Leiden University

ICT in Business and the Public Sector

A privacy-preserving fault detection system for loT

networks using blockchain, MPC, and edge computing

Name: Lars Nieuwdorp

Student ID: s4048865

Date: 11-8-2025

1st supervisor: Dr. Ir. Eleftheria Makri
2nd supervisor: Prof. Dr. Ir. Nele Mentens
MASTER'’S THESIS

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University

Einsteinweg 55

2333 CC Leiden

The Netherlands

Abstract

Background

The use of IoT devices in security-sensitive environments enables monitoring but usually relies on central-
ized fault detection. This creates a single point of failure and risks exposing sensitive data when multiple
branches wish to share security logs. An approach that combines local edge computation, blockchain
with a hybrid on- / off-chain logging system for tamper-evident yet erasable records and multi-party
computation (MPC) for secure risk aggregation can address these issues while meeting privacy and audit
requirements.

Aim

Research, at a system level, the integration of edge processing, blockchain, hybrid on- / off-chain logging,
and MPC for fault detection, and deliver a modular proof-of-concept framework that demonstrates
feasibility and highlights concrete optimization areas for future work.

Method

We propose a framework where each branch conducts local fault processing and storage on the network
edge, encrypts and logs events off-chain, stores hashes on a private Ethereum network, and uses MPC
to calculate a global threat score (a combined threat score). We develop a fully containerized working
prototype and carry out controlled experiments with different loads to assess latency, resource utilization,
network traffic, and power consumption.

Results

In our most demanding experimental setup, in which we ingested 2,000 synthetic fault events over a three-
hour window and executed eight scheduled MPC computations, end-to-end latency remained below 14
ms. Meanwhile, CPU time reaches approximately 400 CPU seconds, memory usage peaks at 3.3 GB,
and the average power consumption increases to 8.6 watts above the measured baseline. MPC adds an
additional 2.3 seconds per party for each processing trigger and requires 240 MB of communication for
each party involved. For the other scenarios, these values vary slightly.

Conclusion

In our test environment with the twelve test scenarios, the prototype demonstrates that end-to-end
feasibility is achievable while offering data privacy and tamper-evident logging. The framework sets up
baselines and interfaces that can be improved upon in future projects.

Acknowledgements

I thank Dr. Ir. Eleftheria Makri for her guidance throughout this thesis; her feedback refined my research
and analysis. I also thank Prof. Dr. Ir. Nele Mentens for her careful evaluation of this thesis.

Contents

Abstract
Acknowledgements

1 Introduction

1.1 Thesis structure e e e e e e e e
1.2 Introduction L
1.3 Research problem oL
1.4 Research questions L
1.5 Scope . .o e e
1.6 Contribution e e e e e

2 Background

2.1 Terminology and concepts L Lo
2.1.1 Imternet of things L
2.1.2 Blockchain
2.1.3 Consensus mechanism L L
2.1.4 Hybrid on-chain / off-chain storage L.
2.1.5 Multi-party computation L Lo
2.1.6 Secret sharing L e
2.1.7 MPC frameworks and SPDZ2*
2.1.8 Edge computingo
2.1.9 Encryption and verification methods o000
2.1.10 Hyperledger Besu e
3 Method
3.1 Literature review L. e e e
3.1.1 Inclusion criteria
3.1.2 Related work
3.2 System design e e
3.2.1 Design science phases Lo e
3.2.2 Prototype and simulation setup oL oo
4 Literature review
4.1 SUmMmMATY oo e e e e e
4.2 Thematic review oL e e
4.2.1 Theme 1: Blockchain combined with IoT fault detection
4.2.2 Theme 2: Consensus mechanisms for IoT suitability
4.2.3 Theme 3: Privacy with multi-party computation
4.2.4 Theme 4: Edge computing for real-time IoT fault detection
4.2.5 Theme 5: Security challenges in IoT
4.2.6 Theme 6: I0oT in high-security environments
4.3 DISCUSSION e e e e e e

5 System design
5.1 Introduction L e e e

5.2 High level system architecture L
5.3 Design choices and rationale Lo
5.3.1 Choice of number of branches oo 0o
5.3.2 Choice of programming language and key libraries
5.3.3 Microservices architectureo oL oL
5.3.4 Containerization with Docker 0 oL
5.3.5 MPC framework e
5.3.6 Web framework e
5.3.7 Blockchain engine L L
5.3.8 Hybrid on-chain / off-chain storage
5.3.9 MPC parameters
5.3.10 Simulated IoT devices e
5.4 Low-level design e
5.5 Data and evaluation plan Lo
Implementation
6.0.1 Service integration and container setup L
6.0.2 Orchestration scriptso
6.0.3 Continuous integration and repeatable builds
6.0.4 Logging, monitoring, and health checks
6.0.5 Data-collection process L L
Results
7.1 Sequence generation test setup o
7.1.1 Sequences for testing L
7.2 Performance metrics L e e
7.2.1 Overallresults
7.2.2 Column definitions and computation o000
7.2.3 Overallresults
724 MPCoverhead e
7.2.5 Full system - heavy setting o
7.2.6 Full system - medium setting L 0oL o
7.2.7 Full system - light setting o
7.2.8 Component-only configurations L Lo
7.3 Hybrid on-chain / off-chain storage system L L.
Discussion
8.1 Overall prototype performance and privacy properties
8.1.1 Effects of event volume and frequency
8.1.2 Limitations e
Conclusions
9.1 Answers to the research questions
9.2 Future work e e
Proof of concept prototype
A.1 Fullsource code. e
A.2 Prototype architecture
A.2.1 End-to-end data flow (simplified) Lo
Data collection
B.1 Host system configuration L L
B.2 Fault triggering logic e
B.3 Generation of sequences
B.3.1 Fault sampling e
B.3.2 Sequence generation Lo
B.4 Docker stats e e e
B.5 Final report generation L L
B.6 Sample collected data outputs

