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Abstract

This thesis investigates whether artificial intelligence (AI)-powered data extraction can
improve reproducibility in scientific literature by enhancing existing tools: statcheck and the
GRIM test. Statcheck is an automated tool that checks whether reported p-values in null
hypothesis significance testing (NHST) results are consistent with the accompanying test type,
test statistic, and degrees of freedom, but it only works when results are reported in strict
APA format. The GRIM (Granularity-Related Inconsistency of Means) test checks whether
reported means are mathematically possible, assuming they are based on integer data and the
reported sample size. However, it currently lacks any form of automation.

This thesis develops and tests two Python scripts that integrate AI-powered data extraction
to improve these tools. The AI-powered statcheck script substantially improves the detection
rate of NHST results by identifying them even when they are not reported in strict APA
format, while maintaining high accuracy (97-99%). In a subset of articles where all NHST
results were present in the HTML version of the paper, the script achieved a detection rate of
98.4%.

The AI-powered GRIM script is the first documented attempt to automate the GRIM test,
using AI to automatically extract mean values and sample sizes. However, its true positive
rate is low, as the relevant GRIM components – such as the mean, sample size, and whether
the mean is based on integer data – are often spread out across different parts of the text.
Another significant contributing factor to the low true positive rate is that the AI model often
struggles to tell whether a mean value is actually GRIM-applicable.

Of the two scripts, only the AI-powered statcheck script currently performs well enough
for practical use, showing strong results in both detection percentage and accuracy. Future
research should focus on improving the GRIM script’s reasoning capabilities and exploring a
memory structure approach to help the model link relevant information that is spread out
across the text.

Keywords: AI-powered data extraction, statcheck, GRIM test, statistical consistency, NHST,
reproducibility
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Project Links

The full code, a detailed README, and the raw research data are available at the following
locations:

• GitHub (code and README): https://github.com/s3275744/bachelorThesis

• OSF (raw .csv files): https://osf.io/ae2pu/
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Thesis Overview

This bachelor thesis was conducted under the supervision of Dr. T.D.P. Heyman and Dr. E.P.L. van
Nieuwenburg at the Leiden Institute of Advanced Computer Science (LIACS), as part of the Com-
puter Science & Economics bachelor’s programme. This thesis explores how Artificial Intelligence
(AI)-powered data extraction can enhance reproducibility in scientific literature.

This thesis is structured into three main parts and a general conclusion. The first part provides
general context, while the second and third part cover two existing tools, statcheck and the GRIM
test, which can be used to detect potential inconsistencies in scientific literature. This thesis explores
if AI can be implemented to improve these existing methods. The final part consists of a general
conclusion, which summarises the most important findings of this thesis.

• Part I: General Context and Background: covers the importance of both replicability
and reproducibility in scientific literature.

• Part II: statcheck: covers statcheck, an existing tool designed to automatically identify
inconsistencies in null hypothesis significance testing (NHST) results.

• Part III: The GRIM Test: covers the GRIM test, a test that can be used to identify
inconsistencies in reported means based on sample size and granularity (the smallest possible
difference between two values in a dataset).

• Part IV: General Conclusion: summarises the key findings of this thesis and reflects on
the potential of AI-powered data extraction in improving reproducibility methods.
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Part I

General Context and Background

1.1 Context

1.1.1 Reproducibility vs. Replicability

Reproducibility and replicability are two terms that have often been confused [34]. In this thesis,
the following definitions will be upheld: reproducibility refers to the ability to obtain consistent
results using the same input data, computational methods, and conditions of analysis [18]. In
contrast, replicability refers to the ability to obtain consistent results when a study is repeated
using new data. This involves conducting a different experiment that addresses the same research
question, to see whether similar findings can be achieved [20]. Both replicability and reproducibility
are important concepts for validating scientific findings, but they serve different purposes [18].

As a researcher aiming to validate findings in an article, when choosing to validate through
reproducibility, access to the original dataset that the authors used is required. However, these
datasets are not always publicly available [17]. In these cases, it is still possible to validate the
reproducibility to some extent, using only the data that is present in the paper itself. Examples of
such methods are statcheck and the GRIM test.

1.1.2 Statcheck

Statcheck is an R package developed to automatically detect inconsistencies in statistical reporting,
specifically in null hypothesis significance tests (NHST) reported in APA style (American Psycho-
logical Association (2010) [3]). It recalculates the p-value using the reported test type (e.g., t, F ,
χ2), test statistic, and degrees of freedom. If the reported and recalculated p-values do not match,
statcheck will flag the result as an inconsistency [21]. A more elaborate explanation of statcheck
can be found in part II of this thesis.

This tool currently has multiple limitations. Its biggest limitation is its detection percentage;
Nuijten et al. (2017) [23] state that statcheck’s detection percentage is 61.2%. This is because
statcheck only detects NHST results if they are reported exactly according to APA guidelines. This
thesis aims to improve this percentage by integrating AI into this tool, enabling the detection of
non-APA reporting as well.

1.1.3 The GRIM Test

The GRIM (Granularity-Related Inconsistency of Means) test is a simple mathematical check that
evaluates whether reported mean values of integer-based data (e.g., survey responses, Likert scales)
are mathematically possible given the stated sample size [8]. A more elaborate explanation of the
GRIM test can be found in part III of this thesis.

Currently, there is no way to automatically extract a mean value along with its corresponding
sample size from text. This thesis aims to provide such a method by developing an AI-powered
script that automatically extracts these values and performs the GRIM test.
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1.1.4 Potential Impact on Scientific Integrity

Artificial Intelligence (AI) refers to the development of computer systems capable of performing
tasks that typically require human intelligence, such as learning, reasoning, problem-solving, and
language understanding [35]. Integrating AI into existing methods has the potential to improve
scientific integrity by allowing both authors and reviewers to use automated methods, powered by
AI, which can scan the document for potential (statistical) reporting inconsistencies.

For authors, automated AI-powered tools serve as a pre-submission check, helping to identify
(statistical) inconsistencies before submission.

For reviewers, automated AI-powered tools provide an additional layer of scrutiny. This allows
reviewers to quickly identify any remaining statistical reporting inconsistencies, without having to
recalculate each individual value. Given that reviewers often have limited time to properly review
an article [15], the use of such tools would be useful, since it allows reviewers to properly focus on
the broader methodology of the article.

1.2 Questionable Research Practices

Questionable Research Practices (QRPs) encompass “a range of activities that intentionally or
unintentionally distort data in favour of a researcher’s own hypotheses” [13]. Examples of such
activities are (a) failing to report all of a study’s dependent measures, (b) whether to collect more
data after looking to see whether the results were significant, and (c) “rounding off” a p-value (e.g.,
reporting that a p-value of .054 is less than .05) [16]. The third example is a QRP that can be
detected using statcheck, as long as the test type, test statistic, degrees of freedom, and tail (‘one’
or ‘two’) have not been tampered with.

Wicherts et al. (2011) [40] found that statistical inconsistencies and decision errors were more
prevalent in studies where data were not shared, suggesting a potential link between QRPs and
reluctance to share data. However, a more recent study by Claessen et al. (2023) [10] did not find
robust empirical evidence for this link, as they were unable to replicate the results of Wicherts et
al. (2011) [40].

1.2.1 Impact on Scientific Integrity

The prevalence of QRPs hurt scientific integrity by increasing the rate of type I errors, also known
as false positives. Simmons et al. (2011) [37] demonstrated that with the current (insufficient)
standards for disclosing details of data collection and analysis, the prevalence of false positives
become vastly more likely: “In fact, it is unacceptably easy to publish ‘statistically significant’
evidence consistent with any hypothesis.”

Simmons et al. (2011) [37] showed through simulations that the cumulative effects of common
QRPs can inflate the actual false-positive rate well beyond the nominal α level of a 5% threshold,
sometimes exceeding 60% when multiple QRPs are combined.

1.2.2 Solution

To mitigate the prevalence of QRPs, Simmons et al. (2011) [37] proposed a set of six requirements
for authors and four guidelines for reviewers, aimed at increasing transparency and reducing the
likelihood of false-positive results. These recommendations focus on predefining data collection
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protocols, fully reporting all variables and conditions, and checking that results do not depend on
subjective or arbitrary choices.

However, these guidelines were established prior to the recent advancements in AI. Given the
new opportunities presented by AI, we strongly encourage researchers to explore new methods
or develop tools to further reduce the prevalence of QRPs. This thesis is also contributes to that
effort: subsection 1.3 discusses specific methods we have investigated to mitigate QRPs through
AI-powered scripts.

1.3 Developments in AI

1.3.1 Advancements in Large Language Models

AI has undergone rapid advancements in recent years, driven by breakthroughs in areas such as
deep learning, natural language processing (NLP), and reinforcement learning [11]. One major
development is the advent of large language models (LLMs), such as the Generative Pretrained
Transformer (GPT) models created by OpenAI [27]. GPT models are capable of tasks such as
generating human-like text, content creation, summarisation, data analysis, and data extraction [2].

1.3.2 Data Extraction Capabilities

In the case of this thesis, the data extraction capabilities of GPT models are particularly relevant.
These models have shown capabilities of transforming unstructured data into structured data [32].
Specifically, in the case of this thesis, they show potential to automatically identify and extract
relevant statistical data from scientific texts, and format them in a structured manner. This is
exactly what is needed for the use cases described in this thesis: improving statcheck & the GRIM
test.

1.4 Research Question

The GRIM test and statcheck both have several limitations. For instance, statcheck relies heavily
on structured reporting (in APA style) and the GRIM test is currently not automated. The recent
advancements in AI offer possibilities to overcome those limitations.

The following central research question arises:

“Can AI-powered data extraction improve existing methods, such as statcheck and the GRIM test,
to provide a more effective approach for detecting and highlighting inconsistencies in scientific

literature?”

This research question can be split into two separate research questions:

1. Research Question 1 - statcheck: “Can AI-powered data extraction be used to improve
statcheck by allowing for a greater detection rate of NHST results, while maintaining the
high level of accuracy (96-99%, [23]) demonstrated by the current statcheck tool?”

2. Research Question 2 - the GRIM test: “Can AI-powered data extraction be used to
automate the GRIM test, which currently still needs to be carried out manually?”
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Part II

statcheck

2 Literature Review

Statcheck was first introduced by Michèle B. Nuijten et al. (2016) [21]. It is an R package developed
to detect statistical reporting inconsistencies in scientific literature. It works as an automatic tool,
meaning it can detect statistical tests without human input. Nuijten describes statcheck as a
“‘spellchecker’ for statistics” [25]. It checks whether the reported p-value matches its accompanying
test type, test statistic, and degrees of freedom [25].

Statcheck searches for null-hypothesis significance tests (NHST) in APA style (e.g., t(28) =

2.20, p < .05). It recalculates the p-value using the reported test type, test statistic, and degrees
of freedom. If the reported and recalculated p-values do not match, statcheck will flag the result as
an inconsistency.

Figure 1: A visualisation of how statcheck works (image directly sourced from [25])

Null-hypothesis significance testing evaluates whether observed data differs from what would be
expected if no effect exists between groups [33]. Statcheck recognises the following null-hypothesis
significance tests: Pearson correlations (r), t-, F -, χ2-, z -, and Q-tests [25].

2.1 Background and Motivation for Development

Statcheck was designed in response to the growing awareness that many published scientific papers,
particularly in psychology, contain statistical inconsistencies: errors where the reported p-value does
not match the corresponding test statistic and degrees of freedom. This issue has been reported in
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numerous articles [4, 5, 7, 9, 14, 38, 40]. These studies have shown that roughly half of all published
psychological papers contain at least one statistical reporting inconsistency, and that around one in
seven papers contain a gross inconsistency.

Two types of inconsistencies can be distinguished. A regular inconsistency occurs when the
reported p-value is incorrect but still leads to the same conclusion regarding (in)significance. In
contrast, a gross inconsistency occurs when the incorrect p-value leads to a different conclusion
about statistical significance, i.e., when a reported p-value is significant but the recalculated p-value
is not, or vice versa. These inconsistencies, especially gross inconsistencies, can have significant
consequences, as they may affect the conclusions drawn from a study and lead to false claims about
statistical (in)significance.

2.1.1 The Steps of statcheck

Statcheck roughly follows four steps when executing its procedure [21]:

Step 1: Conversion

First, the user is asked to provide a file. This file is then converted from its original format (PDF or
HTML) into plain text. HTML files to plain text usually convert accurately, while the conversion from
PDF files to plain text can sometimes be problematic due to typesetting issues. This is because
some journals use images or signs such as “<”, “>”, or “=”, instead of the actual character.

Step 2: Extraction

Once a document is converted to plain text, statcheck extracts r, t, F, χ2 and z statistics (version
1.0.1., [12]), with the accompanying degrees of freedom (df) and p-value. In later versions, statcheck
was updated to also extract Q-tests (from meta-analyses) [22]. Statcheck is an automated tool and
it is programmed to search for specified strings of text. This means that it can only detect results
that are reported exactly in APA style. If a result is not reported according to these standards,
statcheck is not able to extract this result.

Step 3: Recalculation

Statcheck calculates a range of valid p-values based on the extracted test statistic, test type, and
degrees of freedom. By default, it assumes that the tests are two-tailed, when distributions are
symmetric, except for F - and χ2-tests, which are considered one-tailed. Statcheck takes numeric
rounding into account; hence, a valid range of p-values has to be calculated to account for the
rounding of test statistics.

p-Value Range Calculation Example

For a reported t-test with t(30) = 1.96 and p = 0.059, statcheck calculates a valid p-value range
between the largest and the smallest possible numbers that still round to 1.96.

• Lower bound: t = 1.964999... gives a p-value of 0.05873.

• Upper bound: t = 1.955 gives a p-value of 0.05996.
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Step 4: Comparison

Finally, statcheck compares the recalculated valid p-value range with the reported p-value. Since
the reported p-value of 0.059 falls between the recalculated range 0.05873 to 0.05996, the test
is consistent in the example above. If the reported p-value does not fall within the calculated range,
statcheck flags the result as an inconsistency. Statcheck can also differentiate between regular
inconsistencies and gross inconsistencies.

To take into account one-sided tests, there is an option to try to identify and correct for
one-tailed tests. When this option is enabled, statcheck scans the entire text of the article for the
words “one-tailed,” “one-sided,” or “directional.” If a result is initially marked as inconsistent,
but the article mentions one of these terms, and the result would have been consistent if it were
one-sided, then the result is marked as consistent.

Note that statcheck does not take into account p-values that are adjusted for multiple testing (e.g.,
a Bonferroni correction). When it detects an inconsistency in such cases, it cannot assess whether a
correction has been applied. As a result, statcheck may (incorrectly) report an inconsistency even
though the reported p-value is correct after adjustment.

One-Tailed Consistency Example

Statcheck detects the following result: t(18) = 2.09, p < .05. If this result were two-tailed, it
would be considered inconsistent, since the two-tailed p-value for the largest possible test statistic
that still rounds to 2.09 (i.e., t = 2.0949 . . .) is at least 0.0506. Therefore, the result cannot be
considered significant under a two-tailed test. However, when one-tailed detection is enabled, if
either of the following words are present anywhere in the paper : “one-tailed,” “one-sided,” or
“directional,” statcheck re-evaluates the result under the assumption of a one-tailed test. The
one-tailed p-value for the previously described result equals 0.0253, which means that the result is
considered consistent.

Note that statcheck does not check for these terms in the immediate context of the reported
test result but searches for them anywhere in the paper. As a result, one-tailed detection may be
triggered even if the term refers to a different analysis.

2.1.2 Initial Findings Using Statcheck

When statcheck was first introduced by Nuijten et al. (2016) [21], it was used to assess 258,105
p-values in eight flagship psychology journals. The population of interest in this study was all
NHST results reported according to APA guidelines in the full text of articles published between
1985 and 2013. Note that only articles following APA guidelines for reporting statistical results
were included.

In addition, the study was limited to articles that were available in HTML format, rather than a
more common format: PDF. This decision was made due to typesetting issues that can occur when
converting PDF files to plain text, as discussed in subsection 2.1.1 (Step 1).
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Results

Table 1 provides an overview of the articles that were selected for this study.

Table 1: Summary of articles reporting NHST results across different journals (table results
directly sourced from [21])

Journal Subfield Years included No. of articles No. of articles
with NHST re-
sults

No. of NHST results Median no. of
NHST results
per article with
NHST results

PLOS General 2000-2013 10,299 2,487 (24.1%) 31,539 9
JPSP Social 1985-2013 5,108 4,346 (85.1%) 101,621 19
JCCP Clinical 1985-2013 3,519 2,413 (68.6%) 27,429 8
DP Developmental 1985-2007 3,379 2,607 (77.2%) 37,658 11
JAP Applied 1985-2013 2,782 1,638 (58.9%) 15,134 6
PS General 2003-2013 2,307 1,681 (72.9%) 15,654 8
FP General 2010-2013 2,139 702 (32.8%) 10,149 10
JPEG Experimental 1985-2013 1,184 821 (69.3%) 18,921 17

Total 30,717 16,695 (54.4%) 258,105 11

Note. Journals: PLOS = Public Library of Science; JPSP = Journal of Personality and Social Psychology; JCCP = Journal of
Consulting and Clinical Psychology; DP = Developmental Psychology; JAP = Journal of Applied Psychology; PS = Psychological

Science; FP = Frontiers in Psychology; JPEG = Journal of Experimental Psychology: General.

Table 2: Prevalence of inconsistencies in analysed articles (table results directly sourced from [21])

No. of articles
with NHST re-
sults

No. of results Inconsistencies
(%)

Gross inconsis-
tencies (%)

Articles with at
least one inconsis-
tency (%)

Articles with at least
one gross inconsis-
tency (%)

16,695 258,105 9.7 1.4 49.6 12.9

Table 2 shows the results of applying statcheck on the selected articles. These results show that
roughly half (49.6%) of the articles using null hypothesis significance testing (NHST) contained
at least one inconsistent p-value (8,273 of the 16,695 articles) and 12.9% (2,150) of the articles
contained at least one gross inconsistency.

2.1.3 The Validity of Statcheck

In a different study, Nuijten et al. (2017) [23] conducted an experiment to evaluate the validity
of statcheck. Statcheck’s performance was measured by two key metrics: (a) sensitivity and (b)
specificity [1]. In calculating sensitivity and specificity, the following terminology was used [6]:

Sensitivity represents the true positive rate: the proportion of true (gross) inconsistencies that
were also flagged by statcheck as such:

sensitivity =
TP

TP + FN
(1)

Specificity represents the true negative rate: the proportion of results that are truly not
(grossly) inconsistent, and statcheck correctly did not flag them as (gross) inconsistencies:

specificity =
TN

TN + FP
(2)
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Together, sensitivity and specificity provide a measure of statcheck’s accuracy: the ability to
correctly differentiate between consistent and (grossly) inconsistent results, or more mathematically:

accuracy =
TP + TN

TP + TN + FP + FN
(3)

Note: TP = True Positives, TN = True Negatives, FP = False Positives, FN = False Negatives.

Ideally, the accuracy should be 100%, which would mean that there are no false positives or
false negatives.

Data Used

As a reference set, the same sample from Wicherts et al. (2011) [40] was used, where NHST results
from 49 articles published in the Journal of Experimental Psychology: Learning, Memory, and
Cognition (JEP:LMC) and the Journal of Personality and Social Psychology (JPSP) were manually
coded. This dataset included only test results that were (a) uniquely reported, (b) complete (i.e.,
test statistic, degrees of freedom, and p-value reported), and (c) that were reported as being
significant (i.e., p < 0.05) in the main text or in the tables in the results section. This means that,
for example, an NHST result reported in the abstract or footnote is not included in this dataset.
Furthermore, only results from t, F, or χ2-tests were included in this dataset, meaning correlations
(r), z -, and Q-tests were not included. The total set consisted of 1,148 NHST results. One article
with 28 NHST results was excluded from the reference set, as it was retracted due to misconduct.
The final reference set consisted of 48 articles and 1,120 NHST results.

Results

Using statcheck version 1.2.2, statcheck was able to automatically detect 685 of the 1,120 NHST
results (61.2%). The results of the sensitivity and specificity analysis for statcheck version 1.2.2
can be found in the table below. This table only shows results that are both present in the manually
coded validate file as well as in the statcheck output.
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Table 3: Results of the sensitivity and specificity analysis of statcheck 1.2.2, with and without
one-tailed test detection (table results directly sourced from [23])

statcheck (default)

statcheck
(with automated

one-tailed test detect.)

TP FP TN FN TP FP TN FN

Inconsistencies 34 26 625 0 29 19 632 5

Sensitivity 100% 85.3%

Specificity 96.0% 97.1%

Accuracy 96.2% 96.5%

Inconsistencies (strict)* 52 8 625 0 47 1† 632 5

Sensitivity 100% 90.4%

Specificity 98.7% 99.8%

Accuracy 98.8% 99.1%

Gross Inconsistencies 8 6 671 0 7 0 677 1

Sensitivity 100% 87.5%

Specificity 99.1% 100%

Accuracy 99.1% 99.9%

† Note: In a recalculation of the percentages reported by Nuijten et al. (2017) [23], it became apparent that the FP-value for the

one-tailed column in the strict analysis was incorrectly reported. The original article lists this value as 5, but the correct value should be

1. We reached out to Nuijten et al. (2017) [23] to address this inconsistency, and the table in their study has now been altered to display

the correct value. This table also shows the corrected value.

