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Abstract

This study explores the capabilities of the Llama 3.2 Vision 11B
model regarding the Visual Entailment (VE) task within zero-shot,
few-shot, and fine-tuning settings. We investigate various factors that
might affect the performance of the model, including the prompt de-
sign, the number, and the selection strategy that are related to in-
context examples for the few-shot inference, and also the order of
class labels. We also conducted experiments using randomly cropped
images and black images to evaluate the performance of the model
when it has limited vision. To evaluate the reasoning of the model, we
conduct explanation-based experiments. Results indicate that three-
shot inference improves the performance over the zero-shot baselines.
However, additional examples introduce more noise than they pro-
vide benefits. Additionally, the order of the labels in the prompt is
a critical factor that influences the predictions. The black-images ex-
periment reveals the model’s tendency to hallucinate, and most of the
time it entails the hypotheses. Fine-tuned model achieves an accuracy
of 83.3% on the e-SNLI-VE dataset for the VE task, outperforming
the state-of-the-art OFA-X model. Additionally, the explanation eval-
uation demonstrates that the fine-tuned model provides semantically
meaningful explanations with a BERTScore F1-score of 0.8916. Fur-
ther research should examine larger multimodal models and integrate
Chain-of-Thought prompting to further improve VE performance.
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1 Introduction

In recent years, there have been advances in Artificial Intelligence (AI) and
deep learning, which have improved the development of Natural Language
Processing (NLP) and Computer Vision (CV). While these domains were
traditionally separate, the emergence of multimodal learning has unified
them, allowing systems to interpret, reason, and produce meaning from
combined textual and visual input. This has led to tasks such as Image
Captioning (IC) [36], Visual Question Answering (VQA) [1], as well as Visual
Entailment (VE), the focus of this thesis. VE is an extension of the Textual
Entailment (TE) task, where the goal is to determine if the hypothesis to the
given premise is contradicted, entailed, or neutral [35]. However, the VE in-
troduces a significant challenge, the system must reason and align with more
than one modality to reach a reasonable conclusion because the premise is
an image rather than a text.

The introduction of the SNLI-VE and e-SNLI-VE datasets provided a crucial
benchmark for evaluating this reasoning task. Despite this, VE models tend
to underperform compared to their text-only models due to the difficulty of
managing both modalities. Previous work, such as EVE [35], OFA [33], FM3
[8], and OFA-X [26], has attempted to address this particular challenge with
different approaches, including multimodal transformers.

Recent developments in Multimodal Large Language Models (MLLMs),
such as Flamingo [2], Gemini [29], and Llama 3.2 Vision [13], have demon-
strated promising zero-shot and few-shot generalization on a broad range of
vision-language tasks. These models can be applied to new and unseen tasks
using only in-context examples because they have been pre-trained on large
and diverse datasets. MLLMs, despite their advantages, can be sensitive to
minor changes in input, such as the order of labels or examples. Thus, ques-
tions regarding the extend to which an MLLM, and specifically the Llama
3.2 Vision, can perform VE without fine-tuning and what factors affect its
performance in zero- and few-shot settings arise.

The main aim of the project is to understand the capabilities and limitations
of the Llama 3.2 Vision model when we perform the VE task and investigate
the factors that affect its performance. Thus, our research questions are:



e How does Llama 3.2 Vision perform on the visual entailment task in a
zero-shot inference?

e What is the impact on zero-shot inference of having an incomplete or
absent dataset?

e What is the impact of few-shot inference on the model’s accuracy, and
how does performance differ on different numbers of examples?

e How does the order of class labels in the prompt affect model predic-
tions?

e What is the impact of varying the order of examples in a few-shot
inference on model performance?

e To what extent does fine-tuning improve model performance compared
to zero-shot and few-shot inference?

To answer these questions, we split the experiments into three stages:

e Zero-shot inference with multiple settings (prompt formulation, expla-
nation generation, and limited visual input) to asses the performance.

e Few-shot inference using three and six in-context examples with mul-
tiple variations (prompt formulation, ordering of class labels, and ex-
ample selection).

e Fine-tuning using QLoRa to evaluate whether the Llama 3.2 Vision can
surpass the performance of the baseline models and the state-of-the-art
models.

The outline of the thesis is structured as follows. An overview of the key
concepts in our research is given in Section 2. Section 3 explores the related
work on VE models. Section 4 provides the details of the zero-shot, few-shot,
and fine-tuning. Section 5 includes the datasets, the baseline models, and
the experimental details. Section 6 covers the results from the zero-shot,
few-shot, and fine-tuned experiments, and Section 7 covers the limitations
and future work. Finally, Section 8 provides the conclusions of the study.



2 Background

In this chapter, we will cover the fundamental concepts that form the back-
ground knowledge for the project. We will discuss the topics of Multimodal
Learning, LLMs, MLLMs, and VE.

2.1 Multimodal Learning

Multimodal learning is a research field that aims to process and relate in-
formation through the integration of multiple modalities such as linguistic,
visual, acoustic, and tactile [3][I9]. The importance of multimodal learning
lies in its ability to map information across different modalities, thereby en-
hancing understanding and reasoning [3] [19]. Although integrating multiple
modalities often leads to more robust and reliable systems, it is necessary to
note that multimodal learning can also introduce difficulties, including the
difficulty of aligning with human cognitive processes [4]. There are numerous
applications of multimodal learning, including audio-visual speech recogni-
tion, video summarization, and healthcare applications such as automatic
assessment of depression and anxiety [3].

However, there are still a number of difficulties and challenges. A key chal-
lenge is representation [3] [I9], which occurs due to the difficulty in learning
how to represent and summarize multimodal data in a way that takes ad-
vantage of the complementarity and redundancy of multiple modalities [3].
Beyond these, another major problem is generating a coherent output that
corresponds to cross-modal interactions. Furthermore, transference [19] or
different co-learning [3]is a core challenge, which particularly is the ability to
transfer knowledge between different modalities.

2.2 Large Language Models

In the decade of 2010, Recurrent Neural Networks (RNNs) were widely
used for many natural language applications, including machine translation,



text generation, and text classification [21]. However, RNNs suffer from
limitations such as vanishing gradients and long-term dependencies, limiting
their effectiveness [15].

The invention of the transformer architecture [31] was a milestone for the
development of LLMs and concretely the introduction of the attention mech-
anisms that capture contextual information across the entire input sequence
simultaneously [23]. LLMs are mainly transformer-based language models
that have billions of parameters. In addition, LLMs are much larger in
model size than regular Language Models (LMs) and, most importantly, have
stronger language understanding and generation abilities [21]. Also, LLMs
have a major effect on various fields such as education [15] [23], healthcare
[15] [23], and finance [I5] [23]. Some examples are summarization of academic
papers and generation of research hypotheses [23], analysis and generation of
patient information leaflets [23], and sentiment analysis of financial reports
and news [23].

LLMs can be grouped into three main categories: encoder-only, decoder-only,
and encoder-decoder [21] [23]. The encoder-only family is advantageous for
tasks such as sentence classification and Named Entity Recognition (NER),
where understanding the whole sentence is necessary [21]. One of the most fa-
mous encoder-only models is BERT (Bidirectional Encoder Representations
from Transformers) [IT]. Next, the decoder-only family is great for text
generation [23], and the GPT models are notable examples of this category.
Most of the LLMs fall into this category. Finally, the encoder-decoder family
is the most appropriate for summarization and translation [21] [23], and a
remarkable example is T5 [27].

However, LLMs come with important limitations. First, LLMs are proba-
bilistic, suggesting that even with the same prompt, the answer will probably
be different [21] [15]. This variability can be beneficial for tasks that require
creativity, however, it is a challenge for applications that require consistent
and deterministic responses. In addition, LLMs are computationally expen-
sive since they need costly GPUs (Graphical Processing Units) for their
training, which also has an environmental impact [2I] [15]. Moreover, LLMs
can produce hallucinations and untruthful answers [21]. Also, LLMs, accord-
ing to their training data, may inherit biases, for example, on race or gender
[15]. A final limitation is the lack of grounding in the real world. However,
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there is active research in this area, with studies exploring how LLMs could
achieve real-world understanding [22]. LLMs are trained primarily on tex-
tual data, which traditionally limits their ability to directly understand other
modalities. This constraint has inspired the creation of MLLMs to resolve
the gap through the integration of various modalities.

