. In
anomaly detection, learning systems depart from known information (normal data and patterns) to
infer abnormal or different patterns with respect to the normal situation, or anomalies |].
The normal situation is defined as a situation, in which there are no anomalies.

The reason for the choice of an anomaly detection model is the distribution of the given
dataset. Of the approximately 5500 input images, 31 images are known to have an anomaly. It will
therefore be easier to train a model to recognize the normal situation than to train a model on
a smaller subset of irregularities. These data are not labeled, except for the 31 images known to
feature an anomaly. In a supervised approach, the classes of anomalies themselves (for instance, a
bag or a bird) would have to be labeled. A classifier could then accurately be trained to distinguish
specific objects. The lack of labeled data and anomalous data in general has led to the choice of an
unsupervised approach. Moreover, the variability in shape, color and size makes it difficult for a
supervised learning model to encapsulate sufficient statistical information about abnormal image
patterns |].

Within the field of anomaly detection, there are three main steps: detection, localization
and classification. Detection is about predicting whether a certain image is anomalous or not by
attributing an anomaly score (2.3.2), localization finds the region that is predicted to be anomalous
and classification involves classifying the anomaly found in the identified region. For the scope of
this thesis, the focus will lie primarily on detecting anomalies. Localization serves as a sanity check

to see if the region identified as anomalous corresponds to the ground truth.

Current anomaly detection models are compared on benchmark datasets with a constant
background and lighting scenarios. The contribution of this thesis is to replicate two state-of-the-art
anomaly detection models, PatchCore and GLASS, on a real-world dataset. This dataset contains
differing backgrounds, lighting and weather situations. In this thesis, the performance of both
models will be compared on a new dataset. In the measurement of performance, the detection of
‘strong’ defects (logical anomalies) will be more important than those of ‘weak’ defects (structural
anomalies). The reason for this choice is that structural anomaly detection usually requires domain
knowledge, such as when a mechanical part should be considered ‘bent’ or ‘broken’ (see: 2.3.1).

Combining these criteria, the main research question of this thesis is:

e What is the difference in logical anomaly detection performance between PatchCore and
GLASS in the context of train pantographs?

To compare the performance, several commonly used performance metrics will be devised, such as
AUROC, error, accuracy, precision and recall.! There are other subquestions that will also play a
role in this research:

e What is the difference in structural anomaly detection performance between PatchCore and
GLASS in the context of train pantographs?

To further evaluate models, the detection of structural anomalies will substantiate the performance
of a model.

e What potential workload reduction does the produced model entail?

Models like these could be used in future, so a lower number of misclassifications leads to a reduction
in (manual) workload.

The contents of this thesis are as follows: section 2 introduces definitions specific to our
use case as well as general computer vision and anomaly detection definitions; section 3 summarizes
related work, such as components of an anomaly detection model, and specific information about
the two chosen models, PatchCore and GLASS; section 4 describes the research methodology of
this thesis; in section 5, the results and set-up of the experiments; finally, section 7 concludes this
research by means of a conclusion and discussion.

'For more information, see: Evaluation metrics, (5.1)

2 Definitions

2.1 Domain-specific definitions

2.1.1 Pantographs

A pantograph is a device mounted on a train to collect the current of overhead contact wires,
providing the train with electricity. The pantograph consists of a pantograph head, frame, base, and
drive system [Wulg]. NS trains have various types of pantograph heads with some trains sharing
the same type and other train models having multiple types of pantographs.

2.1.2 Overview of pantograph heads

Figure 2: This is an overview of the six different pantograph heads that are in the provided dataset,
named 2a: VIRM_4, 2b: SLT_4_6_VIRM_4, 2c¢: ICM_1_4, 2d: VIRM_6, 2e: DDZ_4_6, and 2f: SNG_3_4

Data filtering (4.1.1) will happen based on these different types of pantograph heads. This
thesis will approximately follow NS nomenclature for the pantograph heads, which is:

e 2a: VIRM IV (series 9547 - 9597) or VIRM_4
e 2b: SLT IV & VI and VIRM IV (series 9501 - 9546 & 9401 - 9481) or SLT_4_6_VIRM_4
2c: ICM T & IV or ICM_1_4

2d: VIRM VI or VIRM_6
2e: DDZ IV & VI or DDZ_4_6

2f: SNG III & IV or SNG_3_4

2.2 Computer vision definitions

2.2.1 Feature extraction

Similarly to human vision, computer vision models can distinguish features in an image, which are
regions of interest bounded by edges or corners [LGRN11]. The goal of feature extraction is to
extract a set of features. There are different levels of abstraction for feature extraction:

o Low-level features: edges, contours, angles
o Mid-level features: patterns, textures, shapes

e High-level features: local curvatures, objects

The distinction between high-level and low-level features is quite clear. Low-level features
are found at a pixel-level, whereas high-level features offer us a semantic representation of a
scene. Low-level features can be automatically extracted without any shape information |].
Mid-level features bridge the gap between high-level and low-level features, by building on the
extracted angles |]

2.2.2 Feature adaptation

Feature adaptation or domain adaptation refers to adjusting or transforming extracted features to
improve model performance when dealing with different domains or datasets | |. It is a
special case of transfer learning 3.2.2 with the goal of exploiting information on the dissimilarity
between the source and target domains. This information can be extracted from the available data
to make the source distribution more similar to the target distribution | -

Feature adaptation can be especially useful in images with varying angles and circumstances.
By adapting the features, models can capture a wider variation of features. The reason for this is
that is not known beforehand how well the source data (training data) will correspond to the target
data (test data). Conditions in the target data might be different to the conditions in the source
data, e.g. pictures taken on a snowy day when it has not snowed during the period in which the
source data were captured. This subsequently shifts the feature distribution. Domain adaptation
offers a solution by adapting a pre-trained model to dynamically changing environments with
different lighting and weather conditions |].

2.2.3 Image synthesis

Image synthesis is the process of converting the input text, sketch, or other sources, i.e., another

image or mask, into an image | |. For the scope of this thesis, image synthesis will mostly
involve 1mage-to-image translation, which involves translating an input image into a corresponding
output image |]. Examples of image synthesis task involve translating daytime to nighttime

images and transforming images with edges only to a photo. The process of image synthesis is
especially useful in the use case of this thesis due to the natural variations in our dataset (lighting
differences, weather conditions and differences in background).

2.3 Anomaly detection definitions

2.3.1 Classes of anomalies

Within anomaly detection, there is a distinction between different classes of anomalies. Structural
anomalies primarily include in-object irregularities, such as scratches and cracks, whereas logical
anomalies concern the placement, form or number of objects, such as the misplacement of labels
or bent cables [mvt]. Yet another distinction between anomalies are strong and weak anomalies.
Strong anomalies deviate from the norm by a higher magnitude than weak anomalies, which are

4

more difficult to detect. Weak defects are anomalies with small areas or low contrast |).
Another class of anomalies, are synthetic anomalies, which are generated anomalies based on normal
images.

2.3.2 Anomaly score and threshold

The anomaly score of an image is the percentage (0-100%) that an image deviates from the normal
situation |].2 An anomaly score of 0% means that an image is normal. A higher anomaly
score is an indication of an anomalous image. However, a normal image can get an anomaly score
as high as 80-90%. There are several reasons for this, such as noise, intra-class variance or unusual
lighting changes. This is why the introduction of an anomaly threshold is useful to determine at
what anomaly score an image is considered to be anomalous. This score also determines the number
of false positives, since it sets the threshold for what the model has correctly determined as being a
normal or abnormal image.

3 Related Work

Anomaly detection models for computer vision have been used in medical imaging and industry
contexts | , |. In this section, an overview of (relevant parts of) anomaly detection
models is provided. First, relevant benchmark datasets are explained (3.1). A brief overview of four
different components of a typical anomaly detection model (3.2) will then be provided. This section
concludes with a summary of how different anomaly detection models incorporate these components.
The last two sections (3.3 and 3.4) will elaborate on the architectures of PatchCore and GLASS,
respectively.

3.1 Benchmark datasets

In order to make comparisons across different anomaly detection models, benchmark datasets
are used. These datasets are oftentimes acquired in a controlled environment with a constant
background and no movement of the objects in the frame. The most widely-used dataset is the
MVTec AD dataset (3.1.1).

3.1.1 MVTec AD

The MVTec dataset is a dataset for benchmarking anomaly detection methods with a focus on
industrial inspection, containing over 5,000 images in different object and texture categories;

[]

3.1.2 VisA

The VisA (Visual Anomaly) dataset is another dataset with industry inspection objects, such as
printed circuit boards, transistors and chips. The dataset contains 12 subsets with a total of more
than 10,000 images of which around 10% are anomalous |].

2For more information on how PatchCore and GLASS calculate the anomaly score, see sections 3.3.5 and 3.4.6,
respectively.

3.1.3 MPDD

First introduced in 2021, the Metal Parts Defect Detection (MPDD) dataset is a smaller dataset with
6 subsets and around 1,000 images. The dataset is particularly helpful because of its pixel-precise
annotation masks, which can be helpful in the classification of anomalies. |]

3.1.4 WFDD

This dataset, the Woven Fabric Defect Detection (WFDD) dataset, features 4,101 woven fabric
images and was first introduced in the GLASS paper. The anomalies in the dataset are textural in
nature and hence provide a benchmark in measuring the performance on weak defects |].

3.1.5 DTD

Lastly, the Describable Textures Dataset (DTD) contains 5,640 texture images with textures from
a wide range of images collected ‘in the wild’ |]. What sets this dataset apart is the fact
that it was not acquired in a fully-controlled industrial environment.

3.2 Components of an anomaly detection model

3.2.1 Auto-encoders

An auto-encoder (also: autoencoder) is, in its most basic form, a neural network that is trained
to reconstruct a compressed, encoded input into a decoded output that approximates the original
input | ,]. The decoded output is a reconstructed, decoded image in this case.

A train-related use case is a paper by Gasparini et al., which focused on obstacle detection
on railways from the point of view from a moving camera, with a changing background | .
In our use case, the camera is static, but the train is moving and the background may differ.

The paper by Gasparini et al. uses an auto-encoder structure to establish a normal
situation. The model subsequently reconstructs an image from the input image, after having applied
some smoothing to the input image to reduce the effect of different ballast between and on top of
the tracks |]-

Absolute
difference
e —

- R

0 — 10,1]

) [T CNN
encoder-decoder l
(S]

—
Gradient

difference

Figure 3: Auto-encoder architecture that the paper by Gasparini et al. uses. The frame is first
cropped and subsequently fed to the encoder-decoder. Next, the model takes the absolute and
gradient difference to compare the input image to the reconstructed frame from the auto-encoder.
Finally, the stacked absolute and gradient difference image are fed into a classifier network that
either outputs the presence (1) or absence (0) of anomalies.

In the most minimal case for an anomaly detection model, an auto-encoder model compares
the reconstructed image to the input image on the basis of criteria, such as the absolute difference
and gradient difference.

3.2.2 Transfer learning

Transfer learning involves first training a model on a problem similar to the actual problem (on
a different sample) and then using that model for another task [, |. The addition
of a student-teacher feature offers an unsupervised equivalent to transfer learning, which uses
discriminative embeddings from pretrained networks and is popular in supervised learning.

The addition of a student-teacher feature in computer vision takes away the limitations of
models that deal with large high-resolution datasets, such as necessary dimensionality reduction
and heavy training data subsampling. In a typical student-teacher model, such as Uninformed
Students, student networks are trained to regress the output of a descriptive teacher network. If the
output from the student network differs from the teacher network, those differences are considered
anomalous |].

3.2.3 Global-local

Another anomaly distinction that has not yet been addressed is that of global and local anomalies.
Local anomalies are related to low-level features (2.2.1) and can be identified by their neighborhood,
whereas global anomalies are mostly semantic and require a larger receptive field to be detected
|]

Global-local anomaly detections models, such as GLAD (Global-to-Local Anomaly Detector)
and GLASS (Global and Local Anomaly co-Synthesis Strategy), aim to extract information form an
image that is useful in detecting both types of anomalies | ,].

3.2.4 Segmentation

Another contribution to anomaly detection, and to computer vision in general, is segmentation.
Segmentation is important because it can be used to leverage domain-specific knowledge about the
image in order to detect anomalies. After performing segmentation on objects, it is easier to detect
both structural and logical anomalies. Segmentation works by either clustering pixels with similar
texture properties (region-based) or by attempting to find ‘texture edges’ between pixels that come
from different texture distributions (boundary-based) |]-

There are different types of segmentation: semantic segmentation, instance segmentation,
and panoptic segmentation. Semantic segmentation offers a pixel-level classification, including
amorphous or uncountable regions |]. Instance segmentation, on the other hand, focuses on
distinguishing countable ‘things’ in these semantic segments, and to distinguish individual instances
of the same class | |. Within instance segmentation, object detection is defined as bounding
areas of same class instances with so-called bounding bozes. Finally, panoptic segmentation seeks
to combine both semantic and instance segmentation in order to assign labels to each pixel and
identify objects. Figure 4, from the paper by Kirillov et al., shows a visual representation of the
different types of segmentation |].

