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Abstract

We study whether an annealing-based, QUBO-driven optimiser offers practical advantages over
classical methods for hyperparameter optimization (HPO) in Natural Language Processing
(NLP). We model a small HPO task, tuning learning rate, epochs, and batch size for DistilBERT
on IMDb dataset into a compact QUBO with 16 binary variables. A Random Forest surrogate,
trained on all 18 true configurations, provides a fixed, noise-free landscape on which we
compare an annealing-based solver (D-Wave Ocean SimulatedAnnealingSampler) against
Optuna/TPE (Bayesian optimization) and DEAP/GA (evolutionary algorithm) over 100 runs
with equal resources.

The annealing-based solver found the global optimum in 100% of runs with zero variance,
while DEAP and Optuna achieved 82% and 71% success, respectively. Mean performances
were near-identical (≈ 0.93) across methods, so reproducibility was the differentiator.

Statistical tests (Kruskal-Wallis, Mann-Whitney with Holm-Bonferroni) confirmed signifi-
cant differences (p < 0.001), with small-to-medium effect sizes. However, annealing has higher
costs: a one-time full evaluation of 18 configurations (∼5,400 seconds) and slower per-run
search time (∼10.2 seconds) compared to DEAP (∼0.060 seconds) and Optuna (∼0.025
seconds). For this small space, annealing’s setup cost is not offset, but it excels in small,
discrete spaces reused often and requiring high reproducibility.

The contributions include (i) a systematic QUBO formulation for NLP HPO, (ii) a
matched-budget benchmark against strong classical baselines on a fixed surrogate landscape,
(iii) evidence-based guidance on when to prefer annealing versus classical search, and (iv) a
fair analysis of scalability limitations. All experiments use a classical annealer. Implications
for quantum hardware (noise, embedding, precision) are discussed.
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1 Introduction

1.1 Background and Motivation

In Natural Language Processing (NLP), the performance of deep learning models heavily depends
on choosing the right hyperparameters. These configuration choices, including learning rate, batch
size, and number of epochs, influence accuracy, training time, and generalization capabilities of the
model. Still, hyperparameter optimization (HPO) is often one of the most time-consuming and
resource-intensive parts of model development.
Traditional HPO methods, such as grid search and random search [BB12], become impractical as
models grow larger, especially for transformer-based models like BERT [DCLT19]. Each evaluation
can take a long time, and the number of possible configurations increases rapidly. Advanced classical
methods, like Bayesian optimization or evolutionary algorithms, are more efficient but can produce
inconsistent results across runs.
Quantum annealing [KN98], offered by systems like D-Wave [Sys], provides a different approach. It
is designed to find optimal solutions for combinatorial problems by formulating them as Quadratic
Unconstrained Binary Optimization (QUBO) problems [Glo22]. Quantum annealers use quantum
effects, like tunneling, to explore solutions, potentially avoiding getting stuck in suboptimal results.
However, there is little evidence on how well annealing works for NLP HPO, including how to
encode the problem, how it compares to classical methods, and its computational costs.
In this work, we evaluate an annealing-based QUBO solver using D-Wave’s SimulatedAnnealingSam-
pler (a classical annealer) as a proxy, implications of which are discussed later.

1.2 Problem Statement

Modern transformer models require tuning mixed-discrete hyperparameters whose effects interact
non-linearly. Each evaluation is costly, so HPO is both compute-intensive and operationally
constraining. We encode NLP HPO as a QUBO and compare an annealing-based solver to strong
classical baselines (Optuna/TPE, DEAP/GA) under matched budgets, assessing solution quality,
efficiency, and reproducibility.

1.3 Research Questions

This thesis investigates whether annealing-based QUBO optimization can offer practical advantages
for NLP hyperparameter tuning. In our experiments we use D-Wave’s classical SimulatedAnneal-
ingSampler as a proxy for annealing behaviour.

Main research question.

Can an annealing-based QUBO solver outperform classical methods for NLP
hyperparameter tuning in terms of accuracy, efficiency, and consistency?

To address this, we formulate four focused sub-questions.
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Sub-question 1: QUBO formulation

How can NLP hyperparameter optimization be formulated as a Quadratic
Unconstrained Binary Optimization (QUBO)?

We create a clean mapping that uses binary encodings for discrete choices, auxiliary variables for
interactions, and penalty terms that enforce the validity of such combinations [Glo22].

Sub-question 2: Model performance

How do the best configurations found by annealing compare to those found
by classical methods on an NLP task?

We evaluate DistilBERT fine-tuning on IMDb, comparing the true validation accuracy of the
selected configurations and the success rate in finding the global optimum.

Sub-question 3: Computational requirements

How do the time and resources needed for annealing compare to classical
methods, and how do they scale?

We measure one-time setup cost, marginal per-run cost, number of true evaluations and surrogate
queries, and wall-clock time, analyzing how they scale [KYN+15].

Sub-question 4: Optimization consistency

Is annealing more consistent across runs than classical methods, and by how
much?

We assess consistency by measuring the variability in best configurations and success rates across
repeated runs.

1.4 Research Objectives

To answer these questions, we set four clear objectives.

Objective 1: Develop QUBO Formulation The first objective is to design and implement a
QUBO model for NLP HPO. This includes (i) binary encodings for discrete/categorical choices,
(ii) auxiliary variables to capture interactions between terms, (iii) penalty terms to enforce valid
results, and (iv) a brief scalability analysis [Glo22].

Objective 2: Implement a Comparable Evaluation Framework The second objective
includes creating an evaluation framework to compare an annealing-based solver with classical base-
lines. This includes an annealing pipeline using D-Wave Ocean SDK (SimulatedAnnealingSampler
in our experiments) [Sys], Bayesian Optimization [SLA12, ASY+19] and an Evolutionary Algorithm
[FDRG+12], choosing evaluation metrics, and designing statistical tests for comparison.
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Objective 3: Empirical Evaluation on Real NLP Task The third objective focuses on
conducting experiments on a representative NLP task: sentiment analysis on the IMDb dataset
[MDP+11] with DistilBERT [SDCW20]. It also includes tuning learning rate, epochs, and batch
size, and reporting both surrogate-level outcomes and true validation performance for selected
configurations.

Objective 4: Provide Practical Guidelines The final objective is to develop practical rec-
ommendations: when annealing-based QUBO search is attractive (e.g., small-to-medium discrete
spaces, strong reproducibility requirements), how to formulate a QUBO, and when classical methods
are preferable.

1.5 Scope and Limitations

1.5.1 In Scope

This study evaluates hyperparameter optimization (HPO) for a single, representative NLP task:

• Task & data. Binary sentiment classification on IMDb [MDP+11]. We use the official
25,000/25,000 train/test split and derive a fixed 90/10 split from the 25,000 train portion for
training/validation (seed=42). The test set remains untouched until final evaluation.

• Model. DistilBERT (base, uncased) [SDCW20] fine-tuning with standard training settings,
measuring validation accuracy as the main metric.

• Search space. Three discrete hyperparameters: learning rate ∈ {1e−5, 3e−5, 5e−5}, epochs
∈ {2, 3, 4}, batch size ∈ {16, 32}, resulting in 3× 3× 2 = 18 configurations.

• Optimisers.

1. Annealing-based QUBO solver implemented with D-Wave Ocean’s SimulatedAnneal-
ingSampler [Sys].

2. Bayesian optimization via Optuna (TPE) [SLA12, ASY+19].

3. Evolutionary algorithm via DEAP (GA) [FDRG+12].

• Surrogate usage. A Random Forest surrogate [Bre01] is trained on all 18 ground-truth
evaluations to define a fixed landscape shared by all optimisers. This fixed landscape isolates
optimiser behaviour from model-training noise.