38
38
39
39
39
39

40
40
40
41
42
46
46
46
47
48
49
50
52

54
54
95
55

57
o7
58

65
65
65
65

B.6.1 Coordinator report example 70

B.6.2 Docker stats example 70

B.6.3 Blockchain report example oL L 70

B.6.4 MPC call records example Lo 70

C MPC implementation 72
C.1 OVerview o o e 72
C.2 Build and deployment 72
C.2.1 Building MP-SPDZ artifacts 72

C.3 Service API e 72
C.4 MPC program: threat_SCOTre.mMPC o v v v i ittt 73

Chapter 1

Introduction

1.1 Thesis structure

- Chapter 1 introduces the research problem, states the aim, and lists the main contributions.
- Chapter 2 defines key concepts and terminology.

- Chapter 3 describes the methodology used in the thesis.

- Chapter 4 reviews the literature that informs the design choices made in this thesis.

- Chapter 5 presents the system architecture and the main design choices.

- Chapter 6 describes how the proof-of-concept prototype is built and deployed.

- Chapter 7 presents the performance metrics and privacy outcomes.

- Chapter 8 interprets the results, answers the research questions, and discusses limitations.

- Chapter 9 summarizes the conclusions and outlines directions for future work.

1.2 Introduction

This thesis researches and presents the design and implementation of a proof-of-concept privacy-preserving
system for fault detection in distributed IoT networks, with a focus on sensitive locations like banking
facilities.

There are many types of IoT devices in use across diverse sectors, also in critical infrastructure areas.
These devices help facilitate operations and can, for example, help to comply with security standards.
This means that malfunctions or security failures in IoT monitoring systems can present risks.

The proposed privacy-preserving fault detection and storage framework aims to help security-sensitive
environments to exchange security-relevant information to identify coordinated attacks across branches
securely and enables IoT devices to log faults while enabling tamper-evident auditability for these logs
through the use of blockchain. The system allows for the deletion of the log contents when required,
through the use of a hybrid on-chain / off-chain storage system.

The system runs on the network edge and identifies / processes received faults from IoT devices. The
private blockchain-based hybrid chain storage system, also running on the network edge, will log this data
securely, ensuring tamper-evident records that help with both auditability and regulatory compliance.

A secure multi-party computation (MPC) component that is part of the system ensures that a global
threat detection process can happen securely between branches without exposing any raw security data.
Each branch generates data when a fault is detected and, collectively with other branches, calculates a
threat score that allows for proactive tightening of security at other branches, even if no faults have been
found at a different branch (yet). This can help identify coordinated attack patterns across branches
before they escalate into widespread security incidents.

This system aims to enable secure, tamper-evident, real-time fault insights across branches while safe-
guarding sensitive information.

1.3 Research problem

The use of IoT devices like cameras and tag readers in security-sensitive environments, such as bank
vaults, can help improve security monitoring. These devices can help facilities secure their assets through
real-time monitoring to prevent unauthorized access and ensure safety standards [1, 2]. The implemen-
tation of these devices, however, can also introduce security and privacy challenges [2]. Failures or
malfunctions in these devices may result in risks such as unauthorized access, potential data breaches,
and non-compliance with regulations [2]. Monitoring these devices for failures is therefore important.

Centralized systems transmit and store sensitive fault data on a central server, creating a single point of
failure that can expose device information [3, 4].

Blockchain-based IoT logging systems can improve availability (due to the distributed architecture of
blockchain) and auditability (cryptographically guaranteeing that data cannot be tampered with) by
storing this data on-chain [4]. However, storing detailed event data on the ledger can conflict with
privacy requirements and regulations, for example, the right to erasure that are part of regulations like
the GDPR [5], especially if the data contains information about customers [6, 5].

Also, in a multi-branch environment, security-sensitive environments may miss coordinated attacks unless
they share data between locations, but sharing raw data can expose local vulnerabilities to other branches.
For example, in a bank setting, this can expose security-specific vulnerabilities to another branch. A
privacy-preserving MPC system would let these environments share data without revealing sensitive
details [7]. This method can help prevent coordinated attacks and as a result reduce downtime in
high-security settings.