(c) instance segmentation (d) panoptic segmentation

Figure 4: This figure is from the paper by Kirillov et al. [[KHG 18], For a given image (a), this
figure shows the ground truth for: semantic segmentation (b), instance segmentation, being the
colored areas, and object detection, being the bounding boxes (¢) and panoptic segmentation (d).

Segmentation-based anomaly detection adds a branch to the standard auto-encoder
architecture by segmenting the input image after encoding. The model then proceeds to detect
anomalies in these objects. Examples of this type of anomaly detection can be found in Part
Segmentation-based Anomaly Detection (PSAD) and Component Segmentation-based Anomaly
Detection (CSAD), which each adds more stages to the basic auto-encoder structure [[KACT 24,
HL24).

3.2.5 Combining different components

Models such as PaDiM and later PatchCore leverage transfer learning (3.2.2) in the context of
computer vision by using a so-called ‘pre-trained backbone’ [RPZ722 DSILA20]. These encoders
(3.2.1) are pre-trained on a large dataset of images, such as ImageNet, which is a visual database
with over 14 million images [ima]. Pre-trained backbones extract features from input images
[ZAAT21]. Feature extraction (2.2.1) is facilitated by these pre-trained networks because they have
generally been trained on a significantly larger dataset than the target dataset.

Other models, such as CSAD and GLASS use a combination of a global-local-architecture
(3.2.3) and a student-teacher-architecture (3.2.2) [HL24, CLLZ24]. Outputs from both local and
global student networks are compared to an established ‘normal’ output from a (pre-trained)
teacher model. The introduction of global-local-architecture is chosen to detect both local and
global anomalies (2.3.1).

The next two sections will elaborate on the architectures of two specific models, being
PatchCore (3.3) and GLASS (3.4), and draw a comparison between them.

3.3 PatchCore

PatchCore is an anomaly detection method that focuses on detecting patch-level anomalies. Input
images are broken down into patch-level features. The main idea is that the entire image can be

8

considered anomalous if there is a patch that is anomalous. The reason why PatchCore was chosen
as a first model in this research is its approach to address the cold-start problem. The cold-start
problem arises in scenarios where acquisition of normal images is easy, but acquiring anomalous
images is expensive and elaborate. Other motivations behind the choice for PatchCore are its
relatively high performance on the MVTec AD benchmark dataset (3.1.1) of up to 99.6%, as well
as short training times related to the use of only a single epoch during training |].

il Training [Testing Test Sample

PatchCore
J ®

ol Anomaly Score
Anomaly \

O Segmentation

locally aware
o patch features

‘—».

locally aware
patch features

‘—».

Pretrained Encoder | J ~ °"7"*"**
¢ Coreset Subsampling

Nominal Samples

Memory Bank

Nearest Neighbour |
Search '

\

Figure 5: General overview of the PatchCore model showing a shared retrieval of locally aware
patch features (3.3.2) in both training and testing alongside a pretrained encoder (3.3.1). Moreover,
it presents training phase-specific coreset subsampling (3.3.4), which determines the size of the
memory bank (3.3.3), against which the testing phase compares its locally aware patch features,
derived from test samples by means of nearest neighbor search leading to its final anomaly score
(3.3.5).

3.3.1 Pretrained encoder

PatchCore leverages transfer learning (3.2.2) by using a pre-trained network ¢. Due to a lack of
data, it is often not feasible to train a computer vision model on all features present in the set of
input images. Therefore, PatchCore uses architectures that were pre-trained on ImageNet. The
architecture used in this thesis is WideResNet-50-2 | .

PatchCore builds a memory bank M consisting of mid-level feature representations from
training data, serving to extract features from the test images (2.2.1). The reason for choosing
this feature representation is to avoid features that are too generic or too heavily biased towards
ImageNet classification. |].

3.3.2 Locally-aware patch features

This formally results in an image x; € X, given dataset X', with features of that image denoted as:

Gij = ¢j(xi), (1)

where j represents the index of feature maps from ResNet-like architectures ¢. In the
case of WideResNet-50-2, we have that j € {1,2,3,4}. The formal definition of selecting mid-level
features translates into taking j € [2, 3].

The collection of the features of an image x; is then defined as the feature map:

¢i,j c Rc*xh*xw*’ (2)

9

where ¢; ; is a three-dimensional tensor of depth ¢*, height A* and width w*. Combining
(1) and (2), we arrive at:

(bi,]'(ha w) = (25]'(1’1', h7w> € Rc*v (3)
where ¢; j(h,w) denotes the c*-dimensional feature slices at positions h € {1,...,h*} and
w € {1,...,w*}. This notation relates to image-patch feature representation. PatchCore aims

to increase receptive field size without losing spatial resolution when composing each patch-level
feature representation.

The neighborhood of a patch of patch size p is represented as ngh’w). PatchCore uses
adaptive average pooling to aggregate these feature vectors.®> The collection of all patch-features
for a feature map tensor ¢; ; is Ps (i ;)-

3.3.3 Memory bank

Finally, we arrive at the definition of the PatchCore memory bank:

M= Puyly(x)). (4)

xiEXN

which is the union of locally aware patch-feature collections of all training samples z; € X, with
each element denoted m € M.

3.3.4 Coreset subsampling

As the set of image samples Xy grows, the memory bank M grows exceedingly larger, which
subsequently increases inference times. To reduce M, PatchCore uses coreset subsampling, resulting
in an M-coreset M covering only parts of the original memory bank. PatchCore uses greedy
coreset sampling instead of random sampling. The exact calculations behind the coreset subsampling
can be found in the original paper | |. For the scope of this thesis, we will focus on the
percentage n to which the original memory bank was subsampled or the coreset (sub)sampling
ratio, denoted r.

3.3.5 Anomaly score and nearest neighbor search

The image-level anomaly score s € R for a test image x'" is estimated by taking the maximum

distance score s*. This maximum distance score s* is calculated between test patch-features in the
patch collection P(z'") and each respective nearest neighbor m*.

Suppose we have memory bank features m* closest to anomaly candidate m'**. The
general idea is that anomaly score is increased if these memory bank features m* are far away from
neighboring samples. This notion is formalized by the following two formulae:

§* = Hmtest,* . m*H2> (5)

where s* is again the maximum distance score between patch features, m™®%* is the anomaly

candidate and m* is the nearest neighbor in M, calculated by taking the 2-norm or Euclidean

3For more information on the exact calculation, please refer to the paper by Roth et al. |]

10

test:* and m*, which are themselves defined as:

—mla, (6)

distance between m

test,* * test

,m* = argmax argmin||m
mteste'p(xtest) meM

where the Euclidean distance is calculated between each test patch feature m'* and its nearest

neighbor m in the sampled memory bank M (or argmin). From all patch features, the one with
the largest distance is identified as the anomaly candidate m'%* by means of argmax.

The anomaly score s is then calculated by performing some re-weighting on the Euclidean
distance between m'*"* and m* before multiplication with the maximum distance score s*:

test,*

expllmt™ — | *
s=11- - - s", 7
(S e oy XN — g

meN,(m

where N,(m*) represents the b nearest patch-features in M for test patch-feature m* and s* is
multiplied by 1 minus the re-weighting of (5).

3.3.6 Known deficiencies

Despite the state-of-the-art performance of PatchCore on benchmark datasets, there are some
known deficiencies both on a theoretical and a practical level. First of all, there is a trade-off
between short training times and GPU memory usage. PatchCore has an innate feature of requiring
only a single epoch for training, which keeps training times relatively limited compared to other
models requiring multiple epochs. On the other hand, PatchCore stores all extracted features from
training images in memory to create its memory bank. This means that the memory usage of a
PatchCore-model scales with the size of the dataset. PatchCore thus proves less suitable for larger
datasets.

A more practical downside to the use of PatchCore in our use case is its core assumption that
an anomalous patch directly translates into an anomalous image. The reason for this disadvantage
is clear from the setup of our dataset: there is no constant background nor lighting. Since there is
no segmentation pre-processing of the input data, PatchCore might classify normal images with
shadows or different backgrounds as anomalous.

3.4 GLASS

GLASS stands for Global and Local Anomaly co-Synthesis Strategy, combining a global-local
architecture (3.2.3) and a synthesis-based method (2.2.3). What sets GLASS apart is that it
combines image-level and feature-level synthesis of a broader coverage of anomalies. The choice
for GLASS as a second model comes with its near-perfect AUROC of 99.9% on the MVTec AD
benchmark dataset (3.1.1), in addition to a 98.8% AUROC on the VisA dataset (3.1.2), 99.6%
on the MPDD dataset (3.1.3) and 100% on the WFDD dataset (3.1.4). However, this model was
not solely chosen on the basis of its good performance. The main idea behind GLASS is that it
minimizes the overlap between anomalous and normal samples, as opposed to traditional anomaly
synthesis strategies | .

The minimization of overlap between anomalous and normal samples is especially important
in our use case. The reason for this is that there are only a limited number of anomalies, so a clear
separation between normal samples and anomalies is an indication that the model performs well.

11

Input Image x; Concat. Normal Feature ¢; Adapted Normal Feature u; Normal Output z;,

| \
Feature Extractor* Feature Adaptor* [[Discriminator*
\ E,__ & 4 o D, "
, Normal EEEN
| —
v v . 1.Gaussian Noise .
1.Anomaly Mask (1T [
| 2.Gradient Ascent L
2.Anomaly Texture GAS ... > e > e HRisciimina ol ... > Lgus
3.Truncated Project. v
3.0verlay Fusion ‘
y
Gaussian Anomaly Feature g; Global Anomaly Feature v; Global Anomaly Output z; g4
v
LAS - T
Feature Extractor* RN Feature Adaptor* l ‘ Discriminator*
------ > el e O | e L
\ Ey & [4, © ‘ D, o) las
\ |
Local Anomaly x; Concat. Anomaly Feature ;. Local Anomaly Feature u;; Local Anomaly Output z; /s
* Shared Weight —> Train & Test == »> Only Train GAS: Global Anomaly Synthesis LAS: Local Anomaly Synthesis

Figure 6: GLASS consists of three branches, shown in figure 6, being a Normal branch, GAS branch
(3.4.4) and LAS branch (3.4.5). The Normal and LAS branch feature a feature extractor (3.4.1), a
feature adaptor (3.4.2) and a discriminator (3.4.3). The GAS branch only shares the discriminator
with the other branches.

3.4.1 Feature extraction

Similarly to PatchCore, GLASS uses a pre-trained backbone ¢, as defined in (1) and (2), combined
with feature aggregation through adaptive average pooling*. This aggregation derives the locally
aware vector SZ’jw from the neighborhood features of QSZ’]-“], constituting the feature map s; ;.> After
upsampling and merging s; ;, we obtain the concatenated feature map:

ti = E¢<£L‘1>,Wlth tl S RHmXWmXC, (8)

where ¢; is the concatenated feature map and C'is the channel size, defined as C' = ., C; (j
being the index of feature maps, as defined in (1)).

3.4.2 Feature adaptation

In addition to a feature extractor E, (2.2.1), GLASS proposes a feature adaptor A, (2.2.2). This
feature adaptor is implemented to mitigate domain bias on the features of feature extractor F,
similarly to how PatchCore only extracts mid-level features from its backbone ¢ and uses a memory
bank to mitigate ImageNet-specific bias.

Feature adaptation in GLASS is based on feature adaptation techniques from |].
Within the scope of this thesis, A, employs a single-layer perceptron. We define the result after
feature adaptation as:

Ut = A (), (9)

(2 3

where u?’w is the adapted normal vector, with h and w as defined in (3) and A, the feature adaptor.

4GLASS uses WideResNet- 50 and PatchCore uses WideResNet-50-2.
5Note that the notation of s i differs slightly from the notation in the PatchCore paper, s; ;j(h,w). The notations
will be used interchangeably in this thesis, depending on the model that is referred to.

12

3.4.3 Discriminator

All three branches of GLASS also share a discriminator D,,. The exact functioning of the discrimi-
nator is beyond the scope of this thesis and can be found in the original paper | |. After
feature extraction and adaptation, D,, gives a segmentation result, defined as:

where z; is the segmentation result following from discriminator D, and where w; is itself the result
from feature extraction and adaptation u; = A,(Ey(z;)) for input image z; € Xyeg.

The discriminator also employs a single, hidden layer perceptron with a sigmoid function,
that outputs the anomaly confidence zl-h " € R for each feature point which is obtained in the same
way as (10).

3.4.4 Feature-level Global Anomaly Synthesis Strategy (GAS)

The GAS-branch is distinct from the other branches (Normal and LAS) because of the different
input and operations that the branch features. This branch starts out by adding Gaussian noise
to the retrieved normal features to synthesize anomalies (2.2.3). The Gaussian noise is adopted
to simulate diverse anomalies. What makes GLASS more effective than other models that adopt
Gaussian noise is the fact that its anomaly synthesis is guided by gradient ascent on a branch-loss
function L4, which is calculated by taking the Binary Cross-Entropy (BCE) between the normal
feature discrimination z;,, = Dy(u;) and the ground truth of the feature map normal.

