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Abstract

This thesis studies the use of large language models (LLMs) for causal effect iden-
tification, through finding canonical adjustment sets in directed acyclic graphs (DAGs).
We evaluate a range of prompting strategies, from simple prompts to instruction-based,
chain-of-thought, and a multi-step decomposition approach. Two models are compared:
GPT-4o mini which is a general-purpose LLM, and DeepSeek Reasoner, a reasoning
model. Results show that prompt design plays a central role in model performance,
where structured prompts consistently outperform simple prompts, with the multi-step
decomposition approach achieving the best overall F1 score and accuracy. In particular,
for 8-node DAGs, the multi-step decomposition approach achieves an F1 score of 0.90
and an exact match of 83%, whereas the best-performing baseline prompt attains an
F1 score of 0.67 and an exact match of 53%.
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1 Introduction

Causality as a concept expresses the relation or a process linking two or more distinct events,
that consists of one event bringing about the other. Ordinary language contains many expres-
sions denoting causation such as: x makes y happen, x induces y, etc.
Causality lies at the heart of scientific understanding. Ranging from Physics to Economics to
now Machine Learning, the ability to answer not just ’what is’ but ’why’ and ’what would
happen if’ is a defining trait of causality and reasoning. Causality allows us to differentiate
between correlation and influence, to be able to reason about interventions, and to make sense
of the underlying structure of complex systems.

Real-World Relevance. In public health we can ask: “Does smoking cause lung cancer?”
In economics we can ask: “What is the effect of a new tax policy on employment?” In cli-
mate science: “If CO2 emissions are reduced, will global temperatures decrease?” These are
all examples of fundamentally causal questions. Answering them requires more than just sta-
tistical associations; it requires a formal model that captures dependencies and counterfactual
reasoning.

Causality as a whole has two interlinked tasks: causal discovery and causal inference. Causal
discovery involves learning the structure of a system — which is usually represented in the
form of a graph from observational data. It aims to identify which variables influence the other.
Causal inference on the other hand, focuses on estimating the effect of interventions (such
as treatments or policies), assuming that a valid causal graph is known or partially known.
Both are equally important to causality: without discovery, we would not know which paths to
consider and without inference, we would not be able to predict the consequences of actions.

Structural Causal Models and Causal Reasoning. Seminal work by Judea Pearl [Pearl,
2009b] and others has established Structural Causal Models (SCMs) as a standard framework
for causal inference, building on earlier foundations such as Sewall Wright’s path diagrams
[Wright, 1921] and structural equation models [Jöreskog, 1973]. SCMs provide a systematic
way to represent and reason about cause-and-effect relationships: variables are represented
as nodes, and causal dependencies as directed edges. This thesis adopts this framework to
analyze causal relationships, enabling formal reasoning through tools such as d-separation and
do-calculus.
A key concept in structural causal models is the valid adjustment set, a set of variables that,
when conditioned on, blocks all non-causal (backdoor) paths between a treatment and an
outcome without blocking the causal path itself. Identifying such a set enables an unbiased
estimation of the causal effect from observational data, as formalized in Pearl’s backdoor
criterion [Pearl, 2009b, Peters et al., 2017]. In practice, determining a valid adjustment set
requires reasoning about the causal structure and applying concepts such as d-separation
(explained later in the thesis).

Large Language Models. Large language models (LLMs) such as GPT [Achiam et al., 2023]
and LLaMA [Touvron et al., 2023] have shown impressive performance across a wide range of
reasoning tasks—including mathematics, logical reasoning, and scientific explanation. These
models are trained on massive data and can parse complex instructions, generate structured
text, and exhibit chain-of-thought reasoning. Their zero-shot capabilities make them one of
the best tools for simulating causal effect identification. Popular examples of LLM reasoning
include:
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• Chain-of-Thought Prompting [Wei et al., 2022], which significantly improved perfor-
mance on arithmetic and symbolic reasoning benchmarks like GSM8K via step-by-step
reasoning prompts.

• Zero-Shot Chain-of-Thought [Kojima et al., 2022], showing how simple prompts like
“Let’s think step by step” boost zero-shot reasoning on math and logic datasets (e.g.,
GSM8K, MultiArith, AQUA-RAT).

• The Pathways Language Model (PaLM) [Chowdhery et al., 2022], a 540B-parameter
model by Google, demonstrated strong performance on multi-step reasoning tasks when
paired with chain-of-thought prompting.

• AlphaGeometry [Trivedi et al., 2024] is a neuro-symbolic system from DeepMind com-
bining LLMs with symbolic engines, solved 25 out of 30 IMO geometry problems, nearly
matching gold-medalist performance.

• OpenAI’s o3 series (2024-2025), with “private chain-of-thought,” achieved much stronger
reasoning performance on benchmarks like GPQA Diamond, ARC-AGI, and Codeforces
compared to prior models. These are a series of models and a technical report for them
is available [OpenAI, 2023].

• DeepSeekMath-7B [DeepSeek-AI, 2024], an open model trained with extensive math
data, reached GPT-4-level performance on the MATH benchmark using self-consistency
techniques.

Can LLMs perform causal reasoning? LLMs demonstrated strong performance in general
reasoning and linguistic tasks, but their capabilities in structured causal tasks, such as iden-
tifying valid adjustment sets or reasoning over DAGs, have been underexplored. The CLadder
benchmark introduced by [Jin et al., 2023] provided one of the first systematic evaluations
of LLMs on formal causal inference tasks, by converting causal graphs and queries (including
associational, interventional, and counterfactual questions) into natural language and testing
performance using a chain-of-thought prompting variant called CausalCoT. This benchmark
was found to be highly challenging for state-of-the-art models. Similarly, [Zhou et al., 2024] de-
veloped CausalBench, which assessed LLMs on tasks of increasing complexity such as skeleton
identification and cause-effect reasoning. This study observed that LLMs struggled especially
on larger-scale networks with collider structures.
Other recent evaluations reinforced these findings. [Chen et al., 2024] proposed the CaLM
framework which is a large-scale benchmark including causal targets, adaptation strategies,
and error analysis. This study showed that even high-capacity LLMs consistently failed in
intervention and counterfactual reasoning tasks over hundreds of thousands of examples. These
studies collectively showed that while LLMs can provide plausible responses through pattern
matching, they lacked robust causal reasoning.

This thesis studies the potential and limitations of LLMs in causal inference. Specifically, we
evaluate whether language models can understand and apply formal causal concepts such as
backdoor paths, adjustment sets, and d-separation. In particular, whether they can identify
valid adjustment sets for estimating causal effects, using chain-of-thought (CoT) reasoning
strategies as suggested in prior work on causal reasoning with LLMs [Jin et al., 2023, Zhou
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et al., 2024]. And finally, whether their performance is improved if the prompt is split into
multiple steps.

Thesis Structure. The remainder of this thesis is organized as follows. The Preliminaries
section reviews the necessary background on causal inference, graphical models, and prompting
strategies for large-language models. The Methodology section details the setup, including
the generation of synthetic DAGs, the computation of ground-truth adjustment sets, and the
prompting strategies used. The Experiments & Results section presents the experimental setup
and evaluation results, comparing LLM outputs to the ground truth and analyzing reasoning
as well as prompt quality. The Limitations & Future work section lists the limitations of this
study and outlines future research directions, and finally the Conclusion section summarizes
key findings to conclude the thesis.
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2 Preliminaries

This section provides the foundational concepts required to understand the experiments and
analyses carried out in this thesis. Starting with an overview of causality, followed by a dis-
cussion of Directed Acyclic Graphs (DAGs), which are important for the representation and
reasoning tasks in causal inference and discovery.

2.1 Frameworks for Causality

Traditional statistical methods focus mainly on analyzing associations within observational
data by estimating parameters of a probability distribution. These analyses are limited to
observation. Causal inference on the other hand aims to measure the effect of interventions,
asking not just “What is?”, but “What if?”
Two widely recognized frameworks for causal inference are:

• Structural Causal Models (SCMs) [Pearl, 2009b], which provide a formal mathemat-
ical framework for representing and reasoning about cause-effect relationships. SCMs
combine a set of structural equations with a corresponding causal graph, where nodes
represent variables and edges denote causal influences. This framework enables the for-
mulation of causal queries using the do-calculus and the identification of causal effects
via graphical criteria such as d-separation and the backdoor criterion [Pearl, 2009b,
Peters et al., 2017].