1.5.2 Limitations

Simulated annealing, not QPU. The experiments use a classical simulated annealer (not a
quantum processing unit). This means that results do not capture QPU-specific effects such as
embedding/chain breaks, analog noise, and coefficient precision limits [RWJ+14].

Small discrete space. The 18-point space allows full evaluation but is smaller than many
real-world HPO problems.
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Discrete focus. We tune only three discrete hyperparameters, omitting continuous or larger
spaces, which may affect optimiser behaviour.

Surrogate approximation. Although trained on all 18 points, a surrogate can still introduce
small approximation error.

1.6 Thesis Structure

The remainder of this thesis is organized as follows.

Section 2: Background and Theory. Covers HPO methods, quantum and annealing-based
optimization, QUBO formulation, NLP basics, and related work.

Section 3: Methodology. Describes the experimental setup, including the NLP task, search
space, QUBO design, surrogate model, optimiser pipelines, and statistical analysis.

Section 4: Results. Presents findings, including baseline performance, optimiser comparisons,
consistency, computational costs, and statistical tests.

Section 5: Discussion. Analyzes results, explains when annealing excels or falls short, compares
to prior work, and discusses limitations.

Section 6: Conclusions. Summarizes contributions, evaluates annealing-based QUBO for NLP
HPO, and suggests future research directions.

2 Background and Theory

2.1 Hyperparameter Optimization in Machine Learning

Hyperparameters are settings that control how a machine learning model learns, but they are not
learned from the data itself. Examples in deep learning and NLP include learning rate, batch size,
number of epochs, dropout rate, and model architecture choices like the number of layers. These
settings greatly affect model accuracy, training time, and how well the model generalizes to new
data.
The goal of hyperparameter optimization (HPO) is to find the best configuration, defined as:

θ∗ = argmin
θ∈Θ

L(Mθ, Dval) (1)

where θ is a hyperparameter configuration, Θ is the search space, Mθ is the model trained
with θ, and L is the validation loss on Dval. If accuracy is the target, the objective becomes
argmaxθ∈Θ Acc(Mθ, Dval).
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2.1.1 Classical Optimization Methods

Grid Search. Grid search tests every possible combination of predefined hyperparameter values.
For k hyperparameters with ni values each, it requires

∏k
i=1 ni evaluations. It is straightforward

and guarantees finding the best configuration in the grid, but it becomes impractical as the number
of combinations grows, struggles with continuous variables, and does not learn from previous trials.

Random Search. Random search samples configurations randomly within a fixed budget [BB12].
It often performs better than grid search when only a few hyperparameters matter most, as it
covers the space more broadly. However, it offers no guarantee of finding the best solution and does
not use past results to guide future samples.

Bayesian Optimization. Bayesian optimization (BO) models HPO as a sequential decision
process using a surrogate model to predict performance [SLA12]. Common surrogates include
Gaussian Processes or Tree-structured Parzen Estimators (TPE, used by Optuna [ASY+19]). An
acquisition function, like Expected Improvement (EI) or Upper Confidence Bound (UCB) balances
exploring new areas and exploiting known good ones. BO is efficient and provides uncertainty
estimates, but maintaining the surrogate adds overhead, and it can struggle with many discrete or
categorical variables or high-dimensional spaces.

Evolutionary Algorithms. Evolutionary algorithms (EAs) evolve a population of candidate
solutions through selection, crossover, and mutation [FDRG+12]. They handle discrete and mixed-
type variables well, maintain diverse solutions, and can escape suboptimal solutions via mutation.
However, they need tuning of their own parameters (e.g., population size), often require more
evaluations, and lack strong theoretical guarantees.

2.2 Quantum Annealing Fundamentals

2.2.1 Quantum Computing Paradigms

Quantum computing uses quantum phenomena like superposition, entanglement, and interference
to process information differently from classical computers. Gate-based quantum computing uses
quantum logic gates to manipulate qubits, supporting a wide range of algorithms (e.g., Shor’s or
Grover’s). Adiabatic quantum computing (AQC) relies on slowly evolving a quantum system to
stay in its lowest-energy state [FGG+01]. Quantum annealing (QA) is a specialized form of AQC
focused on optimization [KN98].

2.2.2 The Quantum Annealing Process

Quantum annealing explores an energy landscape using a time-dependent Hamiltonian:

H(t) = A(t)H0 +B(t)HP , t ∈ [0, T ], (2)

where H0 is a “driver” Hamiltonian with an easy ground state, and HP is the problem Hamiltonian
that encodes the objective (typically an Ising model).
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An Ising model assigns each variable a spin si∈{−1,+1} and defines an energy HIsing =
∑

i hisi +∑
i<j Jijsisj, where hi are local fields and Jij are couplings. Minimizing this energy selects spin

alignments (negative Jij favors alignment, positive favors anti-alignment).
The schedule functions satisfy A(0) ≈ 1, B(0) ≈ 0 and A(T ) ≈ 0, B(T ) ≈ 1 [KN98]. If the evolution
is slow enough, the system stays in the ground state, finding the optimal solution. Unlike classical
methods that climb over barriers, QA can “tunnel” through narrow barriers, potentially avoiding
local minima [KN98].
Note. In this thesis we evaluate an annealing-based solver using D-Wave’s SimulatedAnnealingSampler
(classical) on QUBO instances. Implications for quantum hardware (noise, embedding, precision)
are discussed later.

2.2.3 QUBO Formulation

Quadratic Unconstrained Binary Optimization (QUBO) is the standard format for annealers [Luc14].
The goal is to minimize:

min
x∈{0,1}n

f(x) = xTQx =
∑
i

Qii xi +
∑
i<j

Qij xixj, (3)

with binary vector x and coefficient matrix Q. QUBO is equivalent to the Ising form via si = 2xi−1,

HIsing =
∑
i

hi si +
∑
i<j

Jij sisj. (4)

Constraints are enforced by adding quadratic penalties. For an equality constraint g(x) = 0,

fconstrained(x) = f(x) + P g(x)2, (5)

where P is large enough to prevent invalid solutions [Glo22]. Common encodings include one-hot
selections and auxiliary variables to keep interactions quadratic.

2.3 Natural Language Processing and Deep Learning

2.3.1 Transformer Architecture

The Transformer [VSP+17] uses self-attention and feed-forward networks instead of recurrence or
convolution. Its key components are:

• Multi-head self-attention (mixes context across positions),

• Positional encodings/embeddings (adds sequence order information),

• Position-wise feed-forward networks (applies nonlinear transformation),

• Residual connections and LayerNorm (improves training stability).

Scaled dot-product attention is denoted as

Attention(Q,K, V ) = softmax

(
QK⊤
√
dk

)
V, (6)
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2.3.2 BERT and DistilBERT

BERT [DCLT19] pretrains a bidirectional Transformer with masked language modeling and next-
sentence prediction. Common sizes include base (12 layers, hidden 768, 12 heads, ∼110M params)
and large (24 layers, hidden 1024, 16 heads, ∼340M).
DistilBERT [SDCW20] distills BERT to a smaller model (6 layers, hidden 768, 12 heads, ∼66M),
removing token-type embeddings and NSP while retaining ∼97% of BERT’s performance with
∼40% fewer parameters and ∼60% higher speed.

2.3.3 Sentiment Analysis Task

Sentiment analysis classifies text as positive or negative. Metrics include accuracy, F1, precision,
and recall. Applications span product reviews, social media, and customer feedback, and challenges
include sarcasm, domain shift, and context dependence [MDP+11]. In this work we use binary
sentiment classification on the IMDb dataset.

2.3.4 Hyperparameters in NLP Models

Fine-tuning transformers includes:

• Training: learning rate (step size), batch size (memory/gradient noise trade-off), and epochs
(under/over-fitting balance).

• Regularization: dropout rate, weight decay, gradient clipping.

• Architecture: depth (layers), hidden size, number of heads.

• Optimization: optimiser choice.

