
Master Computer Science

Truly Unordered Rule Sets for Interpretable Risk

Estimation in the Retail Sector

Name: Levi Peeters
Student ID: 2011174

Date: February 13, 2025

Specialisation: Artificial Intelligence

1st supervisor: Francesco Bariatti
2nd supervisor: Matthijs van Leeuwen

Master’s Thesis in Computer Science

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

Abstract

In this thesis, we address the challenge of improving the Retail Risk Index, a metric used to
assess the survival chances of new stores. We do so in collaboration with Locatus, who maintain
a comprehensive dataset of 4.4 million retail venues in the Netherlands. Our goal is to use
TURS (Truly Unordered Rule Sets), an interpretable machine learning method, to generate
models that are accurate and understandable. However, the scale of this dataset presents
significant computational challenges. To enable TURS to handle such large-scale data, we
focus on improving its space and time complexity.

We first enhance TURS’ memory efficiency by implementing sparse arrays, allowing it to process
large datasets without memory issues. We then address the time complexity by introducing
parallel processing techniques. Parallelizing the expansion of candidate rules results in a 7–8x
speedup over the non-parallel case. Despite these improvements, we encounter challenges when
applying TURS to the retail dataset and reduce the problem to the municipality of Utrecht,
which consists of 70,000 instances. In the resulting rulesets, 66%–87% of instances are not
covered by any rule, severely reducing the interpretability of the results. We propose and test
three strategies to mitigate this issue, of which one results in minor improvements.

Finally, we evaluate TURS’ predictive power against competing methods. Although TURS
achieves ROC AUC scores between 0.565 and 0.628, outperforming the Retail Risk Index
(0.295–0.440), it still lags behind state-of-the-art methods like XGBoost (0.672-0.810). Given
that the predictive scores are this low, we argue that interpretability of the results is secondary
to accuracy for improving the trustworthiness of the model. As such, we conclude that TURS
is not ready to be applied to this problems of this scale.

2

Contents

1 Introduction 5
1.1 Interpretable Machine Learning . 5
1.2 Locatus and the Retail Sector . 7
1.3 Thesis Outline . 7

2 Related Work 9

3 Background Knowledge 13
3.1 Retail Risk Index . 13
3.2 Model selection using MDL . 14

3.2.1 TURS . 15

4 Data 19
4.1 Construction of the Target Feature . 20
4.2 Size analysis . 21

5 Scaling TURS for Larger Datasets 23
5.1 Reducing Memory Complexity . 23
5.2 Non-Deterministic Results . 24
5.3 Parallel Processing . 25

5.3.1 Parallel Beam Searches . 25
5.3.2 Parallel Generation of Literals . 26
5.3.3 Parallel Expansion of Candidate Rules 27

5.4 Time Complexity of Different Parallelisation Approaches 29

6 Applying TURS to Locatus data 31
6.1 Rulesets produced by unmodified turs . 31
6.2 Modifications to TURS . 33

6.2.1 Force Else Rule Probability . 34
6.2.2 Rerun Else Rule . 34
6.2.3 Probability Threshold . 35
6.2.4 Summary of Modification Results . 35

6.3 Comparing to CLASSY . 36
6.4 Evaluating Predictive Power . 37
6.5 RRI as a predictive model . 38

7 Discussion and Conclusion 41

3

7.1 Future Work . 42
7.1.1 Conclusion . 43

A List of included features 47

B Rulesets Indicating Non-Deterministic Behaviour 49

C Rulesets 51

4

Chapter 1

Introduction

In recent years, machine learning has become a powerful and valuable tool in an increasing
number of fields, including finances, healthcare and law. As machine learning models increase in
size and complexity, their decision-making process becomes less transparent, making it harder
for domain experts to follow the reasoning of the model and, subsequently, to trust the model’s
results. As such, there is a constantly rising need for more transparent models, especially in
fields where the reasoning behind a decision is as important as the decision itself.

1.1 Interpretable Machine Learning

In the field of Transparent AI, we distinguish Explainable Artificial Intelligence (XAI) and
Interpretable Machine Learning (IML). While the two terms are often used interchangeably,
they represent different approaches towards the same goal [Mohseni et al., 2021]. Explainable
AI concerns itself with so-called black box models, such as neural networks. They are powerful
and widely applicable, but their decision-making process is incredibly complex and opaque. In
order to aid in understanding the results produced by such models, XAI methods aim to give
the user some understanding in the local search space around the result and which factors
were important in reaching this result, without fully explaining the internal logic of the model.

In contrast, the philosophy behind Interpretable Machine Learning is not to retroactively explain
the decisions made by an opaque model, but rather to design models with interpretability in
mind from the start.

In this work, we focus on methods that discover probabilistic rules in the search space. Given
a set of feature values X and a target feature Y, a probabilistic rule takes the form

If X meets certain conditions THEN P (Y) = P̂ (Y).

Where P̂ (Y) is the estimated probability distribution of instances that satisfy the rule. Each
condition is a literal, which takes the form Xi ∈ Ri. For numerical variables, Ri represents a
single interval. For categorical variables, Ri represents a value or a set of values.

Probabilistic rules are powerful in IML for two reasons. Primarily, their simple structure is
relatively easy to understand and interpret for both data scientists and domain experts. Sec-
ondarily, the output of the rule is a probability distribution which gives immediate insight into

5

its uncertainty when used for prediction tasks, whereas non-probabilistic methods only output
the prediction itself.

Models that make use of probabilistic rules are generally structured in one of three ways;
decision trees, rule lists and rule sets. In a decision tree, each node contains a literal which
is used to split the data into two subsets. Therefore, a decision tree can be seen as a set of
rules, where each rule represents a path from the root node all the way to a leaf node. This
seems like a very interpretable structure at first glance, but suffers from drawbacks as problems
become more complicated. Decision trees for complicated problems grow in size and depth
very quickly. In addition, rules in a tree structure share many nodes high up in the tree and
will often contain multiple literals for the same variable, making it more difficult to understand
the paths instances take.

Rule lists connect the rules in a IF ... THEN ... ELSE IF ... THEN ... ELSE ... THEN ...
structure. The main advantage of this approach is that, once a rule is found, the instances
covered by this rule are no longer considered for future rules. This allows for efficient divide-
and-conquer algorithms to learn rule lists effectively. However, the structure of a rule list is
harder to interpret, as each rule in the list does not stand on its own. Instead, each rule consists
of its own literals as well as the negation of all rules that precede it. As we look farther down
the list, rules become harder to interpret as we need to keep track of an increasing number of
negated rules.

In a rule set, each rule is a separate IF ... THEN ... structure which requires no other rules
to be understood, making them very easy to interpret for data scientists and domain experts.
However, contrary to decision trees and rule lists, it is possible for rules to overlap. When an
instance satisfies multiple rules, the results become harder to understand, as this instance then
satisfies multiple distinct probability distributions. To some extent, this can be valuable to a
user as it provides multiple arguments to support the result, giving insight into which elements
are the most promising to change in order to improve a user’s results. On the other hand,
overlapping rules can also be contradictory or redundant, which makes interpreting them more
difficult.

When it comes to the quality of individual rules, there are a few properties we look for. Rules
with a high probability towards either outcome are preferable, as this informs the user with
high certainty that their situation is valuable or not. We also prefer rules with high coverage,
as this decreases the effects of variance on the probability distribution of the rule. However,
more important is the amount of literals and their content. Rules with a single condition can
be effective for prediction, but will not tell the user anything that they could not have learned
using simpler methods. However, if the rule consists of a lot of conditions the rule can become
difficult to interpret, especially if the literals concern features that the user considers unrelated.

The interpretability of the ruleset as a whole is mostly dependent on the quality of the individual
rules, as the user will only need to work with the rules that apply to their situation. However,
it is important that the ruleset covers as much of the search space as possible. Any instances
not covered by any rules are part of the else rule. The else rule can be interpreted as the
”background”: Without any other rules, its probability distribution is the prior distribution
of the data. As rules are added to the model, the leftover background distribution is refined
further and further. As such, the else rule is unique in that it does not stand alone; it is the
negation of all other rules combined. This makes the else rule nearly impossible to interpret in
a meaningful way.

6

1.2 Locatus and the Retail Sector

Retail venues come in many shapes and sizes, ranging from small corner shops to giant clothing
warehouses. When planning to open a new store, an entrepreneur needs to make sure this
business is likely to succeed in making a profit. A big factor in this is their business plan, but
there are many other factors to consider, such as properties of the new building, the state of
the area they plan to open in and presence of competitors. Gathering all of this information
and interpreting it correctly is a tedious task, which is made easier by Locatus1.

Locatus is a company based in Utrecht that gathers its own data on stores and retail venues,
including geographical data, store surface area, branch and footfall2. This information is pre-
pared and made available to clients via online databases and digital maps. A team of field
workers travels through the Netherlands in order to maintain the data by recording stores that
change, measuring the floor area and taking pictures. The information provided by Locatus is
of interest not only to new entrepreneurs, but to project developers, investors and consultants
as well. In addition, Locatus tracks vacancy of storefronts, which is valuable to municipalities.
Besides gathering all of this data, Locatus also helps clients interpret it through models and
visualisations.

A question Locatus often gets is to present advice on the survival chances of retail venues.
Perhaps the client wishes to open a new store, and wants to gain insight in how the surrounding
area will impact their business. Or, a client with existing stores may ask why some of their stores
are not doing well compared to others. In order to answer this question, Locatus currently makes
use of a prediction model called the Retail Risk Index (RRI). This model, which is explained in
more detail in Section 3.1, aggregates four indices that represent specific risks for the potential
new store; a building score, a street score, an industry score and a market score. Based on
these four indices, the client will gain some insight in how their final risk score came to be,
but no further interpretation can be gained from the model.

While the most important factor for Locatus is accurately predicting the risk of a store failing,
there is a secondary focus on interpretability of the model. When the RRI predicts that a store
is at risk of failing, the client will naturally want to know where this risk comes from and
what can be done to improve their chances. The current model offers some interpretability
by dividing the RRI into four different areas. An explanation such as “this street received
a low score” is actionable, but still quite vague. By making use of modern Transparent AI
techniques, our goal is to design a more interpretable model for estimating the risk of failure,
without sacrificing predictive performance of the model.

1.3 Thesis Outline

For this thesis, we collaborate with Locatus to design a new interpretable model to predict
the survival chance of new stores. We make use of TURS [Yang and van Leeuwen, 2022], a
novel method to discover rule sets. In Chapter 2, we review a number of other approaches
to transparent AI. In Chapter 3, we further elaborate on the Retail Risk Index and how it is
used for prediction tasks. We also explain some key properties of TURS that are important
to understand the rest of the thesis. In Chapter 4, we explore Locatus’ exhaustive retail

1https://locatus.com/en/
2Footfall is a measure of passersby in front of the store

7

database and construct the target feature for this prediction task. Chapter 5 is dedicated to
our contributions to increase the scalability of TURS and allow it to process a larger subset of
this large database. In Chapter 6, we apply this version of TURS to a subset of the Locatus
data and evaluate the predictive power and interpretability of the resulting rule set models.
Finally, in Chapter 7, we discuss a number of interesting results of this thesis and present some
promising avenues for future work.

8

Chapter 2

Related Work

Methods in the field of transparent AI can be divided into two general approaches: post-hoc
methods treat the model as a black box and aim to explain their results after training, whereas
ante-hoc models are designed to be inherently interpretable. In the following section, we will
give a short overview of both approaches. Furthermore, we give a more in-depth overview of
rule-based methods, including decision trees, rule list methods and rule set methods.

Post-hoc. Models such as neural networks or random forests are considered black boxes:
Data is entered into the box and the model returns a result, but the underlying process is far
too complex for a human to be able to follow along. Post-hoc models for interpretability leave
this black box intact, attempting to illustrate how the input and output of the model interact
without explaining the internal decision-making.

LIME [Ribeiro et al., 2016] is one such method, which is used to explain individual predictions
done by a model. LIME generates a new set of data consisting of perturbations of a single
instance of input data. The generated data points are weighted based on their proximity to
the original data point. The black box is probed with this data and produces labels, which
LIME uses to train an interpretable surrogate model. This model can then be used to do
interpretable predictions. Due to the distance-based weighting, the surrogate model becomes
less trustworthy as input data moves out of the local area.

SHAP [Lundberg and Lee, 2017] also aims to explain a single prediction instance by comparing
it to a baseline prediction. The black box model is probed with instances where a number of
features are set to their baseline value. Repeating this for every subset of features gives an
indication of how important each feature is in reaching this prediction.

