

Universiteit Leiden

ICT in Business

A framework for a centralized external RPA

orchestrator

Name: Diederik Oprel
Student-no: 3124878

Date: 05/01/2025

1st supervisor: Drs. J.B. Kruiswijk
2nd supervisor: Dr. P.W.H. van der Putten

MASTER'S THESIS

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

1

Acknowledgements

This thesis has been a slowly progressing project besides my full-time job. Therefore, I would like to thank my primary

supervisor, Bas Kruiswijk, for his patience, positivity, use of his connections and continued feedback while guiding me

through this thesis. I would also like to thank my second supervisor, Dr. Peter van der Putten, for his insightful

comments based on his industry experience, feedback and for connecting me with relevant people in the automation

industry.

Additionally, I would like to thank everyone who took the time to complete the survey and participate in the

interviews.

Finally, I would like to thank my girlfriend, Amber, and my parents for supporting me and caring for things so I could

focus on completing my thesis.

2

Abstract

Robotic Process Automation, commonly referred to by its abbreviation RPA, is a software tool for creating low-code

business process automation. It exists as a non-intrusive form of automation, mimicking the interactions of a

standard user with a computer. The developed processes can be scheduled to run at certain intervals per the

business’s needs. However, insufficient control regarding the execution of processes developed with RPA is reducing

the tools’ effectiveness. This thesis investigates the presence of problems with Robotic Process Automation

orchestration and how these can be addressed by introducing an improved external orchestrator.

The research sets out to address the question, ‘How can RPA reliability be improved by a vendor-agnostic improved

process orchestrator?’. The sub-questions divide the research into the following topics: the consequences of the

current situation, requirements for an improved situation, improvements in that situation, and the structured way to

address it via a framework.

A survey was conducted and answered by 33 RPA professionals, and seven semi-structured interviews were held

with RPA professionals. Both groups were asked about their struggles with RPA orchestration, what features were

missing, and how this would improve the reliability of their deployment. By analysing the suggested features, a

framework was developed to catalogue and group the features. Based on the features, a prototype was developed

to showcase the feasibility of implementing an external orchestrator alongside an existing RPA tool.

The survey and interview analysis shows a wide variety of RPA tools being used, with a strong recognition of

orchestration problems despite the tool in operation. A wide set of suggested features which could be grouped in

similar ways as the three-tier architecture, on which the framework is based. The analysis of the features boiled

down to customizability as the main requirement, due to the variety of business processes and runtimes. The

prototype successfully showed the feasibility of implementation using a subset of the features with limited tools and

time, resulting in a valid framework guiding the development of an orchestrator.

3

Table of Contents
1. Introduction .. 6

1.1. Personal motivation .. 6

1.2. Research aims and objectives .. 6

1.3. Scope ... 6

1.4. Structure of the thesis ... 7

2. Methodology ... 8

2.1. Theoretical background ... 8

2.2. Survey .. 8

2.3. Framework ... 9

2.4. Interviews .. 9

2.5. Prototype ... 9

3. Theoretical background .. 10

3.1. Robotic Process Automation ... 10

3.1.1. Reliability and maintenance challenges .. 11

3.1.2. Software landscape ... 11

3.1.3. Environment .. 13

3.2. Orchestration ... 14

4. Results ... 16

4.1. Survey .. 16

4.1.1. Survey design .. 16

4.1.2. Survey participants.. 18

4.1.3. Survey results .. 19

4.2. Framework ... 21

4.3. Interviews .. 22

4.3.1. Interview design .. 23

4.3.2. Interview participants ... 23

4.3.3. Interview results ... 23

4.4. Feature Extraction ... 24

5. Prototype .. 28

5.1. Feature selection ... 28

5.2. Feature modelling .. 28

5.3. Prototype development .. 34

5.3.1. Architecture .. 34

5.3.2. Orchestrator code ... 35

5.3.3. Data Structure ... 36

5.3.4. PowerApps Logic ... 36

5.3.5. PowerApps Presentation .. 36

4

5.3.6. Testing ... 37

5.3.7. Expansion .. 37

6. Discussion .. 38

6.1. Problem identification ... 38

6.2. Effects of ineffective orchestration ... 38

6.3. Orchestration requirements .. 38

6.4. Framework ... 39

6.5. Feasibility of improved orchestration ... 39

6.6. Effects of improved orchestration ... 39

6.7. Limitations and future research .. 40

7. Conclusion ... 42

8. References .. 43

Appendix A: Full survey ... 46

Appendix B – Coding frequency surveys and interviews .. 53

List of figures

Figure 1 - Kinds of design science contributions (Johannesson & Perjons, 2014) .. 8
Figure 2 - Gartner Magic Quadrant for RPA vendors (Gartner, 2024) .. 12
Figure 3 - Blue Prism server infrastructure characteristics (Blue Prism, 2024) .. 13
Figure 4 - Typical RPA infrastructure layout (Schuler & Gehring, 2018) ... 14
Figure 5 - Tool usage across survey respondents ... 18
Figure 6 - Percentage of respondents per tool (multiple-choice) reporting an increase in maintenance due to

orchestration or scheduling. ... 19
Figure 7 - Percentage of respondents encountering pre-selected issues as a result of insufficient orchestration

capabilities in their environment. ... 20
Figure 8 - Distribution of respondents indicating the severity of orchestration issues affecting their day-to-day and

maintenance activities. ... 20
Figure 9 - Distribution of respondents indicating whether they have used multiple RPA platforms alongside each other.

 .. 20
Figure 10 - UML class diagram for export logs feature ... 29
Figure 11 - UML sequence diagram for export logs feature ... 29
Figure 12 - UML class diagram for the environment notifications feature .. 30
Figure 13 - UML sequence diagram for the environment notifications feature ... 30
Figure 14 - UML class diagram for the external queue item creation feature ... 31
Figure 15 - UML sequence diagram for the external queue item creation feature ... 31
Figure 16 - UML class diagram for the external process start and queue process features .. 32
Figure 17 - UML sequence diagram for the external process start and queue process features 32
Figure 18 - UML class diagram for the restart machines feature ... 33
Figure 19 - UML sequence diagram for the restart machines feature ... 33
Figure 20 - UML class diagram for all combined modelled features .. 33

5

List of tables

Table 1 - Process suitability criteria for RPA (Fung, 2014) (Patri, 2020) (Schuler & Gehring, 2018) 10
Table 2 - Overview of notable orchestration and scheduling features from top 4 RPA providers (Blue Prism, 2024)

(UiPath, 2024) (Microsoft, 2024) (Automation Anywhere, 2021) .. 12
Table 3 - Survey questions combined with related research questions ... 17
Table 4 - Justification of survey questions .. 18
Table 5 - RPA Orchestrator feature framework .. 22
Table 6 - Definitions of suggested RPA orchestrator feature framework axis categories. ... 22
Table 7 - Semi-structured interview questions combined with related research questions .. 23
Table 8 - All identified features including the frequency it was mentioned ... 26
Table 9 - All features mapped in the the respective framework areas .. 27
Table 10 - All features mapped and coloured by frequency compared to the whole (displayed as feature number -

frequency) ... 27
Table 11 - Selected features for UML modelling and prototype development .. 28

Definition of terms

Abbreviation Term Description
RPA Robotic Process Automation Software method to automate digital processes
CoE Center of Excellence The department which focuses on RPA
PPHE Park Plaza Hotels Europe International hotel and real estate group where

the research is being performed
- Script The order of automated actions created by a

developer in the RPA tool.
- Robot / Virtual Agent /

Virtual Worker / Bot
The instance of an RPA script performing the
automated actions.

6

1. Introduction
Businesses strive for greater automation and efficiency to reduce costs, minimise human errors, and address

workforce shortages. One way of achieving these goals is through Robotic Process Automation, a non-intrusive way of

automating software interactions mimicking a user’s inputs.

1.1. Personal motivation
While RPA has significant potential, commercial implementations face downsides. One major issue is the limited

flexibility of built-in process orchestration, affecting the robustness of RPA operations. Errors or limitations can disrupt

process scheduling without properly alerting stakeholders or mitigating impacts, leading to higher maintenance loads

and limiting scalability. Multi-platform deployments further complicate management due to fragmented alerts and

dashboards.

An open-source, vendor-agnostic orchestration platform could address these issues by centralising RPA monitoring

and allowing for more complex and responsive process orchestration. This topic is highly relevant for many RPA

professionals and is frequently discussed at industry meetings and events.

The importance of automation in today’s world cannot be understated. It significantly boosts company output and,

broadly speaking, enhances human productivity. For example, within RPA, the NHS has been a prominent adopter,

scaling healthcare services across the UK. The RPA market is estimated to be worth 18 billion dollars in 2024, growing

at 17.1% annually. (Fortune Business Insights, 2024)

Despite the rapid growth of RPA, formal theoretical research in this area is limited. This thesis presents novel work in

the field, serving as a starting point for further research and providing a theoretical framework for orchestration

development.

1.2. Research aims and objectives
The primary research question is as follows:

How can RPA reliability be improved by a vendor-agnostic improved process orchestrator?

This question can be divided into the following sub-questions:

RQ1. What are the consequences of an unreliable RPA environment?

RQ2. What are the requirements for an improved RPA orchestrator?

RQ3. How would these requirements translate into a high-level framework for RPA orchestration?

RQ4. How does this improve the reliability of an RPA deployment?

The following hypotheses have been proposed to cover the primary research question:

H0 - An improved RPA scheduler does not measurably affect reliability.

H1 - An improved RPA scheduler increases reliability due to its extended feature set.

H2 - An improved RPA scheduler decreases reliability due to having an extra system component failing or requiring

end-user support/explanation.

1.3. Scope
This research primarily focuses on the design science of creating and validating a framework for RPA orchestrations.

Therefore, the primary deliverables will be:

• A high-level framework for RPA orchestration compatible with major RPA tools.

• A prototype of the orchestrator in PPHE’s RPA environment implementing a subset of the framework’s

features.

a. A limited assessment and reflection on the impact of the prototype on PPHE’s RPA operations.

The literature review will solely discuss relevant topics for the rationalization and design of such a framework. It may

omit other aspects of discussed topics such as RPA and not provide a full understanding of the underlying

technology.

7

1.4. Structure of the thesis
This thesis will first explore available literature on the topic of robotic process automation and its aspects relating to

orchestration. Afterward, based on the literature a survey and interview will be composed and conducted. The

surveys and interviews will collect answers from RPA professionals, and the results will be dissected. The answers

will be analysed to form major takeaways contributing to answering the research questions. From the answers, a list

of features will be created, which forms the basis for the RPA orchestrator framework. These features will then be

modelled and developed into a prototype to provide an example and show the feasibility of developing such a

framework. Then, the primary takeaways will be reiterated in the discussion. Finally, the conclusion will provide

closure regarding the actual results of this thesis.

8

2. Methodology
The posed research questions can be generalised into three research categories, firstly RQ1 and RQ2 are about

obtaining information, secondly, RQ3 is about creating new work based on this information, and finally, RQ4 is about

validating the created work.

These categories will be structured into a research approach consisting of 5 stages, primarily rooted in design science:

1. Theoretical framework

2. Survey

3. Framework

4. Interviews

5. Prototype

Design science is the practice of creating new methods, models or systems to help address the identified problems.

This approach has been chosen due to the focus of this research on providing a basis for exploring orchestration

requirements and starting the development of a custom orchestrator. The framework will be designed and serve as

such a jumping-off point. Considering Figure 1 the kind of design science contribution which will be made will likely

exist within the improvement domain. Where the problems will be known, and a new solution will be created to

address the issue. (Johannesson & Perjons, 2014)

Figure 1 - Kinds of design science contributions (Johannesson & Perjons, 2014)

These five steps have been chosen to provide a robust and representative conclusion. As the framework will be one

of the primary outputs of this research, the interviews and prototype allow for validation of the prototype. By

consulting external experts and putting the framework to use, a generic reusable framework can be constructed built

upon a solid foundation of knowledge.

2.1. Theoretical background
To provide a frame of reference and introduction to the relevant topics, the available literature will be reviewed and

condensed into a theoretical background. The literature review will also provide early explanations for research

question 1, stating the consequences of an unreliable RPA environment. Moreover, relevant forms and frameworks

regarding orchestration will be investigated. Finally, it will provide a foundation for the interviews and survey, helping

design questions which can be asked in these stages.

2.2. Survey
The survey will be the primary source of information for answering research questions 1, 2 and 3, the consequences

of an unreliable environment, the requirements for an improved orchestrator, and how these requirements would

translate into a high-level framework. The survey will be shaped based on the literature review. Additionally, the

survey will serve as a primary way to source interview candidates.

9

2.3. Framework
The framework will be created by analysing the survey responses and extracting common themes between features.

This will form a framework where the features can be plotted and categorised. These categories will encompass all or

the majority of features which can reasonably be contained within an orchestrator.

The features which are to be plotted inside this framework will be selected when they are commonly mentioned or

deemed highly impactful for an RPA environment. Not all possible or already present features will be listed in the

framework, only the ones mentioned in this research. However, it should allow space for expansion and additions

based on existing or future developments.