MPC and blockchain-based systems, however, are often unsuitable for resource-constrained environments
[8, 9], since these technologies are often computationally expensive. Edge computing can help by offload-
ing these computational tasks while being close to IoT devices, keeping the data at the branch-level
[8, 9]. This reduces latency and bandwidth consumption, enables real-time processing and preserves
data privacy [10, §|.

To our knowledge, no prior framework integrates MPC, blockchain and edge computing into a single,
branch-level system that delivers low-latency fault detection, tamper-evident audit trails and privacy
compliance. This research aims to develop such a system, which has the potential to enhance data
privacy while increasing security insights, and ensure compliance with the increasingly stricter regulatory
and security requirements, such as in the banking sector [11].

1.4 Research questions

This thesis focuses on the following main question:
How can an efficient fault detection system be designed for high-security IoT applications while ensuring
real-time, privacy-preserving, and tamper-evident security monitoring?

This question is split into the following sub-questions:

SQ1: How does a decentralized fault detection system leveraging blockchain improve the security and
integrity of fault logs compared to a centralized alternative?

SQ2: What performance penalty does multi-party computation introduce in high-security IoT fault
detection?

SQ3: What are the trade-offs between decentralization, auditability, and regulatory compliance in an
ToT-based security monitoring system?

SQ4: How do latency, throughput, and resource overhead compare between system configurations with
and without blockchain and MPC?

1.5 Scope

A system-level feasibility study of integrating edge processing, blockchain with hybrid on- / off-chain
logging, and MPC at branch level. We deliver a working, modular prototype with replaceable components
and report baseline measurements from controlled, three-branch lab experiments.

1.6 Contribution

This thesis makes contributions to the design, implementation and evaluation of privacy-preserving fault
detection in high-security IoT networks. It builds upon the knowledge and gaps identified in the literature
review (Chapter 4).

1.

We propose a high-level, modular framework that combines edge computing, MPC and a private
blockchain with hybrid on- / off-chain logging to detect, correlate and log IoT device faults without
exposing raw security data.

. We develop and open-source a containerized prototype, including an IoT simulator (simulating IoT

devices sending faults), a Flask-based coordinator (the main logic running at every branch), MPC
parties and a proof-of-authority based private Ethereum network that implements the proposed
architecture end-to-end.

We implement a hybrid on-chain / off-chain storage mechanism, as first proposed in the literature,
that stores only cryptographic hashes on-chain (ensuring immutable audit trails) while encrypted
full logs remain off-chain and can be deleted or changed to help with GDPR requirements. This
specific use case is a gap identified in the implementation of blockchain in such environments.

We design and implement a weighted-average MPC protocol in MP-SPDZ that computes a global
“threat score” (a percentage) from per-branch severity sums and counts entirely within the secret-
shared domain (preserving branch-level confidentiality).

We perform a series of controlled component-ablation experiments (by disabling the blockchain
and MPC system in the prototype) to compare the system against a baseline. We measure CPU
and memory usage, disk storage utilization, power draw, network traffic (communication costs)
and latency within the system. This allows us to measure the impact of each component.

These contributions aim to advance both the theoretical understanding and the practical engineering of
secure, privacy-preserving fault detection systems in high-security IoT environments.

Chapter 2

Background

2.1 Terminology and concepts

This section outlines the fundamental concepts and technologies that form the basis for designing and
implementing the privacy-preserving, decentralized fault detection system.

2.1.1 Internet of things

The internet of things refers to a network of interconnected devices, such as sensors, cameras, actuators,
and embedded systems, that collect and exchange data over communication protocols with or without
human intervention [12].

2.1.2 Blockchain

A distributed ledger that keeps track of transactions through a series of interconnected blocks, where
every block contains a collection of records along with a cryptographic connection to the previous block
[4]. Participating nodes hold the chain of blocks [4]. After data is added to a block and the block has
been signed (sealed) through the network’s consensus mechanism, it becomes immutable; any attempt to
alter that data would compromise the cryptographic links [4]. We use a private, permissioned blockchain
based on the proof-of-authority consensus mechanism to securely record fault hashes and global threat
scores in a manner that is resistant to tampering.

2.1.3 Consensus mechanism

The method through which blockchain nodes reach a consensus on the next block to be added. In proof-
of-authority (PoA) specifically for example, a predetermined group of trusted nodes are allowed to “seal”
blocks (validate transactions) [13]. Consensus ensures that all honest nodes have access to the same
immutable ledger [13]. These are fundamental to maintaining the integrity and security of blockchain
systems.

2.1.4 Hybrid on-chain / off-chain storage

A pattern that was initially suggested in earlier research [6] and aims to distinguish large or mutable
data from the blockchain itself. A cryptographic hash of each event log is recorded on-chain, while the
complete encrypted log remains stored off-chain in local storage [6]. This approach allows for the deletion
or modification of information to ensure compliance with GDPR [5] and/or internal guidelines, all while
maintaining an unchangeable record of their original contents (a computed hash) on-chain.

