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Abstract

In this thesis, we propose a post-hoc explanation pipeline for time series classification
models that generates local natural language explanations (NLEs) based on attribution-
values from attribution-based explanation methods. Our goal is to make the logic behind
classifier model’s predictions more interpretable and understandable for both expert and
non-expert users by translating model reasoning into textual explanation. We focus on
exploring how large language models (LLMs) can be guided to produce faithful and
useful explanations when given attribution values of a sample input.

To do this, we design a pipeline that includes classification, attribution generation,
categorizing attribution values, and explanation generation using both rule-based tem-
plates and prompt-based LLMs. We evaluate our approach on two datasets: a synthetic
time series dataset with ground-truth attribution labels, and a real-world human activ-
ity recognition dataset. Our experiments show that LLMs can produce logically correct,
faithful and helpful explanations, but only when given specific hints about which time
steps have the most influential attribution values, and when the prompts are carefully
engineered to guide the model’s reasoning.

On a synthetic dataset, we systematically evaluated different prompt structures and
showed that passing filtered attribution inputs significantly improved explanation faith-
fulness and completeness. On the real-world dataset, we conducted another round of
prompt engineering to address LLM hallucinations caused by general knowledge about
real-world sensor data. This led to a final prompt version that included all necessary rules
and instructions to guide the LLM. We then performed a user study with expert and non-
expert participants to assess the quality and usefulness of both explanation types. The
results show that LLM-based explanations were consistently preferred over rule-based
ones and also achieved higher ratings in terms of clarity and helpfulness. Non-expert
users particularly benefited from the natural language structure, and majority found the
combination of textual and visual explanations the most helpful explanation modality
for understanding the model’s behavior.

These findings suggest that attribution-guided LLMs can be an effective method
for explaining time series model decisions, but they require careful input structuring
and prompt design to avoid hallucinations and preserve faithfulness and completeness.
This work highlights both the potential and the limitations of using natural language
explanations for interpreting time series classifier decisions.
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1 Introduction

Time series classification (TSC) is an important task in many fields, such as the medical
domain, technical systems, and finance [1]. In these fields, distinguishing between different
patterns or categories and identifying anomalies is an important problem and has a signifi-
cant impact. While ML-based time series classification models’ performance is improving, the
models become more complex and the reasoning behind these models’ predictions is becoming
harder to understand for both engineers and end users. This means that they require an ex-
planation regarding their decision-making process to become understandable and interpretable
by humans.
The lack of explainability or interpretability of the model is a challenge. It can restrict the use of
ML-based time series classification models in real-world applications. Improving explainability
helps users understand the decision process, so they can better judge the quality and value of
the outcome, especially when making high-stakes decisions [2].
The goal of eXplainable AI (XAI) research is to make AI systems more comprehensible and
transparent to humans without sacrificing performance [3]. Since around 2019, the XAI field for
time series classification has gained attention. XAI studies introduce a variety of models with
different explanation types, such as attribution-based, attention-based, shaplets, prototypes,
counterfactuals, etc. [4]. These methods usually highlight points, subsequences, or instances
of a time series that lead to a specific prediction, helping to understand the reasoning behind
the performance of a classification model.
A newly emerging type of explanation method is natural language explanations (NLEs). NLEs
describe the model’s decision-making process using natural language text that is easily un-
derstandable for humans. The development of NLE methods has improved a lot due to the
emergence and improvements of large language models (LLMs) [5]. NLEs are especially useful
when domain experts need to understand why the model gives a certain result for a specific
sample (local explanation). For example, a doctor using a time series model to help diagnose
a patient may need to understand the reasoning of the model. Many of these domain experts
do not have technical knowledge, so they cannot easily understand the mathematical or visual
output of common explanation methods.
Figure 1 illustrates this challenge. The upper subplot shows multivariate time-series input,
while the lower subplot presents the corresponding attribution values. These values, generated
by attribution-based explanation methods, are often visualized using heatmaps, scatter plots,
or other graphical representations. However, they are often difficult to interpret without having
a technical understanding of XAI. They lack contextual reasoning, clarity, and guidance for
non-technical users.
NLEs have been investigated in the context of explainability for computer vision models and
vision-to-text tasks [6, 7]. DeViL [7] generates text explanations for images using a transformer
model as “translator” to convert learned weight vectors into prefix tokens for an image cap-
tioning task. These works leverage image captioning datasets where there are input samples
(images) connected to detailed textual labels, This provides a way to connect internal weights
of a vision model to natural language concepts. In contrast, time series classification typically
lacks such datasets with descriptive text, making direct translation of model representations
into explanations infeasible. This requires a different approach which we aim to suggest in our
study.
Recent work in NLP, such as EvalxNLP [8], has explored benchmarking explainability meth-
ods using LLMs to verbalize attribution values. For time series data, TSXplain [9] represents
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Figure 1: Top: Example of multivariate time-series sensor input. Bottom: Attribution-
based explanation output showing per-feature importance scores across time.

an early effort to generate NLEs for anomaly detection through rule-based (template-based)
approaches. However, these works either do not focus on natural language generation for the
TSC problem or rely on rigid templates. Specifically, no research has yet investigated the use of
LLMs to generate natural language explanations for the predictions of time series classification
models.
We propose to explain deep learning-based time series classifiers using natural language through
the well-known attention-based explanation methods. We apply attention-based methods to
a trained deep learning classifier to get attention values for each point in the time series.
These attribution values are then processed to generate natural language explanations via
two strategies: a rule-based template approach and an LLM-based approach. We carefully
design the prompts to ensure the LLM generates faithful, clear, and informative explanations.
Moreover, we customize explanation styles according to the target user’s expertise (expert and
non-expert), and the quality of these explanations is assessed through human judgment. We
conduct this evaluation both on the explanations alone and in combination with attribution
visualizations, by asking participants which version they found more helpful.
In this work, we address three main research questions:

1. How to build a pipeline that can explain logical reasoning behind deep time series clas-
sification models in form of natural language?

2. Can LLMs be guided to produce accurate and helpful NLEs based on attribution values
from deep time series classifiers?

3. What are the relative strengths and weaknesses of rule-based versus LLM-generated
explanations for time series classification?

4. How do expert and non-expert users perceive and evaluate different forms of explana-
tions, and what explanation styles and modalities are most helpful for each group?

In summary, this work addresses a significant gap in the current literature by exploring the field
of natural language explanations for time series classification models. We propose and inves-
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tigate multiple strategies for generating natural language explanations for time series models.
We develop a modular pipeline that combines deep learning classifiers, attribution-based expla-
nation methods, and large language models to generate an interpretable and human-readable
explanation. Finally, we evaluate the resulting explanations in terms of their helpfulness, and
alignment with the model reasoning.
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2 Related work

Time series classification (TSC) has been an active field of research for decades. This is due
to the presence of univariate and multivariate time series data, a time-ordered sequence of
values, in many real-world applications and increase of temporal data availability.
As a result, a wide range of TSC methods from classic distance-based techniques to deep neural
networks have been developed. In this section, we first discuss important developments in TSC
methods. Then we categorize and review different XAI methods used to explain TSC models,
including methods. We also review previous work focused on generating natural language
explanations (NLE). Finally, we discuss important criteria for evaluating NLE based on previous
studies. This sets the stage for our work on explaining TSC models through natural language
explanations.

2.1 Time Series Classification Methods

A useful way to understand the evolution of TSC methods is through a taxonomy based on the
type of data representation they use as proposed in a study by Middlehurst et al. (2024) [10],
TSC algorithms can be broadly categorized into: distance-based, feature-based, interval-based,
shapelet-based, dictionary-based, convolution-based, and deep learning-based approaches.
Early TSC approaches relied on distance-based methods with a time series specific distance
measure. One of the these well known methods is the one-nearest neighbor classifier with the
Dynamic Time Warping (DTW) [11] metric which is often considered as a baseline for time
series classification. DTW is a similarity measure which aligns two time series by warping the
time axis, helps in matching similar patterns. A limitation of this approach is the high time
and space complexity so it doesn’t scale well to complex multivariate time series [12].
Other early approaches introduced more structured techniques, such as shapelet-based clas-
sifiers that use discriminative subsequences, and dictionary-based models like WEASEL [13]
that convert time series into bags of symbolic words using symbolic approximation. These
traditional models often relied on hand-crafted features or fixed similarity measures, which
limited their adaptability to complex, noisy, or highly variable time series. These limitations
lead to a shift toward deep learning based models that learn features directly from time series
data without manual feature engineering.

2.1.1 CNN and RNN-Based Methods

More recently, deep learning approaches demonstrated strong performance on both univariate
and multivariate TSC tasks. Many deep learning models are better suited to handle time series
data, such as Recurrent neural networks (RNNs), convolutional neural networks (CNNs) which
are designed in a way to capture the temporal dependencies.
Early deep learning methods were inspired by the success of CNNs and residual networks
(ResNets) [14] in other fields such as image processing. InceptionTime [15] is a widely-used
deep learning model for time series classification that applies multiple convolution filters of
different sizes in parallel to capture features at different temporal resolutions. It uses an en-
semble of residual networks to improve accuracy and generalization. Later, H-InceptionTime
[16] (introducing by adding handcrafted filters) and LITETime [17] (a lightweight variant)
have been proposed as improved versions of InceptionTime. Although effective at detecting
local temporal/spatial patterns, CNN models are limited in their ability to capture long-range
dependencies and the full sequence order.
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RNNs are another kind of neural models designed to handle sequential data such as time series,
due to their internal memory structure that allows them to capture temporal dependencies.
RNNs can be used in a many-to-one architecture for TSC problem. Using vanilla RNNs for TSC
was first proposed in [18], however, vanilla RNNs suffer from vanishing and exploding gradient
problems, making them difficult to train and perform well in long time series. This led to
the development of long short-term memory (LSTM) networks [19] and gated recurrent units
(GRUs) [20], which introduced gating mechanisms to better handle long-term dependencies.
The disadvantage of RNN-based models is that they are computationally expensive and their
capability to capture long-range dependencies is limited. To address these challenges, attention-
based and transformer architectures have become popular.

2.1.2 Transformer-based methods

Transformer architectures, originally introduced for natural language processing [21]. Trans-
formers use a self-attention layer, which allows models to selectively focus on relevant parts
of the input sequence. This allows transformers to capture long-range dependencies more ef-
fectively than RNNs and process entire sequences in parallel, improving both scalability and
performance.
According to a survey on time series transformers [22], the transformer is shown to be effective
in various time series classification tasks due to its ability to learn long-term dependencies. For
example, the Time Series Transformer (TST) adapts the vanilla transformer by adding learned
positional embeddings and processing multivariate inputs. This model is able to handle both
temporal order and cross-channel dependencies in time series [23]. Similarly, Gated Transformer
Networks (GTN) use a two-tower attention structure. In these models one tower focuses
on temporal patterns and the other captures relationships between different variables. This
approach achieve promising results on multivariate TSC tasks [24].

2.2 XAI in Time Series Classification

XAI methods have several distinct charachteristics: ante-hoc vs. post-hoc, global vs. local,
and model-agnostic vs. model-specific. XAI algorithms can be ante-hoc meaning the classi-
fication model to be inherently interpretable such as decision trees while post-hoc methods
are separated from the classification model and being applied on the classification model af-
ter training. Furthermore, global explanations focus on capturing and describing the overall
decision-making logic of the model, whereas local explanations aim to explain model decisions
for each input sample. Model-agnostic methods are independent of the structure and type of
classifiers, while model-specific techniques try to explain the internal architecture of particular
models.
Theissler et al. [4] categorize XAI approaches for time series classification into three main
categories:

• Time-point-based methods assign a relevance score or weight to each time point in a
time series, indicating its contribution to the model’s decision. Two known approaches
for obtaining these relevance scores are attribution-based and attentions-based methods.