The features will individually be described in a list, detailing their purpose and use within an RPA environment.

This process will provide an answer to research question 3, asking how requirements would translate into a high-level

RPA orchestration framework.

2.4. Interviews
The interviews will be designed to gain more insight into the relationship between orchestration and RPA. It will be a

semi-structured interview, containing a list of questions that need to be answered but have the ability to go off-script

into related topics.

For the interviews RPA professionals will be chosen who have experience with multiple RPA tools to provide a wide

field of experience.

During the interview, the aforementioned framework will be subjected to review by these RPA experts. They will be

given the opportunity to review and comment on the framework, testing whether it can encompass all orchestration

features.

2.5. Prototype
The prototype will seek to prove the validity of the framework by implementing a subset of the framework in the RPA

department of PPHE. Being our available testing platform, PPHE’s environment will be used to showcase the feasibility

of implementation. For this reason, the feature selection will be founded on the needs of PPHE, as every company and

tool might have different requirements. However, a broad spread of features will be targeted to provide insight into

each section of the framework. To provide this broad spread an additional number of features will solely be modelled

and not technically implemented. These models will show how the feature should integrate and work from a

theoretical point of view.

This implementation will be limited but prove the feasibility and based on the experiences within the company provide

an answer to research question 4 and the main research question, asking how an improved RPA orchestrator improves

RPA deployment reliability. This answer will be in line with one of the hypotheses posed in the ‘research aims and

objectives’ section.

10

3. Theoretical background
The following chapter will provide a theoretical foundation for the research and provide an overview of related work.

A study in 2019 established that a significant gap exists in the amount of literature regarding RPA. The research which

has been performed primarily focuses on case studies regarding RPA implementations. At the time little theoretical

research had been done and no theoretical frameworks were formed. (Ivančić, Suša Vugec, & Bosilj Vukšić, 2019)

While more contributions have been made since this time, the field remains a niche technology.

3.1. Robotic Process Automation
The term Robotic Process Automation (RPA) refers to the mimicking of human interactions with a computer by

software. RPA scripts complete processes in the same way a human would, by navigating through the user interface

and performing the necessary interactions in a non-invasive manner. The software instances performing these

processes are often referred to as robots, bots, or digital workers. These terms just reference the single license of the

RPA software residing and operating on a PC or server.

These scripts are designed by professional or citizen developers in an often low-code environment. Thus, making the

barrier to entry low and the processes able to be automated by the humans who originally performed the process, so-

called ‘citizen developers’.

Certain processes will never be ready for automation, RPA is designed to run unattended and be simple in terms of

development. RPA can therefore not make complex decisions or deal with exceptional cases. Table 1 shows the

commonly required or beneficial characteristics of processes suitable for RPA. The processes for which RPA is

commonly suited can also be referred to as ‘swivel chair processes’, where the processes concern the data retrieval,

manipulation, and uploading between an array of different systems. (Willcocks, Lacity, & Craig, 2015)

Criteria Details

Create business value A process should provide sufficient business value to be worth the time to
automate and maintain.

High volume /
Transactional

RPA is well suited for dealing with processes which need to perform many
smaller identical tasks. This can even be parallelized across multiple bots.

Prone to error Processes which are prone to human error, such as data entry/migration,
are ideal for RPA, as the software will not make such errors.

Repetitive Repetitiveness makes scripting easier, as it can loop through the same
actions.

Rule-based The process should be able to follow clearly defined rules as RPA by itself
is not able to make complex decisions.

Predictable / Stable The applications and procedures should be stable to keep maintenance
and process alterations to a minimum.

System diverse RPA can easily interact with multiple systems consecutively and share data
between them.

Structured data The data source for the process should be well-structured and easily
interpretable by a machine.

Table 1 - Process suitability criteria for RPA (Fung, 2014) (Patri, 2020) (Schuler & Gehring, 2018)

However, not all suitable processes are directly ready for automation, it first requires a critical look and potential

business process re-engineering. Automating an inherently flawed process will provide an automated process which

is unstable or slow. Many of these processes can be better tailored towards the capabilities of a robot and provide the

opportunity to process data in bulk with clearly defined business rules. (Davenport & Brain, 2018)

Due to the nature of RPA primarily interacting with the presentation layer, it can also be inferior to better integrated

methods of automation, such as an API or custom automation initiatives. RPA is well suited when an API is not available

or too limited, a custom initiative is too expensive and time-intensive, or when a temporary measure should be taken

such as data migration between systems.

11

3.1.1. Reliability and maintenance challenges
Aside from the many upsides RPA can present, it also presents issues regarding reliability.

Since RPA is frequently owned by business users who automate their processes or a centre of excellence, it can be

outside of the visibility of IT. This can lead to an unsustainable form of shadow IT, which makes managing malfunctions

and security tougher. (Schuler & Gehring, 2018) In a Deloitte case study, IT was shown to be the department least

supportive of the implementation of RPA, with only 31% showing support for RPA. (Deloitte, 2017)

When these automations are developed by developers without a formal computing or IT background, certain best

practices will be unfamiliar to them and therefore not implemented. These best practices from traditional software

development can include but are not limited to proper documentation, error handling, formal testing procedures, and

keeping process logs. (Drost, et al., 2020) (Noppen, Beerepoot, Weerd, Jonker, & Reijers, 2020) Limited documentation

can also lead to process knowledge being lost after automation as the process is out of sight for developers and

business users. This can increase required maintenance and reduce the reliability and robustness of a process. (Schuler

& Gehring, 2018)

Apart from the less experienced developers, RPA also remains a relatively immature technology, only starting to gain

public interest after 2015. (Kregel, Koch, & Plattfaut, 2021) Due to this immaturity, the knowledge surrounding the

maintenance of RPA processes lacks formalisation within organisations. (Noppen, Beerepoot, Weerd, Jonker, &

Reijers, 2020)

As previously shown, RPA is often deployed as a stop-gap measure when lacking formal automation infrastructure.

Combined with the low-code nature of many RPA platforms, this results in RPA developments being deployed quickly.

Due to the quick development cycle, there is limited time for extensive stability testing, with the suggested time of

development for a process being 2 weeks, according to consultants at KPMG advising PPHE, the host company for this

research.

As mentioned above, RPA primarily interacts with the presentation layer of applications, which is much more prone

to changes than an underlying database layer with which formal tools integrate. Therefore, any changes made to the

presentation layer can render the scripted automation inoperable, without alerting the development team. This is

especially problematic in applications where the development team has no governance regarding updates, such as

web-based platforms. Therefore, growth in the number of automations performed also leads to exponential growth

in the amount of maintenance required.

3.1.2. Software landscape
The RPA vendor landscape includes just over a dozen notable players recognised by Gartner, a market research firm

publishing yearly reports on RPA. Figure 2 shows the prominent vendors and their position in the market, according

to Gartner. (Gartner, 2024) Apart from this, there are more tools that are not being recognised, especially open-source

tools such as Robocorp, OpenRPA, and TagUI, which have garnered an enthusiastic following. This following can be

seen in communities such as ‘I Love Automation’ present on LinkedIn and Discord. (Jensen, n.d.)

12

Figure 2 - Gartner Magic Quadrant for RPA vendors (Gartner, 2024)

Due to the differences between tools, some are better in certain areas than others. Therefore, you can also operate

multiple different tools at the same time, a multi-platform approach.

An example for choosing multiple tools can be a difference in feature set, such as better intelligent automation or

artificial intelligence capabilities. (Kim, 2023) (Keymark, 2023) Different tools also provide different integrations; as

PowerAutomate is a Microsoft product, it integrates seamlessly with their Office suite and ChatGPT/CoPilot.

(Microsoft, 2023) Another reason could be compatibility with your existing hardware and software stack; certain tools

may be better suited for legacy or alternative operating systems, such as an old Windows Server instance or a

distribution of Linux. Separate certification programmes and developer networks per tool can affect the availability of

certified developers per RPA tool. Finally, the licensing costs also drastically differ per tool; a more expensive tool such

as Blue Prism can be deployed for the extensive audit functionality it offers while using a cheaper tool for processes

where auditability is of lower concern.

Feature Blue Prism UiPath
Automation
Anywhere

Microsoft
Power

Automate

Running processes

Fixed time process scheduling X X X X

Queueing scheduled processes X

Call process from web/API X X X X

Trigger process by activity X X

Reporting

Maintain processing logs X X X X

Show bot utilisation X X X X

Process status desktop notifications X X
Table 2 - Overview of notable orchestration and scheduling features from top 4 RPA providers (Blue Prism, 2024) (UiPath, 2024) (Microsoft, 2024)
(Automation Anywhere, 2021)

13

3.1.3. Environment
RPA is commonly deployed on-premises or in a hosted cloud environment, but they will both follow similar principles

in terms of infrastructure layout. Figure 3 and Figure 4 indicate the characteristics, layout, and responsibilities of an

RPA deployment. The primary components for its operation consist of an interactive client, runtime resources, an

application server and an SQL database. The developer uses the interactive client to interact with Blue Prism and

create automated processes. The runtime resources run the automated processes in an unattended manner, where it

is scheduled to log in to the server, perform the necessary actions and log out. The database server stores all

information regarding Blue Prism; none of this is stored on the local machines. The application server functions as the

connecting piece between these servers, facilitating the communication between the database and all other servers.

Therefore, orchestration is performed from the application server, triggering process information to be sent to the

runtime resources based on schedules or commands sent from the interactive client.

Figure 3 - Blue Prism server infrastructure characteristics (Blue Prism, 2024)

14

Figure 4 - Typical RPA infrastructure layout (Schuler & Gehring, 2018)

3.2. Orchestration
To better understand the concept of orchestration and how it can be implemented in other systems, we’ll consider

several frameworks related to the orchestration of processes in an IT setting.

An orchestrator is a system which communicates with related systems and instructs them on what and when to

perform certain actions. Orchestration helps optimise the efficiency and effectiveness of an underlying program by

ensuring actions are triggered and prioritised correctly, resulting in minimal downtime. The difference with

choreography is that choreography tracks the interactions between sources, whereas orchestration initiates

execution. (Peltz, 2003)

When researching the implementation of orchestration in web services, Web Services Business Process Execution

Language (WS-BPEL, BPEL or BPEL4WS) can be seen as a common framework for the orchestration of web services.

However, since many of the sources and revisions date back over 15 years, its relevance can be doubted. (OASIS, 2007)

(Juric, Sarang, & Mathew, 2006) Possible reasons for this can be that such forms of orchestration aren't popular

anymore and this is performed at a different level. Due to the lack of a better alternative, BPEL will still be considered

for this research.

Related to BPEL, BPMN 2.0 also exists as a more modern concept in the same field. However, BPMN 2.0 has a greater

focus on the visualisation and modelling instead of the execution. External platforms like Camunda allow for execution

but aren’t part of the official standard, making it an insufficient framework when solely talking about the orchestration

execution. (Jurišic, 2011) (Geiger, Harrer, Lenhard, & Wirtz, 2018)

BPEL is a standardised language utilised for the construction, specification, and execution of business processes

involving web services. It facilitates the composition of these services into an integrated process that can be executed

either sequentially or in parallel, depending on the specific requirements. BPEL processes define the order of service

composition and include a range of functionalities such as conditional activities, loops, variable declarations, and fault

handlers, enabling the creation of complex business processes through algorithmic means.

Graphical representations of these processes are often described using Unified Modelling Language (UML) activity

diagrams. BPEL supports two primary paradigms: executable processes and abstract business protocols. Executable

processes detail the intricate workings of business processes and are designed for execution by an orchestration

engine. In contrast, abstract business protocols outline the public message exchanges between parties without

including the internal details of process flows, following the choreography paradigm.

Several elements are essential to construct a BPEL process. These include the identification of business partners

interacting with the process, the specifics of data exchange types between the process and these partners, and a

15

defined workflow that dictates the sequence of process execution, including service invocation and data mapping. A

BPEL process necessitates the use of a Web Services Description Language (WSDL) file, which provides the necessary

framework for creating an executable BPEL definition. The WSDL file comprises components such as the namespace,

partner link types, operations, and messages essential for defining process activities. Additionally, namespaces must

point to associated WSDL schema locations and other resources like XSL style sheets and XML files used in the process.

Building a BPEL process involves specifying the execution order, activities, and conditional behaviours within a BPEL

source file. This process interacts with external services through the WSDL interface, ensuring a cohesive and

executable business process. (Albreshne, Fuhrer, & Pasquier, 2009)

16

4. Results
The following results section will introduce the actions taken to address the research questions and their outcome.

Starting with gathering the information required for understanding the current orchestration problems and their

solutions. Continuing to distil this information into a generalized framework and validating this framework in multiple

ways.

4.1. Survey
The field research is led by a survey distributed across channels frequented by RPA professionals. The survey forms

the basis of the research as it allows for a high number of respondents. The findings from these responses can then

be distilled into a framework and further refined using interviews with subject matter experts.