2.3 Multimodal Large Language Models

MLLMs are LLMs that have extended their capabilities to deal with various
types of data, such as image, video, and audio, in addition to text [7]. In
other words, MLLMs are LLMS empowered with multimodal capabilities.
The need for the development of the MLLMs is derived from the complex
real-world task that no longer suffices for the unimodal systems [32]. MLLMs
can inherit notable features from LLMs, such as robust language genera-
tion and transfer learning abilities [I7]. The advantage of MLLMs is that
they combine data from different modalities and achieve a more comprehen-
sive understanding and production of information [32], leading to richer and
more detailed output. The architecture of MLLMs consists of three main
components: a multimodal input decoder, a pre-trained LLM, and a multi-
modal output decoder [32]. Specifically, the Llama 3.2 Vision model, where
we focus on this research, exploits a combination of the Llama 3.1 8B text
model with a separately trained vision adapter [12]. MLLMSs have broadened
their applications to domains including text-to-video generation, image cap-
tioning, and text-to-speech. Two state-of-the-art models with exceptional
performance are Gemini [29] and GPT-4V [37].

Despite MLLMs’ success, these models continue to encounter a number of
difficulties. Interpretability is a major challenge. Specifically, it is difficult
to understand how different modalities are combined and what the contribu-
tion is of each modality to the final decision [32]. Furthermore, the enormous
amount of data makes MLLMs prone to the risk of serious security problems,
such as bias and data leakage [32]. Beyond these, the high rates of MLLMs’
tendency to hallucinate are an important challenge that threatens their relia-
bility [7] [38] [6]. In addition, reducing their computation load is an essential
need due to the high computational demand [6].



2.4 Visual Entailment

VE is a novel multimodal task, which is an extension of the traditional TE
task. Prior to VE, TE is studied in the field of NLP and particularly in the
domain of Natural Language Inference (NLI).

In the TE task, given a text Premise P and a text Hypothesis H, the goal is
to determine whether the Premise P implies Hypothesis H [35]. The output
of the model is a label among the three classes: FEntailment, Contradiction,
and Neutral based on the relation derived from the text pair (P, H) [35]. If
there is sufficient evidence in P to draw the conclusion that H is true, then
entailment holds. Wherever H contradicts P, a contradiction is identified.
If not, the relation is neutral, suggesting that there is not enough data in
P to infer anything from H. The difference between the TE and the VE is
the replacement of the text Premise with a real-world image. Therefore the
extended task is converted to a multimodal task because of the visual premise
and the text hypothesis. Figure [1] indicates an example of VE, showing the
image premise and three different text hypotheses, which results in one of
the three classes each time.

VE is an important task, and there are several applications to which it can be
applied. One application of the VE is fake news detection [35], where social
media can verify whether an image entails an article. Moreover, court cross-
examination [35] can use VE, where the visual evidence needs to verify the
witness statements. Beyond these, VE can be used for e-commerce product
verification, so that marketplaces can detect fraud if a product does not
match with its description.

However, as mentioned in Subsection 2.1} multimodal tasks have to address
several challenges. One example of a challenge is representation because of
the difficulty of capturing the semantic overlap between images and text.
Another challenge is alignment, where an image may represent ambiguous
objects or the actions described in the text hypothesis. In addition, the
subjectivity in annotations is also a significant challenge for VE, because two
annotators might label differently a pair with the same image and the same
hypothesis.
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e Two woman are holding e Entailment
packages.

e The sisters are hugging e Neutral
goodbye while holding to
go packages after just
eating lunch.

e The men are fighting e Contradiction
outside a deli.

Premise Hypothesis Answer

Figure 1: Example of VE task, showing an image premise and three different
hypotheses resulting in three labels [35].

3 Related Work

This section covers the key papers on VE work that led to innovations and
motivated further exploration in this area. The VE task builts upon the
traditional TE, introducing a multimodal challenge at the intersection of
computer vision and natural language understanding.

The VE task was introduced by Xie et al (2019) in the paper Visual Entail-
ment Task for Visually-Grounded Language Learning [35]. They presented a
dataset combining a TE corpus with an image dataset. They also proposed
a model called Explainable Visual Entailment model (EVE), which uses at-
tention mechanisms to find the inner relationships in both image and text
feature spaces [35].

A major advancement in this field came with the OFA model (One For All)
[33]. OFA is a sequence-to-sequence learning framework and unifies various
unimodal and cross-modal tasks, including the VE task. OFA achieves the
state-of-the-art performance for the VE task on the SNLI-VE dataset with
an accuracy of 91.2% on the test set. SNLI-VE is the most commonly used
dataset for VE evaluation. More details about the dataset can be found in
Subsection Bl

Extending this, OFA-X [26] is a proposal multitask framework that predicts
not only the labels but also explanations. OFA-X is a fine-tuned version of
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the OFA model and achieved the state-of-the-art performance for the VE task
on the e-SNLI-VE dataset with an accuracy of 80.9% on the test set. The
dataset was constructed by merging two datasets, which results in a visual
entailment task with accompanying natural language explanations [I§]. More
information on the datasets will follow in Subsection Bl

One different direction is the few-shot learning for a multimodal multitask
multilingual (FM3) framework [8]. This approach adapts to new tasks, such
as VE, with little supervision through the use of frozen large language models
with multimodal inputs. The model leverages the ability of transfer learning

for few-shot learning and achieves a high accuracy with little labeled data on
the SNLI-VE dataset.

Perhaps the boldest perspective comes from an approach in which the pro-
posal model CLOSE (Cross modaL transfer On Semantic Embeddings) can
achieve a comparable performance, without images, using only textual input
[14]. For the VE task, the model uses the SNLI dataset for the training (it
uses a text premise instead of an image), while for the evaluation, the SNLI-
VE dataset was used, which combines vision and language. Despite not using
images, CLOSE achieves similar performance to the image model. This sug-
gests that the SNLI dataset may contain sufficient evidence to conclude the
relationship without relying heavily on visual information and raises ques-
tions about whether a visual grounding is required.

The knowledge from these previous works directly influenced the design of
our experiments. Inspired by OFA and FM3, we adopted a prompt-based
few-shot setup to investigate how effective a model is without direct super-
vision. In addition, the idea of explanation generation in OFA-X led us to
design an experiment to analyze the explanations from the model, helping
assess its interpretability and reasoning. Finally, the innovative approach of
the CLOSE model and its findings led us to test different experiments with
limited vision to explore the extent of the visual dependency.
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4 Methodology

This chapter discusses the methodology to evaluate the performance of the
Llama 3.2 Vision model in the VE task. We first explain why the specific
model was selected and then introduce three different approaches: zero-shot
inference, few-shot inference, and fine-tuning.

4.1 Llama 3.2 Vision

Llama 3.2 VisionEl is a powerful multimodal large language model released
in September 2024 [24]. The model is available in two sizes: 11B and 90B
parameters and for this study, we focus on the smaller version. The model
can be used to achieve a variety of tasks, including visual recognition, image
reasoning, captioning, and answering general questions about an image [24]
[12]. The architecture of the model is based on the combination of the Llama
3.1 8B with a separately trained vision adapter [I2]. Specifically, the model
utilizes a vision adapter that integrates visual information into the text-
based architecture of Llama 3.1 through cross-attention layers El During
the training phase, the text model was frozen in order to preserve text-only
performance [I2]. The model was trained on 6 billion image-text pairs with
a diverse data mixture [12].

The reason for selecting this specific model among a variety of multimodal
models is its competitive performance on standard benchmarks for multi-
modal tasks. It outperforms many previous open-source models in image
understanding and reasoning. In addition, the selection of the smaller model
is because the smaller size reduces hardware constraints while keeping the
strong reasoning capabilities. Also, the large amount of data that is trained
can be beneficial for the zero-shot inference, as it has probably been exposed
to various visual-linguistic relationships.

"https://ollama.com/library/1lama3.2-vision
Zhttps://ollama.com/x/11ama3.2-vision
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Figure 2: Prompt 1 for zero-shot inference
4.2 Zero-shot Inference

Zero-shot inference describes a model’s ability to perform a task without
having been trained on it. Concretely, zero-shot is a way to evaluate the
model on its generalization ability when applied to tasks that have not yet
been seen. In this approach, Llama 3.2 Vision is assessed in the VE task
using only its multimodal reasoning and pre-trained knowledge.

For zero-shot inference, the model is provided with a pair of image premise
and text hypothesis and must categorize the relationship between them into
one of the three classes: entailment, neutral, or contradiction. The output
of the model is based on its prior knowledge of visual and natural language
concepts, which it obtained during pre-training on a huge number of image-
text pairs.