Another approach is to generate a counterfactual explanation [Goodman and Flaxman, 2017],
which is a statement in the form ”If X had not occurred, then Y would not have occurred”. In
this case, Y is the prediction that we are trying to explain and X is one of the features that were
used to make the prediction. For each of the features, this method perturbs the input until
the output changes in a meaningful way, such as turning a negative prediction into a positive
one. The counterfactual explanation to a prediction is thus defined as the smallest change in
input that changes the prediction. The approaches provided in [Goodman and Flaxman, 2017],
as well as a number of other approaches, are unstable: Small changes to input could have
unpredictable results on the output, which again harms interpretability [Artelt et al., 2021].

9

More recent work has been done to make the process of generating counterfactuals more
robust [Guyomard et al., 2023] by adding a robustness term to the optimisation problem. The
counterfactual approach is particularly interesting for our problem because it is actionable:
When a store is predicted to fail, a counterfactual can show the user how to increase their
chances at success.

Ante-hoc. While post-hoc methods are effective at explaining a model’s output, they can
only be used to compare input configurations that are close to each other in the search space.
The underlying model is still a black box, which does not explain its decision-making process
and is therefore hard for domain experts to trust. In contrast, ante-hoc methods are designed
with interpretability in mind from the start, meaning the model itself is interpretable instead
of just local results. Linear models, such as linear regression, logistic regression or Support
Vector Machines, are examples of interpretable models because of their simple mathematical
structure. Clustering methods such as k-nearest neighbour also fall in this category, as the
decision-making process is very simple to follow.

Decision trees. Methods based on decision rules, such as decision trees, also fall into this
category as the models are easily interpreted by following the decision process. Algorithms
to construct decision trees differ mostly on the metric they use to decide how to split the
data: ID3 [Quinlan, 1986] uses information gain, C4.5 [Salzberg, 1994] uses gain ratio and
CART [Breiman et al., 2017] uses the Gini index. Information gain is the total reduction in
entropy after the split is performed, and thus shows how much information this split provides
us about the distribution of the data. Information gain tends to choose features which have
a large number of distinct values. When this is not preferred, the Gain Ratio can be used
instead, which is Information Gain normalised by the number of instances. The Gini index is
the probability of misclassifying a randomly labelled element, and tends to perform similarly
to the Gain Ratio.

Rule lists. Rule lists structure the decision process as a sequence of IF-THEN-ELSE state-
ments. CN2 [Clark, 1989] expands on ID3 to generate rule lists and is especially reliable in
noisy domains. PART [Witten et al., 1998] expands on CART by inducing rule sets from de-
cision trees. The lack of a global postprocessing step makes PART very efficient, while still
achieving accuracy comparable to other methods in the field, such as C4.5. Bayesian Rule
Lists [Yang et al., 2016] search for probabilistic rule lists that fit the data while also conform-
ing to a set of priors, which favour short, interpretable rule lists. Particularly interesting for this
thesis are Classy [Proença and van Leeuwen, 2020], which introduces the Minimal Description
Length as the optimisation criterion for a greedy search, and SSD++ [Proença et al., 2022],
which expands on this by using a heuristic beam search instead.

Rule sets. It is generally agreed that rule sets are more interpretable compared to trees and
lists, as only rules that cover the instance are needed to explain a result. However, learning
a set of rules that is unordered and diverse is a challenging problem. CN2 can be modified
to produce unordered sets of rules [Clark and Boswell, 1991], but the rule sets are large and
tend to contain many overlapping rules. RIPPER [Cohen, 1995] learns rules for each class
sequentially, starting with the least frequent class and removing instances after all rules for
that class have been learned. Because of this process, the rules for each class are mined with

10

different data, and the majority class simply becomes everything that is left over. As such,
the rule sets RIPPER produces are not truly unordered. FURIA [Hühn and Hüllermeier, 2009]
expands on RIPPER by learning fuzzy rules, which have soft decision boundaries that can
stretch to cover uncovered instances. As a result of this rule stretching, many rules are often
needed to explain the results of FURIA. IDS [Lakkaraju et al., 2016] uses an objective function
which favours interpretable sets, i.e. smaller sets of smaller rules that have little overlap. DRS
[Zhang and Gionis, 2020] uses a similar approach to generate diverse sets of rules by adding
a diversity factor into the objective function. While both methods achieve good results, the
rules they find are not probabilistic, which harms interpretability.

TURS [Yang and van Leeuwen, 2022], for Truly Unordered Rule Sets, is a recently developed
algorithm that mines probabilistic rulesets with no inherent ordering.

11

12

Chapter 3

Background Knowledge

This section introduces a few topics that become important in the later chapters of this thesis.
We first discuss the Retail Risk Index, the current method Locatus uses to measure risk, and
how it is compared to TURS for evaluation. We then discuss the Minimum Description Length
principle via a basic example, and how TURS uses this principle to discover rulesets.

3.1 Retail Risk Index

The Retail Risk Index was first developed by Joris van der Loo [J.M. van de Loo, 2013]. This
is a decision tree model, where data is split on three conditions. The first split is made on how
well the store’s branch of industry is doing. One can imagine that, for instance, with today’s
shift towards of digital shopping and distribution, a video rental store has a very high risk of
going out of business. In contrast, entertainment businesses such as restaurants and services
such as hairdressers are not affected by this shift nearly as much. Then, the building that the
store will open in is evaluated based on the history of businesses that have operated from it.
Venues receive a good score if the stores that occupied them stayed for a long period of time,
and will receive penalties for long vacancies or frequently switching businesses. The final split
is made on the state of the surrounding area. While almost all stores will benefit from being
situated in a busy area, it is highly dependent on the industry which factors are important
for it. For example, clothing stores generally benefit from an area where there are already a
number of clothing stores present. Most shoppers do not visit a single store to buy what they
need, but will prefer to browse many stores before deciding what to buy. As such, a clothing
store with no competitors near it will not attract many shoppers. In different industries such
as supermarkets, where shoppers can buy everything they require in one store without a need
or desire to browse, this effect is reversed and the presence of many competitors is seen as a
disadvantage.

These scores are calculated based on the historical performance of stores and discretized into
five categories, from very low to very high risk of failure. Once per year, the Retail Risk Index
is evaluated by comparing the number of stores that failed in each category. The details of
this process are not shared publicly.

In order to compare the Retail Risk Index to other methods, the risk score needs to be converted
to a normalized metric that we can use in a prediction task. The RRI ranges from 50 (low

13

risk) to 150 (high risk). Locatus reports that stores with the lowest risk have a probability of
5.1% to go out of business. For stores with the highest risk, the probability is 31.5%. For fair
comparison to other methods, we scale and invert the RRI to range between 0 and 1. After this
transformation, the highest risk score will correspond to the lowest survival chance reported by
Locatus and vice-versa. Using this probability, we can evaluate the RRI on prediction tasks in
Chapter 6. Note that, as the highest probability for failure presented by Locatus is only 31.5%,
the Retail Risk Index will always predict that a store will succeed for at least one year.

3.2 Model selection using MDL

The Minimal Description Length (MDL) principle is a model selection criterion first introduced
by [Rissanen, 1998]. The idea behind the method is a common property of statistical models
and compression schemes; both aim to discover regular patterns in data in order to produce a
good model. The principle of MDL is to translate statistical models to encoding schemes for
data, and select the model that minimises the total code length L(D):

L(D) = L(M) + L(D|M) (3.1)

Here, L(M) is the code length of the encoded model and L(D|M) is the code length of the
data given the model. By including the length of the model L(M) in the computation, the
MDL principle aims to avoid overly complex and specific models that fit the data very well
(and thus have a low L(D|M)), but would be difficult to interpret. Considering both terms
strikes a balance between complexity of the model and its ability to fit the data, and ensures
that a simpler model will always be preferred if it has the same predictive power. This way,
MDL models are naturally resistant to overfitting.

This method works on probabilistic models, such as probabilistic rulesets, by assigning shorter
codes to outcomes that are more likely. We calculate the code length of each outcome i, with
probability p(i) by using:

li = −log2(pi) (3.2)

Note that this equation does not produce an integer code length, which means the resulting
encoding scheme could not actually be used to transmit the information. Fortunately, in MDL,
we don’t actually have to transmit any information; we are only interested in minimising the
theoretical code length of our data and model. Codes in MDL-based approaches are solely
used as a means to compare models.

We illustrate the usage of MDL on a probability distribution using a simple example; a series of
coin tosses. Suppose we toss our coin ten times and observe the sequenceHHTHHHHHTH.
In order to encode this sequence, we could naively assign a 1 to heads and a 0 to tails,
which means the encoding would take 10 bits. However, we can compress the sequence more
efficiently by making use of the observed probability distribution. Using equation 3.2, we can
compute the code lengths lH and lT associated with the outcomes.

lH = −log2(0.8) ≈ 0.32

14

lT = −log2(0.2) ≈ 2.32

The total code length of the sequence now becomes 8 · 0.32 + 2 · 2.32 = 7.2, reducing the
total code length of the sequence.

The more imbalanced the sequence becomes, the more compression we can gain by imple-
menting the above method. In the worst case, where both outcomes are equally likely, both
outcomes are assigned a code length of 1 and we are back to the naive solution. In other words,
the more certain we are of the outcome of our probabilistic model, the more compression we
can achieve.

3.2.1 TURS

The TURS algorithm [Yang and van Leeuwen, 2022] is a rule-based model which uses MDL
for evaluating candidate rule sets. This section describes the process by which TURS grows a
single rule. We first cover how we cut features into discrete chunks to be used as literals in
rules. Then, we walk through the process of growing a rule, describing which properties TURS
prioritises in choosing which rules to expand. Finally, we cover the two-beam approach and
the role of the ”auxiliary beam”.

Cut Points As discussed in Chapter 1, rules are built out of literals which cut the search
space into two parts; one part satisfies the literal and belongs to the rule’s coverage and the
other part does not. In order to perform its rule expansion, TURS requires a predefined list of
all cut points that can be made.

Categorical features are one-hot encoded, creating a binary column for every value the feature
can take. Each of these binary columns has a single cut point, splitting data into the part that
has that value and the part that hasn’t.

Numerical variables can have a very large or even infinite number of potential cut points, which
need to be discretised into a small set for TURS to iterate over. Naively, we could decide to
space the cut points evenly over the range of the feature. This will work fine if the values are
distributed uniformly, but if the distribution is skewed we encounter a problem. If there are few
instances between two cut points, there will be very little difference in the coverage between
the two options if they are used in a rule. In the most extreme case where the segment is
completely empty, the two literals will be the same in practice. To avoid this issue, TURS uses
quantiles to decide the cut points, so that each resulting segment is populated with an equal
number of instances. That way, we can reasonably expect there to be a significant difference in
coverage between two neighbouring instances. While any number of quantiles will theoretically
work, TURS generally uses 20.

Rule Growing TURS grows rules step by step, starting with an empty rule. The algorithm
iterates through every literal and calculates the learning speed score r(S), defined as the
reduction in code length this rule would achieve per extra covered instance. The score is
calculated per extra covered instance to prevent the algorithm from selecting rules with large
overlap. As TURS iterates through the literals, it keeps track of the literals with the highest
r(S) through a beam search. After all potential literals have been evaluated, the most promising
W candidates are kept and the rest are discarded.

15

Should we just choose the W candidates with the highest r(S), we can run into an issue
with diversity between rules: If we take our best rule and change one of its literals to the
next available cut point, the resulting new rule is likely to have a very similar coverage to
the original rule, and as such will have a very similar r(S). As TURS always considers every
potential literal, it is reasonable to expect that some of the W rules with highest r(S) will be
very similar. As a consequence, the search process becomes greedier and less likely to escape
a local minimum.

TURS prevents this issue by implementing patience diversity. Because TURS starts with an
empty rule and adds literals one by one, every added literal reduces the coverage of the
growing rule. As such, as the rule’s coverage becomes smaller, there is fewer room for future
improvement and the rule becomes greedy. If the coverage is still large, there is more room
for improvement and the rule is ’patient’. TURS encourages diversity in the search process by
categorising the candidates based on coverage and keeping the rule with the largest r(S) in
each category for the next iteration. These rules are expanded further in the next iteration,
and are also kept in a list containing all candidate rules. When a stopping criterion is met, the
rule with the highest r(S) from these two sets is chosen and added to the ruleset, after which
the whole process repeats.

The Auxiliary Beam The learning speed score r(S) is designed to deter TURS from
selecting rules with a large overlap in coverage. While this is desirable behaviour, it can lead
to a problem during the rule-growing process, which is shown in Figure 3.1. In this figure, a
simulated search space is shown in which two rules have already been added. There is a very
promising region for a third rule in the bottom right. However, because TURS adds one literal
per step, both of the literals that can lead TURS to this third rule will have a large overlap
with the existing rules. This means the r(S) of the candidate rule will suffer and the new rule
is not likely to be found.