The survey asks a number of questions which aim to uncover critical insights related to the reliability and orchestration

of RPA. These inquiries delve into the experiences, challenges, and expectations of RPA professionals. By examining

aspects such as unreliable execution, orchestrator functionality, and multi-platform considerations, we seek to address

fundamental questions regarding the effectiveness and robustness of RPA deployments. The responses collected from

experts in the field will contribute significantly to understanding the nuances of RPA environments while informing

about potential and desired improvements.

4.1.1. Survey design
Table 3 lists each question asked to survey respondents, alongside what research question it helps answer. It is not an

exact reflection of the survey as certain questions were split up to allow for multiple-choice questions combined with

free text answers, additional notes, or confirmation on terminology definitions used during the survey. The full survey

including the logic and flow can be found in appendix A.

The survey will lead with an introduction to gain insights into the background of each respondent and their familiarity

with and exposure to RPA. It continues asking questions regarding their current experiences with RPA reliability and

how severely reliability issues affect them. After gathering information about the underlying problem in the reliability

segment, questions are posed about how to address these issues by using RPA orchestration. The RPA orchestration

section inquires about the desired features of the respondent and how they would resolve their issues. To address

another issue, the requirement for platform agnosticism is assessed in the following section, verifying whether this is

desirable and collecting users’ experiences. Finally, the respondents are asked to participate in an interview to aid

further research into this topic.

Questions S2.3 and S3.1 contained a section where users could select predefined answers and write their own

responses. These predefined responses were provided to grant some context for what kind of answers could be

expected in this section. The predefined responses were sourced from personal experience as no possible effects or

improved features could be found in related literature. The suggested effects can be found in Figure 7, while the

suggested features will be explained in ‘4.4 Feature Extraction’.

In Table 4, the justification for each question can be found, explaining how it contributes to the research and why it

was included.

Question Related RQ

Introduction

S1.1 How often do you use RPA tools? -

S1.2 Does your job involve RPA development? -

S1.3 What is your job title? -

S1.4 How many years have you worked with RPA? -

S1.5 What RPA tools have you worked with? -

RPA Reliability

S2.1
Have you worked with RPA environments where process execution could be
unreliable at times?

1

S2.2
Have you faced an increase in maintenance due to process orchestration or
scheduling?

1

17

S2.3
What effects due to issues with process orchestration or scheduling have you
encountered?

1

S2.4
How severely do such issues affect your day-to-day work and maintenance
regarding RPA?

1

RPA Orchestration

S3.1 What features should an RPA orchestrator contain? 2

S3.2
How would the features you mentioned or included in the list above help
resolve the issues you're currently facing with RPA scheduling and
orchestration?

4

Multi-platform

S4.1
Have you worked with multi-vendor RPA deployments, running different RPA
tools alongside each other?

2, PRQ

S4.2
What were your experiences regarding RPA scheduling and orchestration with
multi-vendor RPA deployments?

1, 2, PRQ

Interview

S5.1 Would you be available for an interview? -
Table 3 - Survey questions combined with related research questions

Question justification

Introduction

S1.1
This question serves as background to gather more information from the respondent and
assess their expertise. Frequent use of RPA tools demonstrates expertise due to the high
amount of exposure the user gets to the platform.

S1.2
This question serves as background to gather more information from the respondent and
assess their expertise. Professional RPA development signifies their expertise and
knowledge of larger scale RPA deployments.

S1.3
This question serves as background to gather more information from the respondent and
assess their expertise. The respondent’s job title reflects their seniority and specific task or
technology exposure within the RPA ecosystem.

S1.4

This question serves as background to gather more information from the respondent and
assess their expertise. The number of years the respondent has been involved with RPA
tools shows the breadth of their knowledge, having seen the ecosystem evolve and a broad
set of use cases, alongside directly relating to their expertise and seniority.

S1.5
This question serves as background to gather more information from the respondent and
assess their expertise. Having used a multitude of tools shows the breadth of knowledge
regarding features included and missing across a larger part of the RPA market.

RPA Reliability

S2.1
This question tries to verify whether research question 1, an unreliable RPA environment
and its consequences, is an actual issue for the respondent. Unreliable execution directly
links to the orchestrator’s functionality of starting and correctly stopping processes.

S2.2

This question tries to verify whether the unreliable RPA environment, mentioned in
research question 1, relates to the orchestrator and affects day-to-day operations for the
respondent. Maintenance is performed continuously where necessary for live processes,
minimising this shows a well-functioning RPA environment which can focus on more value
creation.

S2.3
This question tries to extract specific details regarding what issues the orchestrator may
have caused to label the environment as unreliable at times. This directly goes to answer
research question 1, exploring the consequences of an unreliable RPA environment.

S2.4
This question tries to assess the impact of issues which arise due to orchestration and cause
an unreliable RPA environment, providing more context for the answer to research question
1.

RPA Orchestration

18

S3.1
This question directly impacts research question 2 by sourcing the most requested features
directly from RPA professionals. The broad experiences of all respondents allow for a wide
coverage of potential features and use cases.

S3.2
This question directly impacts research question 4 by relating the suggested features to
improvements in the respective RPA environment. This shows how reliability can be
improved and what the goal is of the features.

Multi-platform

S4.1

This question speaks to the requirement of vendor agnosticism mentioned in the primary
research question. Vendor agnosticism indicates the tool can be used by any platform but
also by multiple platforms simultaneously. It can also be attributed to the requirements for
an orchestrator in research question 2.

S4.2

This question speaks to the experiences the respondent had with the deployment of
multiple RPA platforms in a single environment. It can elaborate on the issues, the
requirements for a successful deployment and the urgency of implementation, related to
research question 1, research question 2 and the primary research question, respectively.

Interview

S5.1
This question serves as a sourcing tool for the interviews which are a later step of the
methodology. Combined with the background of each respondent it allows for the selection
of experts in the field of RPA.

Table 4 - Justification of survey questions

4.1.2. Survey participants
43 valid responses were recorded, out of which 33 fully completed the survey.

Over 90% of the respondents indicated their job involved professional RPA development. Of the same group, 88%

reported using RPA tools daily or multiple times per week, and 95% for professional developers. These individuals

averaged nearly 5 years of experience with RPA. Their job titles ranged from many RPA developers to creators of RPA

tools, developers of RPA orchestrators, and RPA teachers.

Figure 5 shows the familiarity with specific tools across all respondents where they could select multiple answers.

Respondents could elaborate on their ‘Others’ response by providing the specific tool name, this mentioned several

less popular tools once, except for ‘Softomotive’ which was mentioned twice. ‘Softomotive’ was acquired by Microsoft

in 2020 to expand their RPA capabilities, thus currently being merged into the PowerAutomate product line.

(Microsoft, 2020)

Figure 5 - Tool usage across survey respondents

19

4.1.3. Survey results
The features, specific issues and solutions related to an improved orchestrator from the survey and interviews have

been aggregated and will be presented in ‘4.3.3. Interview results’ and ‘4.4 Feature Extraction’. In this section, the

results of the survey related to the respondents’ background, problem recognition and issue identification will be

shown.

One of the primary goals of the survey was to verify whether the problem was recognised throughout the RPA

community. Out of the respondents, 77% have worked with an RPA environment where process execution could be

unreliable. Due to the limited number of results and users working with multiple tools, this unreliability cannot be

attributed to specific tools more than others.

Another validating number of the problem is that 60% of the respondents attributed an increase in maintenance due

to problems with process orchestration or scheduling. When breaking down this response by tool usage of

respondents in Figure 6, we can see UiPath being distanced from the other tools with less reported maintenance

impact. This could indicate that UiPath has a more robust orchestration and scheduling mechanism than its

competitors. However, these results are inconclusive due to the method used to collect this data.

Figure 6 - Percentage of respondents per tool (multiple-choice) reporting an increase in maintenance due to orchestration or scheduling.

When provided with possible effects of orchestration issues many respondents found recognition in the requirement

to rerun processes manually, accruing delays over a day, and not being able to fully utilise their license. In self-

submitted responses users shared the following:

• Work had to be performed manually instead of a ‘robot’ doing it in an automated way.

• Loss of a competitive edge over competitors due to an increase in response times.

• Creation of more work due to requests or follow ups as a result of the script not completing in time.

• Client escalations and missed deadlines or service level agreements.

• A loss of credibility for the automation programme/RPA department throughout the rest of the organisation.

• A knock-on effect due to many interdependent, sequential automations or limited business hours and

application uptimes.

• An impossibility of scheduling automations effectively during peak times or letting specific processes take

priority.

20

Figure 7 - Percentage of respondents encountering pre-selected issues as a result of insufficient orchestration capabilities in their environment.

When gauging how severely the orchestration issues affected respondents’ day-to-day work and required

maintenance in an RPA environment, they, on average, said that it had a moderate effect. The distribution of these

responses can be found in Figure 8.

Figure 8 - Distribution of respondents indicating the severity of orchestration issues affecting their day-to-day and maintenance activities.

Multiplatform usage has mixed popularity and is not being embraced by many of the respondents, as per Figure 9.

Respondents indicated that this mostly resulted in a confusing mix with multiple control rooms, which was hard to

maintain. The respondents could see the benefits of it due to citizen development and centralised development using

different tools or different capabilities per tool.

Figure 9 - Distribution of respondents indicating whether they have used multiple RPA platforms alongside each other.

21

Overall, the survey results show a strong recognition of the problem regardless of the tool in question. The impact of

this problem is not insignificant, impacting day-to-day operations for a large percentage of the RPA deployments. A

need for multi-platform integration can be observed by the number of users who have been in the scenario of using

multiple tools in a single deployment.

4.2. Framework
The purpose of the framework is to provide a structure to plot features which can exist within an RPA orchestrator on.

This should aid the structuring of an application to perform orchestration, provide a clear boundary as to what an

orchestrator should contain, and serve as steppingstone to theorizing new possible orchestration features. The

framework was created after the surveys were completed based on the responses and learnings gained during this

process.

Keeping the aforementioned goals of the framework in mind, the process of devising the framework proceeded as

follows. Going through the list of provided features, it can be seen that an orchestrator obviously needs to interact

with the RPA environment. To provide a frame of reference for what can be interacted with, the layers of an RPA

environment were critically assessed to see what it consists of. Starting from the point of view of the RPA tool, we can

identify different elements in the environment. Firstly, at the lowest level, we have the infrastructure; the RPA tool

must run somewhere on a machine containing a suitable operating system. Secondly, we can look at the purpose of

the RPA tool, which is to run automated processes, becoming the middle level. Finally, we look at the real purpose of

running these automated processes, which is manipulating data in some form; data is the top layer. This provides one

of the axes for our framework.

The following axis can be found by asking what kind of interactions need to be performed as an RPA orchestrator. To

arrive at these categories, the suggested features and common usage of other systems can be referenced. For the

usage of other systems, the three-tier architecture was chosen as an example of what components are commonly

found in an application. Based on the suggested features, this can be shaped into tiers that fit within an RPA

environment. The three-tier architecture consists of presentation, logic, and data. These topics are frequently

mentioned, as will be shown in ‘4.4 Feature Extraction’, in the desired features. The presentation tier can visualise

elements on each layer to provide insights into the orchestrator. The logic tier can control the execution of processes

and is the core of the orchestrator; this will be referenced as ‘Control’. The data tier is responsible for storing all related

information and verifying the accuracy. As the actual data storage responsibilities are with the RPA tool, in an

orchestrator this tier mostly focuses on governance, regarding exporting or logging data, managing inputs, and

managing access.

By combining these axes, the framework pictured in Table 5 is constructed. The framework provides an intersection

between the architecture of an RPA solution and the possible interactions with that environment, represented as the

RPA layers and tiers, respectively. Due to this combination of what exists and what can be done with it, it should

provide a matrix encompassing everything that can interact with each other and, therefore, contain all features.

22

 Tiers

 Presentation Control Governance

Description

R
P

A
 la

ye
rs

D
at

a

View or get alerted
of what data is

being processed in
detail.

Manage what data
is being processed
and in what order

Keep records of
what data was
used and who

accessed it

Data used
by the

process

P
ro

ce
ss

 View or get alerted
of the status of

running, scheduled,
or completed

processes.

Manage when,
where and what

processes are being
run.

Keep records of
what processes ran

and how they
performed.

Processes
developed
in the RPA

tool

In
fr

as
tr

u
ct

u
re

View or get alerted
of the current

status of
infrastructure

elements, such as
server availability.

Manage
infrastructure

centrally, such as
restarting servers

or changing
settings for an RPA

platform.

Keep access
records and

manage RPA-
related permissions

per server.

RPA tools
and servers

 D
e

sc
ri

p
ti

o
n

From 3-tier
architecture:
Presentation

From 3-tier
architecture:

Logic

From 3-tier
architecture:

Data

Table 5 - RPA Orchestrator feature framework

Each element on the axes referenced in the table above is further defined in Table 6.