Llama 3.2 Vision is an instruction model, thus, we designed two prompts,
where we describe the task and explain each class. The two prompts are
shown in Figures [ and The two prompts are similar, with the only
difference being the order of the classes. Specifically, in the first prompt,
the order is entailment followed by contradiction, and at the end, the neu-
tral class, while in the second prompt, the order is contradiction followed
by neutral and entailment last. The aim of designing similar prompts is to
investigate whether the order of classes can affect the results, especially con-
sidering recent insights that LLMs are sensitive based on the arrangement of
the choices in a multiple-choice prompt’s format [28]. Furthermore, multiple
small variations of the prompt wording are to determine how they influence
classification accuracy.
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Figure 3: Prompt 2 for zero-shot inference

4.3 Few-shot Inference

Few-shot inference describes a model’s ability to generalize to a task without
having been trained on it but with only a small number of examples [30].
Unlike zero-shot inference, where the model exploits its pre-trained knowl-
edge and reasoning, in few-shot inference the model also exploits a limited
set of labeled examples before making predictions. This technique improves
the classification accuracy by allowing the model to identify specific patterns
with limited supervision.

For the VE task, a few pairs of image-hypothesis and their labels are demon-
strated. The examples are selected in a way that represents all the possi-
ble relationships (entailment, contradiction, neutral) to guarantee that the
model has been presented with a balance of reasoning patterns. For the
experiments, the following strategies are examined:

e Three-shot and six-shot inferences: The model is tested with dif-
ferent numbers of examples to examine the effects of additional demon-
strations on performance.

e Variation in class order in the prompt: The model is tested in
different orderings of label classes in the prompt to assess if predictions
are impacted by presentation bias.

e Variation in-context examples order: The model is tested with
the ordering of label classes in the in-context examples to assess if
predictions are impacted by presentation bias.

e Diversity of examples: The model utilizes two different example
selection strategies to check the generalizability of the model.
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4.4 Fine-tuning

The process of fine-tuning involves adjusting the weights of a pre-trained
model to make it specific to a given task. In contrast to zero-shot and
few-shot inference, fine-tuning integrates external knowledge into the model
during training, while the former depend on the model’s in-context learning
capabilities. Usually, for the fine-tuning phase, the training on task-specific
data requires only a few epochs, which permits the model to adjust its param-
eters while preserving the fundamental knowledge gained during pre-training.
Additionally, fine-tuning requires a lot less computing power than starting
training from scratch.

For the fine-tuning of the Llama 3.2 Vision model on the e-SNLI-VE dataset,
we utilized Unsloth EL a fast and light-weight framework designed to train
large models. In order to dramatically reduce the compute and memory re-
quirements, we exploit the technique QLoRA (Quantized Low-Rank Adaptation)
[10]. QLoRA combines LoRA [I6] with 4-bit quantization of the model
weights, which supports effective fine-tuning of very large models on min-
imum hardware [9]. The use of 4-bit precision significantly reduces com-
puting cost and memory. LoRA itself preserves most of the original model
unchanged while fine-tuning a small set of additional adapter weight metrics
(in 16-bit precision)[9]. The number of parameters that must be changed
during training is significantly reduced with this method.

5 Experiments

In this chapter, we conducted several experiments in order to evaluate the
model. Before the presentation of the results, the dataset used for the ex-
periments will be examined, the evaluation metrics and the baselines will
be outlined. Through the experiments, we will be able to draw conclusions
on the main questions. In particular, we aim to address the following key
questions:

3https://unsloth.ai/blog/vision
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e How does Llama 3.2 Vision perform on the visual entailment task in a
zero-shot inference?

e What is the impact on zero-shot inference of having an incomplete or
absent dataset?

e What is the impact of few-shot inference on the model’s accuracy, and
how does performance vary with different numbers of examples?

e How does the order of class labels in the prompt affect model predic-
tions?

e What is the impact of varying the order of examples in a few-shot
inference on model performance?

e To what extent does fine-tuning improve model performance compared
to zero-shot and few-shot inference?

5.1 Dataset

The most common dataset used for the VE task is SNLI-VE (Stanford
Natural Language Inference Corpus - Visual Entailment) El Specifically, this
dataset is a combination of the SNLI (Stanford Natural Language Inference
Corpus) and Flickr30k (image captioning dataset), where the premises from
the SNLI are replaced with the corresponding images from Flickr30k [35].
This is feasible because the textual premises in SNLI are the caption sen-
tences of those photos [1§].

Although the SNLI-VE dataset is the most common dataset for the VE task,
recent research documented that 39% of the neutral labels in the validation
and test sets were incorrectly labeled [I§]. This is mainly due to the replace-
ment of the text premise with the image premise, which thus led to labeling
errors, as an image typically contains more information than a single cap-
tion describing it [I8]. Thus, the e-SNLI-VE (Explainable SNLI - Visual
Entailment) dataset was created, a merger of the SNLI-VE and the e-SNLI
(Explainable SNLI), which yields a visual entailment task with explanations

“https://github.com/maximek3/e-Vil/tree/main/data
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pairlD,Flickr30kID,hypothesis,gold_label

3539960792.jpg#4dr1e,3539960792.jpg,The person has a piece of athletic equipment.,entailment

Figure 4: Example of the dataset

in natural language. The specific dataset has better quality annotations due
to hand-relabeled validation and test sets. Moreover, the e-SNLI-VE dataset
has over 430k instances. Table[I]shows how the dataset splits and the number
of each class in the sets, and Figure |4 shows an example of a dataset sample.
The dataset demonstrates a class imbalance, with contradiction being the
most frequent class, followed by entailment with a slightly smaller number

of occurrences, and neutral with the fewest cases (Table [1]).

Split Train | Dev | Test
# Images 29,783 | 1,000 | 1,000
# Entailment 131,023 | 5,254 | 5,218
# Neutral 125,902 | 3,442 | 3,801
# Contradiction | 144,792 | 5,643 | 5,721
# Total Labels | 401,717 | 14,339 | 14,740

Table 1: Overview of the e-SNLI-VE dataset.
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5.2 Baselines

This section outlines the baselines that were utilized in the experiments to
compare the performance of Llama 3.2 Vision.

5.2.1 State-of-the-art model

The state-of-the-art model on the VE task with the e-SNLI-VE dataset is
the OFA-X model with an accuracy of 80.9% [26]. OFA-X builds upon the
OFA model (One For All), which is a generative transformer pre-trained on
a diverse set of multimodal and unimodal tasks, and fine-tuned on specific
vision-language tasks. Concretely, OFA-X leverages the weights of the OFA
model and then fine-tunes on targeted datasets, including the e-SNLI-VE. In
addition, the original OFA model is the state-of-the-art model on the SNLI-
VE, achieving 91.0% accuracy on the validation set and 91.2% on the test set
[33]. The difference in performance between OFA-X in e-SNLI-VE (80.9%)
and OFA in SNLI-VE (91.2%) demonstrates differences in the quality of
the dataset, specifically the existence of mislabeled cases in SNLI-VE, which
probably affects the performance of the model.

5.2.2 Zero-shot Experiment on Llama 3.2 Vision

In addition to the OFA-X, we conducted a zero-shot evaluation using the
Llama 3.2 Vision on the e-SNLI-VE dataset. The results from this zero-shot
experiment serve as a baseline for comparing the effectiveness of zero-shot
inference with different settings, few-shot inference, and fine-tuning.

5.3 Evaluation metrics

The performance of the model in the VE task is assessed using multiple
evaluation metrics to understand its strengths and weaknesses. Specifically,
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the metrics of accuracy, precision, recall, F1-score, and balanced accuracy
were used for each experiment

Accuracy
This metric calculates the proportion of correctly classified instances °.

Number of correct predictions

(1)

Accuracy =
J Total number of predictions

Precision

This metric measures the proportion of correctly predicted positive instances
out of all instances predicted as positive. We use the weighted precision
because the dataset is imbalanced. This metric averages the precision for
each class, weighted by the number of true instances in that class °.

True Positives;

P = (2)

"~ True Positives; + False Positives;

Let n; be the number of true instances for class i, and P; be the precision for
class 7. The weighted precision is then calculated as:

3
Weighted Precision = w; - P; (3)

i=1
where the weight w; is defined as:

n;

- <3
D=1 My

(4)

w;

Recall
This metric calculates the percentage of actual positive instances that the

Shttps://scikit-learn.org/stable/modules/model_evaluation.html#
classification-metrics
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model correctly identifies. We use the weighted recall because the dataset is
imbalanced. This metric averages the recall for each class, weighted by the
number of true instances in that class °.

True Positives;

(5)

"7 True Positives; + False Negatives;

Let n; be the number of true instances for class ¢, and R; be the recall for
class 7. The weighted precision is then calculated as:

3
Weighted Recall = w; - R; (6)

i=1
where the weight w; is defined as equation

F1-score

This metric is the harmonic mean of the metrics of precision and recall.
We use the weighted f1-score because the dataset is imbalanced. This metric
averages the F'l-score for each class, weighted by the number of true instances
in that class .