The role of the auxiliary beam is to keep track of potential rules with this property. The beam
search follows the same process as the regular beam, but using the complementary score R(S)
instead of r(S). R(S) is defined as the reduction in code length achieved if only previously
uncovered instances are considered. As such, it does not punish potential rules for overlapping
with existing rules and allows them to be expanded further. From each coverage category, the
rule with the largest R(S) is kept for the next iteration as well as the rule with the best r(S).
At the end of the search process, the rule with the largest r(s) is added to the ruleset.

16

Figure 3.1: (Left) Simulated data with a rule set containing two rules (black out-
lines).(Right) Growing a rule to describe the bottom-right instances will create conflicts
with existing rules. E.g., adding either X1 > 1 (vertical purple line) or X2 < 0.8 (horizon-
tal purple line) would create a huge overlap that deteriorates the likelihood. Figure and
caption from [Yang and van Leeuwen, 2022].

17

18

Chapter 4

Data

The data studied in this paper is an extensive dataset of historical information on retail venues.
This section describes some relevant properties of the data and preprocessing steps.

Locatus has been maintaining the historical retail dataset since 2004. Each year, over 200.000
records are added, putting the total number of records at 4.4M in 2023. Of the 68 features
present in the database, sixteen are selected to be used for our classification problem. Features
are excluded for being too specific (e.g. street and house number), irrelevant to the problem
(e.g. names of stores) or having too many missing values. A list of all features is included in
Appendix A.

Features While some features in the included list are self-explanatory (e.g. house number),
some others are defined by Locatus and require some explanation.

The Retail Floor Area (RFA) is defined as the area of the store that is available to customers
and used for shopping. Back rooms, elevator shafts and bathrooms are not considered part of
the RFA. while the area behind the counter, showcases and fitting rooms are.

Footfall is an approximation of the amount of people that walk by the store. Note that this
is different from the number of people that enter a store, which is not a metric that Locatus
can record.

Locatus records the shopping area that a store is in. A shopping area is defined as any grouping
of at least five stores in close proximity. In this work, we make use of the names of the areas
as well as three features that describe them: Main type, subtype and visit motive.

Main Shopping Area Type classifies shopping areas. The most important shopping area in a
city is designated as a ”central shopping area”, and others are designated ”supporting areas”.
Stores that are not considered part of a shopping area are designated as ”dispersed retail”.
Shopping Area Subtype further divides shopping areas based on the number of stores they
contain.

Visit Motive is a different classification of shopping areas based on the way customers use
them. Most stores fall into the comparison type. These are, for example, clothing stores,
where customers tend to browse many items while only purchasing a few. The second largest
category is convenience, such as supermarkets, where customers go to buy items they need
without browsing much. Shopping areas are classified on the dominant type of store they

19

contain and their total surface. A third category, specialized, contains shopping areas with
large-scale retail venues, such as home improvement stores, car dealerships or large furniture
stores. These types of shopping areas are typically found on the outskirts of cities.

We also make use of the subcentre that a store is in. Subcentres are also groupings of stores, but
they differ from shopping areas in that they are designed to be so, usually by the municipality,
and they have an assigned name. A subcentre is always considered a shopping area, or a part
of one. Malls and train stations with retail venues are examples of subcentres.

Missing values Most features are recorded for every store. In some cases, however, there
are missing values which need to be considered. Footfall is only recorded in areas where it is
expected to be high, such as large city centres. As such, when footfall is missing it can be
assumed that it should be low. As such, missing footfall values are set to 100 passerby per
hour.

The database records which shopping area and mall each store is part of. When a store is not
in a shopping area or mall, this feature is set to a separate category ”missing”.

We use the median to fill missing values for Retail Floor Area, because the distribution is
skewed; most stores have a small RFA, but large stores such as warehouses have such a large
RFA that they strongly influence the mean.

4.1 Construction of the Target Feature

In order to construct a model that predicts the survival chance of retail venues, a target feature
needs to be constructed. This work investigates two different approaches to the target feature.

Short-term target Each building in the dataset is given a separate entry each year, record-
ing which store occupied the building at that time. The entry for the same building in the
next year indicates whether this store survived in this building or not. Therefore, the yearly
target feature is set to 1 if the store is still present one year later, and set to 0 if it isn’t.
Stores that disappear from their building have not necessarily closed; it is also possible that
the store occupying this building moved to a different location. Whether to assign a positive
or a negative score to the old building can be debated. A store moving to a different venue
can be positive, indicating that the store was doing very well and moved to a larger or more
expensive venue. However, it could also be an indication that the store was not doing well at
the old building and moved out of necessity. Based on the experience of domain experts at
Locatus, we hypothesise that a store moving is more likely to be a negative indicator for the
old building, and as such they are assigned a negative target value.

Vacant retail buildings are registered by Locatus as well, but they have no predictive power
for this problem, and are removed from the dataset.

An important consequence of this approach to the target feature is that it becomes skewed;
most stores survive much longer than a year before closing, which causes a store to have
multiple records with a positive target and one, or none, with a negative target. As a result the
target feature is 88% positive. A skewed data distribution makes data mining problems more
challenging, which becomes apparent in Chapter 6, where we study the resulting rulesets.

20

Long-term target In order to mitigate the effects of this skewed distribution, we inves-
tigate a different way of constructing a target feature. Instead of looking only a year ahead,
we look at the total number of years during which a store operates from a venue. We then
produce a binary target which is positive if it survived at this location for three years. This way,
the target feature is still skewed, but less so than with the yearly target, with 75% of instances
positive. This approach is also beneficial because it reduces the total size of the dataset, thus
allowing us to process larger subsets of data with a given time budget. We also argue that
this feature is more useful to this problem: In the context of retail business, one year is not
a particularly long time. In the first year of operation, a business is investing and establishing
itself in its environment. Even if the store is going to fail, it it not unreasonable to expect it to
survive at least one year. As such, failing stores can still have positive entries in the dataset.
Aggregating each store to one entry and setting a threshold for three years of survival prevents
this undesirable effect.

The downside of this approach is that the other features need to be aggregated from an entry
each year to one entry per store. This is not a problem for all features. For example, we would
not expect the branch of a store to change during its lifetime. For many features, however,
staticness of the features is not so obvious. Footfall and population of the city can change
over time, as can Retail Floor Area should the building be renovated. The shopping area a
store belongs to is not likely to change, but may still do so when shopping areas are rezoned
or redefined.
In constructing the dataset, the median is used to aggregate numerical features, and the mode
is used to aggregate categorical features, as this gives an indication of this store over its lifetime
at this location. An argument can also be made for using the most recent entry instead, as
they are the most indicative of the current situation.

4.2 Size analysis

In Chapter 5, we show the performance of TURS on subsets of Locatus data. The time it
takes to complete a TURS run is heavily dependent on which features are included; when
expanding a rule, TURS evaluates each potential literal that can be added to the rule in
question. Numerical features have a fixed number of potential cut points that is set as one of
its hyperparameters. For categorical features, however, no cut point can be defined; instead
TURS has to evaluate each category separately. As such, categorical features with a lot of
possible values have a large impact on the runtime of TURS. Table 4.1 shows the number
of possible values each feature has in the full dataset. This table shows that the number of
possible values ranges from tens of values to tens of thousands. Removing only the largest of
the features reduces the number of cut points to be considered substantially.

With this in mind, we define three sets of features to be investigated. The first is the set of
relevant features, the features that will be used in Chapter 6 to mine and evaluate rulesets on
Locatus data. These are features we deem the most relevant for this problem and that do not
add an excessive amount of cut points. To produce the reduced set of features, we remove the
categorical features with a large number of possible values, as well as two numerical features,
in order to reduce the total number of cut points. For the inflated set of features, we add
postcodes to the set of relevant features, adding a large number of cut points. This set is used
to test the limits of our approach.

21

Feature # of values Relevant Reduced Inflated
Sh. Area Main Type 4 X X X
Inner City 4 X X X
Group 9 X X X
Sh. Area Type 12 X X X
Visit Motive 15 X X X
Main Sector 35 X X X
Sector 217 X X
Chain 3.220 X X
Sh. Area 5.052 X X
Subcentre 5.199 X X
Postcode 84.964 X

Total Cut Points for Utrecht 1 631 84 3 210

Table 4.1: The categorical features that are considered in this work, with the number of
values that each feature can take in the full dataset.

As running TURS on the entire dataset is infeasible, as further discussed in Chapter 5, we
limit this work to one municipality: Utrecht. Utrecht is small enough that experiments can be
performed in a reasonable time, but also large enough to expect to find interesting patterns
and rules. Utrecht spans 71.150 entries for the short-term target, which when reduced to one
entry per store becomes 11.631 retail venues.

22

Chapter 5

Scaling TURS for Larger Datasets

TURS is a relatively new approach to rule-based learning, and it has not been widely ap-
plied. Experiments on sample datasets provided by the UCI Machine Learning Repository
[Kelly et al.,] show that TURS can mine accurate and interpretable rulesets effectively, but
given the small size of the UCI datasets, the scalability of the algorithm to larger data remains
uncertain. When we apply TURS to the dataset provided by Locatus, we encounter two main
bottlenecks: Memory usage and time complexity. In the following sections, we describe our
contributions to the scalability of TURS.

5.1 Reducing Memory Complexity

As described in Section 3.2.1, categorical features need to be one-hot encoded in order for
TURS to work with them. On large datasets with categorical features that can have many
values, this increases the size of the dataset substantially as each possible value takes up a full
column of space. The Locatus dataset, with all rows and relevant features, already takes up
4.7 GB in memory. Were we to one-hot encode it entirely, this space increases to an estimated
2.47 TB. However, the one-hot encoded array is very sparse. It can be stored much more
efficiently if we do not record every one-hot encoded value, but only the values that are not
zero, alongside the indices of their location in the array.

An implementation of this type of sparse array is provided by the Scipy library [Virtanen et al., 2020].
Because TURS evaluates the data column by column, we use the column variant csc array,
which allows for fast column-wise slicing. Table 5.1 shows the memory requirements to load
the datasets used in this thesis, with and without one-hot encoding.

Additionally, in the original implementation of TURS, each candidate rule would contain an
array containing the instances that it covers. This is useful, because the covered instances are
used in subsequent rule evaluations. With large datasets, however, this causes extra problems
with memory usage, especially because a new rule, with no literals, covers the entire search
space and therefore contains a full copy of the dataset. To prevent this, each rule now no
longer contains its own covered instances, but retrieves them from the full array when needed.
This takes extra time, but prevents memory issues from crashing TURS.

After implementing sparse arrays and preventing TURS from making copies of the dataset, no
further memory issues are present. While these improvements are nothing major, they are an

23

One-Hot Encoded
Feature set Original Dense Sparsified
Reduced 5.69 49.52 7.68
Relevant 9.68 933.49 13.66
Inflated 10.25 1832.25 14.51

Table 5.1: The amount of memory (GB) each dataset requires when normally loaded,
one-hot encoded and sparsified. While the original size is relatively similar, the one-hot
encoded size increases substantially when large categorical features are added. The spar-
sified matrices reduce this effect, but still take a bit more memory than the original array,
as they need to store indices as well as the data.

important step in applying TURS to real-life data, allowing the method to move from research
into real-life applications.

5.2 Non-Deterministic Results

In the final stages of this master project, we discovered an issue where the results of TURS
are not fully deterministic. This is not an inherent property of TURS, which is a deterministic
algorithm and in the earlier versions used in this project, the problem does not occur. This
issue went unnoticed for the duration of the project, as the cause of this non-deterministic
behaviour does not occur frequently and the divergent results will all be valid and fairly similar
rulesets. As such, we were unable to fix this problem, but we have narrowed down where the
problem seems to occur.

In Appendix B, we provide three rulesets produced on the same dataset. The first and second
rulesets are almost identical, except for the cut point that was chosen for the first literal of
the first rule, where Ruleset B.1 covers a strictly smaller area in the search space compared
to Ruleset B.2. However, their coverage is the same. We can only conclude that, in the area
covered by Ruleset B.2 but not Ruleset B.1, there are no instances at all. As such, the two
rules are practically identical.

Unfortunately, this behaviour can cause cascading effects in some cases. Rule three in Appendix
B is also a result of the same experiment. The same two rules are found again, but this time
TURS also discovers two extra rules. Upon following the decision-making in the early stages,
we notice that the inhabitants feature is again the start of the diverging behaviour.

The inhabitants feature has an interesting property when used on this dataset. The municipality
of Utrecht consists primarily of the city of Utrecht, and a few smaller towns in the area. Most
instances will therefore have the number of inhabitants of Utrecht in this feature, which changes
every year, as seen in Figure 5.1. Because of the quantile method used to decide on the cut
points for numerical features, this can cause cut points to be very close to one another or even
overlap.

We believe that this property of the way cut points are decided is part of the reason why the
non-deterministic behaviour occurs. With that being said, the problem did not occur in earlier
versions of our implementation, and is unlikely to be an inherent flaw in the algorithm but
rather a mistake made in this project.