Framework element Definition

Infrastructure The software and hardware required to execute automated processes in an RPA tool. The
RPA tool itself is part of the infrastructure. A representation of what hardware can be used
in an RPA environment can be found in Figure 3 and Figure 4.

Process The developed script in the RPA tool which performs automated actions within certain
applications on top of the infrastructure.

Data The information regarding what transactions are to be completed by the process and the
payload of relevant data it carries.

Presentation The visualisation of information to provide insights to end-users.

Control The manipulation of systems and data to achieve a desired way and order of working.

Governance The storing, verifying, and reporting of information to service security and compliance.
Table 6 - Definitions of suggested RPA orchestrator feature framework axis categories.

As part of the interview, this framework was reviewed by selected experts in the RPA field. Being sent the framework

ahead of time and entering into a discussion about whether they agree it could encompass all RPA orchestration

features. The feedback will be discussed in ‘4.3.3. Interview results’.

4.3. Interviews
The interviews were used to stimulate in-depth discussions regarding RPA orchestration and reliability. It was

therefore conducted in a semi-structured manner, allowing for the conversation to take a natural course to uncover

additional insights. While the topics are similar to the survey, more detail and nuance can be provided by the selected

experts. As a main difference, it also provided an opportunity for the validation of the framework created based on

the survey results.

23

4.3.1. Interview design

Question Related RQ

Background

I1.1
Do you work with scheduling and maintaining processes in a production RPA
environment?

-

I1.2
Do you use multi-purpose bots in your environment? (Bots performing
multiple different processes over a day)

I1.3
How would you judge the license utilisation in your environment? Are they
being used efficiently and always in use?

1

RPA Reliability

I2.1
How do you view the reliability of current popular RPA vendors in terms of
scheduling and orchestration? Do they correctly resume in case of process
instability?

1

I2.2
Is this one of the bigger problems when looking at overall RPA reliability in
your environment?

1

RPA Orchestration

I3.1
What are you missing when looking at current RPA orchestrators? Do they
offer all the desired customizability and features?

2

I3.2 What are the strong and weak points of current RPA orchestrators? 2

Framework

I4.1
What are your thoughts on the developed framework? Can it encompass all
features related to RPA orchestration?

3

Table 7 - Semi-structured interview questions combined with related research questions

4.3.2. Interview participants
The interview questions were posed to 7 interviewees, of which 5 were sourced through the survey, and 2 had not

completed the survey. The language spoken during the interview was split between English and Dutch, with 4 being

conducted in the former and 3 in the latter. All participants held jobs within the RPA field, all possessing multiple years

of experience. Among the interviewees were notable participants, namely the creator of a popular RPA tool and a

developer for a commercial external RPA orchestrator. Apart from that, there were also participants with many years

of experience as RPA consultants and in-house developers. These participants provide a diverse viewpoint on the

implementations and uses of RPA throughout various industries.

4.3.3. Interview results
The interviews have been coded in combination with the survey results to extract information regarding:

- current problems with orchestration,

- the consequences of limited orchestration,

- desired features,

- expected improvements and its impact,

- multivendor usage,

- and framework feedback.

The codes used and the frequency of their occurrence within the interviews are shown in appendix B.

When examining the problems interviewees were facing in the orchestration of processes, they often mentioned the

lack of reliability and flexibility when scheduling processes. Schedules may not always trigger properly without further

alert to the user. Alongside this the possibilities to trigger a schedule can be limited and mostly consist of time-based

triggers instead of event-based triggers. Interviewees indicated this negatively impacted their license utilisation due

to the requirement for buffers between processes or other limitations. The schedules would also require manual

intervention or constant monitoring, increasing the required headcount and limiting scalability. Orchestration

solutions do exist from RPA vendors or external parties; however, the interviewees mentioned that these were

excessively expensive or had unclear pricing, which could easily inflate with high usage. Most interviewees were well

24

aware of the issues, and those primarily working with UiPath reported being less affected by this due to the features

offered by UiPath’s base tool and their add-on orchestration suite.

The primary consequences of such issues were reported to be an increase in maintenance required to make sure all

processes ran correctly. Some organisations addressed this by having large teams dedicated to triggering and

monitoring the processes non-stop, with reports of companies having 20 people offshore only monitoring the

orchestration. Increasing headcount so significantly isn’t possible for every organisation, which then came with other

consequences of missed deadlines, the process needing to be completed manually, reputation damage or loss of

credibility. Poor license utilisation can also be a consequence due to dedicated licenses remaining on standby for long

periods of time, periodically checking whether there was data to process. Organisations also chose to only run

processes during standard business hours as stability could not be guaranteed overnight. When uncertainty exists

regarding the length of a process due to a fluctuating amount of data, large buffers may be created between processes

so they won’t interfere with each other’s schedules due to a lack of processes queueing after each other.

Features to solve these issues will be explained in detail in ‘4.4 Feature Extraction’, common themes existed

surrounding improving triggering of processes, improving the loading of data to a queue, and improving the

presentation of data and metrics which can be retrieved from the environment.

The expected improvements to come with these features include increased reliability and consistency of execution,

reducing the need for constant monitoring. With this consistency comes an increased trust from the business in the

capabilities of the automation division and enables scaling up development. Apart from gaining trust in the business,

responsibilities can also be shared with them by giving them live insights into and control over the execution. This

control over execution can be extended due to the enhanced flexibility of the orchestration, for instance, by queueing

processes or letting priority processes interrupt others, which optimises the license utilisation. Improvements can also

be found in clarifying what actions are required from stakeholders by providing additional information regarding

statuses and ongoing issues. Moreover, helping spot future issues due to better schedule planning and dependency

monitoring.

The benefits of multivendor usage were recognized by survey respondents and interviewees. Different tools have

different strengths, they can be priced differently, have different functionality, or be more user friendly for citizen

developers in a democratized development model. The problems are clear with orchestration and oversight becoming

unclear and there being limited collaboration between the tools.

All interviewees responded positively to the framework found in Table 5, mostly saying it seems complete and could

contain all features. However, there were two separate suggestions for including an integration layer representing

third-party integrations with external applications. This would be positioned within the RPA layers axis.

4.4. Feature Extraction
During the interviews and surveys one of the main priorities was gathering an array of features to design the

framework around and use within the framework. Table 8 will show the extracted features from both the interviews

and surveys. The table provides a short feature name, a short description, the framework section it belongs to, and

the frequency it was mentioned. The frequency indicates how many unique respondents or interviewees suggested

this feature, this is different from the frequency the code was used, which can be found in the coding table in appendix

B.

During the survey prior to contributing their own features, the respondents got a list of predefined features. This was

included to give them a reference for what potential orchestration features could look like. The predefined features

had to be categorized in a MoSCoW classification, allowing respondents to indicate what was important for them.

These features have been included in the feature list and will be marked with a ‘(PD)’ meaning predefined in the

feature name. Respondents or interviewees may have still suggested this feature separately from this question.

25

Feature Description Quadrant Freq.

1 Access Control (PD) Provide access to orchestrator functionality for stakeholders and
team members in a granular way.

IG - Infrastructure \
Governance

4

2 External Viewing
Access (PD)

Provide access to stakeholders not involved on development to
view process progress, data, errors, statistics and process
schedules.

IP - Infrastructure \
Presentation

3

3 Change process
configuration
variables

Access config files with hardcoded values and switch between
configurations, for example to choose development, testing and
production settings.

PC - Process \
Control

4

4 Credential
management

Keep credentials in a secure environment accessible by specific
processes, machines, and permissioned users.

DG - Data \
Governance

4

5 Encryption of
process data

Encrypt queue data for sensitive processes so it cannot be viewed
in logs or from outside the process.

DG - Data \
Governance

1

6 Group machines by
server capabilities

Create pools of machines to run processes on based on the
installed software (versions) or user preference.

IC - Infrastructure \
Control

5

7 Stop/Defer
schedules based on
dependency
unavailability (PD)

Process schedules can be skipped based on the availability of
dependencies on a server. The availability can be ticked on/off
manually, it could be based on a work window or by a connection
to the dependency indicating its availability.

PC - Process \
Control

5

8 Monitor
dependency
availability

Poll related systems to see whether it is live and accessible for the
process.

IC - Infrastructure \
Control

1

9 Log environment
changes

Log changes made to the environment by users and the system IG - Infrastructure \
Governance

4

10 Process
dashboarding (PD)

A dashboard showing process execution, process statistics, and
live run conditions.

PP - Process \
Presentation

11

11 Environment
dashboarding

A dashboard showing configured process schedules, machine and
process availability, and license utilisation.

IP - Infrastructure \
Presentation

12

12 Data dashboarding A dashboard showing what (non-sensitive) data has been
processed by the processes. For example, grouped by business
unit or department.

DP - Data \
Presentation

8

13 Error logs Keeping a log of all errors and exceptions encountered by
processes, opening it up for further analysis.

PG - Process \
Governance

5

14 Log exports Exporting logs (automatically) to analyse them in external tools or
for compliance reasons.

PG - Process \
Governance

2

15 Machine recording Recording or screenshotting the system at the time of error within
processes.

PP - Process \
Presentation

3

16 Data exports Exporting queue data (automatically) to keep logs before it is
overwritten by the next batch.

DG - Data \
Governance

2

17 Flexible server
usage

Ability to play processes on any available machine instead of
assigning processes to a specific machine in a schedule.

IC - Infrastructure \
Control

1

18 Environment
notifications (PD)

Ability to send out notifications to stakeholders in case of certain
events such as failed processes, machine availability, etc.

IP - Infrastructure \
Presentation

2

19 External Queue
Item Creation (PD)

Create queue items from external sources through an API call. DC - Data \ Control 3

20 Start process on
queue addition

Start or queue a process once items are added to the queue. PC - Process \
Control

3

21 External process
start (PD)

Ability to receive external request to start or queue a process. PC - Process \
Control

10

22 Conditional process
start

A checklist before starting a process, such as other processes
needing to have finished beforehand.

PC - Process \
Control

3

23 Priority process
triggering

Safely stop running processes and start a higher priority process. PC - Process \
Control

5

26

24 Dynamic load
triggering

Trigger multiple instances of a process on different machines to
absorb loads above a certain threshold or meet service-level
agreements.

PC - Process \
Control

6

25 Queue processes
(PD)

If process time and a trigger overlap, the process should be
queued and started after the previous process is finished.

PC - Process \
Control

4

26 Software Version
Control

Ability to verify and change software versions on machines. IC - Infrastructure \
Control

7

27 Restart Machines
(PD)

Ability to automatically restart machines in case of certain errors
as an attempt to resolve machine-related issues.

IC - Infrastructure \
Control

3

28 Data Input
Validation

Ability to validate provided queue data according to schema
before loading.

PG - Process \
Governance

2

29 Process Input
Validation (PD)

Ability to choose from predefined process launch parameters and
validate the correctness of entered parameters

PG - Process \
Governance

1

30 Log process steps Provide a detailed overview of what specific steps a process took. PG - Process \
Governance

6

31 Runtime statistics Provide statistics regarding processing times, their standard
deviations, and other metrics to provide more insights into
processes.

PP - Process \
Presentation

6

32 Process log
visualisation

Use process mining to visualize the process logs and have the
ability to view what route the process commonly takes, how long
it takes and where errors may be more frequent.

PP - Process \
Presentation

3

33 Connected queues Multiple queues allowing you to push forward between them
where validation can be performed that all items are transferred
between them.

DG - Data \
Governance

3

34 Cross-platform
queues

The ability to have connected queues between different platforms DC - Data \ Control 1

35 Queue payload
adjustment

The ability to adjust queue payloads outside of processes to aid
with testing and provide humans with the ability to fix data-
related issues.

DC - Data \ Control 1

36 Forecast runtimes The ability to forecast process runtimes before the process starts
and live, allowing for better planning and scheduling.

PP - Process \
Presentation

6

37 Quarantine servers In case processes fail on a certain server or maintenance needs to
be performed, quarantine the server and run any scheduled
processes on a different compatible server.

IG - Infrastructure \
Governance

2

38 Process queueing
verification (PD)

An extension on the external process start, where users are
prevented from trying to start the process too many times and
filling up the queue.

PG - Process \
Governance

0

39 Multi-platform
overview (PD)

A combined overview of the operations of multiple different RPA
platforms.

IP - Infrastructure \
Presentation

3

Table 8 - All identified features including the frequency it was mentioned

Table 9 provides a combination of Table 5 and Table 8, mapping out each of the features onto the framework.

Additionally, Table 10 shows the frequency of how many times the features in each category were mentioned. The

left-hand value in each cell relates to the feature number, while the right-hand value is the frequency it was

mentioned. The shades of blue indicate a more frequently mentioned feature, with darker shades being mentioned

more often. Besides this the features have been fit into the areas of the framework, with differing cell sizes, these

roughly correlate to the frequency but aren’t consistent.

This allows for the analysis of trends and hotspots within the features gathered during this research. Hotspots

regarding the number of features or frequency they were mentioned can indicate the current lack of orchestration in

concentrated areas.