The GAS-branch implements a truncated projection, either Manifold or Hypersphere,
based on the a distribution hypothesis. This distribution hypothesis determines the bounds of the
anomaly features and their distribution in the feature space. Both the Manifold and Hypersphere
hypotheses have a distinct truncated projection to constrain the range of gradient ascent-controlled
anomaly synthesis.’ In implementations of the model, the distribution hypothesis is determined by
analysis of the image-level spectrogram.”

After adding Gaussian noise, based in the direction of gradient ascent on the loss function,
and constrained by the relevant truncated projection, the GAS-branch arrives at a global anomaly
feature v;. This feature is passed through the discriminator to obtain a global anomaly output z; gas,
with z; defined as in (10).

3.4.5 Image-level Local Anomaly Synthesis Strategy (LAS)

In addition to the synthesis of global, feature-level anomalies, GLASS also employs a LAS-branch,
which is focused on the synthesis of image-level, local anomalies. As opposed to the GAS-branch,
the LAS-branch departs from an input image instead of its adapted normal feature.

Before deriving potential local anomalies from the input image, the LAS-branch generates
two binary masks by Perlin noise. These masks are used to obtain the foreground mask of a normal
sample and shape of an anomalous region. After establishing the shape, an anomaly texture image
is obtained by randomly selecting an image from the DTD dataset (3.1.5) and performing randomly

5For more information on the exact derivation of both the Manifold and Hypersphere truncated projections,
please refer to pages 6 and 7 of the original paper |].
"Examples of this spectrogram

13

choosing three augmentation methods from a total set of 9 augmentation methods. Finally, the
LAS-branch uses an overlay fusion to detect weak defects (2.3.1). The output local anomaly image
is then processed by the extractor, adaptor and discriminator, similarly to the normal branch.

3.4.6 Anomaly score

The anomaly score is the result of taking the maximum value of all points in segmentation result z;
(10):

s :rg?uxz?’w, (11)

where s is the anomaly score, zzh "™ is the anomaly confidence at location (h,w) and D, is the

discriminator.® The anomaly thus returns the highest anomaly confidence found amongst different
pixel-level anomalies.

3.4.7 Known deficiencies

As a model with multiple training epochs, GLASS is prone to overfitting in line with other models
of a similar nature. In the original implementation of the paper, there is no early stopping to
prevent the model from continuing to train in a local optimum. The best model is determined
instead by performing inference at each iteration and saving the best model checkpoint. Following
the original configuration used for all benchmark results, the model would only stop training after
640 epochs. In settings with limited time and computational resources, this configuration would
pose an obvious challenge.”

Another point of attention is the way, in which the GLASS results were obtained. Rather
than providing the model with a training, validation and test set, the GLASS paper uses only
the train-test split that is already present in benchmark datasets, such as the MVTec dataset
(3.1.1). The model will learn from the test set in next epochs, which means that the test set is not
unseen. This would normally be considered bad practice in standard machine learning configurations.
In anomaly detection papers, this approach is common practice because of the scarcity of the
anomalies and the desire to compare models at their best performance. Since this thesis will compare
GLASS to PatchCore, which only has one epoch and does not learn from the validation or test
data, a different set-up for GLASS will be chosen to ensure fair comparison 4.3.

4 Methodology

The general study design is both comparative and iterative. The main challenge of this research is
comparing PatchCore and GLASS and adapting these models for the introduced use case. However,
a secondary goal of this research is to increase the chosen model’s performance in both anomaly
detection and localization and expand the scope to allow for images of different pantograph types
at every angle and in every weather circumstance.

8Tn the thesis S4p is used to denote the image-level anomaly score, as opposed to the pixel-level anomaly score
Sar. In this thesis, s will simply be used for the image-level anomaly score.

9As a reference, the author mentions training times of 4 hours to complete 640 epochs on a training set of 280
images, using an NVIDIA Tesla A800 as a GPU |].

14

4.1 Pre-processing

4.1.1 Data filtering

The images of train roofs and pantographs are currently taken daily at two railway sections in the
Netherlands, being Hekendorp and Hoofddorp [tre]. There is a degree of variation in the input
images in terms of weather and lighting conditions, angle, and pantograph types. Images are taken
in both rainy and sunny situations, at daytime and nighttime. Furthermore, there are three angles
at which the images are taken, being a top view and a view from a 45 degree angle from either the
left or the right side of the train.

The dataset consists of JPEGs and PNGs and comes with a CSV-file metadata, which
encapsulates some of the variables described above. The CSV-file features several relevant column
names, such as:

e device: the location of the camera

fleet: the train type

side: the side from which the image was taken

has_defect: whether the image is normal (healthy) or abnormal (defect)

file_id: the name of the image file

In order to filter the images based on the metadata, a DataPrepper class is devised to
create a pandas DataFrame based on criteria in a config.yml file.

At the start of this research, the model will be restricted to one angle and one pantograph
type. The angle will be chosen based on the most number of anomalies in that category, since the
extra normal images can be scraped, if needed. The normal situation will be established using
images taken in all weather and light circumstances to avoid overfitting on a certain scenario.

4.1.2 Cropping

For all models, the input image will be cropped around the pantograph. The pantograph image
is cropped using a YOLO (You Only Look Once) object detection model (3.2.4). What is unique
about this type of model is that it examines the entire picture only once, before identifying objects
and their positions |].

For this research, a pre-trained YOLOv5-model was devised | |. This model was
trained by the computer vision team of the NS Maintenance Department based on a standard,
non-finetuned YOLOv5x-model, and can classify active pantographs (in use), inactive pantographs
(out-of-use) and pantograph heads. For this research, only active pantographs are of interest.

4.1.3 Flipping

Pantographs can have two orientations, which are visually similar to a >-sign and a <-sign. The
orientation chosen for the first proof of concept was < since there were more pantograph images
pointing in that direction. However, for later versions, images pointing in the opposite direction
were flipped.

15

To facilitate the flipping process, a binary classifier (see: appendix B) was trained on
manually sorted data using YOLOv11 |]. YOLOv11 is a more recent version than YOLOV5,
which was used for cropping because it had already been pre-trained. The reason for the choice of
a YOLOv11-model is its higher accuracy and faster training times compared to YOLOv5 [Ult].

4.2 Dataset setup

After pre-processing, the images are subdivided into a train, validate and test set. An 80-10-10 split
was chosen with 80% of the images going towards training, 10% towards validation and another
10% towards testing. The splits are made on exclusive unit presence: trains with the same unit
number cannot appear in more than one split. This split is made to prevent bias towards specific
unit ranges.

4.3 General design

PatchCore. There are five iterations per model type, with every iteration being a new instance of
the model on the same dataset split, but with a different seed. The reason for the introduction of
five different seeds (0, 42, 200, 138, 159) is that model performance can fluctuate. Instances of a
PatchCore-model produce different results on the same dataset, based on their seed. The reason
for this is that PatchCore uses a k-center-Greedy method to perform coreset subsampling. Even
though subsequent steps in its coreset subsampling algorithm 1 are deterministic, the initial cluster
center for the k-center selection process is chosen randomly, by means of a seed. This approach
is based on the Core-Set Approach introduced by Sener and Savarese | |. In addition to this
k-center-Greedy method, the PatchCore-paper introduces random linear projections to reduce the
dimensionality of elements of the memory bank m € M, based on |].

Since PatchCore uses only one epoch, multiple iterations with different seeds will be used
to judge validation set performance. These iterations are then compared on their prediction scores,
i.e. what anomaly score is given to each image. Based on the distribution of prediction scores, the
anomaly threshold (2.3.2) is set, which determines whether a model has classified an image as
anomalous or not. Selection from these different seeds happens on the same criteria as the combined
scores in GLASS, (12) and (13).

GLASS. Since GLASS uses its test set as a validation set, the original implementation has been
slightly altered to only use the validation set during training. In the testing phase, the model
weights are loaded and inference is performed on the unseen test set. GLASS normally selects the
model with the highest AUROC from the training-validation phase. Due to the small number of
anomalies, not all validation sets contain anomalies. One of the challenges of the set-up of GLASS in
this context is to find a suitable heuristic in selecting the ‘best’ model. Images should generally
receive a low anomaly score and have a right-skewed distribution, meaning that higher anomaly
scores are less frequent than lower anomaly scores. In cases where there are no anomalies in the
test set, the criterion for choosing the ‘best’ model is based on a combined score:

Seqn = max(S) + a - med(S), (12)

where s, , is the combined score for a set of only normal images and S the set of all scores, over
which the maximum and the median is calculated. We take some constant o = % to weight these

16

scores against each other. The goal is to minimize this combined score.

In the original setup, the sum of the image-level AUROC and pixel-level AUROC was
taken to select the best model. In cases where anomalies are present in the validation set, this thesis
chooses to diverge from the AUROC as a heuristic for choosing the ‘best” model. The reason for
this is that the pixel-level AUROC of only a very small number of anomalies or even a single one is
not representative of the fit on unseen anomalous images. Furthermore, the image-level AUROC
can be high, even if there is a poor absolute separation between normal and defect images. This
thesis proposes another combined score, which is calculated as follows:

Se.a = APimage + med(S,) — med(S,,), (13)

where s, is the combined score for a set of normal and anomalous images, S, is the set of scores for
anomalous images, .S,, is the set of scores for normal images. The goal is to both maximize Average
Precision (AP) and the difference between anomaly scores for normal and anomalous images. The
Average Precision for an image is already calculated by the model by taking taking the area under
the precision-recall curve (weighted mean of precisions at each threshold where recall increases)
[|. The score gap or difference between the median of the anomaly scores for normal images
and the median of the anomaly scores for anomalous images is calculated at every epoch, during
inference. This score gap will also be referred to as the separation margin.

In both cases, the ‘best’ model is defined as the model with the highest combined score. Due
to computational and temporal constraints, the full 640 epochs will not be used for all experiments.
The results in the proof of concept were run for only 50 epochs and the results after the proof of
concept were run for 500 epochs.

4.3.1 Smallest possible subset

As a proof of concept, the input image is cropped around one pantograph type.'® Moreover, the
focus of this first version is selecting anomalies that are easiest to find, i.e. big and high contrast,
and choosing the smallest subset (of the bigger dataset) with the largest number of anomalies. This
version is taken at only a single location and with a single pantograph arm orientation.

4.3.2 One pantograph type

The subset of the data is then expanded to (1) include two pantograph arm orientations, by means
of flipping (4.1.3), and (2) the two locations, Hekendorp and Hoofddorp. The goal of this expansion
is to expose the model to more background variations during training, such that it can possibly
infer the foreground-background separation. Note that (1) and (2) involve two different steps in the
proof of concept.

10This might mean there are several train types sharing the same pantograph type.

17

5 Experiments

5.1 Experimental Details

Datasets. Based on the pantograph heads in 2.1.2, there are six main subsets of the dataset,
corresponding to the different types of pantographs, being VIRM_4, SLT_4_6_VIRM_4, ICM_1_4,
VIRM_6, DDZ_4_6, and SNG_3_4. The exact details of these six datasets can be found under A.2.
In addition to these six datasets, the ICM_1_4-dataset, being the biggest, has substantiated this

research by means of smaller proof-of-concept-subsets of the dataset:

e ICM_1_4_Hekendorp_left: The first version of the subset has images only taken from the
left side, at device Hekendorp and with train fleet either ICM 1 or ICM 4, since these two
fleets share the same pantograph type. Only cropping (4.1.2) was applied to these images.
The resulting subset contains a total of 169 train images, 21 validation images and 23 test
images (21 healthy images and 2 defects), roughly adhering to the 80-10-10 split.

e ICM_1_4_Hekendorp_lt: The second version of the subset features images taken in Hekendorp
with pantograph arm orientations facing left (<, less than, abbreviated: 1t). This orientation
was either already present or flipped later (4.1.3). The resulting subset contains 299 train
images, 31 validation images and 50 test images (48 healthy images, 2 defects).

e ICM_1_4: The final step in the proof of concept is to optimize the models on the ICM 1 & 4
with pictures from both locations and both sides (flipped to all be in the <-direction). This
dataset consists of 671 train images, 98 validation images (97 healthy images, 1 defect) and
87 test images (85 healthy images, 2 defects).

