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Abstract

In this thesis, I fine-tuned a domain-specific Large Language Model (BioMistral) to improve
the accuracy of medical recommendations and create more natural, helpful conversations
in a clinical dialogue setting. The motivation for this work stems from the limitations of
general-purpose language models in healthcare, where diagnostic accuracy and contextual
sensitivity are critical. Generic LLMs often lack domain-specific knowledge, making their
output unreliable for medical use.

To address this, I used the NoteChat dataset to fine-tune the BioMistral model using
the LoRA method. The fine-tuning process involved formatting the data in a conversational
format tuned to instruction and conducting training on the ALICE supercomputing cluster.
After training, I benchmarked the resulting model against both the base BioMistral model
and the original Mistral model, evaluating performance across human-like and semantic-based
metrics using both general and diagnosis-focused test subsets.

The fine-tuned model outperformed both baselines in helpfulness, answer quality, and
diagnostic accuracy when clinical data were available. It also demonstrated more consistent
and robust performance in terms of semantic similarity.

These findings support the conclusion that fine-tuning LLMs with realistic medical dialogue
improves their utility in clinical settings. While biomedical pre-training provides a solid
foundation, task-specific fine-tuning is essential for achieving higher-quality, context-aware
responses.
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1 Introduction
LLMs (Large Language Models) are already being used in various industries such as consult-
ing, helpdesks, and customer service. These sectors have seen significant improvements through
the reduction of repetitive and unnecessary tasks using LLMs. One sector where this kind of
support is urgently needed is healthcare. The healthcare industry suffers from a chronic short-
age of workforce, despite being essential for everyone. To help alleviate this burden, LLMs can
offer assistance in several ways. For example, they can speed up the diagnosis process or help
articulate patient symptoms clearly. These functions can be supported by a medical dialogue system.

A Medical Dialogue System (MDS) provides advice to patients and healthcare professionals in the
form of a conversation with an intelligent agent [1]. This agent can issue a diagnosis after gathering
sufficient information from the patient. Examples of such systems include Babylon Health[2] and
Ada Health [3]. Most MDSs are built using machine learning techniques and natural language
processing, but recent advances in large language models have led to their integration into these sys-
tems. This development brings greater flexibility and the potential for improved diagnostic accuracy.

In practical applications, a large language model powered medical dialogue system can anal-
yse a patient’s file and suggest possible diagnoses to a doctor or medical professional. Alternatively,
such a system can take the form of a chatbot with which patients can interact directly to receive
medical advice. The benefits of medical dialogue systems include reducing the workload in healthcare
by speeding up the diagnostic process or even allowing the system to make the diagnosis itself.
Another major advantage is that these systems can be available 24/7, giving patients constant
access to medical support.
This thesis explores how fine-tuning Large Language Models (LLMs) enhances the accuracy of
diagnosis, medical recommendations, and other applications in a text-based medical dialogue system.

However, generic LLMs lack domain specialisation for this task, leading to inaccurate or un-
safe diagnostic suggestions in medical settings. This poses a high risk of harm: Misdiagnosis can
lead to incorrect treatment, delayed care, or serious legal and ethical consequences[4]. Instead of
developing an entirely new model from scratch, which is an approach that demands extensive
resources. A more cost-effective method is to fine-tune an existing LLM. Fine-tuning enables the
adaptation of a generic model to specific medical needs without requiring the training of a full-scale
model. This approach uses the strengths of a general LLM while tailoring it to the healthcare
domain.
This thesis poses 2 research questions:

1. How does fine-tuning impact the performance of LLMs in medical dialogue tasks compared
to their base versions?

2. What are the key challenges and limitations of fine-tuning LLMs for medical applications,
and how can they be addressed?
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To answer these research questions, this thesis investigates how fine-tuning a domain-specific large
language model can improve the quality and accuracy of a medical dialogue system. The focus is
on adapting and fine-tuning the BioMistral model using the NoteChat dataset, which consists of
synthetic conversations between patients and physicians. In Section 2, related work is reviewed on
large language models, fine-tuning techniques, and their applications in the medical field. Section
3 outlines the methodology, including dataset preparation, the fine-tuning process using LoRA,
and the benchmarking setup. Section 4 presents experimental results, covering both human-like
evaluation and semantic similarity metrics, as well as a case study of model performance. Section 5
discusses the key findings, limitations, and practical implications of this approach. Finally, Section
6 concludes the thesis and outlines potential directions for future research.
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2 Related work
2.1 Large language models (LLMs)
2.1.1 Pre-training of LLMs

Pre-training is a method similar to transfer learning, which means taking the knowledge a model
already has learnt and applying it to a different task [5]. Building large-language models (LLMs)
from scratch is extremely expensive and requires huge amounts of data, computing power, and
time. One of the main reasons why there are not many base LLMs available is because it is just
too costly to do it without significant funding.

Because of that, most well-known LLMs are based on a few original versions but come in many
different forms. For example, GPT(Generative Pre-trained Transformer) from OpenAI has mul-
tiple derivatives like ChatGPT and BioGPT. These are examples of pre-trained models. They
used the original model GPT as a starting point and then trained it further on specific types of
data. For ChatGPT, this means training on dialogue and chat-based content, while BioGPT is
trained on biomedical text. This makes each model more accurate and useful in its specific domain [6].