2.1.5 Multi-party computation

Multi-party computation is a set of protocols that enables several participants, referred to as parties (in
this thesis, each branch), to collaboratively compute a collective function, like the average fault severity
between all branches, based on their private inputs (in the case of this thesis, their local sums and

counts) while keeping those inputs confidential from one another [7]. MPC protocols rely on building
blocks such as secret sharing, where inputs are split into shares and distributed between the parties, and
then computed on without revealing private data [7, 14]. In the end, they only collect the final result,
which is the collective outcome, rather than the raw data from each individual branch [7].

2.1.6 Secret sharing

Secret sharing involves dividing a confidential value s into multiple random components, known as
“shares”, ensuring that no single individual can independently discover the original number s [14].
Through the use of secret sharing, it becomes possible to carry out computations on private data,
such as sums or averages, while ensuring that no participant’s value is revealed. Only the final outcome
is revealed.

Secret-sharing schemes are generally instantiated over an algebraic domain A (for example, a finite field
F, or a ring such as Z/2*Z), with the following requirements [15]:

e You can draw shares uniformly (or pseudorandomly) from A, so that each individual share leaks
no information about the secret.

e All additions, multiplications, and other necessary operations are performed inside A.

e There is a well-defined combining procedure that recovers the secret whenever the threshold of
shares is met.

There are various methods for carrying out secret sharing. We explain the concept of secret sharing
using additive secret-sharing, as it provides a straightforward approach.
Additive sharing (all-of-n)

In this secret sharing method, every one of the n parties must combine their share to recover s. For
n = 3, it works as follows:

1. Pick a prime p bigger than the secret s.
2. Choose two random numbers 71,72 in {0,...,p — 1}.
3. Let the third share be
r3 = (s — (r1 +r2)) mod p.
4. Give party 1 the number rq, party 2 the number 79, and party 3 the number r3.

Each share on its own is random (because it is a random number mod p). Only when we add all three
(in the same modulo), we get back

(ri+ro+r3) modp = s.

Ezxample. When we share s = 42 with prime p = 101, we:
1. Pick r; = 10, and ro = 25.
2. Compute r3 = (42 — (10 + 25)) mod 101 = 7.
3. Shares are (10,25,7).
4. Check: (104 25+ 7) mod 101 = 42.

Ezample 2. Modular arithmetic wraps negative results back into the field range {0,...,p — 1}. This
means that when we share s = 3 with prime p = 7, we:

1. Pick r1 =5 and r5 = 6.
2. Compute

r3 = (3—(5+6)) mod7 = (—8) mod 7 = 6.
3. Shares are (5,6,6).

4. Check:
(54+6+4+6)mod7=17mod 7 = 3.

10

Other methods of secret sharing

In addition to additive sharing, there are various different techniques that are can be used. One example
is Shamir’s ¢-out-of-n threshold sharing [16], where any ¢ out of n parties can recover s, but any single
party can still learn nothing on their own.

There are many other methods of performing secret sharing, which can all differ in the access structures
they support, the efficiency of share generation and reconstruction, the size of the shares, and the
assumptions they rely on, such as computational versus information-theoretic security [16].

Secret sharing in SPDZ

SPDZ protocols [17, 18, 19] rely on the same foundational concepts of secret-sharing, but can also
incorporate authentication codes (MACs) and preprocessing techniques (Beaver triples) to facilitate
secure multi-party processes.

Beaver triples

Beaver triples are random tuples (a,b, ¢) that are secret-shared among parties and are characterized by
the relationship ¢ = a - b. These tuples are generated during an offline preprocessing phase, before any
inputs are known. Shifting the expensive task of creating these multiplication helpers to the offline phase
allows the online phase (when we actually multiply the secret-shared values x and y) to require fewer
local additions and fewer rounds of communication [18, 20]. In other words, this lets participants bypass
heavy work during the online phase.

This process combines shares of x — a, y — b, and ¢, eventually producing shares of = - y without ever
disclosing x or y [18, 20]. This separation between offline and online processes ensures the computationally
expensive work is completed beforehand, allowing the online phase to be quick while ensuring that all
contributions remain confidential.

Message authentication codes (MACs)

MAC:s are a verification process for each secret share to ensure that it remains untampered with [18]. In
SPDZ% [19] for example, every party holds additive shares of a single global secret MAC key. Each value
that is secret-shared is accompanied by a hidden authentication tag computed as “key times value”. The
tags are shared in a secretive manner, ensuring that no one is able to discover the key or any complete
tag.

When a value is opened, only that specific value is made public, while the tag shares remain concealed.
The parties continue to conduct a standard batched check, a MACCheck. This process mixes multiple
opened values with new randomness and ensures that all their hidden tags align consistently with the
same secret key, all while keeping the key itself confidential.

If this check does not pass, it indicates that at least one share has been modified [18]. This allows parties
to detect cheating while keeping the secret values confidential, and the parties abort.

2.1.7 MPC frameworks and SPDZ32

SPDZ2k [19] is a secure MPC protocol that operates over a ring of size 2¥. It means that all values shared
in secret and the arithmetic operations (such as additions, multiplications, and fixed-point encodings)
are conducted modulo 2¥. Also, each share includes a MAC, which ensures that any tampering can be
identified and active security guarantees can be provided.