• Potential Outcomes Framework [Rubin, 1974, Imbens and Rubin, 2015], which for-
malizes causal effects by comparing potential outcomes under different interventions.
In this framework, each unit has a set of potential outcomes—one for each possible
treatment condition—and the causal effect is defined as the comparison between these
outcomes. The framework provides several statistical approaches to causal inference,
such as randomized controlled trials and matching methods.

2.2 Graphical Definitions in Causal Models

A Directed Acyclic Graph (DAG) is a graph G = (V,E), where V is the set of vertices
(variables) and E is the set of directed edges, such that there are no directed cycles. In
causal modeling, each node represents a variable, and an edge X → Y denotes that X is a
direct cause of Y . DAGs encode assumptions about conditional independence via the Markov
property : each variable is independent of its non-descendants, given its parents. This property
allows conditional independence relationships to be read from the graph using the notion of
d-separation [Pearl, 1988].

Blocking and d-separation. A path between two variables X and Y is said to be blocked
by a conditioning set Z if at least one of the following holds:

• The path contains a chain A→ B → C or a fork A← B → C where B ∈ Z.

• The path contains a collider A→ B ← C where neither B nor any descendant of B is
in Z.

If all paths between X and Y are blocked by Z, we say X and Y are d-separated by Z. d-
separation provides a formal link between graphical structure and probabilistic independence.
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Treatment and outcome. In causal inference, the treatment variable X is the variable
whose effect we aim to estimate, and the outcome variable Y is the variable potentially
influenced by X. The choice of treatment and outcome depends fully on the research question
and must be clearly defined before analysis.

Backdoor and causal paths. A backdoor path from a treatment variable X to an out-
come variable Y is any path that begins with an arrow into X [Pearl, 1994]. Such paths repre-
sent potential confounding and must be blocked to avoid bias. For example, in X ← Z → Y ,
the variable Z is a common cause that opens a backdoor path unless conditioned upon. A
causal path, in contrast, is a path from X to Y where all edges are oriented away from X
toward Y , representing the direct mechanism of causal influence.

Conditional independence. Two variablesX and Y are said to be conditionally indepen-
dent given a set of variables Z, denoted X ⊥⊥ Y | Z, if the joint distribution factorizes such
that knowledge of Y does not provide any additional information about X once Z is known
[Dawid, 1979]. In graphical models, conditional independence corresponds to d-separation.

Figure 1: A graphical model illustrating the back-door criterion [Pearl, 2009a]

As per Pearl’s overview on causal inference [Pearl, 2009a], in an observational study, our goal is
to estimate the causal effect of a treatment X on a response Y . The factors that influence this
relationship can include both measurable variables (such as age, gender) and unmeasurable
ones (like genetic traits, lifestyle). The challenge is to identify a subset of these factors to
adjust for, so that comparing treated and untreated individuals with the same values of the
selected factors yields the correct causal effect. Such a subset is called a “sufficient set” for
adjustment.
Based on the back-door criterion (Figure 1) [Pearl, 2009a], we see, for example, that the sets
{Z1, Z2, Z3}, {Z1, Z3}, and {W2, Z3} are each sufficient for adjustment, as they block all
back-door paths between X and Y . The set {Z3}, however, is not sufficient, since it fails to
block the path X ← W1 ← Z1 → Z3 ← Z2 → W2 → Y . The implication of identifying a
sufficient set S is that stratifying on S removes all confounding bias, making the causal effect
of X on Y identifiable.

Causal Effect and Interventions. The causal effect of X on Y measures the change in
Y ’s distribution that would occur under an intervention setting X to a specific value. Pearl’s
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do-operator [Pearl, 2009b] formalizes this as follows: Under the structural causal model (SCM)
framework, an intervention do(X = x) replaces the structural equation for X with X := x
and removes all incoming edges to X in the DAG.

2.3 Do-Calculus

Do-calculus, introduced by Pearl [Pearl, 1994, 2009b], provides a formal system of inference
rules for transforming an expression involving interventions, such as P (y | do(x)), equivalent
expressions involving only observational conditional distributions. The three rules of do-calculus
establish conditions under which intervention operators can be replaced or removed, making it
possible to reduce causal queries into terms that can be estimated from data. The three rules
are as follows:

• Insertion/deletion of observations:

P (y | do(x), z, w) = P (y | do(x), w) if (Y ⊥ Z | X,W )GX

This rule allows conditional variables to be added or removed if they are d-separated in
the graph where incoming edges into X are removed (GX).

• Action/observation exchange:

P (y | do(x), do(z), w) = P (y | do(x), z, w) if (Y ⊥ Z | X,W )GX,Z

This rule allows replacing an intervention with an observation when the d-separation
holds in the modified graph where edges into X are removed and edges out of Z are
deleted.

• Insertion/deletion of actions:

P (y | do(x), do(z), w) = P (y | do(x), w) if (Y ⊥ Z | X,W )G
X,Z(W )

This rule allows adding or removing interventions if the d-separation holds in the graph
where incoming edges into X and into Z (excluding those that are ancestors of W ) are
removed.

2.3.1 Identification (ID) Algorithm

Building on do-calculus, the Identification (ID) algorithm was developed to provide a systematic
procedure to determine whether a causal effect is identifiable from observational data given a
causal graph [Shpitser and Pearl, 2006]. The algorithm takes as input a causal query (e.g., P (y |
do(x))) and a graph, and outputs either an expression for the effect in terms of observational
quantities or a statement that the effect is not identifiable. However, the output of the ID
algorithm is not necessarily unique, as multiple expressions can identify the same causal effect.
For this reason, this study focuses on adjustment set–based identification, which yields a unique
expression for the causal effect and is better suited for evaluating prompting strategies with
LLMs.
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2.4 The pcalg Package

The pcalg package in R [Kalisch et al., 2012] provides implementations of several well-known
algorithms to learn causal structures and for causal effect estimation from observational data.
Its core methods include the Peter–Clark (PC) algorithm [Spirtes et al., 2000], the Fast Causal
Inference (FCI) algorithm and its computationally efficient variant, the Really Fast Causal
Inference (RFCI) algorithm [Spirtes et al., 1999, 2000, Colombo et al., 2012], as well as
identifying valid adjustment sets.
The PC algorithm (named after its inventors Peter Spirtes and Clark Glymour) is a constraint-
based method that uses conditional independence tests to determine the structure of the
given causal graph. It starts with a fully connected undirected graph and incrementally re-
moves edges when conditional independencies are detected. The resulting structure represents
a Markov equivalence class of directed acyclic graphs (DAGs) that are in line with the observed
independencies.
One of the main functions in causal effect estimation with pcalg is the identification of
adjustment sets, which are subsets of variables that, when conditioned upon, block all non-
causal paths between a treatment and an outcome. Such sets are important because they
enable an unbiased estimation of causal effects from the given observational data.

2.5 Adjustment Sets

An adjustment set is a set of variables Z that, when conditioned on, blocks all backdoor paths
from a treatment variable X to an outcome variable Y without introducing bias through
conditioning on the descendants of X. The backdoor criterion [Pearl, 1994] states that Z is a
valid adjustment set if:

• No element of Z is a descendant of X.

• Z blocks all backdoor paths between X and Y .

Given a valid Z, the causal effect of X on Y can be computed via:

P (Y | do(X)) =
∑
z

P (Y | X, z)P (z).