The concept of pre-training LLMs using massive datasets started with models like BERT [7],
which was trained using masked language modelling on a large corpus of text. After that, the GPT
series (GPT-1, GPT-2, GPT-3) introduced autoregressive pre-training where models predict the
next token in a sequence [8, 9]. These pre-trained base models are then fine-tuned or adapted for
more specific tasks or domains.

RoBERTa [10] showed that by simply tweaking the pre-training setup. By using more data, longer
training times, and removing some training tricks the model performance could be significantly
improved. These findings have reinforced the idea that pre-training on a wide and representative
dataset provides a strong foundation for adapting models to almost any downstream task.

Although pre-training costs less than building a completely new LLM, it is still a resource-intensive
process. You still need a huge dataset, powerful GPUs or TPUs, and a lot of time to do it prop-
erly. However, once done, it allows researchers and companies to adapt the model for specialised
applications with much less effort than starting from zero.

2.1.2 Prompt training

Using prompts can also improve the accuracy of LLMs. Different types of prompting methods have
been explored in research, including zero-shot, few-shot, and chain-of-thought prompting, each with
its own strengths.

Zero-shot prompting is the simplest. You just give the LLM your question, without any ex-
tra information or examples. This method relies entirely on the model’s general knowledge. In the
GPT-3 paper by Brown et al. [9], zero-shot prompting was used as a baseline for tasks like translation
and question answering, and while the results were decent, they were not as strong as other methods.
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Few-shot prompting improves on this by giving the model a few examples before asking the
real question. These examples help the LLM understand the pattern or logic behind the task. Brown
et al. [9] showed that few-shot prompting led to better performance in tasks like common-sense
reasoning, word sense disambiguation, and SAT analogies. For instance, when given a few examples
of English-to-French translation, the model could translate new sentences more accurately than
with zero-shot.

Chain-of-thought prompting takes it one step further. Here, the prompt includes a step-by-step
explanation that shows how the answer was reached. This helps the model not just guess the answer
but learn how to reason through the problem. In the paper from Wei et al. [11], they demonstrated
that chain-of-thought prompting significantly improved performance on math word problems and
logical reasoning tasks. For example, instead of just giving the answer to “If Tom has three apples
and gives away one, how many are left?”, the example would walk through the steps: “Tom starts
with 3 apples. He gives 1 away. So he has 3 - 1 = 2 apples left.”

These prompting strategies are important tools for improving LLM performance without needing
to retrain the entire model, especially in cases where labelled data is scarce or expensive to collect.

2.1.3 Fine tuning LLMs

Fine-tuning is a core technique for adapting large pre-trained language models to more specific tasks
or domains. This involves training a model with less data compared to pre-training. Fine-tuning
builds on the existing knowledge of a pre-trained model and updates its weights using smaller,
domain-specific datasets. This approach lowers the computational cost and time while increasing
the accuracy.

Traditional fine-tuning involves updating all millions, or even billions, of parameters in a model.
While effective, this still requires significant resources and a large, labelled dataset. An example
of this is GPT-3 which was fine-tuned with human feedback and conversational data to create
ChatGPT, optimising it for dialogue-based tasks [12]. Another example is BioGPT, which was
fine-tuned using biomedical corpora, enabling it to outperform general models in tasks like medical
text generation and classification [13].

A breakthrough in fine-tuning has come from parameter-efficient fine-tuning (PEFT). This method
allows only a small subset of the model’s parameters to be updated, making the process more
lightweight and efficient. Techniques such as adapter layers and prefix tuning have been used to
improve accuracy while drastically reducing the number of parameters that need to change [14].

An important example of PEFT is LoRA (Low-Rank Adaptation). Instead of updating the entire
weight matrix, LoRA injects low-rank matrices into the model, which significantly cuts down the
number of trainable parameters. This makes it possible to fine-tune large models even on modest
hardware setups while still achieving high performance in domain-specific tasks [15].
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2.2 LLMs in medical field
2.2.1 Medical datasets and benchmarks for LLMs

In recent years, large language models have been increasingly specialised to tackle the unique
challenges of the medical and biomedical domains. This field poses difficulties like complex, highly
technical vocabulary, strict demands for factual accuracy, and the need for explainable reasoning
that healthcare professionals can trust. General-purpose models like ChatGPT or BERT tend to
underperform in this space because they aren’t trained on domain-specific data. To improve their
usefulness in medical applications, researchers have been pre-training and fine-tuning LLMs on
biomedical texts. This improves their ability to handle medical NLP tasks more effectively.