The remaining datasets have the following sizes:

68 test images (66 healthy images, 2 defects);

e SLT_4_6_VIRM_4: 446 train images, 51 validation images (50 healthy images, 1 defect) and

e SNG_3_4: 278 train images, 45 validation images (44 healthy images, 1 defect), 39 test images
(38 healthy images, 1 test image);

e DDZ_4_6: 155 train images, 19 validation images, 14 test images (13 healthy images, 1 defect);

e VIRM_4: 148 train images, 25 validation images, 18 test images (17 healthy images, 1 defect)

Evaluation metrics. The first phase consists only of fitting the model to the training and
validation set. The reason for a 10% reservation for validation is to allow for intermediate evaluation
of model performance on a separate set than the final test set and, eventually, hyperparameter
optimization 5.3. Not all validation sets will have anomalies in them. In such cases, the distribution
of the normal images will serve as a guide, as formalized in (12).

In case the validation set does contain anomalies, the evaluation metrics used are recall
(or true positive rate) and AUROC. The AUROC is defined as the area under the ROC, which
plots the true positive rate against the false positive rate and has a value between 0 and 1, with

18

a higher value indicating a better-performing model, whilst recall is equal to the number of true
positives divided by the total number of positives | ,].

The goal of this optimization is to establish what model has the least false positives on
the validation set. Less number of false positives equals a higher workload reduction, which is the
reduction in number of images that have to be manually checked. The false positive rate target
that NS sets for the first version of its models is at less than 10% given the large number of normal
images.

After training and validation, recall and AUROC are again considered to evaluate the
performance of the model on the test set. Since there are only few anomalous images, missing one
images can already have a significant influence on the recall. Therefore, the target is to have a
first model with a recall of around 60%. Another metric of interest is the error (or the number
of misclassified samples divided by the total number of samples). Models with a lower error are
favorable over models with a higher error rate.

In addition to these performance metrics, the mean pu, standard deviation o and deviation
from the mean of the anomalous samples will serve as a guide to model significance. Judging if
an anomaly falls in the appropriate percentile will require calculating the corresponding empirical
percentile:

* 1 o *
Pemp(s”) = n Z I{s; > 57}, (14)
i=1

where pe,, is the empirical percentile of the anomaly score of the anomalous sample s*. The
empirical percentile is calculated by taking the sum of all normal samples that have an anomaly
score s; € § that is higher than that of the anomalous sample, divided by the total number of
samples n. This metric was chosen because no prior (normal) distribution of normal samples is
assumed.

Experimental set-up. All experiments were run on an NCasT4_v3-series virtual machine,
equipped with an NVIDIA Tesla T4 with 16 GB of GPU memory and AMD EPYC 7V12(Rome)
CPUs with 8 cores and 56 GB RAM [mat]. Unless stated otherwise in the caption of the results,
the experiments were run in the original configuration, found in Appendix C.

19

5.2 Proof of Concept

The proof of concept has an exploratory nature, to finetune settings and compare results in a
computationally less expensive way, as well as a goal to substantiate the choices that were made
in pre-processing and general design. Since the proof of concept will cover subsets of the same
dataset that increase in size until they cover the original dataset ICM_1_4, this section lists the
three anomalies in figure 7 to make it clear which anomaly is covered by which subset.

Figure 7: From left to right, we find anomalies 7a: a bent cable (structural anomaly) present in
all subsets of the proof of concept, 7b: a white bird (logical anomaly) present in all subsets of the
proof of concept, 7c: a small bird (logical anomaly) present only in the original dataset ICM_1_4.

5.2.1 Experiments on ICM_1 4 Hekendorp _left

The first dataset used in the proof of concept is ICM_1_4_Hekendorp_left.

Prediction score results. After training the two models, a plot of the occurrences 8 of prediction
scores will be devised to gain visual insight into the distribution of prediction scores for normal and
anomalous images. A higher bar in the plot indicates that more samples received a certain score.

With a deviation from the normal samples of 4.020, PatchCore has a stronger separation
margin between the logical anomaly and normal samples than GLASS, which shows no significant
separation for the logical anomaly at a deviation of 1.75¢. For a final proof of concept, a better
separation margin between the normal samples and both the logical and structural anomaly is
desirable.

In addition to a smaller separation margin, GLASS misclassified one normal image as
an anomalous image, which results in both anomalies 7a and 7b having in an empirical percentile
Pemp(s™) = 0.04 with a test size of 23 images.

20

Occurrences of Prediction Scores Occurrences of Prediction Scores

—=—- Threshold

[Healthy
Logical anomaly
Structural anomaly

~
L

=== Threshold
1 Healthy
Logical anomaly
Structural anomaly

v -}
i i

QOccurrences
S
L

w
i

Occurrences

[S]
T = e o

T T T T T T T T T T T T
0.5 0.6 0.7 0.8 0.9 1.0 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Prediction Score Prediction Score
(a) PatchCore on ICM_1_4_Hekendorp_left (b) GLASS on ICM_1_4_Hekendorp_left

Figure 8: On the left side 8a, we find the results for PatchCore with a coreset sampling ratio
r = 0.01 and number of neighbors k = 5. Out of five different seeds 4.3, the first run (seed 0) was
chosen. At an anomaly threshold of ¢t = 0.65, PatchCore can distinguish both the structural 7a and
the logical anomaly 7b. On the right side 10b, we find the results for GLASS. The best combined
score (13) was achieved after 15 epochs out of a total of 50 epochs. GLASS has lower anomaly
scores, in line with the combined score that is used to pick the best model based on (12) and can
find both anomalies. GLASS has a smaller separation margin between the anomalies and normal
samples, as well as one normal sample being classified as anomalous at anomaly threshold ¢ = 0.5.
Both figures display a skew to the right for the normal samples, which is expected because normal
images should generally have a low anomaly score, with a mean score of ;1 = 0.58 and p = 0.46 for
PatchCore and GLASS, respectively.

&~

(a) Ground truth (b) PatchCore

Figure 9: In this figure, from left to right: 9a the ground truth containing a binary mask with the
anomalous region being colored white, 9b the output anomaly map from PatchCore and 9c the
anomaly map from GLASS. PatchCore displays a clear localization of the logical anomaly 7b in
question, whereas GLASS fails to demarcate the anomalous area.

21

Qualitative results. To discover which parts of the image trigger the model, we will take a
closer look at individual anomaly score maps in figure 9. The first two anomaly maps that will be
compared are those of the logical anomaly as detected by GLASS and PatchCore.

One of the advantages of PatchCore becomes apparent in this qualitative example.
PatchCore is known to perform effectively even when small data sets are provided | |. The
GLASS anomaly score map for 7b does not display a distinct anomalous region except for some
brighter areas around the edges of the bird.

Since GLASS runs for several epochs and ‘learns’ from the training data, training for
more epochs and adding more training data can both improve the performance of the model. The
latter will be the focus of this proof of concept (5.2), whilst the former will be explored in the full
experiments after the proof of concept (5.3).

Performance metrics. To quantify the qualitative and statistical differences between the two
models that were addressed earlier, the first part of this proof of concept will be concluded by
means of a table summarizing the performance metrics.

Method PatchCore | GLASS
AUROC 1 0.99 0.95
Recall 1 1.0 1.0
Error | 0 0.04
Misclassifications | 0 1

Table 1: This table shows the different performance metrics for the PatchCore and GLASS models.
This instance of the PatchCore-model achieves a near-perfect AUROC with zero misclassifications.
The GLASS-model performs slightly less on the provided data set.

Judging solely by this table of performance metrics, the differences between the two
models seem minute. However, for our specific use case, the PatchCore-model outperforms the
GLASS-model on this dataset for several other reasons that are not captured by the table:

e First of all, the PatchCore-model shows a more significant separation margin between the
anomalous and normal samples.

e Secondly, PatchCore is able to localize the anomalous region, which is useful in a shift to
fully-automated anomaly detection.

The question is how well PatchCore will generalize on bigger datasets with more variation.
The hypothesis for GLASS is that its performance will increase after expanding the datasets and
increasing training epochs.

5.2.2 Experiments on ICM_1_4 Hekendorp_lt

In order to expand the data sets, flipping (4.1.3) was applied to images in the bigger dataset
that had the opposite pantograph arm orientation. Whilst a flipped background does add extra
background variation to the images, the expectation is that the extra data will lead to better
foreground recognition and general model learning.

22

Prediction score results. The following results were obtained by running PatchCore and
GLASS on the ICM_1_4_Hekendorp_lt-dataset.

Occurrences of Prediction Scores Occurrences of Prediction Scores
i

=== Threshold
Healthy
Logical anomaly
Structural anomaly

=== Threshold
Healthy
Logical anomaly
Structural anomaly

=
o
L

10 A

= =
N =
L L

=
o
L

Occurrences
Occurrences

W

T T T T T T T T T T T T
0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Prediction Score Prediction Score

(a) PatchCore on ICM_1_4_Hekendorp_lt (b) GLASS on ICM_1_4 Hekendorp_lt

Figure 10: On the left side 10a, we find the results for PatchCore. Out of five different seeds 4.3,
the first run (seed 0) was chosen. At an anomaly threshold of ¢t = 0.65, PatchCore can distinguish
both the structural 7a and the logical anomaly 7b. On the right side 10b, we find the results for
GLASS after training for 50 epochs with the same parameters as the original paper. GLASS is
not able to find the structural anomaly 7a. Both figures display a skew to the right for the normal
samples, which is expected because normal images should generally have a low anomaly score.

5.2.2.1 Original set-up.

Since PatchCore only runs for one epoch, adding anomalies only serves to evaluate the performance of
the model after training and not during. In order to have the setups of PatchCore and GLASS match,
the models were not presented with any anomalies during the time of training and validation for
this experiment. Both models show a clear separation between the normal samples and the logical
anomalies, though GLASS does not recognize the structural anomaly under the current threshold.
The structural anomaly in question is small and hard to distinguish from its background. A possible
reason why PatchCore does recognize the structural anomaly is because of its main paradigm that
the entire image can be classified as anomalous if there is an anomalous patch |).

Qualitative results. We will hence zoom in on the images themselves and their respective
anomaly maps in figure 11. As is visible from both figure 10 and 11, GLASS outputs lower anomaly
scores, on average, than PatchCore. This behavior is directly correlated to the combined score
function that were defined in (12), which penalizes high anomaly scores for normal images. One
option is to include one anomaly in the validation set.

The structural anomaly 7a included in this dataset concerns a bent part of the pantograph,
which is visually similar to the background. Due to its similarity to the pillar in the background of the
image, this anomaly is particularly difficult to distinguish, even for the human eye. PatchCore seems
to be more sensitive to the anomalous area. However, it should be noted that the model also picks

23

(a) Ground truth (b) PatchCore (¢) GLASS

Figure 11: In this figure, from left to right: 11a the ground truth mask for anomaly 7a, 11b the
output anomaly map from PatchCore and 11c the anomaly map from GLASS. The PatchCore-model
is more sensitive to patches in the image that do not seem anomalous to the human eye. The
GLASS-model, on the other hand, shows little sensitivity over the entire image, except for some
area on and around the bent part of the pantograph.

up some non-anomalous regions, which could indicate that the model does not ‘recognize’ the
anomaly as such.

5.2.2.2 Anomaly in validation set

If one anomaly is included in the validation set, we get a better overview of GLASS-performance
during training. This leads to the following results:

Occurrences of Prediction Scores Occurrences of Prediction Scores

==~ Threshold
Healthy
Logical anomaly 8
Structural anomaly

—=- Threshold
Healthy
Logical anomaly
Structural anomaly

Occurrences
Occurrences

0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 10

Prediction Score Prediction Score
(a) GLASS on validation set (b) GLASS on test set

Figure 12: This figure shows results of the same GLASS-model on the validation set 12a and the
test set 12b. The best combined score (13) was achieved after 47 epochs out of a total of 50 epochs.
In both cases, there is some degree of separation between the anomaly and the normal samples.
On the validation set, the distribution of prediction score occurrences does not show a right-skew
and the separation margin is minimal. In the test set, the logical anomaly deviates 3.190 from the
mean of the distribution p = 0.24.

24

Compared to the configuration without an anomaly in the test set, there is a translation
to the right for the distribution of prediction score occurrences (= 0.10 to p = 0.24) and increase
in misclassifications. The shift of the distribution and extra misclassifications can be explained by
the difference in selection criterion for a ‘best’ model. For the configuration without anomalies in
the validation set, model instances producing low maximum anomaly scores and median anomaly
scores were favored (12). Meanwhile, the configuration with anomalies in the validation set favors
model instances with a combination of higher image-level average precision for anomalous images
and a higher score gap between median anomaly scores of anomalous and normal samples (13).
The focus on image-level average precision and difference between medians does not necessarily
lead to a lower number of misclassifications. For instance, a model that recognizes an anomaly well
on a pixel-level may also be more sensitive to normal images.

Anomaly 7b with anomaly score s = 0.62 is in empirical percentile pe,,, = 0.02 with test
samples n = 50 because there is one normal sample that has a higher anomaly score. We will zoom
in on this sample and compare its anomaly score map to the one of the logical anomaly, by way of
example.

(a) Original: false positive (b) Overlay: false positive (c) Overlay: true positive

Figure 13: This figure shows the original image 13a and overlay of the false positive 13b with an
anomaly score of s = 0.71, compared with the overlay image of anomaly 7b with anomaly score
s = 0.62. In the original image, there is a piece of construction equipment in the background
triggering the GLASS anomaly detection model.