24

Figure 5.1: Distribution of the number of inhabitants over the Utrecht dataset. Red dashed
lines show the cut points calculated by TURS. Notice how there are 15 dashed lines, while
TURS calculates 20 cut points, indicating that some are duplicated.

Due to time constraints, the issue was not resolved. As the diverging rulesets produced by
our implementation are similar and all valid models, we believe the following results are still
valuable. In the rest of this chapter, we present various experiments that show the runtime of
TURS. Because the runtime of TURS is largely dependent on the amount of rules it finds,
we present these runtimes normalised by the number of rules, so that a fair comparison on
runtime is possible.

5.3 Parallel Processing

The second bottleneck that prevents us from applying TURS to the Locatus dataset is the time
required to run even small subsets. Figure 5.2 shows the runtime, depending on an increasing
number of datapoints, of TURS on the municipality of Utrecht for the three feature sets
defined in Chapter 4. TURS will only be able to process this dataset within the time budget
of twelve hours when using the reduced feature set. If using all relevant or inflated features,
the amount of rows needs to be reduced further to stay within the time budget.

To increase the amount of data TURS can reasonably process, we make use of parallelisa-
tion. We consider various approaches to implementing this, which we discuss in the following
sections.

5.3.1 Parallel Beam Searches

The first approach to parallel processing is to perform the main beam search and the auxiliary
beam search in parallel, as shown in Figure 5.3. Each of the two beams evaluates a set of
candidate rules and selects a set of most promising rules. They require no information from the
other beam, and two resulting sets of rules are combined after the beam searches are complete.

25

Figure 5.2: Runtime of TURS before implementing any parallel processing. When using
the relevant or inflated feature set, the timeout limit of 12 hours is reached before a full
ruleset is discovered.

As such, this is an easy approach to implement. It also carries a theoretical limit: By running
two parallel processes, the processing speed can be at most doubled. Upon implementing this
approach, a speedup close to two was indeed observed.

5.3.2 Parallel Generation of Literals

In order to reach a more significant speedup, parallel processing can be applied to different
areas of TURS. As TURS expands a rule, each literal that could be added is evaluated and
added to the beam search. Because there are many literals to be evaluated for each rule, and
the process of evaluating them is completely isolated from the other rules, we implement the
process of expanding a rule in parallel. A schematic view is shown in Figure 5.4a.

One of the main challenges of parallel processing is the overhead caused by the serialisation of
required data and the communication of this data to worker processes. As this has to be done
for every task, parallel processing becomes more efficient when there is little data to be shared
and more calculations to be done. As evaluating a single literal is a relatively small task, and
there are many of these tasks to accomplish, sending each task to a worker individually would
result in a large amount of overhead. To reduce this effect, we send the tasks to each worker
in chunks.

Naively, we might choose to divide the number of tasks by the number of available workers
and send chunks of this size to each worker. In the ideal case, where each task takes the same
amount of time, this would be the optimal strategy. However, if the time taken per task varies,
this strategy will cause some processes to finish earlier than others. As there are no more tasks
to do, all processes will have to wait on the slowest process to finish before the algorithm can
move on to its next iteration.

As such, a balance needs to be struck in the size of the chunks. It needs to be large enough to
cause a significant reduction in overhead, while still being small enough to allow for efficient
scheduling so that workers don’t spend as much time waiting on one another.

26

Figure 5.3: A schematic view of TURS with the two beam searches ran in parallel. Each
beam processes the candidate rules, and each of their candidate literals, sequentially.

We show the effect of the chunksize by running the following experiment. We run TURS on the
Locatus dataset, using 50 000 instances located in Utrecht. Each run has 16 workers available,
and we run each chunksize setting three times. Figure 5.4b shows the speedup compared to
the sequential case. From this figure, we see that the speedup with respect to the non-parallel
version is not high. Performing the beam searches in parallel yields a speedup of roughly 2
times, while this approach reaches about 1.5 times at the peak. The highest speedup is obtained
with a low chunksize, with values between 1 and 20 scoring similarly well. This is remarkable,
as in this dataset each rule will have 1 631 cut points to be evaluated. This indicates that the
scheduling issues from choosing a large chunksize are much more important for the runtime
than the extra overhead from sending multiple chunks of data.

5.3.3 Parallel Expansion of Candidate Rules

The third approach to parallel processing that we investigate is to assign each worker a complete
rule to expand, as shown in Figure 5.5a. The process of expanding a rule involves evaluating
each potential literal that can be added, which requires no information about the other can-
didate rules. Only at the end of the expansion process are the most promising candidate rules
combined into the beam. Because each candidate needs to be expanded twice (once for the
main beam and once for the auxiliary beam), we can at most use 2 · n candidates workers.
This introduces an upper limit to the speedup that can be achieved, but a much higher one
than running only the beams in parallel. In this work, we consider ten candidate rules per
iteration. As such, the theoretical limit on our speedup is 20 times faster than the non-parallel

27

(a) A schematic view of TURS where the
literals that could be added are evaluated in
parallel. Because each literal is a small task
and there are many literals to be evaluated,
the tasks are processed in chunks.

(b) Speedup of TURS when literal genera-
tion is performed in parallel, compared to
the non-parallelised version.

Figure 5.4

(a) A schematic view of TURS where each
rule is evaluated in parallel. Each rule must
be evaluated twice, once in the main beam
and once in the auxiliary beam.

(b) Speedup of TURS when rules are gen-
erated in parallel, compared to the non-
parallelised version. Each point is averaged
over three runs. Error bars represent the
standard deviation.

Figure 5.5

28

case.

This approach to parallel processing can introduce the same problem that was discussed when
parallelising the literals in Section 5.3.2: If the time taken to expand a rule varies, the workers
with quicker tasks will have to wait for the longest task to finish. To investigate the effect of
this, we run our experimental setup again, this time varying the amount of workers available.
Results of this experiment are shown in Figure 5.5b.

When only given access to a single worker, this experiment is equivalent to the sequential
implementation with the added overhead from transmitting and receiving data from the child
process. As we see a speedup close to 1 for this case, we can conclude that this approach
does not cause a significant amount of overhead of this type. The speedup does not increase
proportional to the amount of workers, indicating that there is overhead caused by processes
waiting on one another. As the number of workers approaches 20, we see diminishing returns,
as expected. While there appears to be another increase in speedup when the number of
workers is increased to 32, we believe this to be caused by variance, as there is no reason for
workers beyond the number of tasks to add anything.

5.4 Time Complexity of Different Parallelisation Ap-

proaches

We investigate the duration of a run of TURS for various configurations. As discussed in
Chapter 4, we use three different feature sets to see the effect of the number of features.
The relevant features are the features we also select for the data mining problem in Chapter
6. The reduced feature set removes some of the categorical features with many cut points.
The inflated set adds the categorical feature postcodes, which can take a large number of
values, thus adding a large number of binary columns. We investigate the Utrecht dataset with
an increasing number of rows and compare TURS without parallel processing, with parallel
processing by literals and parallel processing by rules.

Results are shown in Figure 5.6. Due to the non-deterministic results, discussed in Section 5.2,
we present the runtime normalized by the number of rules that were found, so that results can
be compared fairly. From these results, we can conclude that the parallel expansion of rules is
much faster than the other two approaches, regardless of the size of the dataset.

From these experiments, we conclude that the best configuration for TURS is to use the
implementation where rules are expanded in parallel, with at least 20 available workers. This
configuration is used in subsequent experiments.

29

Figure 5.6: Comparison between the non-parallel version of TURS and the two approaches
to parallelisation. Each configuration is run three times, and the mean is shown.

30

Chapter 6

Applying TURS to Locatus data

This chapter investigates the contents of the rulesets that are produced by TURS on Locatus
data. We use the same experimental setup as before; investigating the municipality of Utrecht.
Utrecht strikes a good balance between being small enough to be able to run experiment in
a reasonable time, while also being a large enough city where interesting pattern are likely to
emerge. We use both versions of the target feature discussed in Section 4.1, one where each
store is represented by an instance for every year that it existed, and one where each store is
condensed into a single instance. We use the set of relevant features as shown in Table 4.1.

In Section 1, we discuss some properties of rules that we consider beneficial for interpretability.
We prefer rules with high coverage and a probability distribution that is as non-uniform as
possible, as these properties show certainty of the result. The most important property for
interpretability is the amount and content of the literals: Rules with more literals are preferred,
as they provide more information. Specifically rules with a single literal are too simple, as they
are easily produced using much easier data analysis methods.

We investigate the rulesets TURS produces on this setup, and find that the skewed data
distribution discussed in Chapter 4 harms the quality of the resulting rulesets. As such, we
also investigate the effect of various modifications to the algorithm. We evaluate the resulting
models on interpretability and predictive performance.

6.1 Rulesets produced by unmodified turs

Short-term target When applying TURS to the Locatus data where the target feature
looks one year ahead, we receive the ruleset as shown in Listing 6.1.

Of the 18 discovered rules, we see that six have a probability distribution that is more certain
than that of the else rule. Most of the rules have a probability distribution that is ”weaker”; a
set of instances with a positive probability of 0.51, such as rule 01, can’t be encoded efficiently
and will contribute more code length to the model. TURS selects these rules because it takes
these difficult instances out of the else rule. Due to the imbalanced distribution of our target
feature (see Chapter 4) this small improvement to the else rule’s probability distribution is
worth adding a ”weak” rule to the ruleset.

There are also a few rules (e.g. Rule 11) whose probability distribution is more certain

31

compared to the else rule. These rules each consist of a single value that can be taken by a
categorical variable, in some cases accompanied by a literal on Population. While these rules
are strong from an MDL perspective, they are rather uninteresting from a subgroup discovery
perspective, as showing the success rate of stores from a given store chain or shopping area
is easily done using simpler methods.

Listing 6.1: Ruleset produced by an unmodified TURS on the short-term target

01: Population >= 261550.0;

Store Chain == Independent;

Subcentre == Hoog Catharijne;

Main Branch != Food;

Then: P(1) = 0.51, coverage: 168

02: Population >= 295445.0;

Sh. Area Main Type ==

Spread out shopping;

Longitude >= 5.06;

Inner City != Miscellaneous;

GROEP != Cultuur & Ontspanning;

Then: P(1) = 0.65, coverage: 591

03: Store Chain == EAR&EYEMUSIC;

Then: P(1) = 0.0, coverage: 5

04: 258690.0 <= Population < 295445.0;

Subcentre == Miscellaneous Utrecht;

Then: P(1) = 0.99, coverage: 717

05: Branch == Misc. Foodstuffs;

Then: P(1) = 0.57, coverage:49

06: 282740.0 <= Population < 288120.0;

Sh. Area Main Type ==

Spread out shopping;

Then: P(1) = 0.73, coverage:709

07: Store Chain == Albert Heijn;

Then: P(1) = 0.98, coverage: 332

08: Visit Motive Type == Convenience - XL

;

Then: P(1) = 0.76, coverage: 243

09: Subcentre == Miscellaneous Utrecht;

Then: P(1) = 0.96, coverage: 745

10: 270175.0 <= Population < 299395.0;

Branch == Employment Agency;

Then: P(1) = 0.69, coverage: 207

11: Population >= 299395.0;

Subcentre == Miscellaneous Utrecht;

Then: P(1) = 0.97, coverage: 726

12: Store Chain == Kruidvat;

Then: P(1) = 0.97, coverage: 272

13: Longitude < 5.13;

Inner City == City with Inner City;

Store Chain == Independent;

Main Branch !=

Jewellery & Optics, Fastservice;

Branch != Hairdressers;

Visit Motive Type != missing;

Then: P(1) = 0.84, coverage: 8303

14: 273130.0 <= Population < 295445.0;

Visit Motive Type == Comparison - XL;

Subcentre != none;

Then: P(1) = 0.66, coverage: 369

15: Population >= 261550.0;

5.11 <= Longitude < 5.12;

Store Surface Area < 100.0;

Visit Motive Type == Comparison - XL ;

Subcentre == none;

Main Branch != Drinks;

Branch != Restaurants, Hairdressers;

Then: P(1) = 0.81, coverage: 2797

16: 239425.0 <= Population < 244095.0;

Sh. Area Main Type ==

Spread out shopping;

Store Surface Area < 174.0;

Then: P(1) = 0.72, coverage: 597

17: 270175.0 <= Population < 273130.0;

Sh. Area Main Type ==

Spread out shopping;

Subcentre == none;

Then: P(1) = 0.82, coverage: 1393

18: 235745.0 <= Population < 270175.0;

Main Branch == Private Services;

Shopping area !=

Miscellaneous Utrecht;

Then: P(1) = 0.82, coverage: 1343

If none of above,

Then: P(1) = 0.9, coverage: 38226 (66%)