In high-security environments, it can be important to select an MPC protocol that ensures the con-
fidentiality of inputs while also being resilient against active attackers. SPDZZ* provides security in
scenarios where there are dishonest majorities, which are situations where over half of the participants
might work together in a harmful way. SPDZ?¥ maintains security in this model through the use of an
offline preprocessing phase, using a scheme that uses authenticated sharing and message authentication
codes [19]. We distinguish:

e Active vs. Passive Security

11

— Passive (“honest-but-curious”) protocols ensure privacy protection only when every participant
adheres to the established protocol specifications, yet they may attempt to extract additional
information from the messages they observe. [14].

— Active-secure protocols ensure that correct results are achieved, even when corrupted parties
may deviate arbitrarily from the protocol, such as by sending improperly formatted messages
[14].
e Offline preprocessing
— MPC protocols can divide the secure computation process into two phases: an offline prepro-

cessing phase, which is slower, and a quicker online phase. For example, by precomputing
Beaver triples, the online phase can be streamlined [18, 20].

e Performance

— Protocols can vary in terms of their computational costs, such as CPU cycles and memory
usage, as well as their communication volume, which includes factors like round-trips and
total bytes transmitted.

2.1.8 Edge computing

A distributed computing implementation that reduces latency and bandwidth consumption by processing
data nearer to the source. For example, by placing a server directly in a branch instead of the cloud [10].
Edge computing enables real-time processing in IoT environments [§], enhances data privacy by keeping
sensitive data local [10], improves energy efficiency [9] and increases data security [21].

2.1.9 Encryption and verification methods

In the proposed system, it is important that we protect detailed fault logs, ensuring that only authorized
individuals have access to them. This means we need a method to verify that these logs remain secure.
We use two techniques for this purpose: the first is AES-CBC, which secures (encrypts) the log contents,
and the second is SHA-256, which generates a fingerprint (hash) of the fault data.

AES-CBC

To keep full logs that are kept off-chain private, we encrypt each log entry before storing it. We use AES
in Cipher Block Chaining (CBC) mode, which works like this:

e Example: A branch’s camera sends a new fault report (for example, “camera blurred at vault”).
Before storing the report, we process it with the AES-CBC algorithm so that only authorized
individuals can view the contents.

e Simplified, this algorithm works as follows:
1. We divide the log text into chunks of equal size (blocks).

2. We combine each chunk with the previously scrambled chunk, using a random starter value
for the first chunk.

3. Next, we use a secret key to convert the mixed chunk into ciphertext.

e The encrypted text is unreadable without the secret key [22, 23].

SHA-256

We process the fault data using SHA-256 to generate a fingerprint (a hash), which is a fixed-length
256-bit digest, using the SHA-256 algorithm. This process is a mathematical mixing technique that
consistently generates a 256-bit output. A slight alteration to the input results in an entirely different
hash. SHA-256 is used to verify that files or communications remain unchanged; if the hashes match,
the contents have not changed [24].

12

2.1.10 Hyperledger Besu

Hyperledger Besu is an open-source Ethereum client. The system implements the Ethereum Virtual
Machine (EVM) and allows for private, permissioned networks. We use Clique (EIP-225) mode [25]
for the consensus mechanism. Besu provides a JSON-RPC interface (which includes the web3 API)
along with detailed account and node permissioning [26]. This helps easy integration with Web3.py in
microservice deployments, and with integration into software systems.

13

Chapter 3

Method

This research uses a design science methodology [27]. We have a top-level goal (solving a practical
problem) and focus on the creation and investigation of an IT artifact (the creation of the privacy-
preserving fault detection framework). We validate the designed artifact using lab experiments and
benchmarking.

3.1 Literature review

The methodology for the literature review in the thesis involves a search and selection of relevant studies,
filtered on the inclusion criteria.

3.1.1 Inclusion criteria
The following criteria were applied to select relevant studies:
e We primarily focus on publications from the past decade to maintain relevance.

e Studies focusing on relevant information on blockchain, MPC, or edge computing in IoT (or IoT
fault detection).

e Papers addressing IoT security challenges in high-security environments.

3.1.2 Related work

The literature discussed in Chapter 4 established the foundation for the system design, influencing
important architectural choices and guiding the approach to experimental evaluation. This research was
influenced by related work, including but not limited to:

e Research regarding the integration of blockchain in IoT fault detection guided the choice to imple-
ment a blockchain system that uses a lightweight consensus protocol. The use of Proof-of-Authority,
as discussed by Azbeg et al. [13], enables the use of blockchain while avoiding high computational
demands, such as the ones linked to Proof-of-Work [9].

e Studies and information on MPC, also in settings where privacy is important (including the use of
MPC in environments with limited resources), including theories behind and practical use of MPC
[7, 8].

e Interpreting the findings from research conducted by Zalte-Gaikwad [10] and Liu et al. [8], the role
of edge computing is important in minimizing data transfer and facilitating real-time responses in
fault detection systems. The research papers also highlight the importance of integrating the logic
near the data source, helping with low latency and real-time processing.

e In research papers by Li et al. [6] and Uddin et al. [3], GDPR [5] and details on hybrid storage
models influenced the choice to implement a hybrid on-chain / off-chain storage model, which stores
full encrypted logs off-chain. This model could for instance solve the conflict between immutability
and data erasure rights, a challenge that has been identified.

