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Abstract
Rule learning models are widely used interpretable models that, using ordered
sets of rules (boolean expressions), describe subsets of the data. Among the state-
of-the-art rule list models are models — such as the SSD++ algorithm — that
make use of the minimum description length (MDL) principle, a framework that
selects the model for which the code length of the model and the data combined
is the smallest. Rules learned as part of a rule list can be used to create new
binary features that describe the same data. Domain experts may select good
rules from previously learned rule lists to add to the dataset as features, however,
this human-in-the-loop approach is underexplored for models using the MDL
principle. MDL-based model selection can be seen as a form of hypothesis testing
in which the code length of the model functions as the multiple testing correction
term. When new features based on rules are added, this correction term no longer
holds, and the type-I error will thus not be properly controlled in these hypothesis
tests, which may lead to learning overly complex models. With the connection
between MDL-based rule list learning, hypothesis testing, and multiple testing
correction we propose a new correction method that restores the connection
between multiple testing correction and model code length when the new human-
selected features are added to the dataset. To achieve this correction method we
also introduce a new model encoding scheme for the SSD++ algorithm based on
the principles of multiple testing correction, on which we base our correction. We
empirically explore the effects of added features on MDL-based rule list learning
with three different encoding schemes. 1) the SSD++ encoding scheme, 2) our
new encoding scheme without correction, and 3) our new encoding scheme with
correction applied to the new features. We have tested encoding schemes on
synthetic and several real-world datasets, and from these results we have found
that treating the added features as normal features increases the risk of learning
overly complex models for all tested encoding schemes. The models trained with
our correction suffer from the same problems, and leads to very similar results as
the uncorrected model. This may suggest that future work should look outside
of a purely MDL context to resolve this issue.
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1 Introduction
Machine learning is a process in which an algorithm learns from data for various
purposes, such as prediction tasks or data exploration. It is extensively used in many
tasks, such as optical character recognition when scanning written texts [20], fraud
detection by banks [2], recommending systems in shops [31], and many more.

In machine learning tasks, domain experts can play multiple roles because we
cannot rely on the data alone to create good models. These roles include feature
selection, where the expert selects the most informative features of the dataset, and
feature engineering, where the expert creates new informative features to add to the
dataset. In feature selection, the expert selects the relevant features to be used by the
machine learning model, simplifying the dataset for the machine learning task. Domain
experts can also utilise their prior knowledge of the domain to introduce additional
information that is not present in the dataset to allow the machine learning models
to better do their task. Feature selection is done for several reasons, such as removing
known irrelevant features, simply reducing the dimensionality of the dataset for faster
model training, or reducing chances of overfitting occurring [16].

In feature engineering, the engineered features are most often calculated from the
other pre-existing features, with the intent to improve the performance of the models
trained on this dataset [15]. Several methods are used for feature engineering; one such
method is manual work by a human domain expert, another method is an automated
process. It can be beneficial to combine human knowledge and intuition with machine
learning to achieve models with a higher predictive accuracy. Thus, by having a domain
expert in the loop that selects which learned features to add to the dataset to train
future models, it is possible to train better models by making use of human intuitions.

One type of machine learning model is a rule list model, such as the SSD++
model [26]. Rule lists are a type of interpretable machine learning model that, through
an ordered set of Boolean expressions, describes different sections of the data in a
human-understandable way. A simple example of a rule list can be seen in Figure 1.

IF has_spikes = false THEN P (Healthy) = 0.05 usage = 100
ELIF weight < 600 AND age > 1 THEN P (Healthy) = 0.3 usage = 100
ELSE P (Healthy) = 0.8 usage = 100

Fig. 1: An example of a simple rule list for a mock dataset of hedgehog health, where
the target variable has two values: Healthy, denoting if the hedgehog is healthy, and
Unhealthy, if it is not. Note that the probability that the animal is unhealthy is not
shown in this rule list as this probability is simply 1 − P (Healthy). Usage refers to
the size of the subgroup (i.e, the number of samples in this subgroup). In this mock
dataset, weight is in grams and age is in years.

In this example, describes a different subset of the data in a humanly interpretable
way. Each rule in this example describes the probability that the hedgehog is healthy
based on some Boolean expression describing characteristics of the animal. These
expressions consist of conditions such as ’if the animal weighs less than 600 grams’,
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describing the status of the hedgehog. The default rule (the last rule, denoted by
the ELSE statement) describes the remaining samples that were not covered by the
previous rules.

An earlier mentioned example of a rule list learning model is the SSD++ model.
The SSD++ model is a heuristic model based on the minimal description length
principle [14] (MDL principle) that learns new rules using greedy beam searches.

The MDL principle is a model selection principle that states that the model that
allows you to describe the data and the model with the shortest code length (i.e.,
using the fewest bits) is the best model. The addition of the code length of the model
factors in the model selection is to reduce overfitting [14]. The description length, i.e.,
code length, of the model is calculated using a model encoding scheme, and the data
encoding scheme is used to calculate the code length of the data using this model [14].
The MDL principle has been successfully applied to many machine learning tasks [11].

When a rule list is learned, a domain expert may like a rule and decide to add
this rule as a feature to the dataset. A rule list model trained on this dataset is now
able to describe the same subset of the data using a rule consisting only of the newly
created feature, instead of the longer rule that this feature was based on. For MDL-
based rule lists, i.e., methods that make use of the MDL principle to select what rule
to add to the list, this means that the new model is simpler, as only a single feature
is now used to describe the same data. This means a lower code length is required to
encode the model, as a shorter rule requires a shorter code length to encode compared
to longer rules. Because describing the same subset of the data is cheaper (requiring
fewer bits), the model is more likely to describe subsets of this subset, leading to more,
more complex rules. In addition to the increase in dimensionality of the dataset, this
could lead to some potential problems such as the algorithm learning overly complex
models.

In this thesis, we investigate the impact of adding features chosen by humans in
MDL-based models, as this interaction is underexplored for MDL-based models. We
want to deal with this potential problem when human domain experts introduce new
features to the dataset for training MDL-based models, whilst still preserving the
potential benefits of introducing these newly engineered features. We intend to explore
this problem by connecting multiple testing correction, more specifically, Bonferroni
correction [4], a method used to control the false positive rate when doing a series of
statistical test, and MDL-based rule lists, to motivate why adding features based on
rules can be a problem for learning a rule list. This connection, as we will show in
Chapter 4, is that the model code functions as a multiple testing correction term when
we transform the code length comparison for learning new rules into a statistical test.
This code length comparison is to decide, according to the MDL principle, which rule
is the best to add to the rule list, where the shortest code length is the best.

When features that are based on rules are added to a dataset we see that this
connection breaks. This is because the model code length no longer properly functions
as the correction term when the newly introduced features are used (we will handle
this in more detail in Section 4.1.2). Since the multiple testing correction term no
longer functions as it should, this may result in errors during rule learning.
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In this thesis we will thus explore how we can encode the added features for
an MDL-based rule list model, such that the connection between MDL-based rule
learning and multiple testing remains intact. Our proposed model encoding scheme is
a modification of the encoding scheme of the MDL-based SSD++ rule list model. With
our proposed model encoding scheme we intend to correct the code length required
for encoding the features introduced by the feature engineering using the principles
behind multiple testing correction. Thus, by correcting the code length of the rules
using the newly added features, we preserve the connection between MDL-based rule
learning and multiple testing correction.

Our contributions are: connecting multiple testing correction to MDL-based rule
list learning, as well as introducing a new model encoding scheme for rule list learning
based on this connection. We also introduce a method that uses multiple testing
correction to correct the code length required for encoding the newly created features
to preserve this connection.

The process of adding features we are specifically looking at is the process in which
first a rule list is learned on the data, after which a human domain expert uses some
of the learned rules as new features. For example, in the rule list from Figure 1, a
human could transform the second rule into a new feature called underweight to more
easily describe that section of the data. We will refer to such features as constructed
features.

To test the effectiveness of our proposed encoding scheme and correction method,
we conduct a series of experiments on various datasets where we compare models
trained with our proposed correction to models without applied correction. These
experiments show that our correction does not show major differences in model per-
formance compared to an uncorrected model, showing near identical ROC-AUC scores
and only minor differences in total code length.