In practice, adjustment sets can be computed in pcalg using the adjustment() function.
The main inputs to this function are a directed acyclic graph (DAG), usually represented by
an igraph or adjacency matrix, together with user-specific treatment and outcome variables.
Given these inputs, adjustment() returns one or more sets of variables that satisfy the
backdoor criterion and allow for unbiased estimation of the causal effect of the treatment
on the outcome. The output depends on the parameter set.type, which can be set to
”all”, ”minimal”, or ”canonical”. These are essentially three variants of adjustment sets. If
set.type is ”all”, the output contains all valid adjustment sets that satisfy the backdoor
criterion. If set.type is ”minimal”, only minimal sufficient adjustment sets are returned; these
are valid sets for which no proper subset is also valid. Finally, if set.type is ”canonical”, a
single adjustment set is produced consisting of all (possible) ancestors of X and Y , excluding
(possible) descendants of nodes on proper causal (the exact definition is given in the following).
This canonical set is guaranteed to be valid if any valid adjustment set exists.
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Canonical Adjustment Set: Definition

As per pcalg package [Kalisch et al., 2012] if set.type is ”canonical”, a single adjustment set
is returned that consists of all (possible) ancestors of x and y, minus (possible) descendants
of nodes on proper causal paths. This canonical adjustment set is always valid if any valid set
exists at all.
The definition used for the canonical adjustment set is consistent with the implementation in
the pcalg package [Kalisch et al., 2012]. Given a DAG G, treatment variable X, and outcome
variable Y , the canonical adjustment set Zcan is defined as:

Zcan = An(Y ) \ (De(X) ∪ Forb(X, Y )),

where:

• An(Y ) denotes the set of ancestors of Y (excluding Y itself),

• De(X) denotes the set of descendants of X (including latent variables),

• Forb(X, Y ) is the set of all descendants of nodes that lie in both An(Y ) and De(X).

Computation Procedure

The canonical adjustment set is computed following the procedure described in the pcalg R
package [Kalisch et al., 2012]:

1. Identify all descendants of the treatment node X, denoted De(X).

2. Identify all ancestors of the outcome node Y , excluding X, denoted An(Y ).

3. Determine the set Forb(X, Y ) by finding the intersection De(X) ∩ An(Y ) and then
computing all descendants of nodes in this intersection.

4. Subtract both De(X) and Forb(X, Y ) from An(Y ) to obtain the canonical adjustment
set Zcan.

1

In this thesis, the canonical adjustment set is used as the ground truth for evaluation. This
decision was purely because of its formal definition and ease of expression in plain language
for large language models (LLMs). Unlike the set of all or minimal valid sets, the canonical
set yields a single, deterministic target - avoiding ambiguity in evaluation.

2.6 Prompt-Based Reasoning with Large Language Models

A prompt can be defined as the input text provided to a Large Language Model (LLM)
serving as its conditioning signal for the text generation process. The prompt specifies the task,
provides relevant context, and defines the form of the output. Prompts can be constructed
from templates that define placeholders for task-specific variables, allowing experimentation
with different phrasings. The effectiveness of a prompt depends both on its quality/clarity,
completeness, and structure—and on the underlying capabilities of the LLM [Wei et al., 2022,
Liu et al., 2023].

1In this work, the above steps were implemented in Python using the networkx library to replicate
the functionality of the pcalg package.
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In-Context Learning. In-context learning (ICL) is a fundamental concept in prompt-
ing where the model “learns” from examples embedded directly within the prompt, without
updating its parameters [Brown et al., 2020]. This enables fast adaptation to new tasks by
conditioning on a small set of examples. ICL can be categorized into zero-shot, one-shot, and
few-shot settings, depending on the number of examples provided. In zero-shot prompting,
only task instructions are given. One-shot and few-shot prompts include one or several in-
put–output examples, to guide the model’s response. The mechanism behind ICL has been
interpreted through several lenses: Bayesian inference over implicit hypotheses [Xie et al.,
2022], gradient descent on latent representations [Akyürek et al., 2022], and meta-learning
over tasks [Dong et al., 2022].

Prompt Engineering Strategies. The design of effective prompts often requires iterative
refinement, guided by extensive testing and task-specific constraints [Liu et al., 2023]. Several
strategies have proven to be effective:

• Clear Descriptions: Prompts should specify the task in a precise manner and must
avoid ambiguous phrasing. This is essential in structured reasoning tasks such as causal
inference.

• Guiding the Reasoning Process: Including phrases such as “Let’s think step by step”
can activate more deliberate reasoning and lead to improved performance in multi-hop
tasks [Kojima et al., 2022].

• Providing Reference Information: Adding relevant domain knowledge such as defin-
tions and formalizations within the prompt can constrain outputs to be factual and
context-appropriate. Retrieval-Augmented Generation (RAG) [Lewis et al., 2020] repre-
sents this, combining retrieved documents with the prompt.

• Attention to Format: The structure of the prompt—including bullet points, numbered
steps and delimiters can help the model parse information more effectively and reduce
misinterpretation [Liu et al., 2023].

Advanced Prompting Methods. Besides basic prompting, there are more advanced
prompting methods that aim to draw out intermediate reasoning steps. An extensively studied
example is Chain of Thought (CoT) prompting [Wei et al., 2022], where the model is instructed
to generate a sequence of intermediate inferences before arriving at the final answer. CoT can
be combined with few-shot demonstrations (few-shot CoT ) to further improve performance of
complex reasoning tasks [Kojima et al., 2022]. This approach is relevant for causal inference
tasks, where arriving at the final answer, i.e., valid adjustment sets, requires splitting the
problem into subproblems such as identifying ancestors, descendants, and blocking sets.
In this thesis, these prompting strategies from direct instructions to reasoning-oriented methods
are applied to the task of identifying valid adjustment sets from text-based DAG descriptions.
The variation in prompt design allows an in-depth analysis of how different levels of reasoning
and prompting strategies influence LLM performance in causal reasoning.
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3 Methodology

While the ID algorithm offered a complete solution for causal effect identification, implementing
it in our LLM-based setting was challenging, as there might be no unique expression for causal
effect identification in the general case. Therefore, the focus of this thesis shifted toward
evaluating LLMs through their ability to identify valid adjustment sets. This direction allowed
for a more verifiable solution: adjustment sets can be directly computed using established
causal inference libraries such as pcalg in R [Kalisch et al., 2012], giving us a clear ground
truth. This change also facilitated the comparison of multiple prompting strategies, models,
and baselines using objective correctness measures.
Therefore the main goal of the study is: Can LLMs reliably identify valid adjustment sets
in causal graphs, given knowledge of graphical rules such as the back-door criterion and d-
separation? This question serves as a proxy for the broader goal of understanding whether
LLMs can exhibit causal reasoning capabilities.

3.1 Adjustment Set Computation

When randomized experimentation is not feasible, we have to rely on observational data. One
common criterion is to adjust for a set of covariates Z that block all back-door paths from X
to Y . This approach is based on the back-door criterion [Pearl, 1994], which ensures that the
association between X and Y reflects the causal effect rather than confounding.
While several sets might satisfy the backdoor criterion, the canonical adjustment set pro-
vides a deterministic choice that can be used as a reference point. The canonical set is especially
useful for evaluation purposes because it is strictly defined under a given DAG and can be com-
puted using existing algorithms. In this study, the canonical adjustment set was used as ground
truth to measure precision, recall, F1 score, and exact match accuracy, while “all adjustment
sets” were used as ground truth to measure the overall accuracy - to see if the LLM predicted
set was valid for the given DAG, treatment and outcome or not.

3.2 DAG Dataset Generation

A key part of the experimental setup involved generating synthetic directed acyclic graphs
(DAGs) to serve as the dataset and input for both the LLMs and the ground-truth adjustment
set computation. Synthetic graphs were preferred over real-world causal models to maintain
control over their structure, size, and complexity.

Remark on the Initial Pilot Experiment. In early trials, DAGs were encoded as
textual lists of directed edges (e.g., “X1→ X2”) and directly presented to a GPT-based LLM.
This approach, however, had several limitations:

• Text-based edge representations proved difficult for LLMs to parse consistently, a limi-
tation also observed in recent work showing that reducing graph structures to plain-text
edge lists can hinder structured reasoning performance [Agrawal et al., 2025].

• Prompting results varied significantly over repeated runs with identical inputs.