27

 Tiers

 Presentation Control Governance

R
P

A
 la

ye
rs

D
at

a

12 - Data dashboarding

19 - External Queue Item Creation (PD)
34 - Cross-platform queues
35 - Queue payload adjustment

4 - Credential management
5 - Encryption of process data
16 - Data exports
33 - Connected queues

P
ro

ce
ss

10 - Process dashboarding (PD)
15 - Machine recording
31 - Runtime statistics
32 - Process log visualisation
36 - Forecast runtimes

3 - Change process configuration variables
7 - Stop/Defer schedules based on dependency
unavailability (PD)
20 - Start process on queue addition
21 - External process start (PD)
22 - Conditional process start
23 - Priority process triggering
24 - Dynamic load triggering
25 - Queue processes (PD)

13 - Error logs
14 - Log exports
28 - Data Input Validation
29 - Process Input Validation (PD)
30 - Log process steps
38 - Process queueing verification (PD)

In
fr

as
tr

u
ct

u
re

 2 - External Viewing Access (PD)
11 - Environment dashboarding
18 - Environment notifications (PD)
39 - Multi-platform overview (PD)

6 - Group machines by server capabilities
8 - Monitor dependency availability
17 - Flexible server usage
26 - Software Version Control
27 - Restart Machines (PD)

1 - Access Control (PD)
9 - Log environment changes
37 - Quarantine servers

Table 9 - All features mapped in the the respective framework areas

Table 10 - All features mapped and coloured by frequency compared to the whole (displayed as feature number - frequency)

3 - 4 7 - 5 20 - 3 14 - 2

15 - 3 22 - 3 28 - 2 29 - 1 38 - 0

32 - 3 23 - 5 24 - 6 25 - 4

2 - 3 18 - 2 39 - 3 8 - 1

17 - 1 37 - 2

11 - 12

26 - 7

27 - 3

6 - 5

1 - 4 9 - 4

36 - 6

31 - 6

10 - 11

21 - 10

30 - 6

13 - 5

12 - 8 19 - 3 34 - 1 35 - 1

4 - 4

5 - 1 16 - 2 33 - 3

Tiers

Presentation Control Governance

D
at

a
P

ro
ce

ss
In

fr
as

tr
u

ct
u

re

R
P

A
 la

ye
rs

28

5. Prototype
The prototype section is a continuation of the results section showing the steps performed to validate the framework

through a prototype. This is the second step of validation after being reviewed by experts during the interviews.

5.1. Feature selection
As validation for the developed framework, a selection of the features will be developed and modelled. To limit the

scope and ensure the feasibility of providing a proof of concept in a timely manner only 4 features will be developed

and modelled, while another 2 features will only be modelled.

The selection of features is made to provide a broad view of aspects within the framework. All tiers and layers will be

included in at least one feature. To further narrow down the selection, the popularity of each feature will be taken

into account, preferring commonly mentioned features. The proof of concept will be deployed within PPHE’s RPA

department, therefore, based on an informal discussion with PPHE, a higher priority will be given to features valuable

in their environment to demonstrate the effectiveness of improved orchestration.

Feature Section Action Justification

18 Environment notifications IP Develop Covers presentation section, fits with PPHE needs, high
rating in MoSCoW

19 External queue item
creation

DC Develop High rating in MoSCoW, fits with PPHE needs, feasible
scope, covers less populated Data section

21 External Process Start PC Develop Highly requested, fits with PPHE needs, covers most
requested PC region

25 Queue Processes PC Develop Fits with PPHE needs, very high rating in MoSCoW, covers
most requested PC region

14 Export logs PG Model Covers governance, feasible scope
27 Restart machines IC Model Covers infrastructure control, showcase feasibility of

control outside of RPA application
Table 11 - Selected features for UML modelling and prototype development

The selected features can also be seen as part of a theoretical RPA operations story with the following plot points:

1. A process is started externally.

2. This process is queued as the server is still in use.

3. Once the process starts running, there are more queue items which need to be added; these are created

externally.

4. An error that cannot be resolved occurs during the process, resulting in the process getting stuck and

providing a ‘Warning’ state to the Blue Prism control panel.

5. A notification is sent out alerting stakeholders of the current warning state.

6. To resolve this issue the machine is being restarted for Blue Prism to regain control over the virtual machine

and potentially resolve the cause of the error.

7. The process logs are exported automatically so these can be analysed.

5.2. Feature modelling
To model the features, UML will be used in two different diagram forms. Each feature will be modelled in a class

diagram and a sequence diagram. The class diagram will show the structure of the components and how they interact

with each other. The sequence diagram will show in what order this interaction happens to have the function operate

correctly. Finally, a combined class diagram will show how all features are combined into a single system.

Feature 14 – Export logs

The exporting of logs contains four classes: the request being made from the front end, the orchestrator handling the

request, the RPA interface providing the log, and the file system storing the log. Figure 10 and Figure 11 show the class

and sequence diagram for this action, which will be further explained below.

29

The request will allow for specific processes and time ranges to be exported in the desired file format using its input

variables. Zero to many requests can be made to the orchestrator, which will always remain a single system. The

request will be the first element triggering the exporting action.

The orchestrator is at the centre of the action, facilitating the request. It has environment variables stating what

formats are available for export and where the log will be saved. It connects to the RPA interface as a single system

being able to interface with one or more RPA interfaces. For the file system, a one-to-one connection is made. The

orchestrator is able to receive the requests and start the appropriate follow-up actions. First, it will get the previously

ran processes to be able to select which logs need to be exported. Second, the session log for these processes will be

retrieved, showing the detailed steps the process went through. The orchestrator now possesses all required

information and will format and save the log, with the file being output to the file system.

Figure 10 - UML class diagram for export logs feature

Figure 11 - UML sequence diagram for export logs feature

Feature 18 – Environment notifications

The environment notifications feature contains 3 classes, the orchestrator checking for statuses and triggering the

notifications, the RPA interface providing the statuses, and the notification system for delivering the notifications to

the end users. Figure 12 and Figure 13 show the class and sequence diagram for this action, which will be further

explained below.

The feature is not based on requests, but when it’s enabled, the orchestrator will periodically check for process and

server statuses. It contains environment variables defining what statuses are accepted for both the processes and

servers and after what time threshold of a status being visible a notification should be sent. The orchestrator, as the

single system, can interact with one or more RPA interfaces and has a single notification system distributing

notifications across multiple channels. For sending process-related notifications, the orchestrator will first get the ran

processes from the RPA interface. Afterwards, it will compare the statuses from these processes to the list of accepted

30

process statuses. In case the state of a process is not in the list, the send notification action in the notification system

is triggered. Server status notifications are sent by periodically retrieving the server statuses. The server status for

each selected server is compared to the acceptable statuses; when not included in this list, the process waits and keeps

checking. If the status doesn’t change before the unavailability time threshold expires, a notification will be sent.

The notification system contains environment variables defining the text to send for certain statuses, the channels to

publish the notification in, and the recipients of the notifications.

Figure 12 - UML class diagram for the environment notifications feature

Figure 13 - UML sequence diagram for the environment notifications feature

31

Feature 19 – External queue item creation

The external queue item creation feature contains four classes: the request triggering the function, the queue item

forming the payload to add to the queue, the orchestrator connecting to the RPA interface, and the RPA interface

where the data needs to be loaded. Figure 14 and Figure 15 show the class and sequence diagram for this action,

which will be further explained below.

The request will indicate to which queue and RPA interface what data should be added. The data payload consists of

one or more queue items as part of a single queue request. The queue item contains a numeric value for the priority

with which it needs to be processed, as well as the data associated with the item. Zero or more requests are made to

the orchestrator.

The orchestrator is capable of receiving the request and triggering the add to queue function in the RPA interface. It

has one or more connections to an RPA interface. When the request is received the orchestrator directly passes it onto

the RPA interface.

Figure 14 - UML class diagram for the external queue item creation feature

Figure 15 - UML sequence diagram for the external queue item creation feature

Feature 21 and 25 – External process start and queue processes

The external process start and queue process diagrams combine two different features, as the features can much

better be modelled together due to their co-dependency. The features contain four classes: the request triggering the

function, the orchestrator checking server availability and managing the queue, the queue maintaining the request

order, and the interface reporting availability and starting processes. Figure 16 and Figure 17 show the class and

sequence diagram for this action, which will be further explained below.

The request will detail the process name, server and interface to be run on, and input parameters for the process. Zero

or more requests can be sent to the orchestrator instructing it to start a process. The same cardinality exists between

the request and the queue, where the queue consists of zero or multiple process requests.

The orchestrator can receive the request and trigger it at the appropriate time. After receiving the request it will add

the process to the queue directly to which it has a one-to-one relation. If items exist in the queue, the RPA interface

will be checked to see whether it is ready to receive a process based on its server status. In case the server is busy, it

32

will wait and check again later based on the environment variable's wait time. When the server is not busy anymore,

the orchestrator will retrieve the next process from the queue and instruct the RPA interface to start it. The

orchestrator can be connected to one or more RPA interfaces.

Figure 16 - UML class diagram for the external process start and queue process features

Figure 17 - UML sequence diagram for the external process start and queue process features

Feature 27 – Restart machines

The restart machines feature contains 3 classes, the request triggering the function, the orchestrator executing the

command and the server which can be restarted. Figure 18 and Figure 19 show the class and sequence diagram for

this action, which will be further explained below.

The request will indicate what server needs to be restarted, sending zero or more requests to the orchestrator.

The orchestrator contains an environment variable detailing how the restart should be performed corresponding to

the windows shutdown command. It can receive the restart request after which it sends a restart over the network to

a specific server. The server of which there can be one or more, will receive this restart via the network and perform

accordingly.

33

Figure 18 - UML class diagram for the restart machines feature

Figure 19 - UML sequence diagram for the restart machines feature

Combined features

The combined class overview in Figure 20 shows the overlap between certain features and their classes. The

orchestrator being at the centre processing requests and triggering functions in the connected systems. Particularly

the orchestrator and RPA interface show the number of connections and different features included. The diagram

shows the initial requests on the left side, the orchestrator in the middle, and the connected systems on the right side.

Figure 20 - UML class diagram for all combined modelled features

34

5.3. Prototype development
Based on the UML above, the environment notifications, external queue item creation, process queueing, and external

process start features will be prototyped. The goal of the prototype is showcasing the possibility of implementing

these improved features outside of the standard RPA application. Therefore, the final output is the proof of

implementation being feasible and not the underlying code. The effort to make this production ready code with proper

error handling has not been made as it’s not the purpose.

Due to the different ways of implementation and connecting to the RPA tools the UML provides a generalisation of in

which way functions are used. While these functions are generally used, more layers exist beneath them to facilitate

the connections and commands.

5.3.1. Architecture
The prototype will include all three layers of the three-tier architecture: the presentation, application, and data tiers.

The initial decision stage is the selection of platforms and applications to develop these tiers. Based on the specific

requirements for each tier, the appropriate tools for a prototype were selected.

Firstly, the presentation tier provides a platform for end-users to interact with the features. The full range of identified

features reflects functionality and data that are of interest to multiple groups of people, including RPA specialists and

process owners. Therefore, the presentation layer should be widely available, easy to access, and able to identify or

authenticate users to handle roles and permissions. As the presentation layer isn’t directly required for the features

selected for development to function, the development should also be simple and not too time-consuming. Looking

at the ecosystem where these features will be trialled, similar to other professional settings, most users have access

to the Microsoft suite of applications. Considering these requirements, Microsoft PowerApps was chosen for the front

end of the prototype, providing authentication via Microsoft, browser access, and low code development.

Secondly, the application layer executes all of the developed features. Looking back at the combined features UML in

Figure 20, the primary interactions exist between the orchestrator and the RPA interface. Interaction between the

application layer, the core of the orchestrator, and the RPA interface should therefore be easy. Considering the

common architecture of RPA platforms illustrated in Figure 4 in the literature review and the identified features, a

connection to the individual servers and database is required. This connection is made most simply by setting up the

orchestrator inside the same network. Therefore, the application will run on a server in the same network as the RPA

application, which consists of a library of Python scripts.

Thirdly, the data layer stores and exchanges information between the application and presentation layers. As the

presentation and application layers have been set up in different environments, a connection between the two must

exist. As we’re working within Microsoft’s environment, they provide a data gateway allowing access to the file system

and databases inside the network where it’s set up. This allows the application layer to store data in CSV and JSON

files to simplify the setup and portability of the orchestrator. As it can also connect to databases, this option would

have also been valid but require more setup; it does allow for the connection to the Blue Prism database directly from

the presentation layer.

Finally, the RPA interface on which the orchestrator will be tested should be identified. This is SS&C’s Blue Prism

version 7.1.2 without the API, hereafter referred to as Blue Prism, due to the experience with and access to this

platform. Besides this, it’s one of the market leaders per Figure 2 and among the first modern RPA tools released.