Precision; x Recall
F1=2 7
% Precision + Recall (7)

3
Weighted F1 =Y w; - F1, (8)

i=1
where the weight w; is defined as equation [4]
Balanced Accuracy

This metric is used for multiclass classification to deal with the imbalanced
accuracy °.
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1 3
Balanced Accuracy = 3 Y R 9)
i=1

5.4 Experimental details

In this section, the details of the experiments conducted will be discussed.
All the experiments were performed using the Llama 3.2 Vision model on the
e-SNLI-VE dataset. While the e-SNLI-VE dataset provides explanations, in
the majority of experiments, they were ignored and focused only on classifi-
cation. For the few experiments in which explanations were considered, they
are explicitly mentioned. It is also important to note that all the results
are based on a single run due to high computational costs and time con-
straints. The experiments are divided into four main categories: Zero-shot,
Three-shot, Six-shot, and Fine-tuning.

5.4.1 Zero-shot Inference

In order to achieve a deterministic output and discourage diversity, the tem-
perature parameter is set to zero (temperature=0). For zero-shot inference,
we conducted multiple variations of experiments to assess different factors
that impact the performance of the model. All experiments were performed
twice, one for each prompt described in the chapter of Methodology (Figure
and Figure (3).

To further investigate the understanding of visual information we were in-
spired by the CLOSE model and designed two experiments with limited and
removed visual input. Using randomly cropped versions of the original im-
ages as premises, we aim to investigate performance with restricted vision.
In addition, using black images as premises, we aim to evaluate performance
when visual information is completely absent. We hypothesize that these
settings will significantly affect the performance of the model. In particular,
the conducted experiments are:
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e Baseline zero-shot experiments (Prompt 1 and Prompt 2)
e Zero-shot with explanations (Prompt 1 and Prompt 2)

e Zero-shot with Six Prompts (Each sample evaluated in one out of 6
prompts, which are all possible orderings of the three-class labels in
the prompt)

e Zero-shot with six prompts per sample (Each sample evaluated using
all possible orderings of the three-class labels in the prompt)

e Zero-shot with randomly cropped images (Prompt 1 and Prompt 2)

e Zero-shot with black images as premise (Prompt 1 and Prompt 2)

5.4.2 Three-shot Inference

For the three-shot inference, the model is provided with three labeled exam-
ples before making the prediction. Labeled examples are selected from the
training set to ensure that the model has never seen the examples in the test
set. The experiments are divided into two main categories: Random selec-
tion of three examples and Individual selection of three examples (manually
chosen examples). For the individual selection, the examples selected have
the same premise (image), different hypotheses, and different classes. In both
cases, we have made sure that one example from each category is provided.
Furthermore, to investigate whether the order of the examples affects the
performance of the model, we have performed experiments with a different
class as the first example, keeping the same three examples but in a different
order. Similarly to the zero-shot inference, we set temperature=0. Thus,
the experiments conducted are:

e Three-shot with random selection of the examples: Contradiction la-
bel as a first example (Prompt 1 and Prompt 2)

e Three-shot with random selection of the examples: Entailment label
as a first example (Prompt 1 and Prompt 2)
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e Three-shot with random selection of the examples: Neutral label as a
first example (Prompt 1 and Prompt 2)

e Three-shot with individual selection of three examples: Contradiction
label as a first example (Prompt 1 and Prompt 2)

e Three-shot with individual selection of three examples: Entailment
label as a first example (Prompt 1 and Prompt 2)

e Three-shot with individual selection of three examples: Neutral label
as a first example (Prompt 1 and Prompt 2)

5.4.3 Six-shot Inference

For the six-shot inference, the model is provided with six labeled exam-
ples, randomly selected from the training set. This experiment investigates
whether additional examples improve model performance. We have made
sure that two examples from each category are provided. For this experi-
ment we select a fair order of the examples, which translates that the class
of the first example is different from the class of the last example, and the
order of the first 3 examples is not the same as the order of the last three
examples. Specifically, the order of the examples’ classes is: Contradiction,
Neutral, Entailment, Neutral, Contradiction, Entailment. In addition, as in
the zero-shot and three-shot inference, we set temperature=0. Specifically,
the conducted experiments are:

e Six-shot with fair order (Prompt 1 and Prompt 2)

5.4.4 Fine-tuning

As we have mentioned in Section [1.4] for the fine-tuning we used the tech-
nique QLoRA, which combines LoRA with 4-bit quantization of the model
weights. Table [2] shows some of the main parameters used ] We conducted

Shttps://docs.unsloth.ai/get-started/beginner-start-here/
lora-parameters-encyclopedia
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Parameter Value
num_train_epochs 1
learning rate 2e-4
warmup_steps
(Gradually increases learning rate 5
at the start of training.)
r (Rank of decomposition) 8
lora_alpha 16
(Scaling factor for weight updates.)
lora_dropout 0
(Dropout rate to prevent overfitting.)
evaluation_strategy epoch
weight_decay
(Penalizes large weight updates 0.01
to prevent overfitting.)
seed 3407

Table 2: Fine-tuning parameters

two experiments where the main difference is in the existence of explanations.
Specifically, the experiments conducted are:

e Fine-tuning without the explanations (Prompt 1)

e Fine-tuning with the explanations (Prompt 1)

6 Results

This section presents results from experiments described in the previous chap-
ter. The experiments highlight the performance of the Llama 3.2 Vision on
the VE task, focusing on variations in the order of class labels in the prompt,
the number of examples, and the order of examples. All experiments were
evaluated in the test set, which contains 14740 instances.
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6.1 Zero-shot inference (Baselines)

Table [3| demonstrates the results for prompt 1 (Figure and prompt 2
(Figure for the zero-shot inference. Recall that the only difference in these
two prompts is the classes’ order, and they are not provided with in-context
examples.

In general, prompt 1 achieved an accuracy of 44.5%, while prompt 2 achieved
a slightly lower accuracy of 41.3%. These results confirm the modest ability
of the model to perform visual entailment in a zero-shot setting. The other
metrics (F1, recall, precision, and balanced accuracy) also show that prompt
1 outperforms prompt 2. Notable is that the accuracy is always equal to
recall because we use weighted recall |Z|

In addition, focusing on the metrics per class for each prompt, we can con-
clude that the model over-predicts the entailment class due to high recall.
Both prompts have high precision but low recall for contradiction, indicating
that, while correct predictions are mostly accurate, the model rarely selects
this class. The neutral class has the worst per-class results in both prompts.
Although the weighted metrics were used for the overall performance to en-
sure fairness among the imbalanced dataset, however, the fewer instances of
the neutral class and the ambiguity that can occur have an impact on the
ability of the model to correctly classify that class. Interestingly, the dis-
tribution of predictions among the classes differs between the two prompts.
Concretely, prompt 1 predicts 57.1% the entailment class, while prompt 2 in-
creases the percentage to 82.7%. Therefore, contradiction and neutral classes
are predicted much less often than in prompt 1. This observation suggests
that the order of class labels within the prompt significantly affects the pre-
dictions of the model. The high rate of entailment predictions in prompt 2
may reflect a recency effect, where the last reported class label becomes more
noticeable in the model.

"https://scikit-learn.org/stable/modules/generated/sklearn.metrics.
recall_score.html#sklearn.metrics.recall_score
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Results Prompt 1 Results Prompt 2

Metric Value Metric Value

Accuracy 0.445 Accuracy 0.413

F1 0.409 F1 0.319

Precision 0.536 Precision 0.515

Recall 0.445 Recall 0.413

Balanced Ace. 0.437 Balanced Acc. 0.388
Metrics per class Prompt 1

Metric Entailment Neutral Contradiction

F1 0.657 0.232 0.299

Precision 0.532 0.205 0.760

Recall 0.859 0.266 0.186

Predictions 8418 (57.1%) 4917 (33.4%) 1403 (9.5%)
Metrics per class Prompt 2

Metric Entailment Neutral Contradiction

F1 0.587 0.051 0.254

Precision 0.419 0.086 0.887

Recall 0.979 0.036 0.148

Predictions 12197 (82.7%) 1585 (10.8%) 957 (6.5%)

Table 3: Results for zero-shot inference (Baselines).
6.2 Three-shot Inference

For the three-shot inference, 6 experiments were conducted, each tested with
the two prompts (prompt 1 and prompt 2), resulting in 12 evaluations. With
these experiments, we want to explore how the selection strategy and the
ordering of the selected examples affect the model’s performance. The se-
lection methods we apply are random selection and individual selection. In
random selection, the examples are selected randomly from the training set,
and in individual selection, the three examples are selected from the training
set so that they have the same premise image but differ in hypothesis and
class label. In both strategies, we ensure that one example for each class

27



is selected. Moreover, in order to asses the impact of example ordering we
varied the class label of the first example in each group.