32

Long-term target When using the three-year target, the rules produced are different in
nature. With the short-term target, we see TURS discover weak rules which are worth adding
because they reinforce the else rule. With this target, we see ”stronger” rules, with a probability
distribution that is less uniform. A number of subcentres appear to have no stores that survived
for three years (e.g. Rule 1), and five other rules have found a subgroup of stores with a very
low change to survive for three years (e.g. Rule 4). Even though the prior distribution for this
target is weaker, we still see a large fraction of stores remain in the else rule: 8 124 of 9 305

Listing 6.2: Ruleset produced by an unmodified TURS on the long-term target

01: Subcentre == Groeneweg

/Laan van Nieuw Guinea;

Then: P(1) = 0.0, coverage: 16

02: Subcentre == Nachtegaalstraat

/Burgemeester Reigerstraat;

Then: P(1) = 0.0, coverage: 15

03: Subcentre == Balijelaan/Rijnlaan;

Then: P(1) = 0.0, coverage: 12

04: Visit Motive Type == missing;

Sh. Area Main Type !=

Spread out shopping;

Then: P(1) = 0.14, coverage: 69

05: Subcentre == GWC Kanaleneiland (s);

Then: P(1) = 0.0, coverage: 9

06: Population < 239425.0;

Visit Motive Type == Comparison - XS;

Then: P(1) = 0.2, coverage: 99

07: Population < 239425.0;

Sh. Area Type == Inner City;

Then: P(1) = 0.32, coverage: 357

08: 282740.0 <= Population < 299395.0;

Inner City == Inner City;

Subcentre != none;

Then: P(1) = 0.27, coverage: 81

09: Subcentre == overig Utrecht;

Then: P(1) = 0.99, coverage: 196

10: Branch == Garage;

Then: P(1) = 0.94, coverage: 232

11: Population < 239425.0;

Sh. Area Main Type == Supporting;

Longitude >= 5.11;

Visit Motive Type != Convenience - M;

Then: P(1) = 0.23, coverage: 123

If none of above,

Then: P(1) = 0.79, coverage: 8124 (87%)

6.2 Modifications to TURS

While the rulesets we investigate in Section 6.1 contain some interesting patterns, we see a
lot of instances remain in the else rule. Because the else rule is the negation of all other rules,
it is the only rule that cannot be interpreted by itself. As such, instances in the else rule are
harder to interpret compared to instances that are in a rule. In addition, most of the rules
TURS does discover consist of one or two literals corresponding to a simple pattern that we
could expect a domain expert to already be aware of.
In order to produce more interpretable models using TURS, we investigate three modifications
designed to discourage TURS from reinforcing the else rule: Forcing TURS to consider the
else rule to be perfectly uniform, a second run of TURS using only instances from the else rule
and a probability threshold which forces discovered rules to be less uniform. Table 6.1 contains
descriptive metrics of each ruleset for easy comparison. The rulesets produced using each of
the following methods are included in Appendix C.

33

Table 6.1: Descriptive metrics of the rulesets, to compare them on interpretability.

Model # of rules
of literals
per rule

Coverage
of rules

Coverage
of else rule

Short-term target
Unmodified 18 3.22±2.17 1 087±1 863 38 226 (66%)
Probability Threshold 4 1.00±0.00 7 418±9 386 27 839 (48%)
Rerun Else Rule 26 3.00±1.96 903±1 596 35 125 (61%)
Force Else Rule Probability 101 1.14±0.49 86±222 49 919 (88%)
Long-term target
Unmodified 11 1.82±1.11 109±106 8 124 (87%)
Probability Threshold 7 2.00±1.41 54±64 8 962 (96%)
Rerun Else Rule 19 1.79±1.00 107±121 7 563 (81%)
Force Else Rule Probability 5 1.00±0.00 599±800 7 081 (76%)

6.2.1 Force Else Rule Probability

We can discourage TURS from reinforcing the else rule by forcibly setting its probability
distribution to [0.5, 0.5], the least efficient distribution for MDL encoding. By doing this, we
completely prevent TURS from rejecting rules because they weaken the else rule and it will
keep accepting the best candidate rule.

Short-term target On the dataset with an entry for each year, we see clearly the downside
of this approach: TURS finds 101 rules, but nearly all of them are very specific, consisting of
a single literal that is often a single store chain or subcentre that is doing very well. This type
of rule covers very few instances, so the else rule remains very populated despite the number
of discovered rules.

Long-term target It is surprising that the same effect does not occur when we use this
method on the three-year target. Instead of finding many rules with low coverage, it only
discovers five, less than any other modification, and the rules have relatively high coverage.
Of the four approaches, this removes the most instances from the else rule (see Table 6.1),
which is positive. However, the rules are not that helpful to a beginning entrepreneur: Rules
1 and 3 give a single successful branch or shopping area, respectively, while Rules 2, 4 and 5
just apply to miscellaneous stores around the city.

6.2.2 Rerun Else Rule

We can extend the ruleset discovered by TURS by running the algorithm a second time and
only giving it the instances that ended up in the else rule. In doing so, we reset the code
length of the model, forcing TURS to find additional patterns within the instances that were
initially grouped together. We observe a similar result for both datasets, where a small number
of additional rules is mined. We can see that the coverage and number of literals of the rules
are very similar to the models produced by an unmodified TURS. While these extra rules
do improve the model somewhat, from an interpretability standpoint, the problems with the
models from the unmodified TURS still persist; many instances are still left in the else rule

34

and many rules consist of one or two literals that would not explain much to a beginning
entrepreneur.

6.2.3 Probability Threshold

TURS is predisposed to discover rules with a weak probability distribution, because these rules
strengthen the else rule. We are interested in learning whether there are possible strong rules
to be learned as well; are the patterns being overshadowed by the weak rules, or are they not
there at all? In order to learn this, we can add a threshold to TURS so that rules can only be
added if their highest probability is higher than that of the else rule.

Short-term target On the dataset with one instance per year per store, we see that TURS
has discovered four rules. Two of these represent a single store chain each, one of whom is
doing very well while the other has no records of surviving stores. The other two rules are very
broad and have a large coverage, leading to this model having the fewest instances in the else
rule. While this is a positive, the two rules that the instances end up in instead are not that
helpful either, describing a very general property that a lot of stores follow (e.g. Rule 1 applies
to all stores outside of the inner city).

Long-term target For the dataset with one instance per store, the constraint of having a
major probability above that of the else rule is much more lenient, as the prior distribution of
the data is less imbalanced. As such, it is not surprising to see that in this case, the modified
version performs similar to the unmodified version. The modified version finds four fewer rules,
and the rules it does find are very similar or identical to those the unmodified model finds. No
additional rules are discovered, but four of them are prevented from being added, causing this
version to have the largest else rule of each of the versions on this dataset.

6.2.4 Summary of Modification Results

The main problem with using TURS for this project remains across all modifications; many
instances are not part of any discovered patterns and end up in the else rule. Only the probability
threshold on the short-term target has less than half of the instances in the else rule, and even
then the four rules that are found have very little information to interpret. In addition, on the
long-term target this approach has close to all instances in the else rule, indicating that the
modification is not a reliable solution. Rerunning with only instances in the else rule improves
on the unmodified case by discovering a few more rules which remove instances from the else
rule, but the resulting model still has the same problems as the unmodified case. Forcing the
else rule to be uniform shows wildly different behaviour on the two targets, flooding the ruleset
with specific, low-coverage rules in the short-term case while only finding a few very broad
rules in the long-term case.
For interpretability, rerunning the else rule results in the most valuable ruleset. However, no
ruleset discovered by any modification is really able to mitigate the problems when using TURS
on this dataset.

35

6.3 Comparing to CLASSY

CLASSY [Proença and van Leeuwen, 2020] is a method that uses MDL to discover rule lists.
Rule lists differ from rule sets in that, whenever a rule is discovered, the covered instances
are removed from the dataset and no longer considered for future rules. Rules cannot be
interpreted alone, as they also imply the negation of all rules that precede it. Comparing the
content of rules is difficult, as the two approaches diverge as soon as the first rule is found.
Interestingly, even the first rule is not the same between both approaches. TURS first discovers
a nearly uniform rule with a coverage of 168, whereas CLASSY discovers a with much higher
coverage which almost entirely consists of positive instances. When searching for the first rule,
the data still looks the same, so it is surprising to see two MDL-based models find rules that
are so different.
On the long-term target, the two approaches behave more similarly. TURS first discovers a
few values for subcentre that contain no positive instances, which CLASSY is unable to do.
TURS rule 4, however, looks very similar to the first rule discovered by CLASSY, although
CLASSY adds an extra literal that removes 21 instances, half of which were positive, to make
the rule only contain negative instances.
On the short-term target, the else rules of CLASSY and TURS look very similar, with a similar
coverage and probability distribution. TURS discovers 18 rules, where CLASSY discovers 6.
On the long-term target, CLASSY is able to remove far more instances from the else rule,
although most of the rules with high coverage appear near the end of the list, making these
rules hard to interpret.

Listing 6.3: CLASSY, Short-Term Target

If

258690.0 <= Population < 261550.0;

Visit Motive Type == missing;

Store Chain == Independent;

THEN Pr(1) = 0.99, coverage: 997

ELSE IF

Visit Motive Type ==

Comparison - XL;

Subcentre != none;

Population >= 282740.0;

Footfall < 150.0;

THEN Pr(1) = 0.61, coverage: 241

ELSE IF

Inner City != City met Inner City;

Shopping area ==

Miscellaneous Utrecht;

THEN Pr(1) = 0.96, coverage: 1385

ELSE IF

Footfall >= 150.0;

Store Chain != Independent;

Inner City != Inner City ;

THEN Pr(1) = 0.93, coverage: 3585

ELSE IF

261550.0 <= Population < 295445.0;

Subcentre != none;

THEN Pr(1) = 0.81, coverage: 2237

ELSE IF

261550.0 <= Population < 295445.0;

Store Surface Area < 80.0;

THEN Pr(1) = 0.83, coverage: 3296

ELSE

Pr(1) = 0.88, coverage: 38064 (67%)

36

Listing 6.4: CLASSY, Long-Term Target

If

Sh. Area Type !=

Spread out shopping;

Visit Motive Type == missing;

Inner City !=

City with Inner City;

THEN Pr(1) = 0.0, coverage: 48

ELSE IF

Population < 241645.0

Longitude >= 5.1137;

Subcentre == none;

THEN Pr(1) = 0.09, coverage: 68

ELSE IF

Population < 241645.0

Visit Motive Type == missing;

5.0881 <= Longitude < 5.1191;

100.0 <= Footfall < 7125.0

THEN Pr(1) = 0.28, coverage: 248

ELSE IF

Sh. Area Type == Inner City;

Population < 241645.0;

THEN Pr(1) = 0.38, coverage: 231

ELSE IF

Population >= 282740.0;

Visit Motive Type == missing;

THEN Pr(1) = 0.96, coverage: 744

ELSE IF

282740.0 <= Population < 297420.0;

5.1031 <= Longitude < 5.1138;

Inner City !=

Woonplaats met binnenstad;

THEN Pr(1) = 0.29, coverage: 86

ELSE IF

Visit Motive Type == missing;

Store Chain == Other;

THEN Pr(1) = 0.89, coverage: 1019

ELSE IF

Population >= 297420.0;

Store Chain == Independent;

THEN Pr(1) = 0.91, coverage: 382

ELSE IF

241645.0 <= Population < 270175.0;

Store Chain != Independent;

THEN Pr(1) = 0.87, coverage: 660

ELSE IF

270175.0 <= Population < 297420.0;

Store Chain == Independent

THEN Pr(1) = 0.67, coverage: 1479

ELSE

Pr(1) = 0.75, coverage: 3176 (34%)

6.4 Evaluating Predictive Power

Table 6.2: Evaluation metrics for the short-term target.

Accuracy ROC AUC Precision Recall F1 score
Name
Majority Class 0.878 0.500 0.878 1.000 0.935
CART 0.815 0.547 0.889 0.902 0.896
RandomForest 0.863 0.581 0.879 0.979 0.926
XGBoost 0.878 0.672 0.879 0.999 0.935
CLASSY 0.878 0.432 0.878 1.000 0.935
RRI 0.867 0.404 0.867 1.000 0.929
RRI (imputed) 0.878 0.440 0.878 1.000 0.935
Unmodified TURS 0.878 0.565 0.878 0.999 0.935
Forced Else Rule Probability 0.878 0.534 0.878 1.000 0.935
Probability Threshold 0.878 0.556 0.878 1.000 0.935
Rerun Else Rule 0.878 0.516 0.878 1.000 0.935

37

Table 6.3: Evaluation metrics for the long-term target.