* Inconsistencies (strict): the following stricter criteria were applied: (a) results where
a p-value is reported as p = .000 (seven results) or (b) when a Huynh-Feldt correction1 was
applied, but the uncorrected degrees of freedom were reported (11 results), were considered true
inconsistencies. The choice was made to consider p = .000 as inconsistent, since a p-value can
never be exactly zero. The APA prescribes that such results should be reported as “p < .001” [3].
Using these stricter criteria had no effect in flagging gross inconsistencies.

Table 3 shows that statcheck’s sensitivity and specificity for detecting regular inconsistencies
were high: between 85.3% and 100%, and between 96.0% and 100%, respectively, depending on
which flagging criteria and settings were used. The overall accuracy of statcheck ranged from 96.2%
to 99.9%.

The reason why statcheck’s accuracy does not reach 100% under the stricter criteria is that,
when one-tailed test detection was disabled, there were eight instances where a one-tailed test was
conducted but not correctly identified, resulting in false positives. When one-tailed detection was
enabled, there were five cases where statcheck was too lenient and failed to flag results that should

1The Huynh-Feldt correction adjusts the degrees of freedom in repeated measures ANOVA when the assumption
of sphericity is violated, to provide a more accurate p-value.
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have been marked as inconsistent. One false positive remained using one-tailed detection, which was
caused by a rounding error in the one-tailed detection component of statcheck version 1.2.2 [23].

These results show that when statcheck is able to detect NHST results (i.e., results are reported
in APA format), it is a reliable tool to correctly classify these results. It almost always correctly flags
the results as either true (gross) inconsistencies or as true consistencies. However, it is important
to once again stress that statcheck detected only 61.2% of the NHST results from the reference set,
which highlights that statcheck’s biggest limitation is its detection rate, which is limited by the
fact that results must be reported according to APA standards.

2.1.4 Accounting for Corrections

As reported by Nuijten et al. (2016) [21] and described in subsection 2.1.2, roughly half (49.6%) of
the articles using null hypothesis significance testing (NHST) contained at least one inconsistent
p-value. A possible cause of the detection of inconsistent results could be the use of statistical
corrections for multiple testing. Nuijten et al. (2017) [23] conducted a separate experiment to
determine how many inconsistencies were detected due to the use of corrections for multiple testing,
using a different dataset.

For example, take the Bonferroni correction for multiple testing. This correction is used to
control the Type I error rate by dividing the level of significance (α) by the number of hypotheses
tested. However, instead of dividing α, there are often cases in which researchers multiply the
p-values by the number of tests. This then results in an internally inconsistent statistical result:
the original test statistic and degrees of freedom no longer correspond to the reported (multiplied)
p-value [23].

For instance, if you run three different tests, and you want to retain an overall α of .05, the
Bonferroni corrected α for each of the tests is α = .05/3 = .01667. However, if a researcher incorrectly
adjusts the p-value instead, a test yielding p = 0.01 might be reported as p = 0.03 (0.01 × 3),
meaning the original test statistic and degrees of freedom no longer correspond to the reported
(multiplied) p-value.

Results

Table 4: Overview of NHST reporting and correction-associated inconsistencies (table results
directly sourced from [23])

Correction type
# APA reported NHST
results in selected articles

# Inconsistent
results

# Inconsistencies
associated with correction

Bonferroni 1,108 184 17 (9.2%)
Tukey 1,185 208 0 (0.0%)
Scheffé 898 135 0 (0.0%)
Greenhouse-Geisser 1,646 198 66 (33.3%)
Huynh-Feldt 769 73 14 (19.2%)

Total 5,606 798 97 (12.2%)

Table 4 shows that only 12.2% of inconsistencies are associated with the use of statistical
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corrections, which indicates that most inconsistencies are not related to these corrections. This
indicates that most of the inconsistencies detected using statcheck are actual inconsistencies,
meaning the author has made a mistake in reporting their results.

2.1.5 Limitations of statcheck

Statcheck has three notable limitations: (a) it can only detect results reported in APA style, (b) it
is affected by typesetting issues, and (c) it does not account for statistical corrections.

APA Style

As already briefly mentioned in subsection 2.1.1 (Step 2): Statcheck is an automated tool and it is
programmed to search for specified strings of text. This means that it can only detect results that
are reported exactly in APA style. The official manual for statcheck [24] states that, for a result to
be detected by Statcheck, it must be reported exactly as follows:

• t(df) = value, p = value

• F(df1, df2) = value, p = value

• r(df) = value, p = value

• χ2(df, N = value) = value, p = value (N is optional, ∆G is also included, since it follows a
χ2 distribution)

• Z = value, p = value

• Q(df) = value, p = value (statcheck can read and distinguish between Q, Qw (within)
and Qb (between))

Nuijten et al. (2016) [21] includes a great example of which results statcheck cannot detect:

Limitations of statcheck : APA

“It (statcheck) does not read results that deviate from the APA template. For instance,
statcheck overlooks cases in which a result includes an effect size estimate in between the
test statistic and the p-value (e.g., “F (2,70) = 4.48, MSE = 6.61, p <.02”) or when two
results are combined into one sentence (e.g., “F (1, 15) = 19.9 and 5.16, p <.001 and p <.05,
respectively”). These restrictions usually also imply that statcheck will not read results in
tables, since these are often incompletely reported.”

Formatting and Contextual Limitations

As covered in subsection 2.1.1 (Step 1), there can be typesetting issues when converting a PDF

file to plain text. This means the correct operator cannot be extracted and the p-value cannot be
checked for consistency.

Furthermore, as covered in subsection 2.1.4, statcheck does not account for statistical corrections
that have been (incorrectly)2 applied.

2The APA manual does not discuss reporting of statistical corrections. Nuijten et al. (2017) [23] mention that
they submitted feedback recommending future editions of the APA Publication Manual include specific examples on
how to report these corrections in articles.
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3 AI-Powered Methodology

The original statcheck tool requires that results must be reported in strict APA style. To overcome
this limitation, a Python script integrating AI-powered data extraction was developed in this
thesis. With this enhancement, results no longer need to comply with the APA reporting rules.
Furthermore, this script also takes contextual understanding into account and adjusts its calculations
accordingly. The script tries to automatically detect whether a test is one-tailed or two-tailed,
as well as account for Huynh-Feldt/Greenhouse-Geisser statistical corrections when applicable,
ensuring that degrees of freedom are adjusted based on the reported epsilon value. Currently, only
Huynh-Feldt/Greenhouse-Geisser corrections are accounted for. Additional corrections could be
added in future versions of the script.

The steps this Python script follows and how it functions are described below. The full code and
detailed README for the project can be found on GitHub, as listed in the Project Links section.

3.1 How It Works

The AI-powered statcheck script uses the GPT-4o-mini AI model to extract relevant data and uses
Python-based calculations. In typical NHST test reports, all relevant parameters (e.g., test type,
test value, p value) typically appear right next to each other in the text. This makes automated
extraction relatively straightforward. The process involves the following steps:

1. Central class: the StatcheckTester class contains all methods for reading context from
files, extracting reported statistical tests, recalculating a valid p-value range, comparison, and
presenting results.

2. Convert: the .pdf, .htm, or .html file gets converted into plain text. .txt files are already
in plain text.

3. Segmentation and overlap: the plain text is split into segments of 500 words each, with
an overlap of 8 words between consecutive segments. Using segmentation, the script does a
much better job of correctly identifying all statistical tests in the entire context. The overlap
ensures that each statistical test is detected, even if the test spans multiple segments (e.g., a
test starting at the end of segment n and ending at the beginning of segment n+ 1).

4. Extract data: The extract data from text method uses the GPT-4o-mini AI model
to identify and extract reported statistical tests from the text. This method transforms
unstructured data (tests found in the text) into structured data: a Python list of dictionaries.
Each extracted test is represented as a dictionary with the following keys:

• test type: One of ‘r’, ‘t’, ‘f’, ‘chi2’, ‘z’ (string). ‘Q’-tests are not yet included
but could be added in a future version of the script.

• df1: First degree of freedom (float or integer). If not applicable, set to None.

• df2: Second degree of freedom (float or integer). If not applicable, set to None.

• test value: The test statistic value (float).

• operator: The operator used in the reported p-value (‘=’, ‘<’, ‘>’) (string).
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• reported p value: The numerical value of the reported p-value (float).

• epsilon: Only applicable for Huynh-Feldt corrections (float). If not applicable, set to
None.

• tail: ‘one’ or ‘two’ (string). Assume ‘two’ unless explicitly stated.

The prompt used can be found in Appendix E or on the GitHub page (see Project Links,
file: testers/statcheck/config.py).

5. Apply statistical correction (if applicable): Currently, the script can only account for
Huynh-Feldt/Greenhouse-Geisser corrections. It automatically applies this correction under
the following conditions:

• test type == ‘f’,

• epsilon is not None,

• Both df1 and df2 are integers.

If an epsilon value is reported but df1 and df2 are not integers, this may imply the degrees
of freedom have already been adjusted by the epsilon value. In this case, the script does not
reapply the correction.

Note that, if a different correction than Huynh-Feldt/Greenhouse-Geisser has been applied,
the script behaves like the original statcheck tool and calculates the p-value without accounting
for the correction. This may result in false inconsistency detections.

6. p-Value calculation: The calculate p value method calculates a valid range of p-values
(lower, upper) for each extracted test based on its parameters.

7. Consistency checking: the compare p value method checks whether the reported p-value
falls within the range of the valid p-values (lower, upper). The script also makes a distinction
between regular inconsistencies and gross inconsistencies.

8. Processing results: after extraction and testing, the results are added into a DataFrame
and printed. Each test is displayed in a separate row with the following column headers:

• Consistent: indicates whether the reported p-value falls within the valid recalculated
range (Yes or No).

• APA Reporting: displays the correct APA reporting of the detected test, regardless of
how the test is reported in the context.

• Reported p-Value: the p-value as originally reported in the text.

• Valid p-Value Range: the range of valid p-values (lower, upper) based on the test
type, test statistic, and degrees of freedom.

• Notes: any additional information regarding the result, such as the presence of gross or
regular inconsistencies or the usage of a statistical correction.

Using this approach, it should be possible to analyse results that are not reported in APA
format, as well as try to incorporate relevant context, such as which tail is used.
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4 Experiment

4.1 Data Used

To evaluate the AI-powered Python statcheck script, the dataset originally compiled by Wicherts
et al. (2011) [40] was used. This dataset was also used by Nuijten et al. (2017) [23] to evaluate the
validity of the original statcheck tool (refer to section 2.1.3).

The initial dataset consisted of 49 articles; however, nine of these were excluded for specific
reasons. One article was retracted due to misconduct, and the remaining eight contained multiple
NHST results reported in tables that were not available in the HTML version of the articles, making
it impossible for the script to identify these results. The final dataset used for evaluation consisted
of 40 articles and 869 NHST results.

The specific inclusion criteria that an NHST result must meet in order to be included in the
dataset are described below, as well as in subsection 2.1.3. Results must be:

• Uniquely reported.

• Complete, with test statistic, degrees of freedom, and p-value reported.

• Reported as significant (p < 0.05) in the main text or tables in the results section. For
example, NHST results reported in the abstract or footnote are not included.

The articles on which the data are based and on which the AI-powered Python statcheck script
was run are published on the private web page https://osf.io/ske8z/, and can be shared by Nuijten
et al. upon request.

4.2 Copyright Notice

The articles in this dataset are protected by copyright, meaning that their full content cannot be
freely shared or used without permission from the respective copyright holders. This means that
these articles may not be uploaded in the ChatGPT web-interface, since the data uploaded there
may be used by OpenAI to train their models [28].

However, since the script created uses the ChatGPT API, the copyright restrictions are respected.
Data provided via the API are not used by OpenAI to train or improve models, as is stated in
OpenAI’s Key Concepts documentation [29].

4.3 Procedure

The testers/statcheck/main multiple runs.py script was run on all 40 articles in the final
dataset. This script automatically analyses each article three times, and uses the most frequent
output for final analysis. This ensures a more consistent result than analysing an article just once.
The full code for this script can be found on the aforementioned GitHub page (refer to Project
Links). Each NHST result found in the output for an article was manually checked against the
manually coded validate file from Wicherts et al. (2011) [40]. The following categories were logged:

• Article: Journal name and author(s) of the article.

• # Significant results in validate file: The total number of significant NHST results
present in the manually coded validate file.
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• # Correctly identified by script: The number of significant NHST results successfully
identified by the script. That is, results that meet the inclusion criteria mentioned in both
subsection 2.1.3 and 4.1.

• # Missed results in validate file: The number of significant NHST results that meet the
inclusion criteria but were not included in the manually coded validate file.

• # Missed by script: The number of significant NHST results present in the manually coded
validate file but not detected by the script.

• True Positives (TP): The number of results correctly flagged as a (gross) inconsistency.

• False Positives (FP): The number of results incorrectly flagged as a (gross) inconsistency.

• True Negatives (TN): The number of results correctly not flagged as a (gross) inconsistency.

• False Negatives (FN): The number of results incorrectly not flagged as a (gross) inconsis-
tency.

• Notes: Any additional information regarding the result, such as the presence of gross or
regular inconsistencies.

The detailed results of this analysis can be found in Appendix A. The filtered raw output of
the script can be found in Appendix B. The .csv file of the complete raw output can be found on
the OSF page of this project (see the Project Links section for the link). A list of the five missed
NHST results by the manually coded validate file can be found in Appendix C.

Note that each result that is present in Appendix C – i.e., any result found by the script but
not found in the manually validated code – was located in the original article to ensure it indeed is
present in the text and is not a hallucination from the AI model.
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5 Results

5.1 Detection Rate

Table 5 shows the results of applying the AI-powered statcheck script to the dataset. The table also
shows a breakdown of the missed results: five cases were missed in the manually coded validate data
file, and 64 cases were not identified by the script. 805 results were found in both outputs (manually
coded validate data file and script), which corresponds to a detection percentage of 92.6%. Table
6 provides further insights into the specific categories of missed NHST results by the script.

Table 5: The total number of NHST results detected by the AI-powered statcheck script

# NHST results Count Percentage detected

Total in validate data file 869

Correctly identified by script 810 93.2%

Missed in validate data file 5

Missed by script 64

In both outputs 805 92.6%

Table 6: Categories of missed NHST results by the script

Category of missed NHST results Count Percentage of total missed

1. Incomplete NHST result
(No p-value reported)

45 70.3%

2. Not extracted
(Truly missed by script)

13 20.3%

3. Same result consecutively 5 7.8%

4. Altered result in validate data file 1 1.6%

Total missed results 64 100%

When taking a closer look at the specific categories of missed NHST results by the script, it
becomes apparent that only 13 of the 64 results were truly missed (Not extracted). The largest
category of missed results, Incomplete NHST result, accounted for 70.3% of the total missed
results. However, these results should not have been included in the manually coded validate file,
as they do not comply with the second inclusion criterion mentioned in subsection 4.1:

Inclusion criterion 2

“Results must be complete, with the test statistic, degrees of freedom, and p-value reported.”

An example where such incomplete results are reported:
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Example of incomplete NHST results

“In a two-way analysis of variance (ANOVA), response times were found to be affected
both by n (n = 1–5), F (1, 4) = 11.53, MSE = 9, 730.73; and trial type, F (1, 4) = 50.56,
MSE = 15, 955.12 (“yes” response time = 859 ms, “no” response time = 1,113 ms).” [39]

In this example, the p-values corresponding to the reported F -tests are missing, and therefore
the results are considered incomplete.

Similarly, the category Same result consecutively, which accounted for 7.8% of the total missed
results, should also not have been included in the manually coded validate file. These results fail to
comply with the first inclusion criterion outlined in subsection 4.1:

Inclusion criterion 1

“Results must be uniquely reported.”

An example of the same NHST result being reported consecutively is:

Example of same NHST result reported consecutively

“76% of the participants (55/72) selected the Black candidate regardless of qualifications,
χ2(1, N = 72) = 20.06, p < .001. Replicating results from earlier studies, 84% of participants
selected the candidate with the higher GPA when this candidate was Black, but this number
dropped to 32% when that candidate was White, χ2(1, N = 72) = 20.06, p < .001.” [19]

In this example, it even seems like a reporting error has been made. Two different results are
described, yet the exact same χ2-statistic and p-value are reported. Given the differences in the
conditions being compared, it is highly unlikely that the same statistical values would be reported
for both tests.

Finally, the category Altered result in validate data file, which accounted for 1.6% of
the missed results, should also not have been included in the manually coded validate file. This is
because the reported result is a transformation of the result present in the original article. The
article reported the following: F(1, 53) = 2.91, one-tailed, which was manually converted to
a t-value of 1.7059 in the validate file. Although this transformation is mathematically valid, as an
F -test where the first degree of freedom is 1 is equivalent to a squared t-test (F = t2), the script
did not detect the transformed value because it was not reported as a t-test in the original article.

If we exclude these categories, the final dataset consists of 818 NHST results. Of these, the
script successfully identified 805 results, resulting in a detection percentage of 98.4%. Furthermore,
the script also identified 5 additional NHST results that were not included in the manually coded
validate file, although these specific results indeed meet the inclusion criteria. This shows that the
script has detected even more results than accounted for in the reference set.

5.2 Sensitivity, specificity, and accuracy

Table 7 shows the sensitivity, specificity, and accuracy analysis results of the AI-powered Python
script. For this table, only results that appear in both outputs (manually coded file and script)
were included.
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Table 7: Results of the sensitivity, specificity, and accuracy analysis where NHST results were
both detected by the AI-powered statcheck script as well as present in the validated data file

AI-powered Python statcheck script
with automatic one-tailed test detection

TP FP TN FN

Inconsistencies 53 11 740 1

Sensitivity 98.15%

Specificity 98.54%

Accuracy 98.51%

Inconsistencies (strict)* 60 4 740 1

Sensitivity 98.36%

Specificity 99.46%

Accuracy 99.38%

Gross inconsistencies 9 1 795 0

Sensitivity 100.00%

Specificity 99.87%

Accuracy 99.88%

Note: TP = True Positives; FP = False Positives; TN = True Negatives; FN = False Negatives.

* Inconsistencies (strict): in 7 cases, the reported p-value was “p = .000”. These were
considered true positives in the strict analysis, since a p-value can never be exactly 0, whereas the
validated file labelled them as true negatives.

In the strict analysis, four false positives remain. Three of these are due to incorrect operator
extraction (e.g., “>” is extracted, but “<” is reported). The final remaining false positive is due to
wrong tail detection (e.g., “two” extracted, but “one” used).

The analysis shows that the script has failed to correctly identify an inconsistency once, leading
to a false negative. This occurred because results reported with two trailing zeros (e.g., ”4.00”) are
interpreted by Python as having a single decimal place rather than two. This means that the valid
range of p-values becomes too large. This issue has since been resolved, so if a reanalysis were to
occur, the script should correctly flag this result as a true positive.

Comparing the AI-Powered Script With the Original Statcheck Tool

Table 8 shows a comparison of detection percentage, sensitivity, specificity, and accuracy for the
AI-powered script and the original statcheck tool (default and one-tailed detection). Note that, if a
reanalysis were to occur, the sensitivity of the AI-powered script would likely reach 100%, as the
script has been updated to correctly handle trailing zeros. This issue previously caused the single
false negative, which is why the current sensitivity is not at 100%.
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Table 8: Comparison of different metrics for the AI-powered script and the original statcheck tool
(default and one-tailed detection) using the strict analysis criteria. Best results are shown in bold.

AI-powered script

(automatic tail

detection)

Original statcheck

(one-tail detection

disabled)

Original statcheck

(one-tail detection

enabled)

Inconsistencies (strict)

Detection percentage 98.4%† 61.2% 61.2%

Sensitivity 98.4% 100% 90.4%

Specificity 99.5% 98.7% 99.8%

Accuracy 99.4% 98.8% 99.1%

† Note: This result is not directly comparable to the original statcheck tool due to differences in the dataset used. See Section 6 for

details.

5.3 Runtime and Cost

The total runtime for processing 48 articles three times each is 6,358.51 seconds, resulting in an
average runtime of 132.47 seconds per article. The total cost for this analysis amounts to $0.90,
which results in $0.0188 per article for three iterations. These costs reflect the usage of calling
the OpenAI API, which is needed to run the AI-powered script. Note that these statistics are based
on all 48 articles before the exclusion of eight HTML articles, which took place after this analysis.
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6 Discussion

Excluding categories of NHST results that should not have been included in the manually coded
validate file, the AI-powered script achieves a detection percentage of 98.4%. This is an improvement
of 37.2 percentage points compared to the 61.2% detection rate reported in the validity study
conducted by Nuijten et al. (2017) [23] for the original statcheck tool.

However, it is important to note that these results are not directly comparable, as this study used
a smaller dataset than that of Nuijten et al. (2017) [23]. Specifically, the initial dataset consisted of
49 articles, of which nine were excluded – one due to retraction for misconduct, and eight because
multiple NHST results were reported in tables that were unavailable in the HTML version. As a
result, the final dataset used for evaluation consisted of 40 articles and 869 NHST results, of which
an additional 51 were excluded due to failing to meet the inclusion criteria; the reasons for exclusion
are summarised in Table 6. In contrast, Nuijten et al. (2017) [23] only excluded the article that
had been retracted due to misconduct. In order to truly compare the AI-powered script and the
original statcheck tool, both tools would need to be evaluated on the same dataset.

Given its performance, we argue that the AI-powered statcheck script should be used by both
authors and reviewers as a quick, automatic, and reliable tool for checking NHST results reported
in an article.