Attribution-based techniques, such as SHAP (Shapley Additive Explanations) [25] and
Integrated Gradients [26] , analyze the input-output relationship by perturbing input
values or computing gradient-based relevance scores.
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Attentions-based methods, are applicable in TSC models which use the attention mech-
anisms such as transformer models and attention-augmented RNNs. As discussed in
subsection 2.1, attention models are suitable for sequential data and boost performance
by learning to reliably learn from long range dependencies. The attention mechanisms
highlight important time steps by learning weighting sequence during model training.
Attention bease approaches often visualize as heatmaps and are hard to interpret in
many cases [27].

• Subsequence-based methods identify critical subsequences within a time series that sig-
nificantly influence classification decisions. These methods use either shapelets (short,
discriminative subsequences that are not necessarily contiguous, often termed improper
subsequences) or patches/patterns (contiguous segments, also known as proper subse-
quences) to extract segments from time series that strongly influence on classification
of specific class labels.

Shapelet-based methods directly integrate these distinctive segments into the classifi-
cation process, commonly through simple and interpretable models like decision trees.
In contrast, pattern-based methods look for meaningful, repeated sections within the
time series, using methods Symbolic Aggregate approXimation (SAX)[28] recognizing
frequently occurring patterns relevant to classification outcomes.

• Instance-based methods use entire series or instances to explain model behavior. Instance-
based explanations aim to compare a given time series sample with representative in-
stances (prototypes or counterfactuals) to justify a classification decision. Prototype-
based methods explain predictions by finding and showing similar examples from the
training data. In other words, they help to understand a model’s decision by comparing
it directly with familiar examples from past data. Counterfactual explanations, on the
other hand, identify minimal changes in an input instance that would alter the prediction
of the model, providing understanding of the model decision boundaries.

Each of these approaches offers distinct insights and is beneficial depending on the specific in-
terpretability needs of the application. In this work we use multiple state-of-the-art attribution-
based explainers for post-hoc local explainability. These include Temporal Integrated Gradients
[29], Temporal Occlusion [30], DynaMAsk [31], and ExtremalMask [32] to generate point-based
local explanation from deep neural networks. In the following, we provide a brief overview of
how each of these methods operates.

2.3 Attribution-Based Methods Applied in This Study

• Temporal Integrated Gradients (TIG) [29]: TIG is an extension of the classic Inte-
grated Gradients [33] method specifically designed for time series data. In time series,
using future information to explain a decision at time t is illogical. TIG avoids this by
cropping the sequence at each time step t to explain the model’s decision. Then, it
computes the integrated gradients by interpolating only the last time point xt, while
the previous time steps are unchanged. For each feature i at time t, it computes the
attribution by summing the gradients between a baseline input x′ and the actual input
x.The attribution is given by Equation 1:
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TIGti = (xti − x′
ti)

∫ 1

0

∂F (x′
1:t + α(x1:t − x′

1:t))

∂xti

dα (1)

where F is the model’s prediction function, xti is the actual input for feature i at time
t, and x′

ti is the corresponding baseline value. Finally, it aggregates the feature-wise
attributions and normalizes the result to obtain a relevance score for the entire time
step.

• Temporal Occlusion [30]: Temporal Occlusion modifies the standard Occlusion [34]
adapted for time series. It is a perturbation-based attribution method. At each time
step t, only the final observation xt is perturbed, while all previous inputs x1:t−1 remain
unchanged. The model’s output is then recomputed using the perturbed input, and the
difference from the original prediction is used to estimate the importance of that time
step. Temporal Occlusion is most useful when gradients are unavailable or unreliable,
such as in models with vanishing gradients.

• DynaMask [31]: DynaMask is another perturbation-based method that generates local
feature attributions for time series models by learning a mask over the input. It fits
a continuous-valued mask matrix M ∈ [0, 1]T×D, where each element indicates the
importance of feature i at time t. The method perturbs the input sequence dynamically
using the temporal neighborhood of each input. The mask is optimized to minimize the
shift in the model’s prediction under perturbation.

• ExtremalMask [32]: ExtremalMask improves DynaMask by learning both an attribu-
tion mask and a perturbation generator. It constructs a saliency mask M ∈ [0, 1]T×D

over the input and uses a neural network to generate replacements for the masked en-
tries. So, instead of relying on fixed replacements like noise or averages it is generating
context-aware perturbations. The mask and perturbation network are trained together
to minimize the difference between the model’s output on the original and perturbed
inputs.

It is important to note that explanations generated from these XAI methods are mostly in
form of visualizations or statistical and numerical output, which provide important information
for computer scientists and researchers but might not be intelligible and understandable for
end users who do not have a computer science or math related background. This limitation
underscores the importance of developing more accessible and user-friendly forms of explana-
tion, motivating researchers to explore using natural language as a medium to describe how
models work.

2.4 Natural language explanations

Natural Language Explanations (NLEs) represent a new and emerging area in the field of
XAI. NLE methods translate the technical and often abstract outputs of machine learning
models into human-readable textual descriptions, thus significantly improving interpretability,
especially for non-expert users. Most research in this area has focused on applications in
computer vision and natural language processing.
In the computer vision domain, several methods have been proposed to generate NLEs from
visual features. Kayser et al. [35] introduced e-ViL, a benchmark dataset for evaluating NLEs in
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vision-language tasks. Sammani et al. [6], proposed NLX-GPT to generate NLEs in multimodal
vision and tasks, using LLM. A more recent approach for generating NLEs in computer vision is
the DeViL (Decoding Vision features into Language) [7]. DeViL employs a transformer-based
model to decode intermediate vision features, extracted from different layers of a convolutional
neural network (CNN), into natural language descriptions. It trains a transformer network on
image captioning datasets to map vision feature maps into tokens that can be interpreted
by a pre-trained LLM. The novelty of this approach lies in using the text labels from image
captioning tasks to train a transformer model that acts as a kind of ”translator,” mapping
the learned weights in the CNN model to a hidden vector space that is understandable by
a pre-trained LLM. This enables the generation of natural language explanations for a given
input of the model’s feature values.
In the domain of NLP, the structure of input data and the token level attribution information,
have enabled the development NLE techniques. Feldhus et al. [5] introduced the task of
Saliency Map Verbalization in NLP, where token-level attributions from feature attribution
methods are translated into natural language explanations. They proposed and evaluated two
approaches for generating these explanations: a template-based method and an instruction-
based method using LLMs.
In another work in NLP, Dhaini et al. [8] proposed EvalxNLP, a benchmarking framework
for evaluating post-hoc explainability methods in NLP models. EvalxNLP integrates different
attribution methods and evaluates them using metrics such as faithfulness, plausibility, and
complexity. In addition to these benchmarking features, the framework also has an LLM-based
module that generates natural language explanations to help users better understand both the
attribution scores and the evaluation metrics. Although EvalxNLP integrates an LLM-based
module to verbalize attribution scores and evaluation results, it does not focus on the natural
language explanation (NLE) task itself. There is no exploration of prompt design or systematic
evaluation of the generated NLE. Although both of these works (by Feldhus and Dhaini)
focus on text classification, their methodology and evaluation results offer valuable insight for
extending NLE generation to other domains, such as time series.
In contrast to these developments, only a few studies explored NLEs in time series data. One
notable early work that addresses this gap is TSXplain [9]. TSXplain focuses on generating
NLEs for anomaly detection in time series data. TSXplain integrates deep neural networks
with statistical feature extraction techniques to generate useful textual explanations for both
experts and novice users. The method begins by identifying influential data points in a time
series through an influence tracking mechanism (TSViz [36]), then characterizing these points
using statistical measures. These characteristics are then combined into template-based natural
language descriptions, resulting in text explanations of detected anomalies. While its explana-
tions rely on fixed templates, the method shows a way on how structured data characteristics
can be translated into text. This sets a nice foundation for future work on LLM-driven NLEs
in time series domains.

2.5 Evaluation

Evaluating the quality and effectiveness of explanation methods is a critical but challenging
task. Although many work has proposed evaluation metrics for time series explainers, different
methods are often evaluated using different task-specific criteria. XTSC-Bench [37] introduces
a standardized benchmarking framework specialized for evaluating explanation methods in
TSC. It proposes four core metrics including faithfulness, robustness, complexity, and reliability
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to quantitatively assess the performance of explanation methods. Faithfulness measures how
accurately the explanation reflects the model’s decision-making process. Robustness evaluates
the stability of an explanation when the input is slightly perturbed. Complexity quantifies how
many features the explanation uses. Simpler explanations with fewer features are preferred,
as they are generally easier to understand. Reliability focuses on how well the explanation
highlights truly informative regions of the input, based on known ground truth.
The metrics in XTSC-Bench are mainly designed for numerical outputs and assume a clear link
between input features and explanations. However, NLEs provide abstract human-readable text
that doesn’t always match specific features or time points. So, evaluating NLEs for end users
needs different methods that focus on how correct, clear, and useful the text explanations are.
Among existing works, TSXplain [9] is the only work tailored to assessing NLEs for time series.
TSXplain conducted a qualitative user study involving two distinct user groups to evaluate the
quality of the generated textual explanations. Novice users, with limited knowledge of time-
series data, focused on high-level understanding, while expert users sought more detailed and
technical explanations. The participants rated the explanations based on subjective evaluation
metrics including relevance, sufficiency, and correctness. Additionally, expert users also assessed
the meaningfulness and their overall satisfaction. This evaluation setup helped capture diverse
perspectives on the clarity and usefulness of the natural language explanations for end users.
In a study by Leiter et al. [38] on metrics for the evaluation of natural language explanations,
they suggest that it is important to focus on things like faithfulness, plausibility, and trans-
parency in the evaluation. This idea matches well with the challenges we face in evaluating
NLEs for time series classification, where usual metrics designed for numerical explanation
outputs don’t really capture how good the NLEs are. These ideas can be helpful for designing
better and more understandable ways to evaluate textual explanations in our research.

Despite these advancements, there remains a significant gap in the development of NLEs for
time series tasks, specifically for time series classification. One of the key challenges is the
lack of labeled datasets that include textual explanations for time series labels, which makes
training and evaluating such models difficult. Moreover, to the best of our knowledge, there
is no prior work that generate NLEs for time series data using the text generation ability and
general knowledge of LLMs. This represents a promising and largely unexplored direction in
XAI research. In this work, we aim to address this gap by investigating the use of LLMs to
generate natural language explanations specifically for time series classification tasks.
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3 Experimental Methodology

We propose a post-hoc explanation pipeline that generates local, NLEs of a time series classifi-
cation model. Our goal is to transform the logic behind a model reasoning on a specific sample
input, into human-understandable text explanation for both expert and non-expert users.
We define expert users as individuals with a background in computer science or related fields
who are familiar with time series models and XAI methods. Non-expert users are those without
technical expertise in XAI, such as domain professionals or general users, who need more basic
explanations to understand model behavior.
The core of our approach is the use of attribution-based explanation methods. These methods
are chosen for their ability to assign importance scores to each input point, showing its influence
on the model’s decision. These attribution scores are used to generate NLEs through two
strategies: a template-based approach, which we use as a baseline, and a prompt-based LLM
approach. The template method provides a structured and controlled baseline and the use of
LLMs to generate can result in more clear, flexible, and contextful explanations.

Figure 2: End-to-end pipeline for generating local natural-language explanations of mul-
tivariate time series classifications.

Figure 2 illustrates the overall pipeline. The designed pipeline consists of four stages:

1. Classification Models: We train two deep learning models, including a simple RNN
and a transformer-based architecture on a multivariate time series classification dataset.
These are the models whose predictions we aim to explain.