14

3.2 System design

3.2.1 Design science phases

The design science methodology approach used is organized into three iterative phases. The phases
depend on insights from prior studies detailed in the literature review and aim to address security and
privacy issues related to IoT fault detection in high-security settings. The phases are:

1. System design/architecture: The initial phase focuses on defining the overall system architec-
ture, detailing the components, data flows, and security mechanisms involved.

2. Prototype development: A prototype is developed and deployed using containerized services,
following the architecture designed in the previous phase.

3. Evaluation and comparative analysis: The final phase evaluates the system. The evaluation
is based on data gathered from controlled tests and is compared to the system without MPC and
Blockchain. The prototype is used to evaluate the feasibility and performance of the system.

3.2.2 Prototype and simulation setup

A functional prototype of the proposed system is designed and evaluated under simulated conditions to
evaluate its performance. Every branch operates (1) an IoT fault generator, (2) a coordinator service
for local orchestration, processing and storage, (3) a Hyperledger Besu node in Clique mode for on-chain
storage and verification for off-chain logs, and (4) an MPC party utilizing MP-SPDZ (SPDZ2¥). Fault
logs are encrypted using AES-CBC and are stored off-chain, while only SHA-256 digests and aggregate
threat scores are stored on-chain.

15

Chapter 4

Literature review

4.1 Summary

The research in privacy-preserving computing explores different approaches to address the growing scale
and security concerns associated with IoT networks. High-security environments such as financial in-
stitutions, industrial control systems, and government infrastructure that uses IoT may need effective
fault detection mechanisms to ensure protection of privacy. Three primary technological approaches have
been investigated to meet these needs; MPC, edge computing, and blockchain integration. Each of these
technologies has its own distinct benefits and limitations.

First, MPC represents an important advancement in the field of privacy-preserving computation because
it allows several participants to work together while ensuring that their private inputs remain secure. For
example, this can be a collective weighted severity score between participants. This is useful in scenarios
where various parties need to analyze this shared data while also ensuring confidentiality is preserved.

MPC proves to be effective for this secure collaboration; however, it may struggle with the resource lim-
itations associated with IoT devices. Edge computing therefore can be used as an additional strategy by
bringing computation closer to the data source, without relying on the devices themselves or centralized
cloud infrastructure. This enables the execution of more computationally intensive programs at the edge
by offloading them to these edge devices. This helps prevent the IoT devices from becoming overloaded
while also not interfering with their essential functions.

Edge computing provides advantages, for example by reducing reliance on centralized cloud servers, but
it can also introduce challenges. One challenge identified is data integrity and trust. In the absence of a
central authority, there exists no “good” method to make sure that the results of computations remain
unchanged. Blockchain technology offers a practical approach to this problem by creating a decentralized
verification system that ensures data remains unchanged and can be traced back.

Blockchain networks need a validation mechanism, known as a consensus mechanism. The literature has
investigated a range of consensus mechanisms, such as proof-of-authority, proof-of-stake, and practical
byzantine fault tolerance, all of which aim to minimize energy consumption and computational demands.
These protocols help nodes come to a consensus while maintaining important safety principles. These
include data integrity, which prevents tampering; network availability, which ensures that processes
continue even in the presence of failures; and fault tolerance, which offers resilience against both malicious
attacks and malfunctioning nodes.

One of the main obstacles that blockchain-based systems encounter, especially in high-security applica-
tions, is adhering to the strict regulations that data privacy. This suggests that there exists a trade-off
between privacy and the need for auditability. Blockchain alone may not comply with legal standards
and guidelines, because the immutability of blockchain ensures data integrity, but it also makes it chal-
lenging to modify or delete information. This characteristic is particularly noteworthy when it comes to
compliance with regulations such as the General Data Protection Regulation (GDPR). hybrid on-chain
/ off-chain storage mechanisms could offer a solution to this problem.

The literature also examines common IoT security challenges, including device vulnerabilities, centralized

16

failure risks, and compliance requirements in high-security contexts.

4.2 Thematic review

We split the literature review into areas, with each area focusing on the most relevant aspects of the
proposed research; blockchain technology, MPC, and edge computing. In each area, we highlight the
findings and limitations.

4.2.1 Theme 1: Blockchain combined with IoT fault detection
Summary

Blockchain uses cryptographic techniques along with a decentralized framework. It can guarantee data
integrity and create a secure audit trail that is resistant to manipulation. Real-world implementation in
IoT environments can be restricted by factors such as resource limitations and regulatory compliance.
Adjusting the system to incorporate optimized consensus mechanisms and offloading can make it capable
of addressing these limitations in resource-constrained environments. This can enhance the viability of
blockchain for real-world IoT fault detection applications.

Literature review

When overcoming the limitations IoT environments typically have, blockchain technology can be a
promising solution to help address challenges in IoT devices (as discussed in Chapter 4.2.5), and specif-
ically can help facilitate fault detection for these devices.