6.1 Limitations

The primary limitation in evaluating the results in terms of detection percentage, sensitivity,
specificity, and accuracy is the lack of complete (100%) accuracy in the manually coded validate file.
Several NHST results were included in the validate file despite not meeting the inclusion criteria
(refer to Table 6). Additionally, this study has shown that five NHST results, correctly identified
by the AI-powered script, were missing from the manually coded file even though they met the
inclusion criteria. Since the manually coded file is not entirely reliable, the evaluation of the script’s
performance cannot be fully validated.

This script has not been tested on articles that include NHST results in tables. This is because
there were no tables reported in the HTML versions of the articles. The full articles (including tables)
were not available during this analysis, causing these articles to be excluded. Furthermore, the
AI-powered script has the same typesetting issues as the original statcheck tool, as is covered in
subsection 2.1.1 (Step 1).

Another limitation is that the manually coded validate file only covers t-, χ2-, and F -tests.
Other statistical tests supported by the script, such as Pearson correlations (r) and z -tests were not
included in the evaluation, and thus it was not assessed how well the model performs on these types
of tests. Furthermore, special cases like handling Huynh-Feldt corrections were rare in this dataset,
making it difficult to assess how well the model performs in handling such situations in general.
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7 Conclusion

This study has shown that the AI-powered script has similar results in terms of sensitivity,
specificity, and accuracy as the original statcheck tool. Both tools score well in these metrics
(98-100%). Although results are not entirely comparable due to differences in the dataset, this study
has shown that creating an AI-powered statcheck script greatly increases its detection percentage.
Even if the originally excluded articles were included in the total number of NHST results, the
AI-powered script would still outperform the original statcheck tool, even if it were unable to detect
any NHST results in those articles. The original statcheck tool detected 685 out of 1,120 NHST
results, whereas the AI-powered script identified 805. Therefore, it can be confidently concluded
that the AI-powered script outperforms the original statcheck tool in terms of detection percentage.
The AI-powered script also performs well in automatically identifying whether a one- or two-tailed
test was used, since only one false positive was caused by wrong tail detection, which is just one
out of 805 total NHST results.

However, it is important to acknowledge that errors related to wrong tail detection which do
not result in statistical inconsistencies, may go unnoticed. For example, if the script incorrectly
identifies a test as two-tailed when it was actually one-tailed but the reported p-value remains
consistent under both assumptions, this error will not be flagged. As a result, these wrong tail
detections go unnoticed in the analysis, although it is also possible they did not occur at all.

7.1 Future Research

We recommend that future research begins by contacting Wicherts et al. (2011) [40] and reassessing
the manually coded validate file to address its inaccuracies. Once a 100% accurate and reliable
validate file has been created, a reanalysis of both tools should take place on the complete dataset
(i.e, 48 articles). This reanalysis should include complete versions of the articles (e.g., PDF format
with all tables), to ensure both tools have a fair opportunity to detect the NHST results, as the
tables are missing from the HTML versions. The results from a more complete reanalysis would allow
for a definitive comparison of the detection percentages, sensitivity, specificity, and accuracy of the
AI-powered script and original statcheck tool. This reanalysis would also lead to a better reflection
of real-world conditions, as articles containing table-based results were deliberately excluded in the
current analysis.

In addition, it would be valuable to develop or use a more comprehensive manually coded file
that includes a larger range of test types (e.g., Pearson correlations (r) and z -tests) and includes
more rare or challenging cases, such as more statistical corrections and correction types beyond
Huynh-Feldt.

Additionally, future research could involve incorporating more statistical corrections into the
script. Currently, this script only automatically accounts for Huynh-Feldt/Greenhouse-Geisser
corrections. This shows that it is possible to use AI to automatically adjust calculations based on
statistical corrections, paving the way for other statistical corrections, such as Bonferroni, to be
added.

Finally, ‘Q’-tests could be added as an NHST test type.
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Part III

The GRIM Test

8 Literature Review

The GRIM (Granularity-Related Inconsistency of Means) test is a statistical test developed to
identify potential errors in the reporting of mean values in scientific research, created by Nicholas
J.L. Brown & James A.J. Heathers (2016) [8]. The GRIM test checks the consistency of reported
mean values with mathematically possible mean values given the sample size and scale used, usually
integer or Likert-scale data. It identifies impossible means that cannot mathematically exist given
the relevant parameters, indicating potential reporting errors.

To apply the GRIM test, the following variables should be considered: (a) reported mean, (b)
the sample size, and (c) the type of data used, e.g. integer values obtained from a Likert scale.
The test only works for means that are composed of integer data, since the calculation relies on
the granularity of integer values to determine whether the mean is mathematically possible given
the sample size. The test works by multiplying the reported mean with the sample size and then
evaluating whether the product of this calculation could result from a plausible sum of individual
data points [8].

Consider the following fictional extract, created to provide an example use case of the GRIM
test:

GRIM test : example use case

Participants (N = 60) were randomly assigned to consume 250 ml of either “extra healthy
water”, containing essential vitamins and minerals (experimental condition, N = 30) or
standard sparkling water (control condition, N = 30). Thirty minutes after consuming the
beverage, all participants were asked to answer the question “How healthy do you currently
feel?” using a 7-point Likert scale. The scale ranged from 1 (Not at all) to 7 (Extremely
healthy). Participants in the “extra healthy water” condition reported a significantly higher
level of perceived health (M = 6.02, SD = 1.12) compared to those in the control group (M
= 4.12, SD = 1.45).

At first glance, these results seem plausible, but they are mathematically impossible. The GRIM
test can be applied to detect such inconsistencies. Given that the data are collected on a 7-point
Likert-scale, where participants can only choose integer values (1, 2, 3, etc.), and the sample size
for both groups is 30, the reported mean must be a result of summing these integers and dividing
by the sample size.

Consider the first group, the “extra healthy water” condition. To verify the consistency of the
reported mean (M = 6.02), it is multiplied by the sample size (N = 30), resulting in a product of
180.6. The two integers that give a result closest to the reported mean of 6.02 are 180 and 181.
However, neither 180 nor 181, when divided by the sample size (30), results in the reported mean
of 6.02. Specifically, 180 divided by 30 yields a mean of exactly 6.00, and 181 divided by 30 yields
approximately 6.03. Therefore, it is impossible to obtain a mean of 6.02 with any combination of
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integer responses in this scenario.
Now, consider the second group, the standard sparkling water condition. Again, the reported

mean (M = 4.12) is multiplied by the sample size (N = 30), which results in a product of 123.6.
The closest integers, 123 and 124, would yield means of 4.10 and approximately 4.13, respectively.
Thus, just as with the first group, the reported mean of 4.12 cannot be achieved through any valid
combination of responses.

These errors can occur for a number of different reasons, such as typographical mistakes,
incorrect reporting of the number of participants excluded from analyses, rounding errors, or even
deliberate fraud, where the author manipulates the results to achieve a desired outcome [8].

Such inconsistencies may also be the result of Questionable Research Practices (QRPs), in which
researchers intentionally or unintentionally alter their analyses or reporting to obtain favourable
results. For example, participants whose responses negatively impact the desired outcome might be
purposefully excluded from the analysis, deliberately inflating or deflating mean values to support
the research hypothesis [16].

8.1 What Is Granularity?

In the context of the GRIM test, granularity refers to “the numerical separation between possible
values of the summary statistics” [8]. In simpler words, granularity describes the smallest possible
difference between two values in a dataset. The formula for granularity can be expressed as:

Granularity =
1

(N × L)
(4)

where N is the number of participants and L is the number of items in the measure (i.e., the number
of individual questions/statements used to compute the composite score). When no composite
measure is used (i.e., L = 1), the granularity becomes 1

N
, meaning the smallest possible difference

between two means is solely determined by the number of participants. This scenario can occur
when only collecting one piece of information per participant.

Take our previous example: rating one’s perception of health on a 7-point Likert-scale. In this
case, since there is only one item being measured (perceived health), L = 1, and the granularity
of the mean is dependent only on the sample size N . Take one of the groups, consisting of 30
participants, the granularity of the mean would be 1

30
= 0.033. This means that the smallest

possible difference between the two average values reported in the study would be 0.033. If the
mean reported in the study differs from a multiple of this granularity, there is an inconsistency
present, which could be detected using the GRIM test.

8.2 Limitations of the GRIM Test

The GRIM test has two notable limitations: (a) the effectiveness of the test diminishes as the
sample size increases, and (b) there is currently no automation of the test.

Diminished Effectiveness

The GRIM test can only be used to check for inconsistencies when the product of the number of
participants N and the number of items L is smaller than 10D, where D is the number of decimal
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places reported. The formula which checks if the GRIM test can be applied, can be expressed as:

(L×N) < 10D (5)

In most scientific research, means are commonly rounded to two decimal places (D = 2). This
means that the GRIM test can only be applicable when the product of L × N is less than 100.
This is because as L×N approaches or exceeds 100, the differences between possible mean values
become so small that, after rounding, all mean values within the valid range become possible. In
such cases, the GRIM test can no longer identify impossible means.

Note that percentages reported to one decimal place can typically be tested for consistency with
a sample size up to 1,000 (i.e., L = 1), as they are, in effect, fractions reported to three decimal
places (e.g. 53.2% = 0.532) [8].

Figure 2: Plot of possible and impossible mean values (D = 2) (image directly sourced from [8])

Figure 2 shows a plot that is a function of the sample size (represented on the x-axis) and the
fractional portion (decimal part) of the mean (represented on the y-axis). In this figure, the black
dots indicate mean values that are mathematically impossible given the sample size and rounding
to two decimal places, whereas the white dots represent mean values that are possible. Note that in
this figure, numbers ending in exactly 5 at the third decimal place (e.g., 1/8 = 0.125) were always
rounded up. If such means were allowed to be either rounded up or down, a few extra white dots
would appear at sample sizes that are multiples of 8.

As shown in Figure 2, as the sample size starts to increase towards 100, the number of white
dots increases, meaning more mean values become possible, and thus the GRIM test’s effectiveness
diminishes.
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Lack of Automation

Currently, there is no tool available that scans a document and automatically performs the GRIM
test when applicable. This means that researchers and reviewers must manually check each reported
mean for consistency. This manual process can be time-consuming and prone to human error. For
example, Brown & Heathers (2016) [8] themselves mention that they have made a human error
when analysing an article: “In one of the cases above, the data that we received showed that we
had failed to completely understand the original article; what we had thought were inconsistencies
in the means on a Likert-type measure were due to that measure being a multiple-item composite,
and we had overlooked that it was correctly reported as such.” [8]

Therefore, the development of such an automated tool could potentially minimise the risk of
human error, as well as improve efficiency, as reviewers no longer have to perform the test manually.
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9 AI-Powered Methodology

This thesis aims to create an automated implementation of the GRIM test by developing an
AI-powered Python script, which uses AI to extract relevant data from a certain context and uses
Python for its necessary calculations. This approach is very similar to the approach used for the
statcheck AI-powered methodology described in Section 3. However, unlike statcheck’s methodology,
creating an AI-powered methodology for the GRIM test is more complex.

In statcheck, all relevant parameters (e.g., test type, test value, p value) typically appear
right next to each other in the text, making automated extraction relatively straightforward.
However, GRIM-relevant parameters are often spread out across different sentences or even different
paragraphs. Furthermore, for each mean value found, the AI model has to find the correlating
sample size and determine if the mean value is GRIM-applicable (i.e., the mean value is composed
of integer data).

Since the relevant parameters are more spread out for GRIM, the size of each segment has been
set at a value of 1,000 words and the overlap is set at 200 words. Furthermore, since this model
needs to properly understand the context in order to determine if a found mean value is GRIM
applicable or not, the choice has been made to use the full GPT-4o model rather than the smaller
GPT-4o-mini model, despite the fact that both input and output API tokens are 12.5 times more
expensive for GPT-4o [30]. GPT-4o outperforms GPT-4o-mini in reasoning-related benchmarks such
as the Massive Multitask Language Understanding benchmark (MMLU), where GPT-4o achieves
an accuracy of 88.7% compared to 82.0% for GPT-4o-mini, and the Discrete Reasoning Over
Paragraphs benchmark (DROP), where GPT-4o scores 88.4% compared to 79.7% for GPT-4o-mini
[26].

The AI-powered methodology for the GRIM test includes a final reasoning step. In this step,
the model reflects on each extracted mean value and provides a brief reasoning of why it considers
the value to be GRIM-applicable.

Additionally, the following formula was implemented to determine whether the GRIM test can
be theoretically applied due to sample size constraints:

N < 10d (6)

Here, N is the sample size and d is the number of decimal places in the reported mean. For
example, for a mean value with two decimals, if the sample size exceeds a value of 100, the found
mean gets removed as an entry. Note that this is a simplified version of the full formula (see
formula 5). This is because initial attempts at detecting composite measures were unsuccessful,
leading to the decision not to implement this functionality at this time.

The steps this Python script follows and how it functions are described below. The full code and
detailed README for the project can be found on GitHub, as listed in the Project Links section.

9.1 How It Works

The AI-powered GRIM script uses the GPT-4o AI model to extract relevant data and uses Python-
based calculations. The process involves the following steps:

1. Central class: the GRIMTester class contains all methods for reading context from files,
extracting reported means and sample sizes, validating whether GRIM is applicable, performing
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the GRIM test, and presenting results.

2. Convert: the .pdf, .htm, or .html file gets converted into plain text. .txt files are already
in plain text.

3. Segmentation and overlap: the plain text is split into segments of 1,000 words each, with
an overlap of 200 words between consecutive segments. This larger context window increases
the chances that all relevant parameters are captured together in the same context window.

4. Extract data: the extract data from text method uses the GPT-4o AI model to identify
and extract reported means and sample sizes from each segment. The model is instructed to
extract values only if:

• The value is explicitly labelled as a mean.

• The mean is based on integer data (e.g., Likert scales).

• A sample size (N) is explicitly mentioned and clearly linked to the mean.

Besides extracting relevant data, the model is also instructed to return a reasoning string,
in which the model must provide a brief justification for why the identified mean value is
considered GRIM-applicable.

This method transforms unstructured data (tests found in the text) into structured data:
a Python list of dictionaries. Each extracted test is represented as a dictionary with the
following keys:

• reported mean: The mean value as reported in the article (float).

• sample size: The sample size associated with the reported mean (integer).

• discrete reasoning: A brief explanation of why the mean value is considered GRIM-
applicable (string). For example: "mean of 7-point Likert responses clearly linked

to N = 28 in same sentence".

The prompt used can be found in Appendix F or on the GitHub page (see Project Links,
file: testers/GRIM/config.py).

5. GRIM applicability check: this check removes entries from the final output that are not
theoretically testable using the GRIM formula. More specifically, the sample size must not
exceed 10d, where d is the number of decimal places in the reported mean. This is because
any mean value where the sample size exceeds this threshold can be constructed from integer
data. To reduce clutter in the final output, these entries are excluded form the final results.

6. GRIM test: the grim test method calculates if the reported mean is mathematically
possible given the sample size and number of decimal places.

7. Processing results: after extraction and testing, the results are added into a DataFrame

and printed. Each test is displayed in a separate row with the following column headers:

• Consistent: indicates whether the reported mean passed the GRIM test (Yes or No).
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• Reported Mean: the original mean value as extracted from the text, including trailing
zeros.

• Sample Size: the corresponding sample size.

• Decimals: the number of decimal places in the reported mean.

• Reasoning: the AI-generated explanation for why the reported mean was considered
GRIM-applicable.

Using the approach, it should now be possible to automatically perform the GRIM and get an
immediate overview of the results.
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10 Experiment

10.1 Data Used

To evaluate the efficacy of the AI-powered GRIM Python script, a subset of the articles analysed
by Brown & Heathers (2016) [8] was selected. Specifically, all articles containing GRIM-testable
data from the journal Psychological Science (N = 30) were included, along with an additional 10
articles without GRIM-testable data, to verify if the model would return no values in such cases. A
list of exactly which articles were analysed can be found in Appendix D.

Brown & Heathers were contacted with a request to share the GRIM-applicable means they
had found in their analysis. However, their analysis results were not logged in a structured manner.
Fortunately, they did annotate the original articles and highlighted (most) inconsistent GRIM-
applicable mean values. These annotated articles served as the basis for this analysis, though they
are not without their flaws. As Brown noted in an e-mail response: “There will surely be some
that we missed, and probably a couple of false positives due to exhaustion or the use of multi-item
measures.”

10.2 Procedure

The testers/GRIM/main.py script was run on all 40 articles in dataset. The full code for this
script can be found on the aforementioned GitHub page. The following categories were logged:

• Author: Author(s) of the article.

• Title The title of the article.

• # Inconsistent mean values found by script: The number of inconsistent and GRIM-
applicable mean values, according to the script.

• # Inconsistent mean values annotated by Brown & Heathers: The number of mean
values explicitly annotated as inconsistent by Brown & Heathers. Although their annotations
include various notes (e.g., indicating that a mean was rounded up or down), only those
clearly marked as inconsistent are counted in this category. All other comments are excluded
from the analysis.

• # Mean values in intersection: The number of inconsistent mean values detected by the
script and explicitly annotated as inconsistent by Brown & Heathers. This is considered the
most informative metric, given the absence of a structured file containing all GRIM-applicable
values.

• Notes: Additional information regarding why certain mean values were not found or any
other findings worth mentioning.

Note that, unlike the statcheck analysis, this GRIM evaluation does not include categories such
as true positives, false positives, true negatives, or false negatives. This is because the annotations
do not serve as a definitive ground truth and the interpretation can be somewhat challenging, as is
also confirmed by the e-mail response quoted earlier. Furthermore, the GRIM analysis is only run
for one iteration, unlike the statcheck analysis, which was run in three iterations. This is because
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the output of the GRIM script is not deterministic, and repeated runs do not yield more consistent
or meaningful insights.

The detailed results of this analysis can be found in Appendix D. The full raw output of the
script is available on the OSF page of this project (see the Project Links section for the link).
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11 Results

Table 9 shows the results of applying the AI-powered GRIM script to the dataset.

Table 9: Overview of GRIM-applicable articles and inconsistencies detected by the AI-powered
script compared to annotations by Brown & Heathers

Category # Inconsistent
mean values
found by script

# Inconsistent
mean values
annotated
by Brown &
Heathers

# Mean values
in intersection

Category 1: Article contains
GRIM-applicable means and at
least one inconsistency was an-
notated by Brown & Heathers
(N = 14)

46 61 20

Category 2: Article contains
GRIM-applicable means but no
inconsistencies were annotated
by Brown & Heathers (N = 16)

58 0 0

Category 3: Article does not
contain any GRIM-applicable
means (N = 10)

13 0 0

TOTAL (N = 40) 117 61 20

When analysing only articles with GRIM-applicable data (i.e., Category 1 & 2), the script
marks 104 mean values as inconsistent, of which only 20 (19.2%) are confirmed as inconsistent
by Brown & Heathers. When adding articles that do not contain any GRIM-applicable data (i.e.,
Category 3), the number of inconsistent means marked by the script increase to 117, which causes
the true positive rate to drop to 17.1%.

In this analysis, Category 3 includes only 10 articles, whereas in the full dataset, it consists of
70 articles. If the full set were analysed, it is likely that the remaining 60 articles would cause the
script to (falsely) flag additional inconsistent means, which would cause the overall true positive
rate to further decrease. This shows that, in order to get at least some use out of the script results,
it is important to know beforehand if your article contains GRIM-applicable data, otherwise the
true positive rate will be so low that you will be overwhelmed by false positives.

Table 10, below, provides further insights into the specific categories of missed mean values by
the script.
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Table 10: Categories of missed mean values by the script

Category of missed mean value Count Percentage of total missed

Mean values in tables 22 53.7%

Regular misses 8 19.5%

Wrong N extracted 7 17.1%

Mean values reported as percentages 4 9.7%

Total missed results 41 100%

This table shows that roughly half (53.7%) of missed mean values occurred because the relevant
mean values were presented in tables, which the script was unable to extract. This is due to how
the table was inserted into the original PDF and how the current context window approach works.
The article Constructing Rich False Memories of Committing Crime by J. Shaw [36] shows that
the script can detect mean values presented in tables, as long as the tables are formatted in a way
that allows the PDF-to-text conversion library (PyMuPDF) to extract them properly (refer to
Appendix D). Furthermore, even when the script successfully converts a table to plain text, it
still fails to identify the correct sample size if this information is not (explicitly) mentioned within
the same context window. As a result, the script is unable to match the extracted mean value to
its corresponding sample size.

The category Wrong N extracted shows that the script has a hard time matching the right
sample size to its corresponding mean value, especially in clustered contexts where many means
and sample sizes appear close together.

Finally, the script has not been programmed to interpret percentages as mean values.

11.1 Runtime and Cost

The total runtime for processing 40 articles is 1,124.63 seconds, resulting in an average runtime of
28.12 seconds per article. The total cost for this analysis amounts to $2.03, which results in
$0.0508 per article for one iteration.
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12 Discussion

The results show that, even when articles are pre-filtered for containing GRIM-applicable mean
values, the script still performs poorly, with a true positive rate of only about 1 in 5 (19.2%). This
shows that the script often flags results as inconsistent when they are not. This is mostly because
the script thinks a certain mean value is GRIM-applicable, despite that mean not being composed
of integer data, but rather floating-point data.

Given the limited accuracy of the script, it is worth questioning whether any meaningful time is
actually saved by using it. Because of the high number of false positives, a lot of manual checking
is still needed, which reduces the time-saving benefits of using the script in the first place.

12.1 Limitations

The biggest limitation of the current script is the one described just above: the AI model’s (in)ability
to determine whether a reported mean is derived from integer data only. The GRIM test can only
be applied when the underlying data are integer-based (e.g., Likert scales), but the model frequently
misclassifies floating-point data as GRIM-applicable. As a result, the script attempts to apply the
GRIM test to these mean values, resulting in many false positives.