• The use of a web-based interface introduced unintended cross-session memory effects,
which contaminated the independence of experimental trials.
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Due to these challenges, the encoding strategy and experimental setup were revised to an API
based approach with structured DAGs and a fixed ground truth.
In this work, DAGs were generated with a fixed number of nodes, where edges were added
probabilistically under the constraint of acyclicity.2 For each DAG, one node was randomly
assigned as the treatment variable X and another distinct node as the outcome variable
Y . The DAG structure, along with X and Y , was then used both for computing canonical
adjustment sets with the pcalg package and for constructing prompts for the LLMs.

Testing with different sized DAGs

To test LLM performance under varying graph complexity, additional datasets were generated:

• 4-node DAGs: Simple graphs with no latent variables.

• 6-node DAGs: Medium-complexity DAGs, also without latent variables.

• 8-node DAGs with latent variables: More complex DAGs where one randomly se-
lected node was marked as unobserved or latent.

Each graph was generated with a random edge probability from the set {0.2, 0.4, 0.6, 0.8}, to
control density. The treatment and outcome were selected uniformly at random, while making
sure they were distinct. It was also ensured that both the treatment and the outcome were
observable and not latent.
This variation allowed for studying how LLM performance varied with graph size and latent
confounding, two important dimensions of complexity in causal inference.

3.3 Prompting Strategies

Prompt design played a crucial role in determining the quality and correctness of outputs
generated by the LLMs. To systematically study how different prompt formats affect causal
reasoning, four prompting strategies were evaluated:

• Simple Prompt — A minimal prompt that directly presents the DAG structure along
with the treatment and outcome variables, asking the model to identify the canonical
valid adjustment set without providing any definitions or instructions.

• Prompt with Instructions — Included textual definitions of the back-door criterion
and related causal graph concepts, along with step-by-step guidance to find the canonical
adjustment set.

• Chain-of-Thought (CoT) - Encouraged the model to reason step by step by enu-
merating back-door paths, identifying colliders, and eliminating invalid adjustment sets
before producing an answer. Included a worked example with ground truth.

• Multi-Step Decomposition — Inspired by cognitive decomposition in AI research
[Kramer and Baumann, 2024] and problem decomposition principles outlined in Founda-
tions of Large Language Models [Xiao and Zhu, 2025], this prompt splits the task into
three labeled subtasks: identifying ancestors and descendants, computing the forbidden
set, and compiling the adjustment set, in order to distribute the model’s reasoning effort.

The exact text of each prompt used in the experiments is provided in Appendix A.

2Implementation was carried out in Python using the networkx library.
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3.4 LLMs Used in the Study

This study evaluated the causal reasoning capabilities of two state-of-the-art large language
models:

• GPT-4o Mini (OpenAI, 2024)

• DeepSeek Reasoner (DeepSeek, 2024)

GPT-4o Mini

GPT-4o Mini (“o” for “omni”) is a fast, efficient variant of OpenAI’s flagship GPT-4 Omni
model, designed for both text and image inputs. According to available documentation, it is a
smaller and more cost-efficient version of GPT-4o, optimized for compact inference and lower
latency.[OpenAI] The model supports a context window of 128,000 tokens, can produce up to
16,384 output tokens, and has a knowledge cutoff date of October 1, 2023.

DeepSeek Reasoner

DeepSeek Reasoner is designed specifically for reasoning-heavy tasks, featuring embedded
Chain-of-Thought (CoT) generation capabilities. Its API returns both the final answer and the
complete CoT as part of the response. The model supports up to 64,000 tokens of context
and has a default maximum combined output length of 32,000 tokens, which can be extended
to 64,000 tokens when including CoT. The DeepSeek Reasoner (DeepSeek-R1) architecture
contains 671 billion total parameters, with 37 billion parameters activated during inference, and
supports a context window of 128,000 tokens, as documented in the model’s specifications.
[DeepSeek]

General vs. Reasoning LLMs

This study aims to investigate whether general-purpose LLMs and reasoning-based LLMs show
similar or differing levels of proficiency in tasks that require causal reasoning. General-purpose
LLMs are generally optimized for a broad range of language tasks, while reasoning-specialized
LLMs are explicitly tuned for logical manipulation and the decomposition of complex problems,
making them more suited for tasks such as causal inference.
In this work, we do not fine-tune any models. Instead, we rely solely on in-context learning zero-
shot and one-shot prompts to evaluate the models’ causal reasoning capabilities. This approach
allows us to see how reasoning-specialized LLMs compare to general-purpose LLMs when both
are given the same minimal in-context examples, and to what extent causal reasoning ability
emerges from general LLM training without additional specialization.

3.5 Baseline Models

To provide a baseline to measure the performance of the LLMs, two types of randomized
baselines were coded. These baselines serve as example of a naive models that does not rely
on any understanding of the graphical structure or the rules of causal inference. Their inclusion
is important to see whether the LLMs are actually performing meaningful reasoning or simply
guessing.
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Fixed-Length Random Baseline

The first baseline generates adjustment sets of a fixed length, chosen based on the most
frequently observed size of canonical adjustment sets in the ground truth data. For example,
if the majority of valid adjustment sets across all DAGs contain two variables, then each
prediction from this baseline is a randomly sampled set of two observed nodes (excluding X
and Y and latent variables).
This baseline operates under the assumption that the model “knows” the typical size of an
adjustment set, but has no information about which variables are causally relevant. This makes
it a useful lower-bound comparison for models that do have access to the graph structure.

Distribution-Based Random Baseline

The second baseline uses a distribution of adjustment set lengths from the ground truth data to
randomly sample a set size. For each DAG, a set size is sampled according to this distribution,
and then a random subset of that size is selected from the observed nodes (again excluding
X and Y and latent).

3.6 Summary of Methodological Choices

This chapter outlines a systematic approach to evaluating causal reasoning in LLMs through
the task of identifying valid adjustment sets from DAGs. The key methodological decisions
can be summarized as follows:

• Focus on Adjustment Sets: Rather than attempting to identify causal effects using
all possible identification strategies, this study specifically focuses on estimating causal
effects by identifying the valid adjustment sets.

• DAG Generation: Synthetic DAGs were generated with different node sizes (4, 6,
and 8) and randomized edges. The 8-node DAGs included one latent variable to test
robustness in the presence of unobserved confounding.

• Ground Truth via pcalg: All valid adjustment sets were computed using pcalg in
R and python’s networkx package, making sure of correctness grounded in established
causal algorithms.

• LLMs and Prompts: The performance of two LLMs — GPT-4o Mini and DeepSeek
Reasoner — was evaluated under four different prompt templates, focusing on the effect
of prompt complexity.

• Baselines: Randomized baselines were coded from scratch to ensure that model per-
formance could be benchmarked against naive guessing strategies as there is no prior
benchmark for the process.
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4 Experiments & Results

This section presents a comprehensive evaluation of the performance of the two chosen large
language models—GPT-4o-mini and DeepSeek Reasoner, in identifying canonical valid ad-
justment sets from directed acyclic graphs (DAGs). We compare these models against the
two random baseline approaches and analyze their performance under the four chosen distinct
prompting strategies - Simple-Prompt, Prompt with Instructions, Prompt with CoT and Multi-
Step Decomposition. In addition to standard performance metrics such as precision, recall, F1
score, exact match, and accuracy, we also evaluated computational attributes such as latency
and token usage. The results highlight the effectiveness of structured multi-step decomposition
in improving both accuracy and efficiency, particularly for reasoning-focused models. Before
the final results - the experimental pipeline and evaluation metrics are outlined below.

4.1 Experimental Pipeline:

To address the limitations of early experiments, the following pipeline was strictly followed:

• API-based access: All LLMs were programmatically queried via their respective APIs
to ensure stateless and reproducible interactions.

• Structured DAG encoding: Graphs were represented as JSON-formatted adjacency
lists, which facilitate reliable parsing and reasoning by LLMs—a representation format
shown to outperform natural language or code representations in recent empirical eval-
uations [Zhu et al., 2024].