This may suggest that for MDL-based models, an MDL approach based on multiple
testing correction may not resolve the potential issue of learning overly complex models
that could arise from introducing new engineered features to a dataset. This may
be because the difference in code length of the corrected and uncorrected models is
relatively small compared to the code length of the data, lowering the potential impact
that modifying the model code length may have.

First, we will look at related work in Chapter 2, after which we will go into more
detail into how the SSD++ algorithm that our encoding scheme is based on functions
in Chapter 3, with the main focus on the encoding scheme the algorithm uses. In this
section we will also review the basics of likelihood ratio tests and multiple testing
correction. After that, in Chapter 4, we will first go over the connections between
MDL and multiple testing correction, after which we will explain our proposed model
encoding scheme and how our correction method works. Next, in Chapter 5, we go
over the experiments to empirically demonstrate the effects of our method and the
results of those experiments. And finally, in Chapter 6 we go over our conclusions.
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2 Related Work
In this section we start by looking at MDL-based models in machine learning and their
wide range of applicability. We next look at previous work in hypothesis testing for
rule learning and pattern mining, as well as using MDL for hypothesis testing. Next we
look at previous work in rule learning algorithms that make use of previously learned
rules, and finally, previous work in human-in-the-loop feature engineering approaches.

In this thesis we are studying MDL-based methods. The MDL principle has been
widely used in many machine learning contexts such as pattern mining [32], association
rule learning [9], and discretisation [35]. The MDL principle has been successfully
utilised in many machine learning tasks, in a wide variety of contexts. However, the
encoding schemes used in MDL models have not yet been studied in a human-in-the-
loop context. We will be exploring this by specifically looking at an MDL-based rule
list model. We will connect this model to hypothesis testing to support why this may
result in problems and how we might solve such a problem.

Previous works have already made use of hypothesis testing to learn interesting
subsets in data [18] [17]. In these works, statistical tests are used to evaluate the
candidate subsets to add to the model. We will also use hypothesis testing as the
method to learn subsets of the data using a rule list model. However, for this we will
be focusing on an MDL-based model where we propose a new model encoding scheme,
making use of the connection between MDL and hypothesis testing.

Previous work has also discussed MDL as a hypothesis testing method [13], showing
that the comparison of code lengths of two MDL models can be seen as a hypothesis
test. We expand on this by also including the multiple testing correction term in the
context of rule learning.

In this thesis we will be making use of previously learned rules in order to help in
learning a rule list model. Using such previously learned rules in order to construct
new rule lists is a common practice [33] [34] [6]. By only considering previously learned
rules as candidates to add to the model the search space is much more limited, allowing
for a less computationally demanding, and thus faster, algorithm. However, previous
works do not consider MDL-based models for constructing rule lists using previously
learned rules. In our work, we are investigating how to use previously learned rules in
an MDL-based rule list model. We will be considering these previous rules that were
picked by experts to be added to the training dataset as features, more like a feature
engineering context.

There are already many feature engineering methods, both automatic and interac-
tive. The interactive methods allow for a human domain expert to interactively apply
their domain knowledge to create new features. These feature engineering methods
often work for any model as they only modify the data. One example of an interac-
tive feature engineering method is the dataset evolver[22]. Dataset evolver is a tool
for classification tasks that supports the user in feature engineering tasks. This tool
gives the user suggestions for new constructed features that they may accept and add
to the dataset, or reject. This allows for human intuition to interactively play a role in
machine learning tasks. We too will consider features added by experts chosen from
a suggested pool (a previous rule list), however, this work does not take into account
the potential problems that may arise when more features are added, focusing only
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on creating new features. An example of such a problem that may arise is the risk of
learning overly complex models when features are added to a dataset.

We will be looking at an interactive feature engineering method that does take
such potential problems into account, specifically for MDL-based models. For this,
we will be creating a model encoding scheme for a rule list algorithm that allows for
a correction method that aims to increase the code length of the features, while still
trying to preserve their positive effects.

3 Preliminaries
In this section, we will first go over the SSD++ algorithm [26] that our work is
based on, starting with the encoding schemes used, followed by the process of rule
learning. After that, we review the basics of hypothesis testing, with the main focus
on likelihood ratio tests and multiple testing correction.

3.1 SSD++
The SSD++ algorithm is a greedy heuristic rule list learning algorithm based on the
MDL principle that iteratively adds one rule at a time until no better rule is found
using a beam search. A rule is a combination of Boolean expressions that describe a
subsection of the data, and a rule list is a series of rules describing the entire dataset.

In this section, we will first elaborate on how the code length is calculated for the
data encoding and the model encoding, which, when added together, form the total
code length used to evaluate the rules. Then, the search process for discovering new
rules will be covered.

3.1.1 Data Encoding

We will first go over how the code length for the data, i.e., how many bits are required
to describe the data, D, is calculated.

The total code length needed to encode all target values that take a single class
value is the number of occurrences of the class multiplied by the negative log prob-
ability of that class. This is the code length needed to encode that particular class
when using a Shannon-Fano encoding [29]. This is repeated for every class c in the
set of unique classes, Y, after which the parametric complexity [14] is added to obtain
the total code length of the data.

The code length calculation for the data encoding of a single subgroup ai is given
by Equation 1 [26], which uses a Normalized Maximum Likelihood (NML) code for
its calculation.

LNML(D|ai) = −
∑
c∈Y

[
nc log(

nc

n
)
]
+ C(k, n) (1)

For predictive rule lists, the data of all subgroups, as well as the data of the default
rule and the code length required to encode them, are calculated using this method.

In this equation Y represents the set of unique values (classes) that appear in the
target variable y (such as Healthy and Unhealthy from the earlier example in Figure
1), and c is an individual class of Y. nc represents the number of occurrences of class
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c in the subgroup, and n is the total number of samples in the subgroup. nc

n thus
represents the empricial probability of class c in this subgroup. Finally, C(k, n) is the
parametric complexity, which serves as a penalty term to normalise the maximum
likelihood estimate to reduce overfitting. This complexity can be calculated with only
the cardinality k of the target variable, i.e., the number of unique values in Y, and
the number of samples n in the subgroup [21].

Thus, to calculate the NML code length of the data given a subgroup, first a
Shannon-Fano encoding is used, as seen in the first term. In this encoding, the code
length required to describe the data is equal to the negative log-probability of the
data. This probability is derived empirically from the data in the subgroup.

For example, if we were to encode the data of the first rule of the example in
Figure 1, we would first encode the first class of the target variable: Healthy. This
class has a probability of 0.05 in this subgroup and would thus have 0.05 ∗ 100 = 5
samples with this value. This class would then need a code length of 5 ∗ − log(0.05))
to describe all occurrences in this rule. We then repeat this for the Unhealthy class,
to obtain a code length of 95 ∗ − log(0.95), and calculate the parametric complexity
C(2, 100), which, when everything is added together is the code length for the data of
this first subgroup.

To calculate the code length of the data for the entire rule list, for every rule in
the list, as well as the default rule, we calculate the data code length of that subgroup
with Equation 1, with the statistics n, nc of that subgroup. When the code lengths
of all these subgroups are added together, the code length of the data is obtained.

3.1.2 Model Encoding

Next, we will be covering the method to calculate the code length required to describe
the model.

To calculate the code length required to encode the rule list, i.e., the model, first,
the number of rules |S| is encoded using the universal code for integers [27] LN. After
that, the code length of each rule is added.

The code length of a single rule is calculated by first encoding the length of the
rule using the universal code for integers, then the features used are encoded. This is
done by encoding the combinations of features of this length that are calculated using
a combinatorial. Finally, the value of each variable, v, used in the rule is encoded. If v
is categorical, the code length can be calculated by taking the log of the cardinality.
For numeric variables, first, the number of operators (either 1 or 2) is encoded using
the universal code of integers that is restricted to values of only 1 and 2 (LN|2). Next,
given the number of operators and cut points (how many sections the numeric features
should be split with equal frequency binning), the total number of all possible value
combinations can be calculated. The log of this total number of combinations is taken
to then obtain the code length of the numeric variable.