Another significant limitation of the script lies in its difficulty matching a mean value to its
corresponding sample size. In many cases, these two values are spread out across several sentences
or even paragraphs, which makes it difficult for the AI model to properly link these values together.
In this study, the decision was made to use a segmentation-based approach, since processing an
entire article at once almost always results in a context window that is too large. As a result, the
script is unable to process all relevant mean values effectively, causing many results to be missed.
However, using a segmentation-based approach includes its own caveat: the sample size and mean
value are often not reported within the same (relatively small) segment. As a result, the model is
unable to match them correctly, leading to missed or incorrect GRIM evaluations.
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13 Conclusion

This study has shown that it is indeed possible to automate the GRIM test using AI-powered data
extraction, but the performance is poor. This is due to the limitations mentioned in subsection 12.1.
Despite efforts to improve the script’s performance – such as using GPT-4o instead of GPT-4o-mini,
using a segmentation-based approach to manage context, implementing a final reasoning step and
applying a GRIM-applicability formula to exclude entries with overly large sample sizes – it still
achieved a true positive rate of only 19.2%. This was the case even when the test was limited to
only articles containing GRIM-applicable mean values. When the script is tested on a larger subset,
which also includes articles without GRIM-applicable data, the true positive rate of the script
decreases even further.

This script could serve as a quick and automated scan of an article, but users must be wary of
its limitations. If you use this script as an author and want to check your own paper, you could run
the tool and focus only on the mean values that you know are composed of integer values. The
script, in its current state, is not yet accurate enough to serve as a standalone tool.

13.1 Future Research

Although the performance of the current implementation is quite limited, it provides a solid
foundation for future improvements. We recommend that future research begins by exploring the
performance of more advanced reasoning models, such as OpenAI’s o3 and o4-mini models. These
models are “LLMs trained with reinforcement learning to perform reasoning. Reasoning models
think before they answer, producing a long internal chain of thought before responding to the user,”
according to OpenAI [31].

Future research could also involve more general ways to attempt to improve the script’s reasoning
capabilities, such as altering the prompt and adding additional examples.

To address the limitation where mean values and sample sizes do not appear within the same
context window, future work could explore the use of a memory structure. For example, such a
structure could log mean values and sample sizes, along with a one-line description so the script
knows what the values refer to. This memory structure could then be passed to the model alongside
the next context window, potentially allowing for cross-segment value linking.

Future research could involve developing a way to detect the use of multi-item measurements.
This could potentially reduce the number of false positives. As Brown himself stated in an e-mail
reply: “You have to detect the multi-item measures efficiently or you will be generating lots of false
positives with GRIM.”

Furthermore, future research could explore whether there are any options for altering the settings
of the current PDF-to-text conversion library (PyMuPDF) to allow for the extraction of all types
of tables, or consider using a different library that supports more forms of table detection.

Finally, it could be investigated whether enabling the model to also check percentages adds
meaningful value. However, researchers should be cautious, as this could potentially increase the
number of false positives significantly. This effect potentially outweighs the benefits of detecting a
few additional true positives.

All in all, these suggestions show that there is still room to improve and expand upon the
current approach.
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Part IV

General Conclusion
This thesis explored whether AI-powered data extraction can improve reproducibility tools in
scientific literature, focusing on statcheck and the GRIM test.

The AI-powered statcheck script has shown that when all relevant parameters (e.g., test type,
test value, p value) are located close together in the text, AI-powered data extraction performs
very well. The AI-powered statcheck script has achieved a significantly higher detection percentage
than the original statcheck tool, while maintaining very high overall accuracy. Using AI-powered
data extraction, results no longer need to be in strict APA format in order to be automatically
extracted and recalculated.

In contrast, the AI-powered GRIM script performed poorly. GRIM-relevant parameters, such
as reported mean, sample size, and whether the value is based on integer data, are often
distributed across different sentences or even different sections. The AI model struggled to identify
and link these elements correctly, especially due to the segmentation approach used. This has led
to many false positives and missed detections.

In summary, AI-powered data extraction is effective when key information appears in close
context, but becomes significantly more challenging when the relevant information is spread out.
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A Statcheck Script Analysis Data

Appendix A shows the analysis result of running the AI-powered Python statcheck script and comparing the results to the
manually coded validate file, which can be found at https://osf.io/753qd/.

Table 11: Full analysis of articles and their NHST results

Article # Sig.
results
vali-
date
file

# Cor-
rectly
iden.
by
script

# Missed
in val-
idate
data

# Missed
by script

TP FP TN FN Note

JPSP Ames 2004 15 15 0 0 1 0 14 0 -
JEP Beaman
2004

16 16 0 0 2 1 13 0 1 FP due to Huynh-Feldt
correction

JPSP Blair 29 29 0 0 1 0 28 0 -
JEP Carlson
2004

23 23 0 0 1 0 22 0 -

JEP Creel 2004 10 10 0 0 0 0 10 0 -
JEP Delaney
2004

39 37 0 2 7 0 30 0 2 results missed because
they are the same test con-
secutively

JPSP Dijkster-
huis

21 20 0 1 4 0 16 0 1 result missed because they
are the same test consecu-
tively

JEP Domangue
2004

25 24 0 1 1 1 22 0 1 result missed because they
are the same test consecu-
tively; 1 FP due to wrong
operator extraction

JPSP Eagly - - - - - - - - -
JPSP Eberhardt 27 27 0 0 1 0 26 0 -
JEP Estes 2004 9 9 0 0 0 0 9 0 -
JPSP Exline 8 8 0 0 0 0 8 0 -
JPSP Feeney - - - - - - - - -
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Article # Sig.
results
vali-
date
file

# Cor-
rectly
iden.
by
script

# Missed
in val-
idate
data

# Missed
by script

TP FP TN FN Note

JPSP Ferguson 33 33 0 0 1 7 25 0 7 FP p = .000, 1 TP actual
inconsistency

JEP Folstein
2004

37 33 0 4 0 2 31 0 4 truly missed by script; 2
FP because of Huynh-Feldt

JEP Glanzer 32 31 0 1 1 1 29 0 1 FP due to wrong operator
extraction; 1 truly missed by
script

JPSP Golec - - - - - - - - -
JEP Heit 2004 22 22 0 0 3 0 19 0 -
JPSP Hewig 9 9 0 0 0 7 2 0 7 FP due to Huynh-Feldt

correction
JEP Hohlfeld
2004

- - - - - - - - -

JEP Jahn 2004 13 13 0 0 0 0 13 0 -
JPSP Johnson
2004

27 27 0 0 3 0 24 0 -

JPSP Koole 2004 30 30 1 1 2 0 28 0 The validate file fabricated
1 result (which was missed
by the script) and it missed
one TP gross inconsistency

JPSP Lord 2004 24 24 0 0 1 0 22 1 1 FN: ”f(1, 57) = 4.0 < 0.05,
0.04890 to 0.05168”

JEP McKenzie
2004

7 7 0 0 0 1 6 0 1 FP due to wrong operator
extraction

JPSP Meiser 24 24 0 0 0 0 24 0 -
JPSP Mikulincer - - - - - - - - -
JEP Moscoso del
Prado Mart́ın
2004

- - - - - - - - -
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Article # Sig.
results
vali-
date
file

# Cor-
rectly
iden.
by
script

# Missed
in val-
idate
data

# Missed
by script

TP FP TN FN Note

JPSP Muss-
weiler

8 8 0 0 4 1 3 0 1 FP (gross inconsistency)
due to wrong tail detection
(should be 1, 2 was used)

JEP Norris 2004 21 21 0 0 1 0 20 0 -
JPSP Norton 20 19 0 1 0 0 19 0 1 result missed because they

are the same test consecu-
tively

JEP Pexman 46 41 0 5 0 0 41 0 5 results truly missed
JEP Rapp 2004 33 33 0 0 3 0 30 0 -
JEP Rayner 35 32 0 3 0 0 32 0 3 truly missed by script
JEP Rinck 2004 11 11 0 0 0 0 11 0 -
JPSP Tamir 7 7 0 0 0 0 7 0 -
JPSP Tazelaar - - - - - - - - -
JPSP Thrash - - - - - - - - -
JEP Tillmann
2004

21 22 1 0 0 0 22 0 1 result truly missed by vali-
date file

JEP Unsworth 30 30 0 0 0 0 30 0 -
JEP Van Zandt
2004

8 0 0 8 0 0 0 0 Script found no results, but
there are results to be found
because no p-value was re-
ported for each test

JPSP Van
Zomeren

16 19 3 0 4 0 15 0 3 significant chi2 results
missed by validate file

JEP Verhaeghen 37 0 0 37 0 0 0 0 Script found no results, but
there are results to be found
because no p-value was re-
ported for each test

JPSP Visser
2004

9 9 0 0 0 0 9 0 -
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Article # Sig.
results
vali-
date
file

# Cor-
rectly
iden.
by
script

# Missed
in val-
idate
data

# Missed
by script

TP FP TN FN Note

JEP Ward 2004 37 37 0 0 1 0 36 0 -
JEP Winman
2004

8 8 0 0 0 0 8 0 -

JEP Yang 19 19 0 0 0 0 19 0 -
JPSP Jones 2004 23 23 0 0 2 0 21 0 -
TOTAL 869 810 5 64 44 21 744 1 -
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B Filtered Raw Output

Appendix B shows the raw output of each article that is included in the final dataset used for
evaluation. These results have been filtered to comply with the inclusion criteria mentioned in
both subsection 2.1.3 and 4.1. Each paper has automatically been analysed three times, the most
frequent output is shown below. The complete, unfiltered output can be downloaded as a .csv file
on the OSF page: https://osf.io/ae2pu/files/osfstorage.

(1/48)

JPSP_Ames_2004_87_5_573_Strategies for social.htm

1 Yes t(26) = 2.47 = 0.02 0.02016 to 0.02062 -

3 Yes t(36) = 2.09 < 0.05 0.04327 to 0.04422 -

4 Yes t(36) = 2.32 < 0.05 0.02583 to 0.02643 -

7 Yes f(1, 78) = 7.15 < 0.01 0.00910 to 0.00915 -

8 Yes t(78) = 2.1 = 0.04 0.03465 to 0.04372 -

11 Yes t(48) = 3.71 < 0.001 0.00053 to 0.00055 -

12 No f(1, 49) = 12.21 < 0.001 0.00102 to 0.00102

Recalculated p-value does not match the reported p-value.

16 Yes t(27) = 3.33 < 0.01 0.00249 to 0.00255 -

17 Yes t(28) = 10.08 < 0.001 0.00000 to 0.00000 -

18 Yes t(20) = 5.04 < 0.001 0.00006 to 0.00006 -

19 Yes t(20) = 3.58 < 0.01 0.00185 to 0.00190 -

20 Yes t(28) = 13.02 < 0.001 0.00000 to 0.00000 -

21 Yes f(1, 45) = 8.33 < 0.01 0.00596 to 0.00598 -

22 Yes t(45) = 2.78 < 0.01 0.00780 to 0.00801 -

24 Yes f(1, 46) = 6.11 = 0.02 0.01716 to 0.01725 -

(2/48)

JEP_Beaman_2004_30_5_1106_The irrelevant sound.htm Notes

0 Yes t(37) = -4.93 < 0.001 0.00002 to 0.00002 -

3 Yes f(1, 36) = 86.41 < 0.001 0.00000 to 0.00000 -

4 No f(2, 72) = 6.75 = 0.004 0.00205 to 0.00207

Recalculated p-value does not match the reported p-value.

6 Yes f(2, 72) = 176.3 < 0.001 0.00000 to 0.00000 -

7 Yes f(2, 72) = 4.86 = 0.01 0.01043 to 0.01052 -

8 No f(1, 36) = 161.63 = 0.048 0.00000 to 0.00000

Recalculated p-value does not match the reported p-value.

9 Yes f(1, 18) = 40.26 < 0.001 0.00001 to 0.00001 -

10 Yes f(1, 38) = 86.72 < 0.001 0.00000 to 0.00000 -

11 Yes f(1, 38) = 18.79 < 0.001 0.00010 to 0.00010 -

13 Yes t(38) = 3.05 < 0.008 0.00410 to 0.00421 -

14 Yes f(2, 70) = 64.41 < 0.001 0.00000 to 0.00000 -

16 Yes t(36) = 7.84 < 0.002 0.00000 to 0.00000 -

17 Yes t(36) = 3.41 < 0.004 0.00159 to 0.00164 -

18 Yes f(2, 70) = 34.97 < 0.001 0.00000 to 0.00000 -
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20 Yes f(2, 70) = 4.48 < 0.02 0.01470 to 0.01483 -

21 No t(35) = 1.97 < 0.028 0.05620 to 0.05739

Gross inconsistency: reported p-value and recalculated p-value differ in significance.

(3/48)

JPSP_Blair_2004_87_6_763_The automaticity of.htm

1 Yes f(1, 60) = 90.37 < 0.001 0.00000 to 0.00000 -

2 Yes f(1, 60) = 8.66 < 0.01 0.00461 to 0.00463 -

3 Yes f(1, 60) = 28.91 < 0.001 0.00000 to 0.00000 -

4 Yes f(1, 60) = 8.35 < 0.01 0.00535 to 0.00537 -

5 Yes f(1, 28) = 64.9 < 0.001 0.00000 to 0.00000 -

6 Yes f(1, 32) = 25.94 < 0.001 0.00002 to 0.00002 -

7 Yes f(1, 60) = 71.95 < 0.001 0.00000 to 0.00000 -

8 Yes f(1, 60) = 7.1 < 0.01 0.00964 to 0.01014 -

10 Yes f(1, 69) = 109.49 < 0.001 0.00000 to 0.00000 -

11 Yes f(1, 69) = 5.98 < 0.025 0.01698 to 0.01707 -

12 Yes f(1, 69) = 30.41 < 0.001 0.00000 to 0.00000 -

14 Yes f(1, 69) = 4.62 < 0.05 0.03501 to 0.03521 -

15 Yes f(1, 69) = 70.0 < 0.001 0.00000 to 0.00000 -

16 Yes f(1, 69) = 9.59 < 0.01 0.00282 to 0.00283 -

17 Yes f(1, 95) = 72.02 < 0.001 0.00000 to 0.00000 -

18 Yes f(1, 95) = 28.32 < 0.001 0.00000 to 0.00000 -

20 Yes f(2, 95) = 9.07 < 0.001 0.00025 to 0.00025 -

21 Yes f(1, 95) = 18.11 < 0.001 0.00005 to 0.00005 -

23 Yes f(1, 95) = 5.41 < 0.025 0.02209 to 0.02221 -

24 Yes f(1, 95) = 92.28 < 0.001 0.00000 to 0.00000 -

25 Yes f(1, 95) = 8.66 < 0.01 0.00408 to 0.00410 -

26 Yes f(1, 95) = 9.45 < 0.01 0.00275 to 0.00276 -

29 Yes f(1, 69) = 38.37 < 0.001 0.00000 to 0.00000 -

30 No f(1, 69) = 4.72 < 0.03 0.03316 to 0.03334

Recalculated p-value does not match the reported p-value.

31 Yes f(1, 69) = 163.32 < 0.001 0.00000 to 0.00000 -

32 Yes f(1, 69) = 14.28 < 0.001 0.00033 to 0.00033 -

33 Yes f(1, 69) = 32.25 < 0.001 0.00000 to 0.00000 -

34 Yes f(1, 69) = 4.04 < 0.05 0.04821 to 0.04848 -

35 Yes t(67) = 2.23 < 0.05 0.02876 to 0.02945 -

(4/48)

JEP_Carlson_2004_30_6_1235_Intentional control of.htm

0 Yes f(2, 58) = 21.89 < 0.01 0.00000 to 0.00000 -

1 Yes f(2, 58) = 27.0 < 0.01 0.00000 to 0.00000 -

2 Yes f(2, 58) = 535.75 < 0.01 0.00000 to 0.00000 -

7 Yes t(33) = 6.14 < 0.01 0.00000 to 0.00000 -

8 Yes t(33) = 3.05 < 0.01 0.00443 to 0.00455 -

9 Yes t(33) = 5.55 < 0.01 0.00000 to 0.00000 -
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10 Yes t(22) = 5.14 < 0.01 0.00004 to 0.00004 -

11 Yes t(27) = 4.39 < 0.01 0.00015 to 0.00016 -

13 Yes t(24) = 3.45 < 0.01 0.00206 to 0.00211 -

14 Yes t(24) = 2.89 < 0.01 0.00795 to 0.00814 -

15 No t(15) = 2.75 < 0.01 0.01474 to 0.01504

Recalculated p-value does not match the reported p-value.

Consistent for one-tailed, inconsistent for two-tailed

18 Yes f(2, 58) = 5.813 = 0.005 0.00500 to 0.00500 -

19 Yes f(4, 116) = 5.286 = 0.001 0.00060 to 0.00060 -

20 Yes f(2, 46) = 7.21 < 0.01 0.00188 to 0.00190 -

24 Yes f(2, 58) = 7.89 < 0.01 0.00093 to 0.00094 -

27 Yes f(2, 56) = 35.86 < 0.01 0.00000 to 0.00000 -

28 Yes f(2, 56) = 30.83 < 0.01 0.00000 to 0.00000 -

33 Yes f(1, 29) = 4.2 < 0.05 0.04831 to 0.05085 -

34 Yes f(1, 29) = 12.01 < 0.01 0.00167 to 0.00167 -

35 Yes f(1, 29) = 7.2 < 0.05 0.01165 to 0.01218 -

36 Yes f(1, 29) = 13.5 < 0.01 0.00094 to 0.00098 -

37 Yes f(1, 29) = 10.64 < 0.01 0.00283 to 0.00284 -

38 Yes f(1, 29) = 7.65 < 0.01 0.00975 to 0.00980 -

(5/48)

JEP_Creel_2004_30_5_1119_Distant Melodies. Statistical.htm

0 Yes f(1, 10) = 10.0 = 0.01 0.00998 to 0.01026 -

3 Yes t(11) = 4.46 = 0.001 0.00095 to 0.00097 -

5 Yes f(1, 10) = 16.71 = 0.002 0.00218 to 0.00219 -

7 Yes t(11) = 4.47 = 0.001 0.00094 to 0.00095 -

8 Yes f(1, 22) = 22.73 < 0.0001 0.00009 to 0.00009 -

9 Yes f(1, 10) = 5.24 = 0.045 0.04500 to 0.04517 -

10 Yes f(1, 10) = 9.58 = 0.01 0.01133 to 0.01136 -

11 Yes t(11) = 5.07 = 0.0004 0.00036 to 0.00036 -

16 Yes t(38) = 6.03 < 0.0001 0.00000 to 0.00000 -

17 Yes t(38) = 4.14 < 0.0002 0.00018 to 0.00019 -

(6/48)

JEP_Delaney_2004_30_6_1219_Immediate and sustained.htm

0 Yes f(3, 114) = 3.65 < 0.05 0.01466 to 0.01485 -

1 Yes f(1, 38) = 10.5 < 0.01 0.00243 to 0.00254 -

2 Yes f(1, 38) = 5.01 < 0.05 0.03106 to 0.03122 -

3 Yes f(1, 38) = 10.5 < 0.01 0.00243 to 0.00254 -

4 Yes f(1, 38) = 42.03 < 0.001 0.00000 to 0.00000 -

6 No f(2, 76) = 4.86 < 0.01 0.01028 to 0.01037

Recalculated p-value does not match the reported p-value.

7 Yes f(1, 18) = 9.8 < 0.01 0.00568 to 0.00588 -

8 Yes f(2, 36) = 3.5 < 0.05 0.03916 to 0.04258 -

10 Yes f(1, 18) = 31.96 < 0.001 0.00002 to 0.00002 -
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13 No t(18) = 1.99 < 0.05 0.06141 to 0.06260

Gross inconsistency: reported p-value and recalculated p-value differ in significance.

Consistent for one-tailed, inconsistent for two-tailed

14 Yes f(1, 21) = 4.62 < 0.05 0.04331 to 0.04351 -

17 Yes f(3, 60) = 4.33 < 0.01 0.00785 to 0.00794 -

18 Yes f(1, 20) = 4.39 < 0.05 0.04897 to 0.04920 -

19 Yes f(1, 20) = 6.32 < 0.05 0.02057 to 0.02065 -

20 Yes f(1, 20) = 55.47 < 0.001 0.00000 to 0.00000 -

21 Yes f(1, 20) = 7.71 < 0.05 0.01162 to 0.01166 -

22 Yes f(1, 60) = 5.46 < 0.05 0.02275 to 0.02287 -

23 Yes f(3, 60) = 6.51 < 0.001 0.00069 to 0.00070 -

24 Yes f(1, 22) = 71.95 < 0.001 0.00000 to 0.00000 -

25 Yes f(1, 5) = 8.37 < 0.05 0.03403 to 0.03410 -

26 Yes t(43) = 8.85 < 0.001 0.00000 to 0.00000 -

27 Yes f(1, 28) = 104.15 < 0.001 0.00000 to 0.00000 -

29 Yes f(1, 24) = 34.35 < 0.001 0.00000 to 0.00000 -

30 No f(1, 24) = 7.52 < 0.01 0.01132 to 0.01137

Recalculated p-value does not match the reported p-value.

31 No f(1, 24) = 5.9 < 0.01 0.02248 to 0.02353

Recalculated p-value does not match the reported p-value.

32 No f(1, 24) = 7.76 < 0.01 0.01024 to 0.01029

Recalculated p-value does not match the reported p-value.