A decentralized architecture can address the vulnerabilities associated with centralized systems. In
particular, it can address the single points of failure that might compromise the overall functioning of
the system. This is related to the distributed nature of the system, where nodes validate transactions
and store redundant record of the ledger (each node stores one copy of the ledger) [3, 4]. This prevents
a node failure from affecting overall system integrity and function [3, 4].

Blockchain uses cryptographic techniques to guarantee that all transactions and identified faults, such
as logs and other data, are recorded in a verifiable, tamper resistant ledger. When set up correctly, this
creates an immutable audit trail [4, 28, 6]. This feature can become particularly important in situations
that demand accountability and trust, such as when it is necessary to maintain a record of immutable
logs.

Efficiency in both computing power and energy consumption has been an important concern in the
adoption of blockchain technology within constrained environments, as highlighted by studies discussed
in Chapter 4.2.2. This emphasis particularly is related to consensus mechanisms, which are protocols
employed in blockchain networks to ensure that distributed nodes reach an agreement regarding the
validity of transactions and the current state of the ledger [13]. Consensus mechanisms guarantee that
all participants (nodes) maintain a consistent and tamper-evident record of data, without depending on
a central authority [13, 4]. These aspects help maintain the integrity and security of blockchain systems.
It is therefore important to select an appropriate consensus mechanism. Chapter 4.2.2 investigates the
comparison of consensus mechanisms that are most appropriate for IoT environments.

The integration of blockchain and edge computing in IoT networks offers a promising way to enhance both
efficiency and security by combining their respective strengths. More powerful edge devices can take on
the blockchain operations (which generally require heavy computational power) for IoT nodes. Running
transaction validation, block creation, and consensus protocols at the network edge allows resource-
constrained IoT devices, which may not be able to handle these tasks, to offload these tasks [29, 9].
This makes blockchain a more feasible option for IoT applications. The research into utilizing edge-
computing-assisted mechanisms to optimize blockchain’s performance in IoT environments is explored
further in Chapter 4.2.4.

Blockchain’s practical applications in IoT, specifically in the field of log storage, have been explored in
the studies, such as the study by Li et al. [6]. Here, blockchain facilitates tamper-evident storage and the
system allows for efficient querying of log data, which can be done by integrating on-chain and off-chain
storage solutions [6]. This storage approach is also explored in other studies, such as the study by Uddin
et al. [3]. This storage design could also enable users to maintain a verifiable and tamper-evident record

17

on the blockchain, while ensuring that private data is stored off-chain, which would enable the ability to
delete or modify off-chain data upon request.

However, implementing blockchain technology in IoT settings highlights several challenges. The first
issue is the overhead associated with blockchain. IoT devices are typically characterized by their limited
memory and computational resources [3]. This makes it difficult to accommodate blockchain’s resource
requirements [30, 3].

As a result, one effective solution can be to offload data to edge nodes. Edge nodes, which can be equipped
with better resources, can act as intermediaries in this model [9]. When we assign the blockchain process
to these nodes, IoT devices are able to avoid the heavy resource demands that come with maintaining a
complete blockchain ledger [9, 3, 30]. This could expand the application of such a system.

Blockchain guarantees that fault detection logs (stored as transactions in the blockchain system) are
immutable and verifiable across nodes, which improves data integrity, tamper resistance, and trust in
distributed scenarios. But, consensus algorithms such as Proof-of~-Work can result in increased compu-
tational cost, power consumption and latency, therefore its transaction processing speed may not satisfy
real-time limitations in IoT scenarios [31, 32]. This means that while blockchain enhances security, its
transaction processing speed, at least for the aforementioned consensus mechanism may not meet real-
time requirements in fault detection scenarios, unless specifically addressed. The added latency and
scalability can present additional challenges [13, 31]. Other consensus algorithms may be necessary to
address these performance bottlenecks. This is further researched and tested in Chapter 4.2.2.

Regulatory and compliance challenges introduce additional complexity, as the decentralized and im-
mutable characteristics of blockchain may conflict with data privacy laws like the GDPR[5]. This is
particularly relevant in situations where blockchain is used for storing sensitive information, such as
personally identifiable details regarding customers or employees. In such a situation, maintaining com-
pliance while preserving the fundamental advantages of blockchain can become an issue [3, 31]. hybrid
on-chain / off-chain storage mechanisms could offer a solution.

Li et al. [6] explore a hybrid on-chain/off-chain log architecture that focuses on scalable, tamper-evident
storage and efficient search. In their model, they maintain complete (encrypted) log payloads off-chain,
while committing only minimal on-chain data (cryptographic pointers (e.g., hashes), keyword indices,
and timestamps) to ensure integrity and auditability. Their work presents an opportunity for adaptation
to our specific use case, although the paper does not provide a modification/deletion mechanism.