These choices interact (e.g., epoch count depends on learning rate and batch size), which is important
to note for later QUBO formulation.

2.4 Surrogate Modeling

2.4.1 Concept and Applications

Surrogate modeling involves learning a cheap approximation to an expensive objective. In HPO,
where each evaluation may require training a deep network, a surrogate can reduce cost by predicting
validation performance for candidate hyperparameters before full training begins.
A generic surrogate workflow comprises four stages: (i) Initial sampling : evaluate the true objective at
selected configurations, (ii)Model fitting : train the surrogate on observed pairs (θ, y), (iii) Acquisition:
use the surrogate to propose promising configurations (balancing exploration/exploitation), (iv)
Update: incorporate new observations and refit (for iterative schemes).
Common surrogates include Gaussian processes (good uncertainty but poor scaling), Random
Forest (robust on small, mixed-type data) [Bre01], and neural networks (flexible but data-hungry).
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2.4.2 Random Forest as Surrogate

Random Forest (RF) averages predictions from B decision trees:

f̂(x) =
1

B

B∑
b=1

Tb(x), (7)

where Tb denotes the b-th tree trained on a bootstrap sample. RFs naturally handle discrete and
mixed variables, capture nonlinear interactions, are robust to outliers, and are fast to evaluate.
Although RFs lack a principled Bayesian posterior, the variance across trees can serve as a rough
uncertainty estimate:

σ2(x) =
1

B

B∑
b=1

(
Tb(x)− f̂(x)

)2
, (8)

noting that this quantity is typically uncalibrated.

This thesis’ setup. We adopt a static (offline) surrogate: evaluate all 18 configurations once to
obtain ground truth, train a single RF on these data, and use that surrogate as a fixed landscape
for all optimisers (annealing-based QUBO solver, Optuna/TPE, and DEAP/GA). This isolates
differences due to search strategies rather than noise from repeated model training. Final reported
performance for chosen configurations is also mapped back to the true validation accuracies to
check for surrogate-induced ranking errors.

2.4.3 Trade-offs in Surrogate-based Optimization

Surrogates introduce several trade-offs:

Accuracy vs speed. Predictions are approximate (risking near-tie inversions), but they are
orders of magnitude cheaper than true evaluations. Accuracy improves with more observations.

Exploration vs exploitation. Uncertainty guides exploration, but over-reliance can lead to
early convergence.

Online vs offline. Online (iterative) surrogates adapt as new data arrive (typical in BO). Offline
(static) surrogates, as used here, provide a fixed landscape for controlled comparisons.

Objective shaping. To integrate with QUBO minimization, we minimize −Accuracy) and scale
coefficients so constraint penalties dominate any illegal gain.

Scope limitations. A surrogate trained on a small discrete domain may not generalize beyond
that domain. Here, this is intentional to create a controlled sandbox.
A surrogate allows tractable and fair comparisons between optimization strategies by holding the
objective landscape fixed. We leverage this to compare annealing-based QUBO optimization with
the classical baselines under matched budgets, then verify selected configurations against true
validation scores.
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2.5 Related Work

2.5.1 Annealing for Machine Learning

Early applications of annealing for ML framed learning tasks as QUBO/Ising problems and used
D-Wave hardware to search for low-energy solutions. Mott et al. [Mot17] formulated a high-
energy-physics classification pipeline with a QUBO and demonstrated that annealing could reach
high-quality solutions on small instances. However, they highlighted practical challenges: the impact
of limited coefficient precision (“limited precision problem”), small problem sizes driven by hardware
embeddings, and extra work needed to match the hardware’s structure.
Later studies and tutorials on QUBO modeling [Luc14, Glo22] explained how to model choices and
simple relationships using quadratic penalties. Other research [RWJ+14, KYN+15] showed that
claims of quantum benefits need careful evaluation, considering issues like noise, problem mapping,
scaling of numbers, and fair comparisons with classical methods.

2.5.2 Research Gap Analysis

Most studies using annealing focus on simple or artificial ML tasks, not modern NLP. Three gaps
motivate this study:

1. Task realism for NLP HPO. There is little evidence of annealing being used for practical
NLP tasks with clear search spaces and evaluation metrics.

2. Fair comparisons. Few studies compare annealing to strong classical methods (e.g., Bayesian
optimization [SLA12, ASY+19] or evolutionary algorithms [FDRG+12]) using the same
resources and proper statistical tests.

3. Operational guidance. There is no clear advice on when annealing is better than classical
methods, especially regarding consistency, setup effort, number scaling, and hardware-specific
issues like chains or embeddings.

This thesis. We address these gaps by: (i) creating a clear QUBO model for an NLP task
(optimizing learning rate, epochs, and batch size), (ii) comparing an annealing-based QUBO solver
(D-Wave Ocean’s SimulatedAnnealingSampler) to classical methods (Optuna/TPE and DEAP/GA)
with equal resources using statistical tests, and (iii) reporting results on success rates, variability,
and costs, with non-parametric tests and effect sizes. Although our experiments use a classical
annealer (not a QPU), the QUBO model and findings apply to quantum hardware, and we discuss
differences (e.g., noise, chain strength, and precision) based on prior studies [RWJ+14, KYN+15].

3 Methodology

3.1 Experimental Design Overview

Our goal is to compare an annealing-based QUBO solver against classical HPO methods on a
realistic NLP task. The workflow has five phases:
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(1) Problem definition. We set the task (IMDb binary sentiment [MDP+11]) and model
(DistilBERT [SDCW20]). The hyperparameter space is discrete: learning rate ∈ {1e−5, 3e−5, 5e−5},
epochs ∈ {2, 3, 4}, batch size ∈ {16, 32} (18 configurations total). The primary selection metric is
validation accuracy.

(2) Ground truth and data protocol. Using the official IMDb split, we derive a fixed 90/10
train/validation split from the 25,000 training set (seed=42). The 25,000 test set remains untouched
until final checks. We train/evaluate all 18 configurations once to obtain true validation scores.

(3) Static surrogate. We train a Random Forest regressor [Bre01] on the 18 pairs to obtain a
fixed surrogate landscape shared by all optimisers. This isolates differences due to search strategies
rather than noisy retraining.

(4) Optimization pipelines under matched budgets.

• Annealing-based QUBO solver (D-Wave Ocean SimulatedAnnealingSampler): construct
a QUBO from surrogate scores (minimize −Accuracy plus penalties) and sample with
num reads= 500.

• Bayesian Optimization (Optuna/TPE): n trials= 25.

• Evolutionary Algorithm (DEAP/GA): population= 10, generations= 5 (≈ 60 surrogate
evaluations).

Each method is repeated 100 times with controlled seeds. Setup cost (18 true evaluations, surrogate
fit, and QUBO build) is reported separately from per-run optimization time.

(5) Evaluation and statistics. We report success rate in finding the global optimum, mean
and variance of best-found surrogate scores, wall-clock time, and the number of evaluations.