A variety of models have been developed to meet these needs.
BioBERT was one of the first domain-specific adaptations of BERT for biomedical text. It was
created by further pre-training BERT on large-scale biomedical corpora like PubMed abstracts
and PMC articles [16]. BioBERT significantly outperformed vanilla BERT on biomedical NLP
benchmarks.
PubMedBERT improved on BioBERT by being trained from scratch using only biomedical data
from PubMed. This approach avoids the noise from general-domain pre-training and leads to even
better performance across various biomedical tasks [17].
BioGPT is another example of a domain-specific model, developed by Microsoft. It’s based on
GPT-2 and pre-trained entirely on PubMed abstracts. BioGPT achieved state-of-the-art perfor-
mance on several biomedical benchmarks, including the highest score on the PubMedQA dataset
at the time of release [13, 18].
Med-PaLM 2 is a more recent and ambitious effort by Google. It’s built on a general-purpose
LLM and then instruction-tuned and fine-tuned using medical exam-style datasets. Med-PaLM
2 demonstrated performance comparable to that of actual medical professionals, scoring highly
on USMLE-style questions[19]. It currently holds the second-highest accuracy on the PubMedQA
benchmark.
All these models show how adapting LLMs to the medical domain using pre-training or fine-tuning
techniques on the right data can improve their accuracy and reliability for tasks like question
answering, document classification, and medical reasoning.

2.2.2 Medical datasets and benchmarks

A big aspect of pre-training and fine-tuning large language models (LLMs) in the medical domain
is the quality and relevance of the datasets. These datasets need to be both accurate and pre-
cise to significantly improve the model’s performance in healthcare applications. Choosing the
right dataset is one of the most important steps in developing or adapting an LLM for medical tasks.

One of the most widely used sources of biomedical literature is PubMed and PubMed Cen-
tral (PMC). These repositories contain millions of abstracts, citations, and full-text articles from
biomedical journals. They have been used extensively to pre-train models such as BioBERT [16],
PubMedBERT [17], and BioGPT [13]. The depth and breadth of biomedical language in these
datasets make them ideal for domain-specific language representation learning.
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Another key dataset is MIMIC-III (Medical Information Mart for Intensive Care), which con-
sists of de-identified clinical notes and electronic health record data from over 38,000 adult ICU
patients and 49,000 hospital admissions [20]. This dataset includes time-stamped lab results, diag-
noses, medications, and free-text notes from healthcare providers. Models such as ClinicalBERT
[21] and GatorTron [22] have leveraged MIMIC to enhance their ability to understand clinical
narratives and decision-making processes.

To evaluate the performance of medical LLMs, specialised benchmarks have been developed
to test their medical knowledge and reasoning. One such benchmark is PubMedQA, which consists
of biomedical research article abstracts along with yes/no/maybe questions derived from the content.
It evaluates the model’s ability to perform natural language inference and summarise scientific
information [18].

Another widely used benchmark is MedQA, which mimics real-world clinical reasoning by presenting
multiple-choice questions based on medical licensing exams. It challenges LLMs to apply domain
knowledge and make complex inferences similar to human practitioners [23].

These datasets and benchmarks are essential for both training and evaluating medical LLMs,
ensuring that they are not only linguistically fluent but also accurate, trustworthy, and capable of
reasoning about medical content.
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3 Methodology
To be able to answer the research questions the following steps need to be taken. First, a dataset ise
collected that contains medical dialogues between medical professionals and patients from a publicly
available source. The LLM will be fine-tuned with preprocessed data and relevant information. To
test the performance of the fine-tuned model, a benchmark is conducted between the base model
and the fine-tuned model to be able to compare the results and see if there are any improvements.

3.1 NoteChat
To improve a MDS we use the NoteChat dataset. This is a large scale synthetic dataset set of patient-
physician conversations. Developed and introduced in the paper by Wang et al. [24], NoteChat
uses a cooperative multi-agent framework of Large Language models. The agents are role-specific
where one is a doctor agent and the other a patient agent. These agents are engaged in a structured
dialogue guided by actual clinical notes. The framework consists of three stages: planning, role-play
and polish, to ensure factual consistency and natural language flow. The resulting dataset contains
high-quality, multi-turn dialogues. NoteChat mitigates privacy concerns by generating synthetic
conversations from publicly available, HIPAA-compliant clinical note corpora. The dataset includes
over 200,000 dialogues, making it one of the most comprehensive resources for fine-tuning a LLM
on medical conversations.
The dataset is publicly available from their Hugging Face Hub profile. 1

3.1.1 Preparing the data

The note chat dataset includes more than enough data for a LLM to fine-tune on, even so much
that only a subset of the whole dataset is used as training data. The training dataset consists of
850 conversations between a doctor and a patient. To validate the training process a validation set
is also needed, for this a subset of 50 conversations are taken where no overlap between training
and validation set takes place.

At last, two different test datasets are made where one contains the same sort of data like the train-
ing and validation set but without any overlap. Another test subset, referred to as test diagnose,
is produced to focus specifically on conversations involving diagnostic conclusions. For a dialogue
to be included in this set, it is required that at least one sentence explicitly includes the phrase
”diagnosis is” in a doctor’s response. This targeted selection allows for a more focused evaluation of
the model’s diagnostic capabilities.

To convert the raw NoteChat dataset into a format suitable for fine-tuning a Large Language
Model, a preprocessing pipeline is implemented. Each dialogue is parsed into a structured list of
messages, with assigned roles: system, user, and assistant. This follows the conventional chat format
used for instruction-tuned models. A standard system prompt is included at the beginning of each
conversation to provide a consistent contextual framing, emulating a medical assistant engaging in
clinical dialogue.