As follows from figure 13, this GLASS-model instance shows some degree of sensitivity
to the background. A possible reason for this is the fact that the construction equipment in the
background was not possible in the training set. The aim to reduce background sensitivity is a core
problem of this research. One possible solution is make manual splits and make sure that these
types of variations appear in the training set. However, we do not want the model to consider the
construction machinery as a natural or normal part of the background since it is not. In addition
to this, manually selecting which images must appear in a certain split is labor-intensive.

Another solution would be to train a classification model recognizing objects in the image
and then making splits based on objects falling within a segmented area. This would normally
involve labeling all object instances manually. Recently advanced segmentation models have surfaced
that could facilitate the task, such as Meta’s Segment Anything in Images and Videos (SAM 2),

25

which can make segmentations of unseen images |]. This option remains out-of-scope for
this thesis due to the manual labeling.

We thus arrive at a trade-off between model performance and evaluation: adding an
anomaly to the validation test provides a more robust way to choose a best GLASS-model, but
will not always be possible, for example with subsets of the data that have only one anomaly.
Furthermore, it decreases the number of anomalies in the test set, which is our only reference in
evaluating how well the model performs on unseen data.

Given this trade-off, there are several options: gathering more anomalies, choosing different
parameters or training for a longer period of time. Gathering more real anomalies is not possible,
but generating synthetic anomalies and using them during validation is a possibility. This ensures
that the number of anomalous samples in the test set is maximal. Choosing different parameters
and longer training times are general solutions to boost performance but does not solve the problem

of scarce evaluation metrics during training.

Performance metrics. Summarizing the results from the different configurations, we arrive at
the following performance metrics:

Method PatchCore | GLASS! | GLASS-a!?
AUROC 1 0.98 0.78 0.98
Recall 1 1.0 0.5 1.0
Error | 0.04 0.02 0.06
Misclassifications | 2 1 3

Table 2: This table summarizes the performance metrics for the two different configurations of
GLASS, as well as the results for PatchCore. Both models reach the same AUROC and recall
due to a single anomaly being present. The error and number of misclassifications are lowest in
the original configuration for GLASS, given an anomaly threshold of 0.65 for PatchCore, 0.35 for
GLASS and 0.40 for GLASS-a. It should be noted, however, that PatchCore has one defect more

in the presented test set.

In summary, the results of this second part of the proof of concept are:

e PatchCore outputs a higher anomaly score for the logical anomaly 7b, compared to the
results of the smaller ICM_1_4_Hekendorp_left dataset. The anomaly score for the structural
anomaly 7a is only slightly higher. These improvements come at the cost of 4 misclassifications,
most likely due to the different backgrounds that are introduced when flipping some of the

images.

e Adding an anomaly to the validation set, improves the AUROC from 0.78 to 0.98 for GLASS at
a cost of 2 extra misclassifications. Additionally, there is a translation to the right for the
distribution of prediction score occurrences (from p = 0.10 to = 0.24).

e On average, GLASS outputs lower anomaly scores for normal samples with the bigger dataset.
The mean prediction score shifts from g = 0.46 to 4 = 0.10 when an experiment is repeated

1 No anomalies in the validation set
120ne anomaly in the validation set

26

with the same configuration on a bigger dataset, whilst the anomaly score of the logical
anomaly decreases by less. This is generally desirable and means that the separation between
normal and anomalous images becomes more visible.

5.2.3 Experiments on ICM_1_4

After initial comparison and evaluation of results on a smaller subset, the scope data are now
expanded to cover the entire ICM_1_4-dataset. This final part of the proof of concept serves to
optimize the configurations of both models on a full subset of the data. For GLASS, this means
running the model for 500 epochs, instead of 50, in the adapted train-validate-test-configuration
that this thesis uses. The emphasis of this section is on GLASS more than on PatchCore. The
section on hyper-parameter optimization (5.3) will elaborate more on PatchCore.

In order to ensure fair comparison to PatchCore later on, the adapted design described in
4.3 will be used for this experiment. The hypothesis is that a larger dataset and a more training
rounds will improve GLASS performance compared to previous experiments.

Prediction score results. The following prediction score plots show the prediction scores of
GLASS on the entire ICM-dataset:

Occurrences of Prediction Scores Occurrences of Prediction Scores
=== Threshold 12 I === Threshold
Healthy 1 Healthy
81 Logical anomaly 1 Logical anomaly
Structural anomaly 10 4 : Structural anomaly
1
i i
1 1
6 1 8 1
wi 1 w]
w 1 o 1
2 1 = 1
E 1 E 1
s i 56 i
o 4 ! 5] 1
o ! S 1
] 1
H 4 H
1 1
I 1
4 I I
2 I i
i 24 1
1 1
1 1
i 1}
I |
0~ ‘ ‘ ' ‘ . t . ‘ 0 r " ‘ ‘ | . . .
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Prediction Score Prediction Score
(a) GLASS on validation set (b) GLASS on test set

Figure 14: Results for the entire ICM-dataset run over 500 epochs with structural anomaly 7a in
the validation set and two logical anomalies 7b and 7c in the test set. After training for 328 epochs,
the best combined score was found. The test set shows a right-skew with a mean of ¢ = 0.46 and
clear separation for logical anomaly 7b deviating 3.620 from the normal sample mean, whereas the
other logical anomaly 7c is closer to the anomaly threshold ¢ = 0.7 with a deviation of 2.040. At
this anomaly threshold, there are three misclassifications.

27

As is visible from the prediction plots, GLASS attributes a higher anomaly score to 7b
than previous versions of the model (s = 0.93 compared to s = 0.37 in the ICM_1_4_Hekendorp_lt-
dataset). Another significant improvement from the first subset ICM_1_4_Hekendorp_left is the
increase deviation from the mean of normal samples from 1.750 to 3.620.

Logical anomaly 7c has a pen,, = 0.03 with a sample size of n = 87. In the next section,
the exact qualitative differences between the anomaly maps of both logical anomalies 7c¢ and 7b
will be entertained.

Qualitative results. To further evaluate the (localization) performance of this GLASS-model
instance, we will zoom in on the anomaly score maps of the anomalies in the test set.

() (d)

Figure 15: This figure shows the anomaly map and ground truth of anomalies 7b and 7c. Anomaly
map 15b shows a clear localization for anomaly 7b, though not the entire ground mask 15a is
covered. The localization for anomaly 7c in figure 15¢ does not show a strong overlap with its
ground truth mask 15c, however.

This instance of the model detects all anomalies at anomaly threshold ¢t = 0.7 but only
partially localizes them. The partial localization could be related to low sensitivity.

28

Performance metrics. To draw a comparison between GLASS and PatchCore on ICM_1.4, a
result for PatchCore from the HPO-section 5.3 is used:

Method PatchCore | GLASS
AUROC 1 0.97 0.99
Recall 1 1.0 1.0
Error | 0.20 0.03
Misclassifications | 18 3

Table 3: This table shows the different performance metrics for the PatchCore and GLASS models.
This instance of the GLASS-model achieves a near-perfect AUROC with three misclassifications
at an anomaly threshold of ¢ = 0.7. The PatchCore-model results were taken from table 4 with
coreset subsampling ratio » = 0.01, number of neighbors k£ = 5 and anomaly threshold ¢t = 0.6.
PatchCore performs slightly less on the provided data set.

In this case, GLASS clearly outperforms PatchCore. A possible reason for this better
performance is related to the presence of more training data. As stated before, PatchCore is known
to perform well on smaller datasets because of its memory bank sampling design |]. This
advantage diminishes with larger datasets where ‘traditional” epoch-based models have an edge.
The increase in epochs allows the GLASS-model ample time to learn from the more elaborate data.

To wrap up this section, an overview will be provided of the specific design choices for
GLASS and their effects, compared to PatchCore:

e Increasing the number of samples in the training set, increases the AUROC of the GLASS-
model from 0.78 (ICM_1_4_Hekendorp_left) to 0.97 (ICM_1.4).

o GLASS keeps suffering from low sensitivity issues, partially due to the chosen heuristic (13).
This leads to only partial localization.

e Flipping images is a ‘cheap’ method to gather more data. Instead of training two separate
models, flipping images allows for a single model to be trained on both pantograph orientations.
A side-effect is that the model will see more differences in background during training.

e Using images from both locations (Hoofddorp and Hekendorp) is advisable. The original idea
to keep the first dataset small held variation at a minimum, but resulted in a small test set
and, in the case of GLASS, a small separation margin. PatchCore fared relatively well on this
single-location dataset with a perfect recall and 0% error rate.

e GLASS has longer training times at around two days for ICM_1 4 (a dataset of 800 images)
if run for the full length of 640 epochs, whereas PatchCore takes around 20 minutes for the
same dataset and 100 minutes for all five seeds. GLASS has slightly shorter inference times
than PatchCore , which could play a role in live deployment.

29

5.3 Hyper-parameter optimization

Training times for PatchCore are significantly shorter at approximately 30 minutes per training run
for a dataset of around 800 images. Given its single epoch-structure, PatchCore does not ‘learn’
over different epochs. This leads us to this hyper-parameter tuning experiment, in which the coreset
sampling ratio r and number of neighbors k is varied and averaged over five different seeds. The
goal of this experiment is to find parameters r and k, such that the distribution of anomaly scores
shows a right-skew (positive skewness) and a low mean of the anomaly scores.

The chosen approach to this HPO-experiment is a simple grid search over r € [0.01,0.05],
k€ [3,4,5,6,7,8,9] and seeds {0, 42,200, 138, 159}. We will first evaluate the distribution properties
of PatchCore on the ICM_1_4-validation set, based on a heatmap of mean scores, skewness and
a line chart of prediction scores, similar to previously used prediction score results. The most
promising parameters will also be used to run models on the test set.

5.3.1 Validation set evaluation

Distribution properties. First, we will look at the distribution of the prediction scores, averaged
over the five different seeds. For the representation of the mean and skew of prediction scores over
these different parameters, a heatmap was chosen.

Mean of Prediction Scores Skew of Prediction Scores
3- 0.763 0.757 -0.750 3 0.907
2.2
~ -0.725 1.472
b ~ 2.0
Q v
2 0.700 S 1.513
o < 1.8
Q 0.675 o
c : c 1.525
O P
— 0.650 @
g -g 1.526 1.4
£ 2
0.625
e 1.526 12
0.600
1.475 -1.0
0.01 0.05 0.01 O.IG5
Coreset subsampling ratio r Coreset subsampling ratio r
(a) Mean prediction scores (b) Skewness

Figure 16: This figure shows the mean of prediction scores 16a and skewness values 16b for different
configurations. A higher number of neighbors k£ lowers the prediction scores mean. An increase
in the coreset subsampling ratio r does not show a similar trend. As is visible from the figure,
there is no change in mean prediction scores or skewness from k£ = 7 to k = 9 number of neighbors.
This could indicate that increasing the number of neighbors beyond k = 7 does not change model
performance.

An optimal configuration does not only have a low mean of prediction scores, but should

30

also have a positive skewness. Judging from these two heatmaps, models with a coreset subsampling
ratio of » = 0.01 and between k = 5 and k = 7 fulfill those criteria.

Prediction score results. In addition to the heatmaps themselves, we will take a look at the
occurrences of prediction scores. The bar plot has been changed to a line chart to allow for multiple
different parameters, but can be read in the same way, i.e. a higher number of occurrences means
that an anomaly score appears more often.

Occurrences of Prediction Scores (smoothed) Occurrences of Prediction Scores (smoothed)
16 G
14 10 \
12
\ 8
¢ 10 3 !
o v
S g 56
g g
S 6 \ S 4
4 \
\ 2
2 .
0 — = 0
0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 0.6 0.7 0.8 0.9 1.0
Prediction Score Prediction Score
r=0.01,k=3 r=0.01,k=6 r=0.01,k=8 r=0.05k=3 r=0.05k=6 r=0.05k=8
r=0.01,k=4 r=0.01, k=7 r=0.01, k=9 r=0.05k=4 r=0.05k=7 r=0.05k=9
r=0.01,k=5 r=0.05k=5
(a) r=10.01 (b) r=0.05

Figure 17: This figure shows the prediction score distribution for parameters k € [3,4,5,6,7,8, 9]
combined with » = 0.01 17a and » = 0.05 17b with a smoothing window of 5. Both figures show a
slightly more visible right-skew for a higher value for k, reflecting the findings from the presented
heatmap 16b. » = 0.01 seems to lead to more promising distributions with lower anomaly scores,
on average.

Generally, a lower number of neighbors k is favored when increasing the number does not
improve performance anymore. The reason for this is the increased memory usage when comparing
a higher number of patches. We are thus looking for a saddle point or a point where the performance
stops increasing.