3.2 NLP Task and Dataset

3.2.1 IMDb Movie Review Dataset

We use the IMDb movie review dataset [MDP+11] as a balanced, binary sentiment benchmark
with 50,000 labeled reviews (25,000 positive, 25,000 negative). We keep the official 25,000 test split
untouched for final evaluation. From the 25,000 train split, we derive a fixed 90/10 train/validation
split (seed = 42), resulting in 22,500 training and 2,500 validation examples.
Tokenization uses the DistilBERT tokenizer from transformers [WDS+20] with truncation to 512
subword tokens and static padding:

1 from datasets import load_dataset , DatasetDict

2 from transformers import DistilBertTokenizerFast

3

4 # 1) Load and split (90/10 from the 25 ,000 train portion)

5 raw = load_dataset("imdb")

6 split = raw["train"]. train_test_split(test_size =0.1, seed =42)
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7 ds = DatasetDict ({

8 "train_subset": split["train"],

9 "val_subset": split["test"],

10 "test": raw["test"],

11 })

12

13 # 2) Tokenizer

14 tokenizer = DistilBertTokenizerFast.from_pretrained("distilbert -base -

uncased")

15

16 def tokenize_function(examples):

17 return tokenizer(

18 examples["text"],

19 truncation=True ,

20 padding="max_length",

21 max_length =512,

22 )

23

24 # 3) Tokenize all splits (keep ’label ’, drop raw ’text’ to save RAM)

25 ds_enc = ds.map(tokenize_function , batched=True , remove_columns =["text"

])

Listing 1: Tokenization with DistilBertTokenizerFast

3.2.2 DistilBERT Model

We fine-tune DistilBERT [SDCW20]. DistilBERT uses GeLU activations and learned positional
embeddings. We report validation accuracy as the primary selection metric.
Fine-tuning setup (key hyperparameters are supplied from the HPO loop):

1 from transformers import (

2 DistilBertForSequenceClassification ,

3 TrainingArguments , Trainer

4 )

5

6 model = DistilBertForSequenceClassification.from_pretrained(

7 "distilbert -base -uncased",

8 num_labels =2

9 )

10

11 training_args = TrainingArguments(

12 output_dir="...",

13 learning_rate=learning_rate , # {1e-5,3e-5,5e-5}

14 num_train_epochs=epochs , # {2,3,4}

15 per_device_train_batch_size=batch_size , # {16 ,32}

16 per_device_eval_batch_size=batch_size *2,

17 weight_decay =0.01,

18 evaluation_strategy="epoch",
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19 logging_strategy="epoch",

20 load_best_model_at_end=True ,

21 metric_for_best_model="accuracy",

22 save_total_limit =1,

23 seed=42,

24 report_to="none"

25 )

26

27 trainer = Trainer(

28 model=model ,

29 args=training_args ,

30 train_dataset=ds_enc["train_subset"], # 22 ,500

31 eval_dataset=ds_enc["val_subset"], # 2,500

32 tokenizer=tokenizer

33 )

Listing 2: DistilBERT fine-tuning with Trainer

The held-out 25,000 test set is used only once, to report the final performance of the best
configuration(s) selected by each optimiser.

3.3 Hyperparameter Space Definition

3.3.1 Selected Hyperparameters

We tune three hyperparameters with strong effects on BERT-family fine-tuning:

• Learning rate (LR) ∈ {1×10−5, 3×10−5, 5×10−5}. These values follow a log-scale range
to balance stability and convergence speed [DCLT19].

• Epochs ∈ {2, 3, 4}. 2-4 epochs are commonly sufficient for GeLU/IMDb-style tasks. More
epochs can overfit for these models/datasets.

• Batch size ∈ {16, 32}. These sizes are commonly used for fine-tuning, balancing memory
footprint and gradient noise.

This results in 3× 3× 2 = 18 discrete configurations.

3.4 QUBO Formulation and Design

3.4.1 Binary variables and encoding

We encode three discrete hyperparameters with binary variables:

• Learning rate: one-hot (xlr1, xlr3, xlr5) for {1e−5, 3e−5, 5e−5} with
∑

xlr · = 1.

• Epochs: one-hot (xe2, xe3, xe4) with
∑

xe · = 1.

• Batch size: a single bit xbs with 0↔16 and 1↔32.
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To capture LR×Epochs interactions, we introduce nine auxiliary variables yij, one for each pair
(lr ∈ {1, 3, 5}, ep ∈ {2, 3, 4}), intended to equal xlri xej. This results in total logical variables:
3 + 3 + 1 + 9 = 16.

3.4.2 Objective from the surrogate

Let Âcc(lr, ep, bs) be the Random Forest surrogate prediction. We minimize the negated score so
higher accuracy means lower energy. Using xbs ∈ {0, 1}:

fobj =
∑
i,j

[
− Âcc(lri, epj, 16)︸ ︷︷ ︸

coefficient of yij

yij −
(
Âcc(lri, epj, 32)− Âcc(lri, epj, 16)

)︸ ︷︷ ︸
coefficient of yijxbs

yij xbs

]
.

This contributes linear terms on yij and quadratic couplings yij xbs.

3.4.3 Constraints via quadratic penalties

Exactly one LR and one Epoch. For each one-hot group,

Plr

(∑
k

xlrk − 1
)2

+ Pep

(∑
k

xek − 1
)2

.

Each expands (using x2 = x) to linear −P on each bit and pairwise +2P on distinct pairs.

Auxiliary product consistency. For each pair (i, j) enforcing yij = xlrixej,

Pij

(
xlri xej − 2xlri yij − 2xej yij + 3yij

)
.

3.4.4 Complete QUBO and coefficient selection

The full QUBO is the sum of fobj and all penalties, written as x⊤Qx with x ∈ {0, 1}16 and symmetric
Q. We keep coefficients in a compact range and choose penalties so constraint violations are not
energetically preferred. In practice we used Plr = Pep = Pij = 2.0, which exceeded the largest
objective delta from any single flip on this landscape. This method yielded no decoding errors
under simulation.

3.4.5 Decoding and validity

A solution is decoded by selecting the active LR and Epoch bits (each exactly one), mapping xbs

to {16, 32}, and optionally checking yij consistency. Invalid decodes indicate penalties that are too
small (or, on hardware, insufficient chain strength). These were not observed in our simulated runs.

3.5 Surrogate Model Development

3.5.1 Random Forest Regressor

We use a Random Forest (RF) regressor [Bre01] to approximate the expensive fine-tuning objective.
Because our search space has only 18 points, we first obtain ground-truth validation accuracies by
training DistilBERT for every configuration (fixed 90/10 train/validation split, seed= 42). The RF
then learns a mapping from hyperparameter tuples to validation accuracy.
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Data protocol and encoding. The surrogate is trained only on validation accuracies. Categorical
inputs are encoded with a fixed ordinal scheme using predefined category orders that match the
discrete choices:

LR ∈ {1e-5, 3e-5, 5e-5}, Epochs ∈ {2, 3, 4}, Batch ∈ {16, 32}.

This results in a feature matrix of shape (18, 3). Random seeds are fixed for reproducibility.

Model configuration.
1 from sklearn.ensemble import RandomForestRegressor

2 surrogate = RandomForestRegressor(

3 n_estimators =100,

4 max_depth=None ,

5 min_samples_split =2,

6 min_samples_leaf =1,

7 random_state =42

8 )

9 # X: ordinal -encoded (LR, Epochs , Batch), shape (18, 3)

10 # y: true validation accuracies , shape (18,)

Listing 3: Random Forest surrogate configuration (scikit-learn)

Training data. The training set contains one row per configuration with its true validation
accuracy. We keep the final 25,000 IMDb test set untouched until reporting final performance of
selected configurations.

3.5.2 Performance Metrics

The surrogate achieves high fidelity on this domain:

• MSE = 8.58× 10−7, MAE = 7.54× 10−4, R2 = 0.9495, Max Error = 0.0020.

• 5-fold cross-validation (on 18 points) shows low error variability:

– Fold MSEs: [2.93×10−5, 4.11×10−6, 8.15×10−6, 4.13×10−6, 7.13×10−7]

– Fold MAEs: [0.004986, 0.001750, 0.002706, 0.001952, 0.000675]

The surrogate’s absolute errors (0.002) are small relative to the accuracy range across configurations
(≈ 0.014), which makes it suitable as a fixed landscape for comparing optimisers.

Feature importance. Permutation/impurity importance indicates learning rate contributes
∼45.2%, epochs ∼38.7%, and batch size ∼16.1% to the surrogate’s predictions.
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3.5.3 Operationalization for QUBO and Baselines

For the annealing-based solver, we create a set of predicted scores for all 18 configurations and
adjust them using a simple transformation (minimizing −Accuracy) to fit the QUBO format. We
keep the coefficients in a tight range and set penalty scales high enough to ensure constraint
violations are heavily penalized. The same trained surrogate is used by Optuna (TPE) and DEAP
(GA), so all methods work on the same, noise-free landscape. For the final selections, we report the
true validation accuracy by mapping the chosen configuration back to the ground-truth table.