1https://huggingface.co/datasets/akemiH/NoteChat
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Figure 1: Example of two sentences in the processed dataset

After preprocessing, the conversations are tokenised into a format compatible with chat-based
models and converted into Hugging Face’s DatasetDict structure. The data sets are randomly
shuffled between the training, validation and test set (excluding the test diagnose set) using a fixed
random seed for reproducibility. Finally, the processed dataset is uploaded to the Hugging Face
Hub. 2

3.2 Fine-tuning
3.2.1 BioMistral

BioMistral is a specialised large language model based on the Mistral architecture, developed with
a focus on biomedical and clinical domains [25]. It has been further pre-trained on large-scale
biomedical corpora such as the PubMed Central Open Access subset. This extended pre-training
grants the model a foundational understanding of medical terminology, clinical scenarios, and
scientific discourse. Despite this, the creators of BioMistral emphasise that it is not safe for real-world
medical applications without additional fine-tuning and rigorous validation, particularly in high-
stakes environments. In this thesis, BioMistral serves as the base model due to its domain-specific
strengths, offering a more relevant starting point compared to general-purpose LLMs.

3.2.2 LoRA

To fine-tune BioMistral efficiently on the NoteChat dataset, Low-Rank Adaptation [15] (LoRA)
is used. As talked about in the related work section, LoRA is a parameter-efficient fine-tuning
method that allows adaptation of large models by introducing trainable rank-decomposed matrices
into specific parts of the model without updating the entire parameter set. In this case, only
select attention projection layers are adapted, significantly reducing memory requirements and
computational cost during training. This approach makes it feasible to fine-tune large-scale mod-
els like BioMistral even on limited hardware, while still achieving notable performance improvements.

In this setup, a rank r = 8 is selected for the LoRA adapters, balancing computational effi-
ciency and model performance. This choice is supported by the original LoRA paper [15], which
demonstrates that relatively low ranks (such as 8 or 4) can still yield strong results when fine-tuning
large models. Figure 2 provides a visual representation of how LoRA works: instead of updating the
full pre-trained weight matrix W , two smaller matrices A and B of dimension r are introduced to
model the update in a more efficient and modular way. This technique allows for efficient fine-tuning
while preserving the stability and knowledge of the base model.

2https://huggingface.co/datasets/Gustav098/NoteChat-processed
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Figure 2: LoRA mechanism: low-rank decomposition of weight updates. Source[15]

The integration of LoRA preserves the core capabilities of the original BioMistral model while
allowing it to specialise in the conversational structure and diagnostic context of the NoteChat
dataset. By selectively adapting components responsible for language understanding and response
generation, the model becomes more adept at handling multi-turn medical conversations. Further-
more, this method supports merging the LoRA adapters back into the base model, resulting in
a stand-alone version of the fine-tuned model suitable for inference without dependency on the
adaptation layers.

3.2.3 Training procedure

The fine-tuning process is carried out over two epochs using a conversational format where each
dialogue is formatted to resemble realistic patient-physician interactions. During training, the model
is periodically evaluated using a validation set, and early stopping is applied to avoid over-fitting.
A BLEU score is used to monitor the quality of generated responses, with a focus on how closely
the model could reproduce coherent and contextually appropriate replies. Special care is taken to
format input-output pairs using a consistent role-based structure (system, user, assistant), and
truncation is applied to maintain a manageable input length. Tokenization is handled using the
base tokenizer of BioMistral, with padding tokens ignored during loss calculation to focus learning
only on relevant output sequences.
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At the end of training, the LoRA-adapted model is saved both in its modular form and as a merged
stand-alone model. Furthermore, the model is then quantised from 16-bit floating point (FP16) to a
4-bit format (Q 4 K M), making it more efficient to deploy or further fine-tune in downstream tasks.
This is done using a publicly available tool from hugging face3. Despite the benefits of quantisation,
the size and complexity of the model still requires significant computational resources. For this
reason, all training and quantisation are performed on the ALICE high-performance computing
cluster, which provides the necessary GPU power to handle the fine-tuning of a model of this scale
efficiently.

3.3 Benchmarking
To evaluate the performance of the fine-tuned model, I conduct a benchmarking experiment. This
benchmark runs on three versions of the Mistral model: the original Mistral base model, the
Bio-Mistral model, and the fine-tuned Bio-Mistral model, which is further trained on the NoteChat
dataset. The goal of this setup is to compare the fine-tuned model’s capabilities against both
its base version (Bio-Mistral) and the original model (Mistral). This helps show how much the
fine-tuning process improves performance on clinical dialogue tasks.

The benchmark consists of four separate evaluations. These are based on two main factors: the pre-
diction type (either generating the next random doctor response or producing a diagnosis from the
doctors perspective), and the data condition (whether or not the clinical notes from the NoteChat
dataset are included in the conversation). The inclusion of these notes matters because, in some
versions of the benchmark, the doctor has access to the clinical notes embedded in the dialogue as
system messages. In others, the model must respond or give a diagnosis without access to these notes.