The encoding scheme for encoding the model is seen in Equation 2.
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L(M) = LN(|S|) +
∑
ai∈S

[
LN(|ai|) + log

(
f

|ai|

)
+

∑
v∈ai

L(v)

]
(2)

In this equation, S is the set of subgroups (i.e., rules) in the rule list, and thus |S| is
the number of rules. ai refers to the i-th subgroup of S and |ai| the length of rule i. f
is the total number of features in the dataset, and v is a variable that is used in the
current rule ai.

For calculating the code length of the variables L(v) (i.e., the features of the
dataset present in this rule), Equation 3 is used. In the equation are separate cases
for categorical variables and numeric variables.

L(v) =

{
log(|Xv|), if v is categorical
LN|2(nop) + log(N(nop, ncut)), if v is numeric

(3)

In Equation 3, |Xv| is the cardinality of variable v, nop is the number of operands
the condition uses, which can be either 1 (e.g age ≥ 1 where age is one of the features
of the dataset) or 2 (e.g., 1 < age ≤ 4). ncut is the number of cut points used to
split the numeric features so there are not infinite possible options for using numeric
features. ncut is a parameter of the algorithm that can be set beforehand. N(nop, ncut)
calculates the number of possible combinations of conditions for numerical variables
based on the number of operands and cut points. To discretise the numeric features,
equal frequency binning is used.

For example, if we were to again encode the first rule of the example in Figure 1,
we first encode the length of the rule using the universal code for integers. Since the
rule only has a single condition (has_spikes = false), the length is 1, and we get a
code length of LN(1). Next, assuming the data has a total of 3 features, we encode the
combination of features of length 1 used in the rule. There are

(
3
1

)
combinations of

length 1, so we need a code length of log
(
3
1

)
to encode this feature. Finally, we encode

the value of the used feature has_spikes. has_spikes is a binary categorical feature
and following Equation 3 thus needs log(2) bits to encode the value. When we add
this together, we obtain the code length required to encode this first rule.

3.1.3 Learning rules

Next, we will be covering the process of how the SSD++ algorithm learns new rules.
First, we will cover the process of searching for new rules using a beam search, after
which we will cover how the candidate rules (found rules that are not yet added to the
rule list) are evaluated. The optimisation target for this search is the two-part code
length, i.e., the code length of the model encoding plus the code length of the data
encoding.

3.1.3.1 Beam search
In this algorithm, the rules are searched using a beam search. A beam search is a
greedy algorithm that is used to limit search spaces by only expanding the w best
candidates every iteration, where w is the beam width.

9



For rule learning, first, all candidate rules of length 1 are generated and evaluated.
The metric used to evaluate the candidate rules is the normalised compression gain
[26] (See Section 3.1.3.2). The overall best, w candidates, i.e., the candidates with the
highest normalised gain, are then stored for the next iteration. In the next iteration
of the beam search, new candidate rules are generated by expanding the w best rules
to rules of length 2. Then, the best w candidates are stored again to be expanded in
the next step. The search stops when no more improvements are made, and the w
best candidates remain the same. The candidate rule that was evaluated the best is
then chosen to be added to the rule list.

Rules are added one by one this way until the best rule no longer improves on the
total code length of the rule list.

3.1.3.2 Normalised gain
The normalised compression gain used to evaluate candidate rules is calculated by
normalising the difference in code lengths between the rule list with and without the
candidate rule.

The absolute gain, i.e the total difference in code length between the rule lists with
and without the candidate rule, is normalized by dividing it by |nai |β , where |nai | the
usage of group ai (the number of samples in the group), and β, which has a value in
[0, 1], is the normalisation level, a parameter of the SSD++ algorithm [26]. We thus
get

∆βL(D,M ⊕ ai) =
L(D,M)− L(D,M ⊕ ai)

|nai |β
, (4)

where ∆βL(D,M ⊕ ai) is the normalised compresion gain for adding the new rule ai,
L(D,M) is the total code length of the data and rule list without the new rule, and
L(D,M ⊕ ai) is the total code length of the data and rule list with the rule ai added.

3.2 Hypothesis testing
We will now briefly review hypothesis testing. In a hypothesis test, usually two
hypotheses are compared, the null hypothesis and the alternative hypothesis, in order
to either accept or reject the null hypothesis. A type-I error, also referred to as a false
positive, is rejecting the null hypothesis when it is actually true. The null hypothesis
is rejected if the probability that the observed data originates from the probability
distribution of the null hypothesis is below some predetermined probability α. In prac-
tice, this α, i.e., the significance level, is often set to 0.05. The threshold value to beat
(i.e., the minimum value required to achieve the required probability to reject the null
hypothesis) in order to achieve this significance level is often referred to as the critical
value.

3.2.1 Likelihood ratio tests

A type of statistical test comparing two models is the likelihood ratio test (LRT),
which compares the maximum likelihood of the data D for the null hypothesis M0

to the maximum likelihood of the same data for the alternative hypothesis M1. A
requirement for an LRT is that the models M0 and M0 must be nested, that is, the
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more complex model M1 must be able to be transformed into the simpler M0 by
imposing constraints to M1. The ratio r can then be defined as

r = log
maxθ1 P (D|M1, θ1)

maxθ0 P (D|M0, θ0)
, (5)

where θ0 and θ1 are the parameters for the models M0 and M1.
If the ratio r is above a predetermined threshold t, then the alternative model M1

is picked and the null hypothesis is rejected. This threshold value is picked to control
the type-I error rate in order to achieve the predetermined significance level.

3.3 Multiple testing correction
The family-wise error rate is the probability that at least one of the tests in a series
of tests results in a type-I error. This is formally defined by

FWER = 1− (1− α)m, (6)

where m is the total number of performed tests.
When doing a single test, the FWER is equal to the significance level α. However,

when more than one tests are performed, the FWER will always be above α. This
means that when multiple tests are done in succession, it is more likely to receive a
false positive result in at least one of those tests.

To reduce the chances of false positives when doing multiple tests, a multiple
testing correction is needed. One method of doing this is by using the Bonferroni
correction [4]. The correction by a Bonferroni correction is simply to compensate for
the total number of tests m by reducing the significance level α for each test to α

m .
Leading to a corrected FWER′ of

FWER′ = 1− (1− α

m
)m. (7)

This corrected FWER′ approximates, but never exceeds, α when a series of m tests
are performed [12]. Thus, with a Bonferroni corrected significance level, the family-
wise error rate can be controlled to retain the predetermined significance level over
all tests.

For a Bonferroni correction, it is also possible to have tests with different signifi-
cance levels as long as the combined total of these test specific significance levels adds
up to α.

4 Method
In this section, to motivate our proposed encoding scheme and correction method, we
will first connect MDL, more specifically the SSD++ algorithm, to likelihood ratio
tests, as well as multiple testing correction. Then, we will go over our own encoding
scheme and how the proposed correction would function.
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4.1 Code length and multiple testing correction
To explain our method of correction, we must first show how the model encoding and
multiple testing correction are related by transforming the code length comparison of
candidate rules into an LRT. In this LRT, the model encodings function as a multiple
testing correction term, as we will show in this section.

In the case of rule learning, where we want to find the best rule to add to the
rule list, we first compare an empty rule M0 (i.e., no rule) with a rule with a single
condition M1. For simplicity, we will be ignoring the difference in the encoding of the
length of the rule as this is, in practice, only a small part of the code length. This
also holds for a non-empty rule M0 and an M1 with one extra condition, as the only
difference between these rules is the extra condition. The rule M1 will be chosen if
the combined code length of M1 is smaller than the combined code length M0, so if

L(D|M1) + L(M1) < L(D|M0) + L(M0), (8)

M1 is a better rule compared to M0.
We will first show how this code length comparison of two candidate rules also

functions as a statistical test. To show that this indeed functions as a hypothesis test,
we must first rewrite the code length of the data encoding from Equation 1 as

L(D|M) = − log(P (D|M)) + C.

Here, we interpret the data code length as the negative log likelihood of the data calcu-
lated using the probability estimates of the compared rules plus the NML-complexity
term.