33 Yes f(1, 28) = 7.78 < 0.01 0.00937 to 0.00942 -

34 Yes f(1, 28) = 16.55 < 0.001 0.00035 to 0.00035 -

35 Yes f(1, 28) = 6.4 < 0.05 0.01693 to 0.01772 -

36 Yes t(14) = 5.56 < 0.001 0.00007 to 0.00007 -

38 Yes f(1, 24) = 5.24 < 0.05 0.03110 to 0.03124 -

39 Yes f(1, 24) = 20.49 < 0.001 0.00014 to 0.00014 -

40 Yes f(1, 24) = 4.34 < 0.05 0.04793 to 0.04817 -

41 No f(1, 28) = 4.55 < 0.01 0.04172 to 0.04193

Recalculated p-value does not match the reported p-value.

42 Yes f(1, 28) = 4.74 < 0.05 0.03796 to 0.03815 -

43 Yes f(1, 24) = 6.51 < 0.05 0.01748 to 0.01756 -

44 No f(2, 35) = 8.43 < 0.001 0.00102 to 0.00103

Recalculated p-value does not match the reported p-value.

(7/48)

JPSP_Dijksterhuis_2004_87_5_586_Think different. The.htm

Consistent APA Reporting Reported P-value Valid P-value Range Notes

0 Yes t(21) = 2.75 < 0.02 0.01187 to 0.01213 -

1 Yes f(2, 54) = 3.4 < 0.05 0.03890 to 0.04251 -

3 Yes f(1, 37) = 4.96 < 0.04 0.03203 to 0.03219 -

6 No chi2(59) = 3.13 < 0.04 1.00000 to 1.00000

Gross inconsistency: reported p-value and recalculated p-value differ in significance.

7 No chi2(60) = 6.69 < 0.01 1.00000 to 1.00000
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Gross inconsistency: reported p-value and recalculated p-value differ in significance.

8 Yes f(2, 133) = 4.69 < 0.02 0.01071 to 0.01081 -

10 Yes f(1, 88) = 8.07 < 0.01 0.00558 to 0.00560 -

11 Yes f(1, 84) = 4.6 < 0.04 0.03391 to 0.03584 -

12 Yes f(1, 84) = 4.03 < 0.05 0.04778 to 0.04805 -

13 Yes f(1, 94) = 6.42 < 0.02 0.01290 to 0.01297 -

17 Yes f(2, 111) = 5.29 < 0.01 0.00636 to 0.00642 -

18 No f(2, 111) = 2.91 < 0.03 0.05837 to 0.05892

Gross inconsistency: reported p-value and recalculated p-value differ in significance.

19 Yes f(1, 111) = 63.37 < 0.0001 0.00000 to 0.00000 -

21 No f(2, 111) = 3.1 < 0.02 0.04671 to 0.05135

Recalculated p-value does not match the reported p-value.

22 Yes f(1, 111) = 13.31 < 0.001 0.00040 to 0.00040 -

23 Yes f(2, 111) = 4.19 < 0.02 0.01753 to 0.01769 -

25 Yes f(1, 63) = 6.56 < 0.02 0.01280 to 0.01287 -

26 Yes f(2, 63) = 4.32 < 0.02 0.01737 to 0.01753 -

27 Yes f(1, 43) = 5.5 < 0.03 0.02311 to 0.02431 -

28 Yes f(1, 42) = 9.58 < 0.005 0.00349 to 0.00350 -

(8/48)

JEP_Domangue_2004_30_5_1002_Effects of model-based.htm

Consistent APA Reporting Reported P-value Valid P-value Range Notes

0 Yes f(2, 176) = 262.82 < 0.001 0.00000 to 0.00000 -

3 Yes f(1, 90) = 4.63 = 0.034 0.03400 to 0.03419 -

4 Yes f(2, 176) = 27.82 < 0.001 0.00000 to 0.00000 -

5 Yes f(1, 88) = 17.3 < 0.001 0.00007 to 0.00008 -

6 Yes f(2, 176) = 13.23 < 0.001 0.00000 to 0.00000 -

7 Yes f(2, 176) = 85.5 < 0.001 0.00000 to 0.00000 -

8 Yes f(1, 88) = 19.48 < 0.001 0.00003 to 0.00003 -

9 Yes f(2, 176) = 79.09 < 0.001 0.00000 to 0.00000 -

10 Yes f(1, 88) = 27.91 < 0.001 0.00000 to 0.00000 -

11 Yes f(2, 176) = 3.68 = 0.027 0.02705 to 0.02731 -

12 Yes f(2, 176) = 5.32 < 0.006 0.00568 to 0.00574 -

13 Yes f(1, 104) = 13.11 < 0.001 0.00045 to 0.00046 -

14 Yes f(3, 104) = 7.65 < 0.001 0.00011 to 0.00011 -

15 No f(3, 104) = 5.67 < 0.001 0.00122 to 0.00124

Recalculated p-value does not match the reported p-value.

16 Yes f(3, 104) = 3.69 = 0.014 0.01421 to 0.01439 -

17 Yes f(1, 104) = 24.24 < 0.001 0.00000 to 0.00000 -

18 Yes f(3, 104) = 9.73 < 0.001 0.00001 to 0.00001 -

20 Yes f(5, 114) = 6.81 < 0.001 0.00001 to 0.00001 -

21 Yes f(1, 114) = 18.99 < 0.001 0.00003 to 0.00003 -

22 Yes f(5, 114) = 4.07 = 0.002 0.00193 to 0.00197 -

23 No f(5, 114) = 2.77 < 0.021 0.02103 to 0.02142

Recalculated p-value does not match the reported p-value.
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24 Yes f(5, 114) = 8.82 < 0.001 0.00000 to 0.00000 -

25 Yes f(5, 114) = 10.03 < 0.001 0.00000 to 0.00000 -

26 Yes f(5, 114) = 14.11 < 0.001 0.00000 to 0.00000 -

(9/48)

EXCLUDE THIS ARTICLE

JPSP_Eagly_2004_87_6_796_Gender gaps in.htm

(10/48)

JPSP_Eberhardt_2004_87_6_876_Seeing black. Race.htm

Consistent APA Reporting Reported P-value Valid P-value Range Notes

0 Yes f(2, 36) = 5.98 < 0.01 0.00570 to 0.00574 -

1 Yes f(2, 36) = 7.04 < 0.01 0.00262 to 0.00264 -

2 Yes t(25) = 4.54 < 0.01 0.00012 to 0.00012 -

3 Yes t(24) = 2.34 < 0.05 0.02763 to 0.02824 -

5 Yes t(13) = 2.96 = 0.01 0.01095 to 0.01116 -

6 Yes t(12) = 2.35 < 0.05 0.03638 to 0.03705 -

7 Yes f(1, 46) = 11.89 < 0.01 0.00122 to 0.00122 -

8 Yes f(1, 46) = 8.22 < 0.01 0.00622 to 0.00625 -

10 Yes f(1, 46) = 12.02 < 0.01 0.00115 to 0.00115 -

12 Yes f(1, 65) = 5.33 < 0.05 0.02409 to 0.02422 -

13 Yes f(1, 65) = 4.96 < 0.05 0.02933 to 0.02949 -

14 Yes f(1, 65) = 6.6 = 0.01 0.01219 to 0.01282 -

15 Yes f(1, 53) = 15.24 < 0.01 0.00027 to 0.00027 -

16 No f(1, 53) = 3.95 < 0.05 0.05191 to 0.05219

Gross inconsistency: reported p-value and recalculated p-value differ in significance.

17 Yes f(1, 53) = 12.6 < 0.01 0.00080 to 0.00084 -

18 Yes f(1, 53) = 9.74 < 0.01 0.00291 to 0.00292 -

19 Yes f(1, 53) = 5.87 < 0.05 0.01880 to 0.01890 -

20 Yes t(56) = 10.49 < 0.01 0.00000 to 0.00000 -

21 Yes t(56) = 3.03 < 0.01 0.00364 to 0.00375 -

23 Yes f(1, 55) = 16.82 < 0.01 0.00014 to 0.00014 -

24 Yes f(1, 55) = 7.3 < 0.01 0.00893 to 0.00938 -

25 Yes t(55) = 2.35 < 0.05 0.02212 to 0.02266 -

27 Yes f(1, 76) = 6.35 = 0.01 0.01380 to 0.01387 -

28 Yes f(1, 74) = 4.6 < 0.05 0.03430 to 0.03623 -

29 Yes f(1, 36) = 4.78 < 0.05 0.03529 to 0.03547 -

31 Yes f(1, 38) = 9.74 < 0.01 0.00343 to 0.00344 -

32 Yes f(1, 74) = 8.12 < 0.01 0.00565 to 0.00568 -

(11/48)

JEP_Estes_2004_30_5_1082_The importance of.htm

0 Yes chi2(1) = 6.9 < 0.01 0.00838 to 0.00886 -

1 Yes f(1, 79) = 55.07 < 0.001 0.00000 to 0.00000 -

2 Yes f(1, 12) = 28.96 < 0.001 0.00016 to 0.00017 -
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3 Yes f(1, 79) = 23.15 < 0.001 0.00001 to 0.00001 -

4 Yes f(1, 12) = 32.64 < 0.001 0.00010 to 0.00010 -

5 Yes f(1, 79) = 58.6 < 0.001 0.00000 to 0.00000 -

6 Yes f(1, 12) = 25.67 < 0.001 0.00028 to 0.00028 -

7 Yes t(79) = 8.75 < 0.001 0.00000 to 0.00000 -

8 Yes t(6) = 6.5 < 0.001 0.00061 to 0.00066 -

(12/48)

JPSP_Exline_2004_87_6_894_Too proud to.htm

11 Yes t(267) = 2.59 = 0.01 0.00998 to 0.01027 -

5 Yes f(1, 210) = 4.34 < 0.05 0.03833 to 0.03855 -

1 Yes t(161) = 3.86 < 0.001 0.00016 to 0.00017 -

22 Yes t(161) = 2.3 < 0.05 0.01999 to 0.02580 -

34 Yes t(152) = 3.2 < 0.01 0.00142 to 0.00197 -

1 Yes f(1, 110) = 54.2 < 0.001 0.00000 to 0.00000 -

52 Yes f(1, 110) = 25.01 < 0.001 0.00000 to 0.00000 -

53 Yes f(1, 110) = 27.58 < 0.001 0.00000 to 0.00000 -

(13/48)

EXCLUDE THIS ARTICLE

JPSP_Feeney_2004_87_5_631_A secure base.htm

(14/48)

JPSP_Ferguson_2004_87_5_557_Liking is for.htm

Consistent APA Reporting Reported P-value Valid P-value Range Notes

0 Yes f(1, 69) = 6.18 = 0.015 0.01531 to 0.01539 -

1 Yes f(1, 16) = 11.84 = 0.003 0.00335 to 0.00336 -

3 Yes t(69) = 1.68 < 0.05 0.04825 to 0.04923 -

4 Yes t(69) = 1.73 < 0.05 0.04360 to 0.04450 -

7 No f(1, 34) = 99.78 = 0.0 0.00000 to 0.00000

A p-value is never exactly 0. Recalculated p-value does not match the reported p-value.

8 No t(18) = 4.96 = 0.0 0.00010 to 0.00010

A p-value is never exactly 0. Recalculated p-value does not match the reported p-value.

Consistent for one-tailed, inconsistent for two-tailed

10 Yes f(1, 34) = 5.91 = 0.02 0.02043 to 0.02053 -

11 Yes f(3, 32) = 3.03 = 0.044 0.04333 to 0.04379 -

12 Yes f(1, 34) = 4.86 = 0.034 0.03427 to 0.03444 -

13 Yes f(1, 34) = 8.48 = 0.006 0.00629 to 0.00631 -

14 No f(1, 16) = 27.57 = 0.0 0.00008 to 0.00008

A p-value is never exactly 0.

Recalculated p-value does not match the reported p-value.

15 Yes t(34) = 2.0 < 0.05 0.04814 to 0.05946 -

16 Yes f(1, 18) = 9.87 = 0.006 0.00563 to 0.00565 -

17 Yes f(1, 16) = 13.22 = 0.002 0.00222 to 0.00223 -

18 No f(3, 14) = 5.45 < 0.01 0.01074 to 0.01081
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Recalculated p-value does not match the reported p-value.

23 Yes f(2, 51) = 3.85 = 0.028 0.02760 to 0.02784 -

24 Yes f(1, 16) = 7.12 = 0.017 0.01680 to 0.01686 -

25 Yes f(1, 18) = 6.02 = 0.025 0.02451 to 0.02461 -

26 Yes f(1, 10) = 12.72 = 0.005 0.00512 to 0.00513 -

27 Yes f(1, 10) = 22.28 = 0.001 0.00082 to 0.00082 -

28 Yes f(1, 10) = 10.15 = 0.01 0.00971 to 0.00973 -

29 Yes f(1, 10) = 6.88 = 0.025 0.02543 to 0.02551 -

31 Yes f(1, 17) = 4.87 = 0.041 0.04127 to 0.04146 -

32 Yes f(1, 20) = 8.71 = 0.008 0.00788 to 0.00791 -

33 Yes f(1, 20) = 6.16 = 0.02 0.02202 to 0.02211 -

34 Yes t(29) = 2.0 < 0.05 0.02475 to 0.03045 -

35 Yes t(29) = 2.06 < 0.025 0.02398 to 0.02449 -

37 No f(1, 56) = 15.36 = 0.0 0.00024 to 0.00024

A p-value is never exactly 0. Recalculated p-value does not match the reported p-value.

38 No f(1, 56) = 16.94 = 0.0 0.00013 to 0.00013

A p-value is never exactly 0. Recalculated p-value does not match the reported p-value.

39 Yes f(1, 56) = 6.91 = 0.011 0.01102 to 0.01107 -

40 No f(1, 56) = 19.79 = 0.0 0.00004 to 0.00004

A p-value is never exactly 0. Recalculated p-value does not match the reported p-value.

41 No f(1, 56) = 13.81 = 0.0 0.00047 to 0.00047

A p-value is never exactly 0. Recalculated p-value does not match the reported p-value.

42 Yes f(1, 56) = 4.97 = 0.03 0.02974 to 0.02990 -

(15/48)

JEP_Folstein_2004_30_5_1026_Multidimensional rule, unidimensional.htm -

1 Yes f(1, 18) = 137.1 < 0.0001 0.00000 to 0.00000 -

2 Yes f(4, 74) = 8.72 < 0.0001 0.00001 to 0.00001 -

3 Yes f(2, 74) = 6.59 < 0.005 0.00231 to 0.00233 -

6 Yes f(2, 36) = 4.22 < 0.05 0.02248 to 0.02266 -

7 Yes t(18) = 3.26 < 0.01 0.00430 to 0.00440 -

8 Yes t(28) = 3.6 < 0.005 0.00106 to 0.00138 -

9 Yes f(1, 18) = 8.73 < 0.01 0.00847 to 0.00850 -

11 Yes f(1, 37) = 65.0 < 0.0001 0.00000 to 0.00000 -

12 Yes f(4, 74) = 14.0 < 0.01 0.00000 to 0.00000 -

13 Yes f(2, 37) = 13.2 < 0.0001 0.00005 to 0.00005 -

14 Yes f(4, 74) = 4.6 < 0.01 0.00210 to 0.00243 -

15 Yes f(1, 18) = 12.8 < 0.005 0.00212 to 0.00218 -

16 Yes f(1, 18) = 11.0 < 0.005 0.00377 to 0.00390 -

17 Yes f(1, 18) = 24.8 < 0.01 0.00010 to 0.00010 -

18 Yes f(1, 28) = 17.9 < 0.0005 0.00022 to 0.00023 -

19 Yes f(1, 18) = 13.7 < 0.002 0.00161 to 0.00166 -

23 Yes f(12, 444) = 2.44 < 0.05 0.00432 to 0.00449 -

25 Yes f(4, 148) = 8.98 < 0.0001 0.00000 to 0.00000 -
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26 Yes f(4, 148) = 9.67 < 0.0001 0.00000 to 0.00000 -

27 Yes f(4, 148) = 12.2 < 0.01 0.00000 to 0.00000 -

29 Yes f(1, 37) = 8.01 < 0.01 0.00746 to 0.00749 -

30 Yes f(6, 114) = 3.85 < 0.05 0.00154 to 0.00157 -

31 No f(4, 76) = 4.29 = 0.05 0.00347 to 0.00352

Recalculated p-value does not match the reported p-value.

33 Yes f(1, 19) = 4.71 < 0.05 0.04277 to 0.04297 -

34 Yes f(1, 19) = 20.6 < 0.0005 0.00022 to 0.00023 -

36 Yes f(1, 28) = 5.98 < 0.05 0.02097 to 0.02106 -

37 Yes f(6, 168) = 2.42 < 0.1 0.02834 to 0.02895 -

38 Yes f(5, 140) = 2.53 < 0.1 0.03137 to 0.03195 -

39 Yes f(1, 28) = 6.2 < 0.05 0.01855 to 0.01942 -

40 No f(6, 108) = 2.71 = 0.05 0.01704 to 0.01739

Recalculated p-value does not match the reported p-value.

41 Yes f(5, 90) = 2.43 < 0.1 0.04060 to 0.04132 -

42 Yes f(3, 84) = 3.98 < 0.05 0.01048 to 0.01061 -

43 Yes f(3, 84) = 3.44 < 0.05 0.02031 to 0.02056 -

(16/48)

JEP_Glanzer_2004_30_6_1176_Six regularities of.htm

0 Yes f(1, 59) = 8.87 = 0.004 0.00419 to 0.00421 -

1 Yes t(59) = 4.77 < 0.001 0.00001 to 0.00001 -

2 Yes t(59) = 6.34 < 0.001 0.00000 to 0.00000 -

4 Yes t(59) = 2.4 < 0.02 0.01727 to 0.02214 -

7 Yes f(1, 69) = 28.3 < 0.001 0.00000 to 0.00000 -

8 Yes f(1, 69) = 86.84 < 0.001 0.00000 to 0.00000 -

9 Yes f(1, 69) = 19.73 < 0.001 0.00003 to 0.00003 -

13 Yes t(55) = 4.48 < 0.001 0.00004 to 0.00004 -

15 Yes t(55) = 8.69 < 0.001 0.00000 to 0.00000 -

18 Yes f(1, 55) = 6.11 = 0.017 0.01652 to 0.01661 -

19 Yes f(1, 55) = 22.54 < 0.001 0.00002 to 0.00002 -

20 Yes f(1, 55) = 4.36 = 0.041 0.04132 to 0.04155 -

24 Yes t(35) = 5.27 < 0.001 0.00001 to 0.00001 -

26 Yes t(35) = 3.4 < 0.002 0.00148 to 0.00195 -

29 Yes t(35) = 8.76 < 0.001 0.00000 to 0.00000 -

30 Yes f(1, 35) = 7.95 = 0.008 0.00785 to 0.00788 -

31 Yes f(1, 35) = 7.99 = 0.008 0.00771 to 0.00774 -

32 No f(1, 35) = 7.57 = 0.008 0.00931 to 0.00936 Recalculated p-value does not match the reported p-value.

34 Yes t(46) = 7.51 < 0.001 0.00000 to 0.00000 -

36 Yes t(46) = 5.12 < 0.001 0.00001 to 0.00001 -

39 Yes f(1, 50) = 8.33 < 0.006 0.00573 to 0.00576 -

40 No f(1, 50) = 7.56 < 0.008 0.00826 to 0.00830

Recalculated p-value does not match the reported p-value.

43 Yes f(1, 50) = 142.97 < 0.001 0.00000 to 0.00000 -

45 Yes t(62) = 4.88 < 0.001 0.00001 to 0.00001 -
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47 Yes t(62) = 4.19 < 0.001 0.00009 to 0.00009 -

50 Yes f(1, 64) = 8.55 = 0.005 0.00476 to 0.00478 -

52 Yes t(62) = 3.53 < 0.001 0.00078 to 0.00080 -

53 Yes f(1, 61) = 5.17 = 0.026 0.02644 to 0.02658 -

56 Yes t(41) = 11.3 < 0.001 0.00000 to 0.00000 -

57 Yes t(23) = 3.65 < 0.002 0.00132 to 0.00135 -

58 Yes f(1, 64) = 5.97 = 0.017 0.01728 to 0.01736 -

(17/48)

EXCLUDE THIS ARTICLE

JPSP_Golec_2004_87_6_750_Understanding responses to.htm

0 Yes f(1, 98) = 26.47 < 0.01 0.00000 to 0.00000 -

1 Yes chi2(1, 946) = 11.28 < 0.01 0.00078 to 0.00079 -

2 Yes chi2(1) = 11.57 < 0.01 0.00067 to 0.00067 -

3 No chi2(1) = 5.02 < 0.01 0.02498 to 0.02513

Recalculated p-value does not match the reported p-value.

4 Yes chi2(1) = 7.0 < 0.01 0.00793 to 0.00838 -

(18/48)

JEP_Heit_2004_30_5_1065_Modeling the effects.htm

0 Yes f(2, 90) = 101.43 < 0.001 0.00000 to 0.00000 -

1 No f(10, 450) = 2.99 < 0.001 0.00113 to 0.00118

Recalculated p-value does not match the reported p-value.

2 Yes f(2, 90) = 40.38 < 0.001 0.00000 to 0.00000 -

4 Yes t(45) = 7.32 < 0.001 0.00000 to 0.00000 -

5 Yes f(5, 225) = 5.14 < 0.001 0.00017 to 0.00018 -

6 No f(1, 78) = 9.1 < 0.001 0.00337 to 0.00354

Recalculated p-value does not match the reported p-value.