The different variants for the first factor are implemented using the regular test dataset and
the test diagnose dataset, as described in the dataset section (see Section 3.1.1). The second factor,
whether the clinical notes are included or excluded, is controlled by filtering out all system-role
messages from the conversations. Removing these messages results in dialogue-only inputs, where
the model must rely entirely on the patient-doctor interaction.

This setup allows us to test how dependent the model is on external clinical information, and
whether it can generate appropriate responses or diagnoses based solely on the dialogue, across the
three different model versions.

3https://huggingface.co/spaces/ggml-org/gguf-my-repo
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4 Experiments
4.1 Evaluating the benchmark
Each of the four benchmark variants was evaluated using two different approaches. This is done
to get an extended and more complete view of the model’s performance across the different test cases.

The first evaluation method used OpenAI’s GPT-4o model as a reference evaluator. In this
setup, GPT-4o was given both the LLM-generated response and the corresponding ground truth
from the dataset. It is then prompted to assess the generated response based on two main criteria.
The first one being Helpfulness, and the second one Answer Quality. A prompt for this part looks
like this:

Evaluation prompt example

You are a highly experienced medical evaluator AI. You are given a conversation between a
patient and a doctor, along with the real response from a doctor and the generated predicted
response. Your task is to evaluate the predicted response against the real one and assess the
overall medical quality of the response.

You must evaluate three aspects:
1. Helpfulness: Was the generated predicted response medically helpful and appropriate to
the patient’s concern?
2. Answer Quality: Considering the prior conversation, is the generated predicted response
well-reasoned, complete, and contextually appropriate?
Provide your judgment in JSON format with three fields:
- helpfulness (integer score from 0 to 5)
- answer quality (integer score from 0 to 5)
- Also include a short reason field explaining your scores. Be precise and clinical in your
evaluation.

Conversation: {conv}
Real response: {real}
Predicted response: {pred}

Evaluate the response based on the criteria outlined in the system prompt. Return
your judgment in JSON format with "helpfulness", "answer quality", and "reason".

Here {conv}, {real}, and {pred} are placeholders for the conversation up until the doctors response,
the real response of the doctor from the dataset, and the LLM created response based on the
conversation. These two criteria generated from this prompt help reflect whether the predicted
response is medically useful and appropriate to the patient’s concern, and how well-reasoned and
contextually appropriate it is. This also takes into account the previous turns in the dialogue,
meaning the model is judged not just on a single sentence but on how well it continues the overall
conversation.
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For the diagnosis-related benchmarks, an additional criterion is added: Diagnostic Accuracy. This
measures how close the predicted diagnosis is to the real one, based on the patient dialogue and
context. It captures whether the model was actually able to infer the correct clinical conclusion
when needed. A prompt for the diagnosis part looks like this:

Evaluation prompt example

You are a highly experienced medical evaluator AI. You are given a conversation between a
patient and a doctor, along with the real response from a doctor and the generated predicted
response. Your task is to evaluate the predicted response against the real one and assess the
overall medical quality of the response.

You must evaluate three aspects:
1. Diagnostic Accuracy: How correct is the predicted diagnosis compared to the real one?
2. Helpfulness: Was the generated predicted response medically helpful and appropriate to
the patient’s concern?
3. Answer Quality: Considering the prior conversation, is the generated predicted response
well-reasoned, complete, and contextually appropriate?
Provide your judgment in JSON format with three fields:
- diagnostic accuracy (integer score from 0 to 5)
- helpfulness (integer score from 0 to 5)
- answer quality (integer score from 0 to 5)
- Also include a short reason field explaining your scores. Be precise and clinical in your
evaluation.

Conversation: {conv}
Real response: {real}
Predicted response: {pred}

Evaluate the response based on the criteria outlined in the system prompt. Return your judg-
ment in JSON format with "diagnostic accuracy", "helpfulness", "answer quality",
and "reason".

Again {conv}, {real}, and {pred} are placeholders which work the same way as the original prompt.
Each of these three aspects was rated on a scale from 0 to 5. A score of 0 means the response was
completely off, irrelevant, or wrong. A 5 means the response was near-perfect—clinically accurate,
helpful, and contextually fitting. These ratings give a useful insight into how well the model performs
across different areas, and not just based on surface-level similarity.

The second evaluation method focuses more on the semantic and lexical similarity between the
model’s output and the ground truth. This was done using three well-known NLP metrics: BLEU,
ROUGE, and BERTScore.

• BLEU (Bilingual Evaluation Understudy)[26] checks how much overlap there is between the
words or short phrases (n-grams) in the generated sentence and the reference sentence. It’s
mostly used in translation tasks but still helpful here for checking basic similarity.
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The formula of BLEU is as follows:

BLEU = BP · exp
(

N∑
n=1

wn log pn

)

Where BP is the Brevity Penalty which is introduced to penalise short sentences which score
high because of many similar words, but do not carry the same essence as the reference
sentence. wn is the weight for n-gram precision commonly set to 1

N
which is also the case for

this experiment. pn is the precision for n-grams this measures the count of n-grams in the
candidate sentence compared tot the reference sentence.