If we insert this back into Equation 8 we obtain,

− log(P (D|M1)) + CM1 + L(M1) < − log(P (D|M0)) + CM0 + L(M0), (9)

which can then be rewritten as

log(
P (D|M1)

P (D|M0)
) > CM1 − CM0 + L(M1)− L(M0), (10)

where CM0 is the NML complexity term of the null hypothesis, and CM1 is the NML
complexity of the candidate rule.

This has turned the code length comparison of Equation 9 into a likelihood ratio
test. In this LRT, the difference in the NML-complexity terms, CM0−CM1, as we will
show next, functions as the critical value, and the difference in model code length as
the multiple testing correction term.

Next, we show how the difference in model code length functions as a multiple
testing correction term and how the NML-complexity terms function as the critical
value. We will do this by first looking at the LRT and significance level without the
model code lengths, and the effect introducing this term has on the significance level
of the test.
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If we were to ignore the model code length, and thus the correction term, the LRT
would look like

log(
P (D|M1)

P (D|M0)
) > CM1 − CM0 , (11)

where the critical value is CM1 − CM0 .
The no-hypercompression-inequality (Equation 12) [14] states that for a dataset

D∗ generated by a distribution P ∗, the probability that a code different from P ∗

compresses the data more by at least K bits is 2−k, and thus exponentially small.

P (− logP ∗(D∗) ≥ − logQ(D∗) +K) ≤ 2−K (12)

The no-hypercompression-inequality can then be rearranged for an LRT context to

P

(
log

Q(D∗)

P ∗(D∗)
≥ K

)
≤ 2−K , (13)

in which K is the critical value.
Now, as per the no-hypercompression-inequality, the type-I error rate of the LRT

without correction (the difference in model code length) of Equation 11 is

PH0

(
log(

P (D|M1)

P (D|M0)
) > CM1 − CM0

)
≤ α. (14)

For this, we will be assuming that the probability distribution of H0 follows a
Bernoulli distribution with parameter θ0 that is estimated from the data1. According
to this equation, the significance level α of this test is equal to 2−(CM1

−CM0
), and

thus CM1 − CM0 = − log(α). The difference in NML-complexity terms thus functions
as the critical value in this LRT.

Now, when the difference in model code length is added to the test, we obtain a
type-I error rate of

PH0

(
log(

P (D|M1)

P (D|M0)
) > CM1 − CM0 + L(M1)− L(M0)

)
≤ 2−(− log(α)+L(M1)−L(M0)).

(15)
We will be denoting log(m) = L(M1) − L(M0), where m is an estimate of the

number of models searched to find the current rule. m can thus also be seen as the
number of hypothesis tests performed. This is to show that adding log(m) to the LRT
test changes the significance level in such a way that it functions as a multiple testing
correction.

4.1.1 Multiple testing correction and model code length

We will now show how the model encoding functions as the multiple correction term
by first assuming a simplified model encoding scheme. We will use this simplified

1In this hypothesis test, H0 is that adding the new rule will not improve the rule list, and the alternative
hypothesis H1 is that adding this rule will improve the rule list.
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encoding scheme to show how to obtain the number of rules searched (and thus the
correction term) from the model encoding scheme. To show that the difference in
model code lengths is indeed related to the number of rules searched, we will, as
mentioned, assume a simplified model encoding scheme. In this simplified encoding
scheme, instead of encoding the combination of features using log

(
f

|ai|
)
, we encode the

used features individually. Encoding features one by one is also common in practice.
One reason for this is that this ensures that longer rules have larger model code
lengths. With this method, as there are f possible options to choose from when adding
a feature to a rule, each used feature would require a code length of log(f) to encode.
This leads to a code length of |ai|∗ log(f) to encode all of the used features in a rule of
length |ai|. We will also leave out the encoding of the length of the rule LN(|ai|) and
the encoding of the number of rules LN(|S|). Since these code lengths are, in practice,
much smaller than the code length required for encoding a rule, we will ignore them
for the sake of simplicity.

We thus get the following as the simplified model encoding scheme,

Lsimplified(M) =
∑
ai∈S

[
|ai| ∗ log(f) +

∑
v∈ai

L(v)

]
(16)

With this simplified encoding scheme, the difference in code lengths between M1 and
M0 will then be log(f) + log(|vi|), where vi is the newest variable introduced in M1.
This is because M0 is an empty rule and M1 only has a single condition in this
scenario. Note that this also holds when comparing a non-empty M0 and an M1 that
is M0 with one extra condition.

The difference in code length between M0 and M1 is log(f ∗ |vi|). Assuming that
all f features have a cardinality of |vi| for simplicity, the number of rules searched to
find M1 then is m = f ∗ |vi| as there are f possible features, each having |vi| values.

With this estimated number of rules searched m, when we insert this back into
Equation 15, we get

PH0

(
log(

P (D|M1)

P (D|M0)
) > CM1 − CM0 + log(m)

)
≤ 2−(− log(α)+log(m)),

which then becomes

PH0

(
log(

P (D|M1)

P (D|M0)
) > CM1 − CM0 + log(m)

)
≤ α

m
. (17)

We thus see that when the model encoding is added, the critical value α gets divided
by the number of additional rules searched. This number of rules searched can also be
regarded as the number of hypothesis tests performed, thus functioning as a Bonferroni
correction, showing that the difference in model code length does indeed function as
a multiple testing correction.
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4.1.2 How constructed features break the connection

Now, when a constructed feature is added, the correction term no longer reflects the
number of rules searched when this feature is used. This is because this new binary
feature does not reflect the number of rules searched for the rule that was used to
create this feature. For encoding a rule just consisting of this newly constructed binary
feature, following Equation 16, only log(f+1)+log(2) bits are required (f+1 because
there is one more feature introduced), and thus (f + 1) ∗ 2 rules searched. Logically,
the rule that was used to construct the new feature likely has either more conditions
and/or a higher cardinality, thus resulting in a much higher number of estimated rules
searched than 2 ∗ (f + 1). This thus breaks the connection between multiple testing
correction and L(M1)−L(M0) because the actual number of rules searched no longer
matches the difference in code length.

4.2 Correction
In order to resolve this discrepancy in the number of rules searched when features are
added to a dataset, we propose a new model encoding and correction scheme such
that the connection between L(M1) − L(M0) and the number of rules searched, m,
still holds. We will do this by correcting the code length required for encoding these
newly constructed features in such a way that they reflect the complexity of the rules
they are based on.

In order to achieve this correction, we modify the code length of the rules contain-
ing constructed features. In this modification, instead of encoding the feature as if it
were a normal feature, we first calculate the number of rules searched to find the rule
this feature was based on and encode that to obtain the code length.

Since we are only modifying the code length of the conditions of a rule that uses
constructed features, we must make some changes to the model encoding scheme.
These changes are required to allow us to replace the code lengths of individual
conditions with the corrected code length.

4.2.1 Our model encoding scheme

We will now go over the basis of our new model encoding scheme. We will first explain
the concept by considering only categorical features before expanding to numeric
features. We will be using the term condition to describe the individual Boolean
expressions separated by the AND statements of a rule (e.g., the rule: weight < 600
AND age > 1 has two conditions: weight < 600, and age > 1).

In our new model encoding scheme, we will only encode the rules that are search-
able by the greedy beam search. Since a greedy beam search can only cover a subset
of the entire search space, only the rules in that searchable subset are encoded.

For example, a beam search with a single beam containing the rule weight < 600
will never search the rule has_spikes = false AND age > 1 because this rule does not
expand on the rule currently in the beam. This rule will never be considered, and it
is thus not necessary to encode this rule.

This would give a closer representation of how many rules were actually searched
to find and add an additional condition, leading to a more accurate correction term.
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For the simplest scenario, we will first assume that we are working with a beam
width of 1. We will also be assuming that features can not be used twice in the
same rule, i.e., a feature can only appear in a single condition of the rule. This is to
prevent rules from containing redundant conditions or an impossible combination of
conditions. Features that appear in a condition with two operators (e.g 1 < age ≤ 4)
are treated as a single occurrence of that feature.

With a beam width of 1, the number of rules searched, m, can be calculated using
Equation 18.

m =

|ai|∑
j=0

(f − j) ∗ |vaij | (18)

In this equation, ai is the i-th rule, and |ai| represents the number of conditions
in said rule (i.e., the length of the rule). f is the total number of features in the data
set, and |vaij | is the number of candidate values of the j-th feature (the feature that
is part of the j-th condition) of rule ai.