The presentation layer and data layer primarily exist to facilitate the application layer, which performs the actual

orchestration functions. Additionally, it contains the most development via Python, justifying the most detailed

explanation of the three. As mentioned before, the primary interaction for the orchestrator is with the RPA interface,

the platform which we’re planning to orchestrate. Multiple methods of interacting between the two exist depending

on the platform. For Blue Prism, this consists of an optional API that can be installed, a command line utility, and direct

modifications to its well-structured database. The API has a wide and growing range of functions which can be called

but requires a complex server setup, including authentication servers and message brokers. (Blue Prism, 2024) (Blue

Prism, 2024) Blue Prism also offers a command line which can be used on servers where Blue Prism is installed, offering

35

similar but more limited capabilities compared to the API. (Blue Prism, 2024) The database allows any change to be

made but requires extreme care so as not to impact the regular system operation.

5.3.2. Orchestrator code
The orchestrator’s core exists of multiple Python scripts interacting with each other to achieve the desired effect. The

structure and function of the code per feature will be explained below. For a more detailed view, the source code can

be found on GitHub: https://github.com/djoprel/RPA_Orchestrator

5.3.2.1. Components

The orchestrator code consists of multiple components separated by function, which will be explained below. Each

script has been made specifically for the interaction with Blue Prism in mind, made clear with the ‘bp’ file prefix. In

case of combining multiple RPA platforms, the calls will be directed to the proper scripts from the interface.

The primary script is the ‘bp_mainRunner’ file, which should constantly run for the orchestrator to function. This will

retrieve the commands which were sent from the presentation layer and trigger the relevant functions in the related

scripts. Other runners are opened in a separate session to function concurrently while normal commands are triggered

sequentially due to the effect they may have on each other and simplicity during the prototyping phase. When all

commands have been processed it will wait for the following commands to arrive.

The functions which are called from the main runner exist within the ‘bp_mainFunctions’ file. These functions contain

the high-level actions which need to be performed. The available functions are ‘addToQueue’, ‘requestProcessStart’,

‘startNotifications’, and ‘stopNotifications’, relating to feature 19, 21/25, 18, and 18, respectively. This commonly

consists of gathering the required information and starting the function or runner interacting with the RPA interface.

In order to collect the information required to run certain functions, connections have been made to the database in

the ‘bp_queries’ file. This script contains a collection of queries which are used throughout the different scripts to get

the relevant data from the database. The query is passed to the ‘bp_InteractDatabase’ file, which handles the actual

database interaction by opening the connection, querying the database, and closing the connection.

Besides getting data the queries can also insert data which is required for feature 19, adding external queue items. Via

the main function ‘addToQueue’ the required data is collected from the database, after which the provided queue

items are reformatted to match with the database structure using the ‘bp_formatQueueData’ script. After the data

has been transformed, it is then inserted into the database in the same way BluePrism would do this.

Besides the database another method of retrieving or updating data is via the command line interface. In the

‘bp_interactCommandLine’ script the possibility exists to extract the previously ran processes in the environment or

trigger a new process.

Triggering and getting previously ran processes is useful for the external process start and process queueing functions,

features 21 and 25. Started from the main function ‘requestProcessStart’, the ‘bp_processQueue’ script is activated,

which manages the queue, including adding to the queue, marking processes as triggered, and archiving triggered

processes. The queue is then used by the ‘bp_queueRunner’ which is started in a separate instance. While there are

processes left to run, this will remain active, checking the server status where the process needs to run and starting

the process as soon as the server is available. After a process is started, the next process will be taken from the queue

and it waits for the server to become available again.

The server status is also important for feature 18, sending environment notifications, also started as a runner from the

main functions. ‘bp_notificationRunner’ remains active until a stop request is sent, constantly checking the server and

process states against a list of acceptable states. In case a process has an invalid state, the script directly sends a

notification request to the notification system. For invalid server states, the script will wait for a specific amount of

time, checking if it moves into an acceptable state during that time. Otherwise, it sends a notification request to the

notification system.

https://github.com/djoprel/RPA_Orchestrator

36

5.3.2.2. Configuration

The scripts come with a number of config files, primarily including environment-dependent variables, which are

required to run.

The connection details for the database and command line interface can be found in the ‘bp_DB.config’ and

‘bp_CLI.config’, respectively.

The ‘bp_servers.config’ file contains variables stating the names of the servers in an environment, the state at which

servers are ready to receive process triggers, and the states in which a notification should be sent for a server or

process.

The ‘bp_runners.config’ contains the variables for all runner scripts. For the queue runner, this includes whether the

runner is active and wait times between status checks or after triggering a process. The notification runner section

contains variables mentioning whether the runner is active, is requested to stop, the wait time between checks, the

time a server should be in a specific state to send a notification, and the trigger URL for the notification system. Finally,

the main runner section has a variable stating the wait time between checking for new commands and the location of

the shared data folders to exchange data with the presentation layer.

5.3.3. Data Structure
The shared data files are used as a persistent storage and to exchange data between the presentation and application

layers.

The ‘bp_orchestratorCommands.csv’ passes commands from the presentation layer to the application layer. It consists

of the date and time the request was made, which function should be triggered, the parameters to be used, who

requested it and what the status is. The status will be amended by the application layer so the end-users can see their

command has been completed or is in progress from the presentation layer.

The ‘bp_processQueue.csv’ contains the processes which are currently queued to be triggered on one of the servers.

It contains an id for the request, the name of the process, the time it was requested and the time it was triggered.

Periodically it will be moved to the ‘bp_processQueueArchive.csv’.

The ‘bp_notificationLogRecent.csv’ contains recently created notifications, which are periodically archived to

‘bp_notificationLogArchive.csv’. It contains the type of notification such as a process or server, the origin stating a

process or server name, the time the notification was requested, the status of the process or server, and the session

id of the process.

These files and some of the database tables are also synced to Microsoft Dataverse via Power Query, which allows

them to be visible in the front end.

5.3.4. PowerApps Logic
To instigate a refresh of the front-end using Power Query a Power Automate flow is created which can be triggered

from the front-end. The files are also altered by Power Automate when a command is sent from the front-end to the

orchestrator by updating the commands file.

Besides dealing with the files, Power Automate is also set up as the notification system, being able to deliver

notifications via Teams, Email, their app or trigger other services. It is triggered using an HTTP request from the

orchestrator.

5.3.5. PowerApps Presentation
The front-end exists within PowerApps allowing for low-code creation of a front-end tying together with other

Microsoft services. Separate pages exist for each function specifying the required inputs, grouped by their category in

the framework. Additionally, an about and past commands page exists for information about the app and sent

commands.

The past commands and environment notifications pages solely show information about previous commands or

notifications and their current status. These pages don’t require any further interaction.

37

The request process start page shows all processes which can be triggered and a button to trigger them. While the

add to queue page shows all available queues and an area to input the queue items as a csv text.

5.3.6. Testing
All except for the add-to-queue functions have been tested through the UI to make sure they work within PPHE’s Blue

Prism test environment. This full integration test was not possible for the add-to-queue functionality as this required

elevated rights in the database, which weren’t present by default for the test environment. As the queue items need

to be inserted, write access to the tables is required. The code has been tested on a separate system with a local Blue

Prism installation to ensure the code functions properly. The presentation layer doesn’t add much more complexity,

especially when the other functions are proven to be working.

Besides the testing phase the prototype hasn’t been put to use yet in PPHE’s environment. Although, the solution

works well, responding quickly to commands and being accessible from anywhere. Due to it being a prototype the

code is not ready for production use and will therefore require further development before being utilized.

5.3.7. Expansion
The prototype has been designed in a modular way, having primary functions execute functions within libraries related

to an interface or task. This allows for simple expansion and customizability, additional features can easily be added

and triggered. The UI has also been designed for this, where the data presented on the surface has an extra layer

which allows the orchestrator to correctly route the action to the correct RPA interface.

Besides the modularity, reusability has also been kept in mind with the function libraries being able to be used from

different functions with varying parameters. In the prototype this reusability can primarily be seen for the queries to

the database which supply many of the different functions with data.

Modularity and reusability lie at the core of the framework as it tries grouping closely related functions. However,

drawing relations between the currently prototyped functions is limited due to the minimal number of features which

have been implemented. When looking at different features within the same cell, row or column in the framework in

Table 9, examples of other functions can be found that should closely resemble each other.

For example, looking at feature 34, cross-platform queues, the functions and interaction will be in part similar to that

of the management of queued processes in the way it controls the flow of data between the interface and persistent

storage. Feature 36, forecast runtimes, has similar aspects to the environment notifications in the way it retrieves data

and makes this available in the front end. Feature 33, connected queues will update queue data in the same way the

external queue item creation does. Feature 37, quarantining servers, will judge what needs to happen to a server

based on process and server status, similar to the environment notifications.

When examining the relation between the prototype and the UML models, the functions in the models can all be

found in the prototype. The structure of the functions is the same but, in most cases, has additional parts added to aid

configurability, constant running, and processing and retrieving related data.

38

6. Discussion
As illustrated in the literature review, a gap of knowledge exists surrounding orchestration of robotic process

automation processes. The effectiveness of built-in solutions, the required features, and potential improvement

possibilities have not been extensively researched.

The literature showed us the wide range of RPA tools which are available and commonly used. Additionally, the

infrastructure of RPA tools could be seen as a web of many different machines and stakeholders. Proper orchestration

mechanisms exist within other aspects of software development but haven’t been applied and tailored to RPA.

6.1. Problem identification
The results section aims to address these findings by starting with a survey among RPA professionals investigating

their satisfaction with current RPA orchestrators.

The severity and prevalence of issues with the orchestration of processes automated using RPA can be clearly

identified from the survey and interview results. A majority of the respondents have seen issues regarding

orchestration impact their RPA deployment, and it consistently impacts their day-to-day.

The same experiences were shared across different tools, illustrating an issue across the entire market for RPA tools.

The number of respondents recognising such issues ranged from half to three-quarters depending on the tool. Nearly

half of the respondents also indicated having used multiple platforms at one time, requiring multiple interfaces to

orchestrate all processes.

The literature also showed us a significant difference in core orchestration features when comparing the market

leaders among RPA tools. Potentially highlighting a lack of knowledge regarding user desires and absolute

requirements for an orchestrator.

The nature of RPA means processes are completely self-developed and can be categorised as software development.

With the current state of RPA tools, it’s possible to create such custom processes but due to the lacking orchestration,

control and management of these processes can be problematic. Based on the results and literature, it has been

established that the problem is present.

6.2. Effects of ineffective orchestration
Having illustrated the problem exists, the effects of orchestration issues have been investigated.

The interviews and surveys showed inadequate orchestration can result in serious issues affecting not only the RPA

department and its team members but the entire organisation. Possible side effects were mentioned to be that work

had to be done manually to make up for the lack of timely processing. Additionally, this untimeliness was mentioned

to result in a loss of competitive advantage due to a slower response time than competitors. The delayed processing

will eventually lead to a vicious cycle and knock-on effect, leading to a diminished capacity triggering issues for other

processes.

The increased maintenance to deal with these issues can increase costs and reduce the ROI of automation projects.

Moreover, it can reduce the trust in the capability of RPA to complete processes with accuracy and timeliness.

Dealing with sometimes business-critical processes, one can argue that the effects of ineffective orchestration are

severe.

6.3. Orchestration requirements
Once the issues have been identified, solutions to these problems can be theorised. The orchestrator will require an

extended feature set to properly mitigate the inadequacy of the base orchestrator.

In the interviews and surveys, a broad desire could be seen for additional features, with many ideas coming from the

RPA professionals. Many of the professionals were in agreement regarding what features were important and clearly

missing in some if not all tools. This again validates the shared experience of inadequate orchestration which is ripe

for improvement.

39

Even the features which are only mentioned once in the interviews or survey can be seen as an interesting case. Each

RPA solution is utilised in a very different manner by the professionals using them.

You could argue that this forms one of the key takeaways in this research; with such a variance in the desired features,

no orchestrator can be perfect. Every organisation deals with different process flows and priorities within their

operations. The RPA vendors can’t tailor the orchestration to everyone’s needs, even when improving the base feature

set by adding commonly requested features. A strong desire exists for customizability and broadening the

interoperability of orchestration.

6.4. Framework
To provide guidelines around the identified features, a framework to plot these features has been developed. Such a

framework expands the knowledge of what features are available to the RPA community. Apart from that it also allows

for further theorizing within a set boundary to come up with additional features by looking at the intersections on the

framework. It provides a new perspective on RPA orchestration and what it can do.

Besides the categorization of features, it can also serve as a guideline for development indicating the required

connections and interoperability between components. Many of the features within one of the aspects or cells of the

framework will utilize similar methods for performing actions or gathering the information. A modular component

library allows for simple expansion and customisation of the orchestrator.

6.5. Feasibility of improved orchestration
To facilitate the aforementioned customizability and interoperability, orchestrators should be partially open and

provide for easy integration. An argument could be made that an effort from RPA vendors may be required to open

up their platforms and expand their library of API’s. However, this can also be approached from the other side by RPA

professionals building their own orchestration layer.