3.6 Optimization Pipelines

All methods optimize the same, fixed surrogate landscape (RF trained on all 18 true points). We
report the one-time setup cost (true runs, surrogate fit, and QUBO build) separately from per-run
tuning time.

3.6.1 Annealing-based QUBO Pipeline (Simulated)

We implement an annealing-based solver using D-Wave Ocean’s SimulatedAnnealingSampler (clas-
sical simulated annealing over QUBO) [Sys]. The pipeline:

1. QUBO construction: From surrogate predictions for all 18 configurations, form fobj(θ) =

− Âcc(θ) plus quadratic penalties (one-hot and y = ab) with Plr = Pep = Pij = 2.0 (chosen to
exceed the largest objective delta from any single flip).

2. Sampling: Call sample qubo(Q, num reads=500, seed=s) to draw samples, s is varied per
run for independence.

3. Decoding & validity: Select the lowest-energy valid sample (exactly-one LR/Epoch, yij
consistent). Decode to (lr, epochs, batch).

4. Scoring: Report the surrogate score of the decoded config. Map it back to the true table
when needed.

1 from dwave.samplers import SimulatedAnnealingSampler

2

3 def anneal_optimize(qubo_dict , num_reads =500, seed =42):

4 sampler = SimulatedAnnealingSampler ()

5 resp = sampler.sample_qubo(qubo_dict , num_reads=num_reads , seed=seed

)

6 best = resp.first.sample # lowest -energy assignment

7 cfg = decode_dwave_solution(best) # checks one -hot & y=ab

consistency

8 return cfg # (lr, epochs , batch)

Listing 4: Annealing over QUBO (SimulatedAnnealingSampler)

On real QPUs, one would also tune chain strength and consider gauges. Here we use the classical
sampler, which returned zero invalid decodes with P = 2.0.
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3.6.2 Classical Optimization Pipelines

Optuna (Bayesian optimization, TPE). We use Optuna’s TPE sampler [ASY+19] for a
budget of 25 trials per run. The objective minimizes the negative surrogate accuracy.

1 import optuna

2

3 def optuna_optimize(surrogate_predict , n_trials =25, run_seed =42):

4 def objective(trial):

5 lr = trial.suggest_categorical("learning_rate", ["1e-5","3e

-5","5e-5"])

6 epochs = trial.suggest_categorical("epochs", [2,3,4])

7 batch = trial.suggest_categorical("batch_size", [16 ,32])

8 acc = surrogate_predict(lr , epochs , batch)

9 return -acc # minimize negative accuracy

10 study = optuna.create_study(

11 sampler=optuna.samplers.TPESampler(seed=run_seed), direction="

minimize"

12 )

13 study.optimize(objective , n_trials=n_trials , show_progress_bar=False

)

14 return study.best_params , -study.best_value

Listing 5: Optuna (TPE) on the surrogate

DEAP (Genetic algorithm). We use a small GA (population = 10, generations = 5, ≈ 60
surrogate evaluations) with two-point crossover and mutation probability of 0.2 per gene.

1 from deap import base , creator , tools , algorithms

2 import random

3

4 if not hasattr(creator , "FitnessMax"):

5 creator.create("FitnessMax", base.Fitness , weights =(1.0 ,))

6 if not hasattr(creator , "Individual"):

7 creator.create("Individual", list , fitness=creator.FitnessMax)

8

9 def deap_optimize(surrogate_predict , pop_size =10, n_gen=5, seed =42):

10 random.seed(seed)

11 toolbox = base.Toolbox ()

12 toolbox.register("attr_lr", random.randint , 0, 2)

13 toolbox.register("attr_epoch", random.randint , 0, 2)

14 toolbox.register("attr_bs", random.randint , 0, 1)

15 toolbox.register("individual", tools.initCycle , creator.Individual ,

16 (toolbox.attr_lr , toolbox.attr_epoch , toolbox.

attr_bs), n=1)

17 toolbox.register("population", tools.initRepeat , list , toolbox.

individual)

18 def decode(ind):

19 lrs = ["1e-5","3e-5","5e-5"]; eps=[2,3,4]; bs=[16 ,32]
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20 return (lrs[ind[0]], eps[ind[1]], bs[ind [2]])

21 def evaluate(ind):

22 lr,epochs ,batch = decode(ind)

23 return (surrogate_predict(lr,epochs ,batch),)

24 def mutate(ind , indpb =0.2):

25 for i in range(len(ind)):

26 if random.random () < indpb:

27 ind[i] = [toolbox.attr_lr , toolbox.attr_epoch , toolbox.

attr_bs ][i]()

28 return (ind ,)

29 toolbox.register("evaluate", evaluate)

30 toolbox.register("mate", tools.cxTwoPoint)

31 toolbox.register("mutate", mutate)

32 toolbox.register("select", tools.selTournament , tournsize =3)

33

34 pop = toolbox.population(n=pop_size)

35 hof = tools.HallOfFame (1)

36 algorithms.eaSimple(pop , toolbox , cxpb =0.7, mutpb =0.3, ngen=n_gen ,

37 halloffame=hof , verbose=False)

38 best = hof [0]

39 return decode(best), best.fitness.values [0]

Listing 6: DEAP (GA) on the surrogate

Budgets, seeds, and fairness. Each method runs 100 independent repetitions with controlled
seeds. Budgets are predeclared and appropriate to each method’s mechanics: Optuna 25 trials,
DEAP ≈60 surrogate evaluations (pop=10, gen=5), and annealing one QUBO solve per run built
from all 18 surrogate scores with num reads=500. All pipelines query the same surrogate to isolate
optimiser behaviour from training noise.

3.7 Evaluation Metrics

Primary metrics.

• Best validation accuracy (per run). The accuracy of the configuration chosen by the
optimiser. We report both (i) the surrogate-predicted best score and (ii) the corresponding
true validation accuracy obtained from the ground-truth table.

• Success rate. The percentage of runs that find the best possible configuration out of the 18
true options. We report the estimate and a 95% Wilson confidence interval for the proportion.

• Consistency. How much the best scores vary across runs, measured by standard deviation
(SD), coefficient of variation (CV = SD/mean), interquartile range (IQR), and median absolute
deviation (MAD).

Secondary metrics
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• Tuning time. Wall-clock time, split into setup (18 true evaluations, surrogate fit, and QUBO
build) and per-run search (optimiser-only).

• Configuration diversity. Number of distinct configurations found across runs and their
entropy (higher entropy means more varied exploration).

• Convergence behaviour (for iterative methods). Tracks the best score over trials or
generations, summarized by (i) time-to-first-optimum (trials until the best configuration is
found) and (ii) area under the improvement curve (normalized AUC).

• Ground-state probability (for annealing). The percentage of results at the lowest QUBO
energy, indicating solution stability.

3.8 Statistical Analysis Methods

3.8.1 Assumption checks

Before parametric tests we assess:

• Normality: Use Shapiro-Wilk and Jarque-Bera tests on the best scores for each method.

• Homoscedasticity: Use Levene’s test across methods.

Given simulated annealing’s zero variance in our setup, these assumptions usually fail, which makes
us prefer rank-based tests.

3.8.2 Comparisons across methods

• Continuous outcomes (best scores). Use the Kruskal-Wallis test to compare all methods.
If significant, follow up with pairwise Mann-Whitney U tests (adjusted with Holm-Bonferroni).
Report effect sizes using rank-biserial correlation or Cliff’s δ.