Tables [] and [§] show the examples selected for the experiments. Tables
[6) [ and [§ highlight the results for random selection with contradiction,
entailment, and neutral as the first example, respectively. In addition, Tables
[, [10, and [11] indicate the results for individual selection with contradiction,
entailment, and neutral as the first example, respectively.

Number ImagelD Hypothesis Label Explanation

319663 1065831604.jpg The cyclists Contradiction One group is
were going turning, the
straight. other is going

straight.

273112 38138101.jpg A Entailment Someone who
construction welds on-site
worker is is welding by
welding. definition.

255488 3636796219.jpg  Guys are Neutral Not all guys
playing play for
baseball for charity.
charity.

Table 4: Randomly selected examples for the three-shot inference.

According to the results, we can see that, compared to the zero-shot, in all
three-shot experiments, prompt 2 outperforms prompt 1, especially when a
contradiction appears as the first example, the model is more robust. Fur-
thermore, the experiments with random selection have better accuracy and
F1-scores compared to individual selection, suggesting that the diversity of
premises may provide a richer context for the model and contribute positively.
When the model is exposed to many diverse images during the few-shot infer-
ence, it can learn more distinguishing features. This means that contextual
diversity improves generalization and allows the model to identify more ex-
tensive semantic patterns. On the other hand, in individual selection, where
the premise is the same and differs only in the hypothesis, the model strug-
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Number ImagelD Hypothesis Label Explanation

145101 4453784684.jpg Two men are  Contradiction If the wrestler

wrestling each is female, she

other. cannot be one
of the two
men.

145100 4453784684.jpg The Entailment The
spectators spectators
look upon a were being
female diagnosed by
wrestler. doctor.

145099 4453784684.jpg The doctor is  Neutral It is not
worried about known what
the wrestler. the doctor is

thinking, so
one cannot
infer that the
doctor is
worried.

Table 5: Individually selected examples for the three-shot inference.

gles to understand how to classify correctly and overpredicts the neutral class
as the safest option. These findings might seem counterintuitive, however,
a diversity of premises is more beneficial than only one premise is given be-
cause random selection helps the model to avoid overfitting to the small set
of specific characteristics.

Regarding the order of the three in-context examples, we can infer that it has
a considerable influence on the outcome. Experiments demonstrate that the
first example in the few-shot setting has a large impact on the predictions of
the model. When the class of contradiction is the first, the model performs
the best, particularly in the experiment with prompt 2 (which also has the
class of contradiction as the first in order in the prompt) and random selection
(Table[6], 2nd column). Placing contradiction first in the in-context examples
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Results Prompt 1 Results Prompt 2

Metric Value Metric Value

Accuracy 0.474 Accuracy 0.487

F1 0.449 F1 0.426

Precision 0.464 Precision 0.469

Recall 0.474 Recall 0.487

Balanced Ace. 0.442 Balanced Acc. 0.448
Metrics per class Prompt 1

Metric Entailment Neutral Contradiction

F1 0.587 0.139 0.527

Precision 0.476 0.182 0.641

Recall 0.766 0.113 0.448

Predictions 8387 (56.9%) 2354 (16%) 3998 (27.1%)
Metrics per class Prompt 2

Metric Entailment Neutral Contradiction

F1 0.591 0.053 0.523

Precision 0.441 0.156 0.702

Recall 0.895 0.032 0.416

Predictions 10583 (71.8%) 768 (5.2%) 3389 (23%)

Table 6: Results for three-shot inference with random selection and Contra-
diction as first example.

may cause a primacy bias that helps mitigate the model’s strong bias toward
predicting the entailment class in the corresponding zero-shot scenario.

When comparing the results of zero-shot inference with those of three-shot
inference, we can observe an improvement in the performance when adding
in-context examples. Concretely, the best accuracy and F1-score for zero-shot
is 44.5% (prompt 1) and 40.9%, while the best performance for three-shot
(prompt 2, random selection and contradiction as the first example) is 48.7%
and 42.6%, respectively. The improvement in the balance by class and F1
score for the three-shot inference, particularly for the contradiction class,
suggests a more robust understanding of the task, although the increase in
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accuracy may seem modest. Specifically, the model significantly overpredicts
the entailment class in zero-shot results (prompt 2 yields it in over 80%
of cases). On the other hand, three-shot inference mitigates this bias and
produces more balanced class predictions, especially when random selection
is used. This shift suggests that examples with few shots lead the model
to a more nuanced decision process rather than to a dominant class. Thus,
it reduces the strong class prediction bias present in zero-shot inference.
Moreover, the order of the class labels in the prompt seems to have a less
severe effect on the prediction when the model has been given three in-context
examples, indicating that few-shot learning provides a stabilizing influence
on class prediction.

Results Prompt 1 Results Prompt 2

Metric Value Metric Value

Accuracy 0.412 Accuracy 0.429

F1 0.370 F1 0.380

Precision 0.486 Precision 0.494

Recall 0.412 Recall 0.429

Balanced Acc. 0.392 Balanced Acc. 0.404
Metrics per class Prompt 1

Metric Entailment Neutral Contradiction

F1 0.554 0.146 0.351

Precision 0.418 0.174 0.756

Recall 0.821 0.126 0.229

Predictions 10243 (69.5%) 2760 (18.7%) 1731 (11.7%)
Metrics per class Prompt 2

Metric Entailment Neutral Contradiction

F1 0.559 0.121 0.389

Precision 0.414 0.176 0.777

Recall 0.859 0.092 0.260

Predictions 10825 (73.4%) 2003 (13%) 1911 (13%)

Table 7: Results for three-shot inference with random selection and Entail-
ment as first example.
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Results Prompt 1 Results Prompt 2

Metric Value Metric Value

Accuracy 0.421 Accuracy 0.426

F1 0.372 F1 0.377

Precision 0.516 Precision 0.528

Recall 0.421 Recall 0.426

Balanced Ace. 0.411 Balanced Acc. 0.413
Metrics per class Prompt 1

Metric Entailment Neutral Contradiction

F1 0.594 0.216 0.273

Precision 0.456 0.216 0.770

Recall 0.850 0.215 0.166

Predictions 9723 (66%) 3781 (25.7%) 1235 (8.4%)
Metrics per class Prompt 2

Metric Entailment Neutral Contradiction

F1 0.594 0.204 0.292

Precision 0.453 0.212 0.806

Recall 0.862 0.197 0.179

Predictions 9928 (67.4%) 3544 (24%) 1268 (8.6%)

Table 8: Results for three-shot inference with random selection and Neutral
as first example.

6.3 Six-shot Inference

For the six-shot inference, the model is provided with six in-context examples
instead of three as in the previous experiments. This experiment was moti-
vated by the observation that increasing the number of examples can help
the model better generalize the task and improve the performance [5]. The
in-context examples are selected randomly from the training set, and it is
ensured that we have 2 examples of each class. However, we performed only
one six-shot experiment, and we did not test all the possible permutations
of the class ordering as we did in the three-shot settings. This decision was
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Results Prompt 1 Results Prompt 2

Metric Value Metric Value

Accuracy 0.399 Accuracy 0.451

F1 0.396 F1 0.454

Precision 0.503 Precision 0.482

Recall 0.399 Recall 0.451

Balanced Ace. 0.404 Balanced Acc. 0.432
Metrics per class Prompt 1

Metric Entailment Neutral Contradiction

F1 0.284 0.327 0.543

Precision 0.633 0.244 0.556

Recall 0.183 0.498 0.531

Predictions 1508 (10.2%) 7766 (52.7%) 5465 (37.1%)
Metrics per class Prompt 2

Metric Entailment Neutral Contradiction

F1 0.429 0.260 0.607

Precision 0.567 0.226 0.574

Recall 0.345 0.306 0.644

Predictions 3173 (21.5%) 5153 (35%) 6413 (43.5%)

Table 9: Results for three-shot inference with individual selection and Con-
tradiction as the first example.

made because the number of possible permutations grows rapidly when we
have six in-context results. Figure [I2] presents the selected examples. After
the random selection, to have a fair order, the examples are manually shuffled
so that the class’s order of the first three examples is different from the order
of the last three examples, and also that the first and last examples are not
in the same class.