2. Attribution Generation: We apply attribution methods on each sample with the trained
classification model to obtain attribution scores per feature and per time step. These
scores serve as the basis for NLE generation.

3. Categorizing Attribution Values: We categorize the raw attribution values into three
levels: strongly influential, moderately influential, and not influential. These levels help
to structure the input in the explanation stage. In the template-based approach, this
controls which time steps and features are mentioned. In the LLM-based method, they
are optionally included in prompts to guide the model’s reasoning.

4. Natural Language Explanation Generation:
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• Template-based Explanation: A rule-based method that constructs explanations
from categorized attribution scores. We design separate templates for expert and
non-expert users, adapting the level of details and technicality.

• LLM-based Explanation: A method in which a structured summary of prediction,
attribution scores, and other relevant information is passed to an LLM. We explore
multiple prompt formats and evaluate how phrasing and relevant context affect the
faithfulness, completeness, and usefulness of the explanation.

We conducted experiments on two multivariate time series classification datasets: one synthetic
dataset with ground truth attribution labels, and one real-world human activity recognition
dataset without such labels. The synthetic dataset was used as a pre-study in a controlled
setting to benchmark attribution methods and explore different prompt structures. We evalu-
ated the final NLE output on this dataset ourselves. The real-world dataset helps us test how
well the pipeline works in a practical scenario, including user evaluation with both expert and
non-expert users.
The following subsections describe the datasets, the implementation of each pipeline stage,
and the evaluation methodology in each stage.

3.1 Datasets

Selecting a suitable dataset for this problem was a challenge. An ideal dataset would be a
time series classification dataset that includes labels or brief explanations in natural language
along with the class labels. This would make it possible to train and evaluate models capable
of generating textual explanations for a TSC task. However, such datasets are currently not
available. As a result, we focused on finding a time series classification dataset with either
clear, human-interpretable patterns or ground truth attribution labels, which could provide a
reliable foundation for assessing explanation faithfulness.
We found an artificial dataset introduced by Tonekaboni et al. [30], named the Spike dataset.
This dataset was specifically designed to evaluate time series explainability methods. Provides
ground-truth attribution labels, allowing for quantitative assessment of the explanation accu-
racy of attribution values. This dataset was originally proposed for a time series forecasting
task, but with small changes we were able to use it for a time series classification.
To further validate our method, we also conducted experiments on a real-world dataset. We
sought a labeled time series classification problem that was simple and interpretable, allowing
human and non-expert evaluation of generated explanations. For this, we selected the UCI
HAR dataset [39], which contains labeled human activity data.
In the following sections, we will introduce each dataset in more detail and explain how we
used them.

Spike Dataset This dataset consists of multivariate time series with D = 3 features
generated using a non-linear auto-regressive moving average (NARMA) process. Sudden spikes
are introduced randomly in all features, but only the first feature is relevant and influencing
the output label. The binary outcome yt changes from 0 to 1 when a spike occurs in the first
feature for the first time. In order to make this dataset suitable for a classification problem,
we take the outcome yt at the last time step as the class label. Therefore, our version of the
spike dataset is a binary classification dataset (with labels 0 and 1) where whenever at least
one spike occurs in the feature 0 the class will be 1 and otherwise it is 0.
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Figure 3: Example input samples and ground truth attributions from the spike dataset.

We use this dataset as a controlled test to evaluate the performance of the attribution methods
we used. Since it is easy to identify the important feature and the precise time step, it is also
easy for us to evaluate the natural language explanation. We generated these data using the
code available from [30] with 1000 samples, 800 for the train, and 200 for the test set. Each
sample has 3 features and 80 time steps.
Figure 3 illustrates two samples. In Class 1, a visible spike in feature 0 triggers the class switch,
and the corresponding ground truth attribution reflects this. In contrast, Class 0 contains no
such event, and all attributions remain zero.

UCI HAR dataset The UCI Human Activity Recognition (HAR) dataset is a widely used
real-world dataset for time series classification [39]. It contains sensor readings collected from
a smartphone worn on the waist of 30 participants performing six daily activities: walking,
walking upstairs, walking downstairs, sitting, standing, and laying. During the experiments,
each participant wore a smartphone on their waist, which recorded data using its embedded
accelerometer and gyroscope sensors. We chose this dataset because its activities are simple
and easy to understand from the input features using some basic logic and knowledge of
physics. This makes it suitable for evaluating the correctness, faithfulness, and quality of
generated natural language explanations from our methodology.
The dataset includes raw triaxial signals, providing nine input features that represent total
acceleration, body acceleration, and angular velocity along the x, y, and z axes. These signals
are not normalized. The unit for acceleration signals is in gravity units (g) and for angular
velocity is in radians/second. The dataset also includes features extracted from these nine
raw signals, but we do not use those engineered features in this work. Each sample data is
represented as a fixed-size window of 128 timesteps (2.56 seconds), sampled at 50 Hz.
Figure 4 illustrates one representative sample from each of the six activity classes in the UCI
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Figure 4: Example input samples from each activity class in the UCI HAR dataset.

Table 1: Number of samples per activity in the UCI HAR dataset
Activity Train Samples Test Samples
WALKING 1226 496
WALKING UPSTAIRS 1073 471
WALKING DOWNSTAIRS 986 420
SITTING 1286 491
STANDING 1374 532
LAYING 1407 537

HAR dataset. Each sample shows the raw triaxial signals (accelerations and angular velocities).
These signals form the input to our model and are used without any engineered features.
The dataset was randomly partitioned into two sets: 70% of the volunteers were selected for
generating the training data, and 30% for the test data. The dataset has 7352 training sample
and 2947 test samples and is well-balanced across the six activity classes in both the training
and test sets. Table 1 shows the number of samples per activity in each set.

3.2 Classification Models

This section describes the training and evaluation setup for a deep neural network time series
classification model. In order to identify the best hyperparameters and prevent overfitting, we
perform a hyperparameter optimization (HPO) and select the best hyperparameter set based
on the models’ performance on the validation dataset. A K-fold cross-validation method is
implemented with k = 5. The tunable hyperparameters include the batch size, learning rate,
number of epochs and model-specific architectural hyperparameters.
The deep classification models have been implemented in PyTorch, and HPO is conducted
using the Optuna optimization framework. We use the Adam optimizer and cross-entropy
loss for training the models. To avoid overfitting we apply an early stopping strategy. The
training process is stopped if the validation performance does not improve for a fixed number
of consecutive epochs. In our experiments, we set the early stopping patience to 5 epochs.
To ensure reproducibility, we fixed random seeds during all training and evaluation phases. All
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training and evaluation experiments were executed on a T4 GPU on google colab.
We employ two deep learning-based architectures for time series classification with the following
specifications:

• Recurrent Neural Network (RNN) Based Classifier: The RNN model implemented
for this experiment is designed using simple recurrent layers. The overall architecture
consists of the following components:

– A recurrent layer that can be either a GRU or LSTM, depending on the selected
configuration. This layer processes the input sequence and encodes temporal de-
pendencies in a hidden state.

– An optional bidirectional setting that allows the model to read the time series in
both forward and backward directions to capture future context in the time series.

– A multi layer perceptron (MLP), which takes the final hidden state and outputs
class logits (performs final classification).

The architectural hyperparameters of this model include the hidden dimensionality of
the recurrent units (hidden dim ∈ {16, 32, 64, 128}), the number of recurrent layers
(num layers ∈ {1, 2, 3}), the type of recurrent unit used (rnn type ∈ {GRU, LSTM}),
and whether the model is bidirectional (bidirectional ∈ {True,False}).

• Transformer-Based Classifier: The Transformer model implemented for this exper-
iment is designed to use simple transformer encoder layers. The overall architecture
consists of the following components:

– A fully connected layer that embeds the raw time series data into a higher-dimensional
embedding space.

– A learnable positional encoding layer that provides information about the position
of each time step in timeseries.

– Transformer encoder layers that composed of multiple self-attention layers to allow
the model to focus on relevant parts of the time series while ignoring irrelevant
patterns. Each layer consists of a multi-head self-attention, feed forward and layer
normalization and dropout.

– A fully-connected MLP, that analyzes the extracted features and performs as the
final classification head.

The model includes many tunable architectural hyperparameters that are optimized dur-
ing the HPO process. These include the hidden dimensionality of the transformer layers
(d model ∈ {32, 64, 128}), the number of attention heads (nhead ∈ {2, 4, 8}), the
number of transformer encoder layers (num layers ∈ 1, 2, 3), and the size of the MLP
hidden layer (hidden dim ∈ {16, 32, 64}).

3.2.1 Classification evaluation

During the HPO process, we evaluate model performance on the validation set and select the
hyperparameter configuration with the highest average validation accuracy. After the HPO
process, using the best hyperparameter configuration, we retrain the model on the entire
training set. Then we perform a final evaluation on the best model using the test dataset,
reporting accuracy, precision, recall, F1-score to report the final performance metrics.
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3.3 Attribution methods

To interpret the predictions of the trained classification models, we apply multiple post hoc
point-based attribution explanation methods. These methods generate an attribution score
showing the importance or influence of each time step in each feature on the model’s output.
We should note that we focus on point-based methods because they provide fine-grained attri-
bution values that are well-suited for our goal of generating detailed and helpful NLEs. Other
types of attribution-based methods, such as subsequence-based or instance-based explanation
methods, often produce outputs that are already more interpretable and may not require NLEs
to the same extent.
The attribution methods are implemented using the tint library. We experimented with several
attribution techniques, including Temporal Integrated Gradients [29], Temporal Occlusion [30],
DynaMask [31], and ExtremalMask [32]. We apply the attribution methods to the trained
model checkpoints on samples from the test dataset. Attribution values are computed for each
input sample per feature per time step. The generated attribution maps are then stored to be
used in order to generate text explanation. Depending on the method, different parameters,
such as baselines or input shapes, are configured.

3.3.1 Attribution-based explainer evaluation

To assess the quality of explanations generated by attribution methods, we use Area Under
the Receiver Operating Characteristic Curve (AUROC) and Area Under the Precision-Recall
Curve (AUPRC) metrics calculated using the ground truth labels for each time step.

AUROC. AUROC measures how well the explainer ranks truly important time steps above
unimportant ones. Shows the probability that a randomly chosen important time step receives a
higher attribution score than a randomly chosen unimportant one. An AUROC of 1.0 indicates
perfect separation, while 0.5 indicates random guessing.

AUROC =

∫ 1

0

TPR(FPR−1(x)) dx

TPR =
TP

TP + FN
, FPR =

FP

FP + TN

AUPRC. AUPRC focuses on the explainer’s precision-recall tradeoff, which is particularly
relevant for the Spike dataset, where most time steps are unimportant and only a single truly
important time step exists in each positive (class 1) sample.

AUPRC =

∫ 1

0

Precision(r) dRecall(r)

Precision =
TP

TP + FP
, Recall =

TP

TP + FN

We computed AUROC and AUPRC using sklearn.metrics.roc auc score and sklearn.

metrics.average precision score respectively, applied to flattened attribution scores and
binary ground truth labels.
We should note that evaluating the quality of this form of explanation is only possible on the
spike dataset since we know the ground truth attribution values. In addition, the classification
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models on the spike dataset perform with near-perfect accuracy (close to 100%), which also
makes it possible to evaluate attribution-based explainers in this way, despite the black-box
nature of the models.
For experiments on the UCI HAR dataset, we cannot quantitatively evaluate the attribution
scores due to the lack of ground-truth importance labels. Instead, we rely on the best per-
forming methods from the Spike dataset and use those as our attribution-based method.