7 Yes f(2, 78) = 65.2 < 0.001 0.00000 to 0.00000 -

8 Yes f(5, 390) = 107.32 < 0.001 0.00000 to 0.00000 -

9 Yes f(2, 156) = 39.65 < 0.001 0.00000 to 0.00000 -

10 Yes f(10, 780) = 2.71 < 0.01 0.00278 to 0.00288 -

11 Yes f(5, 390) = 111.75 < 0.001 0.00000 to 0.00000 -

12 Yes f(1, 78) = 101.66 < 0.001 0.00000 to 0.00000 -

13 Yes f(5, 390) = 3.76 < 0.01 0.00243 to 0.00248 -

14 No f(1, 78) = 9.23 < 0.001 0.00323 to 0.00325

Recalculated p-value does not match the reported p-value.

15 Yes f(2, 117) = 52.22 < 0.001 0.00000 to 0.00000 -

16 Yes f(1, 78) = 8.7 < 0.01 0.00410 to 0.00430 -

17 Yes f(5, 390) = 15.67 < 0.001 0.00000 to 0.00000 -

18 Yes t(39) = 3.46 < 0.01 0.00130 to 0.00134 -

19 Yes t(78) = 2.52 < 0.05 0.01360 to 0.01396 -

21 Yes f(5, 39) = 32.09 < 0.001 0.00000 to 0.00000 -

22 Yes f(10, 390) = 3.38 < 0.001 0.00030 to 0.00031 -
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23 Yes f(5, 195) = 3.6 < 0.01 0.00352 to 0.00428 -

(19/48)

JPSP_Hewig_2004_87_6_926_On the selective.htm

7 No f(9, 504) = 2.25 = 0.036 0.01770 to 0.01824

Recalculated p-value does not match the reported p-value.

11 No f(9, 504) = 2.49 = 0.033 0.00850 to 0.00877

Recalculated p-value does not match the reported p-value.

12 Yes f(9, 504) = 2.09 < 0.05 0.02845 to 0.02929 -

13 No f(9, 504) = 2.81 = 0.011 0.00310 to 0.00320

Recalculated p-value does not match the reported p-value.

16 No f(9, 504) = 2.08 = 0.05 0.02929 to 0.03016

Recalculated p-value does not match the reported p-value.

17 Yes f(1, 56) = 7.32 = 0.009 0.00900 to 0.00904 -

18 No f(9, 504) = 2.3 = 0.035 0.01328 to 0.01797

Recalculated p-value does not match the reported p-value.

23 No f(9, 513) = 2.27 = 0.032 0.01664 to 0.01715

Recalculated p-value does not match the reported p-value.

27 No f(9, 513) = 3.11 = 0.023 0.00116 to 0.00120

Recalculated p-value does not match the reported p-value.

(20/48)

EXCLUDE THIS ARTICLE

JEP_Hohlfeld_2004_30_5_1012_Effects of additional.htm

(21/48)

JEP_Jahn_2004_30_5_969_Three turtles in.htm

0 Yes f(1, 31) = 6.65 < 0.05 0.01485 to 0.01492 -

1 Yes f(1, 22) = 5.85 < 0.05 0.02424 to 0.02435 -

4 Yes f(1, 31) = 6.05 < 0.05 0.01964 to 0.01973 -

5 Yes f(1, 22) = 5.43 < 0.05 0.02930 to 0.02943 -

7 Yes f(1, 31) = 7.24 < 0.05 0.01136 to 0.01141 -

8 Yes f(1, 22) = 4.37 < 0.05 0.04823 to 0.04846 -

12 Yes f(1, 62) = 4.13 < 0.05 0.04629 to 0.04655 -

16 Yes f(1, 31) = 4.5 < 0.05 0.04094 to 0.04308 -

17 Yes f(1, 23) = 4.78 < 0.05 0.03913 to 0.03932 -

19 Yes f(1, 62) = 4.68 < 0.05 0.03429 to 0.03447 -

20 Yes f(1, 62) = 4.3 < 0.05 0.04113 to 0.04345 -

21 Yes f(1, 31) = 11.97 < 0.01 0.00159 to 0.00160 -

22 Yes f(1, 22) = 14.14 < 0.01 0.00108 to 0.00108 -

(22/48)

JPSP_Johnson_2004_87_5_615_Inferenes about the.htm

0 Yes f(1, 211) = 118.38 < 0.0001 0.00000 to 0.00000 -

1 Yes f(1, 211) = 6.07 < 0.015 0.01451 to 0.01459 -
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2 Yes f(1, 211) = 36.2 < 0.0001 0.00000 to 0.00000 -

3 Yes f(1, 211) = 110.71 < 0.0001 0.00000 to 0.00000 -

4 Yes f(1, 211) = 24.47 < 0.0001 0.00000 to 0.00000 -

5 Yes f(1, 211) = 30.28 < 0.0001 0.00000 to 0.00000 -

6 Yes f(1, 211) = 6.47 < 0.015 0.01166 to 0.01172 -

7 Yes f(1, 211) = 623.09 < 0.0001 0.00000 to 0.00000 -

8 Yes f(1, 211) = 161.21 < 0.0001 0.00000 to 0.00000 -

9 Yes f(1, 211) = 49.15 < 0.0001 0.00000 to 0.00000 -

10 Yes f(1, 211) = 8.48 < 0.004 0.00397 to 0.00399 -

11 No f(1, 211) = 8.35 < 0.004 0.00425 to 0.00427

Recalculated p-value does not match the reported p-value.

12 No f(1, 211) = 9.64 < 0.002 0.00216 to 0.00217

Recalculated p-value does not match the reported p-value.

13 No t(209) = 3.69 < 0.0001 0.00028 to 0.00029

Recalculated p-value does not match the reported p-value.

16 Yes f(1, 193) = 19.38 < 0.0001 0.00002 to 0.00002 -

17 Yes f(1, 193) = 31.8 < 0.0001 0.00000 to 0.00000 -

18 Yes f(1, 193) = 26.64 < 0.0001 0.00000 to 0.00000 -

19 Yes f(1, 193) = 40.78 < 0.0001 0.00000 to 0.00000 -

23 Yes f(1, 193) = 61.15 < 0.0001 0.00000 to 0.00000 -

24 Yes f(1, 193) = 4.98 < 0.03 0.02672 to 0.02687 -

25 Yes f(1, 193) = 80.57 < 0.0001 0.00000 to 0.00000 -

26 Yes f(1, 193) = 11.68 < 0.001 0.00077 to 0.00077 -

27 Yes f(1, 193) = 60.63 < 0.0001 0.00000 to 0.00000 -

31 Yes t(194) = 5.16 < 0.0001 0.00000 to 0.00000 -

32 Yes t(194) = 8.98 < 0.0001 0.00000 to 0.00000 -

33 Yes t(193) = 4.39 < 0.0001 0.00002 to 0.00002 -

34 Yes t(193) = 2.15 < 0.04 0.03240 to 0.03320 -

(23/48)

JPSP_Koole_2004_87_6_974_Getting a grip.htm

0 Yes f(1, 78) = 9.81 < 0.003 0.00244 to 0.00245 -

2 Yes f(2, 77) = 3.56 < 0.04 0.03306 to 0.03336 -

4 Yes f(1, 21) = 4.85 < 0.04 0.03887 to 0.03905 -

6 Yes f(2, 39) = 4.68 < 0.02 0.01502 to 0.01514 -

7 Yes f(2, 39) = 3.56 < 0.04 0.03785 to 0.03817 -

8 Yes f(2, 44) = 5.64 < 0.008 0.00657 to 0.00663 -

10 Yes f(1, 22) = 6.89 < 0.02 0.01543 to 0.01550 -

15 Yes f(1, 56) = 17.36 < 0.001 0.00011 to 0.00011 -

16 Yes f(1, 53) = 7.77 < 0.008 0.00734 to 0.00738 -

17 Yes f(1, 53) = 4.85 < 0.04 0.03193 to 0.03210 -

18 Yes f(1, 53) = 7.77 < 0.008 0.00734 to 0.00738 -

19 Yes f(1, 53) = 4.85 < 0.04 0.03193 to 0.03210 -

20 Yes f(1, 53) = 12.91 < 0.002 0.00071 to 0.00072 -

21 No f(1, 53) = 2.91 < 0.05 0.09361 to 0.09416
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Gross inconsistency: reported p-value and recalculated p-value differ in significance.

22 Yes f(1, 56) = 5.84 < 0.02 0.01890 to 0.01900 -

23 Yes f(1, 53) = 5.14 < 0.03 0.02741 to 0.02756 -

24 Yes f(1, 53) = 6.97 < 0.02 0.01084 to 0.01089 -

30 Yes f(1, 67) = 42.42 < 0.001 0.00000 to 0.00000 -

31 Yes f(1, 67) = 174.72 < 0.001 0.00000 to 0.00000 -

33 Yes f(1, 67) = 4.61 < 0.04 0.03531 to 0.03551 -

34 Yes f(1, 67) = 8.26 < 0.006 0.00541 to 0.00544 -

35 Yes f(1, 67) = 4.46 < 0.04 0.03832 to 0.03854 -

36 Yes f(2, 69) = 15.38 < 0.001 0.00000 to 0.00000 -

37 Yes f(1, 70) = 17.63 < 0.001 0.00008 to 0.00008 -

38 No f(1, 70) = 4.24 < 0.001 0.04308 to 0.04332

Recalculated p-value does not match the reported p-value.

39 Yes f(1, 67) = 5.11 < 0.03 0.02697 to 0.02711 -

40 Yes f(1, 32) = 5.1 < 0.04 0.03012 to 0.03165 -

41 Yes t(32) = 2.79 < 0.01 0.00870 to 0.00892 -

42 Yes t(32) = 2.26 < 0.04 0.03042 to 0.03111 -

43 Yes t(32) = 2.73 < 0.02 0.01009 to 0.01034 -

(24/48)

JPSP_Lord_2004_87_5_733_Houses built on.htm

0 Yes f(1, 58) = 153.98 < 0.001 0.00000 to 0.00000 -

4 Yes f(1, 57) = 6.48 < 0.05 0.01360 to 0.01367 -

5 Yes f(1, 56) = 6.1 < 0.05 0.01618 to 0.01702 -

6 Yes f(1, 56) = 6.05 < 0.05 0.01698 to 0.01706 -

7 Yes f(1, 58) = 4.36 < 0.05 0.04108 to 0.04131 -

8 Yes f(1, 57) = 4.0 < 0.05 0.04890 to 0.05168 -

11 Yes f(2, 53) = 4.03 < 0.05 0.02338 to 0.02359 -

12 Yes t(36) = 3.16 < 0.01 0.00315 to 0.00324 -

13 Yes f(2, 53) = 5.08 < 0.01 0.00954 to 0.00963 -

14 Yes f(1, 50) = 156.6 < 0.001 0.00000 to 0.00000 -

18 Yes f(2, 48) = 3.45 < 0.05 0.03964 to 0.03999 -

19 Yes f(2, 48) = 3.5 < 0.05 0.03649 to 0.03982 -

23 Yes f(2, 49) = 3.82 < 0.05 0.02860 to 0.02885 -

24 Yes f(4, 172) = 3.35 < 0.05 0.01129 to 0.01148 -

25 No f(1, 86) = 3.36 < 0.05 0.07005 to 0.07046

Gross inconsistency: reported p-value and recalculated p-value differ in significance.

29 Yes f(2, 172) = 4.92 < 0.01 0.00832 to 0.00840 -

30 Yes f(2, 86) = 3.18 < 0.05 0.04630 to 0.04674 -

31 Yes f(1, 86) = 5.83 < 0.05 0.01783 to 0.01792 -

32 Yes f(1, 86) = 5.15 < 0.05 0.02568 to 0.02582 -

33 Yes f(2, 168) = 3.23 < 0.05 0.04182 to 0.04223 -

34 Yes f(2, 167) = 3.15 < 0.05 0.04519 to 0.04563 -

36 Yes f(2, 169) = 3.37 < 0.05 0.03654 to 0.03689 -

37 Yes f(1, 169) = 6.6 < 0.05 0.01077 to 0.01137 -
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40 Yes f(1, 125) = 4.34 < 0.05 0.03915 to 0.03938 -

(25/48)

JEP_McKenzie_2004_30_5_947_Explaining purportedly irrational.htm

0 Yes t(96) = 4.61 < 0.01 0.00001 to 0.00001 -

1 Yes f(1, 15) = 16.9 < 0.05 0.00091 to 0.00094 -

3 Yes t(48) = 3.11 < 0.01 0.00310 to 0.00319 -

4 Yes t(46) = 3.14 < 0.01 0.00291 to 0.00299 -

5 Yes t(29) = 2.36 = 0.03 0.02494 to 0.02550 -

6 No t(29) = 2.65 < 0.01 0.01275 to 0.01305

Recalculated p-value does not match the reported p-value.

Consistent for one-tailed, inconsistent for two-tailed

8 Yes t(90) = 3.32 = 0.001 0.00128 to 0.00132 -

(26/48)

JPSP_Meiser_2004_87_5_599_Cognitive processes in.htm

0 Yes f(1, 38) = 6.1 = 0.018 0.01769 to 0.01857 -

1 Yes f(1, 38) = 8.38 = 0.006 0.00624 to 0.00627 -

3 Yes f(1, 38) = 14.6 < 0.001 0.00047 to 0.00049 -

4 Yes f(1, 38) = 5.22 = 0.028 0.02793 to 0.02807 -

8 Yes f(1, 76) = 23.95 < 0.001 0.00001 to 0.00001 -

9 Yes f(1, 76) = 52.26 < 0.001 0.00000 to 0.00000 -

10 Yes f(1, 76) = 4.41 = 0.039 0.03894 to 0.03916 -

12 Yes f(1, 74) = 4.78 = 0.032 0.03187 to 0.03204 -

13 Yes f(1, 76) = 10.06 = 0.002 0.00218 to 0.00219 -

14 Yes f(1, 76) = 37.17 < 0.001 0.00000 to 0.00000 -

15 Yes f(1, 76) = 8.32 = 0.005 0.00509 to 0.00511 -

16 Yes f(1, 76) = 5.42 = 0.023 0.02251 to 0.02263 -

22 Yes f(1, 99) = 9.09 = 0.003 0.00326 to 0.00327 -

23 Yes f(1, 99) = 55.02 < 0.001 0.00000 to 0.00000 -

24 Yes f(1, 99) = 5.79 = 0.018 0.01792 to 0.01802 -

25 Yes f(1, 98) = 72.05 < 0.001 0.00000 to 0.00000 -

26 Yes f(1, 33) = 23.13 < 0.001 0.00003 to 0.00003 -

27 Yes f(1, 65) = 63.71 < 0.001 0.00000 to 0.00000 -

29 Yes f(1, 99) = 5.0 = 0.028 0.02685 to 0.02836 -

30 Yes f(1, 99) = 47.9 < 0.001 0.00000 to 0.00000 -

31 Yes f(1, 98) = 6.78 = 0.011 0.01062 to 0.01068 -

32 Yes f(1, 98) = 9.22 = 0.003 0.00306 to 0.00307 -

33 Yes f(1, 65) = 12.85 = 0.001 0.00064 to 0.00065 -

35 Yes f(1, 65) = 54.22 < 0.001 0.00000 to 0.00000 -

(27/48)

EXCLUDE THIS ARTICLE

JPSP_Mikulincer_2004_87_6_940_Attachment-related strategies during.htm
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(28/48)

EXCLUDE THIS ARTICLE

JEP_Moscoso del Prado Martı́n_2004_30_6_1271_Morphological family size.htm

(29/48)

JPSP_Mussweiler_2004_87_6_832_The ups and.htm

0 No t(14) = 2.0 < 0.03 0.05958 to 0.07149

Gross inconsistency: reported p-value and recalculated p-value differ in significance.

Consistent for one-tailed, inconsistent for two-tailed

1 No f(1, 44) = 5.58 < 0.02 0.02260 to 0.02271

Recalculated p-value does not match the reported p-value.

2 No f(1, 44) = 4.04 < 0.05 0.05045 to 0.05073

Gross inconsistency: reported p-value and recalculated p-value differ in significance.

3 Yes f(1, 50) = 4.56 < 0.04 0.03755 to 0.03775 -

4 No f(1, 50) = 5.7 < 0.02 0.02026 to 0.02132

Recalculated p-value does not match the reported p-value.

5 Yes f(1, 50) = 7.76 < 0.01 0.00751 to 0.00754 -

6 Yes f(1, 50) = 7.63 < 0.01 0.00799 to 0.00803 -

7 No f(1, 50) = 5.71 < 0.02 0.02063 to 0.02073

Recalculated p-value does not match the reported p-value.

(30/48)

JEP_Norris_2004_30_5_1093_Retroactive effects of.htm

1 Yes f(3, 36) = 8.14 < 0.01 0.00029 to 0.00029 -

2 Yes f(3, 36) = 14.4 < 0.01 0.00000 to 0.00000 -

4 Yes f(1, 24) = 13.6 < 0.01 0.00114 to 0.00117 -

5 Yes f(2, 48) = 49.4 < 0.01 0.00000 to 0.00000 -

6 Yes f(3, 72) = 62.2 < 0.01 0.00000 to 0.00000 -

8 Yes t(29) = 2.4 = 0.01 0.01028 to 0.01290 -

9 Yes t(29) = 1.8 = 0.04 0.03726 to 0.04535 -

10 Yes f(1, 30) = 16.5 < 0.01 0.00032 to 0.00033 -

11 Yes f(2, 60) = 98.7 < 0.01 0.00000 to 0.00000 -

12 Yes f(3, 90) = 87.9 < 0.01 0.00000 to 0.00000 -

13 Yes t(35) = 2.0 = 0.03 0.02396 to 0.02961 -

16 Yes f(2, 60) = 6.0 < 0.01 0.00404 to 0.00439 -

17 Yes t(35) = 3.3 < 0.01 0.00195 to 0.00255 -

18 Yes f(1, 28) = 4.4 < 0.05 0.04397 to 0.04624 -

19 Yes f(1, 28) = 19.1 < 0.01 0.00015 to 0.00016 -

20 No f(1, 28) = 4.53 < 0.04 0.04214 to 0.04235

Recalculated p-value does not match the reported p-value.

21 Yes f(3, 84) = 27.5 < 0.01 0.00000 to 0.00000 -

22 Yes t(31) = 2.71 = 0.01 0.01073 to 0.01100 -

24 Yes t(31) = 1.86 = 0.04 0.03584 to 0.03656 -

26 Yes f(1, 23) = 7.5 = 0.01 0.01146 to 0.01195 -

27 Yes f(3, 69) = 35.6 < 0.01 0.00000 to 0.00000 -
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(31/48)

JPSP_Norton_2004_87_6_817_Casuistry and social.htm

0 Yes chi2(1) = 9.04 < 0.005 0.00263 to 0.00265 -

1 Yes chi2(2) = 9.18 < 0.02 0.01013 to 0.01018 -

6 Yes t(45) = 9.37 < 0.001 0.00000 to 0.00000 -

8 Yes chi2(2) = 6.25 < 0.05 0.04383 to 0.04405 -

10 Yes chi2(1) = 8.85 < 0.005 0.00292 to 0.00294 -

12 Yes chi2(1) = 24.77 < 0.001 0.00000 to 0.00000 -

13 Yes chi2(1) = 13.44 < 0.001 0.00025 to 0.00025 -

14 Yes chi2(1) = 9.86 < 0.01 0.00168 to 0.00169 -

18 Yes chi2(1) = 52.6 < 0.001 0.00000 to 0.00000 -

20 Yes chi2(1) = 26.6 < 0.001 0.00000 to 0.00000 -

21 Yes chi2(1) = 7.06 < 0.01 0.00786 to 0.00790 -

23 Yes t(120) = 1.99 < 0.05 0.04831 to 0.04943 -

24 Yes chi2(1) = 36.5 < 0.001 0.00000 to 0.00000 -

25 Yes chi2(1) = 16.85 < 0.001 0.00004 to 0.00004 -

26 Yes chi2(1) = 20.62 < 0.001 0.00001 to 0.00001 -

27 Yes chi2(1) = 4.43 < 0.05 0.03521 to 0.03542 -

28 Yes chi2(1) = 13.98 < 0.001 0.00018 to 0.00019 -

32 Yes chi2(1) = 37.56 < 0.001 0.00000 to 0.00000 -

33 Yes chi2(1) = 20.06 < 0.001 0.00001 to 0.00001 -

(32/48)

JEP_Pexman_2004_30_6_1252_Semantic ambiguity and.htm

0 Yes f(1, 39) = 25.04 < 0.01 0.00001 to 0.00001 -

1 Yes f(1, 56) = 5.7 < 0.05 0.01985 to 0.02090 -

2 Yes f(1, 39) = 7.74 < 0.01 0.00826 to 0.00830 -

3 Yes f(1, 56) = 4.19 < 0.05 0.04524 to 0.04549 -

4 Yes f(1, 39) = 18.05 < 0.01 0.00013 to 0.00013 -

5 Yes f(1, 56) = 4.41 < 0.05 0.04014 to 0.04036 -

6 Yes f(1, 39) = 17.29 < 0.01 0.00017 to 0.00017 -

7 Yes f(1, 56) = 17.29 < 0.01 0.00011 to 0.00011 -

8 Yes f(1, 56) = 66.6 < 0.01 0.00000 to 0.00000 -

9 Yes f(1, 39) = 106.78 < 0.01 0.00000 to 0.00000 -

11 Yes f(1, 77) = 10.67 < 0.01 0.00162 to 0.00163 -

12 Yes f(1, 77) = 120.6 < 0.01 0.00000 to 0.00000 -

13 Yes f(1, 58) = 5.18 < 0.05 0.02649 to 0.02663 -

14 Yes f(1, 77) = 130.85 < 0.01 0.00000 to 0.00000 -

15 Yes f(1, 58) = 4.96 < 0.05 0.02976 to 0.02992 -

16 Yes f(1, 31) = 18.86 < 0.01 0.00014 to 0.00014 -

19 Yes f(1, 31) = 12.59 < 0.01 0.00126 to 0.00126 -

21 Yes f(1, 31) = 41.31 < 0.01 0.00000 to 0.00000 -

22 Yes f(1, 26) = 5.28 < 0.05 0.02980 to 0.02994 -

31 Yes f(2, 50) = 17.32 < 0.01 0.00000 to 0.00000 -
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33 Yes f(2, 50) = 3.53 < 0.05 0.03665 to 0.03697 -