• ROUGE (Recall-Oriented Understudy for Gisting Evaluation)[27] is more recall-focused. It
measures how much of the reference sentence is captured in the generated one.
In this thesis the ROUGE-L variant is used to evaluate the model. The formula for ROUGE-L
is as follows:

ROUGE-L = (1 + β2) · RLCS · PLCS

RLCS + β2 · PLCS

This formula may look complex, but in essence calculates how well a candidate sentence
matches a reference sentence by measuring the longest sequence of words they share in order.
The longer this common subsequence, the more similar the sentences and the higher the
ROUGE-L score are.

• BERTScore [28] uses contextual embeddings from a large language model to evaluate how
similar two sentences are in meaning, not just in wording. It’s a deeper way to check if the
generated sentence ”understands” the original, even if the wording is different.

Looking at the results from both evaluation methods puts the model performance into better
perspective. On one side, we get human-like ratings using GPT-4o, which judge medical helpfulness
and contextual quality. On the other side, we get a more technical look at how close the generated
response is to the ground truth in terms of language and meaning. This combination provides a
balanced and thorough way to evaluate the models.
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5 Results
5.1 Analyse of results
The results were conducted entirely in Python, and the three models were tested on two distinct test
datasets, each containing 100 entries, both with and without clinical context included, resulting in
400 responses per model, and a total of 1,200 evaluated responses. Examples of a model response and
the evaluation prompt are shown in Figure 3, 4, 5, 6, and 7. The three models used for benchmarking
were Mistral, Biomistral, and the fine-tuned Biomistral on NoteChat data. Here, Mistral serves
as a baseline for the Biomistral model, while Biomistral functions as a baseline for its fine-tuned
variant. This setup provides a structured comparison to observe the isolated effects of pre-training on
biomedical data and subsequent fine-tuning in a dialogue-specific setting between patient and doctor.

All experiments with the LLMs were conducted using a fixed temperature setting of 0.3. This value
encourages slightly more diverse and creative responses while maintaining a level of consistency
across models. Using the same temperature for each experiment ensures comparability and reduces
variability in output due to sampling randomness.

5.1.1 Humanlike evaluation

Metric Mistral BioMistral Fine-tuned BioMistral
With clinical data
Helpfulness 3.122 ± 1.237 3.143 ± 1.210 3.673 ± 0.859
Answer Quality 3.122 ± 1.237 3.112 ± 1.209 3.643 ± 0.876
Without clinical data
Helpfulness 2.724 ± 1.138 2.878 ± 1.077 2.980 ± 1.157
Answer Quality 2.704 ± 1.142 2.827 ± 1.075 2.959 ± 1.157

Table 1: Human-like evaluation results generated by GPT-4o for responses from different models on
the normal test dataset. Scores range from 0 to 5 and are reported as mean ± standard deviation.

Table 1 shows the performance of the three evaluated models, Mistral, BioMistral, and fine-tuned
BioMistral, on the normal test dataset with a distinction between the the presence and absence of
clinical data. Each model was assessed on 100 entries, and the scores reflect human-like evaluations
generated by GPT-4o.

When clinical data is included the three models all demonstrates a higher mean scores across the
two metrics compared to when the clinical data is not included. The fine-tuned BioMistral achieves
the highest mean scores in both helpfulness and answer quality with and without clinical data.
The standard deviation is also lower when clinical data is included, suggesting a more consistent
response compared to the other two models. At the other hand, the Mistral model shows lower
mean scores in the two metrics, particularly in the absence of clinical data.
Table 2 shows the performance of the three evaluated models on the test diagnose test dataset
with a distinction between the the presence and absence of clinical data. Each model was assessed
on 100 entries, and the scores reflect human-like evaluations generated by GPT-4o.
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Metric Mistral BioMistral Fine-tuned BioMistral
With clinical data
Diagnostic Accuracy 3.480 ± 1.761 3.550 ± 1.877 4.050 ± 1.344
Helpfulness 3.260 ± 1.461 3.420 ± 1.519 3.700 ± 1.202
Answer Quality 3.250 ± 1.403 3.380 ± 1.509 3.620 ± 1.187
Without clinical data
Diagnostic Accuracy 1.810 ± 1.549 2.490 ± 1.403 2.320 ± 1.377
Helpfulness 2.110 ± 1.171 2.800 ± 1.092 2.560 ± 1.057
Answer Quality 2.130 ± 1.116 2.700 ± 1.068 2.510 ± 1.020

Table 2: Human-like evaluation results generated by GPT-4o for responses from different models
on the test diagnose test dataset. Scores range from 0 to 5 and are reported as mean ± standard
deviation.

When clinical data is included, all three models again achieve noticeably higher scores across all
metrics, diagnostic accuracy, helpfulness, and answer quality, compared to the condition without
clinical information. The fine-tuned BioMistral model consistently achieves the highest mean scores
in all three metrics under the clinical condition, with a lower standard deviation, indicating greater
consistency in its outputs. In the absence of clinical data, BioMistral slightly outperforms the
fine-tuned version on diagnostic accuracy, though the margin is narrow.