3.4 Categorizing attribution values

Attribution-based explanation methods assign an importance score to each input feature or
time step, indicating its contribution to the model’s prediction. In the attribution-based meth-
ods applied in this study, as discussed in Section 2.3, higher attribution values suggest a greater
influence on the classifier’s decision-making process. To generate explanations, we needed a
way to identify and prioritize the most influential parts of the input time series based on these
scores. To do this, we aggregate the absolute attribution values across all test samples, time
steps, and classes, forming a single distribution of absolute attribution values. Our goal was to
classify and categorize values of the most influential points that could guide NLE generation.
Initially, we experimented with common thresholding strategies, such as selecting setting man-
ual cutoffs by inspecting the distribution, or using fixed percentiles. However, a fixed global
threshold can result in too many or too few points being marked as influential depending on
the overall attribution of the sample. Also, these approaches required manual tuning across
different datasets which made them unreliable and not general enough. To improve robustness
and generality, we decided to categorize the attribution values into three discrete influence
levels. We tried binning methods using linear and exponential relations, but they still relied on
the distribution shape and didn’t generalize well.
In the end, we chose a clustering-based approach using the K-means algorithm. We ran K-
means with k = 3 on the full distribution of attribution values to find natural boundaries
between the influence levels. This method does not need manual adjustment and is auto-
matically adjusted to the value distribution, which makes it more robust across datasets and
attribution methods. We implemented this using the KMeans class from the sklearn.cluster
library.

3.5 Natural language explanation generation

In the final stage of our pipeline, we translate attribution values into human-readable ex-
planations through two strategies: a rule-based template approach and a prompt-based LLM
approach. For each dataset, we choose the best performing classification model with the best
performing attribution method, and use their output to generate the NLE.
Before generating explanations, we needed a way to filter out the most influential features
and time steps based on the attribution values. This preprocessing step was necessary for
the rule-based method and was used as structured guidance in some prompts in the prompt
formulation for LLM-based explanations. We categorized attribution scores into three levels:
strong, moderate, and none.
In the following subsections, we first describe the metrics used for evaluating the quality
of NLEs. We then provide a detailed explanation of categorizing attribution values process,
followed by the explanation generation methods: first the rule-based template approach, and
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then the prompt-based LLM approach. Finally, we present our evaluation setup for assessing
both forms of NLEs across the two datasets.

3.5.1 NLE evaluation metrics

To guide the design of both template-based and LLM-based explanation methods we used the
following set of evaluation metrics. These metrics later used in our final user evaluation.

• Faithfulness: This metric measures if the explanation highlights the correct features and
time steps that contributed most to the prediction. A faithful explanation should clearly
distinguish important from unimportant inputs and be consistent with the attribution
values in our problem.

• Completeness: Completeness evaluates whether the explanation covers all important
contributing regions. An incomplete explanation may mention only a subset of influential
points.

• Clarity: For an explanation to have clarity, it must be easy to understand. A clear
explanation uses accessible language and structure, making it easy for the user to follow,
regardless of their technical background.

• Helpfulness / Usefulness: This metric measures whether the explanation helps the
user understand why the model made a particular prediction.

To define the thresholds between these levels, we sort the cluster centers in ascending order
and compute the midpoints between each pair. More formally, given the sorted cluster centers
{c1, c2, c3}, we calculate the thresholds as:

thresholds =

[
c1 + c2

2
,
c2 + c3

2

]
These two threshold values divide the attribution scores into three bins, which are then used
to assign each time step to one of the three influence categories for NLE generation.

3.5.2 Template based NLE

We designed two different output formats, each designed for a specific end user: either a non-
expert user or an expert user. For each type of user, there are two variations, depending on
whether any influential data points were identified in the input or not.
We categorize each feature-time step combination into categories of influence: no influence,
moderately influential, and strongly influential as described in 3.4. Then, to determine the most
influential features, we ranked them based on the weighted count of moderately and strongly
influential points, giving a higher weight to strong influence. Moreover, we only considered
features as most influential if they included at least one strongly influential time step. This
helped with keeping the explanation concise.
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Non-expert Template: For non-expert users, we use a simplified explanation that high-
lights at most three most influential features and up to three time steps per feature.

With influential points:

The model predicted this input as class <predicted label>. The most important parts
influencing the model’s decision were:

• Feature <F0> at time steps:

– <T1> (<positive/negative> influence)

– <T2> (<positive/negative> influence)

• Feature <F2> at time steps:

– <T20> (<positive/negative> influence)

Positive influence means that these inputs helped the model choose <predicted label>,
while negative influence means that they pushed it away from that choice.

With no influential points:

The model predicted this input as class <predicted label>. No specific part of the input
was important in the model’s decision-making process, and the decision was not based on
any specific feature or time step.

Expert Template: For expert users, the explanation includes all points identified as strongly
and up to 5 timesteps of each moderately influential feature, along with their attribution values
and influence direction.
With influential points:

The classifier predicted this sample as class <predicted label>. Attribution scores were
computed using <attribution method>, and clustered into three influence levels using
k-means.
The most influential points are:
Strongly Influential

• Feature <F0> at time steps:

– <T1> (<positive/negative> influence, attribution = <value>)

– <T2> (<positive/negative>, attribution = <value>)

Moderately Influential

• Feature <F3> at time step:
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– <T4> (<positive/negative> influence, attribution = <value>)

• Feature <F1> at time step:

– <T5> (<positive/negative> influence, attribution = <value>)

Other features and time steps had minimal influence based on the attribution method.

With no influential points:

The classifier predicted this sample as class <predicted label>. Attribution scores were
computed using <attribution method> and clustered into three influence levels using k-
means. Attribution scores were analyzed, but no feature or time step reached the moderate
or strong influence thresholds. This suggests that the model made its decision without
relying on any specific part of the input.

3.5.3 LLM based NLE

In this approach, we treat NLE generation as an in-context learning problem, where we prompt
an LLM with structured information about prediction, attribution values, and some other
different context and ask it to generate a natural language explanation.
We use a pre-trained LLM to generate natural language explanations based on the attribution
values. We use the llama-3-70b-instruct model via the replicate API, which provides
access to llms running on a hosted infrastructure. The inference setup uses a fixed random
seed for reproducibility (seed=42) and a temperature of 0 to ensure deterministic output. In
our explainability task we don’t need the model to be creative so we concluded that setting
the temperature to 0 won’t have a negative influence on the quality of the explanation. In
our experiments,, the output of the LLM was mostly consistent and reproducible with these
settings.
An important step here was the prompt engineering process. We needed the NLE to be faithful
and reliable according to the given attribution values. It was also important to us that the
final textual explanation includes all the important features and time steps and explains the
classification decision process clearly for the end user.
In order to find the best prompt according to these criteria, we tried different wording, different
ways of passing the attribution numbers, and different instructions. To improve the quality of
the explanations, we iteratively changed and refined the prompt template based on the quality
of the generated outputs. Since the Spike and UCI HAR datasets represent two very different
problem contexts, the prompt engineering process also differed between them. The Spike
dataset, used as a pre-study, allowed us to explore and identify effective strategies for passing
attribution values and for including (or excluding) specific information. These lessons guide
our approach for the HAR dataset, where we tried to improve the prompt and NLEs by adding
context about the real-world dataset. We added this context to generate deeper and more
informative NLEs.

Prompt Engineering for the Spike Dataset In the spike data set, we experimented
with different variations on one sample from each class using attribution values resulting from
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the temporal integrated gradients attribution method. We started with a general template that
described the prediction of the model and includes the attribution values resulting. The initial
template (#1) was as follows:

A deep time series classifier has been trained on labeled data. After

training, an attribution-based explanation method was applied to

compute attribution values for each time step of each feature of a

specific input sample.

The attribution scores are as follows: <attributions>

The classifier predicted the sample to belong to class

<predicted label>.

Explain the classifier’s prediction for this input. Focus on the most

influential features and time steps based on the attribution scores.

Keep the explanation concise.

Initially we provided the <attributions> as an array of scientific notation numbers, with the
same length as the input time series. However, we found out that with this number formatting
the LLM is having trouble comparing and analyzing values so we round the attribution with 2
decimals and formatted values in a normal way for the rest of the prompt engineering process.
This helped the LLM to identify the most influential attribution values better, but it was
still struggling with referencing the exact time steps, often generating vague time intervals as
influential time steps (i.e., Time steps 35–39), while there exist only one important time step.
In order to solve this issue, we restructured the attribution input to present the values per
feature and per time step, using a dictionary format. Each feature was printed separately
with time step-to-value mappings, such as For feature 0: 0: 0.000, 1: 0.001, ...,

79: 0.000 in template (#2). This helped the model consider each time steps and made the
input more readable. At this stage, the generated explanation was accurate and acceptable
for samples from class 1. However, the LLM struggled with class 0 samples, where it did not
recognize that all attribution values were uninfluential. In class 0 samples, most values were 0
and others very close to zero (typically below 0.01). According to domain experts, such small
attribution values should not be interpreted as significant, especially given the potentially wide
value range of the attribution method. But the LLM tended to treat these minimal values as
meaningful, probably because it was still trying to identify and explain influential points even
when none were truly present.
To solve this problem, we tried different approaches to give the LLM more context about
the characteristics of influential points. Table 2 shows each prompt variation (all adding con-
text by modifying prompt #2). Including a description of the change and its impact on the
model’s output. The full text of each prompt version used during experimentation is provided
in Appendix A.
From the qualitative results in Table 2, we chose prompt #6 and prompt #7 for generating
final explanations and used them in the final user evaluation step.

Prompt Engineering for the UCI HAR Dataset For the UCI HAR dataset, we
followed a similar prompt engineering process to the one used for the Spike dataset, but
adapted our approach to handle the higher input dimensionality, longer sequences (128 time
steps), and more complex sensor data. Due to the large number of signals and the context
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length limits of the LLM, we first applied a threshold to filter out attribution values below 0.01
to reduce prompt size and improve clarity. The initial prompt (Prompt #1) was as follows:

A deep time series classifier has been trained on labeled data. After

training, an attribution-based explanation method was applied to

compute attribution values for each time step of each feature of a

specific input sample.

The attribution scores are as follows (formatted as time step:

attribution value for each feature):

<attributions>

The classifier predicted the sample to belong to class

<predicted label>.

Explain the classifier’s prediction for this input. Focus on the most

influential features and time steps based on the attribution scores.

Keep the explanation concise.

In this prompt, attributions were formatted per signal and per time step. The placeholder
<attribution dict> represents a per-feature mapping of time steps to attribution values.
While this formatting produced good explanations for samples from different classes, we ob-
served that the LLM occasionally didn’t mention most influential attribution points and some-
times hallucinated additional feature importance. To address these issues, we explored several
prompt variations. Table 3 summarizes the prompt engineering strategies we evaluated and
their observed effects on explanation quality. The full text of each prompt is provided in
Appendix A.
Among these, Prompt #3, which combined attribution filtering with contextual dataset in-
formation, resulted in the mostly faithful, complete, and interesting explanations. However,
even with this improved structure, we noticed that the model sometimes hallucinated and
tried to use its general knowledge to infer human motion patterns from the attribution values.
It seemed that the LLM is treating attribution values as if they were raw input signals. This
is not a correct reasoning process, since attribution values only indicate importance, not the
actual content of the signal.
To reduce this kind of hallucinations, we introduced Prompt #4, which builds on Prompt
#3 by adding a simple instruction: Do NOT infer sensor magnitudes or human motions. Your
explanation must mention importance, not what happened in the signal. This constraint helped
the model stay focused on attribution-based reasoning and prevented unsupported inferences
about the input signal.
We therefore selected this prompt as our final choice for generating explanations in the user
evaluation.