35 Yes t(25) = 4.65 < 0.01 0.00009 to 0.00009 -

37 Yes t(25) = 2.11 < 0.05 0.04457 to 0.04551 -

39 Yes t(25) = 4.97 < 0.01 0.00004 to 0.00004 -

40 Yes t(30) = 2.21 < 0.05 0.03450 to 0.03526 -

45 Yes f(2, 50) = 9.77 < 0.01 0.00026 to 0.00026 -

47 Yes f(2, 50) = 9.28 < 0.01 0.00037 to 0.00038 -

49 Yes t(25) = 3.82 < 0.01 0.00078 to 0.00080 -

50 Yes t(30) = 2.16 < 0.05 0.03847 to 0.03931 -

51 Yes t(25) = 2.93 < 0.01 0.00705 to 0.00723 -

53 Yes t(25) = 2.77 < 0.05 0.01030 to 0.01054 -

56 Yes t(25) = 2.14 < 0.05 0.04186 to 0.04275 -

58 Yes t(25) = 4.25 < 0.01 0.00026 to 0.00026 -

60 Yes t(25) = 5.26 < 0.01 0.00002 to 0.00002 -

61 Yes t(30) = 3.45 < 0.01 0.00166 to 0.00171 -

62 Yes t(25) = 8.0 < 0.001 0.00000 to 0.00000 -

63 Yes t(30) = 3.31 < 0.01 0.00240 to 0.00247 -

64 Yes t(25) = 2.49 < 0.05 0.01956 to 0.02000 -

66 Yes t(25) = 4.29 < 0.01 0.00023 to 0.00024 -

68 Yes t(25) = 4.41 < 0.01 0.00017 to 0.00017 -

70 Yes t(25) = 5.84 < 0.01 0.00000 to 0.00000 -

(33/48)

JEP_Rapp_2004_30_5_988_Interactive dimensions in.htm

0 Yes f(1, 35) = 13.68 < 0.005 0.00074 to 0.00074 -

1 Yes f(1, 19) = 6.62 < 0.05 0.01859 to 0.01867 -

2 Yes f(1, 35) = 4.86 < 0.05 0.03407 to 0.03424 -

4 Yes t(35) = 4.39 < 0.005 0.00010 to 0.00010 -

5 Yes t(19) = 3.09 < 0.01 0.00596 to 0.00610 -

10 Yes f(1, 35) = 4.53 < 0.05 0.04032 to 0.04053 -

12 No f(1, 35) = 8.78 < 0.005 0.00543 to 0.00546

Recalculated p-value does not match the reported p-value.

14 Yes f(1, 35) = 33.39 < 0.001 0.00000 to 0.00000 -

15 Yes f(1, 18) = 16.26 < 0.005 0.00078 to 0.00078 -

16 Yes f(1, 35) = 8.78 < 0.01 0.00543 to 0.00546 -

18 Yes t(35) = 5.82 < 0.001 0.00000 to 0.00000 -

19 No t(18) = 3.78 < 0.001 0.00136 to 0.00139

Recalculated p-value does not match the reported p-value.

Consistent for one-tailed, inconsistent for two-tailed

20 Yes t(35) = 5.04 < 0.001 0.00001 to 0.00001 -

21 Yes t(18) = 2.58 < 0.05 0.01868 to 0.01907 -

22 Yes t(35) = 5.42 < 0.001 0.00000 to 0.00000 -

23 No t(18) = 3.85 < 0.001 0.00116 to 0.00119

Recalculated p-value does not match the reported p-value.

Consistent for one-tailed, inconsistent for two-tailed
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24 Yes t(35) = 2.68 < 0.05 0.01101 to 0.01129 -

26 Yes t(35) = 2.53 < 0.05 0.01587 to 0.01625 -

30 Yes f(1, 35) = 9.24 < 0.005 0.00445 to 0.00447 -

32 Yes f(1, 35) = 11.48 < 0.005 0.00175 to 0.00176 -

33 Yes f(1, 19) = 13.04 < 0.005 0.00186 to 0.00186 -

34 Yes f(1, 35) = 6.19 < 0.05 0.01771 to 0.01780 -

35 Yes f(1, 19) = 6.61 < 0.05 0.01867 to 0.01874 -

36 Yes t(35) = 4.3 < 0.001 0.00011 to 0.00015 -

37 Yes t(19) = 3.19 < 0.005 0.00477 to 0.00488 -

38 Yes t(35) = 4.12 < 0.001 0.00022 to 0.00022 -

39 Yes t(19) = 2.86 < 0.01 0.00991 to 0.01013 -

40 Yes t(35) = 3.79 < 0.001 0.00056 to 0.00058 -

41 Yes t(19) = 4.17 < 0.001 0.00051 to 0.00053 -

46 Yes f(1, 70) = 5.0 < 0.05 0.02778 to 0.02932 -

48 Yes f(1, 70) = 4.85 < 0.05 0.03086 to 0.03103 -

50 Yes f(1, 70) = 5.69 < 0.05 0.01972 to 0.01982 -

51 Yes f(1, 38) = 4.51 < 0.05 0.04016 to 0.04037 -

(34/48)

JEP_Rayner_2004_30_6_1290_The effect of.htm

1 Yes t(32) = 2.32 < 0.05 0.02657 to 0.02718 -

2 Yes t(24) = 2.55 < 0.05 0.01738 to 0.01777 -

3 Yes t(35) = 3.43 < 0.01 0.00154 to 0.00159 -

5 Yes f(2, 58) = 10.19 < 0.01 0.00016 to 0.00016 -

6 Yes f(2, 70) = 3.44 < 0.05 0.03741 to 0.03775 -

7 Yes f(2, 58) = 4.5 < 0.05 0.01460 to 0.01592 -

8 Yes t(35) = 2.47 < 0.05 0.01831 to 0.01875 -

9 Yes t(29) = 2.24 < 0.05 0.03256 to 0.03328 -

10 Yes t(35) = 2.03 < 0.05 0.04948 to 0.05055 -

11 Yes t(29) = 2.57 < 0.05 0.01539 to 0.01576 -

12 Yes f(2, 70) = 6.45 < 0.01 0.00267 to 0.00270 -

13 Yes f(2, 58) = 7.82 < 0.01 0.00098 to 0.00099 -

14 Yes t(35) = 3.08 < 0.01 0.00396 to 0.00407 -

15 Yes t(29) = 3.63 < 0.01 0.00107 to 0.00110 -

16 Yes t(35) = 2.14 < 0.05 0.03897 to 0.03984 -

17 Yes t(29) = 2.32 < 0.05 0.02728 to 0.02789 -

20 Yes f(2, 70) = 7.89 < 0.01 0.00081 to 0.00082 -

21 Yes f(2, 58) = 5.32 < 0.01 0.00753 to 0.00759 -

22 Yes f(2, 70) = 5.17 < 0.01 0.00802 to 0.00809 -

23 Yes f(2, 58) = 6.25 < 0.01 0.00347 to 0.00350 -

24 Yes f(2, 70) = 5.78 < 0.01 0.00473 to 0.00477 -

25 Yes f(2, 58) = 3.97 < 0.05 0.02411 to 0.02432 -

26 Yes f(2, 70) = 27.74 < 0.01 0.00000 to 0.00000 -

27 Yes f(2, 58) = 17.8 < 0.01 0.00000 to 0.00000 -
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28 Yes t(35) = 6.59 < 0.01 0.00000 to 0.00000 -

29 Yes t(29) = 6.37 < 0.01 0.00000 to 0.00000 -

30 Yes t(35) = 4.77 < 0.01 0.00003 to 0.00003 -

31 Yes t(29) = 3.24 < 0.01 0.00296 to 0.00303 -

32 Yes t(35) = 2.76 < 0.01 0.00902 to 0.00925 -

33 Yes t(29) = 2.36 < 0.05 0.02494 to 0.02550 -

34 Yes f(2, 70) = 19.71 < 0.01 0.00000 to 0.00000 -

35 Yes f(2, 58) = 16.62 < 0.01 0.00000 to 0.00000 -

36 Yes t(29) = 2.06 < 0.05 0.04797 to 0.04899 -

(35/48)

JEP_Rinck_2004_30_6_1211_The metrics of.htm

0 Yes f(1, 27) = 4.38 < 0.05 0.04578 to 0.04601 -

1 Yes f(1, 27) = 5.47 < 0.05 0.02693 to 0.02706 -

2 Yes f(1, 27) = 6.13 < 0.05 0.01981 to 0.01990 -

3 Yes t(27) = 2.48 < 0.05 0.01945 to 0.01989 -

4 Yes t(27) = 2.18 < 0.05 0.03774 to 0.03856 -

5 Yes t(27) = 2.91 < 0.05 0.00707 to 0.00724 -

7 Yes f(1, 39) = 6.63 < 0.05 0.01390 to 0.01397 -

9 Yes f(1, 39) = 4.48 < 0.05 0.04062 to 0.04083 -

10 Yes f(1, 39) = 14.41 < 0.01 0.00050 to 0.00050 -

11 Yes f(1, 39) = 12.31 < 0.01 0.00115 to 0.00115 -

12 Yes f(1, 39) = 22.53 < 0.01 0.00003 to 0.00003 -

(36/48)

JPSP_Tamir_2004_87_6_913_Knowing good from.htm

2 Yes f(1, 71) = 8.21 < 0.01 0.00546 to 0.00549 -

3 Yes t(71) = 2.36 = 0.02 0.02077 to 0.02129 -

5 Yes f(1, 71) = 7.49 < 0.05 0.00781 to 0.00785 -

6 Yes f(1, 71) = 4.22 < 0.05 0.04351 to 0.04375 -

7 Yes f(1, 82) = 8.55 < 0.01 0.00445 to 0.00448 -

8 Yes f(1, 82) = 7.52 < 0.01 0.00747 to 0.00751 -

9 Yes f(1, 82) = 4.47 < 0.05 0.03743 to 0.03764 -

(37/48)

JPSP_Tazelaar_2004_87_6_845_How to cope.htm

EXCLUDE THIS ARTICLE

(38/48)

JPSP_Thrash_2004_87_6_957_Inspiration. Core characteristics.htm

EXCLUDE THIS ARTICLE

(39/48)

JEP_Tillmann_2004_30_5_1131_Implicit learning of.htm

0 Yes f(2, 66) = 30.29 < 0.0001 0.00000 to 0.00000 -
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1 Yes f(1, 66) = 19.73 < 0.01 0.00003 to 0.00003 -

2 Yes f(1, 66) = 10.98 < 0.01 0.00149 to 0.00150 -

3 Yes f(1, 66) = 30.24 < 0.0001 0.00000 to 0.00000 -

4 Yes f(1, 66) = 12.99 < 0.001 0.00060 to 0.00060 -

5 Yes f(1, 66) = 8.61 < 0.01 0.00458 to 0.00461 -

6 Yes f(1, 66) = 8.92 < 0.01 0.00395 to 0.00397 -

7 Yes t(11) = 8.0 < 0.001 0.00001 to 0.00001 -

8 Yes t(11) = 4.45 < 0.001 0.00097 to 0.00099 -

9 Yes t(11) = -4.0 < 0.01 0.00192 to 0.00227 -

10 Yes t(11) = 4.04 < 0.01 0.00193 to 0.00197 -

11 Yes f(1, 44) = 66.02 < 0.0001 0.00000 to 0.00000 -

12 Yes f(1, 44) = 18.98 < 0.0001 0.00008 to 0.00008 -

13 Yes f(1, 44) = 9.1 < 0.01 0.00414 to 0.00433 -

14 Yes f(1, 44) = 19.71 < 0.0001 0.00006 to 0.00006 -

15 Yes f(1, 44) = 54.98 < 0.0001 0.00000 to 0.00000 -

16 Yes f(2, 88) = 3.9 < 0.05 0.02276 to 0.02495 -

18 Yes f(1, 44) = 13.84 < 0.01 0.00056 to 0.00056 -

19 Yes f(1, 44) = 6.43 < 0.05 0.01481 to 0.01488 -

22 Yes t(11) = 7.03 < 0.001 0.00002 to 0.00002 -

23 Yes t(11) = 3.26 < 0.01 0.00753 to 0.00767 -

24 Yes t(11) = 4.21 < 0.01 0.00145 to 0.00147 -

(40/48)

JEP_Unsworth_2004_30_6_1302_Working memory capacity.htm

1 Yes f(1, 47) = 32.3 < 0.01 0.00000 to 0.00000 -

2 Yes f(1, 47) = 4.14 < 0.05 0.04742 to 0.04767 -

3 Yes f(1, 47) = 6.49 < 0.05 0.01414 to 0.01421 -

4 Yes f(1, 47) = 6.2 < 0.05 0.01597 to 0.01678 -

5 Yes f(1, 47) = 45.98 < 0.01 0.00000 to 0.00000 -

6 Yes f(1, 47) = 6.43 < 0.05 0.01457 to 0.01464 -

7 Yes f(1, 47) = 6.62 < 0.05 0.01327 to 0.01333 -

8 Yes f(1, 47) = 8.39 < 0.01 0.00570 to 0.00572 -

9 Yes f(1, 47) = 269.98 < 0.01 0.00000 to 0.00000 -

10 Yes f(1, 47) = 4.73 < 0.05 0.03462 to 0.03480 -

11 Yes f(1, 47) = 4.14 < 0.05 0.04742 to 0.04767 -

13 Yes f(1, 38) = 52.7 < 0.01 0.00000 to 0.00000 -

15 Yes f(1, 38) = 7.87 < 0.01 0.00786 to 0.00790 -

16 Yes f(1, 38) = 14.49 < 0.01 0.00050 to 0.00050 -

18 Yes f(1, 38) = 28.73 < 0.01 0.00000 to 0.00000 -

22 Yes f(1, 56) = 47.69 < 0.01 0.00000 to 0.00000 -

23 Yes f(1, 56) = 45.81 < 0.01 0.00000 to 0.00000 -

24 Yes f(1, 56) = 5.05 < 0.05 0.02851 to 0.02866 -

25 Yes f(3, 56) = 7.49 < 0.01 0.00026 to 0.00027 -

27 Yes f(3, 56) = 3.66 < 0.05 0.01752 to 0.01772 -

28 Yes f(1, 56) = 102.2 < 0.01 0.00000 to 0.00000 -
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29 Yes f(3, 56) = 11.9 < 0.01 0.00000 to 0.00000 -

30 Yes f(3, 60) = 2.78 < 0.05 0.04842 to 0.04900 -

31 Yes f(1, 56) = 5.76 < 0.05 0.01969 to 0.01980 -

32 Yes f(3, 56) = 3.11 < 0.05 0.03328 to 0.03368 -

33 Yes f(1, 56) = 49.41 < 0.01 0.00000 to 0.00000 -

34 Yes f(3, 56) = 8.81 < 0.01 0.00007 to 0.00007 -

35 Yes f(1, 56) = 5.02 < 0.05 0.02896 to 0.02912 -

37 Yes f(3, 56) = 3.15 < 0.05 0.03176 to 0.03213 -

38 Yes f(1, 56) = 74.91 < 0.01 0.00000 to 0.00000 -

(41/48)

JEP_Van Zandt_2004_30_5_1147_Response reversals in.htm

No results found.

(42/48)

PSP_Van Zomeren_2004_87_5_649_Put your money.htm

0 Yes f(1, 80) = 19.07 < 0.01 0.00004 to 0.00004 -

1 No f(1, 80) = 5.31 < 0.02 0.02373 to 0.02386

Recalculated p-value does not match the reported p-value.

3 Yes f(1, 80) = 7.44 < 0.01 0.00782 to 0.00786 -

9 Yes f(1, 80) = 25.13 < 0.01 0.00000 to 0.00000 -

10 No f(1, 80) = 4.81 < 0.03 0.03111 to 0.03128

Recalculated p-value does not match the reported p-value.

12 Yes chi2(13) = 34.12 < 0.01 0.00115 to 0.00116 -

13 Yes chi2(6) = 23.56 < 0.01 0.00063 to 0.00063 -

15 Yes f(1, 64) = 205.35 < 0.01 0.00000 to 0.00000 -

16 Yes f(1, 64) = 14.79 < 0.01 0.00028 to 0.00028 -

19 Yes f(1, 64) = 13.69 < 0.01 0.00045 to 0.00045 -

23 No f(1, 64) = 4.88 < 0.03 0.03067 to 0.03084

Recalculated p-value does not match the reported p-value.

28 Yes chi2(6) = 28.02 < 0.01 0.00009 to 0.00009 -

29 Yes f(1, 87) = 110.44 < 0.01 0.00000 to 0.00000 -

30 Yes f(1, 87) = 68.3 < 0.01 0.00000 to 0.00000 -

33 Yes f(1, 87) = 9.82 < 0.01 0.00235 to 0.00236 -

34 No f(1, 87) = 4.22 < 0.04 0.04283 to 0.04307

Recalculated p-value does not match the reported p-value.

35 Yes f(1, 87) = 5.7 < 0.02 0.01863 to 0.01965 -

37 Yes f(1, 87) = 7.3 < 0.01 0.00808 to 0.00850 -

39 Yes f(1, 87) = 4.97 < 0.03 0.02829 to 0.02844 -

(43/48)

JEP_Verhaeghen_2004_30_6_1322_A working memory.htm

No results found.

(44/48)
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JPSP_Visser_2004_87_6_779_Attitudes in the.htm

0 Yes f(1, 46) = 4.58 < 0.04 0.03758 to 0.03778 -

1 Yes f(1, 58) = 10.19 < 0.01 0.00228 to 0.00229 -

2 Yes f(1, 46) = 4.71 < 0.05 0.03509 to 0.03528 -

3 Yes f(1, 58) = 4.59 < 0.05 0.03627 to 0.03647 -

6 Yes f(1, 77) = 5.29 < 0.03 0.02409 to 0.02422 -

7 Yes t(77) = 2.18 < 0.04 0.03193 to 0.03270 -

8 Yes f(1, 77) = 177.17 < 0.001 0.00000 to 0.00000 -

9 Yes f(1, 37) = 5.47 < 0.05 0.02479 to 0.02492 -

10 Yes f(1, 38) = 4.5 < 0.05 0.03944 to 0.04154 -

(45/48)

JEP_Ward_2004_30_6_1196_The effect of.htm

0 Yes f(1, 35) = 98.36 < 0.01 0.00000 to 0.00000 -

1 Yes f(4, 140) = 3.64 < 0.01 0.00740 to 0.00752 -

2 Yes f(1, 35) = 55.74 < 0.01 0.00000 to 0.00000 -

4 Yes f(1, 35) = 9.95 < 0.01 0.00329 to 0.00330 -

5 Yes f(1, 35) = 9.52 < 0.01 0.00395 to 0.00397 -

6 Yes f(1, 35) = 4.85 < 0.05 0.03424 to 0.03441 -

7 No f(1, 35) = 7.23 < 0.01 0.01088 to 0.01093

Recalculated p-value does not match the reported p-value.