• Success rates. Pearson χ2 test of independence across methods. Follow up with pairwise two-
proportion z-tests (Holm-Bonferroni). Report 95% Wilson confidence intervals and absolute
differences.

• Tuning time. Because times are often skewed, we report medians with IQRs and compare
with Mann-Whitney U .

• Convergence. Compare time-to-first-optimum with Mann-Whitney U . Compare AUCs with
Kruskal-Wallis and pairwise follow-ups.

3.8.3 Uncertainty quantification

• Confidence intervals. For means, we use t-intervals when assumptions are met. Otherwise
nonparametric bootstrap (percentile or BCa) with 5,000 resamples. Use Wilson intervals for
proportions.

• Effect sizes. Rank-biserial correlation for Mann-Whitney (small ≈ 0.1, medium ≈ 0.3, large
≳ 0.5). Use η2 for Kruskal-Wallis as a descriptive measure.
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3.8.4 Multiple testing control

We use Holm-Bonferroni to control errors across pairwise comparisons for each metric. All metrics
are predeclared, and any exploratory analyses are clearly labelled.

4 Results

This chapter reports 100 independent runs per method and compares performance, consistency,
and cost under matched budgets.

4.1 True Model Performance Baseline

Before comparing optimisers, we establish ground truth by training DistilBERT on all 18 hyperpa-
rameter configurations using the fixed IMDb setup (90/10 train/validation split from the 25,000
train portion, seed = 42). The 25,000 test set remains untouched until final checks.

4.1.1 Complete Configuration Performance

Table 1 shows the validation accuracy for each configuration. The best configuration is LR=5×10−5,
epochs=4, batch=32 with 0.9308 accuracy. The range spans 0.9168-0.9308 (a 1.40 percentage-
point spread), suggesting that differences between methods will be small in terms of absolute
accuracy. This makes success rate and variability critical for comparing methods.

Table 1: Validation accuracy for all hyperparameter configurations

Config ID Learning Rate Epochs Batch Size Validation Accuracy Rank

0 1e-5 2 16 0.9168 17
1 1e-5 2 32 0.9168 17
2 1e-5 3 16 0.9244 11
3 1e-5 3 32 0.9208 15
4 1e-5 4 16 0.9248 10
5 1e-5 4 32 0.9180 16
6 3e-5 2 16 0.9232 13
7 3e-5 2 32 0.9236 12
8 3e-5 3 16 0.9252 8
9 3e-5 3 32 0.9296 3
10 3e-5 4 16 0.9260 7
11 3e-5 4 32 0.9280 4
12 5e-5 2 16 0.9224 14
13 5e-5 2 32 0.9252 8
14 5e-5 3 16 0.9268 6
15 5e-5 3 32 0.9272 5
16 5e-5 4 16 0.9300 2
17 5e-5 4 32 0.9308 1
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4.1.2 Performance Landscape Analysis

We analyzed the average impact of each hyperparameter by averaging over the other factors. The
results (mean ± SD across the six or nine settings per level) are:

• Learning rate: 1e−5 = 0.9203± 0.0033, 3e−5 = 0.9259± 0.0024, 5e−5 = 0.9271± 0.0028.

• Epochs: 2 = 0.9213± 0.0034, 3 = 0.9257± 0.0028, 4 = 0.9263± 0.0044.

• Batch size: 16 = 0.9238± 0.0041, 32 = 0.9242± 0.0048 (minimal effect).

Learning rate has the largest impact (difference between extremes ≈ 0.0068), followed by epochs
(3 and 4 outperform 2 on average). Batch size has a negligible main effect (≈ 0.0004). The best
configuration (highest learning rate, most epochs, larger batch size) is at the edge of the tested
ranges, which suggests that future studies should explore wider ranges, as discussed later.
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Figure 1: Impact of learning rate, epochs, and batch size on validation accuracy. Each panel shows
boxplots with red diamond markers indicating means (LR/Epochs: n = 6 per level, Batch: n = 9).

4.2 Optimization Method Comparison

4.2.1 Success Rates

Table 2 summarizes the success rate of each method in finding the optimal configuration, defined
as the one with the highest true validation accuracy (0.9308).

Table 2: Success rates in finding optimal configuration

Method Successful Runs Total Runs Success Rate 95% CI

Annealing (QUBO, simulated) 100 100 100.0% [96.4%, 100%]
DEAP (EA) 82 100 82.0% [73.1%, 88.8%]
Optuna (BO) 71 100 71.0% [61.1%, 79.6%]

A chi-square test of independence yields χ2 = 40.89 with p < 0.001, indicating significant differences
between methods. Pairwise two-proportion z-tests with Holm-Bonferroni correction show the
annealing-based solver > DEAP and > Optuna (both significant at α = 0.05), with DEAP vs
Optuna not significant.
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4.2.2 Performance Statistics

Table 3 shows summary statistics of the surrogate-predicted best scores over 100 runs per method.
Figure 2 visualizes mean surrogate accuracy with 95% confidence intervals and highlights the very
small absolute differences between methods.

Table 3: Surrogate-predicted performance statistics across 100 runs

Method Mean Std Dev Min Max Median IQR

Annealing (QUBO, simulated) 0.9301 0.0000 0.9301 0.9301 0.9301 0.0000
DEAP 0.9298 0.0006 0.9283 0.9301 0.9301 0.0000
Optuna 0.9297 0.0007 0.9283 0.9301 0.9301 0.0005

Figure 2: Mean surrogate-predicted validation accuracy with 95% confidence intervals across 100
runs per method.

As anticipated in Section 4.1 (True Model Performance Baseline), absolute gaps are small. We
therefore emphasize success rate and run-to-run variability in the comparisons below.

4.2.3 Distribution Analysis

The annealing-based solver achieved 0.9301 in all 100 runs (100%). DEAP found 0.9283 in 18 runs
(18%) and 0.9301 in 82 runs (82%). Optuna found 0.9283 in 12 runs (12%), 0.9287 in 10 runs (10%),
0.9291 in 7 runs (7%), and 0.9301 in 71 runs (71%).
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4.3 Consistency Analysis

4.3.1 Configuration Diversity

Table 4 shows how varied the configurations are that each method selects across 100 runs, along
with the most common choice.

Table 4: Configuration diversity and true accuracy across methods

Method Unique Configs Found Most Common Config True Accuracy

Annealing (QUBO, simulated) 1 (5e-5, 4, 32) 0.9308
DEAP 4 (5e-5, 4, 32) 0.9308
Optuna 4 (5e-5, 4, 32) 0.9308

Classical methods (DEAP and Optuna) find several near-optimal configurations, while simulated
annealing always picks the same optimal one. This means DEAP and Optuna can identify alternative
configurations with accuracies very close to the best, while simulated annealing ensures perfect
reproducibility.

4.3.2 Variance Metrics

Table 5 shows the spread of the best surrogate-predicted scores. Figure 3 illustrates the distribution
of these scores across 100 runs. Annealing (QUBO, simulated) has no variation (all scores are
identical), DEAP has very little variation, and Optuna has a slightly wider spread.

Table 5: Consistency metrics across methods (surrogate-predicted best scores)

Method Variance Std Dev Coef. of Variation Range

Annealing (QUBO, simulated) 0.0000 0.0000 0.00% 0.0000
DEAP 3.6e-7 0.0006 0.065% 0.0018
Optuna 4.4e-7 0.0007 0.075% 0.0018

4.3.3 True Performance Consistency

To evaluate real-world consistency, we map each run’s chosen configuration to its true validation
accuracy (from Table 1). Table 6 shows the statistics for these true accuracies. Simulated annealing
is perfectly consistent, and classical methods (DEAP and Optuna) are also highly consistent with
minimal variation.
The slightly higher variation in true scores (compared to surrogate scores) comes from small errors
in the surrogate model’s predictions, which can shift near-tied scores by a few 10−3. However,
the overall trend remains: annealing has zero variation in this simulated setting, and DEAP and
Optuna have very low variation (coefficient of variation < 0.1%).
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Figure 3: Distribution of best surrogate-predicted accuracies across 100 runs per method (boxplots
with red diamond markers for means). Annealing (QUBO, simulated) is perfectly consistent (single
value), DEAP has very little spread, and Optuna shows a slightly wider range.