Prompt Adaptation Based on User Type: After selecting the most effective general
prompt for each dataset, we customized the final prompt based on the intended end user. The
core content and structure of the prompt remained the same, but the instruction was changed
to specify the end users’ need to improve the usefulness.
For the Spike dataset:

• Expert user: "Explain the classifier’s prediction for this sample to an

expert user. Keep the explanation concise and mention which attribution
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method was used."

We also included the name of the attribution method directly in the prompt context.

• Non-expert user: "Explain the classifier’s prediction for this sample to

a non-expert user. Keep the explanation concise."

For the UCI HAR dataset:

• Expert user: "Explain the classifier’s prediction for this sample to an

expert user, using the attribution scores and mentioning influential features

and time steps. Keep the explanation concise."

We also included the name of the attribution method directly in the prompt context.

• Non-expert user: "Explain the classifier’s prediction for this sample to

a non-expert user. Keep the explanation short and concise." To improve
usefulness and help the model generate clear and concise responses for non-expert users,
we also included two examples of short, informative explanations in the prompt.

3.6 NLE Evaluation

The quality of the generated NLEs was evaluated by human judgment.
For the Spike dataset, evaluation was conducted internally by the authors. We selected the
two best-performing prompts from our prompt engineering process, Prompt #6 and Prompt
#7 (see Table 2) and applied them to a set of 20 samples (10 randomly selected from each
class). Each explanation was manually reviewed and rated according to three core criteria:
faithfulness, clarity, and completeness. Ratings were assigned using a 5-point Likert scale and
an additional overall satisfaction score was recorded for each explanation.
For the UCI HAR dataset, we conducted a user study using a custom web-based survey
platform for both expert and non-expert users.1 Each evaluator was shown both a template-
based and an LLM-based textual explanation, each accompanied by plots. Then they were
asked to rate them based on the 4 metrics: faithfulness, helpfulness, completeness, and clarity
(previously defined in Section 3.5.1). Each participant evaluated 12 samples, 2 from each
of the 6 classes in the HAR dataset. From these, 6 samples were fixed across all users to
enable controlled comparison, while the remaining 6 were randomly selected from the test
set to increase variability. Users who self-identified as familiar with XAI (rating 4 or 5 on
a 5-point scale) were considered experts and shown explanations tailored for expert users.
Participants evaluated each explanation independently using a 5-point Likert scale across the
defined metrics. In addition the defined metrics, they answered a modality preference question
indicating which form of explanation they preferred in that context (text only, plots only, both,
or neither).
In addition, the survey included two overall questions per sample: one asking which textual
explanation style (template vs. LLM) they preferred, and another asking which modality (text,
plots, both, or neither) best helped them understand the model’s decision. These questions
allowed us to also assess user preference and usefulness of different NLE styles and visualization
combinations for explaining a AI model through attribution values.
The evaluation interface and participant instructions are shown in Appendix C and B, respec-
tively.

1https://tsnle.vercel.app
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Table 2: Prompt Strategies and Observed Effects on Explanation Quality (Spike Dataset)

Strategy Prompt Variant Observed Effects

Attribution
Categoriza-
tion

Prompt #3 Included the name of the attribution method,
the method’s upper and lower bounds, and
the relation of attribution values to influence.
These additions did not improve the explana-
tion on class 0. The model still treated very
near-zero values as important.

Top-k At-
tribution
Forcing

Prompt #4 Instructed the model to list only the top 3
most influential feature-time step combina-
tions. The model forced itself to generate ex-
actly three influential points, even when none
were meaningful. This was especially prob-
lematic in class 0 cases and overall even re-
duced explanation quality on the class 1 sam-
ple.

Attribution
Categoriza-
tion

Prompt #5 Described thresholds for no influence, slightly
influential, and strongly influential attribu-
tion values (using K-means clustering as de-
scribed in Section 3.4). This improved expla-
nation faithfulness and the model correctly
mentioned the lack of strongly influential fea-
tures on the class 0 sample. However, it
still sometimes mentioned “slightly influen-
tial” points that were not actually present in
the input.

Attribution
Catego-
rization
(Binary)

Prompt #6 Defined a threshold for influence based on the
second bin center from the K-means cluster-
ing (dividing points into influential / not in-
fluential). The results improved for class 0,
as the LLM correctly stated that “no influ-
ential features or time steps were detected,”
and explained the prediction as not driven by
any specific point. However, the explanations
were slightly less detailed for class 1 samples,
since this approach used only two influence
levels.

Attribution
Filtering

Prompt #7 Instead of passing the full attribution ar-
ray, only moderately and strongly influential
feature-time step combinations were passed,
based on K-means bin labels. The prompt in-
cluded a list of these points, or stated that
none were found. Explanations were accu-
rate, faithful, and clear. Since only influential
points were passed, the LLM no longer needed
to identify them itself.

27



Table 3: Prompt Strategies and Observed Effects on Explanation Quality (UCI HAR)

Strategy Prompt Variant Observed Effects

Base For-
matting

Prompt #1 Clean structure with per-feature attribution
dictionary. The LLM handled the format rea-
sonably well but occasionally ignored key val-
ues or hallucinated influential features.

Attribution
Filtering

Prompt #2 Passed only moderately and strongly influen-
tial feature-time step combinations. Explana-
tion quality improved and was mostly faithful
and complete across samples. But we wanted
to see how explanations reasoning and story-
telling improve when the LLM have context
about the dataset.

Dataset
Context
Injection

Prompt #3 Adding sensor details (e.g., placement and
axis meanings) helped the LLM explain using
real-world reasoning. Prompt #3 was usually
complete, faithful, and interesting. However,
in some cases the LLM confused attribution
values with input sensor values and interpret
attribution values in a way to justify the clas-
sifiers prediction in an incorrect way.

Attribution-
Only Con-
straint

Prompt #4 Added an explicit instruction to avoid infer-
ring attribution values as input motion signal.
This eliminated hallucinations and improved
faithfulness in explanations. Selected as the
final prompt for evaluation.

Input Value
Context

Prompt #5 Combined #4 with actual input values of
most influential features. Resulted in generic,
repetitive explanations and less attention to
attribution values during reasoning.
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4 Results

In this section, we present the results of our experiments on the Spike dataset and the UCI
HAR dataset. These results include model performance on validation and test sets, as well as
the effectiveness of the attribution methods, and evaluating natural language explanations.
Each data set is discussed separately, starting with the Spike data set as a baseline, followed
by the more complex real-world UCI HAR dataset.

4.1 Spike dataset (Baseline)

Model Performance: The best performing configuration for the Transformer model was
the following:

• batch size: 32, learning rate: 0.0093, epochs: 20

• d model: 64, nhead: 8, num layers: 1, hidden dim: 64

The best performing configuration for the RNN model was:

• batch size: 32, learning rate: 0.0055, epochs: 11

• hidden dim: 128, num layers: 2, rnn type: GRU, bidirectional: False

Table 4 presents the validation accuracy and final test evaluation metrics for both models.

Table 4: Performance results of Transformer and RNN classifiers on the Spike dataset.

Model Val. Acc Test Acc Precision Recall F1-score

Transformer 0.998 0.995 0.996 0.991 0.994
RNN (GRU) 1.000 1.000 1.000 1.000 1.000

These results show that both models perform really well and closely on the test dataset,
indicating that they have been trained almost perfectly. For our pipeline, this means that we
can be confident that the model is paying attention to the right features, and we can reliably
evaluate the attribution methods using the ground truth attribution values in this dataset.

Attribution Analysis: For each sample in the Spike dataset, each timestamp in each
feature has a ground truth attribution value of 0 or 1. This allows us to perform per-timestep
evaluation on the generated attribution values. Formulating the problem as if each timestamp
(across all channels) is a binary classification therefore, we can calculate AUROC and AUPRC
over all samples in the test dataset.
Table 5 shows AUROC and AUPRC for the different attribution techniques we used, evaluated
on both the Transformer and the RNN models. To assess the robustness of each attribution
method, we divided the test set into 5 folds and report the mean and standard deviation of
AUROC and AUPRC scores across these folds.
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Table 5: Per-timestep AUROC and AUPRC scores for different attribution methods on
the Spike dataset.

Attribution Method Classifier AUROC AUPRC

Temporal Integrated Gradients
Transformer 0.996± 0.007 0.963 ± 0.032
RNN 0.998 ± 0.001 0.791± 0.042

Temporal Occlusion
Transformer 0.992± 0.013 0.922± 0.057
RNN 0.998 ± 0.001 0.785± 0.043

DynaMask
Transformer 0.670± 0.101 0.005± 0.002
RNN 0.627± 0.017 0.002± 0.001

ExtremalMask
Transformer 0.627± 0.149 0.022± 0.026
RNN 0.907± 0.040 0.011± 0.007

Based on the results in Table 5, the Integrated Temporal Gradients had the best overall per-
formance. It achieved both high AUROC and high AUPRC across models. Temporal Occlusion
also performed well and was close behind. In contrast, some methods, like ExtremalMask for
RNN, had a high AUROC but a very low AUPRC. This means that the model was able to
identify the correct important points, but it still had many false positives.
DynaMask and ExtremalMask both perform much worse compared to the other methods. One
reason is that they are not gradient-based. They work by masking parts of the input and
checking how the model’s output changes, but this approach is more suitable for image data
where important regions are usually larger and continuous.
Because Temporal Integrated Gradients gave the best performance when combined with the
Transformer model, we chose the attribution values from this combination to generate the
natural language explanations

NLE Evaluation: We randomly selected 10 samples from each class (class 0 and class 1)
and generated explanations using each prompt. The generated outputs were manually evaluated
on the basis of faithfulness, completeness, clarity, and overall satisfaction.
We evaluated each explanation, using a five-point Likert scale (1 = poor, 5 = excellent).
Table 6 reports the average evaluation scores for prompt #6 and prompt #7 for spike dataset.
We include the standard deviation to reflect the consistency of each prompt across different
samples. If the standard deviation is high it shows that the quality differed substantially from
one sample to the next.

Table 6: Mean and standard deviation of evaluation scores for Prompt #6 and #7.

Prompt # Faithfulness Completeness Clarity Overall Satisfaction

6 3.80 ± 2.07 4.85 ± 0.36 5.00 ± 0.00 4.10 ± 1.29
7 5.00 ± 0.00 5.00 ± 0.00 5.00 ± 0.00 5.00 ± 0.00

While Prompt #7 achieved perfect scores and had the best performance, Prompt #6 showed
lower mean faithfulness and completeness scores and higher variability. Prompt #7 performed
significantly better than Prompt #6 in Faithfulness, Completeness, and Overall Satisfaction
(Sign Test, p < 0.05), with no significant difference in Clarity. Prompt #6 showed lower mean
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faithfulness and completeness scores and higher variability. To understand this variation, we
break down the results of Prompt #6 by class in Table 7.

Table 7: Per-class mean and standard deviation of evaluation scores for Prompt #6.