8 Yes f(4, 140) = 12.0 < 0.01 0.00000 to 0.00000 -

9 Yes f(1, 35) = 4.85 < 0.05 0.03424 to 0.03441 -

10 Yes f(4, 140) = 14.53 < 0.01 0.00000 to 0.00000 -

11 Yes f(4, 140) = 2.81 < 0.05 0.02763 to 0.02807 -

13 Yes f(4, 140) = 29.56 < 0.01 0.00000 to 0.00000 -

15 Yes f(4, 140) = 38.11 < 0.01 0.00000 to 0.00000 -

18 Yes f(3, 57) = 10.06 < 0.01 0.00002 to 0.00002 -

21 Yes t(16) = 10.36 < 0.01 0.00000 to 0.00000 -

22 Yes t(18) = 6.09 < 0.01 0.00001 to 0.00001 -

23 Yes t(29) = 3.9 < 0.01 0.00046 to 0.00060 -

24 Yes t(17) = 7.0 < 0.01 0.00000 to 0.00000 -

25 Yes f(1, 29) = 53.28 < 0.01 0.00000 to 0.00000 -

26 Yes f(1, 29) = 49.46 < 0.01 0.00000 to 0.00000 -

27 Yes f(1, 35) = 27.61 < 0.01 0.00001 to 0.00001 -

28 Yes f(1, 29) = 302.15 < 0.01 0.00000 to 0.00000 -

29 Yes f(2, 58) = 395.68 < 0.01 0.00000 to 0.00000 -

30 Yes f(2, 58) = 118.96 < 0.01 0.00000 to 0.00000 -

31 Yes f(1, 29) = 42.76 < 0.01 0.00000 to 0.00000 -

32 Yes f(4, 116) = 3.89 < 0.01 0.00526 to 0.00535 -

33 Yes f(1, 29) = 9.74 < 0.01 0.00405 to 0.00407 -

34 Yes f(4, 116) = 4.21 < 0.01 0.00319 to 0.00324 -

35 Yes f(4, 116) = 5.68 < 0.01 0.00033 to 0.00033 -

36 Yes f(1, 29) = 1278.97 < 0.01 0.00000 to 0.00000 -

37 Yes f(2, 58) = 21.0 < 0.01 0.00000 to 0.00000 -
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38 Yes f(2, 58) = 9.66 < 0.01 0.00024 to 0.00024 -

39 Yes f(2, 58) = 17.69 < 0.01 0.00000 to 0.00000 -

40 Yes f(4, 116) = 23.85 < 0.01 0.00000 to 0.00000 -

41 Yes f(8, 232) = 3.58 < 0.01 0.00061 to 0.00062 -

42 Yes f(2, 58) = 4.65 < 0.05 0.01334 to 0.01345 -

43 Yes f(4, 116) = 366.93 < 0.01 0.00000 to 0.00000 -

(46/48)

JEP_Winman_2004_30_6_1167_Subjective probability intervals.htm

0 Yes t(38) = 2.35 = 0.024 0.02379 to 0.02435 -

1 Yes t(38) = 3.3 = 0.002 0.00184 to 0.00242 -

2 Yes t(19) = 3.48 = 0.002 0.00248 to 0.00254 -

3 Yes t(19) = 4.96 < 0.01 0.00009 to 0.00009 -

4 Yes t(43) = 4.65 < 0.01 0.00003 to 0.00003 -

5 Yes t(28) = 2.51 = 0.018 0.01792 to 0.01834 -

6 Yes t(28) = 2.07 = 0.047 0.04729 to 0.04829 -

7 Yes t(28) = 5.76 < 0.01 0.00000 to 0.00000 -

(47/48)

JEP_Yang_2004_30_5_1045_Knowledge partitioning in.htm

0 Yes f(7, 322) = 42.21 < 0.01 0.00000 to 0.00000 -

3 Yes f(1, 23) = 5.11 < 0.05 0.03348 to 0.03364 -

4 Yes f(2, 92) = 48.08 < 0.01 0.00000 to 0.00000 -

5 Yes f(2, 92) = 10.19 < 0.01 0.00010 to 0.00010 -

6 Yes f(2, 46) = 15.48 < 0.01 0.00001 to 0.00001 -

7 Yes f(1, 23) = 12.44 < 0.01 0.00180 to 0.00181 -

8 Yes f(1, 23) = 16.47 < 0.01 0.00049 to 0.00049 -

9 Yes f(1, 23) = 6.89 < 0.05 0.01511 to 0.01517 -

10 Yes f(2, 46) = 10.52 < 0.01 0.00017 to 0.00017 -

11 Yes f(7, 315) = 24.83 < 0.01 0.00000 to 0.00000 -

12 Yes f(2, 30) = 9.28 < 0.01 0.00073 to 0.00073 -

13 Yes f(1, 15) = 8.35 < 0.05 0.01121 to 0.01125 -

14 Yes f(1, 15) = 8.59 < 0.05 0.01031 to 0.01034 -

15 Yes f(1, 15) = 36.62 < 0.01 0.00002 to 0.00002 -

16 Yes f(1, 15) = 52.42 < 0.01 0.00000 to 0.00000 -

17 Yes f(2, 30) = 8.17 < 0.01 0.00147 to 0.00148 -

18 Yes f(1, 15) = 8.63 < 0.05 0.01017 to 0.01020 -

19 Yes f(1, 15) = 7.13 < 0.05 0.01744 to 0.01750 -

20 Yes f(2, 60) = 6.24 < 0.01 0.00344 to 0.00347 -

(48/48)

JPSP_Jones_2004_87_5_665_How do I.htm

0 Yes chi2(1) = 16.78 < 0.001 0.00004 to 0.00004 -

1 Yes chi2(1) = 16.39 < 0.001 0.00005 to 0.00005 -

3 Yes f(1, 63) = 55.62 < 0.001 0.00000 to 0.00000 -
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4 Yes chi2(1) = 2244.3 < 0.001 0.00000 to 0.00000 -

5 Yes chi2(1) = 253.1 < 0.001 0.00000 to 0.00000 -

6 Yes chi2(1) = 34.54 < 0.001 0.00000 to 0.00000 -

7 Yes f(1, 63) = 9.77 = 0.003 0.00268 to 0.00269 -

8 No f(4, 15) = 11.01 = 0.005 0.00023 to 0.00023

Recalculated p-value does not match the reported p-value.

10 Yes chi2(1) = 11.01 < 0.001 0.00090 to 0.00091 -

11 Yes chi2(1) = 32.43 < 0.001 0.00000 to 0.00000 -

12 Yes t(50) = 2.57 < 0.05 0.01303 to 0.01337 -

13 Yes t(108) = 2.04 < 0.05 0.04329 to 0.04430 -

14 Yes t(108) = 2.01 < 0.05 0.04639 to 0.04746 -

17 Yes t(107) = 8.23 < 0.001 0.00000 to 0.00000 -

20 Yes t(108) = 3.64 < 0.001 0.00041 to 0.00043 -

21 Yes f(1, 82) = 3.98 < 0.05 0.04923 to 0.04950 -

22 Yes f(1, 82) = 6.55 = 0.01 0.01229 to 0.01236 -

23 Yes f(1, 82) = 4.03 < 0.05 0.04786 to 0.04813 -

26 Yes t(81) = 2.5 < 0.02 0.01266 to 0.01644 -

27 Yes t(81) = 2.03 < 0.05 0.04512 to 0.04616 -

30 No t(27) = 2.02 < 0.05 0.05286 to 0.05396

Gross inconsistency: reported p-value and recalculated p-value differ in significance.

Consistent for one-tailed, inconsistent for two-tailed

31 Yes t(20) = 2.14 < 0.05 0.04442 to 0.04532 -

34 Yes t(20) = 2.14 < 0.05 0.04442 to 0.04532 -

-
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C Missed Results in Manually Coded Validate File

Appendix C shows a list of NHST results that meet the inclusion criteria mentioned in both
subsection 2.1.3 and 4.1, but were not included in the manually coded validate file. These results
were successfully detected by the Python script.

(23/48)

JPSP_Koole_2004_87_6_974_Getting a grip.htm

21 No f(1, 53) = 2.91 < 0.05 0.09361 to 0.09416

Gross inconsistency: reported p-value and recalculated p-value differ in significance.

(39/48)

JEP_Tillmann_2004_30_5_1131_Implicit learning of.htm

22 Yes t(11) = 7.03 < 0.001 0.00002 to 0.00002 -

(42/48)

PSP_Van Zomeren_2004_87_5_649_Put your money.htm

12 Yes chi2(13) = 34.12 < 0.01 0.00115 to 0.00116 -

13 Yes chi2(6) = 23.56 < 0.01 0.00063 to 0.00063 -

28 Yes chi2(6) = 28.02 < 0.01 0.00009 to 0.00009 -
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D GRIM Script Analysis Data

Appendix D summarises the GRIM test results per article.

Table 12: Comparison of GRIM test results with annotations by Brown & Heathers

Article # Inconsistent
(script)

# Inconsistent
(annotated)

# In intersec-
tion

Notes

Eskine – A Bad Taste in the
Mouth

6 7 0 All inconsistent mean values
marked were in a table, which was
not extracted

Ma-Kellams – Culturally Di-
vergent Responses to Mor-
tality Salience

10 2 2 -

Gable – Time Flies When
You’re Having Approach-
Motivated Fun

1 1 1 -

Fessler – Friends Shrink Foes 0 8 0 4 percentages and 4 regular misses
Inagaki – Shared Neural
Mechanisms Underlying So-
cial Warmth and Physical
Warmth

7 12 5 The remaining 7 mean values were
considered “consistent” by the
script, because the wrong N was
extracted for those

Shariff – Free Will and Pun-
ishment

1 2 0 2 regular misses

Shaw – Constructing Rich
False Memories of Commit-
ting Crime

6 15 6 6 inconsistent means in a table
detected by the script, but another
table with 8 results was missed. 1
regular miss in general text.

Oriña – Developmental and
Dyadic Perspectives on Com-
mitment in Adult Romantic
Relationships

2 2 2 -

Moser – Mind Your Errors 1 1 1 -
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Article # Inconsistent
(script)

# Inconsistent
(annotated)

# In intersec-
tion

Notes

Pope – Round Numbers as
Goals

0 1 0 1 regular miss

Kille – Tall, Dark, and Sta-
ble

5 1 1 -

Bilderbeck – Serotonin and
Social Norms

3 3 2 1 result in a table missed

Patihis – Are the “Mem-
ory Wars” Over? A Scientist-
Practitioner Gap in Beliefs
About Repressed Memory

0 6 0 6 results in tables missed

Schroeder – The Sound of
Intellect

4 0 0 No explicit mention of inconsistent
means in annotated article

Greitemeyer – Denying Hu-
manness to Others

10 0 0 -

Sylvers – Psychopathic
Traits and Preattentive
Threat Processing in
Children

0 0 0 -

Birtel – Treating” Prejudice 17 0 0 -
Grant – Beneficiary or Bene-
factor

11 0 0 -

Kwan – Effects of Symptom
Presentation Order on Per-
ceived Disease Risk

0 0 0 -

Radel – Evidence of Moti-
vational Influences in Early
Visual Perception

2 0 0 -

Aspell – Turning Body and
Self Inside Out

0 0 0 -

Kwang – Men Seek Social
Standing, Women Seek Com-
panionship

0 0 0 -
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Article # Inconsistent
(script)

# Inconsistent
(annotated)

# In intersec-
tion

Notes

van Gelder – Vividness of
the Future Self Predicts
Delinquency

0 0 0 -

Yap – The Ergonomics of
Dishonesty

2 0 0 -

Hafenbrack – Debiasing the
Mind Through Meditation

0 0 0 -

Noreen – Forgiving You Is
Hard, but Forgetting Seems
Easy

0 0 0 -

Dufau – A Thousand Words
Are Worth a Picture

0 0 0 -

Engelhardt – Effects of
Violent-Video-Game Expo-
sure on Aggressive Behavior,
Aggressive-Thought Accessi-
bility, and Aggressive Affect
Among

4 0 0 -

Hirsh-Pasek – The Contri-
bution of Early Communica-
tion Quality to Low-Income
Children’s Language Success

0 0 0 -

Strohminger – Neurodegen-
eration and Identity

12 0 0 -

Akrami – Generalized Prej-
udice

0 0 0 -

Carter – A Single Exposure
to the American Flag Shifts
Support Toward Republican-
ism up to 8 Months Later

1 0 0 -
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Article # Inconsistent
(script)

# Inconsistent
(annotated)

# In intersec-
tion

Notes

Evans – Loosening the Link
Between Childhood Poverty
and Adolescent Smoking
and Obesity

0 0 0 -

Imhoff – Facing Europe 0 0 0 -
Ireland – Language Style
Matching Predicts Relation-
ship Initiation and Stability

0 0 0 -

Kavanagh – When It’s an Er-
ror to Mirror

0 0 0 -

Mancini – Visual Distortion
of Body Size Modulates Pain
Perception

0 0 0 -

Nagengast – Who Took the
“×” out of Expectancy-Value
Theory?

0 0 0 -

Nisbet – Underestimating
Nearby Nature

12 0 0 -

Said – A Statistical Model
of Facial Attractiveness

0 0 0 -

TOTAL 117 61 20 -
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E Prompt for AI-Powered statcheck

Appendix E shows the statcheck related AI prompt used for data extraction.

1 STATCHECK_PROMPT: str = ("""

2 You are an AI assistant that extracts statistical test results from

scientific text.

3

4 Please extract ALL statistical tests reported in the following text.

For each test , extract the following components:

5

6 - test_type: one of ’r’, ’t’, ’f’, ’chi2 ’, ’z’.

7 - df1: First degree of freedom (float or integer). If not applicable

, set to None.

8 - df2: Second degree of freedom (float or integer). If not

applicable , set to None.

9 - test_value: The test statistic value (float).

10 - operator: The operator used in the reported p-value (’=’, ’<’,

’>’).

11 - reported_p_value: The numerical value of the reported p-value (

float) if available , or ’ns’ if reported as not significant.

12 - epsilon (float): Only extract when a Huynh -Feldt correction is

mentioned. If not applicable , set to None.

13 - tail: ’one’ or ’two ’. Assume ’two’ unless explicitly stated.

14

15 Guidelines:

16

17 - Do not extract any tests that does not EXPLICITY mention one of

the predetermined test types (e.g., t, r, f, chi2 , z).

18 - Do not extract test that are incomplete (i.e., the minimal

requirements are: test_type , df1 , test_value , operator ,

reported_p_value).

19 - IMPORTANT: EXTRACT THE CORRECT OPERATOR FROM THE P-VALUE (E.G.,

’=’, ’<’, ’>’).

20 - If you are not completely certain that a test meets the minimal

requirements , do not extract it.

21 - You must never infer or assume test types , degrees of freedom , or

test values based on contextual clues , reported means , or p-

values.

22 - Be tolerant of minor typos or variations in reporting.

23 - Recognize tests even if embedded in sentences or non -standard

formats.

24 - Pay special attention to distinguishing between chi -square tests

(’ ’, ’chi2 ’) and F-tests.

25 - Chi -square tests may also appear as "G-square", "G^2", or "G2".

Use ’chi2’ as test_type.

26 - IMPORTANT: "rho" is not "r". Do not interpret "rho" as "r".

27 - Extract both operator and numerical value for p-values using
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inequality signs.

28 - Do not perform any calculations or inferences beyond w h a t s

explicitly stated.

29 - A test may be split over multiple sentences. Extract correctly and

carefully.

30 - Treat commas in numbers as thousand separators , not decimal points

.

31 - For chi2 tests: do not extract the sample size (N).

32 - Only F-tests require two degrees of freedom; others use df1 only.

33 - Do not extract tests not described in this prompt (e.g., ’B’ tests

).

34 - Only extract an epsilon value if explicitly mentioned AND if a

Huynh -Feldt correction was applied.

35 - IMPORTANT: EPSILON IS REPORTED AS ((ε)) OR (Epsilon).

36 EPSILON IS NOT THE SAME AS ETA ((η)) OR ETA squared ((η2)).
37 - EXAMPLE: F(1, 82) = 4.03, p <.05, (η) = .22 is NOT a Huynh -

Feldt correction.

38 DO NOT EXTRACT EPSILON , BECAUSE THIS IS NOT AN EPSILON VALUE ,

BUT AN ETA VALUE.

39 - YOU NEVER EXTRACT ETA VALUES (η2) OR ETA (η) AS EPSILON.

40 ONLY EXTRACT EPSILON VALUES (ε) OR (Epsilon) AS EPSILON!

41

42 - You can also encounter NHST tests reported in a table. In

these cases , the reported_p_value is often displayed using a

symbol (e.g., * for p < 0.05, ** for p < 0.01, *** for p <

0.001).

43 - In these cases , extract p < 0.05 for *, p < 0.01 for **, and p

< 0.001 for ***.

44 - EXAMPLE: 5.27 (2, 67)** in the column "F" should be

extracted as:

45 - test_type: "f"

46 - df1: 2

47 - df2: 67

48 - test_value: 5.27

49 - operator: "<"

50 - reported_p_value: "0.01"

51 - BUT , ONLY EXTRACT TESTS THAT HAVE A STAR SYMBOL. DO NOT

EXTRACT INCOMPLETE TESTS WITHOUT A STAR SYMBOL , EVEN IF THEY

ARE NHST TESTS. THIS IS BECAUSE THERE IS NO WAY TO DETERMINE

THE REPORTED P-VALUE WITHOUT A STAR SYMBOL OR WITHOUT THE P-

VALUE EXPLICITLY MENTIONED.

52 - EXAPMLE: "F(1, 3184) = 2.20" - YOU DO NOT EXTRACT THIS

TEST , BECAUSE IT IS INCOMPLETE. IT DOES NOT HAVE A STAR

SYMBOL , AND THE OPERATOR IS NOT EXPLICITLY MENTIONED.

53 You extract this test as:

54 - DO NOT EXTRACT - CONTINUE

55

56 - It is also possible that you enocounter a text that has
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typesetting issues: characters such as "<", ">", or "=" might

not be properly extracted. If you encounter a NHST where

everything is present except the operator , assume the

operator is "<".

57 - EXAMPLE: "F(1, 11) 83.93, p .001" - extract this as:

58 - test_type: "f"

59 - df1: 1

60 - df2: 11

61 - test_value: 83.93

62 - operator: "<"

63 - reported_p_value: "0.001"

64

65 - EXAMPLE: "F(1, 15)

66 6.1, p

67 .05."

68 Extract this as:

69 - test_type: "f"

70 - df1: 1

71 - df2: 15

72 - test_value: 6.1

73 - operator: "<"

74 - reported_p_value: "0.05"

75

76 Format the result EXACTLY like this:

77

78 tests = [

79 {" test_type ": <test_type >, "df1": <df1 >, "df2": <df2 >, "

test_value ": <test_value >,

80 "operator ": <operator >, "reported_p_value ": <reported_p_value >,

81 "epsilon ": <epsilon >, "tail": <tail >}

82 ]

83

84 Now , extract the tests from the following text:

85

86 {context}

87

88 After reading the text above , read it again to ensure you understand

the instructions.

89 Then , extract the reported statistical tests as requested.

90 """)
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F Prompt for AI-Powered GRIM Test

Appendix F shows the GRIM test related AI prompt used for data extraction.

1 GRIM_PROMPT: str = (

2 """

3 You are an extraction assistant. Your task is to extract only

reported **means and their sample sizes ** from the following

scientific text. You must follow these rules strictly:

4

5 ---

6

7 ** Extract only if ALL of the following are true :**

8 - The value is explicitly labelled as a **mean** (e.g., M = ...

, mean = ... ).

9 - The mean is clearly based on **integer -valued response data** (e.g

., responses on Likert -type scales like 1-5, 1-7, etc.).

10 - A specific ** sample size (N)** is provided in the same sentence ,

or in a directly connected clause or phrase.

11 - IMPORTANT: A SAMPLE SIZE IS ALWAYS AN INTEGER! DO NOT EXTRACT

IF THE SAMPLE SIZE IS NOT AN INTEGER!

12 - There is a ** clear and direct correlation ** between the reported

mean and its corresponding sample size do not guess or assume

this link.

13 - The mean is usable in the **GRIM test** (i.e., based on whole -

number responses + a known sample size).

14 - The source of the mean is explicitly mentioned (e.g., "mean of

Likert -scale responses", "mean of 7-point scale", "mean survey

response ").

15 - Only state that a Likert -scale was used if you see the word "

Likert" or "scale" in the context!

16 If you do not see either of these words , you may not assume that a

Likert -scale was used!

17 If this is not clear and there is no other indication that a mean

is GRIM -applicable , do not extract it!

18

19 - It is ONLY OKAY to derive sample sizes from other statistics (e.g

., t-tests , ANOVA), if the sample size is not clearly mentioned ,

20 BUT ONLY IF: it is clear that the mean value is derived from

DISCRETE INTEGER -BASED data.

21 - t(23) can imply N=24. Keep in mind that for a t-test , the sample

size is N = df + 1.

22 - f(1, 60) can imply a total of N=62, but two groups of N=31 each.

23 For an ANOVA , the sample size is N = df + k, where k is the number

of groups.

24 So ALWAYS look for the number of groups when you encounter ANOVA.

25 - IMPORTANT: When you encounter an ANOVA , check the first degree of

freedom (df1) and the second degree of freedom (df2).
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26 The first degree of freedom is the number of groups minus 1, and

the second degree of freedom is the total sample size minus the

number of groups.

27 So if you see f(1, 60), it means that there are 2 groups (1 + 1)

and a total sample size of 62 (60 + 2).

28 So never assume the second degree of freedom + 1 is the sample

size. Always check df1 to see how many groups there are!

29

30 - In your discrete_reasoning , only state that a Likert -scale was

used if you see the word "Likert" or "scale" in the context!

31

32 ---

33

34 ** NEVER extract if ANY of the following are true :**

35 - The sample size is **not clearly linked ** to the mean , or could

refer to a different statistic or part of the study.

36 - It is a ** median**, **mode**, **mean difference **, or ** range **.

37 - It refers to ** completion time**, percentages , or ** continuous

data** (e.g., durations , reaction times).

38 - It is a ** statistical test value **: t, F, p, r, z, , etc.

39 - The underlying response scale is not stated as **integer -based**

or is ambiguous.

40

41 ---

42

43 Additional rules:

44 - If the total sample is split into groups (e.g., experimental/

control), extract group -level means and sample sizes separately.

45 - NEVER round mean values extract them ** exactly as reported**,

preserving **all decimal places and trailing zeros ** (e.g., keep

‘6.60‘, not ‘6.6‘).

46 - Do **not** perform any calculations. Only extract what is

explicitly stated in the text.

47

48 ---

49

50 IMPORTANT: The output must be a JSON -like list of dictionaries ,

formatted as follows:

51 YOU ARE NEVER ALLOWED TO CHANGE THIS FORMAT!

52 Output format:

53

54 tests = [

55 {{

56 "reported_mean ": <mean >,

57 "sample_size ": <sample_size >,

58 "discrete_reasoning ": "<Why this mean is valid for GRIM (e.g

., ’mean of 7-point Likert responses clearly linked to N

= 28 in same sentence ’)>"
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59 }},

60 ...

61 ]

62

63 ---

64

65 Text:

66 {context}

67

68 Only return the list of tests. Do not explain anything else. Be

strict , and only extract what is 100% valid under the criteria

above.

69 """

70 )
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