Based on these criteria, parameters k € [4,5,6] and r € [0.01,0.05] will be selected as
candidate best parameters. The values for k were chosen because of their resulting means and skews
for both values of r and because there is some degree of variation between the results of these these
parameters. Both values of r will be tested on because of the small difference in means and the
unknown performance on the test set. Additionally, choosing only a single subsampling ratio based
only on skewness in this stage would lead to a less representative hyper-parameter optimization.

31

5.3.2 Test set evaluation

To further critically evaluate our candidate best parameters, models with these parameters will be
run on the ICM_1_4-test set containing all three anomalies 7a, 7b and 7c. Their prediction scores
will be averaged over the results from five different seeds, from which the performance metrics will
then be calculated.

Performance metrics. To evaluate the performance of the PatchCore-model instances with
different parameters, the same metrics as before will be used to compare the candidate best
parameter combinations.

Parameters r=001,k=4|r=001,k=5|r=001,k=6

AUROC 1 0.97 0.97 0.97
Recall 1 0.33 0.33 0.33
Error | 0.07 0.05 0.05

Misclassifications | 6 4 4

Parameters r=005k=4|r=005k=5|r=0.05k=6

AUROC 1 0.96 0.96 0.96
Recall 1 1.0 0.67 0.67
Error | 0.09 0.09 0.07

Misclassifications | 8 8 6

Table 4: These two tables show the performance metrics results for the candidate best parameters
r € [0.01,0.05] and k € [4,5,6] at an anomaly threshold of ¢ = 0.7. There is a lower recall for
a coreset subsampling ratio of » = 0.01 than at r = 0.05. This difference could be related to a
lower sensitivity, which is reflected in the mean prediction scores from figure 16a. As the number of
neighbors k increases, there is a slight decrease in the number of misclassifications and thus the
error rate. For r = 0.05, an increase in the number of neighbors also corresponds to a decrease in
recall.

Due to the small differences in AUROC and error, it is difficult to induce a ‘best’ set
of parameters. The combination of r = 0.05 and k = 4 achieves the highest recall, whereas the
combination of » = 0.01 and k£ = 5 has the lowest error rate and the highest AUROC at a threshold
of t = 0.7. If this threshold is lowered to t = 0.6, all parameters get a perfect recall and the
combinations r = 0.01 with k = 5 and k = 6 both get the lowest error rate at approximately 20%.
For a more exact overview of the relation between the anomaly threshold and the performance
metrics, figure 18 shows the precision-recall and receiver-operator (ROC) curves.

32

Precision-Recall Curve Receiver-Operator Characteristic

1.0+ — r=001Lk=14 1.0 -
— r=001,k=5
— r=00L,k=86
0.8 4 —— r=005k=4 0.8
—— r=005k=5
— r=005k=56 "
©
< 0.6 5 0.6
2 =
@ 5
D 3
[=%
= 0.4 H a=.| 0.4
= — r=0.01,k=4
— r=0.01,k=5
024 0.2 1 — r=0.01,k=86
— r=0.05k=4
—— r=0.05k=5
0.0 —— r=0.05k=86
00 E T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Recall False positive rate
(a) Precision-Recall Curve (b) Receiver-Operator Curve

Figure 18: This figure shows the precision-recall curve 18a and receiver-operator characteristics
(ROC) curves 18b for PatchCore run on the ICM_1_4-dataset. Both parameter combinations with
r = 0.01 and r = 0.05 have a perfect precision until a recall of 0.33 (one out of three correctly
classified anomalies) and then drop to a precision of 0.33 and 0.2, respectively. All parameter
combinations with » = 0.05 have an increasing precision between a recall of 0.33 and 0.67. However,
at a perfect recall, the precision of the models run with » = 0.05 is lower than that of those run
with » = 0.01. This is reflected in the ROC-curve, in which models with » = 0.01 have a slightly
lower false positive rate to get a perfect true positive rate.

The addition of these two curves offers insight into the exact trade-off between between
detecting anomalies and misclassifying normal samples as anomalous. This visualization offers the
most general image of the impact of different parameters. In the rest of this paper, PatchCore will
be run with » = 0.01 and k£ = 0.05. The reason for the choice of this parameter combination is the
relatively higher precision at a perfect recall. A perfect recall is more important in this use case
because of the limited number of anomalies.

We are aware that these results offer a limited generalization to other cases due to the
single dataset that the different models were run on. As a consequence of limited computational
resource and time constraints, it was chosen not to explore the influence of parameter-tuning on
the other datasets.

5.4 Comparative experiments on the entire dataset

In this section, the results on the remaining datasets will be summarized in a more condensed
fashion than in the proof of concept. This section will offer an overview of the AUROC scores for

the two models on all subsets of the data, as well as a qualitative overview of the anomaly maps of
PatchCore and GLASS.*

Performance metrics. Table 5 shows a full overview of the AUROC scores.

IBFor full reference of the prediction score results, please consult appendix D.1.

33

Method PatchCore | GLASS
ICM_1.4 0.97 0.99
SLT 4 6_VIRM 4 0.53 0.43
SNG_3.4 0.95 1.00
DDZ. 4.6 1.00 0.92
VIRM _4 0.86 0.88
Object average'* 0.86 0.84
Weighted average!® 0.83 0.81

Table 5: This table shows the AUROC scores for PatchCore and GLASS models on all different
subsets of the data. On average, PatchCore outperforms GLASS in terms of AUROC. AUROC
scores for individual datasets differ only slightly between the two models.

From the AUROC table, there seems to be no clear difference between PatchCore and
GLASS. Both models seem to score around the same, but there are some qualitative differences.
This is why the qualitative overview is used: to offer insight in what types of anomalies are detected
well by each model.

Input

Ground
Truth

il N

]
) |
W\
-

|

PatchCore

[A * 97
ni‘,;

Figure 19: Qualitative overview of all different anomalies present in the dataset, alongside their
ground truth masks and anomaly maps from PatchCore and GLASS. In general, PatchCore is
sensitive to more areas in the input image, but is also capable of picking out smaller, logical
anomalies. GLASS, on the other hand, shows overall low sensitivity due to the validation set
selection criteria that have been chosen. When it does detect an anomaly, it localizes it in a precise
fashion.

PatchCore scores well on both structural anomalies and is able to detect some of
the structural anomalies, whereas GLASS only detects the logical anomalies. As stated before,
GLASS anomaly maps contain less ‘noise’ (or areas that have been flagged anomalous, whilst being
normal).

The object average is the unweighted average of all different datasets.
5The weighted average is calculated by weighting based on the size of the test set.

34

6 Discussion

6.1 Summary of findings

The aim of this research was to establish the difference in anomaly detection performance between
PatchCore and GLASS in the context of train pantographs. In the results section, a distinction has
been made between logical and structural anomalies. Logical anomalies, such as objects or birds
around the pantographs, were the main focus of our research, whilst structural anomalies, such as
bent or damaged parts, were of secondary importance.

From the presented literature, GLASS was expected to outperform PatchCore because of
its higher AUROC scores. In contrast to earlier findings on benchmark datasets, this thesis found
varying results with regard to model performance. Looking purely at performance metrics, such as
AUROC, recall and error rate, GLASS is outperformed by PatchCore in a configuration without
anomalies in the validation set. It does, however, come to par with PatchCore when introducing an
anomaly to the validation set even if this anomaly is a small, structural anomaly.

On the one hand, differences between the original paper and this thesis are related to more
variations in background and lighting. On the other hand, the introduction of a separate validation
and test set also played a role in performance results. The use of a validation set and an unseen
test lead to a stricter evaluation criterion for a model, but does render results more representative
in the case of real-life situation, in which the model will also encounter unseen situations.

GLASS generally proved less sensitive to variations in background with a decrease in exact
anomaly localization as a trade-off, compared to PatchCore. PatchCore was generally triggered in
the case of logical anomalies and even some structural anomalies. However, it was also prone to
misclassifications with differences in background, lighting or weather conditions.

On a prediction score-level, both models showed a clear right-skew for normal samples,
especially as the input data grew, in which case the separation margin between normal and
anomalous samples also grew. This skewness diminished with smaller dataset sizes.

6.2 Limitations

6.2.1 Lack of anomalies & limited intermediate evaluation

A major source of uncertainty remains the problem of selecting a model based on a validation set
without any anomalies. The design of the GLASS-model, required choosing a ‘best’ model out
of several epochs. The chosen heuristics for GLASS (12) and (13) proved to be a limitation to
its performance. In the case of a validation set without anomalies, sensitivity to anomalies was
particularly low in favor of low average prediction scores. This low sensitivity influenced performance
results for GLASS, even though it was not directly related to the architecture of the model itself.
For the specific use case of detecting anomalies and a relative low cost of false positives, the choice
of another model selection heuristic would be preferable. Comparing alternative heuristics could
form as a basis of future research.

The addition of synthetic anomalies to the validation set was out of scope for this thesis, but
seems to be promising in cases with few anomalies. This addition can facilitate intermediate model
evaluation. When selecting synthetic anomalies, it is important to offer a supporting explanation
on why a specific strategy was chosen. One of the reasons why the addition of synthetic anomalies

35

remained out of scope for this thesis was finding an adequate base of choosing some type of synthetic
anomaly over another.

6.2.2 Model-specific adjustments

However, GLASS sometimes also underperformed compared to PatchCore in cases where the
validation set did include an anomaly. Due to its longer training times of around 40 hours for a full
training (500 epochs) on the ICM_1_4-dataset, hyper-parameter optimization was not considered
for GLASS in this thesis. There are nonetheless many parameters that can be tweaked in the case
of GLASS and more degrees of freedom to fine-tune the model than with PatchCore. Existing
literature does not provide a full overview of these parameters most likely because of the relatively
recent publication of the GLASS-paper (July 2024). In this thesis, it was thus decided to use
the default settings, which were used in the paper and can be found under C. Exploration of
hyper-parameter tuning, such as the introduction of random augmentations and different noise
levels to the input image, could be explored in further research.

In the original configuration for GLASS, foreground masks of normal samples were used.
According to the author of GLASS, leaving out these masks would not significantly reduce the
accuracy of detection |]. However, from 13, it became clear that there is some degree of
background sensitivity. The most probable cause for this discrepancy is the nature of the used
benchmark datasets, which have a uniform background per class. This uniform background acts
similarly to a foreground mask. Creating foreground masks for our specific problem would create a
new problem in and of itself, namely segmenting the pantograph, which leads us to our next point.

Segmentation was not used in either one of the compared models. The addition of
segmentation adds a layer of complexity to image interpretation because the model needs some
semantic knowledge about the objects in the image. One promising method, CSAD, uses Meta’s
SAM (Segment Anything) segmentation model and receives high performance in the case of logical
and structural anomalies |) |. This method was not explored in this thesis due to
limited code documentation compared to PatchCore and GLASS and possible patent issues due
its indirect use of models recently patented by MVTec. In a business context, the use of these
models without a license might cause problems. However, in a purely academical context it is worth
exploring this method on real-life data. Furthermore, taking inspiration from a segmentation-based
model, future research could focus on incorporating this type of segmentation in anomaly detection.

6.2.3 Pre-processing & data filtering

Additional improvements could be made in the area of pre-processing and data filtering. Data splits
were currently only made based on fleet number. More elaborate splits could be made to ensure
a representative distribution of background variations, weather and lighting conditions. In order
to do this, one would either have to train a classifier or go over the data manually. However, in
combination with the timestamps in the metadata, it would also be possible to filter times and
even weather conditions if combined with public weather data.

Unfortunately, only half of the total training data could be explored within the time frame
of this thesis. The addition of top-view data could serve as a an extra form of validation to model
performance. Ideally, a model would combine the knowledge of top-view and side-view images to
conclude whether a given image could be considered to be anomalous. We expect that this addition

36

could serve as a sanity check to potential false positives and a reinforcement to the localization of
anomalies.

Another variable that has not been changed throughout this thesis is the image size. For
both models, the input image size was kept at 256x256 to reduce computational strain on the
models. Increasing the size of the input images, which were originally 10-20x bigger, could increase
model performance, especially on structural anomalies.

7 Conclusion

This thesis has put into perspective the performance of GLASS and PatchCore by evaluating the
models on basis of their prediction score, qualitative and performance metrics results. The inclusion
of qualitative results showed not only that a model can correctly detect an anomaly, but also why,
i.e. because of what parts of the image, it considered that image anomalous.

PatchCore is better used for small datasets (between 100 and 400 images) and in situations
where short training times are preferable.'® In cases with little to no background or lighting variation,
PatchCore will achieve high performance for both structural and logical anomalies, leading to a
workload reduction. Cases with more variation will incur more false positives. Increasingly bigger
datasets will require more memory because of the design of PatchCore. The model will not see
much improvement when more data are provided.

GLASS, in contrast, does see improvement with the introduction of more data. GLASS has
longer training times at around 100-140x the time that PatchCore needs. GLASS has slightly
shorter inference times than PatchCore , which could play a role in live deployment. In general, it
is advisable to tweak the parameters for a GLASS model to achieve the desired sensitivity. In the
case of this thesis, not optimizing these parameters led to low sensitivity.