Accuracy ROC AUC Precision Recall F1 score
Name
Majority Class 0.752 0.500 0.752 1.000 0.859
CART 0.756 0.667 0.834 0.843 0.839
RandomForest 0.767 0.627 0.783 0.960 0.861
XGBoost 0.808 0.810 0.826 0.943 0.881
CLASSY 0.790 0.292 0.798 0.965 0.874
RRI 0.777 0.295 0.777 1.000 0.874
RRI (imputed) 0.752 0.363 0.752 1.000 0.859
Unmodified TURS 0.782 0.628 0.785 0.976 0.871
Forced Else Rule Probability 0.752 0.589 0.752 1.000 0.859
Probability Threshold 0.776 0.590 0.776 0.989 0.869
Rerun Else Rule 0.760 0.516 0.763 0.988 0.861

Tables 6.2 and 6.3 show evaluative metrics of TURS compared to a naive baseline and a number
of comparable methods. These scores are obtained using 5-fold cross-validation with 20% of
data reserved for the test set in each fold. Implementations for CART and RandomForest are
from the Scikit-learn package [Pedregosa et al., 2011], XGBoost [Chen and Guestrin, 2016]
and CLASSY [Proença and van Leeuwen, 2020] are from their packages. Each method uses
the default hyperparameters from their respective implementation.
For the short-term target, what immediately stands out is the scores of the majority class. Its
accuracy, recall and F1-score are matched by some methods, but never improved.
These metrics only evaluate the predictions made by the model, without considering how
certain the model is of these predictions. The ROC AUC measures how robust these decisions
are, and can therefore be considered the most important metric. For the ROC AUC, XGBoost is
the clear best performer, with random forest following with a score that is nearly 10 percentage
point lower and rule-based models scoring even lower.
For the long-term target, XGBoost again scores significantly higher on ROC AUC, and this
time for accuracy as well. As such, when predictive performance is a priority, XGBoost should
be chosen over TURS or other methods
Comparing the different implementations of TURS, we see that the modifications perform
worse than the unmodified version. This is not surprising, as the modifications are designed to
improve interpretability without predictive performance in mind. Rerunning on the else rule,
the modification which is most promising for interpretability, suffers the most in terms of
ROC AUC for both targets.
In terms of computation time, all of the methods except for TURS compute their results in a
matter of minutes.

6.5 RRI as a predictive model

This section will evaluate how the Retail Risk Index performs as a predictive model. The
RRI was introduced in 2014, and as such any entries in the dataset from before 2014 do
not have an RRI score. These scores cannot retroactively be calculated, as the precise
implementation of the RRI is not public. The fact that these scores are missing was not
considered when we made the datasets used for evaluation. As such, when we use them to
evaluate the RRI, the data that is actually used for evaluation is different then when we use

38

these datasets to evaluate TURS and other methods. As time does not allow rerunning all of
the experiments, we present two evaluations of the RRI. The row ”RRI” in Tables 6.2 and
6.3 only evaluates the instances that actually have an RRI score, disregarding the rest. This
is the most fair evaluation of the RRI, but is hard to compare to the other methods. The row
”RRI (imputed)” instead evaluates the RRI when missing values are filled with the mean score.

Most of the scores obtained by the RRI are identical to the Majority Class. This is ex-
pected, as discussed in Section 3.1, as the RRI always predicts positively by definition. The
ROC AUC shows how well the RRI performs when the positive threshold is shifted. For both
targets, the RRI performs similar to CLASSY and significantly worse than all other methods,
even performing worse than the majority class. It is reasonable to state that, even if the
instances from 2004-2014 were included in the evaluation of the RRI, that the method would
underperform competing methods.

39

40

Chapter 7

Discussion and Conclusion

In Section 6.2, we evaluate the improvement to interpretability when applying various
modifications to TURS, concluding that the most valuable modification for interpretability is
to rerun the else rule with a blank MDL score. In Section 6.4, we compare the performance of
various TURS modifications to those of XGBoost, Random Forest and CART, concluding that
all modifications to TURS perform worse than the unmodified version. XGBoost outperforms
all version of TURS easily, while CART and Random Forest perform slightly better or equally
to TURS, depending on the situation.

We should now ask the question: Is it worth using rerunning the else rule to gain
more interpretable results at the cost of predictive power? The modification adds eight
rules for both targets, removing about 5% of instances from the else rule. In return, this
modification performs the worst out of all in terms of ROC AUC (barely outperforming the
majority class) and second worst in term of the other metrics. Therefore, we believe that in its
current state, the modification is not worth using. Interpretable results are valuable as a way
to make results more trustworthy, but there is little merit in interpretability if the correctness
of the result can’t be trusted to begin with. Because TURS and its modifications still perform
far below their alternatives, correctness of the predictions should still have priority over extra
interpretability.

This leads into the next question: Is TURS worth using over XGBoost at all? While
the predictive power of TURS on the long-term target is respectable, it still performs a lot
worse than XGBoost. The resulting ruleset allows for some interpretability of the results,
but 87% of the instances have ended up in the else rule, which offers no interpretability
without knowledge of every rule in the model. Given all of this, we believe that the extra
predictive performance of XGBoost is much more valuable in increasing the trustworthiness
of a prediction.

The most important reason for TURS’ inability to discover good rules is the skewed
distribution of data, which is discussed in Chapter 4. MDL-based methods like TURS
discover rules by identifying areas in the search space where the probability distribution is
more certain, which allows for efficient encoding and thus reduces the total code length
of the model. As such, MDL-based models suffer badly from the skewed distribution of
this data, as any patterns in the data need to be very certain in order to actually improve
the overall distribution and be accepted as a rule. In addition, the total scale of the

41

dataset is far too large for TURS to process, and only a fraction of the data was used
in this work. We believe that TURS is a very promising method for interpretable machine
learning, but that applying it to a dataset this large and this skewed is currently too ambitious.

From our results in Section 6.4, however, we find that the Retail Risk Index performs
rather badly as a predictive model, obtaining the worst ROC AUC scores across all similar
methods. While TURS is not an eligible candidate to replace the RRI, we do believe that
improvement is very achievable via a method like XGBoost. While XGBoost in itself does not
allow for much interpretability, post-hoc methods discussed in Chapter 2 could mitigate this
issue.

7.1 Future Work

This section discusses a number of venues for future work following this thesis.

To improve upon the RRI with modern data science techniques, we conclude that
TURS is not sufficient. However, our results show that current state-of-the-art methods,
particularly XGBoost, can improve upon the RRI significantly. These methods do not struggle
with the size of this dataset nearly as much as TURS and can be realistically be trained on
the entire dataset. XGBoost does not offer much for interpretability of the results, but we
argue that accuracy of the predictions should take precedent over interpretability techniques
to increase the trustworthiness of the result. Post-hoc techniques such as LIME can offer
limited interpretation of results.

Further testing of TURS on real-world scenarios should continue on a smaller scale.
We believe TURS is a powerful and useful method for data science applications, but it is
simply not ready to be applied on this scale. While parallelisation improved the significant
runtime issues of TURS, experiments on large volumes of data still require long computation
times. As a result of this, we were unable to test TURS on available data, instead focussing
on a small subset where not all available information could be used.

MDL-based methods such as TURS struggle with data that has a skewed target dis-
tribution, as this means the data can be very efficiently encoded before any rules are added.
Data preprocessing techniques, such as resampling, can be applied to reduce the effect of
skewed data. Undersampling (removing instances in the majority class) could be particularly
interesting for this problem, as it reduces the total amount of data. As TURS currently is
incapable of using all data, this could be advantageous. However, it also leads to a loss of
information. In contrast, oversampling increases the size of the minority class by duplicating
instances, further increasing the amount of data but conserving all information.

Finally, we see some potential for applying pruning techniques on the rulesets TURS
produces. Generally, it is advantageous for TURS to discover ”nested rules”, where one rule
is fully contained in another rule in the search space, if the probability distributions of the
two rules are different. This can be seen as an exception, allowing for a reasoning such as: If
(condition A), you are not likely to succeed, unless also (condition B), then you are likely to
succeed. Consider for example Rules 9 and 11 from Listing C.3. Rule 9 consists of a single

42

literal (miscellaneous subcentre), while Rule 11 uses that same literal as well as a second one,
population. However, the probability distributions and coverages of the two rules are nearly
identical. Reducing these rules to one rule reduces the length of the model encoding, allowing
for a less redundant rule to be added.
Pruning can also be considered for literals. TURS adds literals to a candidate rule sequentially.
It is not unlikely that later additions to the rule may make earlier literals redundant. For
example, TURS could select a range for ”Population” as the first literal, and then a city within
this range as its second literal, thus making the first literal redundant. Pruning rules just before
adding them to the final ruleset could again free up code length for additional rules.

7.1.1 Conclusion

From this work, we derive the following conclusions.
Our first main contribution is to improve the space and time complexity of TURS so that
it can be applied to real-world data science problems. We improve TURS’ memory usage
by implementing sparse arrays and a number of smaller improvements, allowing TURS to
process large datasets without memory issues. To improve time complexity, we implement
parallel processing via two different approaches. Parallelizing the expansion of literals produces
a significant amount of overhead and yields little to no improvement on runtime. Parallelizing
the expansion of rules does lead to improvement, where we observe a speedup of 7 to 8 times
compared to the non-parallel case.
We then apply TURS to a real-world data science application in cooperation with Locatus.
Using their exhaustive retail dataset, containing 4.4M instances of retail venues in the Nether-
lands, we attempt to use TURS to improve the Retail Risk Index, a risk factor for the survival
chances of new stores, and evaluate the interpretability and predictive power of the resulting
models. With the above solutions implemented, we are not able to process all of this data and
reduce the problem to the municipality of Utrecht, consisting of 70 000 instances.
We find that TURS has issues producing interpretable rulesets on this data. While a number of
interesting rules are discovered, we also see 66% to 87% of instances classified in the else rule,
severely harming interpretability. We implement three modifications to mitigate this effect:
Running TURS a second time on instances in the else rule, forcing TURS to consider the else
rule distribution to be uniform and setting a threshold on the major probability of discovered
rules. Of these modifications, only rerunning the else rule shows (minor) improvements to the
issue.
We evaluate the predictive power of TURS compared to other methods in the field. Without
modifications, TURS achieves a ROC AUC between 0.565 and 0.628, with the modifications
each scoring worse. This is an improvement over the Retail Risk Index, which scores between
0.295 and 0.440. However, competing methods in the field score much better, especially
XGBoost, which achieves ROC AUC scores between 0.672 and 0.810. In addition, XGBoost
computes its model in a matter of minutes.
Given that the predictive scores are this low, we argue that interpretability of the results is
secondary to accuracy for improving the trustworthiness of the model. As such, we conclude
that TURS is not ready to be applied to this problems of this scale.

43

44

Bibliography

[Artelt et al., 2021] Artelt, A., Vaquet, V., Velioglu, R., Hinder, F., Brinkrolf, J., Schilling,
M., and Hammer, B. (2021). Evaluating Robustness of Counterfactual Explanations.

[Breiman et al., 2017] Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. (2017).
Classification And Regression Trees. Routledge.

[Chen and Guestrin, 2016] Chen, T. and Guestrin, C. (2016). XGBoost. In Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 785–794, New York, NY, USA. ACM.

[Clark, 1989] Clark, P. (1989). The CN2 Induction Algorithm. Technical report.
[Clark and Boswell, 1991] Clark, P. and Boswell, R. (1991). Rule Induction with CN2: Some

Recent Improvements. Lecture Notes in Computer Science, 482.
[Cohen, 1995] Cohen, W. W. (1995). Fast Effective Rule Induction. In Machine Learning

Proceedings 1995, pages 115–123. Elsevier.
[Goodman and Flaxman, 2017] Goodman, B. and Flaxman, S. (2017). European union regu-

lations on algorithmic decision making and a ”right to explanation”. AI Magazine, 38(3):50–
57.

[Guyomard et al., 2023] Guyomard, V., Fessant, F., Guyet, T., Bouadi, T., and Termier, A.
(2023). Generating Robust Counterfactual Explanations. volume 14171 of Lecture Notes
in Computer Science, pages 394–409. Springer Nature Switzerland, Cham.

[Hühn and Hüllermeier, 2009] Hühn, J. and Hüllermeier, E. (2009). FURIA: an algorithm for
unordered fuzzy rule induction. Data Mining and Knowledge Discovery, 19(3):293–319.

[J.M. van de Loo, 2013] J.M. van de Loo (2013). Retail Risk Index. Unpublished, copy re-
ceived directly from author.

[Kelly et al.,] Kelly, M., Longjohn, R., and Nottingham, K. The UCI Machine Learning Repos-
itory.

[Lakkaraju et al., 2016] Lakkaraju, H., Bach, S. H., and Leskovec, J. (2016). Interpretable
Decision Sets. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, volume 13-17-August-2016, pages 1675–1684, New
York, NY, USA. ACM.