To calculate the total number of searched rules, we calculate the number of
searched rules to find each individual condition and add it together. For example, in
a dataset with three binary features, you would need to search 3 ∗ 2 = 6 (three fea-
tures, each having two possible values) rules to find the first condition of the rule. So,
we first calculate how many rules were searched to find the first condition, and then
we do the same for all other conditions of the rule.

To obtain the number of rules searched to add a singular condition, we multiply
the number of unused features (f − j) by the number of unique values of the chosen
feature. For example, for the first condition, there are f possible features, and the
feature we are encoding has |vaij | possible values. Thus, an estimated f ∗|vaij | rules are
searched to find this first condition. To find the second condition, only f − 1 features
are possible.

We will now cover how the numeric features are handled in our encoding scheme
as these do not have a cardinality that we can use to calculate the number of rules
searched in Equation 18. Therefore, we make use of the fact that numeric features are
divided by a number of cut points (ncut), which is a parameter of the algorithm.

To find the cardinality of numeric features k#, we first find the total number of
possible value combinations given a single operator and the number of cut points
(N(1, ncut)). We add this to the number of possible value combinations for two opera-
tors with the same number of cut points (N(2, ncut)). These numbers of combinations
are found in the same way as seen in Equation 19.

k# = N(1, ncut) +N(2, ncut) (19)

The total code length of a model using this encoding scheme would then be

L(M) = LN(|S|) + LN(w) +
∑
ai∈S

LN(|ai|) + log

w ∗
|ai|∑
j=0

(f − j) ∗ |vaij |

 (20)
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where we first encode the constants, the number of rules in the rule list |S|, and the
beam width w, using the universal code for integers. Then, we encode each rule in
the rule list as follows: for each rule, we first encode the length of the rule using
the universal code for integers. We then calculate the number of rules searched and
multiply it by the beam width. We multiply the number of searched rules on a single
beam as calculated in Equation 18 by the beam width to generalise to a wider beam.
This results in the maximum number of rules that can be searched in w beams. This
method does not account for the possible overlap of the beams and, thus, only gives
the upper bound of the number of possible rules instead of the actual amount. Finally,
we calculate the code length required to encode these rules by taking the log of this
number of rules. Because there are only a fixed number of searchable rules, we can use
the log instead of using the universal code for integers. When we again assume that all
features have the same cardinality, the number of rules searched that we calculated is
exactly the number of possible rules, meaning we can thus encode each possible rule
this way.

Now that the number of rules searched for each condition is calculated individ-
ually, it is possible to modify specifically the conditions using constructed features.
Additionally, the code length now represents the actual number of rules searched using
a beam search and, thus, how many rules were actually tested.

Using this encoding scheme, the difference in model code lengths of no rule (M0)
and a rule (M1) still functions as a correction term when we insert this into Equation
15. For simplicity, we are still ignoring the difference in the encoding of the length of
the rule, and the difference of the encoding of the number of rules. We then get:

PH0

log(
P (D|M1)

P (D|M0)
) > CM1 − CM0 + log

w ∗
|ai|∑
j=0

(f − j) ∗ |vaij |

 ≤ α

w ∗
∑|ai|

j=0(f − j) ∗ |vaij |
,

which, because inside the log is the number of searched rules, then becomes

PH0

(
log(

P (D|M1)

P (D|M0)
) > CM1 − CM0 + log(m)

)
≤ α

m
,

thus showing that our model encoding scheme can still function as the multiple testing
correction term.

4.2.2 Our correction method

Now that the encoding scheme has been sufficiently changed to allow the correction
to be applied, we will now discuss the process of the correction in more detail.

In order for the correction to be applied, we will be assuming that the following
information will be provided for each constructed feature: the length of the rule they
represent, and the features used in each condition of the rule.

For each constructed feature, the number of rules searched for the rule it represents
can then be calculated with Equation 18 using the provided information. The corrected
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number of rules searched (the number of rules searched to find the rule the constructed
feature was based on) for a constructed feature v will be denoted as ncorrected(v).

With this new information, the calculation for the number of rules searched must
now also take the constructed features that require the corrected number into account,
therefore, the calculation in Equation 18 will be replaced by Equation 22 when
correction needs to be applied.

nrules(j) =

{
ncorrected(vj), if vj is a constructed feature
(f − j) ∗ |vaij |, otherwise

(21)

m = w ∗
|ai|∑
j=0

nrules(j) (22)

In these equations, nrules(j) is the number of rules searched to find the j-th condition.
This is split into two cases. The first is that the condition uses a regular feature, and
thus, no corrective actions need to be taken. The second case is that the feature used is
a constructed feature. In this case, instead of calculating the number of rules searched
as normal, we find the number of rules searched to find the rule that this constructed
feature was based on ncorrected(vj). This is calculated as per Equation 18, which is
then multiplied by the beam width. This forms the basis of our correction.

When this is further applied, the complete calculation for the corrected model
code length would be:

L(M) = LN(|S|) + LN(w) +
∑
ai∈S

LN(|ai|) + log

w ∗
|ai|∑
j=0

nrules(j)

 (23)

Using this corrected encoding scheme, a rule using a constructed feature will now
have an increased code length compared to code length of the same rule without
correction. This correction thus replaces the number of rules searched to find this
condition using a constructed feature with the number of rules searched to find the
rule the constructed feature was based on. This corrected code length now also reflects
the complexity of the rules the constructed features are based on whilst still having a
lower code length than them. Now, the only difference between their code lengths is
the encoding of the length of the rule (LN(|ai|)).

This allows the inherent overfitting limiting of MDL to better judge the complexity
of constructed features, whilst still encouraging the use of these features as they have
a smaller code length compared to their original rule. And since the code length of
rules using the corrected features do not have the exact same code length as the same
rules using the rules these features represent, different models may be able to be found
when the constructed features are used.
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5 Experiments
In our experiments we will demonstrate on both simulated datasets and real-world
datasets the effects of treating constructed features as normal features. More specifi-
cally, we will look at the model complexity, predictive power and robustness against
learning spurious rules of models trained with increasing numbers of constructed fea-
tures. First, we start with the SSD++ models, where we begin by looking at a synthetic
dataset where the true rules are known, after which we look at the real-world datasets.
Next, in Section 5.8, we will repeat the experiments with our proposed encoding and
correction scheme.

5.1 Experiment setup: simulated dataset
First we look at a simulated dataset where the true rule set used to generate the data
is known. For the simulated data, we generated a binary dataset with 5000 samples
from a fixed set of five rules. These five rules all have lengths of two or three conditions,
and the total number of features in the dataset is six (x1, ..., x6), with target variable
Y . The exact rules can be seen in Figure 2. The dataset was created by generating a
5000 × 6 matrix with random binary values. The value of the target variable Y was
then assigned as per the rules in Figure 2.

R1: IF x2 = true AND x4 = true THEN P (Y = true) = 0.95
R2: ELIF x1 = true AND x3 = true AND x5 = true THEN P (Y = true) = 0.8
R3: ELIF x1 = false AND x2 = false AND x5 = true THEN P (Y = true) = 0.65
R4: ELIF x2 = true AND x4 = false THEN P (Y = true) = 0.5
R5: ELIF x3 = false AND x4 = true THEN P (Y = true) = 0.35
D: ELSE P (Y = true) = 0.2

Fig. 2: The rules used to generate the data for the simulated experiments

When adding the constructed features to the dataset for the experiment we have
added each of the five true rules as a feature to the dataset.

For the models trained using the simulated data we only have to look at the learned
rules to determine if something has gone wrong because the true rules are already
known. Thus, if we see that the trained models have rules that do not exist in the
true rule set, we know that the model has fitted to the random noise in the data. The
exact metrics used are discussed in Section 5.2.

In order to see the potential issues caused by adding features based on rules to
a dataset, we start training SSD++ models with no features added as the baseline.
Then we train with increasing numbers of constructed features added to the dataset.
This allows us to see if adding constructed features to a dataset leads to a different
set of learned rules compared to the true rules.