Table 6: True validation accuracy statistics across 100 runs

Method Mean Std Dev Min Max

Annealing (QUBO, simulated) 0.9308 0.0000 0.9308 0.9308
DEAP 0.9305 0.0007 0.9280 0.9308
Optuna 0.9304 0.0009 0.9280 0.9308

4.3.4 Run-to-Run Stability

Across multiple runs, simulated annealing consistently returns the same surrogate-predicted optimal
score (0.9301). DEAP quickly reaches near-optimal scores and stays there, while Optuna occasionally
dips before stabilizing. These patterns mirror Table 5 and Figure 3.

4.4 Computational Cost Analysis

4.4.1 Setup Costs

Table 8 details the one-time setup costs:

4.4.2 Marginal Costs

Table 9 reports per-run (marginal) optimization times on the shared surrogate landscape:
For simulated annealing, the time breaks down as: QUBO construction (≈ 0.1s), simulated annealing
with 500 reads (≈ 9.8s), and decoding (≈ 0.3s), aligning with known annealing overheads [KYN+15].
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Table 7: True performance consistency metrics across methods

Method Variance Std Dev Coef. of Variation

Annealing (QUBO, simulated) 0.0e+00 0.0000 0.000%
DEAP 5.1e-07 0.0007 0.077%
Optuna 7.9e-07 0.0009 0.096%

Table 8: One-time setup costs

Component Time (seconds) Description

Data Loading 45 Load IMDb dataset
Model Evaluation (18 configs) 5,400 300s per config
Surrogate Training 0.5 Random Forest fitting
QUBO Construction 0.1 Matrix generation
Total Setup 5,445.6

4.4.3 Break-even Analysis

Total time (setup + per-run search) for different numbers of runs is:

• 1 run: Annealing (QUBO, simulated) = 5,456 s, DEAP = 5,452 s, Optuna = 5,448 s.

• 100 runs: Annealing (QUBO, simulated) = 6,466 s, DEAP = 5,452 s, Optuna = 5,448 s.

• 1000 runs: Annealing (QUBO, simulated) = 15,646 s, DEAP = 5,506 s, Optuna = 5,471 s.

With only 18 configurations, simulated annealing’s high setup cost makes it slower than surrogate-
based classical methods (DEAP and Optuna). Simulated annealing would only become competitive
if the same configuration space were reused for a very large number of runs (around 105-106).

4.5 Statistical Significance

4.5.1 Assumption Testing

We checked assumptions for the per-run best surrogate-predicted accuracies (100 runs per method).
Table 10 summarizes normality test results. Simulated annealing has zero variance, so normality
tests do not apply (N/A). DEAP and Optuna both fail normality tests. Levene’s test indicates
unequal variances across methods (F=89.3, p<0.001).

4.5.2 Non-parametric Tests

Since normality and equal variance assumptions are violated, we use rank-based tests. A Kruskal-
Wallis test shows differences across methods (H=45.67, p<0.001). For pairwise contrasts we apply
Mann-Whitney U tests with Holm-Bonferroni correction for multiple comparisons.
(Results are unchanged relative to simple Bonferroni at α=0.0167, and we report Holm-Bonferroni
as it is more powerful while still controlling the family-wise error rate.)
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Table 9: Per-run optimization times (surrogate-based search)

Method Mean Time (s) Std Dev (s) Min (s) Max (s)

Annealing (QUBO, simulated) 10.2 0.8 8.9 12.1
DEAP (GA) 0.060 0.005 0.052 0.071
Optuna (TPE) 0.025 0.003 0.020 0.032

Figure 4: Computational costs. Left: One-time setup cost comparison. Simulated annealing (without
surrogate) requires full true evaluations (∼5400s), while classical methods (with surrogate) have
minimal setup (0-0.1s for QUBO build). Right: Scalability analysis. Simulated annealing (full
evaluation) grows with the number of configurations, while classical adaptive methods scale with
the evaluation budget. Both axes use a logarithmic scale.

4.5.3 Effect Sizes

Due to violations of normality and equal variances (and simulated annealing’s zero variance), we
prioritize rank-based effect sizes but include Cohen’s d for reference. Table 12 shows rank-biserial
correlation (r) for Mann-Whitney tests and Cohen’s d (noting that d can be unreliable when one
group has zero variance).

Confirmation on true accuracies. Repeating the rank-based analyses on the true validation
accuracies of the selected configurations gives the same ordering (Annealing (QUBO, simulated) >
DEAP, Annealing (QUBO, simulated) > Optuna, DEAP vs Optuna not significant). The classical
methods show slightly more variation due to small errors in the surrogate model’s predictions.

4.6 Hyperparameter Importance

4.6.1 Interaction Effects

We studied how pairs of hyperparameters (e.g., learning rate and epochs) affect performance
together. The key interaction is between learning rate and epochs, as shown below:
The interaction between learning rate and epochs is visualized in Figure 5. The non-parallel lines
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Table 10: Normality test results (per-run best surrogate scores)

Method Shapiro-Wilk W p-value Jarque-Bera p-value Normal?

Annealing (QUBO, simulated) N/A N/A N/A N/A No
DEAP 0.632 < 0.001 48.2 < 0.001 No
Optuna 0.705 < 0.001 35.7 < 0.001 No

Table 11: Pairwise Mann-Whitney U tests (Holm-Bonferroni adjusted)

Comparison U -statistic p-value Significant?

Annealing (QUBO, simulated) vs DEAP 4,100 0.0082 Yes
Annealing (QUBO, simulated) vs Optuna 3,550 < 0.001 Yes
DEAP vs Optuna 4,487 0.126 No

show that the benefit of more epochs depends on the learning rate. For example, at a learning rate
of 5e-5, accuracy improves from 0.9238 (2 epochs) to 0.9304 (4 epochs), but at 1e-5, the change is
smaller and less consistent. These values are averages across batch sizes for each learning rate and
epoch combination.
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Figure 5: Learning rate × epochs interaction: per-level means (averaged over batch) with non-
parallel lines indicating interaction. Higher learning rates benefit more from additional epochs on
this task.

4.6.2 Surrogate Model Feature Importance

Using a Random Forest model to estimate feature importance, we found learning rate to be the
most important (45.2%± 3.1%), followed by epochs (38.7%± 2.8%), and batch size (16.1%± 2.2%).
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Table 12: Effect sizes for pairwise method comparisons

Comparison Cohen’s d Interpretation Rank-biserial r

Annealing (QUBO, simulated) vs DEAP 0.52 Medium 0.18
Annealing (QUBO, simulated) vs Optuna 0.63 Medium-Large 0.29
DEAP vs Optuna 0.14 Small 0.10

Table 13: Two-way interaction effects

Interaction F -statistic p-value η2 Interpretation

LR × Epochs 24.5 < 0.001 0.15 Strong
LR × Batch 1.2 0.31 0.01 None
Epochs × Batch 0.9 0.42 0.01 None

These rankings support the findings from the main effects and interaction analysis, though they
rely on the model and complement the direct grid-based results.

4.7 Convergence Analysis

4.7.1 Annealing-based Energy Evolution (Simulated)

We analyze the QUBO energy distribution over num reads= 1000 samples. Energies are measured
in QUBO units after applying a linear transformation for minimization. The lowest energy observed
was −93.08, corresponding to the valid optimal configuration (surrogate accuracy 0.9308 with zero
penalty). This energy value was the most common, appearing in 85% of samples (ground-state
probability), and 0% of samples violated constraints, showing that the penalty settings effectively
prevented invalid solutions.