[Lundberg and Lee, 2017] Lundberg, S. and Lee, S.-I. (2017). A Unified Approach to Inter-
preting Model Predictions.

[Mohseni et al., 2021] Mohseni, S., Zarei, N., and Ragan, E. D. (2021). A Multidisciplinary
Survey and Framework for Design and Evaluation of Explainable AI Systems. ACM Trans-
actions on Interactive Intelligent Systems, 11(3-4):1–45.

[Pedregosa et al., 2011] Pedregosa et al. (2011). Scikit-learn: Machine Learning in Python.
JMLR, 12:2825–2830.

[Proença et al., 2022] Proença, H. M., Grünwald, P., Bäck, T., and van Leeuwen, M. (2022).
Robust subgroup discovery. Data Mining and Knowledge Discovery, 36(5):1885–1970.

[Proença and van Leeuwen, 2020] Proença, H. M. and van Leeuwen, M. (2020). Interpretable

45

multiclass classification by MDL-based rule lists. Information Sciences, 512:1372–1393.
[Quinlan, 1986] Quinlan, J. R. (1986). Induction of Decision Trees. Technical report.
[Ribeiro et al., 2016] Ribeiro, M. T., Singh, S., and Guestrin, C. (2016). ”Why Should I Trust

You?” Explaining the Predictions of Any Classifier. Technical report.
[Rissanen, 1998] Rissanen, J. (1998). Stochastic Complexity in Statistical Inquiry. WORLD

SCIENTIFIC.
[Salzberg, 1994] Salzberg, S. L. (1994). C4.5: Programs for Machine Learning by J. Ross

Quinlan. Morgan Kaufmann Publishers, Inc., 1993. Machine Learning, 16(3):235–240.
[Virtanen et al., 2020] Virtanen, P., Gommers, R., Oliphant, T. E., Ingold, G.-L., and Allen,

G. E. (2020). SciPy 1.0: fundamental algorithms for scientific computing in Python. Nature
Methods, 17(3):261–272.

[Witten et al., 1998] Witten, I., Frank, E., and Witten, I. H. (1998). Generating Accurate
Rule Sets Without Global Optimization. Technical report.

[Yang et al., 2016] Yang, H., Rudin, C., and Seltzer, M. (2016). Scalable Bayesian Rule Lists.
[Yang and van Leeuwen, 2022] Yang, L. and van Leeuwen, M. (2022). Truly Unordered Prob-

abilistic Rule Sets for Multi-class Classification.
[Zhang and Gionis, 2020] Zhang, G. and Gionis, A. (2020). Diverse Rule Sets. Proceedings of

the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
pages 1532–1541.

46

Appendix A

List of included features

The retail database provided by Locatus contains 64 features in total, of which 16 were used
as features in this thesis. Table A.1 lists the features that were used, as well as a number of
features that were excluded for a specific reason.
Beyond the features listed in Table A.1, more features were excluded from this thesis. These
include:

• The Retail Risk Index and its four categories (5)
• The RRI and its indices, binned to categories (5)
• A number of ID’s that connect the Locatus database to other databases, such as the
BAG 1. (8)

• ID’s corresponding to other features in this database. (4)
• Features that bin a different feature into classes. (3)

1Basisregistratie Adressen en Gebouwen, a Dutch governmental database to register addresses.

47

Table A.1

Feature Original Dutch Name Description / Reason for Exclusion
Features included in the relevant feature set
UnitID UNITID ID of a venue
Year JAAR
Population INW Population of the city
Shopping Area WINKELGEBIED
Shopping Area
Main Type

WINKELGEBIEDS-
HOOFDTYPE

Broad categorisation
of shopping areas

Shopping Area
Type

WINKELGEBIEDS-
TYPERING

More specific categorisation
of shopping areas

Latitude YCOORD
Longitude XCOORD

Inner City BINNENSTAD
Whether the store is part
of the inner city

Subcentre SUBCENTRA
Whether the store is in a dense
group of stores, such as a mall

City WOONPLAATS
Store Chain FORMULE E.g. Albert Heijn

Group GROEP
Broad categorisation of branches
(e.g. Hospitality Industry)

Main Branch HOOFDBRANCHE Branch, broad category (e.g. Food)
Branch BRANCHE Branch, specific (e.g. Lunchroom)
Store Surface Area WVO
Footfall PASSANTENAANTAL Number of passersby
Visit Motive Type BEZOEKMOTIEFTYPE Reason for visiting
Features excluded from the relevant feature set
Postal Code POSTCODE Too many values
Postal Code Numbers PC4 Too many values
Municipality GEMEENTE Used to construct the dataset
Province PROVINCIE Too broad
Neighbourhood WIJKBUURT Too many values
GOAD Plan GOADPLAN Very similar to Shopping Area
Street STRAAT Too specific
House Nr HUISNR Too specific
House Nr Addition HUISNRTOEV Too Specific
Region REGIO Too broad
Name NAAM Too specific
Store Chain NW FORMULE NW Similar meaning to Store Chain
Organisation ORGANISATIE Similar meaning to Store Chain
Source for SSA BRONWVO Irrelevant
Check Date CHECK DAT Irrelevant
Checkouts KASSA Too many missing values
Footfall Segment SEGMENT Incomparable between different cities.
Market Segment MARKTSEGMENT Too many missing values
Venue Quality PANDKWALITEIT Too many missing values
Grade RAPPORTCIJFER Too many missing values

48

Appendix B

Rulesets Indicating
Non-Deterministic Behaviour

These are three rulesets produced by an unmodified TURS on the same configuration, showing
non-deterministic behaviour.

Listing B.1: Possible output where two rules are found

01: Population >= 270175.0;

Store Surface Area < 125.0;

Group != Hospitality Services;

Main Branch != Jewellery \& Optics, Cars \& Bicycles, Craft;

Visit Motive Type != missing;

Then: P(1) = 0.82, coverage: 2872

02: Main Branch == Private Services;

Then: P(1) = 0.83, coverage: 1245

If none of above,

Then: P(1) = 0.89, coverage: 16225

Listing B.2: Another possible output, which is almost identical to B.1, except the popu-
lation feature has chosen a different cut point.

01: Population >= 261550.0;

Store Surface Area < 125.0;

Group != Hospitality Services;

Main Branch != Jewellery & Optics, Cars & Bicycles, Craft;

Visit Motive Type != missing;

Then: P(1) = 0.82, coverage: 2872

02: Main Branch == Private Services;

Then: P(1) = 0.83, coverage: 1245

If none of above,

Then: P(1) = 0.89, coverage: 16225

Listing B.3: Another possible ruleset, where the search process diverges and discovers two
additional rules.

01: 295445.0 <= Population < 299395.0;

Sh. Area Main Type == Spread out shopping;

49

Then: P(1) = 0.7, coverage: 246

02: Population >= 261550.0;

Store Surface Area < 125.0;

Group != Hospitality Services;

Main Branch != Jewellery & Optics, Cars & Bicycles, Craft;

Visit Motive Type != missing;

Then: P(1) = 0.82, coverage: 2872

03: Main Branch == Private Services;

Then: P(1) = 0.83, coverage: 1245

04: 282740.0 <= Population < 288120.0;

Sh. Area Main Type == Spread out shopping;

Then: P(1) = 0.74, coverage: 269

If none of above,

Then: P(1) = 0.89, coverage: 15743

50

Appendix C

Rulesets

Probability Threshold

Listing C.1: Short-Term Target

01: Inner City == Miscellaneous Nederland;

Then: P(1) = 0.91, coverage: 6239

02: Store Chain == Albert Heijn;

Then: P(1) = 0.98, coverage: 332

03: Store Chain == EAR&EYEMUSIC;

Then: P(1) = 0.0, coverage: 5

04: Population < 261540.0;

Then: P(1) = 0.89, coverage: 23098

If none of above,

Then: P(1) = 0.86, coverage: 27839 (49%)

Listing C.2: Long-Term Target

01: Subcentre == Groeneweg/Laan van Nieuw Guinea;

Then: P(1) = 0.0, coverage: 16

02: Subcentre == Nachtegaalstraat/

Burgemeester Reigerstraat;

Then: P(1) = 0.0, coverage: 15

03: Subcentre == Balijelaan/Rijnlaan;

Then: P(1) = 0.0, coverage: 12

04: Visit Motive Type == missing;

Sh. Area Main Type == Central, Miscellaneous;

Then: P(1) = 0.0, coverage: 35

05: Subcentre == GWC Kanaleneiland (s);

Then: P(1) = 0.0, coverage: 9

06: Population < 239425.0;

Visit Motive Type == Comparison - XS;

Then: P(1) = 0.2, coverage: 99

07: 25735.0 <= Population < 239425.0;

Visit Motive Type != Convenience - L, missing;

Subcentre != none;

Then: P(1) = 0.21, coverage: 196

If none of above,

Then: P(1) = 0.77, coverage: 8962 (96%)

51

Rerun Else Rule

Listing C.3: Short-Term Target

01: Population >= 261550.0;

Store Chain == Independent;

Subcentre == Hoog Catharijne (s);

Main Branch != Food;

Then: P(1) = 0.51, coverage: 168

02: Population >= 295445.0;

Sh. Area Main Type ==

Spread out shopping;

Longitude >= 5.06;

Inner City != Miscellaneous Nederland;

Group != Culture & Relaxation;

Then: P(1) = 0.65, coverage: 591

03: Store Chain == EAR&EYEMUSIC;

Then: P(1) = 0.0, coverage: 5

04: 258690.0 <= Population < 295445.0;

Subcentre == Miscellaneous Utrecht;

Then: P(1) = 0.99, coverage: 717

05: Branch == Misc foodstuffs;

Then: P(1) = 0.57, coverage: 49

06: 282740.0 <= Population < 288120.0;

Sh. Area Main Type ==

Spread out shopping;

Then: P(1) = 0.73, coverage: 709

07: Store Chain == Albert Heijn;

Then: P(1) = 0.98, coverage: 332

08: Visit Motive Type == Convenience - XL

;

Then: P(1) = 0.76, coverage: 243

09: Subcentre == Miscellaneous Utrecht;

Then: P(1) = 0.96, coverage: 745

10: 270175.0 <= Population < 299395.0;

Branch == Employment Agency;

Then: P(1) = 0.69, coverage: 207

11: Population >= 299395.0;

Subcentre == Miscellaneous Utrecht;

Then: P(1) = 0.97, coverage: 726

12: Store Chain == Kruidvat;

Then: P(1) = 0.97, coverage: 272

13: Longitude < 5.13;

Inner City == City with Inner City;

Store Chain == Independent;

Main Branch !=

Jewellery & Optics, Fastservice;

Branch != Hairdressers;

Visit Motive Type != missing;

Then: P(1) = 0.84, coverage: 8303

14: 273130.0 <= Population < 295445.0;

Visit Motive Type == Comparison - XL;

Subcentre != none;

Then: P(1) = 0.66, coverage: 369

15: Population >= 261550.0;

5.11 <= Longitude < 5.12;

Store Surface Area < 100.0;

Visit Motive Type == Comparison - XL;

Subcentre == none;

Main Branch != Drinks;

Branch != Restaurant, Hairdresser;

Then: P(1) = 0.81, coverage: 2797

16: 239425.0 <= Population < 244095.0;

Sh. Area Main Type == Spread out shopping;

Store Surface Area < 174.0;

Then: P(1) = 0.72, coverage: 597

17: 270175.0 <= Population < 273130.0;

Sh. Area Main Type == Spread out shopping;

Subcentre == none;

Then: P(1) = 0.82, coverage: 1393

18: 235745.0 <= Population < 270175.0;

Main Branch == Private Services;

Shopping Area != Miscellaneous Utrecht;

Then: P(1) = 0.82, coverage: 1343

19: Population >= 282740.0;

52.09 <= Latitude < 52.09;

Subcentre == Hoog Catharijne (s);

Then: P(1) = 0.31, coverage: 51

20: Subcentre == Miscellaneous Utrecht;

Then: P(1) = 0.99, coverage: 475

21: Store Chain == Kruidvat;

Then: P(1) = 0.99, coverage: 164

22: Branch == Employment Agency;

Then: P(1) = 0.81, coverage: 750

23: Population >= 261550.0;

Sh. Area Main Type == Central;

Longitude < 5.11;

Then: P(1) = 0.7, coverage: 276

52

24: Population >= 261550.0;

Store Chain == Independent;

Group == Fashion & Luxury;

Subcentre != none;

Then: P(1) = 0.55, coverage: 130

25: 282740.0 <= Population < 288120.0;

Sh. Area Main Type ==

Spread out shopping;

Then: P(1) = 0.72, coverage: 446

26: Main Branch == Private Services;

Branch != Brokerage, Laundromat;