The results of the six-shot inference are shown in Table Looking at the
results, prompt 2 outperforms slightly prompt 1, achieving an accuracy of
36.5% and 35.0% respectively. The metrics per class show that the model
overpredicts the neutral class for both prompts, and it is the dominant class
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Results Prompt 1 Results Prompt 2

Metric Value Metric Value

Accuracy 0.291 Accuracy 0.299

F1 0.268 F1 0.278

Precision 0.489 Precision 0.486

Recall 0.291 Recall 0.299

Balanced Ace. 0.323 Balanced Ace. 0.334
Metrics per class Prompt 1

Metric Entailment Neutral Contradiction

F1 0.323 0.322 0.182

Precision 0.362 0.224 0.781

Recall 0.292 0.575 0.103

Predictions 4207 (28.5%) 9778 (66.3%) 753 (5.1%)
Metrics per class Prompt 2

Metric Entailment Neutral Contradiction

F1 0.300 0.338 0.217

Precision 0.367 0.232 0.762

Recall 0.253 0.623 0.127

Predictions 3596 (24.4%) 10193 (69.1%) 951 (6.5%)

Table 10: Results for three-shot inference with individual selection and En-
tailment as first example.

with over 70% classified as neutral. This leads to a high recall for the neutral
class but lower precision, which means that from the neutral predictions,
only a few are correctly classified. The other classes have high recall and low
precision, indicating that while correct predictions are mostly accurate, the
model rarely selects these classes.

When comparing the results of six-shot with those of three-shot, we can
extract some important conclusions. Firstly, the performance does not con-
sistently improve with more in-context examples. Although it was expected
that performance would improve and the model would generalize better as
the number of in-context examples increased [5], this did not occur in our
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Results Prompt 1 Results Prompt 2

Metric Value Metric Value

Accuracy 0.300 Accuracy 0.308

F1 0.206 F1 0.224

Precision 0.624 Precision 0.620

Recall 0.300 Recall 0.308

Balanced Ace. 0.367 Balanced Acc. 0.373
Metrics per class Prompt 1

Metric Entailment Neutral Contradiction

F1 0.171 0.414 0.100

Precision 0.728 0.265 0.768

Recall 0.097 0.950 0.053

Predictions 692 (4.7%) 13648 (92.6%) 397 (2.7%)
Metrics per class Prompt 2

Metric Entailment Neutral Contradiction

F1 0.194 0.414 0.125

Precision 0.708 0.266 0.774

Recall 0.112 0.938 0.068

Predictions 826 (5.6%) 13413 (90.1%) 501 (3.4%)

Table 11: Results for three-shot inference with individual selection and Neu-
tral as first example.

six-shot experiment. The best performance of six-shot (36.5%) is actually
lower than the best performance of three-shot (48.7%). This suggests that
improved performance in few-shot experiments would not always reflect a
more in-depth understanding of the task. Instead, it may be a result of
random biases that inflate metrics such as accuracy, including overfitting to
the dominant order. Secondly, in a six-shot experiment, there is class bias
because the majority of the predictions are classified as neutral, which is also
observed in the individual selection of the three-shot experiments.

Compared to zero-shot, six-shot inference has a slightly more balanced per-
formance per class, as reflected by the increase in F1-score on the classes of
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Number ImagelD Hypothesis Label Explanation

319663  1065831604.jpg The cyclists were Contradiction One group is turning,
going straight. the other is going

straight.

255488  3636796219.jpg Guys are playing Neutral Not all guys play for
baseball for charity.
charity.

273112 38138101.jpg A construction Entailment Someone who welds
worker is welding. on-site is welding by

definition.

109227  1001633352.jpg Four people are in ~ Neutral Not everyone jumping
a life or death from the top of the
situation. stairs is in a life or

death situation.

39031 4597029194.jpg An old man Contradiction A man can be either
playing video playing an accordion
games on his or playing video
Laptop games.

130144  3426964258.jpg Some people in a Entailment Some people in a

group are holding
multicolored flags.

group are people, and
green, white, and tan
striped flags are
multicolored flags.

Table 12: Randomly selected examples for the six-shot inference.

contradiction and neutral, but results in lower overall accuracy. Specifically,
zero-shot achieves an accuracy of 44.5% while six-shot achieves an accuracy
of 36.5%. This indicates that additional in-context examples can introduce
noise, especially if the model overfits patterns in the examples that do not
generalize well to unseen test instances. Conversely, while zero and three-
shot experiments lead to increased accuracy, this enhanced performance may
not always be due to the right reasons.
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Results Prompt 1 Results Prompt 2

Metric Value Metric Value

Accuracy 0.350 Accuracy 0.365

F1 0.319 F1 0.356

Precision 0.565 Precision 0.559

Recall 0.350 Recall 0.365

Balanced Ace. 0.398 Balanced Acc. 0.402
Metrics per class Prompt 1

Metric Entailment Neutral Contradiction

F1 0.240 0.405 0.333

Precision 0.573 0.268 0.754

Recall 0.152 0.828 0.214

Predictions 1381 (9.4%) 11738 (79.6%) 1621 (11%)
Metrics per class Prompt 2

Metric Entailment Neutral Contradiction

F1 0.373 0.383 0.322

Precision 0.523 0.262 0.788

Recall 0.289 0.715 0.203

Predictions 2883 (20%) 10386 (70.5%) 1471 (10%)

Table 13: Results for six-shot inference with random selection and fair order.

6.4 Zero-shot Inference

In this subsection, we conducted five experiments to investigate whether
the performance observed in zero-shot baseline experiments reflects a true
understanding of the VE task or whether biases lead to it. These experiments
aim to test the reliability of the model.

Specifically, we implemented a zero-shot experiment where each sample was
evaluated using one of the six permutations of the three class labels. Instead
of using the same prompt structure for all test samples, in this experiment,
each sample was assigned to one specific label ordering. Then, we conducted
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a zero-shot experiment in which each example was evaluated with all six
class orderings. In addition, we investigated whether adding an explanation
to the output would give us a better justification for the class selection.
Furthermore, we performed an experiment where we replaced the premise
images with randomly cropped versions. Finally, we perform an experiment
where we replace the premise images with black images.

Table [14] shows the results for the zero-shot with 6 prompts. Each instance
was evaluated in one of six prompts, which are all possible orderings of the
three-class labels in the prompt. This experiment aimed to mitigate the po-
sitional bias observed in the previous experiments. The accuracy (40.8%)
is decreased compared to the accuracy of the baseline models (44.5% and
41.3%). Looking at the metrics per class, most predictions are in the entail-
ment class, and the contradiction class is selected less than 10%, as in the
baseline models.

Results for 6 prompts

Metric Value

Accuracy 0.408

F1 0.336

Precision 0.521

Recall 0.408

Balanced Acc. 0.396

Metrics per class

Metric Entailment Neutral Contradiction

F1 0.622 0.171 0.184
Precision 0.472 0.168 0.801
Recall 0.911 0.174 0.104

Predictions 10066 (68.3%) 3928 (26.6%) 743 (5%)

Table 14: Results for zero-shot with 6 prompts. Each sample was evaluated
in one of 6 prompts, which are all possible orderings of the three-class labels
in the prompt.

Table [L5| presents the results for the zero-shot experiment, in which each in-
stance was evaluated in all the permutations of the class labels in the prompt.
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The overall accuracy shows how many predictions match with the ground
truth, while the majority vote accuracy counts a prediction as correct only if
at least four out of six outputs match the correct label. The drop in major-
ity vote accuracy compared to the overall accuracy suggests that the model
frequently changes predictions across different prompts, highlighting its sen-
sitivity. Figure |p| shows the per-class performance. The high proportion of
recall for entailment indicates that the model frequently predicts entailment.
In contrast, contradiction achieves a high precision (80.70%) but suffers from
a low recall (11.79%), implying that while the model is usually correct when
predicting contradiction, it rarely chooses this class. The neutral class consis-
tently shows the weakest performance across all metrics, suggesting that the
model struggles to identify neutral relationships in the VE task. To explore
the sensitivity of the prompt, Figure [] illustrates the accuracy obtained for
each of the six prompts. The accuracy fluctuates across prompts, confirming
that the order of class labels in the prompt influences the model’s predictions.
Furthermore, Figure [7] reveals how often the model’s prediction changes per
sample across the six prompts. Almost half samples (7106) received the same
prediction across all six prompts, which indicates that the model was fully
consistent for those cases. However, 6647 samples had two different predic-
tions, and 964 samples had three different predictions, confirming that the
model was highly inconsistent for some cases. These results demonstrate
the instability of the model’s output under minimal modifications and are
consistent with the drop in majority vote accuracy.