The feasibility of building such an improved orchestration layer has been illustrated in the results section by developing

and modelling a set of features. These features were commonly requested and useful for the company, which trialled

them and provided input regarding the development. To adhere to the framework these features were built in a

modular manner, trying to maximise code reuse and modularity while limited to the development window for a

prototype.

The prototype has shown the feasibility by correctly implementing certain features which integrate into the chosen

RPA tool in multiple ways. By using command line utilities, direct database connections or application programming

interfaces, most actions the built-in orchestrator performs can be duplicated or altered.

It has also shown that to develop such an orchestrator, developers don’t necessarily need to start from scratch and

can use a combination of other tools to their advantage. In this case authorization, communication, and the user

interface were facilitated by Microsoft’s Power suite of applications. Certain interactions with the RPA tool had also

already been made available through the command line utility they provide. This makes the development more

accessible for smaller organisations and less experienced developers.

Therefore, it is completely feasible in the current state of RPA to take control over the execution and management of

self-developed processes in a centralised manner.

6.6. Effects of improved orchestration
As mentioned before, the interviews and surveys showed the same problems are experienced across different tools.

The improved orchestration can also relieve these issues across tools while consolidating the orchestration into a

single point of access. Increasing clarity when working on the operational side of RPA.

RPA professionals have indicated they expect such an orchestrator to lead to increased reliability and consistency of

execution. This will reduce the manpower required for monitoring and maintaining the operations of processes, while

increasing the trust in the solution.

40

Besides relieving current pains, more functionalities can be added to further include the business in the execution of

their processes, relieving even more work from the RPA operations team. This will allow end-users or process owners

to directly manage and interact with their own process and gain live insights. The RPA team will be able to allocate

more time to development and scale their department at a faster pace.

As shown in the literature, with growing automations there’s also a significant growth in maintenance for RPA projects.

It could be argued that the improved orchestrator aids in localizing where maintenance is required, provides tools to

make rapid changes in the environment to make sure the rest of automations can remain operational, and therefore

reduces the overall maintenance effort.

When discussing the feasibility of improved orchestration, the ability for RPA vendors to make an increased effort was

mentioned, such as providing extra API endpoints. While one can argue that this is of great help to the RPA professional

orchestrating their processes, a script or tool to connect and trigger the API is still required. Therefore, an increased

involvement from RPA vendors still does not invalidate the requirement for a customisable orchestrator. Creating

separate scripts to interact with these APIs and perform small tasks will create a chaotic web of components trying to

interact with the same system or execution timeline from different areas. The centralisation of these scripts, reusing

components and facilitating proper interaction creates the core of the orchestrator.

6.7. Limitations and future research
One of the first clear limitations was the availability of prior research and relevant sources for this research. The RPA

field isn’t researched much being a niche in between business and IT. The available sources do talk about the

reliability, best practices and limitations of RPA but don’t specifically focus on one of its large operational areas,

orchestration. To fill this gap in knowledge, a lot of focus has been put on the interviews and surveys performed with

RPA professionals.

While the quality of the responses in the interviews and surveys is high, the quantity and diversity are somewhat

low. Seven interviews were performed with RPA professionals from Western Europe and 33 surveys were fully

completed globally. As certain RPA tools might be more common in certain geographic areas this could skew the

results based on the experiences with a single platform.

To guide respondents, elements in the survey already contained suggested answers and a space to include their own

observations. This could be leading them and increasing the relevance or response rate of suggested answers and

stop further observations from being made. This felt like a necessary step to increase the quality of their other

observations by providing a guideline. The suggested answers have been highlighted in the research so readers can

take this into account.

Other external commercial orchestrators which are available have not been considered as solutions to the

orchestration problem. These orchestrators may solve many of the issues posed in the research. This research first

set out to prove the relevance of such external tools and, afterwards, the feasibility of integration. Therefore, other

orchestrators being available doesn’t invalidate the results but it can be seen as a future research topic to assess

their capabilities.

Besides external orchestrators, the improvements RPA vendors are making to their own platforms have not been

considered. In future research the improvements and whether it will reduce the need for enhanced orchestration

can be studied.

The problem of orchestration is, in many cases, a problem of limited resources. Therefore, there can also be other

solutions to some of these issues. The required resources are licenses and servers; by using an open-source RPA tool

and considering a horizontally scalable server architecture, orchestration can be simplified. This may invalidate the

need for certain advanced orchestration features by adjusting the architecture. The availability and maturity of such

tools, along with the feasibility of this architecture, could be a point of future research.

With the rise of artificial intelligence and large language models creating agentic automation, the next chapter for

software automation has arrived. This new development allows AI to interact with applications and data based on

prompts and removes the need to develop a script fully. Future research could investigate the relevance of the

41

developed orchestration framework for agentic automation. Early signs point to this still being relevant as primarily

the development is revolutionised, and the orchestration remains similar. Therefore, this framework can also be

considered relevant while RPA evolves.

42

7. Conclusion
The purpose of this research was to find a way to identify whether an issue exists with the current state of RPA

orchestration and how this could be improved.

The research question posed to address these questions in a structured manner is divided into four subcategories.

Namely, the consequences of an unreliable RPA environment, the requirements for an improved RPA orchestrator,

translating the requirements into a high-level framework for RPA orchestration, and how this improves the reliability

of an RPA deployment. These questions come together to form the primary research question: ‘How can RPA

reliability be improved by a vendor-agnostic improved process orchestrator?’

Using interviews and surveys with experts in the RPA field, the sub-questions could be answered. The consequences

were identified and quantified, resulting in a broad recognition of the problem and desire for a solution. Many

different requirements were introduced depending on the specific use cases for the RPA professionals, while they

indicated how this would improve the reliability of RPA deployments. These results were translated into a high-level

framework guiding the layout of an RPA orchestrator. The framework was tested by presenting it to RPA experts for

feedback in an interview, with unanimously positive responses. This comes together to answer the primary research

question: RPA reliability can be improved by a vendor-agnostic improved process orchestrator due to its extended

feature set and customizability. The creation of the orchestrator can be achieved by using the framework as a

starting point for the requirements analysis and design.

The reasoning for this approach is that due to a lack of available literature on this topic, most of the information had

to be acquired from the community of RPA experts and professionals. As the prevalence of this issue hadn’t been

researched before and only stemmed from an observation within PPHE’s RPA deployment, the presence of this

problem had to be identified first. Then, by gathering requirements and the related improvements, the definition of

an improved orchestrator was formed. As the loose list of requirements wasn’t extensive, it needed to be reduced to

a generalised framework. To finally show the validity of the framework, it was posed to experts, and a prototype was

developed based on the features and framework.

As the researched topic stemmed from a personal observation, the current overall outcome was expected. However,

the results gave a deeper understanding and more nuance to the initially observed problem. Primarily showing how

an orchestrator will never be perfect for every user and that therefore the customization was one of its most

important features. Besides this in the interviews it also showed an alternative approach to the problem, by using

open-source tools the resource limitation on licenses and servers could be minimized and the orchestration issue

reduced.

The scientific contribution is a framework providing a structured way to start addressing the issue of orchestration

by cataloguing possible solutions and showing its relation to the platform. This can be used as a jumping-off point for

the design of orchestrators or the investigation of current capabilities and alternatives.

43

8. References
Albreshne, A., Fuhrer, P., & Pasquier, J. (2009). Web services orchestration and composition. Hewlett-Packard’s Dev.

Resour. Organ, pp. 46-52. Retrieved from

https://www.unifr.ch/inf/softeng/en/assets/public/files/research/publications/pdf/WP09-03.pdf

Automation Anywhere. (2021, October 19). Using Control Room. Retrieved from Automation Anywhere

Documentation version 11.3: https://docs.automationanywhere.com/bundle/enterprise-

v11.3/page/enterprise/topics/control-room/getting-started/using-control-room.html

Blue Prism. (2024, June 25). Blue Prism API 7.1.2. Retrieved from Blue Prism API Documentation:

https://docs.blueprism.com/en-US/bundle/blue_prism_API_7_1_2_OpenAPI/page/index.html

Blue Prism. (2024, September 23). Blue Prism API Installation. Retrieved from Blue Prism Enterprise 7.1

Documentation: https://docs.blueprism.com/en-US/bundle/blue-prism-enterprise-7-1/page/Guides/bp-

api/api-introduction.htm

Blue Prism. (2024, June 25). Blue Prism architecture overview. Retrieved from Blue Prism Enterprise 7.4

Documentation: https://docs.blueprism.com/en-US/bundle/blue-prism-enterprise-7-

4/page/Guides/infrastructure-reference/architecture-overview.htm

Blue Prism. (2024, June 25). Blue Prism Command Line Options. Retrieved from Blue Prism Enterprise 7.1

Documentation: https://docs.blueprism.com/en-US/bundle/blue-prism-enterprise-7-

1/page/helpCommandLine.htm

Blue Prism. (2024, June 25). Control Room. Retrieved from Blue Prism Enterprise 7.1 Documentation:

https://docs.blueprism.com/en-US/bundle/blue-prism-enterprise-7-

1/page/frmControlRoom.htm?tocpath=Interface%7CControl%7C_____0

Davenport, T. H., & Brain, D. (2018, June 13). Before Automating Your Company’s Processes, Find Ways to Improve

Them. Harvard Business Review. Retrieved from Harvard Business Review: https://hbr.org/2018/06/before-

automating-your-companys-processes-find-ways-to-improve-them

Deloitte. (2017). The Robots are ready. Are you? Untapped advantage in your digital workforce. Deloitte. Retrieved

from https://www2.deloitte.com/cn/en/pages/strategy-operations/articles/the-robots-are-ready.html

Drost, N., Spaaks, J. H., Andela, B., Veen, L., Zwaan, J. M., Verhoeven, S., . . . Borgdorff, J. (2020, September 9). Best

practices for software development. Netherlands eScience Center. Retrieved from Netherlands eScience

Center Guide: https://zenodo.org/record/4020622

Fortune Business Insights. (2024, December 16). RPA Market Size. Retrieved from Fortune Business Insights:

https://www.fortunebusinessinsights.com/robotic-process-automation-rpa-market-102042

Fung, H. P. (2014). Criteria, Use Cases and Effects of Information Technology Process Automation (ITPA). Advances in

Robotics & Automation, 3. Retrieved from https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2588999

Gartner. (2024). Gartner Magic Quadrant for Robotic Process Automation. Gartner. Retrieved from

https://www.gartner.com/en/documents/4016876

Geiger, M., Harrer, S., Lenhard, J., & Wirtz, G. (2018, March). BPMN 2.0: The state of support and implementation.

Future Generation Computer Systems, pp. 250-262. Retrieved from

https://www.sciencedirect.com/science/article/abs/pii/S0167739X17300250

Ivančić, L., Suša Vugec, D., & Bosilj Vukšić, V. (2019, August 26). Robotic Process Automation: Systematic Literature

Review. Business Process Management: Blockchain and Central and Eastern Europe Forum, 361, pp. 280-295.

doi:https://doi.org/10.1007/978-3-030-30429-4_19

44

Jensen, A. (n.d.). I Love Automation. Retrieved 2023, from LinkedIn, Discord:

https://www.linkedin.com/groups/12755028/

Johannesson, P., & Perjons, E. (2014). An Introduction to Design Science. Springer Cham.

doi:https://doi.org/10.1007/978-3-319-10632-8

Juric, M., Sarang, P., & Mathew, B. (2006). Business Process Execution Language for Web Services. Birmingham: Packt

Publishing Ltd.

Jurišic, M. (2011, December). Transition between process models (BPMN) and service models (WS-BPEL and other

standards): A systematic review. Journal of Information and Organizational Sciences, pp. 163-171. Retrieved

from

https://www.researchgate.net/publication/289158237_Transition_between_process_models_BPMN_and_s

ervice_models_WS-BPEL_and_other_standards_A_systematic_review

Keymark. (2023). RPA Software Leaders Comparision Matrix. Retrieved from Keymark Inc:

https://www.keymarkinc.com/rpa-tools-comparison/

Kim, S.-H. (2023). Development of Evaluation Criteria for Robotic Process Automation (RPA) Solution Selection.

Electronics, 12(4), 986. Retrieved from https://www.mdpi.com/2079-9292/12/4/986

Kregel, I., Koch, J., & Plattfaut, R. (2021). Beyond the Hype: Robotic Process Automation's Public Perception Over Time.