Then: P(1) = 0.8, coverage: 1620

If none of above,

Then: P(1) = 0.89, coverage: 35125 (62%)

53

Listing C.4: Long-Term Target

1: Subcentre == Nachtegaalstraat

/Burgemeester Reigerstraat;

Then: P(1) = 0.0, coverage: 15

2: Subcentre == Balijelaan/Rijnlaan;

Then: P(1) = 0.0, coverage: 12

3: Visit Motive Type == missing;

Sh. Area Main Type !=

Spread out shopping;

Then: P(1) = 0.14, coverage: 69

4: Subcentre == GWC Kanaleneiland (s);

Then: P(1) = 0.0, coverage: 9

5: Population < 239425.0;

Visit Motive Type == Comparison - XS;

Then: P(1) = 0.2, coverage: 99

6: Population < 239425.0;

Sh. Area Type == Inner City;

Then: P(1) = 0.32, coverage: 357

7: 282740.0 <= Population < 299395.0;

Inner City == Inner City;

Subcentre != none;

Then: P(1) = 0.27, coverage: 81

8: Subcentre == MiscellaneousUtrecht;

Then: P(1) = 0.99, coverage: 196

9: Branch == 45.203.270-Garagebedrijf;

Then: P(1) = 0.94, coverage: 232

10: Population < 239425.0;

Sh. Area Main Type == Ondersteunend;

Longitude >= 5.11;

Visit Motive Type != Convenience - M;

Then: P(1) = 0.23, coverage: 123

11: Subcentre ==

Groeneweg/Laan van Nieuw Guinea;

Then: P(1) = 0.0, coverage: 17

12: Subcentre == Nachtegaalstraat

/Burgemeester Reigerstraat;

Then: P(1) = 0.0, coverage: 16

13: Subcentre == Balijelaan/Rijnlaan;

Then: P(1) = 0.0, coverage: 14

14: Sh. Area Main Type == Centraal;

Visit Motive Type == missing;

Then: P(1) = 0.0, coverage: 21

15: Subcentre == GWC Kanaleneiland (s);

Then: P(1) = 0.0, coverage: 9

16: Population < 239425.0;

Visit Motive Type == Comparison - XS;

Longitude >= 5.1;

Then: P(1) = 0.14, coverage: 83

17: Population < 239425.0;

Inner City == Inner City;

Longitude < 5.12;

Then: P(1) = 0.29, coverage: 267

18: Population < 239425.0;

Inner City == Inner City;

Then: P(1) = 0.34, coverage: 401

If none of above,

Then:

Probability of False is 0.21

Probability of True is 0.79

Coverage of the else rule: 8124 (87%)

54

Force Else Rule Probability

Listing C.5: Long-Term Target

0: Store Chain == Albert Heijn;

Then: P(1) = 0.98, coverage: 332

1: Store Chain == Kruidvat;

Then: P(1) = 0.97, coverage: 272

2: Subcentre == Miscellaneous De Meern;

Then: P(1) = 1.0, coverage: 57

3: Store Chain == PLUS Slijter;

Then: P(1) = 1.0, coverage: 54

4: Population >= 258690.0;

Subcentre == Miscellaneous Utrecht;

Inner City != City with Inner City;

Then: P(1) = 0.97, coverage: 740

5: 258690.0 <= Population < 261540.0;

Visit Motive Type == missing;

Then: P(1) = 0.97, coverage: 698

6: Store Chain == Bakker Bart;

Then: P(1) = 1.0, coverage: 48

7: Branch == Swimming Pool;

Then: P(1) = 1.0, coverage: 51

8: Store Chain == Gall & Gall;

Then: P(1) = 0.97, coverage: 167

9: Subcentre == Miscellaneous Utrecht;

Then: P(1) = 0.96, coverage: 745

10: 288120.0 <= Population < 295445.0;

Subcentre == Miscellaneous Utrecht;

Then: P(1) = 0.99, coverage: 717

11: Store Chain == SNS Bank;

Then: P(1) = 0.98, coverage: 40

12: Branch == Home Improvement;

Then: P(1) = 0.98, coverage: 93

13: Store Chain == Specsavers;

Then: P(1) = 1.0, coverage: 33

14: Store Chain == Bagels&Beans;

Then: P(1) = 1.0, coverage: 32

15: Store Chain == Esprit;

Then: P(1) = 1.0, coverage: 32

16: Store Chain == Sissy-Boy;

Then: P(1) = 1.0, coverage: 32

17: Store Chain == Boni;

Then: P(1) = 1.0, coverage: 31

18: Store Chain == Carpetright;

Then: P(1) = 1.0, coverage: 29

19: Store Chain == America Toda;

Then: P(1) = 1.0, coverage: 27

20: Store Chain == PLUS;

Then: P(1) = 0.98, coverage: 58

21: Store Chain == Banierhuis;

Then: P(1) = 0.98, coverage: 56

22: Store Chain == Jones&Jones;

Then: P(1) = 1.0, coverage: 25

23: Store Chain == Emmaus;

Then: P(1) = 0.98, coverage: 54

24: Store Chain == DirckIII;

Then: P(1) = 1.0, coverage: 23

25: Store Chain == Fit For Free;

Then: P(1) = 0.97, coverage: 31

26: Store Chain == Praxis;

Then: P(1) = 1.0, coverage: 27

27: Store Chain == Scapino;

Then: P(1) = 1.0, coverage: 22

28: Branch == Kitchens & Bathrooms;

Then: P(1) = 0.98, coverage: 56

29: 273130.0 <= Population < 282740.0;

Sh. Area Main Type ==

Spread out shopping;

Store Surface Area >= 48.0;

Then: P(1) = 0.98, coverage: 635

30: Store Chain == Hoogvliet;

Then: P(1) = 0.95, coverage: 22

31: Store Chain == MediaMarkt;

Then: P(1) = 1.0, coverage: 21

32: Branch == Nail Studio;

Then: P(1) = 1.0, coverage: 21

33: Subcentre == Miscellaneous

55

Haarzuilens;

Then: P(1) = 1.0, coverage: 21

34: Store Chain == Intersport;

Then: P(1) = 1.0, coverage: 20

35: Store Chain == Score;

Then: P(1) = 1.0, coverage: 20

36: Store Chain == Basic-Fit;

Then: P(1) = 1.0, coverage: 29

37: Store Chain == Montel;

Then: P(1) = 1.0, coverage: 19

38: Store Chain == WesternUnion;

Then: P(1) = 1.0, coverage: 19

39: Store Chain == Haan;

Then: P(1) = 1.0, coverage: 21

40: Store Chain == Schaap en Ci;

Then: P(1) = 1.0, coverage: 18

41: Store Chain == Boels;

Then: P(1) = 0.96, coverage: 24

42: Store Chain == Foot Locker;

Then: P(1) = 1.0, coverage: 17

43: Store Chain == Grapedistric;

Then: P(1) = 1.0, coverage: 17

44: Store Chain == Huis & Hypot;

Then: P(1) = 1.0, coverage: 27

45: Store Chain == Pathe;

Then: P(1) = 1.0, coverage: 19

46: Store Chain == Schoonenberg;

Then: P(1) = 1.0, coverage: 17

47: Store Chain == Vanilia;

Then: P(1) = 1.0, coverage: 17

48: Store Chain == FEBO;

Then: P(1) = 1.0, coverage: 16

49: Store Chain == Gauchos;

Then: P(1) = 1.0, coverage: 16

50: Store Chain == Lederland;

Then: P(1) = 1.0, coverage: 16

51: Store Chain == Sani-Dump;

Then: P(1) = 1.0, coverage: 16

52: Store Chain == Boni Slijter;

Then: P(1) = 1.0, coverage: 15

53: Store Chain == KILROY;

Then: P(1) = 1.0, coverage: 15

54: Store Chain == Keuken Kampi;

Then: P(1) = 1.0, coverage: 15

55: Store Chain == Pauw;

Then: P(1) = 1.0, coverage: 15

56: Store Chain == Shoeby;

Then: P(1) = 1.0, coverage: 15

57: Store Chain == Superkeukens;

Then: P(1) = 1.0, coverage: 15

58: Store Chain == Swarovski;

Then: P(1) = 1.0, coverage: 15

59: Store Chain == Amazing Orie;

Then: P(1) = 1.0, coverage: 14

60: Store Chain == De Bijenkorf;

Then: P(1) = 1.0, coverage: 14

61: Store Chain == Haco;

Then: P(1) = 1.0, coverage: 14

62: Store Chain == Le Ballon;

Then: P(1) = 1.0, coverage: 14

63: Store Chain == Run2Day;

Then: P(1) = 1.0, coverage: 14

64: Store Chain == Suitsupply;

Then: P(1) = 1.0, coverage: 15

65: Store Chain == Vlaamsch Bro;

Then: P(1) = 1.0, coverage: 14

66: Store Chain == Blokker Splg;

Then: P(1) = 1.0, coverage: 13

67: Store Chain == Fair Play;

Then: P(1) = 1.0, coverage: 13

68: Store Chain == Marlies Dekk;

Then: P(1) = 1.0, coverage: 13

69: Store Chain == Profijt Meub;

Then: P(1) = 1.0, coverage: 13

70: Store Chain == Wolky;

Then: P(1) = 1.0, coverage: 13

56

71: Store Chain == mockamore;

Then: P(1) = 1.0, coverage: 13

72: Store Chain == CarltonHotel;

Then: P(1) = 1.0, coverage: 16

73: Store Chain == Cavallaro Na;

Then: P(1) = 1.0, coverage: 12

74: Store Chain == De Pizzabakk;

Then: P(1) = 1.0, coverage: 14

75: Store Chain == Decorette;

Then: P(1) = 1.0, coverage: 17

76: Store Chain == Dille&Kamill;

Then: P(1) = 1.0, coverage: 12

77: Store Chain == Europcar;

Then: P(1) = 1.0, coverage: 12

78: Store Chain == KAV;

Then: P(1) = 1.0, coverage: 17

79: Store Chain == Nedgame;

Then: P(1) = 1.0, coverage: 12

80: Store Chain == Scheer&Foppe;

Then: P(1) = 1.0, coverage: 12

81: Store Chain == Vitaminstore;

Then: P(1) = 1.0, coverage: 12

82: Store Chain == WE Store;

Then: P(1) = 1.0, coverage: 12

83: Branch == Hospital Store;

Then: P(1) = 1.0, coverage: 17

84: Store Chain == Brokking;

Then: P(1) = 1.0, coverage: 11

85: Store Chain == Carglass;

Then: P(1) = 1.0, coverage: 15

86: Store Chain == Lush;

Then: P(1) = 1.0, coverage: 11

87: Store Chain == SportCity;

Then: P(1) = 1.0, coverage: 12

88: Store Chain == Suitable;

Then: P(1) = 1.0, coverage: 11

89: Store Chain == ibis;

Then: P(1) = 1.0, coverage: 16

90: Branch == Go Kart Track;

Then: P(1) = 1.0, coverage: 14

91: Store Chain == EAR&EYEMUSIC;

Then: P(1) = 0.0, coverage: 5

92: Store Chain == Avis;

Then: P(1) = 0.92, coverage: 13

93: Store Chain == Bastion;

Then: P(1) = 1.0, coverage: 15

94: Store Chain == AH PUP;

Then: P(1) = 0.0, coverage: 1

95: Store Chain == AKTIE SLAPEN;

Then: P(1) = 0.0, coverage: 1

96: Population < 270175.0;

Store Chain == Blokker;

Then: P(1) = 0.99, coverage: 84

97: Population < 261550.0;

Main Branch ==

Misc. Hospitality Services;

Then: P(1) = 0.97, coverage: 175

98: Population < 261540.0;

Branch == Shoes;

Then: P(1) = 0.95, coverage: 439

99: Population < 273130.0;

Branch == Textile Super;

Then: P(1) = 0.96, coverage: 142

100: Sh. Area Main Type ==

Spread out shopping;

Inner City == Miscellaneous Nederland;

Then: P(1) = 0.97, coverage: 1644

101: Subcentre ==

Groeneweg/Laan van Nieuw Guinea;

Then: P(1) = 0.0, coverage: 16

If none of above,

Then: P(1) = 0.5, coverage: 49919 (88%)

57

Listing C.6: Long-Term Target

1: Subcentre == Miscellaneous Utrecht;

Then: P(1) = 0.99, coverage: 196

2: Branch == Garage;

Then: P(1) = 0.94, coverage: 232

3: Subcentre ==

Miscellaneous Utrecht;

Then: P(1) = 0.91, coverage: 247

4: Shopping Area ==

Miscellaneous De Meern;

Then: P(1) = 0.94, coverage: 123

5: Sh. Area Main Type ==

Spread out shopping;

Then: P(1) = 0.9, coverage: 2199

If none of above,

Then: P(1) = 0.5, coverage: 7081 (76%)

58