5.1.2 Sementic similarity

Metric Mistral BioMistral Fine-tuned BioMistral
With clinical data
BERTScore F1 0.8957 ± 0.0502 0.8767 ± 0.0393 0.9093 ± 0.0455
ROUGE-L 0.3429 ± 0.2864 0.2292 ± 0.2211 0.4303 ± 0.2666
BLEU 0.2278 ± 0.2538 0.1296 ± 0.1589 0.2802 ± 0.2681
Without clinical data
BERTScore F1 0.8720 ± 0.0394 0.8691 ± 0.0377 0.8826 ± 0.0390
ROUGE-L 0.2252 ± 0.1644 0.2024 ± 0.1595 0.2669 ± 0.2034
BLEU 0.1119 ± 0.1114 0.1094 ± 0.1178 0.1616 ± 0.1748

Table 3: Semantic based evaluation results from different models on the normal test dataset. Scores
range from 0 to 1 and are reported as mean ± standard deviation.

Table 3 shows the results of the semantic-based evaluation of model responses on the normal test
dataset. For all three metric, the fine-tuned BioMistral model achieves the highest mean score,
both with and without clinical data. It shows the most improvements in ROUGE-L and BLEU
while the BERTScore F1 is for every model high. Inclusion of clinical data results in a higher score
for every model but it is most noticeable in for the BLEU and ROUGE-L metric. The Mistral
and BioMistral models show a larger drop in performance when clinical information is excluded,
whereas the fine-tuned BioMistral maintains a more stable performance, reflecting a higher degree
of robustness.
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Metric Mistral BioMistral Fine-tuned BioMistral
With clinical data
BERTScore F1 0.8896 ± 0.0497 0.8951 ± 0.0553 0.9042 ± 0.0512
ROUGE-L 0.3342 ± 0.2575 0.3620 ± 0.2943 0.3930 ± 0.2742
BLEU 0.2042 ± 0.2302 0.2416 ± 0.2716 0.2511 ± 0.2480
Without clinical data
BERTScore F1 0.8573 ± 0.0293 0.8686 ± 0.0307 0.8679 ± 0.0296
ROUGE-L 0.1679 ± 0.1352 0.2039 ± 0.1421 0.2085 ± 0.1306
BLEU 0.0671 ± 0.0700 0.0838 ± 0.0826 0.0848 ± 0.0829

Table 4: Semantic based evaluation results from different models on the test diagnose dataset.
Scores range from 0 to 1 and are reported as mean ± standard deviation.

Table 4 shows the results of the semantic-based evaluation of model responses on the test diagnose
dataset. Again BioMistral Fine-tuned model achieves the highest scores on all the three semantic
based metrics. This time there is a narrow difference between the BLUE score of BioMistral and
the fine-tuned BioMistral. There is however the same noticeable difference between the results with
clinical data and without, showing an almost double the score for ROUGE-L Fine-tuned BioMistral
with clinical data.

5.2 Case study of the results
In addition to the quantitative and semantic evaluations, I manually reviewed a subset of model out-
puts to assess the qualitative differences between Mistral, BioMistral, and the fine-tuned BioMistral.
By creating a consistent sample of responses across the three models, a side-by-side comparison was
possible, providing clearer insight into how each model approaches medical dialogue. Five examples
of this are shown in the appendix in figure 3, 4, 5, 6, 7.

This manual inspection helped me see that the fine-tuned version consistently produced responses
that felt more natural and human-like. The output from the model is generally easier to understand
because it often avoids the use of technical detail that the base Mistral and BioMistral models do
include. This distinction is important in the clinical dialogue system as clarity and accessibility are
essential for patient comprehension. Medical advice must be understandable for people with varying
levels of health literacy, and the fine-tuned model appeared to be better adapted to this requirement.

The fine-tuned responses were also more concise. Rather than overwhelming the user with lengthy
or overly detailed explanations, the model focused on delivering key information in a compact
format. This not only improves readability but also makes the conversation more efficient. Despite
the difference in content length, the three models all maintained a similar tone which was formal
and friendly.
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6 Discussion
6.1 Analyse of results
The results from the experiments showed that fine-tuning BioMistral on doctor-patient dialogue
data improves performance across all benchmarks. Even without fine-tuning, the BioMistral model
outperforms the general-purpose Mistral model, highlighting the value of biomedical pre-training.
The fine-tuned BioMistral delivers the best overall performance, especially in helpfulness, answer
quality, and diagnostic accuracy. This trend is also reflected in the semantic similarity metrics,
where the fine-tuned model produces responses that are more aligned in both meaning and literal
semantics with the expected outputs.

Providing clinical data to the LLM significantly boosts its performance. When the model has
access to clinical context, its responses become more accurate, helpful, and consistent. This makes
sense, as clinical data is often the foundation of the conversation. Giving the model access to this
information is like what happens in real-world scenarios: doctors typically have access to a patient’s
medical history or background information during a consultation.

The fine-tuned model performs well across all tests except one: the test diagnose dataset without
clinical data. In this scenario, the fine-tuned model performs slightly worse than the BioMistral.
One possible explanation is that the fine-tuned model was trained with access to clinical data,
making it more reliant on that context. As a result, it struggles to infer diagnoses using only the
conversation, without structured medical input. This suggests that for accurate diagnosis it needs
more than just dialogue such as contextual data, just like in real medical settings.