In conclusion, both models are a decent, though not perfect fit for the problem. As
stated earlier, the addition of segmentation and foreground masks could play a role in increasing
performance, as well as more elaborate hyperparameter optimization. For big logical anomalies,
both models can be used, whereas for structural anomalies, another method, such as CSAD could
possibly give better results. For fast testing and deployment, PatchCore is the model of choice.
Ultimately, the choice between GLASS and PatchCore should be informed by the specific demands
and constraints of the dataset and deployment scenario. Further exploration and optimization could
enhance the applicability of both models and effectiveness in anomaly detection tasks.

16Note that for datasets that are too small (< 150 images, aprroximately) results the model will also suffer from
performance issues.

37

References

[BFSS19]

[BFSS20]

[BKG23]

[BLN23]

[CBKOY]

[CCXT24]

[CLLZ24]

[CMK*+13]

(V23]

[CZ25a]

[CZ25D)

[DSLA20]

[FWR*17]

Paul Bergmann, Michael Fauser, David Sattlegger, and Carsten Steger. Mvtec ad
— a comprehensive real-world dataset for unsupervised anomaly detection. In 2019
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages
9584-9592, 2019.

Paul Bergmann, Michael Fauser, David Sattlegger, and Carsten Steger. Unin-
formed students: Student-teacher anomaly detection with discriminative latent
embeddings. In 2020 IEEE/CVFE Conference on Computer Vision and Pattern
Recognition (CVPR). IEEE, June 2020.

Dor Bank, Noam Koenigstein, and Raja Giryes. Autoencoders, pages 353-374.
Springer International Publishing, Cham, 2023.

Samah Saeed Baraheem, Trung-Nghia Le, and Tam V. Nguyen. Image synthesis:
a review of methods, datasets, evaluation metrics, and future outlook. Artificial
Intelligence Review, 56(10):10813-10865, Oct 2023.

Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection: A survey.
ACM Comput. Surv., 41(3), July 2009.

Yichi Chen, Bin Chen, Weizhi Xian, Junjie Wang, Yao Huang, and Min Chen. Lgfdr:
local and global feature denoising reconstruction for unsupervised anomaly detection.
Vis. Comput., 40(12):8881-8894, May 2024.

Qiyu Chen, Huiyuan Luo, Chengkan Lv, and Zhengtao Zhang. A unified anomaly syn-
thesis strategy with gradient ascent for industrial anomaly detection and localization,
2024.

Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea
Vedaldi. Describing textures in the wild, 2013.

Gabriela Csurka, Riccardo Volpi, and Boris Chidlovskii. Semantic image segmentation:
Two decades of research, 2023.

Qiyu Chen and Durong Zheng. cqylunlun/glass. https://github.com/cqylunlun/
GLASS/issues/6, 3 2025. [Accessed 28-05-2025].

Qiyu Chen and Durong Zheng. cqylunlun/glass. https://github.com/cqylunlun/
GLASS/issues/18, 3 2025. [Accessed 01-07-2025].

Thomas Defard, Aleksandr Setkov, Angelique Loesch, and Romaric Audigier. Padim:
a patch distribution modeling framework for anomaly detection and localization,
2020.

Alireza Fathi, Zbigniew Wojna, Vivek Rathod, Peng Wang, Hyun Oh Song, Sergio
Guadarrama, and Kevin P. Murphy. Semantic instance segmentation via deep metric
learning, 2017.

38

https://github.com/cqylunlun/GLASS/issues/6
https://github.com/cqylunlun/GLASS/issues/6
https://github.com/cqylunlun/GLASS/issues/18
https://github.com/cqylunlun/GLASS/issues/18

[GPB*20]

[HL24]

[ima]

1ZZE18]

[JIB*21]

[KACt24]

[KC23]

[KH24a)

[KH24b)]

[KHG18]

[KvdMKL16]

[LGRN11]

[LLS22)

[mat]

Riccardo Gasparini, Stefano Pini, Guido Borghi, Giuseppe Scaglione, Simone Calder-
ara, Eugenio Fedeli, and Rita Cucchiara. Anomaly detection for vision-based railway
inspection. In EDCC Workshops, 2020.

Yu-Hsuan Hsieh and Shang-Hong Lai. Csad: Unsupervised component segmentation
for logical anomaly detection, 2024.

ImageNet — image-net.org. https://www.image-net.org/about.php. [Accessed
14-05-2025].

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A. Efros. Image-to-image
translation with conditional adversarial networks, 2018.

Stepan Jezek, Martin Jonak, Radim Burget, Pavel Dvorak, and Milos Skotak. Deep
learning-based defect detection of metal parts: evaluating current methods in complex
conditions. In 2021 13th International Congress on Ultra Modern Telecommunications
and Control Systems and Workshops (ICUMT), pages 6671, 2021.

Soopil Kim, Sion An, Philip Chikontwe, Myeongkyun Kang, Ehsan Adeli, Kilian M.
Pohl, and Sang Hyun Park. Few shot part segmentation reveals compositional logic
for industrial anomaly detection, 2024.

Gyu-Il Kim and Kyungyong Chung. Patchcore-based anomaly detection using major
object segmentation. International Journal on Advanced Science, Engineering and
Information Technology, 13(4):1480-1485, Aug 2023.

Rahima Khanam and Muhammad Hussain. What is yolovb: A deep look into the
internal features of the popular object detector, 2024.

Rahima Khanam and Muhammad Hussain. Yolovl1l: An overview of the key archi-
tectural enhancements, 2024.

Alexander Kirillov, Kaiming He, Ross B. Girshick, Carsten Rother, and Piotr Dollar.
Panoptic segmentation. CoRR, abs/1801.00868, 2018.

Wouter M. Kouw, Laurens J.P. van der Maaten, Jesse H. Krijthe, and Marco Loog.
Feature-level domain adaptation. Journal of Machine Learning Research, 17(171):1-
32, 2016.

Honglak Lee, Roger Grosse, Rajesh Ranganath, and Andrew Y. Ng. Unsupervised
learning of hierarchical representations with convolutional deep belief networks.
Commun. ACM, 54(10):95-103, October 2011.

Sungwook Lee, Seunghyun Lee, and Byung Cheol Song. Cfa: Coupled-hypersphere-
based feature adaptation for target-oriented anomaly localization, 2022.

mattmcinnes. NCasT4 _v3 size series - Azure Virtual Machines — learn.microsoft.com.
https://learn.microsoft.com/en-us/azure/virtual-machines/sizes/
gpu-accelerated/ncast4v3-series?tabs=sizebasic. [Accessed 02-06-2025].

39

https://www.image-net.org/about.php
https://learn.microsoft.com/en-us/azure/virtual-machines/sizes/gpu-accelerated/ncast4v3-series?tabs=sizebasic
https://learn.microsoft.com/en-us/azure/virtual-machines/sizes/gpu-accelerated/ncast4v3-series?tabs=sizebasic

[Mel13]

[MKM25]

[mvt]

INAN12]

[nsD]

[0GS*+09]

[Peil5]

[RDGF16]

[RGH"24]

[RPZ+22]

[SDSS16]

SS01]

SS18]

Francisco Melo. Area under the ROC Curve, pages 38-39. Springer New York, New
York, NY, 2013.

Helia Mohamadi, Mohammad Ali Keyvanrad, and Mohammad Reza Mohammadi.
Feature based methods in domain adaptation for object detection: A review paper,
2025.

Anomaly Detection and Global Context Anomaly Detection [HALCON Operator
Reference / Version 23.05.0.0] — mvtec.com. https://www.mvtec.com/doc/halcon/
2305/en/toc_deeplearning_anomalydetection.html. [Accessed 20-02-2025].

Mark S. Nixon, Alberto S. Aguado, and Mark S. Nixon. Feature extraction image
processing for computer vision. Academic, Oxford, 3rd ed. edition, 2012.

Damage repair — Train maintenance — About NS — NS — ns.nl. https://wuw.
ns.nl/en/about-ns/train-maintenance/damage-repair.html. [Accessed 13-02-

2025].

Emilio Soria Olivas, Jose David Martin Guerrero, Marcelino Martinez Sober, Jose
Rafael Magdalena Benedito, and Antonio Jose Serrano Lopez. Handbook Of Research
On Machine Learning Applications and Trends: Algorithms, Methods and Techniques
- 2 Volumes. Information Science Reference - Imprint of: IGI Publishing, Hershey,
PA, 20009.

Jonathan W. Peirce. Understanding mid-level representations in visual processing.
Journal of Vision, 15(7):5-5, 06 2015.

Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look
once: Unified, real-time object detection, 2016.

Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chaitanya Ryali,
Tengyu Ma, Haitham Khedr, Roman Radle, Chloe Rolland, Laura Gustafson, Eric
Mintun, Junting Pan, Kalyan Vasudev Alwala, Nicolas Carion, Chao-Yuan Wu, Ross
Girshick, Piotr Dollar, and Christoph Feichtenhofer. Sam 2: Segment anything in
images and videos, 2024.

Karsten Roth, Latha Pemula, Joaquin Zepeda, Bernhard Scholkopf, Thomas Brox,
and Peter Gehler. Towards total recall in industrial anomaly detection, 2022.

Ljiljana Stojanovic, Marko Dinic, Nenad Stojanovic, and Aleksandar Stojadinovic.
Big-data-driven anomaly detection in industry (4.0): An approach and a case study.
In 2016 IEEE International Conference on Big Data (Big Data), pages 1647-1652,
2016.

George Stockman and Linda G. Shapiro. Computer Vision. Prentice Hall PTR, USA,
1st edition, 2001.

Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks:
A core-set approach, 2018.

40

https://www.mvtec.com/doc/halcon/2305/en/toc_deeplearning_anomalydetection.html
https://www.mvtec.com/doc/halcon/2305/en/toc_deeplearning_anomalydetection.html
https://www.ns.nl/en/about-ns/train-maintenance/damage-repair.html
https://www.ns.nl/en/about-ns/train-maintenance/damage-repair.html

SZG*19]

[Tinl7]

[tre]

[TS09]
[Ult]

[Wul§|

[WWG*19]

[YLW*24]

[YXQS22]

[ZAA*21]

[ZJP+22]

[ZK16]

[ZXY*20]

2709

Samarth Sinha, Han Zhang, Anirudh Goyal, Yoshua Bengio, Hugo Larochelle, and
Augustus Odena. Small-gan: Speeding up gan training using core-sets, 2019.

Kai Ming Ting. Precision and Recall, pages 990-991. Springer US, Boston, MA,
2017.

NS zet camera’s langs het spoor in voor efficiéenter onderhoud - Treinen-
web — treinenweb.nl. https://www.treinenweb.nl/nieuws/10959/
ns-zet-camera-s-langs—het-spoor-in-voor-efficienter-onderhoud.html.

[Accessed 13-02-2025].
Lisa A. Torrey and Jude W. Shavlik. Chapter 11 transfer learning. 2009.

Ultralytics. YOLO11 wvs YOLOv5: A Detailed Comparison —
docs.ultralytics.com. https://docs.ultralytics.com/compare/
yololil-vs-yolovs/#ultralytics-yololl. [Accessed 18-06-2025].

Jigin Wu. Chapter 2 - pantograph. In Jiqin Wu, editor, Pantograph and Contact
Line System, High-Speed Railway, pages 27-71. Academic Press, 2018.

Zuxuan Wu, Xin Wang, Joseph E. Gonzalez, Tom Goldstein, and Larry S. Davis.
Ace: Adapting to changing environments for semantic segmentation, 2019.

Hang Yao, Ming Liu, Haolin Wang, Zhicun Yin, Zifei Yan, Xiaopeng Hong, and
Wangmeng Zuo. Glad: Towards better reconstruction with global and local adaptive
diffusion models for unsupervised anomaly detection, 2024.

Jie Yang, Ruijie Xu, Zhiquan Qi, and Yong Shi. Visual anomaly detection for
images: A systematic survey. Procedia Computer Science, 199:471-478, 2022. The 8th
International Conference on Information Technology and Quantitative Management
(ITQM 2020 2021): Developing Global Digital Economy after COVID-19.

Syed Sahil Abbas Zaidi, Mohammad Samar Ansari, Asra Aslam, Nadia Kanwal,
Mamoona Naveed Asghar, and Brian Lee. A survey of modern deep learning based
object detection models. CoRR, abs/2104.11892, 2021.

Yang Zou, Jongheon Jeong, Latha Pemula, Dongqing Zhang, and Onkar Dabeer. Spot-
the-difference self-supervised pre-training for anomaly detection and segmentation,
2022.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. CoRR,
abs/1605.07146, 2016.

Kang Zhou, Yuting Xiao, Jianlong Yang, Jun Cheng, Wen Liu, Weixin Luo, Zaiwang
Gu, Jiang Liu, and Shenghua Gao. Encoding structure-texture relation with p-net
for anomaly detection in retinal images, 2020.