• Ground truth computation: The canonical and all valid adjustment sets were com-
puted using R’s pcalg package [Kalisch et al., 2012], with graphs encoded via Python’s
networkx library.

• Metadata storage: Each DAG was stored along with metadata, including treatment
and outcome nodes, any latent variable(s), the canonical adjustment set, and the list
of all valid adjustment sets, to support both ground-truth computation and prompt
construction.

This design helped to create a more systematic experimentation pipeline that could be applied
to different types of DAGs and models.

Input to the Model

Each model received the full structure of a DAG encoded as a JSON-formatted edge list in a
clean textual format, along with explicit specifications of the treatment variableX and outcome
variable Y . When applicable, the prompt also indicated the presence of latent (unobserved)
variables. For simplicity and consistency, the graph nodes were labeled using numbered variables
(e.g., X0, X1, X2).

Output Format and Evaluation

The models were instructed to return a valid adjustment set, or multiple sets if applicable, using
a consistent list notation such as {X1, X3}. In cases where no valid adjustment set existed,
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the models were asked to state this explicitly. The predicted outputs were then compared to
the ground truth adjustment sets computed using pcalg in R and Python. An output was
considered correct if it exactly matched the canonical valid adjustment set for that DAG, and
accurate if it matched any valid adjustment set for the given conditions.

4.2 Evaluation Metrics

To quantitatively evaluate the performance of the LLMs in identifying the canonical valid
adjustment sets, five metrics were used.

Precision

Precision measures the proportion of variables in the model’s predicted set that are part of the
ground truth canonical adjustment set.

Precision =
|Ẑ ∩ Z∗|
|Ẑ|

,

where Ẑ is the model’s predicted adjustment set, and Z∗ is the valid ground truth canonical
adjustment set.

Recall

Recall captures the proportion of ground truth canonical adjustment set variables that are
correctly identified by the model:

Recall =
|Ẑ ∩ Z∗|
|Z∗|

.

F1 Score

The F1 score is the harmonic mean of precision and recall, and provides a more balanced
measure that penalizes both false positives and false negatives:

F1 = 2 · Precision · Recall
Precision+ Recall

.

Exact Match & Overall Accuracy

A prediction was marked correct (Exact Match) if:

• The predicted set exactly matched the ground truth canonical valid adjustment set (exact
set match), or

• The model correctly stated that no valid adjustment set exists when that is true.

A prediction was marked Accurate - if the predicted set was ”valid” for the given graph and
treatment/outcome pair.
Exact match shows the proportion of examples for which the model gave a completely correct
answer. Whereas ”Overall accuracy” shows the proportion of examples for which the LLM
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gave us a ”valid adjustment set”, not necessarily ”canonical”. Each of these metrics provides
information into a different aspect of the model’s performance, from partial reasoning ability
(via F1) to complete structural correctness (via exact match).

4.3 Final Results:

The final experimental results are summarized in Table 1 below. This table presents a com-
prehensive comparison of two Large Language Models, GPT-4o-mini and DeepSeek Reasoner,
against two baseline models across Directed Acyclic Graphs (DAGs) of 4, 6, and 8 nodes.
Performance is measured using F1, Exact Match, and Accuracy scores, evaluating four dis-
tinct prompting strategies: Simple Prompt, Prompt with Instructions, Chain-of-Thought, and
Multi-Step Decomposition.

Model Prompting Strategy
4-node DAGs 6-node DAGs 8-node DAGs

F1 Exact Acc. F1 Exact Acc. F1 Exact Acc.

Baselines
Baseline 1 (Fixed) 0.30 0.33 0.33 0.26 0.24 0.27 0.17 0.17 0.20

Baseline 2 (Dist.) 0.35 0.37 0.37 0.35 0.29 0.33 0.21 0.23 0.27

GPT-4o-mini

Simple Prompt 0.61 0.37 0.49 0.64 0.32 0.44 0.45 0.29 0.39

Prompt w/ Instructions 0.75 0.49 0.64 0.74 0.41 0.59 0.55 0.37 0.51

Chain-of-Thought 0.75 0.55 0.61 0.70 0.48 0.55 0.50 0.40 0.44

Multi-Step Decomp. 0.93 0.85 0.93 0.89 0.74 0.86 0.83 0.75 0.81

DeepSeek Reasoner

Simple Prompt 0.71 0.48 0.60 0.75 0.50 0.62 0.60 0.48 0.59

Prompt w/ Instructions 0.84 0.65 0.79 0.84 0.59 0.71 0.67 0.53 0.60

Chain-of-Thought 0.81 0.72 0.81 0.79 0.50 0.55 0.62 0.52 0.57

Multi-Step Decomp. 0.95 0.93 0.99 0.92 0.86 0.95 0.90 0.83 0.92

Table 1: Final Results - All Baselines & Prompts with F1, Exact Match, and Accuracy

Analysis: The comparison against the randomized baselines clearly highlights the limitations
of random selection strategies, which achieved relatively low performance across all DAG sizes,
with F1 scores rarely exceeding 0.35 and accuracies remaining below 0.37. In contrast, GPT-
4o-mini, which is just a general purpose language model, even when guided only by a simple
prompt, consistently outperforms these baselines.
Comparison of results with the baselines show that even minimal task framework provides LLMs
with a significant advantage over random selection, underlining the importance of semantic
reasoning and context in identifying valid adjustment sets.
Across both models, performance improved generally as the DAG size decreased, with the
highest F1 scores and Exact Match observed for the 4-node graphs. For both GPT-4o-mini and
DeepSeek Reasoner, more structured prompting strategies outperformed the Simple Prompt as
well as the randomized baseline strategies. In particular, the Prompt with Instructions strategy
consistently achieved stronger results than Simple Prompt, and the Chain-of-Thought approach
performed comparably. These findings show that the addition of explicit causal reasoning
instructions improves the models’ ability to identify valid adjustment sets.
The Multi-Step Decomposition approach achieved the strongest overall performance across all
DAG sizes and models, outperforming single-prompt, zero-shot (prompt with instructions) and
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one-shot strategies (chain of thought). The overall pipeline results in Table 1 reflect overall
F1, Exact match and Accuracy. Both GPT-4o-mini and DeepSeek Reasoner achieved markedly
higher F1, Exact Match, and Accuracy under this approach, with DeepSeek Reasoner reaching
close to a perfect scores on 4-node DAGs and having good performances on larger graphs.
This improvement comes from the nature of the errors that the LLMs were observed to
make in prior approaches. When reasoning is carried out in a single pass, the model often
fails to recursively track ancestor or descendant relationships. Another error noted was the
hallucination of edges that do not exist in the graph. By splitting the task into smaller subtasks
(e.g., first identifying ancestors, then descendants, finally applying the adjustment criterion),
these mistakes are surfaced and can be limited at each stage by explicit prompt updates.
A second advantage is that the multi-step approach avoids compounding errors that occur
when the LLM relies on its own generated output across steps in a single chain of reasoning.
For example, when reasoning internally, the model was observed to introduce inconsistencies
in its sets of ancestors or conditioning variables between steps, as seen in the example given in
Appendix B. In contrast, the decomposition strategy explicitly stores the intermediate outputs
and reuses them as inputs for subsequent prompts, forcing consistency across stages.
These factors together make the multi-step approach substantially more effective, as it dis-
tributes the reasoning load of the LLM across multiple simpler steps, and ensures better
consistency in intermediate results shown in Table 2 in the Appendix section. This explains
why the multi-step prompts achieve the highest F1, Exact Match, and Accuracy scores, while
also narrowing the gap between the general-purpose and reasoning-optimized models.