The results show that domain-specific fine-tuning increases the performance of model in clini-
cal dialogue tasks but is it not enough to achieve optimal results. Fine-tuning on task-specific data
like doctor-patient conversations is essential for generating more relevant and coherent responses.
At the same time, pre-training on biomedical data still plays a critical role in preparing the model
for these types of tasks.

6.2 Limitations and challenges
The first limitation is that the evaluation in this thesis was performed using GPT-4o, not by a real
human expert like a clinician or a general medical professional. Because of this, the results may not
fully match clinical standards. Having a human in the evaluation loop would give a much better
sense of how the model performs in an actual medical setting.

Another limitation is that all the training and test data used were synthetic, generated by another
LLM. The test data were split across two different methods and tried to simulate realistic doctor-
patient conversations, they still do not capture the full complexity and unpredictability you would
find in real clinical interactions. Real conversations with doctors often include ambiguous phrasing,
irrelevant details, or unexpected turns which synthetic data just does not capture well. This lack of
realism can negatively affect the model’s ability to handle real-world patient interactions. Using
real clinical dialogue data would make the model more robust and realistic in its responses.
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The models used in both the benchmarking and fine-tuning were quantised, meaning they’re
smaller, compressed versions of the original full models. While this reduces computational load and
makes it possible to run on limited hardware, it also reduces the number of parameters and, in turn,
the model’s ability to produce high-quality responses. Fine-tuning still improves these models, but
the ceiling is lower compared to full-size models. Plus, since the fine-tuning was done while the mod-
els were quantised, this double-limits how much the model can improve. It was a necessary trade-off
due to hardware constraints even on the ALICE supercomputer, but it still remains a limiting factor.

The data used for fine-tuning play a massive role in how well the model performs. During the
experiments, it became clear that the formatting of the data is critical. Using the wrong format led
to a completely unusable model that could not generate anything sensible. Even the final working
version was not trained on perfect data. It was fine-tuned using just one dataset: NoteChat. While
that dataset improved its ability in clinical dialogue setting, as shown in the results, it is limited
in scope. Adding more diverse datasets could help the model generalise better and perform more
reliably in various medical dialogue settings.

An earlier attempt was made to fine-tune BioMistral using the MIMIC dataset [20], but due
to the sheer volume and the nature of the clinical notes, the resulting model couldn’t produce
coherent outputs. This again highlights how important it is to have clean, well-formatted, and
diverse data when fine-tuning LLMs for specialised tasks.
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7 Conclusions and future work
This thesis explored how fine-tuning large language models can improve the accuracy of diagnoses,
medical recommendations, and overall performance in a text-based medical dialogue system. This
was done by fine-tuning the BioMistral model and benchmarking it against both its own base version
(BioMistral pre-trained only) and the general-purpose Mistral model. The fine-tuning was done
using LoRA, a low-resource method that still manages to achieve strong results. The experiments
showed that fine-tuning BioMistral using medical dialogue data (NoteChat) improved the model’s
performance in terms of helpfulness, answer quality, and diagnostic accuracy.

1. How does fine-tuning impact the performance of LLMs in medical dialogue tasks compared
to their base versions?

Fine-tuning has a big positive impact. While the base BioMistral already performs better than
general-purpose models thanks to its biomedical pre-training, the fine-tuned version goes even
further. It generates more aligned, context-aware, and helpful responses. It also scores higher
on semantic similarity and diagnostic accuracy. This proves that while pre-training on medical
data helps, domain-specific fine-tuning takes it even further. However, one exception was the
diagnosis task without access to clinical data, where the pre-trained model slightly outperformed
the fine-tuned one. This suggests that the fine-tuned model learned to rely on clinical data, and
without it, performance can drop.

2. What are the key challenges and limitations of fine-tuning LLMs for medical applications,
and how can they be addressed?

The process comes with a few challenges and limitations. First, the evaluation in this thesis was done
using GPT-4o and my own personal view, so the results might not fully reflect clinical standards
as this evaluation is not done by a professional. Second, the data used for training and testing
were synthetic, generated by another LLM. While this makes experimentation easier, it does not
reflect the complexity of real-world medical conversations. Using real patient-doctor dialogues would
give better results. Third, the models were quantised versions, which limited their capacity and
answer quality. Fine-tuning full-size models would likely lead to better performance but needs more
resources. Lastly, data formatting turned out to be crucial. Badly formatted data made the model
completely unusable, and even the final version was trained on a single dataset (NoteChat). Adding
more diverse datasets and ensuring proper formatting would help future models perform better.

Future research could be done on the full-sized versions of BioMistral and Mistral to test if
fine-tuning has the same or even greater effect when the model is not quantised. In addition,
fine-tuning on real patient conversations or combining multiple datasets could give deeper insight
and boost performance in medical dialogue settings even more.
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A Appendix

Figure 3: An example prompt with the response for each model and the evaluation by GPT-4o
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Figure 4: An example prompt with the response for each model and the evaluation by GPT-4o
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Figure 5: An example prompt with the response for each model and the evaluation by GPT-4o
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Figure 6: An example prompt with the response for each model and the evaluation by GPT-4o
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Figure 7: An example prompt with the response for each model and the evaluation by GPT-4o
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