Results for 6 prompts each instance
Overall Accuracy 0.410
Majority Vote Accuracy 0.337

Table 15: Accuracy for zero-shot inference with 6 prompts. Each sample was
evaluated in 6 prompts.

For the next experiment, we modified the prompt slightly so that the model
was required to explain its choice, except for the label. To analyze the rea-
soning behavior of the model, Figure |8 demonstrates the average length of
the explanation per class for both prompts. In both cases, Neutral expla-
nations are longer, indicating that the model over-explains these cases. The
model requires more justification to explain the lack of implication or contra-
diction, and this is because neutral often contains ambiguity, which makes it
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Per-Class Precision, Recall, and F1-Score

I Precision
B Recall
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Contradiction
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Figure 5: Results for performance per class for the zero-shot inference with

6 prompts for each instance.

Accuracy per Prompt ID
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Figure 6: Prompt sensitivity
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Per-Sample Consistency Across 6 Prompts

7000 A

6000

- w
Q Q
(=] (=]
o o

Number of Samples
w
Q
o
o

2000

1000 4

T T T
1 2 3
Unique Predictions per Sample (out of 6)

Figure 7: Results per sample consistency across six prompts.

more difficult to justify them concisely. In addition, the prompts have similar
length explanations for the classes of entailment and neutral. This suggests
that for entailment and neutral, the model is robust to prompt variations.
Figure [0 shows an example where the model incorrectly predicts neutral in-
stead of contradiction, and the explanations are similar. Conversely, Figure
[10] presents an example where the model predicts different outputs depending
on the prompt. One prediction matches the true label, while the other does
not. However, both explanations are logically correct, indicating that even
when the prediction is incorrect, the model can still produce a reasonable
logic.

For the next experiment, we randomly cropped versions of the original im-
ages and used them as premises. As shown in Table overall performance
decreases compared to baseline results. The decrease in accuracy was ex-
pected since the cropped images do not have all the details of the original
images. Figure presents an example of the original image and the new
cropped image used as a premise.

The last experiment with zero-shot is to replace the original images with
black images and ask for an explanation. The results from this experiment
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(a) Explanations length per class for (b) Explanations length per class for
prompt 1 prompt 2

Figure 8: Length per class for textual explanations

are very interesting because the model tends to hallucinate. Table [17] shows
the performance of the model, which is worse than the performance of the
baseline models, which is expected due to the removal of the model’s vi-
sual ability to make accurate predictions. As shown from the metrics per
class, the model overpredicts the entailment class while severely underpre-
dicts the contradiction class (0.79% and 1.0% for prompt 1 and prompt 2,
respectively). Figure [12] shows an example of the original image. Although
the original image clearly shows two baseball players with baseball uniforms
and a baseball bat, the model entails the hypothesis 2 basketball players”.
The hallucination of the model is even clearer in the reasoning: ”The image
shows two individuals wearing basketball jerseys, which is consistent with the
description of basketball players.” This result shows that the model imagines
visual evidence to support the hypothesis and justifies the high proportions
of entailment class (84.17% and 89.95% for prompt 1 and prompt 2, respec-
tively).

6.5 Fine-tuning

Finally, the last two experiments are fine-tuning the model using prompt 1,
due to time constraints.
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premise,hypothesis,label,prediction,explanation

Prompt 1:

flickr30k_images/3416050480.jpg,"A person is at a diner, ordering an omelette."”,contradiction,neutral,"The image shows
a horse and rider jumping over an obstacle, which does not provide enough information to determine the truth of the text
description about someone ordering an omelette at a diner."

Prompt 2:

flickrgok_images/3416050480.jpg,"A person is at a diner, ordering an omelette.",contradiction,neutral,"The image shows
a horse and rider jumping over an obstacle, which does not provide enough information to determine the truth of the
Hypothesis about someone ordering an omelette at a diner.”

Figure 9: Example of the experiment zero-shot inference with explanations.

premise,hypothesis,label, prediction,explanation

Prompt 1:

flickrgok_images/97162852.jpg,Woman wearing nothing sewing her thumb.,contradiction,contradiction,"** The image
depicts a woman wearing a red and white plaid shirt, not ""nothing"", while operating a sewing machine. This contradicts the
text description of the woman being naked."

Prompt 2:

flickrgok_images/97162852.jpg,Woman wearing nothing sewing her thumb.,contradiction,neutral,"** The image does
not provide enough information to determine the truth of the Hypothesis, as it is unclear what the woman is actually doing or
what she is wearing. The description ""sewing her thumb"" could be interpreted in various ways, and without more context or
visual evidence, it is impossible to definitively classify the relationship between the image and the text.”

Figure 10: Example 2 of the experiment of zero-shot inference with explana-
tions.
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Figure 11: Example of the experiment zero-shot inference with the cropped
versions of the original images.

premise, hypothesis,label,prediction,explanation

Prompt 1:

flickr3ok_images/2725441885.jpg,2 basketball players,contradiction,entailment,"The image shows two
individuals wearing basketball jerseys, which is consistent with the description of basketball players.”

Prompt 2:

flickrgok_images/2725441885.jpg,2 basketball players,contradiction,entailment,"The image shows two
individuals wearing basketball jerseys, which is consistent with the description of basketball players."”

Figure 12: Example of the experiments with black premise. (The image is
the original image.)
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Results Prompt 1 Results Prompt 2

Metric Value Metric Value

Accuracy 0.344 Accuracy 0.380

F1 0.288 F1 0.321

Precision 0.533 Precision 0.552

Recall 0.344 Recall 0.380

Balanced Ace. 0.363 Balanced Acc. 0.386
Metrics per class Prompt 1

Metric Entailment Neutral Contradiction

F1 0.535 0.296 0.057

Precision 0.471 0.223 0.794

Recall 0.618 0.440 0.030

Predictions 6848 (46.46%) 7480 (50.75%) 214 (1.45%)
Metrics per class Prompt 2

Metric Entailment Neutral Contradiction

F1 0.572 0.268 0.128

Precision 0.459 0.227 0.853

Recall 0.760 0.328 0.069

Predictions 8638 (58.60%) 5502 (37.33%) 493 (3.14%)

Table 16: Results for zero-shot inference with randomly cropped images as
premise.

The results for the first experiment without any explanation are presented in
Table [I§8 As shown in Table [I8] the model achieved a high overall accuracy
of 83.3%, with an F1 score of 0.836, precision of 0.846, and recall of 0.833.
These results indicate that the model generalizes well across the three classes.
The most challenging class is the neutral, because the precision (0.679) in
combination with the high recall (0.807) indicates that the model frequently
misclassifies other classes as neutral. When compared to zero and few-shot
experiments, the fine-tuned model shows a significant improvement in both
general and class-specific performance. When comparing with the state-of-
the-art model OFA-X, which achieved an accuracy of 80.9%, the Llama 3.2
Vision fine-tuned model performs competitively, and outperforms, achieving
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Results Prompt 1 Results Prompt 2

Metric Value Metric Value
Accuracy 0.360 Accuracy 0.369
F1 0.250 F1 0.246
Precision 0.504 Precision 0.543
Recall 0.360 Recall 0.369
Balanced Ace. 0.353 Balanced Ace. 0.357
Metrics per class Prompt 1
Metric Entailment Neutral Contradiction
F1 0.520 0.211 0.031
Precision 0.369 0.290 0.769
Recall 0.878 0.165 0.016

Predictions 12407 (84.17%) 2163 (14.67%) 117 (0.79%)

Metrics per class Prompt 2

Metric Entailment Neutral Contradiction
F1 0.531 0.161 0.043
Precision 0.370 0.317 0.851
Recall 0.940 0.108 0.022

Predictions 13259 (89.95%) 1297 (8.80%) 148 (1.00%)

Table 17: Results for zero-shot inference with black images as premise.

83.3% accuracy.

The second experiment aims to evaluate the explanations of the model. Met-
rics like BLEU [25] (BiLingual Evaluation Understudy) and ROUGE [20]
(Recall-Oriented Understudy for Gisting Evaluation) are traditional metrics
used for evaluation of generated text, however fail to consider the lexical and
syntactic diversity that preserves meaning [39]. This is because they focus
on the n-gram overlap between the generated text and the reference text.
Thus, explanations with similar meaning but different phrasing can receive
low scores. On the other hand, BERTScore [39] is highly correlated with hu-
man evaluations and computes token similarity using contextual embeddings
[39]. Table [19| shows the experiment results. According to the BERTScore,
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the model achieves an Fl-score of 0.8916, indicating that the generated ex-
planations are semantically similar to the reference explanations, even if they
differ in the exact words, which is justified by the high BERTScore and the

low scores of BLUE and ROUGE.