4.4 LLM Metrics Across Prompts

This section evaluates how different prompting strategies influence the computational behavior
of the two models we have used in this study. Specifically, we analyze latency, performance
(F1 score), and completion token usage across all the different prompting techniques. These
metrics provide insight into the trade-offs between efficiency and accuracy, and highlight the key
differences between speed-optimized models like GPT-4o-mini and reasoning-focused models
like DeepSeek Reasoner.
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4.4.1 Latency across prompting techniques:

(a) Average Latency per request across all prompting techniques — GPT-4o-mini

(b) Average Latency per request across all prompting techniques — DeepSeek Reasoner

Figure 2: Latency statistics for GPT-4o-mini and DeepSeek Reasoner across all
prompting techniques (average per request).
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4.4.2 Latency vs Performance

(a) F1 score vs Average Latency per request — GPT-4o-mini

(b) F1 score vs Average Latency per request — DeepSeek Reasoner

Figure 3: F1 score vs Average Latency for GPT-4o-mini and DeepSeek Reasoner across
all prompting techniques (average per request).
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Analysis:
The results highlight a clear trade-off between latency and performance across the two models.
For GPT-4o-mini, latency remained relatively stable across prompting strategies, as seen in
Figure 3(a). The difference between simple, instruction-based, chain-of-thought, and multi-
step prompts was only about 1–2 seconds, with average response times ranging from 5 to
10 seconds across DAG sizes. This shows that GPT-4o-mini’s average latency per request is
largely unaffected by the complexity of the given task, and is instead more directly influenced
by prompt length. Prompts containing larger DAGs (8 nodes) took longer than prompts with
smaller DAGs (4 nodes) by ≈1-2 seconds. This behavior shows GPT-4o-mini’s optimization
for faster inference, where latency is minimally impacted by reasoning depth. Importantly,
despite the stable response time, the multi-step decomposition strategy still gave a substantial
performance boost, achieving F1 scores as high as 0.93 and accuracies above 0.90. This
shows that decomposition significantly improved correctness, without imposing any substantial
latency cost.

In contrast, DeepSeek Reasoner showed a markedly different latency profile as seen in
Figure 3(b). Unlike GPT-4o-mini, where latency differences across prompts were minimal,
DeepSeek’s response time was highly sensitive to the prompt complexity. Simple and instruction-
based prompts already required 160–220 seconds, and chain-of-thought peaked above 250
seconds, showing that more complex prompts imposed a substantial computational burden.
Interestingly, the multi-step decomposition strategy resulted in the lowest latency of all prompt-
ing techniques (≈120–150 seconds across DAG sizes), despite requiring three separate queries.

This highlighted a key distinction: as a reasoning-focused LLM, DeepSeek Reasoner generates
large amounts of intermediate reasoning text as mentioned in [DeepSeek], which increases the
inference time. This can be seen more clearly in the next section. However, when the task is
decomposed into simpler subtasks, the reasoning load per query is reduced, helping the model
to deliver responses faster and more efficiently. Importantly, this efficiency gain came without
any compromise in performance. Multi-step decomposition delivered the highest overall results,
with F1 scores between 0.90 and 0.95 and accuracies up to 0.99 across DAG sizes.
Taken together, these results highlight an important insight:

• For speed-focused models (GPT-4o-mini), decomposition slightly increases latency but
significantly improves accuracy.

• For reasoning-focused models (DeepSeek Reasoner), decomposition simultaneously re-
duces latency and improves accuracy, demonstrating that structured multi-step prompt-
ing is computationally efficient and also yields better performance.
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4.4.3 Completion Tokens across Prompting techniques:

Analysis of Completion Tokens
Completion token usage gives us additional insight into how different prompting strategies
affect the computational load of the models (Figure 4).
For GPT-4o-mini, the number of completion tokens on average per request, scaled predictably
with prompt type and length as seen in Figure 4(a). Simple prompts required approximately
370–570 tokens, while instruction-based prompts consumed around 490–815 tokens. Chain-
of-thought prompting further increased the output size to nearly 1,000 tokens for 8-node
DAGs. Multi-step decomposition had the largest token counts overall, since three separate
prompts were used and aggregated across all steps, totals exceeded 1,200 tokens for larger
DAGs per request on average. Importantly, the differences between prompting strategies here
are primarily attributable to prompt length instead of reasoning complexity which is consistent
with GPT-4o-mini’s optimization for efficient and quick responses.
In contrast, DeepSeek Reasoner generated substantially larger completion tokens across all
settings as seen in Figure 4(b). Even simple prompts required 4,000–5,000 tokens on aver-
age, with chain-of-thought prompts peaking between 6,000 and 8,000 tokens. This reflects
DeepSeek’s reasoning-focused design: as it includes both reasoning content and final content
in its responses which result in them being much longer compared to GPT-4o-mini. Interest-
ingly, the multi-step decomposition strategy again demonstrated efficiency advantages similar
to the latency metrics. Even though three separate prompts were issued, the combined com-
pletion length (≈3,500–5,000 tokens) was comparatively lower than the single long outputs
generated under chain-of-thought prompting. This showed that decomposing the task into
smaller subtasks not only reduced latency (as discussed earlier) but also restricted response
length, leading to a more efficient use of tokens.
Taken together, these results reinforce the difference between the two models:

• For GPT-4o-mini, completion token counts remain relatively low and depend mainly
on prompt length over reasoning complexity.

• For DeepSeek Reasoner, completion token counts are substantially higher due to
the model’s reasoning traces, but decomposition mitigates this overhead by distributing
reasoning load over simpler sub-tasks.
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(a) Average Completion tokens per request across all prompting techniques —
GPT-4o-mini

(b) Average Completion tokens per request across all prompting techniques — DeepSeek
Reasoner

Figure 4: Completion token statistics for GPT-4o-mini and DeepSeek Reasoner across
all prompting techniques (average per request).
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5 Conclusion

This thesis studied the capability of large language models (LLMs) to identify canonical ad-
justment sets for causal inference tasks, with a specific focus on how prompting strategies
influence performance. The study compared a general-purpose model (GPT-4o mini) and a
reasoning-optimized model (DeepSeek Reasoner) across multiple prompting strategies: simple
prompt, instruction-based prompt, chain-of-thought (CoT) prompt, and a multi-step decom-
position approach. Experiments were conducted on directed acyclic graphs (DAGs) of different
sizes and optimal edge densities. Baseline models, including fixed-length and distribution-based
random set generation, were coded for reference performance.
The observed results show that the prompting strategy has a measurable impact on both
accuracy and efficiency. In general, structured prompts that explicitly guide the model’s rea-
soning process, such as instruction-enhanced and CoT prompts, achieved higher alignment
with ground-truth adjustment sets as compared to the simple prompts. The Multi-Step de-
composition approach, which distributes the reasoning load over sequential subtasks, gave the
overall best results and also notably reduced average latency and limited token usage in later
stages.
DeepSeek Reasoner provided more detailed, extensive outputs and superior reasoning, but
it has high latency and uses more tokens. Conversely, GPT-4o mini is much faster and more
efficient, though it lacks the reasoning depth required for higher accuracy. This trade-off shows
that the best model depends on whether speed or reasoning is prioritized.
Across DAG sizes and edge probabilities, results showed that larger and denser graphs tend to
increase task complexity, affecting both model accuracy and processing time.
In conclusion, this study showed that LLMs can be useful for causal reasoning tasks, but
their effectiveness is sensitive to prompt design, reasoning strategy, and the underlying model
architecture.
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6 Limitations and Future Work

While this study showed the potential of large language models for causal reasoning, several
limitations must be acknowledged. Firstly, the use of the Identification (ID) algorithm [Shpitser
and Pearl, 2006] was not fully explored. The ID algorithm can derive identifying formulas in
cases where no valid adjustment set exists, such as in front-door scenarios. Focusing only on
adjustment sets restricts the generality of the findings. Second, we did not formulate causal
inference tasks in natural language as done in benchmarks such as CLadder [Jin et al., 2023],
where problems are expressed as text-based queries instead of graph-based prompts. This
would allow for the testing of models in a setting that is closer to human reasoning tasks.
Finally, the experimental DAGs were limited in size (up to eight nodes), which does not reflect
the complexity of real-world causal structures such as those found in biological or economic
systems. Larger graphs with more intricate dependencies remain an open challenge.