To reduce the randomness of the results, the models were trained and tested on 10
stratified folds for all datasets. This keeps the percentage of samples roughly the same
for each class in each of the 10 training sets. This was done using the StratifiedKFold
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function from scikit-learn[25] with the randomstate set to 0. Of these 10 results, the
mean and the standard deviation of these folds were reported for all measured metrics.

5.2 Metrics: simulated data
For the experiments using a synthetic dataset we will use two methods to evaluate the
models. Since the true rule set of this dataset is already known, we first compare the
number of learned rules to the true number of rules to see if these differ. Next we will
compare the coverage of these rules to see if the learned rules cover the same samples
as the true rule set. To compare these rules we will use the Jaccard index, which can
be calculated by dividing the number of samples that appear in both compared rules
by the total number of unique samples of both rules combined. The Jaccard index is
calculated for all combinations of learned rules and true rules as the n-th learned rule
may not always correspond to the n-th true rule.

5.3 Results: Simulation
In Figure 3 we can see the average number of rules of the 10 folds for a model trained
without added features, as well as a model trained with features. The true number of
rules for this dataset is also displayed.
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Fig. 3: The average number of rules in a rule list trained with increasing numbers
of added features (old uncorrected) compared to a rule list trained without added
features (old baseline) with the true number of rules (black) as reference.
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In the figure, the old baseline is the baseline SSD++ model trained without added
features. The old uncorrected model is the SSD++ model trained with additional
features. We can see that the baseline model learns on average one more rule than
there are rules in the true model. This shows that there already is some fitting on the
random noise in the baseline model. We also see that when additional features are
introduced into the dataset, the average number of learned rules increases compared
to the baseline with no added features. This means more spurious rules are learned
when more features are added, and that the added features increase the risk of learning
spurious rules compared to not adding them.

In Figure 4 we can see the Jaccard similarity of these learned rules to the true rules
for a model with no added features, a model with a single added feature, and a model
with five added features. The results in these figures are from the same randomly
chosen fold. The true rules (including the default rule) are on the x-axis, and the
learned rules are on the y-axis.
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Fig. 4: The Jaccard index between the true rules (x-axis) and the learned rules (y-
axis) for a model trained without added features, with 1 added feature, and 5 added
features

In the figures with no added features and 1 added feature, we see that they are the
same. When we compare these to the true rules, we see that three of the rules (r1, r2,
and r5) directly match true rules. We also see that the samples from the third true
(R3) rule are split between two rules (r3 and r4), this shows that, indeed, the model
has fitted to random noise because any difference between r3 and r4 would be due to
randomness in the data. Finally, we see that the samples that should be part of the
fifth true rule are found in the default rule of the learned model. This may be because
the noise in the data causes the merged default rule to be slightly more optimal as
the default rule and fifth true rule are quite close in value.

In the figure with 5 added features, we see that the third true rule is now split
between four rules. Showing that the fitting on random noise has gotten worse. We
also see that the fifth true rule is now no longer in the default rule. This is likely
because the fifth true rule has now been added as a feature, meaning that adding a
rule using this feature requires a smaller code length. This likely caused the addition
of the rule to be better than incorporating it in the default rule.
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We have seen that adding more features has worsened the learning of spurious
rules. With no features added, a true rule was split over two learned rules, but with
5 added features, it has split even further to four rules. We can thus conclude that
there is indeed some risk of problems occurring when multiple features are added to a
dataset. This increase in rules learned when more features are added may sometimes
be beneficial as it can help in discovering true rules, but it also makes the model less
robust against fitting to random noise.

5.4 Experiment setup: real world datasets
We repeat this experiment on several real-world datasets. The datasets used can be
seen in Table 1, which describes the sizes of the datasets and the number of classes
of the target variable. These datasets are of various sizes to better see the effects in
different scenarios. We will again be using 10 folds to reduce the randomness of the
result.

Name Samples Features Target Labels

Ipums [28] 8844 56 2
Muskv2 [5] 6598 166 2
Student success [19] 4424 36 3
Apple quality [23] 4000 8 2
Optdigits [3] 3823 64 10
Diabetes [1] 2460 8 2
Auction verification [24] 2043 7 2
Mobile price [30] 2000 20 4
Wine quality (red) [7] 1599 11 6
Heart failure [8] 918 11 2
Mine [36] 338 3 5
Cirrhosis [10] 276 17 3

Table 1: The datasets used for the experiments

5.4.1 Adding features to datasets

To select the rules to add as features to the real-world datasets, we first train an
SSD++ model on these datasets. We then choose the first 10 rules of these models to
add as constructed features to the datasets. For each rule to be added as a feature,
all samples in the dataset that fulfil the conditions specified in the rule get marked as
true in the new feature, the rest are marked false. Note that this may include samples
not covered by the rule, as we are not excluding the samples covered by earlier rules
that may also fulfill the conditions of the added rule. We are thus treating the rules
to add as features as standalone rules, because this is simpler to interpret. This way,
the described feature only needs a single rule to describe it instead of requiring the
entire rule list.

For datasets where fewer than 10 rules were learned, only those n < 10 rules were
added as the constructed features for those datasets. The decision to use the first 10
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rules as the constructed features was made due to insufficient domain knowledge on
all datasets, and thus we would not necessarily recognize the interesting rules.

5.5 Metrics: real-world datasets
For the real-world datasets, different metrics are required as the true rules are
unknown. Instead, we will be measuring the code lengths of the models and their
predictive power.

5.5.1 Code length

The first metric used is the two-part code length of the model, i.e., the code length
of the data (Eq. 1) plus the code length of the model (Eq. 2). This measures the
compression achieved by the model, and thus how well the model is able to describe
the data (a smaller code length thus means a better compression). Since models were
trained with different numbers of features, using the model code length without any
changes leads to models having different model code lengths for the same rules. In
order to be able to compare these models without such inequalities, we will be encoding
the models as if they used the original datasets without added features. For this to
work, we must first replace all constructed features used in the rule list with the rules
these features represent since the original dataset does not have these features.

So for a dataset with features x1, x2, ..., xn and constructed features z1, z2, ..., zm,
all constructed features are substituted by the rules they represent for all rules in
the rule list such that no rule contains any constructed feature. For example, if z1
represented the rule "x1 > 1 and x2 > 1", then substituting z1 in the rule "z1 ==
True and x3 > 1" would result in "x1 > 1 and x2 > 1 and x3 > 1". We then encode
the rules using the encoding scheme from the method section (Eq. 20).

This metric was chosen because we can easily compare models and see which
models are better from an MDL perspective, which is the model with the lowest two-
part code length. A lower two-part code length means that the model has found a
better balance between model complexity and data compression. If we see the two-
part code lengths increase as more features are added, we can conclude a worsening
performance due to these features.

5.5.2 ROC-AUC

The second metric used is the area under the receiver operating characteristic curve
(the ROC-AUC score). This is a commonly used metric to score model performances
with a score in the range [0, 1], where 1 is the score for the perfect model. The receiver
operator curve plots the true positive rate against the false positive rate, where a
larger area under the curve indicates a better model. For the datasets with non-binary
targets, the AUC for each class is computed against all other classes (one vs rest) and
the macro (unweighted) average was taken in order to obtain the ROC-AUC score for
the model.

The ROC-AUC score is calculated on the data of the training set, as well as
the data of the test set. The ROC-AUC score was used to also see the predictive
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performance of these models in addition to the achieved compression seen in the code
length.

5.6 Results: Code length
Next, we will start by looking into the effect of these added features on the performance
of the models. The first performance-based metric we look at is the code length of the
model and the combined two-part code length of the model and data encoding.

When a single constructed feature is added to a dataset, we see in Figure 5 that
for half of the datasets, the model code length, and thus model complexity, increases.
For the other half, it decreases to a lesser degree. When more and more features are
added, these differences tend to become more pronounced in most cases, as can be
seen in the graph with 10 features added. However, in Figure 6 we can see that for
most datasets with an increase in model complexity, the total code length remains
very similar to the baseline model. This suggests that although the model becomes
more complex, there is no increase in performance, and thus a lower total code length,
showing the potential problem of increased complexity without a gain in performance
(such as learning spurious rules). Although we can see an exception in the auction
verification dataset, all other cases with an increased model complexity do not show
an improvement in their total code length, suggesting that adding features indeed
risks some problems. The presence of datasets that do show a better model from an
MDL perspective when features are added (and thus have a lower total code length)
may suggest that adding the features can also show a positive impact of human-added
features. Suggesting that adding human insight into a dataset can improve models
trained on that data.