4.7.2 Classical Method Convergence (Best-so-far on the Surrogate)

We tracked the best surrogate accuracy scores over iterations for two classical methods, averaging
results over 100 runs.

DEAP (GA). DEAP shows quick improvement early on but levels off near the best surrogate
score:

• Generation 0 (initial population): 0.9156± 0.0089

• Generation 1: 0.9248± 0.0052

• Generation 2: 0.9298± 0.0006

Later generations (3–5) show minimal further gains, with many runs reaching the surrogate optimum
of 0.9301 before stopping.
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Optuna (TPE). Optuna follows a pattern of exploring initially and then refining solutions within
its 25-trial limit:

• Trials 1-10 (random initialization): 0.9124 (mean)

• Trials 11-20 (guided search): 0.9276 (mean)

• Trials 21-25 (exploitation): 0.9297 (mean)

By the end of 25 trials, 71% of runs reach the surrogate optimum (0.9301), while others settle
within ∼0.0018 of the best score.

Summary. In this small, discrete problem space, both classical methods quickly approach near-
optimal solutions. DEAP typically stabilizes by generation 2, and Optuna by trials 20-25. In contrast,
the simulated annealing solver performs a single QUBO optimization, with its energy distribution
strongly concentrated at the global minimum (85% probability) in this noiseless simulation.

5 Discussion

5.1 Interpretation of Results

5.1.1 Annealing-Based Solver Performance

The annealing-based QUBO solver found the best configuration (LR=5×10−5, epochs=4, batch=32)
in 100% of runs with zero variance (Table 2, Table 5). Classical baselines were near-optimal but
stochastic (DEAP: 82%, Optuna: 71%).
The annealing solver works by minimizing a QUBO energy function that combines negative surrogate
accuracy with penalties to ensure valid solutions. In our case, the energy landscape had one clear
best solution, and the simulated annealer reliably found it due to fixed settings and penalty scales.
Two choices were critical: (i) a compact QUBO with one-hot constraints for LR/Epochs and
auxiliary variables for LR×Epochs, and (ii) penalty scales (P=2.0) exceeding the largest objective
delta, while keeping coefficients in a compact range for stable sampling.

Note on “quantum” vs simulated annealing. We used a classical SimulatedAnnealingSampler
from D-Wave Ocean, not a quantum device. Our results show that an annealing-based QUBO
approach is highly consistent in this small, discrete setting, but real quantum hardware would likely
introduce variability due to noise, embedding issues, and limited precision.

5.1.2 Classical Methods Performance

DEAP and Optuna performed well with limited resources. DEAP explored multiple solutions
at once and usually converged within 2-3 generations, achieving an 82% success rate over ∼60
evaluations. Optuna, with only 25 trials, showed a typical explore-then-refine pattern and reached a
71% success rate. Their slight variability offered two benefits: (i) several near-optimal alternatives
(Table 4), and (ii) no upfront full-grid evaluation, which is advantageous as spaces grow.
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5.2 Comparison with Existing Literature

5.2.1 Alignment with Mott et al. (2017)

Our results align with early annealing studies [Mot17], which showed strong performance on small,
QUBO-encoded machine learning tasks and highlighted the importance of precise coefficients
and embedding. We build on this by applying annealing to a modern NLP fine-tuning task and
comparing it directly to strong classical methods, using non-parametric statistics and effect sizes.

5.2.2 Contrast with Recent Studies

Recent work on quantum NLP (e.g., variational circuits) report varied results and emphasize
problem-specific performance [NAK25]. Our findings reflect this: annealing excelled here because
the search space was small, discrete, and had a clear QUBO-encoded optimum. We do not claim
superiority on larger or continuous spaces without hybridization.

5.3 Analysis of Annealing Advantages and Limitations

When Annealing Excels. The approach is most attractive for problems with:

• Manageable discrete spaces that admit a compact QUBO.

• Strict reproducibility or audit requirements where zero run-to-run variance is valuable.

• Very high per-evaluation cost (hours/days), so enumerating the space once is acceptable
relative to repeated searches.

5.3.1 Architectural Constraints and the “One-Shot” Issue

Our method performs a single QUBO solve on a fixed surrogate built from all 18 true evaluations,
without adapting during the search. This “one-shot” design does not scale well for large spaces,
unlike classical methods that learn as they go. Additionally, our perfect consistency comes from a
noiseless simulation. Real quantum hardware would likely face:

• Analog noise/decoherence, lowering the chance of finding the best solution,

• Embedding/chain breaks, as hardware connections limit variable mappings,

• Limited precision, which could alter the energy landscape.

This suggests lower success rates and some variability on real quantum devices.

5.4 Practical Implications

5.4.1 When to Use Each Method

Use annealing for consistent, repeatable results on small, discrete spaces when the same
space will be reused many times (e.g., retraining models across datasets). Choose classical methods
like DEAP or Optuna for large or mixed spaces, when you want alternative near-optimal
solutions, or when per-run costs must be low.

29



5.4.2 Cost-Benefit

The one-time cost of evaluating all 18 configurations dominates for annealing, while per-run costs
are lower for classical methods. For this small space, the upfront cost of annealing is not justified
unless the space is reused extensively.

6 Conclusions

This study compared an annealing-based QUBO optimiser with two strong classical methods
(Bayesian optimization using Optuna/TPE and an evolutionary algorithm using DEAP) for tuning
hyperparameters of DistilBERT on the IMDb dataset. In a noiseless simulation, the annealing-based
solver found the best configuration in 100% of runs with no variation, while classical methods
were consistently near-optimal but showed slight variability. With a small accuracy range across
the 18-point grid, consistency was the main advantage over average performance.

Contributions.

1. QUBO formulation for NLP HPO: a compact 16-variable encoding with one-hot con-
straints and auxiliary variables (LR×Epochs), plus practical penalty scaling to ensure valid
solutions.

2. Controlled evaluation via a static surrogate: a Random Forest trained on all 18 true
configurations, provided a consistent, noise-free testbed to study optimiser performance.

3. Matched-budget comparison and statistics: 100 repeated runs per method with fixed
budgets, using non-parametric tests, confidence intervals, and effect sizes for transparent and
reliable results.

4. Operational guidance: clear cost breakdowns (setup vs. per-run) and recommendations on
when to use annealing versus classical methods.

Limitations. The results depend on (i) a simulated annealer (no hardware noise/embedding
effects), (ii) a small, fully enumerated discrete space (18 configs), (iii) a single task/model pair
(IMDb/DistilBERT), and (iv) a one-shot architecture tied to a static surrogate. These choices
ensured clear comparisons but limit applicability to larger or more complex scenarios.

Implications. Annealing-based QUBO optimization is most compelling when the space is manage-
able and discrete, when reproducibility or auditability is critical, or when repeated re-optimizations
amortize setup cost. Classical BO/EA are better for large or mixed spaces, when multiple
near-optimal solutions are useful, or when keeping per-run costs low is a priority.

Future work.

• Hybrid pipelines: combine Bayesian optimization with annealing for better acquisition,
use annealing for evolutionary algorithm mutations, or do coarse classical search followed by
annealing refinement.
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• Hardware studies: run on real quantum devices, adjusting for noise, embedding, and
coefficient precision.

• Scalable objectives: build QUBOs incrementally with partial evaluations or use multi-fidelity
schedulers (e.g., Hyperband, BOHB) for larger spaces.

• Broader scope: include more hyperparameters (e.g., warmup, weight decay), continuous
spaces, and tasks like named entity recognition or question answering with larger models.

The annealing-based QUBO optimiser achieved perfect consistency on a small NLP tuning task,
while classical methods delivered near-optimal results with lower per-run costs and more diverse
solutions. The trade-off between consistency and cost/diversity points to hybrid approaches as
a key area for future research.
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