The results of this study show several promising directions for future research. The multi-step
decomposition strategy can be extended by splitting the reasoning process into even smaller
subtasks, further reducing per-step complexity and improving accuracy, depending fully on the
task at hand. The reliability of the LLM outputs can be improved through self-consistency
mechanisms [Wang et al., 2022], where multiple candidate solutions are generated and a
consensus (or majority vote) is used to decide the final answer. A more adaptive approach
can be explored in which the LLM itself is asked to evaluate the problem, propose a solution
strategy, and generate the intermediate steps required to breakdown the problem. This helps
the model to do self-directed reasoning and adjust its strategies based on the complexity of
the problem. In line with recent perspectives on LLM evaluation [Chang et al., 2024], future
work can explore self-evaluation as an important component where the model critiques and
validates its own reasoning. This can serve as an internal benchmark to avoid errors. Finally, the
prompting framework introduced here can be extended to other causal reasoning tasks beyond
adjustment sets, such as causal discovery, mediation analysis, or counterfactual reasoning,
where structured multi-step reasoning is equally critical.
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Causal inference using graphical models with the r package pcalg. Journal of statistical
software, 47:1–26, 2012.

Takeshi Kojima, Shixiang Gu, Machel Xu, Vafa Nitisukul, , et al. Large language models are
zero-shot reasoners. Advances in Neural Information Processing Systems, 35:25330–25345,
2022.

Oliver Kramer and Jill Baumann. Unlocking structured thinking in language models with
cognitive prompting. arXiv preprint arXiv:2410.02953, 2024.

Patrick Lewis, Wen-tau Yih, Abhishek Goyal, , et al. Retrieval-augmented generation for
knowledge-intensive nlp tasks. In Advances in Neural Information Processing Systems
(NeurIPS), 2020.

Pengfei Liu, Weizhe Yuan, Jin Fu, , et al. Pre-train, prompt, and predict: A systematic survey
of prompting methods in language models. ACM Computing Surveys, 2023.

OpenAI. Gpt-4o mini. URL https://platform.openai.com/docs/models/gpt-4o-mini.

OpenAI. GPT-4 Technical Report. arXiv preprint arXiv:2303.08774, 2023.

Judea Pearl. Probabilistic reasoning in intelligent systems: Networks of plausible inference.
Morgan Kaufmann, 1988.

Judea Pearl. A probabilistic calculus of actions. In Uncertainty in artificial intelligence, pages
454–462. Elsevier, 1994.

Judea Pearl. Causal inference in statistics: An overview. 2009a.

Judea Pearl. Causality: Models, Reasoning, and Inference. Cambridge University Press, 2nd
edition, 2009b.

Jonas Peters, Dominik Janzing, and Bernhard Schölkopf. Elements of Causal Inference: Foun-
dations and Learning Algorithms. The MIT Press, 2017.

Donald B Rubin. Estimating causal effects of treatments in randomized and non-randomized
studies. Journal of Educational Psychology, 66(5):688–701, 1974.

Ilya Shpitser and Judea Pearl. Identification of joint interventional distributions in recursive
semi-markovian causal models. In AAAI, pages 1219–1226, 2006.

Peter Spirtes, Christopher Meek, and Thomas S. Richardson. An algorithm for causal inference
in the presence of latent variables and selection bias. In Clark Glymour and Gregory F.
Cooper, editors, Computation, Causation and Discovery, pages 211–252. MIT Press, 1999.

Peter Spirtes, Clark Glymour, and Richard Scheines. Causation, Prediction, and Search. The
MIT Press, 2nd edition, 2000.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Tim-
othée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama:
Open and efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

30



Thang Trivedi, Saining Zhou, Hong He, Zichao Liu, , et al. Solving olympiad geometry problems
without human demonstrations. Nature, 625(7994):305–310, 2024.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in
language models. arXiv preprint arXiv:2203.11171, 2022.

Jason Wei, Yi Tay, Rishi Bommasani, , et al. Chain of thought prompting elicits reasoning
in large language models. Advances in Neural Information Processing Systems (NeurIPS),
2022.

Sewall Wright. Correlation and causation. Journal of Agricultural Research, 20(7):557–585,
1921.

Tong Xiao and Jingbo Zhu. Foundations of large language models. arXiv preprint
arXiv:2501.09223, 2025.

Edward Xie, Aleksander Rzepka, Yanda Du, , et al. An explanation of in-context learning as
implicit bayesian inference. In International Conference on Machine Learning (ICML), 2022.

Fan Zhou, Kaiyuan Li, Jiaxin Liu, Meng Wu, Yanan Wang, Fan Wei, Zilin Peng, Dawei Yin,
Bing Wu, and Bin Zhu. Causalbench: A benchmark for causal reasoning in large language
models. arXiv preprint arXiv:2403.01186, 2024.

Kerui Zhu, Bo-Wei Huang, Bowen Jin, Yizhu Jiao, Ming Zhong, Kevin Chang, Shou-De Lin,
and Jiawei Han. Investigating instruction tuning large language models on graphs. arXiv
preprint arXiv:2408.05457, 2024.

31



A Prompt Templates

This appendix contains the exact prompt templates used in the experiments. All prompts
include placeholders for dynamically inserting the DAG JSON, treatment variable, and outcome
variable.

A.1 Simple Prompt

You are given a DAG with treatment node x and outcome node y.

Find the canonical valid adjustment set using the given input.

Input DAG:

{json.dumps(dag_json, indent=1)}

Treatment: {x}

Outcome: {y}

Output Format (Strict):

1) Reasoning:

2) Final Output:

Canonical Adjustment Set: [’X1’, ’X2’, ...]

# Or:

Canonical Adjustment Set: []

...

If no valid set exists, state: "No valid adjustment set exists."

A.2 Prompt with Instructions

You are given a DAG with treatment node x and outcome node y.

Find the canonical valid adjustment set using the following instructions:

• Identify descendants of X (De(X))

• Identify ancestors of Y excluding X (An(Y) \ X)

• Compute the forbidden set: descendants of nodes that are both in An(Y) and De(X)

• Exclude X and forbidden nodes from possible ancestors of Y

• If there is no valid adjustment set: return No valid adjustment set exists

• If adjustment set is empty, return Canonical Adjustment Set: []

• Else, list the canonical adjustment set

Input DAG:

{json.dumps(dag_json, indent=1)}

Treatment: {x}

Outcome: {y}

Output Format (Strict):

1) Reasoning:
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2) Final Output:

Canonical Adjustment Set: [’X1’, ’X2’, ...]

# Or:

Canonical Adjustment Set: []

...

If no valid set exists, state: "No valid adjustment set exists."

A.3 Chain-of-Thought (CoT)

You are given a DAG with treatment node x and outcome node y.

Find the canonical valid adjustment set using the following instructions:

1) Identify descendants of X (De(X))

2) Identify ancestors of Y excluding X (An(Y) \ X)

3) Compute the forbidden set: descendants of nodes that are both in An(Y) and

De(X)

4) Exclude X and forbidden nodes from possible ancestors of Y

5) If there is no valid adjustment set: return No valid adjustment set exists

6) If adjustment set is empty, return Canonical Adjustment Set: []

7) Else, list the canonical adjustment set

Give step-by-step reasoning to support your answer.

Example:

{

"nodes": ["X","Y","Z","M","D","U"],

"edges": [

["Z","X"], ["Z","Y"], # Z confounds X and Y

["U","X"], # U -> X only (instrument-like)

["X","M"], ["M","Y"], # X -> M -> Y (mediator M)

["M","D"] # D is a descendant of mediator

]

}

1) Reasoning:

- possDe(X): {M, D, Y}

- possAn(Y) \ {X}: {Z, M}

- Intersection: {M}

- Forbidden set (De of intersection): {M, D}

- Candidate Z*: {Z}

- Validation: passes (adjusting for Z blocks back-door paths; mediator M and

its descendants are not adjusted for)

2) Final Output:

Canonical Adjustment Set: [’Z’]

Input DAG:

{json.dumps(dag_json, indent=1)}

Treatment: {x}

33



Outcome: {y}

Output Format (Strict):

1) Reasoning:

2) Final Output:

Canonical Adjustment Set: [’X1’, ’X2’, ...]