5.7 Results: ROC-AUC
The next metric we are looking at is the average ROC-AUC scores of the models over
the 10 folds.

In Table 2 the average ROC-AUC score for the models trained on each dataset
for 1 to 10 added features. Column 0, shows the score of the baseline model that was
trained without added features.

In these tables, for most datasets we see almost no change in ROC-AUC score
for the models trained with added features on the test set. The three datasets that
do show the largest difference are the cirrhosis dataset which shows a noticeable
decrease in ROC-AUC score when features are added, and the auction verification
and mobile_price set which show an increase.

From only looking at the ROC-AUC scores, we can see that for most datasets the
ROC-AUC does not change when constructed features are added. It is possible that
these models have learned spurious rules like we have seen with the simulated data,
in such a case there will be no improvement in the ROC-AUC scores of these models
since these spurious rules describe the same data.
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Fig. 5: The difference (in percentage)
of the code lengths between the model
encodings of the models trained with-
out additional constructed features
(the baseline), and models with 1, 5,
and 10 added features.
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Fig. 6: The difference (in percentage)
of the code lengths between the total
code lengths of the models trained
without additional constructed fea-
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Dataset 0 1 2 3 4 5 6 7 8 9 10

muskv2 0.934 0.916 0.935 0.926 0.926 0.926 0.938 0.938 0.939 0.936 0.942
ipums 0.545 0.553 0.554 0.564 0.568 0.576 0.577 0.574 0.574 0.577 0.574
apple_quality 0.798 0.792 0.779 0.796 0.787 0.781 0.797 0.796 0.8 0.8 0.796
mine 0.762 0.753 0.775 0.813
auction_verification 0.886 0.901 0.905 0.903 0.913 0.905 0.905 0.95 0.947 0.96 0.964
diabetes 0.912 0.918 0.906 0.884 0.86 0.92 0.899 0.91 0.894 0.901 0.913
heart_failure 0.836 0.844 0.828 0.829 0.857 0.86 0.861
optdigits 0.807 0.804 0.817 0.831 0.819 0.819 0.82 0.834 0.82 0.835 0.823
wine_quality(red) 0.716 0.72 0.709 0.726 0.716 0.72 0.688 0.708
student_success 0.792 0.8 0.803 0.795 0.8 0.798 0.797 0.802 0.804 0.806 0.803
cirrhosis 0.552 0.439 0.439
mobile_price 0.393 0.382 0.398 0.403 0.404 0.401 0.402 0.41 0.409 0.421 0.423

Table 2: The average ROC-AUC on the test set over 10 folds for each dataset with
0 (baseline) to 10 added features trained using the SSD++ algorithm.

5.8 Correction experiment
Next we will be repeating the experiments using our proposed model encoding scheme
instead of the encoding scheme from SSD++ using the same metrics. In this experi-
ment we will be comparing the performances of the models with correction applied,
and without correction (and thus treating the added features as normal features). As
with the previous experiment, these models are trained with an increasing number
of constructed features, and as a baseline to compare to, a model trained without
the added features is used. All of these models are trained using our proposed model
encoding scheme.

We will be using the same metrics as before, to see if our proposed multiple testing
correction has a positive effect on models trained using it. For training the models,
the same settings were applied as in the previous experiment.

5.8.1 Results: Simulation

We will now again start by looking at the simulated dataset. This time the models
are trained with our proposed model encoding scheme, both with, and without our
correction from Equation 23. The results of this can be seen in Figure 7, where we
again look at the average number of rules compared to the true number of rules. In
this figure, the new baseline refers to the baseline model trained with our modified
encoding scheme. The new uncorrected model refers to the models trained with added
features, but without applying the correction. The new corrected model refers to the
models trained with the modified encoding scheme with correction applied.

Again, we see that all models, including the corrected model, have a greater number
of rules than the true model. This may be because each individual rule requires a
smaller code length in our encoding scheme than their equivalent in the SSD++
encoding scheme. We are thus still encountering the same problem we have seen in
the SSD++ model. In this case however, we see the opposite happening, both the
uncorrected and the corrected model with features added have learned fewer rules
than the baseline using our modified encoding scheme. At five added features, we see
a similar number of rules as the original encoding scheme. Perhaps the increase in the
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Fig. 7: The average number of rules in a rule list trained with increasing numbers
of added features without correction (new uncorrected), and with correction (new
corrected), compared to a rule list trained without added features (new baseline) with
the true number of rules (black) as reference.

number of features has a higher impact in our encoding scheme than in the encoding
scheme used in SSD++, thus leading to fewer rules learned when more features are
added, as each rule has a higher required code length.

Since the results from the corrected models are so close to the results of the
uncorrected models, it is likely that he correction has little to no impact on the number
of learned rules. This may be due to the code length difference for encoding the same
rule with correction and without correction being relatively small compared to the
data encoding, resulting in similar numbers of rules.

In Figures 8 and 9 we can see the Jaccard similarity of these learned rules to the
true rules for a model with no added features, a model with a single added feature,
and a model with five added features. Figure 8 shows the uncorrected models and 9
shows the corrected models. The results in these figures are from the same randomly
chosen fold. The true rules (including the default rule) are on the x-axis, and the
learned rules are on the y-axis.

In these figures, we see that both the uncorrected and the corrected results are
the same. We see the same similarity scores for the learned rules for all numbers of
added features. With zero and one added features, we see that several of the true rules
are split up between two or more rules, which shows that the model is again fitting
to random noise in the data. We also see that more rules were learned compared to
the SSD++ model, like we have seen in Figure 7. With five added features, we see a
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for a model trained without added features,
with 1 added feature, and 5 added features.
All models are trained using our proposed
encoding scheme without correction applied
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Fig. 9: The Jaccard index between the
true rules (x-axis) and the learned rules (y-
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somewhat better result, as the true rules are now split between fewer rules, but the
same problem is still present.

5.8.2 Results: Code length

Next, we will be looking at the code lengths of the model encoding in Figure 10 in
order to see if applying correction influenced the learned model complexity. For both
the corrected and the uncorrected models, the code lengths were calculated as using
the same encoding scheme as described in Section 5.5.1 for a fair comparison. In these
figures, the new uncorrected model refers to the models using our encoding scheme
without correction, treating the constructed features as normal features. The corrected
model refers to the model using our encoding scheme with correction applied.

We see that the difference in the encoding scheme does make a difference in terms
of model code length of the learned models, however, we still see that for models
trained with more features, the difference between the baseline (the model trained
with no features) tends to increase. When correction is applied we still see the same
behaviour as the uncorrected model, but often to a slightly lesser degree.

In Figure 11 we look at the combined code length for the corrected and uncorrected
models. In this figure, we see that the corrected and uncorrected models behave very
similarly to each other. Like the models trained with the SSD++ model, we still see
that most of the models that had an increase in their model complexity have a total
code length near identical to the baseline, suggesting that the same problems still
occur with our proposed encoding scheme, even when correction is applied. It is likely
that in those models, the rules are split into multiple rules like we saw in the simulated
datasets and are thus not actually improving.

5.8.3 Results: ROC-AUC

Next, we look at the ROC-AUC scores for the corrected and uncorrected models
trained using our modified encoding scheme.

In Table 3a the ROC-AUC scores for the uncorrected models trained with the
modified encoding scheme are shown, and in Table 3b the results from the corrected
models are shown. In the tables the average ROC-AUC score for the models trained
on each dataset for 1 to 10 added features. Column 0, shows the score of the baseline
model that was trained without added features.

We again do not see any noticeable difference in the ROC-AUC scores between
the baseline and the models trained with added features (again the auction verifi-
cation dataset shows the greatest increase in performance). Additionally both the
corrected and the uncorrected models show near identical ROC-AUC scores for all
datasets, suggesting that our correction does not have a large impact in improving
model performance.