Journal of Organizational Computing and Electronic Commerce, 1-21. Retrieved from

https://www.researchgate.net/publication/351167879_Beyond_the_Hype_Robotic_Process_Automation's_

Public_Perception_Over_Time

Microsoft. (2020, May 19). Microsoft acquires Softomotive to expand low-code robotic process automation capabilities

in Microsoft Power Automate. Retrieved from Microsoft Power Automate Blog:

https://www.microsoft.com/en-us/power-platform/blog/power-automate/microsoft-acquires-softomotive-

to-expand-low-code-robotic-process-automation-capabilities-in-microsoft-power-automate/

Microsoft. (2023, 05 23). Get started with Copilot. Retrieved from Microsoft Learn: https://learn.microsoft.com/en-

us/power-automate/get-started-with-copilot

Microsoft. (2024, June 25). Triggering Desktop Flows. Retrieved from Power Automate Documentation:

https://learn.microsoft.com/en-us/power-automate/desktop-flows/trigger-desktop-flows

Noppen, P., Beerepoot, I., Weerd, I. v., Jonker, M., & Reijers, H. A. (2020). How to Keep RPA Maintainable? Business

Process Management, 453-470. Retrieved from https://link.springer.com/chapter/10.1007/978-3-030-58666-

9_26

OASIS. (2007, April 11). Web Services Business Process Execution Language Version 2.0. Retrieved from OASIS

Documentation: https://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html

Patri, P. (2020). Robotic Process Automation: Challenges and Solutions for the Banking Sector. International Journal of

Management, 11(12), 322-333. Retrieved from

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3785775

Peltz, C. (2003). Web services orchestration and choreography. Computer, 36(10), 46-52.

Schuler, J., & Gehring, F. (2018). Implementing Robust and Low-Maintenance Robotic Process Automation (RPA)

Solutions in Large Organisations. SSRN. Retrieved from

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3298036#references-widget

UiPath. (2024, October 17). Orchestration User Guide. Retrieved from UiPath Documentation version 2022.10:

https://docs.uipath.com/orchestrator/automation-suite/2022.10/user-guide/introduction

45

Willcocks, L. P., Lacity, M., & Craig, A. (2015, October). The IT function and robotic process automation. The

Outsourcing Unit Working Research Paper Series. Retrieved from http://eprints.lse.ac.uk/64519/

46

Appendix A: Full survey
Q1.1 Hello! My name is Diederik Oprel and I am an ICT in Business master’s student at Leiden University in the

Netherlands. I am conducting a research study on improving Robotic Process Automation (RPA) reliability by designing

a vendor-agnostic RPA process orchestrator and I would like to invite you to participate in this survey. The purpose

of this study is to identify the current issues with RPA orchestration, identify orchestration features to resolve these

issues, implement these features in a framework and build an open-source working prototype with a subset of these

features. Your participation in this survey is voluntary and your responses will be kept confidential. The survey will

take approximately 5-10 minutes to complete. The survey consists of 3 parts, an introduction, RPA reliability and RPA

orchestration. While answering the complete survey is appreciated, feel free to skip questions you don't feel like

answering in too much detail. Thank you for your time and participation! If you have any questions or concerns about

this survey, please contact me at d.j.oprel@umail.leidenuniv.nl. By completing this survey, you are giving your consent

for the use of your responses for research purposes only.

End of Block: Consent

Start of Block: Introduction

Q2.1 Part 1: Background information This part will ask for background information regarding your experiences with

RPA. It will be used to group results by experience per platform, company role, and seniority.

Q2.2 How often do you use RPA tools?

o Daily (1)

o Multiple times per week (2)

o Weekly (3)

o Monthly (4)

o A few times a year (5)

o Never (6)

Q2.3 Does your job involve RPA development?

o Yes (1)

o No (2)

Display This Question:

If Q2.3 = Yes

Q2.4 What is your job title?

__

47

Display This Question:

If Q2.3 = Yes

Q2.5 How many years have you worked with RPA?

__

Display This Question:

If Q2.3 = Yes

Q2.6 What RPA tools have you worked with?

▢ UiPath (1)

▢ Blue Prism (2)

▢ Automation Anywhere (3)

▢ Microsoft Power Automate Desktop (4)

▢ Microsoft Power Automate Flow (5)

▢ NICE (6)

▢ Pega (7)

▢ Kofax (8)

▢ OpenRPA (9)

▢ Robocorp (10)

▢ TagUI (11)

▢ Others (12)

Display This Question:

If Q2.6 = Others

Q2.7 Please mention any RPA tools you have worked with which were not mentioned in the list above

__

48

Q2.8 Please use this space for any background information regarding your work with RPA, if necessary.

__

__

End of Block: Introduction

Start of Block: Reliability

Q3.1 Part 2: Reliability This part will explore the reliability issues which can arise when scheduling processes to run

unattended. We call the system which performs this scheduling an orchestrator, you can find a formal definition for

an orchestrator below. Definition: An orchestrator is a system which communicates with related systems and instructs

them on what and when to perform certain actions.

Q3.2 Have you worked with RPA environments where process execution could be unreliable at times?

o Yes (1)

o No (2)

Q3.3 Have you faced an increase in maintenance due to problems with process orchestration or scheduling?

o Yes (1)

o No (2)

Display This Question:

If Q3.3 = Yes

Q3.4 What effects due to issues with process orchestration or scheduling have you encountered? This question is

designed to show some examples of what issues can arise due to scheduling issues. Please provide your own

experiences in the text box in the following question.

▢ Required to rerun processes at a later time/date due to a failed schedule (1)

▢ Missing data for end-users (2)

▢ Accumulating process delays over an entire day (3)

▢ Low bot utilization due to buffers between schedules (4)

▢ Other (5)

49

Display This Question:

If Q3.3 = Yes

Q3.5 Please mention any side effects due to orchestration or scheduling issues which were not mentioned in the list

above

__

__

Display This Question:

If Q3.3 = Yes

Q3.6 How severely do such issues affect your day-to-day work and maintenance regarding RPA?

o Not at all (1)

o A little (2)

o A moderate amount (3)

o A lot (4)

o A great deal (5)

Q3.7 Please use this space for any comments you would like to share regarding RPA reliability, if necessary.

__

__

End of Block: Reliability

Start of Block: Orchestration

Q4.1 Part 3: Orchestration This final part is designed to identify what features an orchestrator should contain to

address the issues you're facing with scheduling and orchestration and what current features you like. Some tools

may have advanced orchestration already, but the goal is to identify what is required for an independent platform

agnostic orchestrator. So features for an orchestrator don't have to be unique, but rather a combination of existing

orchestrators and commonly missing features. 'RPA Orchestration' can be defined as follows: The RPA orchestrator

is the part of an RPA environment which communicates with related systems and instructs them on what and when to

perform certain processes.

Q4.2 Are you familiar and in agreement with the term 'RPA orchestration' as described above?

o Yes (1)

o No (2)

50

Display This Question:

If Q4.2 = No

Q4.3 What does the term 'RPA orchestration' mean to you?

__

__

Q4.4 From the following list of example features, please group the ones relevant to you by importance for an RPA

orchestrator. This question should provide you with an idea of how to categorize features, the following question will

allow you to provide your own feature ideas.

Must have Should have Could have Will not have

______ Queue processes
instead of fixed time
schedules (1)

______ Queue processes
instead of fixed time
schedules (1)

______ Queue processes
instead of fixed time
schedules (1)

______ Queue processes
instead of fixed time
schedules (1)

______ Processes can be
added to queue on demand
by process owners (2)

______ Processes can be
added to queue on demand
by process owners (2)

______ Processes can be
added to queue on demand
by process owners (2)

______ Processes can be
added to queue on demand
by process owners (2)

______ Roles and
permissions (Process owners
should only be able to access
their own processes) (3)

______ Roles and
permissions (Process owners
should only be able to access
their own processes) (3)

______ Roles and
permissions (Process owners
should only be able to access
their own processes) (3)

______ Roles and
permissions (Process owners
should only be able to access
their own processes) (3)

______ Notify stakeholders in
case of delays, failures or high
number of exceptions. (4)

______ Notify stakeholders in
case of delays, failures or high
number of exceptions. (4)

______ Notify stakeholders in
case of delays, failures or high
number of exceptions. (4)

______ Notify stakeholders in
case of delays, failures or high
number of exceptions. (4)

______ Realtime process
statistics for process owners
(processed items, time to
completion) (5)

______ Realtime process
statistics for process owners
(processed items, time to
completion) (5)

______ Realtime process
statistics for process owners
(processed items, time to
completion) (5)

______ Realtime process
statistics for process owners
(processed items, time to
completion) (5)

______ Defer processes in
case it returns a specific error
(applicable when applications
or data sources are not
available) (6)

______ Defer processes in
case it returns a specific error
(applicable when applications
or data sources are not
available) (6)

______ Defer processes in
case it returns a specific error
(applicable when applications
or data sources are not
available) (6)

______ Defer processes in
case it returns a specific error
(applicable when applications
or data sources are not
available) (6)

______ Queue verification, to
avoid a process from being
added too many times (7)

______ Queue verification, to
avoid a process from being
added too many times (7)

______ Queue verification, to
avoid a process from being
added too many times (7)

______ Queue verification, to
avoid a process from being
added too many times (7)

______ Remotely restart the
RPA environment in case it is
not reachable (8)

______ Remotely restart the
RPA environment in case it is
not reachable (8)

______ Remotely restart the
RPA environment in case it is
not reachable (8)

______ Remotely restart the
RPA environment in case it is
not reachable (8)

______ Provide a combined
process overview of multiple
RPA tools (9)

______ Provide a combined
process overview of multiple
RPA tools (9)

______ Provide a combined
process overview of multiple
RPA tools (9)

______ Provide a combined
process overview of multiple
RPA tools (9)

______ Process added to
queue upon data availability
(email/API trigger) (10)

______ Process added to
queue upon data availability
(email/API trigger) (10)

______ Process added to
queue upon data availability
(email/API trigger) (10)

______ Process added to
queue upon data availability
(email/API trigger) (10)

______ Overview of
previously ran processes (11)

______ Overview of
previously ran processes (11)

______ Overview of
previously ran processes (11)

______ Overview of
previously ran processes (11)

______ Fill process
parameters from predefined
list (12)

______ Fill process
parameters from predefined
list (12)

______ Fill process
parameters from predefined
list (12)

______ Fill process
parameters from predefined
list (12)

51

Q4.5 Are there other features which were not included in the list above which are relevant for RPA orchestration?

This is the most important question, please provide an answer.

__

__

Q4.6 How would the features mentioned by you or included in the list above help resolve the issues you're currently

facing with RPA scheduling and orchestration?

__

__

Q4.7 Have you worked with multi-vendor RPA deployments, running different RPA tools alongside each other?

o Yes (1)

o No (2)

Display This Question:

If Q4.7 = Yes

Q4.8 What were your experiences regarding RPA scheduling and orchestration with multi-vendor RPA deployments?

__

__

Q4.9 Please use this space for any comments you would like to share regarding RPA orchestration, if necessary.

__

__

End of Block: Orchestration

Start of Block: Interview

Q5.1 Would you be available for an interview to further explore this topic and your answers?

o Yes (1)

o No (2)

52

Q5.2 Would you like to receive a copy of the research once finished?

o Yes (1)

o No (2)

Display This Question:

If Q5.1 = Yes

Or Q5.2 = Yes

Q5.3 Please provide an email address where I can reach you:

__

End of Block: Interview

53

Appendix B – Coding frequency surveys and interviews
Code Tree Frequency

Framework 17

Suggestions 3

suggestion-area-overlap 1

suggestion-dimension-integrations 2

framework-feedback-positive 11

framework-feedback-suggestion 3

Multi-Vendor 21

Reasons 11

problem-multiple-channels 5

reason-different-tool-strengths 5

reason-tool-democratization 1

multivendor-usage 10

Orchestration 391

Current offerings 62

Problems 33

problem-currentoffer-excessive-cost 6

problem-currentoffer-unclear-pricing 2

problem-license-utilization 3

problem-manual-intervention-required 9

problem-process-scheduling 12

problem-scalability 1

orchestration-currentoffer-cost 10

orchestration-currentoffer-problemrecognition 19

Features 277

Improvement 32

improvement-business-involvement 3

improvement-clarify-action-required 5

improvement-compliance 2

improvement-cost-effectiveness 2

improvement-incident-prevention 1

improvement-infrastructure-setup 2

improvement-process-continuity 5

improvement-reduced-maintenance 2

improvement-resource-capacity 3

improvement-scalability 2

improvement-usability 5

Feature 132

feature-advanced-access-control 4

feature-control-process-variables 6

feature-data-encryption 1

feature-dependency-based-server-usage 7

feature-dependency-diagnostics 2

feature-environment-logging 4

feature-environment-presentation 16

feature-error-localization 7

feature-exporting-data 3

feature-flexible-server-usage 4

54

feature-improved-alerts 2

feature-improved-queue-loading 6

feature-improved-triggers 19

feature-infrastructure-control 5

feature-input-validation 2

feature-load-balancing 3

feature-priority-process-switching 5

feature-process-logging 6

feature-process-queueing 4

feature-process-statistics 6

feature-process-visualization-process-mining 3

feature-queue-connections 3

feature-queue-data-adjustment 1

feature-runtime-forecasting 6

feature-server-quarantine 2

feature-software-version-control 5

orchestration-feature-desired 77

orchestration-feature-impact 23

orchestration-feature-strength 13

Issues 52

Issue 30

issue-excessive-resources-monitoring 4

issue-increased-maintenance-required 13

issue-missed-deadlines 3

issue-poor-license-utilization 6

issue-process-handed-back-to-business 2

issue-reputation-damage 2

orchestration-issue-consequences 22