# Or:

Canonical Adjustment Set: []

...

If no valid set exists, state: "No valid adjustment set exists."

A.4 Multi-Step Decomposition

A.4.1 Prompt 1:

Prompt 1:

You are given a Directed Acyclic Graph (DAG) in JSON format.

Each key is a node, and its value is a list of children it points to

(i.e., **edges go from key to children**).

Task:

1. Identify all possible **descendants** of the treatment variable X

(i.e., all nodes reachable by following outgoing edges from X). Do

**not include X itself**.

2. Identify all possible **ancestors** of the outcome variable Y (i.e.,

all nodes from which there is a directed path to Y by following

incoming edges recursively trace parents, then parents of parents, and

so on). Do **not include Y itself**.

3. Compute and return the **intersection** between these two sets.

Instructions:

- The DAG is defined as a dictionary where each key is a node, and the

value is a list of its children.

- If a node A has an entry like ‘"A": ["B"]‘, this means there is a

**directed edge from A to B**, i.e., A to B.

- In this case: A is the **parent**, B is the **child**.

- Only follow the directions given by the edges. Do **not** infer any

reverse-direction edges.

- **Do not confuse** the JSON structure for example, ‘"X1": ["X4"]‘ means

**X1 points to X4** (X1 to X4), so **X1 is the parent**, and **X4 is

the child**.

Input:

DAG (JSON): {json.dumps(dag_entry["dag"])}

Treatment (X): {dag_entry["x"]}

Outcome (Y): {dag_entry["y"]}
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Output Format (Strict):

#Reasoning (step-by-step and concise)

#Final Output:

Possible descendants of X: [X1, X2, ...]

Possible ancestors of Y: [Y1, Y2, ...]

Intersection: [Z1, Z2, ...]

A.4.2 Prompt 2:

Prompt 2:

You are given a Directed Acyclic Graph (DAG) represented in JSON,

And the list of predicted intersection nodes (possAn(Y) & possDe(X)):

Input:

DAG (JSON): {json.dumps(dag_entry["dag"])}

Predicted intersection nodes: {json.dumps(intersection_nodes)}

Task:

- Find all descendants (excluding themselves) of the predicted

intersection nodes, using the DAG as reference.

- If the predicted intersection nodes list is empty, simply output:

Forbidden set: []

Output Format (strict):

#Reasoning: (concise)

#Final Output:

Forbidden set: [A, B, ...]

A.4.3 Prompt 3:

Prompt 3:

You are given:

- The set of all ancestors of Y.

- The descendants of nodes that appear on proper causal paths from X to Y.

- the treatment and outcome

Input:

Ancestors of Y: {ancestors}

Descendants of causal path nodes: {descendants}

Treatment (X): {x}

Outcome (Y): {y}

Task:

1. Remove from the Ancestor Set:

- the treatment X and outcome Y (IF PRESENT ONLY)

- Descendants of causal path nodes

2. The resulting set is the canonical adjustment set.
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Notes:

- An empty canonical adjustment set ([]) is valid.

Output Format (Strict):

1) Reasoning (concise):

2) Final Output:

Canonical Adjustment Set: [’X1’, ’X2’, ...]

# Or:

Canonical Adjustment Set: []

B Example of LLM Errors:

[Step 1: Identify Descendants of Treatment Node ’x’ (X3)

To find the descendants of X3, we trace all directed paths starting from X3 to

find all the nodes it can reach. Following the convention that a node is a

descendant of itself, we start with X3.

X3 is the starting node.

The direct children of X3 are: X5, X6, X7, and X8.

Next, we find the children of those nodes:

X5 has no children.

X6 has one child: X7.

X7 has one child: X8.

X8 has no children.

Combining all nodes reachable from X3 (and including itself), we get the full

set of descendants.

\{Thus, the set of descendants of X3 is {X3, X5, X6, X7, X8}.}

Step 2: Identify Ancestors of Outcome Node ’y’ (X5)

To find the ancestors of X5, we trace all paths backward from X5. A node is

also considered an ancestor of itself.

X5 is the starting node.

We search the DAG for nodes that have X5 as a child:

X2: ["X5", "X7"] : X2 is a parent.
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X3: ["X5", "X6", "X7", "X8"] : X3 is a parent.

Now we find the ancestors of these parents (X2 and X3):

X2 has no parents.

X3 has no parents.

Combining the node itself with all its parents, grandparents, etc., gives us

the full set of ancestors.

Thus, the set of ancestors of X5 is {X2, X3, X5}.

Step 3: Intersection of the Two Sets

Finally, we identify the nodes that are common to both the set of descendants

of X3 and the set of ancestors of X5.

\{Descendants of X3: {X2, X5, X6, X7, X8}}

Ancestors of X5: {X2, X3, X5}

\{The common nodes in both sets are X2, X3 and X5.}

Therefore, the intersection of the descendants of X3 and the ancestors of X5

is {X2, X3, X5}.]

As seen in the above example - there is an inconsistency between the predicted

ancestor set in step 1 and step 3, this ultimately causes an incorrect

intersection set - further compounding errors.
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C Additional Result Tables:

C.1 Evaluation Metrics Across DAG Sizes

4-Node DAGs

GPT-4o mini DeepSeek

Simple Prompt
Precision 0.48 0.59
Recall 0.86 0.90
F1 Score 0.61 0.71
Exact Match 0.37 0.48
Accuracy 0.49 0.60

Prompt with Instruction
Precision 0.68 0.79
Recall 0.84 0.89
F1 Score 0.75 0.84
Exact Match 0.49 0.65
Accuracy 0.64 0.79

Chain of Thought
Precision 0.60 0.71
Recall 0.89 0.91
F1 Score 0.75 0.81
Exact Match 0.55 0.72
Accuracy 0.61 0.81

38



6-Node DAGs

GPT-4o mini DeepSeek

Simple Prompt
Precision 0.59 0.71
Recall 0.71 0.81
F1 Score 0.64 0.75
Exact Match 0.32 0.50
Accuracy 0.44 0.62

Prompt with Instruction
Precision 0.69 0.80
Recall 0.80 0.89
F1 Score 0.74 0.84
Exact Match 0.41 0.59
Accuracy 0.59 0.71

Chain of Thought
Precision 0.65 0.74
Recall 0.77 0.86
F1 Score 0.70 0.79
Exact Match 0.48 0.50
Accuracy 0.55 0.55

8-Node DAGs

GPT-4o mini DeepSeek

Simple Prompt
Precision 0.37 0.52
Recall 0.59 0.70
F1 Score 0.45 0.60
Exact Match 0.29 0.48
Accuracy 0.39 0.59

Prompt with Instruction
Precision 0.47 0.59
Recall 0.69 0.81
F1 Score 0.55 0.67
Exact Match 0.37 0.53
Accuracy 0.51 0.60

Chain of Thought
Precision 0.41 0.53
Recall 0.66 0.76
F1 Score 0.50 0.62
Exact Match 0.40 0.52
Accuracy 0.44 0.57
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C.2 Multi-Step Decomposition Prompt - Breakdown Stats:

Model Metric
4-node DAGs 6-node DAGs 8-node DAGs

P1 P2 P3 P1 P2 P3 P1 P2 P3

GPT-4o-mini

Precision 0.92 1.00 1.00 0.83 0.97 1.00 0.78 0.94 1.00

Recall 0.89 1.00 0.99 0.80 0.99 0.96 0.80 0.99 0.94

F1 Score 0.91 1.00 0.99 0.81 0.98 0.98 0.79 0.96 0.96

DeepSeek

Precision 0.95 1.00 1.00 0.95 1.00 1.00 0.90 1.00 1.00

Recall 0.99 1.00 1.00 0.95 1.00 1.00 0.91 1.00 1.00

F1 Score 0.97 1.00 1.00 0.95 1.00 1.00 0.90 1.00 1.00

Table 2: Breakdown of individual steps in the Multi-Step Decomposition Prompt, where
P1, P2 and P3 are Prompts 1, 2 and 3 respectively

40