Class Faithfulness Completeness Clarity Overall Satisfaction

0 2.60 ± 2.42 4.70 ± 0.48 5.00 ± 0.00 3.20 ± 1.32
1 5.00 ± 0.00 5.00 ± 0.00 5.00 ± 0.00 5.00 ± 0.00

Prompt #6 performed very well on class 1 samples, achieving perfect scores across all eval-
uation metrics. However, its performance decreased significantly when applied to samples in
samples in class 0 samples. Specifically, scores for faithfulness and overall satisfaction dropped
considerably. This can be attributed to the characteristics of the class 0 examples, where all
the attribution values are either zero or very close to zero, making it harder for the LLM to
correctly reason about importance.
We observed several recurring issues in the generated explanations for class 0. In some cases,
the LLM incorrectly marked near-zero attribution values as being above the stated threshold
(1.126), even when they were not. In other examples, the LLM correctly stated that no influ-
ential points were present but still went on to describe certain time steps as having contributed
positively, contradicting the attribution input. Additionally, when higher attribution values did
exist, the model sometimes failed to mention the most significant points, instead highlighting
less relevant ones. These inconsistencies led to lower faithfulness and overall satisfaction scores
in the explanations provided for class 0 samples.
In contrast, Prompt #7 avoids these issues by providing only the filtered set of influential
points, leading to consistently faithful and clear explanations. This justifies our final choice of
prompt #7 as the most robust and reliable prompt for generating natural language explanations
in both classes.

4.2 UCI HAR dataset

4.2.1 Model Performance

The best performing configuration for the Transformer model was the following:

• batch size: 32, learning rate: 0.0011, epochs: 36

• d model: 64, nhead: 8, num layers: 3, hidden dim: 32

The best performing configuration for the RNN model was:

• batch size: 32, learning rate: 0.0062, epochs: 29

• hidden dim: 64, num layers: 2, rnn type: GRU, bidirectional: True

Table 8 presents the validation accuracy and final test evaluation metrics for both models per
class and overall. The RNN performed better or similar to the Transformer in most classes,
especially in dynamic activities like WALKING. While the Transformer did slightly better on
the LAYING class, the RNN had more balanced results overall, showing that it is more reliable
across different activities. The RNN consistently outperformed the Transformer in all micro and
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Table 8: Per-class test metrics for Transformer and RNN classifiers on the UCI HAR
dataset. Macro, micro, and accuracy values are included in the last rows.

Class
Transformer RNN (GRU)

Precision Recall F1 Precision Recall F1

WALKING 0.966 0.869 0.915 0.981 0.942 0.961
WALKING UPSTAIRS 0.926 0.926 0.926 0.927 0.975 0.950

WALKING DOWNSTAIRS 0.875 0.983 0.926 0.926 0.979 0.951
SITTING 0.776 0.863 0.817 0.790 0.798 0.794

STANDING 0.870 0.771 0.817 0.814 0.805 0.809
LAYING 0.993 1.000 0.996 1.000 0.950 0.974

Macro Avg. 0.901 0.902 0.900 0.906 0.908 0.907
Micro Avg. 0.900 0.900 0.900 0.905 0.905 0.905

Test Accuracy 0.900 0.905
Validation Accuracy 0.942 0.982

Table 9: Average self-reported XAI familiarity, AI usage frequency, and AI trust levels of
participants.

Expertise XAI Familiarity AI Usage AI Trust Count

Expert 4.33 ± 0.58 5.00 ± 0.00 3.33 ± 1.15 3
Non-Expert 2.11 ± 0.93 4.33 ± 0.71 3.22 ± 0.97 9

macro metrics reported. We chose the RNN model to apply attribution method and generate
NLEs for samples of the HAR dataset.
We should note that the goal of this work is not to achieve state-of-the-art performance on
the UCI HAR dataset, but to develop fairly accurate classifiers suitable for explanation.
Since RNN shows better results on test dataset, we choose the RNN model to apply attribution-
based explanation methods.

4.2.2 NLE Evaluation from user survey

A total of 12 participants (mean age = 28.17 years, range = 21–42) took part in the study.
The majority held a master’s degree (78%), while the remaining participants had a bache-
lor’s degree, a high school diploma, or a Ph.D. Table 9 summarizes the average self-reported
familiarity with XAI, AI usage, and trust levels by expertise.

NLE evaluation metrics: Figure 5 shows the mean user ratings for each explanation
quality metric for both LLM-based and template-based NLEs, split by user expertise. In all
metrics and for both user groups, LLM-based NLEs consistently receive higher average ratings
than the template-based NLEs. The biggest differences are seen in helpfulness and clarity,
especially the 3 participating expert users. This suggests that LLM-based explanations were
generally more informative and easier to understand for both groups of users.
To analyze accurately we calculated p-values with a two-sided Sign Test, which compares the
number of higher ratings for llm-based explanation samples (excluding ties) against the 50%
expected by chance using a binomial model.
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Figure 5: Comparison of LLM-based and Template-based NLE across quality metrics by
expertise. Error bars are standard deviations over all samples of all users.

For non-expert participants, the differences in metric ratings were statistically significant for
all four metrics: faithfulness (p = 3.33× 10−5), helpfulness (p = 5.92× 10−14), completeness
(p = 3.23× 10−12), and clarity (p = 1.03× 10−7). Among expert participants, the largest and
most significant differences were in helpfulness (p = 8.05×10−7) and clarity (p = 5.65×10−6),
while differences in faithfulness (p = 1.0) and completeness (p = 7.68 × 10−2) were not
statistically significant.
The ratings in faithfulness and completeness, were surprising to us since, as a fact, we know
that the rule-based approach is fully faithful and mostly complete, but apparently the par-
ticipants did not have this perception. Maybe the lesser clarity of these types of NLE made
it harder for users to perceive these explanations as fully faithful. It is known that human
evaluation metrics tend to be highly correlated, with participants often rating all aspects posi-
tively when they have an overall good experience, and all aspects negatively when their overall
experience is poor, and vice versa.

Preferred textual explanation style: Figure 6 shows the percentage of responses to
the question of which textual explanation style that, participants preferred on each sample
split by expertise level.
Both expert and non-expert users showed a strong preference (77.8% of responses) for the
LLM-based explanation style over the template-based alternative. This result confirms that
users generally found the LLM-based NLEs more clear and understandable which is consistent
with the earlier results of metrics ratings.
Only a small percentage of users preferred the template-based explanations: 6% of expert
responses and 11% of non-expert responses. This suggests that rule-based, static explanations
were rarely perceived as more helpful.
Overall, these results appear to indicate a clear user preference for LLM-generated textual
explanations, but also suggest that a small group of users may view both approaches as
similarly useful depending on the sample.

Modality Preference Shifts Between NLE Styles: To understand how the preferred
form of explanation (plot or text) changes depending on the type of textual explanation, we
analyzed participant responses to the explanation format preference question, which was asked
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Figure 6: Preferred textual explanation style by user expertise. Each bar shows the per-
centage of responses selecting user preferred textual explanation style. (Experts: n = 36,
Non-Experts: n = 108)

separately after showing each template-based and LLM-based NLEs on each sample.
Figure 7 presents a heatmap split by user expertise, showing the proportion and count of
samples where users selected a specific form of explanation (text only, plots only, both, or
neither) after reading each type of NLE.
The strongest shift in both expert and non-expert groups was from plots only under the
template-based NLE toward both under the LLM-based NLE. This shift was particularly strong
among non-experts (24%) and even more concentrated among experts (41%). On the other
hand, the reverse transition was nonexistent for experts and very low for non-experts. This
suggests that LLM-based NLE improved the perceived value of combining text and plots.
The second strongest shift for both groups was both to both. which suggest that in about
20% of cases, both textual explanation styles were seen as equally effective in combination
with plots.
Another interesting trend appears for non-experts: around 29% of responses shifted from
neither, both, or plots only to text only with the LLM NLE. This seems to indicate that for
many samples, users found the LLM-based explanation strong enough to prefer just the text.
A smaller but similar trend is visible for experts, with about 22% of responses shifting toward
text only from other choices.
Together, these patterns may reflect that LLM-based NLEs increased users’ confidence in
textual information, encouraging a shift away from visual-only formats and, in some cases,
even reducing the perceived need for plots. This effect is more pronounced for non-experts,
hinting at the potential of well-structured and good natural language explanation to bridge
gaps in technical familiarity and enhance interpretability.

Perceived helpfulness of explanation modalities: Figure 8 shows which explanation
modality users found most helpful for understanding the model’s decision making process.
For both expert and non-expert users, the majority preferred having both textual and visual
explanations together. This was the case for expert users 81% and for non-expert users 68%
of the time. This seems to indicate that combining text and visualization modalities help both
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Figure 7: Modality preference shifts between template-based and LLM-based NLEs, split
by user expertise. Each cell shows the percentage (and count) of samples where par-
ticipants selected a specific explanation modality under each textual explanation type.
(Experts: n = 36, Non-Experts: n = 108)

group of users to understand attribution results better.
Only for a small number of samples, users preferred using just one modality. Among non-
experts, slightly more preferred text only (18%) than plots only (10%). The reason that
plots only is a less helpful modality for non-experts may be due to their limited background
knowledge of non-expert users on how they should interpret attribution values.
For experts, 3 times an expert user (each user once) preferred plot only and 3 times an expert
user preferred text only. We observed that experts who preferred plots only did so only for
samples from the LAYING, STANDING, and SITTING classes. For these classes, the attribution
plots were generally simple, showing a few clearly influential time steps and features, which
may remove the need for a textual explanation for an expert user.
It is also notable that the expert responses for both text only and neither came from the
same participant, who later informed us that they had difficulty interpreting some of the
complex attribution plots due to color blindness. This suggests that their choices may have
been influenced more by accessibility issues than the quality of the explanations themselves.
Overall, these results are consistent with the idea that combined textual and visualization
explanations are more helpful than using text or plots alone, and also highlight that sample
attribution values complexity can influence which modality users prefer.

Qualitative feedback on textual explanations: At the end of the survey, participants
were asked to describe what they found most and least helpful about the textual explana-
tions. Although users were not told which explanation came from which system, we manually
identified the references based on their descriptions.
Users found textual explanations helpful, some users mentioned that having “specific reference
to the points on the plots and the specific time steps made it easy to follow”. One participant
mentioned that the most helpful part of the textual explanations was “mentioning what was
the most important feature behind the classification label (and its range)”.
For the template-based NLE, while the bullet-point format was easy to parse, one non-expert
user felt that it was “missing reference to relevant points”. This may be due to the fact that the
template-based NLE includes only the top 3 most influential features, keeping the explanation
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Figure 8: Perceived helpfulness of explanation modalities by user expertise. Bars show
the percentage of responses selecting each modality as the most helpful for understanding
how the AI model works. (Experts: n = 36, Non-Experts: n = 108)

short by design for non-expert users.
For the LLM-based NLE, users generally found this explanation with a more of a natural
language structure and more readable and helpful. An expert participant mentions the value
of LLM explanations that ”It’s more helpful when textual explanations do not just describe
the timestamp-wise importance but also mention the trend, or in other words, the continuity
of attribution scores”. These form of comments highlighted the need for knowing influential
time windows and not only timesteps. And this is a strength of LLM-based NLEs. LLMs
can often capture and describe temporal patterns automatically, identifying these informative
temporal windows through rules (as in the template-based approach) is challenging and requires
experimenting with different window sizes or designing convolutional filters.
A few users also mentioned they were interested in seeing more about the overall trend of
each class, we believe that this is one limitation of the current approach (and not in the scope
of this research where we focus on local explainability) but definitely an interesting area of
exploration for future studies.
Overall, the qualitative feedback reinforces the quantitative results: users found LLM-based
explanations more helpful, clear, and useful. The feedback also highlights areas for improvement
for improving clarity in LLM outputs and better structuring in template-based explanations.
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5 Discussion

In this section, we reflect on the findings from both the synthetic (Spike) dataset and the
real-world (UCI HAR) dataset, and discuss their broader results in the context of post-hoc
textual explanation generation for time series classification. Our goal was to explore two dis-
tinct approaches: template-based and LLM-based. We aimed to generate local explanations as
natural language, based on attribution scores, and then evaluate their strengths, limitations,
and user perception.