Ethan Zhang and Yi Zhang. Average Precision, pages 192-193. Springer US, Boston,
MA, 2009.

41

https://www.treinenweb.nl/nieuws/10959/ns-zet-camera-s-langs-het-spoor-in-voor-efficienter-onderhoud.html
https://www.treinenweb.nl/nieuws/10959/ns-zet-camera-s-langs-het-spoor-in-voor-efficienter-onderhoud.html
https://docs.ultralytics.com/compare/yolo11-vs-yolov5/#ultralytics-yolo11
https://docs.ultralytics.com/compare/yolo11-vs-yolov5/#ultralytics-yolo11

A Dataset distribution

A.1 Original dataset

Pantograph head (type) Number of occurrences Frequency

ICM_1_4
ICM 1 410 7.4%
ICM IV 19167 34.5%
Subtotal 2326 41.8%
SLT_4_6_VIRM_4
SLT IV 410 7.4%
SLT VI 411 7.4%
VIRM IV!8 119 2.1%
Subtotal 940 16.9%
VIRM_6
VIRM VI 399 7.2%
Subtotal 399 7.2%
DDZ_4_6
DDZ IV 405 7.3%
DDZ VI 401 7.2%
Subtotal 806 14.5%
SNG_3_4
SNG III 412 7.4%
SLT IV 406 7.3%
Subtotal 818 14.7%
VIRM_4
VIRM IV 272 4.9%
Subtotal 272 4.9%
Total 5561

Table 6: Data distribution of entire dataset

17Additional images were added for the Proof of Concept (4.3.2), leading to a higher number of images than with
other types of pantograph heads.

8Train series 9547 - 9597

Y Train series 9501 - 9546 and 9401 - 9481

42

A.2 Target dataset

Dataset excluding top-side.

Pantograph head (type) Number of occurrences Frequency

ICM_1_4
ICM 1 175 6.8%
ICM 4 600 23.4%
Subtotal 775 30.2%
SLT_4_6_VIRM_4
SLT IV 203 7.9%
SLT VI 202 7.9%
VIRM IV 94 3.7%
Subtotal 499 19.4%
VIRM_62°
VIRM VI 187 7.3%
Subtotal 399 15.5%
DDZ_4_6
DDZ IV 197 7.7%
DDZ VI 199 7.8%
Subtotal 396 15.4%
SNG_3_4
SNG III 202 7.9%
SNG IV 200 7.8%
Subtotal 402 15.7%
VIRM_4
VIRM IV 96 3.7%
Subtotal 96 3.7%
Total 2567

Table 7: Data distribution of target dataset

20This subset does not contain any anomalies in the target data.

43

B Binary classifier

The binary classifier was trained on images with two classes 1t (<-orientation) and gt (>-
orientation). The distribution of the dataset is as follows:

e 1t: 804 (562 train, 122 test, 120 validation)
e gt: 892 (624 train, 135 test, 133 validation)

A YOLOvl1l-model was trained on the images over 20 epochs, with 8 dataloaders.

C Model information

C.1 PatchCore

C.1.1 Configuration

e backbone="wide_resnet50_2" e num_workers=8

e layers=["layer2", "layer3"] e task=classification

e coreset_sampling ratio=0.01) .

e image_size=[256,256]
e num_neighbors=5

e transform=None
e extensions=None

e train batch size=32 e train_transform=None

e eval_batch_size=32 e eval_transform=None

44

C.1.2 Memory bank reduction algorithm

Algorithm 1: PatchCore memory bank.

Input: Pretrained ¢, hierarchies j, nominal data Xy, stride s, patchsize p, coreset target [,
random linear projection 1.
Output: Patch-level Memory bank M.
Algorithm:
M —{}
for z; € Xy do
| M= MUP,p(0(2:))

end
/* Apply greedy coreset selectionm. */
Mo« {}
fori€|0,...,l —1] do

m; < argmax min |[1p(m) —(n)l],

meM-McnEMc

Me +— Me U {m;}

end

M<—Mc

C.2 GLASS

C.2.1 Configuration

e backbone="wide_resnet50" e p=0.5

e layers=["layer2", "layer3"] e step=20

e patchsize=3 e 1imit=392

e image_size=[256,256] e distribution=2
e dsc_layers=2 e mean=0.5

e dsc_hidden=1024 e std=0.1

e pre_proj=1 o fg=0

e mining=1 e rand_aug=1

e noise=0.015 e batch_size=8

e radius=0.6 ® resize=288

45

D Results on the entire dataset

D.1 Prediction scores

Occurrences of Prediction Scores Occurrences of Prediction Scores
: x

=== Threshold
Healthy 12 4
Logical anomaly
Structural anomaly

=== Threshold
Healthy
Logical anomaly
Structural anomaly

14 4

12
10

10

Occurrences
[+
Occurrences

T T T T T T T T T T T
0.5 0.6 0.7 0.8 0.9 1.0 0.2 0.4 0.6 0.8 L0

Prediction Score Prediction Score
(a) PatchCore on SLT_4_.6_VIRM_4 (b) GLASS on SLT_4_.6_VIRM _4

Figure 20: On the left, 20a shows the prediction score results for best seed 200. On the right, 20b
shows the results after the best combined score was obtained at epoch 454. PatchCore is unable to
find the logical anomaly at anomaly threshold ¢ = 0.7, but does find the structural anomaly at
2.910 deviations from the mean of ;1 = 0.57. There are, however, two normal samples with a higher
anomaly score than the structural anomaly. GLASS, on the other hand, can find neither anomaly
at an acceptable threshold.

Occurrences of Prediction Scores Occurrences of Prediction Scores
74 =-- Threshold] 6 ! ==~ Threshold
Healthy Healthy
Defect Logical anomaly

@
L

Structural anomaly

Occurrences
ES w
L L

w
L

QOccurrences

N
L

-
L

w

T T T T T T T T T T
0.5 0.6 0.7 0.8 0.9 1.0 0.2 0.4 0.6 0.8 1.0

Prediction Score Prediction Score
(a) PatchCore on VIRM_4 (b) GLASS on VIRM_4

Figure 21: This PatchCore model in 21a instance was run with seed 42, whereas the GLASS model
instance in 21b is was picked as a best model after 116 epochs. PatchCore shows insignificant
results, whereas GLASS still shows a right skew and some degree of separation.

46

Occurrences of Prediction Scores

Occurrences
] w ES w) ~ -]
L | L | L | L

[
L

—=—- Threshold
Healthy
Logical anomaly
Structural anomaly

T
0.5

0.6

T
0.7

T
0.8

Prediction Score

T T
0.9 10

(a) PatchCore on SNG_3_4

QOccurrences

Occurrences of Prediction Scores

Threshold

Healthy

Logical anomaly
Structural anomaly

T
0.4

Prediction Score

(b) GLASS on SNG_3.4

t
0.6

T T
0.8 1.0

Figure 22: The left figure 22a shows the prediction score results for a PatchCore-model with seed 0.
The right figure 22b displays the results at epoch 366, which resulted in the best combined score.
GLASS was provided with a structurral anomaly during testing and shows a stronger separation
margin than PatchCore. PatchCore does detect both anomalies, however, which is not possible in

the case of GLASS.

Occurrences of Prediction Scores

3.0 1

2.54

2.01

1519

Occurrences

1.0+

0.5 4

0.0

—=- Threshold
Healthy
Defect

T
0.5

T
0.6

T
0.7
Prediction Score

y T T
0.8 0.9 1.0

(a) PatchCore on DDZ_4_6

Occurrences

w
=}

~
w
L

~
o
L

L
[E]
L

51
o
L

=4
wn
L

=4
o

Occurrences of Prediction Scores

Threshold

Healthy

Logical anomaly
Structural anomaly

T
0.2 0.4
Prediction Score

(b) GLASS on DDZ_4.6

T
0.6

T T
0.8 1.0

Figure 23: In the left figure 23a, we find the resutls for a PatchCore-model run with seed 42 (best
out of five). The right figure 23b displays the prediction score results for GLASS at epoch 150 (best
out of 500 epochs). Both models detect the anomaly, but the separation margin is minimal in the

case of PatchCore and the attributed score is relatively low for GLASS.

47

D.2 Performance metrics

This is an overview of the ROC and Precision-Recall curves

Receiver-Operator Characteristic Receiver-Operator Characteristic
1.04 1.0
0.8 0.8
Z 2
2 0.6 A 2 0.6 -
@ (']
z =
o 0.4 o 0.4
2 2
= H- =
0.2 4 0.2
0.04——- 0.0
00 02 04 06 08 10 0.0 02 04 06 08 10
False positive rate False positive rate
—— DDZ 4 6 SIT 4 6 VIRM 4 —— VIRM 4 —— DDZ 4 6 SLT 4 6 VIRM 4 —— VIRM 4
—— ICM14 —— SNG 34 — ICM14 —— SNG 34
(a) PatchCore (b) GLASS

Figure 24: This figure shows the differences in ROC curves between GLASS and PatchCore run on
all different subsets of the data. The Precision-Recall curves are shown separately underneath.

Precision-Recall Curve Precision-Recall Curve
1.0 1 107
0.8 084
< 0.6 < 0.6
S S
£ &
0.4 0.4 4
0.2 4 0.2
0.0 T T T T T T 007 T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 10
Recall Recall
—IcM14 — ICM 14
Precision-Recall Curve Precision-Recall Curve
1.0 4 10+
0.8 0.8
0.6 0.6
c c
] S
g ¢
& 0.4 T 04
0.2 0.24
0.01 oot b——"" 1
0.0 02 04 0.6 08 10 00 02 04 06 08 10
Recall Recall
—— SIT 4 6 VIRM 4 —— SIT 4 6 VIRM 4
(a) PatchCore (b) GLASS

48

Precision

Precision

Precision

Precision-Recall Curve

Precision-Recall Curve

1.0 4 1.0
0.8 A 0.8
0.6 - e
S
il
8
&
041 0.4 1
0.2 4 0.2
0.0 1 0.04
T T T T T T T T T . T T
0.0 0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 1.0
Recall Recall
SNG 3 4 SNG 3 4
Precision-Recall Curve Precision-Recall Curve
1.0 4 1.0
0.8 1 0.8
0.6 e 067
S
w
]
[
044 0.4
0.2
0.2 4
0.0
0.0 +— T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 10
Recall Recall
VIRM_4 —— VIRM_4
Precision-Recall Curve Precision-Recall Curve
1.0 4 1.0
0.8 A 084
0.6 A
5 06
w
3
0.4 4 &
0.4
0.2 4
0.2
0.0
T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Recall Recall

— DDZ_4 6 |

(a) PatchCore

49

— DDZ_4 6 \

(b) GLASS

	Introduction
	Definitions
	Domain-specific definitions
	Pantographs
	Overview of pantograph heads

	Computer vision definitions
	Feature extraction
	Feature adaptation
	Image synthesis

	Anomaly detection definitions
	Classes of anomalies
	Anomaly score and threshold

	Related Work
	Benchmark datasets
	MVTec AD
	VisA
	MPDD
	WFDD
	DTD

	Components of an anomaly detection model
	Auto-encoders
	Transfer learning
	Global-local
	Segmentation
	Combining different components

	PatchCore
	Pretrained encoder
	Locally-aware patch features
	Memory bank
	Coreset subsampling
	Anomaly score and nearest neighbor search
	Known deficiencies

	GLASS
	Feature extraction
	Feature adaptation
	Discriminator
	Feature-level Global Anomaly Synthesis Strategy (GAS)
	Image-level Local Anomaly Synthesis Strategy (LAS)
	Anomaly score
	Known deficiencies

	Methodology
	Pre-processing
	Data filtering
	Cropping
	Flipping

	Dataset setup
	General design
	Smallest possible subset
	One pantograph type

	Experiments
	Experimental Details
	Datasets.
	Evaluation metrics.
	Experimental set-up.

	Proof of Concept
	Experiments on ICM_1_4_Hekendorp_left
	Prediction score results.
	Qualitative results.
	Performance metrics.

	Experiments on ICM_1_4_Hekendorp_lt
	Prediction score results.
	Original set-up.
	Qualitative results.
	Anomaly in validation set
	Performance metrics.

	Experiments on ICM_1_4
	Prediction score results.
	Qualitative results.
	Performance metrics.

	Hyper-parameter optimization
	Validation set evaluation
	Distribution properties.
	Prediction score results.

	Test set evaluation
	Performance metrics.

	Comparative experiments on the entire dataset
	Performance metrics.

	Discussion
	Summary of findings
	Limitations
	Lack of anomalies & limited intermediate evaluation
	Model-specific adjustments
	Pre-processing & data filtering

	Conclusion
	References
	Dataset distribution
	Original dataset
	Target dataset

	Binary classifier
	Model information
	PatchCore
	Configuration
	Memory bank reduction algorithm

	GLASS
	Configuration

	Results on the entire dataset
	Prediction scores
	Performance metrics