5.9 Discussion
We have performed experiments on datasets with increasing numbers of constructed
features added. We performed these experiments on a simulated dataset with known
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Fig. 10: The difference (in percent-
age) in the model encoding code
length for the models trained with-
out additional constructed features
(the baseline), and models with 1, 5,
and 10 added features. Where dark
blue is our modified encoding scheme
without correction applied, and green
our modified encoding scheme with
correction applied.
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Fig. 11: The difference (in percent-
age) in the combined two-part code
length for the models trained with-
out additional constructed features
(the baseline), and models with 1, 5,
and 10 added features. Where dark
blue is our modified encoding scheme
without correction applied, and green
our modified encoding scheme with
correction applied.
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Dataset 0 1 2 3 4 5 6 7 8 9 10

muskv2 0.932 0.933 0.933 0.928 0.93 0.93 0.932 0.929 0.932 0.944 0.941
ipums 0.579 0.585 0.578 0.577 0.586 0.589 0.586 0.59 0.6 0.6 0.599
apple_quality 0.793 0.787 0.795 0.78 0.78 0.784 0.781 0.791 0.782 0.775 0.785
mine 0.773 0.766 0.771 0.77
auction_verification 0.87 0.882 0.874 0.875 0.931 0.932 0.932 0.971 0.959 0.965 0.965
diabetes 0.935 0.962 0.976 0.952 0.915 0.94 0.94 0.909 0.905 0.922 0.899
heart_failure 0.819 0.823 0.832 0.829 0.823 0.839 0.836
optdigits 0.791 0.803 0.816 0.822 0.819 0.819 0.812 0.831 0.82 0.831 0.836
wine_quality(red) 0.697 0.722 0.671 0.714 0.689 0.698 0.699 0.685
student_success 0.794 0.795 0.792 0.797 0.795 0.789 0.788 0.793 0.788 0.793 0.788
cirrhosis 0.527 0.536 0.522
mobile_price 0.412 0.417 0.407 0.416 0.404 0.418 0.406 0.416 0.417 0.424 0.416

(a) The average ROC-AUC scores on the test set over 10 folds for each dataset with 0 (base-
line) to 10 added features trained using our proposed encoding scheme without correction
applied.

Dataset 0 1 2 3 4 5 6 7 8 9 10

muskv2 0.932 0.932 0.935 0.929 0.932 0.933 0.935 0.934 0.928 0.951 0.942
ipums 0.579 0.59 0.583 0.588 0.578 0.591 0.593 0.6 0.588 0.593 0.595
apple_quality 0.793 0.788 0.787 0.789 0.788 0.797 0.787 0.789 0.794 0.798 0.783
mine 0.773 0.763 0.762 0.771
auction_verification 0.87 0.882 0.874 0.875 0.932 0.933 0.933 0.971 0.953 0.961 0.968
diabetes 0.935 0.986 0.938 0.969 0.971 0.962 0.958 0.953 0.953 0.929 0.909
heart_failure 0.819 0.825 0.832 0.826 0.816 0.821 0.841
optdigits 0.791 0.803 0.813 0.824 0.817 0.82 0.811 0.834 0.823 0.828 0.829
wine_quality(red) 0.697 0.718 0.674 0.701 0.701 0.702 0.696 0.716
student_success 0.794 0.796 0.79 0.795 0.786 0.791 0.796 0.794 0.786 0.787 0.788
cirrhosis 0.527 0.526 0.536
mobile_price 0.412 0.41 0.418 0.408 0.424 0.413 0.42 0.411 0.418 0.415 0.428

(b) The average ROC-AUC scores on the test set over 10 folds for each dataset with 0
(baseline) to 10 added features trained using our proposed encoding scheme with correction
applied.

Table 3

true rules, as well as on real-world datasets. We started with performing these exper-
iments with the SSD++ model. From these experiments we have seen that when
more constructed features are introduced, the models are more likely to learn spuri-
ous rules. On the simulated data, we saw that when more constructed features were
added, the model learned more spurious rules than without any added features. Also,
on the real-world datasets, we saw that for half of the datasets, the model complexity
increased when constructed features were introduced, this increase tended to be more
pronounced when more features were added.

Next, we performed the same experiments using our encoding scheme, both with
and without correction applied to rules using constructed features. From the results
of the models with our correction applied, we can see that the correction had little
impact in changing the learned models across all metrics used. Even with correction,
we see a similar increase in model complexity as for models without correction. In
these cases, the combined code length is roughly the same as the baseline (the model
trained on a dataset without added features). This means that the models with cor-
rection, just like the uncorrected models, become more complex without improving
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the achieved compression, making the model unnecessarily complex. The ROC-AUC
scores on the test sets were similarly unaffected by the correction, showing near iden-
tical results to the uncorrected model. This correction thus has not reduced the risk
of problems occurring when constructed features are introduced. Perhaps the lack of
impact of correcting the code length of added features may be due to the relatively
small difference in code length between the corrected feature and the uncorrected
feature compared to the much larger code length for encoding the data. Such a rel-
atively small difference may not be large enough to make a noticeable difference in
rule learning.

6 Conclusion
Domain experts adding rules as features to a dataset when feature engineering can lead
to improved model performance when models are trained on these modified datasets.
However, doing this potentially risks some problems, such as the model learning overly
complex rules. This is because these constructed features allow the model to describe
a subsection of the data in a shorter code length compared to the code length of the
rule used to create the feature. This shorter code length allows the algorithm to learn
additional rules, thus increasing the model complexity.

In this thesis we have looked at how to encode such constructed features for an
MDL-based rule list model. To achieve this, we have connected MDL-based rule list
learning to hypothesis testing and multiple testing correction as the basis of our model
encoding scheme. In this connection, we have seen that the code length comparison for
learning rules can be transformed into a likelihood ratio test where the difference in
model code lengths of the candidate rule functions as the multiple testing correction
term. For our new model encoding scheme we handle each condition of the rule indi-
vidually, calculating the number of rules that has been searched to add each additional
condition. The total number of rules searched is then used to encode the rule.

Using this new model encoding scheme, we have also proposed a correction method
that corrects the code length required for encoding the constructed features. This
correction method is based on multiple testing correction, where the corrected code
length required to encode the constructed features is based on the number of rules
searched to find the rule that this feature was based on. In our experiments, we
have first compared SSD++ models trained on datasets without constructed features,
to SSD++ models trained with increasing numbers of features. This was done to
empirically demonstrate the risk of introducing these constructed features to a dataset.
In these experiments we have demonstrated that with the SSD++ algorithm, treating
these constructed features as normal features can indeed lead to some problems, such
as rules being split on random noise when more features are introduced.

We have also repeated these experiments using our model encoding scheme. In
these experiments, we have again trained models on a dataset without added con-
structed features. These models were then compared to models trained on datasets
with increasing numbers of constructed features. This was done for models both with,
and without, our correction applied to the constructed features. In the experiments
using our proposed encoding scheme, both with and without correction applied to the
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constructed features, we have seen that the models trained with correction do not
show a major difference in predictive performance compared to the uncorrected mod-
els. Additionally, models with correction still suffer from the same problem of fitting
to noise in the data when more constructed features are added.

From these experiments, we have concluded that our multiple testing correction-
based encoding scheme had little effect in the rule learning process, leading to very
similar results to an uncorrected model. This suggests that the potential problems
caused by treating constructed features as regular features may require a different
approach from code length-based methods to resolve.

6.1 Future work
Since the issue of fitting to noise still persists when the code length required to encode
the constructed feature is corrected following the principles of multiple testing cor-
rection, it might be beneficial to look outside of a purely MDL context to solve this
problem. One such example could be using a validation set to test if adding a candidate
rule to the rule list actually improves the rule list.

Alternatively, it is possible to improve the limitations in this work, although it is
likely that this will not significantly influence the results. These limitations include
improving the calculation for the number of searched rules, as in this implementation,
it is only an estimate, only providing the true number of searched rules if all features
have the same cardinality. Another point to improve is taking into account that the
beams in the beam search may have some overlap in their saved rules when estimating
the number of rules searched with more than one beam.
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