5.1 LLM-based NLE Prompt Engineering

The pre-study on the Spike dataset provided a controlled setup with ground truth attribution
scores, allowing us to be confident about completeness and faithfulness of the attribution scores
and focus on prompt engineering and improving and evaluating faithfulness, completeness, and
clarity of the LLM-based NLE.

Effect of Attribution Filtering Our results from this pre-study clearly showed that
passing pre-filtered influential points rather than the full raw attribution scores, significantly
improved both faithfulness and completeness. Specifically, Prompt #7, which only included the
high-influence points extracted from the attribution scores, achieved perfect scores across all
evaluation metrics. This suggests that LLMs can generate faithful and complete explanations,
but only when the input is well-structured and doesn’t require the LLM to do too many
numerical reasoning. For instance, when we passed all attribution scores for a single sample
with 3 features and 80 time steps (resulting in 240 values), and simply asked the LLM to identify
the most influential ones, it mostly failed in some cases when the scores were uniformly low or
close to each other. In such cases, if there aren’t a few clearly dominant attribution values, the
LLM struggles to distinguish the influential ones and instead tends to hallucinate importance.
This issue was more evident in class 0 samples from the Spike dataset, where almost all attri-
bution scores were close to zero. Even when we used Prompt #6 to explicitly define thresholds
and instructed the LLM that values below a certain cutoff should be considered non-influential,
it still often assigned importance to small non-zero values. In some cases, it claimed that cer-
tain features were strongly influential despite attribution values being significantly below the
influence threshold. This suggests that unless we constrain the input or logic tightly enough,
the LLM may override instruction and try to force an specific feature as highly influential in
the generated text. These findings emphasize the importance of designing prompts that either
pass only influential points explicitly or reduce the LLM’s decision-making responsibility in
identifying them.

General knowledge hallucination on Real-World Dataset The results from the UCI
HAR dataset confirmed the same patterns observed in the Spike dataset. Without passing pre-
filtered influential points, the generated NLE was unfaithful and the model was faking influence
according to it’s general knowledge in some cases. Filtering and only passing influential points
solved this effectively.
However, after adding more context about the dataset and sensor orientation of the signals,
the LLM again started to hallucinate. This time, it confused attribution values with raw sensor
readings. We noticed the model misinterpreting attribution scores as actual sensor values.
For example, it might state, ”The classifier found that the strong upward acceleration at the
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beginning of the data (Time 0) led it to conclude that the user was standing.” This reasoning is
incorrect. The high value at Time 0 wasn’t an input reading. Instead, it was a high attribution
score assigned to the acceleration feature on the x-axis. This type of explanation is misleading
since attribution scores only show the relative importance of a feature and time step and not
any information about the actual input signal content.
To address this, we added a direct constraint to the prompt to force the LLM not to infer
patterns of human motions from attribution values. This small but specific instruction was
surprisingly effective and prevented these hallucinations. This result shows that LLMs, while
powerful, are prone to unsupported claims unless they are explicitly bounded in the prompt.
Without these types of guardrails, there is a high risk that explanations will not be correct,
especially in real-world domain problems where the model has some general background knowl-
edge.
Overall, our HAR experiments confirm that attribution filtering is essential for NLE reliabil-
ity, but not sufficient. Additional instruction must be added to prevent overgeneralization,
especially in domains where the LLM has strong priors.

5.2 User Perception and Survey Findings

We evaluated the two explanation styles through a user study on the HAR dataset, involving
both expert and non-expert participants. Explanations were customized based on user expertise
in XAI. In our participant group, survey responses tended to favor the LLM-based NLEs.
LLM-based explanations received higher average ratings across all four metrics (faithfulness,
completeness, clarity, and helpfulness) from both user groups compared to template-based
explanations. We observed the most significant differences in clarity and helpfulness among
both user groups. This suggests that, for our participants, the natural language structure and
fluent reasoning of LLM explanations may have been more engaging and easier to follow.
In the evaluation of these metrics, we also observed that the clarity of an explanation can
strongly influence users’ judgments about faithfulness and completeness. When an explanation
lacks clarity, participants are more likely to perceive it as unfaithful or incomplete as it happened
with rule-based NLEs.
Moreover, in the overall textual preference question, both expert and non-expert users favored
LLM-based NLE with a huge gap from the template-based NLE. Which also supports the
previous claim.
A closer look at explanation modality preferences seemed to indicate an added value of textual
explanations when generated by LLMs. When shown template-based NLEs, users often relied
more heavily on attribution plots to understand the model’s decision. But when presented with
LLM-generated explanations, a substantial number of participants shifted toward preferring the
text only or text + plots modalities, especially in non-experts. This may indicate that, in our
study, LLM-generated NLE offered an accessible simplification that can bridge the knowledge
gap for those less familiar with attribution plots or XAI methods.
Participants in our study tended to rate the combination of textual and visual explanations
as the most helpful modality to understand the classifier’s reasoning. This highlights the
complementary nature of the two explanation formats: while plots provide a direct view of
model attention, natural language helps interpret and explain that information in an appropriate
way for specific end user needs.
Qualitative comments further supported preference and helpfulness of the LLM-based NLE.
Users appreciated when explanations referred explicitly to important time windows or feature
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trends, and several mentioned that LLM outputs felt more natural and informative.
It is notable that participants in our user study came from relatively similar educational and
cultural backgrounds, with most holding a master’s degree in technical or research-related
fields. This background could influence their how participants interpret and value natural
language explanations. For instance, more technical users may prefer attribution plots, whereas
others might value textual narratives more. Since our participant pool was small and not so
diverse, preferences observed in this study may not generalize to all different user groups.

5.3 Overall Comparison of Explanation Approaches

Our findings highlight a clear trade-off between the two explanation strategies. Template-
based explanations offer strong guarantees on faithfulness and completeness since they are
directly constructed from attribution values with a rule-based algorithm. However, they fall
short in clarity and usefulness, especially for non-expert users. Their fixed template and lack
of storytelling make them harder to engage with.
LLM-based explanations, in contrast, are much more user-friendly, clear, and helpful for users
understanding. When guided by well-designed rules in the prompt and properly processing
attribution scores, they can achieve high levels of faithfulness and completeness, while also
being more natural to read and providing richer context about the real-world problem. This
allows them to better help users’ understanding, particularly for those without a technical
background. However, they are also more vulnerable to hallucination, overgeneralization, and
misinterpretation of numerical input, especially when prompt design is not handled carefully.
In our work, the most effective strategy was combining attribution preprocessing with LLM-
based explanation generation. We first applied a filtering step to extract the most influential
time steps and features from the attribution scores. These filtered points were then passed
to the LLM using with clear instructions. This allowed us to preserve the faithfulness and
completeness of attribution-based reasoning, while also generating more clear and helpful
NLEs.

5.4 Limitations and Challenges

We encounter several limitations in this work:

• Manual prompt engineering: One major limitation in the LLM-based approach is
the lack of systematic prompt optimization. Our current methodology relied heavily on
manual prompt engineering and qualitative assessment of outputs. Although this was an
effective approach, it was time-consuming and not fully scalable to new datasets and
other LLMs. Having a labeled dataset for time series classification NLE would enable
this automation and robustness.

• Reliance on attribution methods: Our pipeline assumes that attribution scores pro-
vided by post-hoc methods are reasonably faithful to begin with. However, attribution
methods themselves have known limitations. For real-world data, this assumption of
faithfulness may not be correct and introduces a layer of uncertainty in the final NLE.

• Risk of hallucination in high-stakes domains: Even with careful prompt engineering
and attribution filtering, LLMs may occasionally produce factually incorrect reasoning
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due to their nondeterministic characteristic. In high-stakes settings such as medical di-
agnosis, such errors could mislead users and cause harmful outcomes. While prompt
engineering can reduce these errors, additional mitigation strategies should be explored,
such as automated fact-checking of generated text against attribution data, hybrid text-
visual interfaces that let users verify claims. These approaches could provide an extra
layer of reliability.

• Participant representativeness: While our study included both expert and non-expert
participants, the expert group was defined as individuals with academic or research
experience in XAI. This group does not fully represent real-world stakeholders such as
other domain specialists. Their preferences and expectations for an NLE may differ based
on their specific domain. Future work can investigate more on this collaborating with
domain experts and using a domain specific dataset.

• Insufficient sensitivity to attribution sign: In LLM-based explanations, we observed
limited reasoning about the difference between negative and positive attribution val-
ues and their possible meanings, despite the importance and informativeness of these
contrasting values. This reduced the helpfulness of the NLE and should be addressed
through the prompt instructions.

In summary, while both explanation approaches have strengths and trade-offs, LLM-based ex-
planations with proper prompt engineering through attribution filtering are capable of generat-
ing high-quality, user-friendly outputs. Their helpfulness advantage, especially for non-expert
users, makes them a promising method for time series classification explainability to end users.
However, their reliability depends on careful design decisions throughout the pipeline, and they
remain vulnerable to hallucinations when used without care.
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6 Conclusion

In this work, we proposed a post-hoc explanation pipeline for deep time series classification
models that generates local natural language explanations (NLEs) based on attribution meth-
ods. Our results show that combining attribution-based influence scoring with a structured
explanation generation step can effectively translate the model’s reasoning into interpretable
text.
RQ1: How to build a pipeline that can explain logical reasoning behind deep time series
classification models in form of natural language?
We designed a modular four-stage pipeline: (1) classification using basic RNN and transformer
models, (2) post-hoc attribution generation, (3) influence categorization through clustering,
and (4) explanation generation using either a rule-based template or a prompt-guided LLM.
This setup transforms attribution scores into local natural language explanations that describe
the model’s internal reasoning by mentioning influential parts of the time series and explain
the influence that each part had on the model’s decision.
RQ2: Can LLMs be guided to produce accurate and helpful NLEs based on attribution values
from deep time series classifiers?
Yes. Our results show that LLMs can generate faithful explanations, but only when the at-
tributions passed in the prompt are filtered to include only the most influential points, along
with their importance scores, timestamps, and corresponding features, and when the prompts
are carefully designed to guide the model’s reasoning. Raw attribution values often led to hal-
lucinations or vague reasoning, especially in cases where many scores were close to each other
(noisy) or when most values were near zero. Therefore, LLM-based NLEs should be used with
caution and require iterative prompt engineering and evaluation. However, we show that it is
possible to design prompts that result in mostly faithful and complete NLEs.
RQ3: What are the relative strengths and weaknesses of rule-based versus LLM-generated
explanations for time series classification?
Our results highlight a clear trade-off between template-based and LLM-generated NLEs.
Template-based explanations are always faithful and complete (if clarity limit allows) due to
their deterministic structure but often fall short in clarity and helpfulness. This was especially
apparent in the user study where template-based NLEs received lower average ratings across
these two metrics. Their structured format makes them reliable but less engaging, and in some
cases, less helpful specially for non-expert users.
In contrast, LLM-based explanations were consistently rated higher by both expert and non-
expert participants in clarity and helpfulness. Their natural language flow and ability to describe
temporal trends made them more intuitive and easier to follow. These advantages were also
reflected in textual explanation preferences, where nearly 78% of responses favored LLM-based
NLEs, and also in the shift in modality results toward text-based or combined explanation
modalities especially among non-experts. This is consistent with the modality shift patterns,
where many users who had preferred plots alone with the template-based NLE switched to
combined text-and-plot formats with the LLM-based NLE and where text-only explanations
also became more favored suggesting greater confidence in textual explanation over visual-only.
However, as mentioned earlier LLM-based NLEs are prone to hallucination or vague reasoning,
particularly when attribution scores are noisy or uniformly low. So, their performance depends
heavily on careful prompt design and preprocessing. Still, when properly guided, they offer
strong performance in both explanation quality and user satisfaction.
RQ4: How do expert and non-expert users perceive and evaluate different forms of explana-
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tions, and what explanation styles and modalities are most helpful for each group?
Based on the small sample size of our user groups, both expert and non-expert participants
tended to prefer LLM-based explanations over template-based ones. Non-experts especially
benefited from the natural language structure, which may helped them better understand the
logic behind attribution values and connect that with their understanding of the classification
model decision procedure. Across both groups, combining text and plots was considered the
most helpful modality to present the explanation.
Future work could extend this pipeline to support global explanations, especially since some
non-expert users stated that they are more interested in understanding overall trends in each
class. Another direction is to explore how interactive explanation interfaces might better sup-
port end users in real-world applications, since users’ needs and preferences are subjective and
even users within the same expert or non-expert group can have different background knowl-
edge, levels of understanding, and personal expectations. An additional interesting line of work
could be to investigate how different LLMs perform on the NLE generation task compared to
one another, or more interestingly, how reasoning LLMs might perform analyzing attribution
values and whether they can generate faithful and complete NLEs without a need of attribution
preprocessing. This methodology could also be applied to other time series machine learning
tasks beyond classification, such as forecasting, anomaly detection, or segmentation.
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A LLM Prompts Used in NLE Generation

A.1 Spike Dataset Prompts

To highlight how prompt design evolved, we report the numbered prompt versions used on a
class 1 sample from the Spike dataset. In each version, the bolded part shows the part that
was modified.