Results for fine-tuned model (prompt 1)

Metric Value
Accuracy 0.833
F1 0.836
Precision 0.846
Recall 0.833
Balanced Acc. 0.831
Metrics per class
Metric Entailment Neutral Contradiction
F1 0.864 0.737 0.876
Precision 0.858 0.679 0.947
Recall 0.870 0.807 0.816
Predictions 5289 (35.88%) 4521 (30.67%) 4930 (33.45%)

Table 18: Results for the fine-tuned model with prompt 1.

Metric Recall Precision F1 Score
BLEU Score 0.0802

ROUGE-1 0.3486 0.4182 0.3582
ROUGE-2 0.1393 0.1582 0.1380
ROUGE-L 0.3059 0.3648 0.3134
BERTScore 0.8869 0.8968 0.8916

Table 19: Results for the evaluation of explanation.
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6.6 Answering the Research Questions

After our experimentation, we can answer the questions we set at the begin-
ning of the Experiments section.

e How does Llama 3.2 Vision perform on the visual entailment task in a
zero-shot inference?
In the zero-shot inference (baseline models), the performance of the
model is limited, achieving an accuracy of 44.5% and 41.3% depending
on the prompt and specifically on the class label order. The model
showed a tendency to overpredict the entailment class.

o What is the impact on zero-shot inference of having an incomplete or
absent dataset?
The two experiments conducted (cropped images and black images)
revealed a drop in performance. Both experiments struggle to correctly
classify mainly the contradiction class. Also, in the experiment with
black images, the model hallucinates to entail the hypothesis, and thus
it overpredicts the entailment class.

o What is the impact of few-shot inference on the model’s accuracy, and
how does performance vary with different numbers of examples?
The best few-shot results improve the performance (48.7%) over the
zero-shot setting, and it was with three in-context examples. However,
increasing to six-shot inference does not lead to further improvement,
while the accuracy drops to 36.5% and the model becomes biased to-
ward the neutral class. This indicates that additional in-context exam-
ples cannot guarantee improvement in the model’s performance.

e How does the order of class labels in the prompt affect model predic-
tions?
The order of the class within the prompt influences the model’s pre-
diction, and it is clearly shown in the experiment, where each sample
was evaluated on the six prompts, and we have a different accuracy for
each.

o What is the impact of varying the order of examples in few-shot infer-
ence on model performance?
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The order of the in-context examples significantly impacts the model’s
performance. When the contradiction class appears first, especially
with Prompt 2 and random selection, the model performs best (48.7%
accuracy). The importance of example ordering and content diversity
in few-shot inference is further supported by the fact that random selec-
tion (diverse premises) produces better generalization than individual
selection (same premise).

To what extent does fine-tuning improve model performance compared
to zero-shot and few-shot inference?

Fine-tuning the model for the VE task yields a significant performance
boost over both zero and few-shot settings. The model achieves an ac-
curacy of 83.3% and the metrics per class also have a notable increase in
all the classes. Compared to the OFA-X model, which achieves an ac-
curacy of 80.9% in e-SNLI-VE, the fine-tuned Llama 3.2 Vision model
surpasses it. Moreover, the model has a strong interpretability since
it achieves an Fl-score of 0.8916 using the BERTScore, an evaluation
metric that utilizes contextual embeddings for the explanation evalua-
tion. This indicates high semantic similarity between the reference and
generated text.

Discussion

This section focuses on the key findings and the limitations of the project
and directs future work. The experiments explored various configurations
for zero-shot, few-shot, and fine-tuned inference, however, the project has
some limitations. Moreover, observations and findings that come from this
project can act as a strong starting point for further research, allowing for
an improved understanding of multimodal inference in the future.

7.1 Discussion of key findings

This study investigates the capabilities of the Llama 3.2 Vision model on
the VE task using the e-SNLI-VE dataset. The experiments yielded various
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findings. First, the baseline results demonstrated modest performance, indi-
cating the limited capabilities of the model in zero-shot inference. Three-shot
inference improves the performance of the model, however, the study reveals
that additional in-context examples are not always beneficial. The most sig-
nificant finding is the major improvement after fine-tuning. In addition, the
model’s performance was reduced in the experiments with limited or absent
vision, and the model was highly prone to hallucination. The experiments re-
veal that factors such as the order of the class labels in the prompt, the order
of the in-context examples, and the examples selection strategy significantly
affect the model’s performance.

These findings offer several lessons for the broader MLLM research. In partic-
ular; the study underscores that while general pre-training is powerful, even
advanced MLLMs such as Llama 3.2 Vision may not be suitable for complex
reasoning tasks such as VE without special adaptation. The few-shot re-
sults underline that a deeper understanding of how models utilize context is
needed. Additionally, the study highlights that the effectiveness of in-context
learning depends on the number, quality, diversity, and ordering of examples.
Also, the dramatic increase in performance after fine-tuning exposes that the
model’s visual and linguistic embeddings are highly adaptable.

7.2 Limitations

The findings provide helpful insights into the visual entailment capabilities
of Llama 3.2 Vision, but there are some limitations that should be noted.

Firstly, every experiment was evaluated once because of time and computa-
tional constraints. The metrics are not averaged over multiple runs. Because
of this, all results reported can be affected, and much more accurate estimates
would result from repeated experiments.

Another limitation lies in the restricted experiments for the few-shot infer-
ence. A small number of configurations were tested, particularly for the
six-shot inference, which included just one permutation. Several possible
combinations are left out. Thus, a few of the combinations could yield more
improved and even more stable results. However, given the issues found with
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biases, sensitivity to order effects, and hallucinations, strong improvements
for the right reasons are unlikely.

In addition, the fine-tuning was conducted using only the first prompt. It is
not clear how performance could be differentiated with the second prompt.
However, we expect that predictions will not be greatly affected by the order
of the classes in the prompt, given the significant performance gain observed
by the fine-tuning.

7.3 Future work

Based on this study, various potential paths can be explored for further
research.

One approach would be to repeat each experiment multiple times and cal-
culate the mean and standard deviation in order to assess the stability and
robustness of the findings.

In addition, a worthwhile future work would be a further investigation with
a few shots of inference. For example, exploring different sets of examples
for each strategy in three shots, examining different orderings of classes for
six shots, and testing a larger number of examples within a context, such as
fifteen shots, could still be valuable, not primarily to focus on performance,
but to gain deeper insights, such as understanding the threshold beyond
which providing more examples becomes disadvantageous.

Another promising direction is to integrate Chain-of-Thought (CoT) prompt-
ing into few-shot and zero-shot inference. This is an engineering technique
that encourages the model to define complex tasks in a sequence of logi-
cal steps towards the final solution [34]. This technique has significantly
improved many tasks, especially for reasoning [34].

A broader direction for future work includes systematic prompt engineering.
This involves improving the wording and structure of the prompts. Since
this study demonstrates that the design of the prompts significantly affects
the predictions, optimizing the prompts could lead to better generalization
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and fewer hallucinations.

Finally, another important extension would be to asses the VE task using
larger multimodal models, while the Llama 3.2 Vision model with 11B pa-
rameters used for this study is a small-sized vision LLM. Evaluating larger
models could reveal whether the increased number of parameters can improve
the model’s reasoning and robustness.

8 Conclusion

In conclusion, this thesis explored the capabilities of the Llama 3.2 Vision
model regarding the VE task through the zero-shot, few-shot, and fine-tuning
settings.

We conducted several experiments to evaluate the performance of the model
on the VE task and investigate how it is affected by factors such as the
order of class labels, the number and arrangement of in-context examples,
and the completeness of visual information. Our findings revealed the fact
that zero-shot inference has a moderate performance. In addition, the model
suffers from class bias also label-ordering sensitivity in the prompt. Three-
shot inference with careful example selection led to an improvement in the
performance and reduction of biases. Nevertheless, the addition of in-context
examples (six-shot setting) did not lead to an increase in performance; on
the contrary introduced noise.

According to the experiments, it was revealed that when they involved cre-
ating explanations and limiting vision (cropped and black images) that the
model can produce believable reasoning however, it is also highly prone to
hallucinations. Fine-tuning the model increases the performance significantly
and demonstrates the capabilities of the model when specifically tuned to a
task. Moreover, the model has obtained strong interpretability, providing
human-like explanations.

Overall, the study stresses the Llama 3.2 Vision model’s strengths and lim-
itations regarding the VE task. Future directions include the integration
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of advanced prompt techniques, such as Chain-of-Thought prompting, and
investigating the effect of scaling in larger multimodal models.
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