Prompt #1 A deep time series classifier has been trained on labeled data. After training,
an attribution-based explanation method was applied to compute attribution values for each
time step of each feature of a specific input sample.
The attribution scores are as follows: [[’-0.0’, ’-0.01’, ..., ’0.0’], [’0.0’, ’-0.0’, ..., ’0.0’], [’-0.0’,
’0.0’, ..., ’0.0’]]
The classifier predicted the sample to belong to class 1. Explain the classifier’s prediction for
this input. Focus on the most influential features and time steps based on the attribution
scores. Keep the explanation concise.

Prompt #2 A deep time series classifier has been trained on labeled data. After training,
an attribution-based explanation method was applied to compute attribution values for each
time step of each feature of a specific input sample.
The attribution scores are as follows:
For feature 0: {0: -0.0, 1: -0.01, 2: -0.01, ..., 43: 11.84, ... 79: 0.0}
For feature 1: {0: 0.0, ..., 43: -2.59, ..., 79: 0.0}
For feature 2: {0: -0.0, ..., 43: 0.04, ..., 79: 0.0}
Explain the classifier’s prediction for this input. Focus on the most influential features and
time steps based on the attribution scores. Keep the explanation concise.

Prompt #3 A deep time series classifier has been trained on labeled data. After training, a
Temporal Integrated Gradients method was applied to compute attribution values for each
time step of each feature of a specific input sample. The maximum possible attribution is
+inf, and the minimum is -inf.
The attribution scores are as follows:
For feature 0: {0: -0.0, 1: -0.01, 2: -0.01, ..., 43: 11.84, ... 79: 0.0}
For feature 1: {0: 0.0, ..., 43: -2.59, ..., 79: 0.0}
For feature 2: {0: -0.0, ..., 43: 0.04, ..., 79: 0.0}
Explain the classifier’s prediction for this input. Focus on the most influential features and
time steps based on the attribution scores. Keep the explanation concise.

Prompt #4 A deep time series classifier has been trained on labeled data. After training,
an attribution-based explanation method was applied to compute attribution values for each
time step of each feature of a specific input sample.
The attribution scores are as follows:
For feature 0: {0: -0.0, 1: -0.01, 2: -0.01, ..., 43: 11.84, ... 79: 0.0}
For feature 1: {0: 0.0, ..., 43: -2.59, ..., 79: 0.0}
For feature 2: {0: -0.0, ..., 43: 0.04, ..., 79: 0.0}
Only if an attribution value is higher than 1.126, it is considered influential. The classifier
predicted the sample to belong to class 1.
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Explain the classifier’s prediction for this input. Focus on the most influential features and
time steps based on the attribution scores. Keep the explanation concise. List at most the
top 3 most influential feature-time step combinations.

Prompt #5 A deep time series classifier has been trained on labeled data. After training,
an attribution-based explanation method was applied to compute attribution values for each
time step of each feature of a specific input sample.
To aid interpretation, attribution values have been grouped into three categories
based on their absolute magnitude:
No influence: 0.0 ≤ |value| < 1.12,
Slightly influential: 1.13 ≤ |value| < 6.46,
Strongly influential: 6.46 ≤ |value| < 15.30
The attribution scores are as follows:
For feature 0: {0: -0.0, 1: -0.01, 2: -0.01, ..., 43: 11.84, ... 79: 0.0}
For feature 1: {0: 0.0, ..., 43: -2.59, ..., 79: 0.0}
For feature 2: {0: -0.0, ..., 43: 0.04, ..., 79: 0.0}
The classifier predicted the sample to belong to class 1. Explain the classifier’s prediction for
this input. Focus on the most influential features and time steps based on the attribution
scores. Keep the explanation concise.

Prompt #6 A deep time series classifier has been trained on labeled data. After training,
an attribution-based explanation method was applied to compute attribution values for each
time step of each feature of a specific input sample.
The attribution scores are as follows:
For feature 0: {0: -0.0, 1: -0.01, 2: -0.01, ..., 43: 11.84, ... 79: 0.0}
For feature 1: {0: 0.0, ..., 43: -2.59, ..., 79: 0.0}
For feature 2: {0: -0.0, ..., 43: 0.04, ..., 79: 0.0}
Only if an attribution value is higher than 1.13, it is considered influential. The
classifier predicted the sample to belong to class 1.
Explain the classifier’s prediction for this input. Focus on the most influential features and
time steps based on the attribution scores. Keep the explanation concise.

Prompt #7 A deep time series classifier has been trained on labeled data. After training,
an attribution-based explanation method was applied to compute attribution values for each
time step of each feature of a specific input sample. The classifier predicted the sample to
belong to class 1.
The following features and time steps were identified as influential:
- Feature 0, Time 43 (Strongly Influential, Attribution = 11.84)
- Feature 1, Time 43 (Moderately Influential, Attribution = 2.59)
Explain the classifier’s prediction for this input. Focus on the most influential features and
time steps based on the attribution scores. Keep the explanation concise.

A.2 UCI HAR Dataset Prompts

we report the numbered prompt versions used on a class STANDING sample from the UCI
HAR dataset. In each version, the bolded part shows the part that was modified.
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Prompt #1 A deep time series classifier has been trained on labeled data. After training,
an attribution-based explanation method was applied to compute attribution values for each
time step of each feature of a specific input sample.
The attribution scores are as follows (formatted as time step: attribution value for each fea-
ture):
For body acc x: 0:0.18, 1:-0.04, 2:-0.04, ..., 127:0.1
For body acc y: 0:0.9, 1:0.82, ..., 124:-0.02
For body acc z: 0:0.14, 1:0.17, ..., 127:-0.03
...
For total acc z: 0:-0.25, 1:0.03, ..., 121:0.03
The classifier predicted the sample to belong to class STANDING. Explain the classifier’s pre-
diction for this input. Focus on the most influential features and time steps based on the
attribution scores. Keep the explanation concise.

Prompt #2 A deep time series classifier has been trained on labeled data. After training,
an attribution-based explanation method was applied to compute attribution values for each
time step of each feature of a specific input sample.
The following features and time steps were identified as influential:
- Feature: total acc x
- Time 0: Strongly Influential (Attribution value: 9.28)
- Feature: total acc y
- Time 0: Moderately Influential (Attribution value: 2.77)
The classifier predicted the sample to belong to class STANDING. Explain the classifier’s
prediction for this input. Focus on the most influential features and time steps based on the
attribution scores. Keep the explanation concise.

Prompt #3 and #4 A deep time series classifier has been trained on the UCI Human
Activity Recognition dataset. This dataset includes raw inertial signals collected from
a Samsung Galaxy S2 smartphone’s accelerometer and gyroscope sensors.
Each input sample includes 9 signals (body acceleration, gyroscope, and total accel-
eration along x, y, z axes) over 128 time steps.After training, a temporal integrated
gradients method was applied to compute attribution values for each time step of
each feature of a specific input sample.
A phone case and belt was used to mount the smartphone to the user’s waist. The
smartphone is in portrait mode with the screen facing outward and the top pointing
up. In this position, sensor orientation in the dataset is as follows:
- x-axis: vertical, pointing upward (bottom to top of phone)
- y-axis: horizontal, pointing left (across the screen)
- z-axis: outward, perpendicular to the screen (toward the viewer)
The following features and time steps were identified as influential:
- Feature: ‘total acc x‘ - Time 0: Strongly Influential (Attribution value: 9.28)
- Feature: ‘total acc y‘ - Time 0: Moderately Influential (Attribution value: 2.77)

The classifier predicted the sample to belong to class STANDING. Explain the classifier’s
prediction for this sample using the attribution scores and mentioning influential features and
time steps. Keep the explanation concise.
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Prompt #4 adds the following sentence: Do NOT infer sensor magnitudes or human
motions. Your explanation must mention importance, not what happened in the
signal.

B User Survey Instructions

Participant Instruction Handout

Task Overview
We want to understand which type of explanation helps you [Expert only: (as an expert
user)][Non-expert only: (as a non-expert user)]better understand how an AI model makes
its decisions.
This explanation aims to give you [Expert only: a good and detailed] [Non-expert only:
an overall] understanding of how the AI model is working on a given sample.
The AI model in this study is a classification model that receives motion sensor data as
input and classifies an activity. It analyzes short sequences of motion data collected from
a smartphone’s accelerometer and gyroscope while a person performs daily activities (e.g.,
walking, sitting, standing). The phone was worn on the waist, so each signal feature (e.g.,
body acc x) measures movement in one direction relative to the person’s body.

Figure 1: Smartphone placement on the waist and sensor axis orientation [40]

Note: You can refer back to Figure 1 at any time during the survey to understand the
sensor axis orientations of the input data.

What You’ll See
You will review 12 samples, one per page. For each sample, you will see plots of the raw
signals and two short text explanations of the model’s decision.
Each page shows:

• Sample Image: On top of the page you’ll see an image with two plots:

– Top plot: A time-series plot of the sensor readings (the input sample to the AI
model).

– Bottom plot: A plot showing [Expert only: attribution values extracted from
an attribution-based method. We categorized attribution values into three in-
fluence levels and][Non-expert only: how much each feature and time step
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influenced the AI model’s prediction.]Only moderately and highly influential
points are shown. Feature influence levels are visualized with shaded bands on
this plot — orange for slightly influential and red for strongly influential values.

• Two Text Explanations: Brief descriptions of why the model made its prediction
and what were the most influential parts of the input.

• Ratings & Preferences: You’ll rate each explanation on four criteria and indicate
which format you prefer.

Evaluation Metrics
You will rate each textual explanation on the following dimensions (using a 1–5 scale):

• Faithfulness: Does the explanation point to the right parts of the
plots—highlighting the influential time steps and features correctly? You can check
this by looking at the bottom plot.

• Helpfulness: Did this textual explanation help you understand why the model made
its choice?

• Completeness: Does the textual explanation cover all the most important parts
that influenced the decision?

• Clarity: Is the explanation easy to read and understand for you?

Your Task

1. Examine the plots and read both text explanations.

2. Rate each text explanation on the four metrics (1–5 scale).

3. Choose the form of explanation you found most useful and preferred in that sample.

Thank you so much for your participation!
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C Survey User Interface

Figure 9: Survey Page (Top Half)
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Figure 10: Survey Page (Bottom Half)
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