Findings and conclusions

Our analysis shows that blockchain could improve the security of IoT fault detection by using a decen-
tralized and tamper-resistant ledger. It uses cryptographic hashes alongside a distributed node archi-
tecture, which removes single points of failure and ensures the integrity of data. And by transferring
validation and storage tasks to more capable edge nodes we can allow constrained IoT devices to avoid
heavy computation and the ledger maintenance tasks. Hybrid storage designs that combine on-chain
and off-chain elements could provide immutable audit trails while possibly also allowing modifications
or deletions of sensitive data off-chain to meet, for example, regulatory requirements, but this aspect
needs further research. Consensus mechanisms that are suitable for resource-constrained environments
along with edge-assisted frameworks need to be researched in order to effectively support real-world IoT
deployments.

4.2.2 Theme 2: Consensus mechanisms for IoT suitability
Summary

Proof of Work secures data by relying on intensive computational processes; however, it consumes ex-
cessive energy. Proof of Stake reduces energy consumption; however, it also creates risks such as central-
ization, “nothing-at-stake” issues. PBFT can handle faulty nodes; however, it can experience slowdowns
when faced with real-world workloads. Proof of Authority uses a limited and trusted set of validators to
achieve low latency and minimize energy consumption.

18

Literature Review

Consensus mechanisms are the foundation of blockchain networks. They enable agreement between
distributed nodes while ensuring the integrity and security of the ledger [13, 28]. In IoT-based fault
detection specifically, consensus enables nodes to collectively verify and confirm transactions that contain
fault data (which are data elements, such as strings) independently of a central authority. Ensuring trust
in the data stored within this ledger is important, as it helps to prevent any potential manipulation of
that data.

In blockchain systems tailored for IoT environments, the choice of a suitable consensus mechanism can
depend on various factors, including security, scalability, energy efficiency, and the limitations that come
with resource-constrained devices. This analysis examines different consensus mechanisms and evaluates
how suitable they are for IoT systems, particularly in high-security environments like bank vaults. The
application of blockchain consensus mechanisms in IoT contexts has been a focus of research, since each
mechanism offers distinct advantages and faces unique limitations when applied to IoT environments
[13, 28].

Comparisons between consensus mechanisms

Proof-of-work (or PoW) is the technology behind the Bitcoin network, Litecoin, and others [13]. PoW
operates through “miners” solving complex cryptographic puzzles that demand considerable computa-
tional resources. This is by design, the protocol is intentionally structured to ensure that the process
is computationally expensive and time-intensive [33, 28]. This is what makes the network secure; the
security of the network is tied to its computational power, which ensures data immutability on the
blockchain. This makes it difficult for an attacker to modify past transaction blocks, as they would need
to redo the work for that specific block and all subsequent blocks, while also needing to catch up to and
surpass the cumulative work of the chain [33].

The disadvantage of this design is its biggest inefficiency; substantial energy is consumed to power the
mining hardware (the computers that solve the cryptographic puzzles) [13, 28]. The Proof of Work
mechanism has faced criticism due to its environmental impact, as the electricity consumption often
compares to that of countries. For instance, the energy consumption of the Bitcoin network matches or
surpasses that of certain countries, including Denmark, Chile, Finland, and The Netherlands [34]. This
indicates that conventional consensus mechanisms, such as Proof of Work, tend to be resource-heavy and
therefore are probably not ideal for IoT environments.

PoW is not the only blockchain consensus mechanism protocol, there are other alternatives such as
Proof-of-Stake (PoS), Proof-of-Authority (PoA), among others. These mechanisms achieve consensus
while reducing the energy demands that are associated with PoW [13]. In PoS, for example, validators
are chosen to create new blocks and confirm transactions based on the process that takes into account
the validators’ stake. This avoids the need for energy-intensive computations as required in PoW [13].
To demonstrate the energy and compute savings, the ethereum network is a good case study. Ethereum’s
transition from PoW to PoS in September 2022 (known as “the merge”) reduced its energy consumption
by approximately 99.9 percent[35, 36].

The approach used in Proof of Stake, known for its scalability and energy efficiency [13], appears to be
quite promising. However, it also can bring up concerns regarding centralization and potential issues,
including the "nothing-at-stake" problem [28, 13]. In Proof of Stake, validators are selected to create
and confirm new blocks depending on the coin age they have staked [13, 37]. In contrast to Proof of
Work, which demands notable computational resources, Proof of Stake allows validators to lower energy
consumption [37].

This approach can also introduce important issues. First of all, Proof-of-Stake can suffer from the
“nothing-at-stake” problem. Because validators can build on every competing fork at no real cost, they
can undermine transaction finality and enable double-spend exploits [37, 13]. Also, Proof-of-stake con-
centrates power with large stakeholders, who can outvote smaller holders to centralize block production,
censor transactions, or influence protocol changes in their advantage [13, 3]. At last, PoS lowers the
barrier for long-range history attacks (which means that it lets attackers with enough coin-age alter
old blocks) and force changes in the blockchain [37]. This means that when users cannot rely on the
integrity of transactions (the fairness of blocks and the “permanence” of history), their confidence in
decentralization decreases.

19

Another consensus mechanism, Practical Byzantine Fault Tolerance (PBFT in short) works by requiring
nodes in the network to agree on the system’s state, even if some nodes act maliciously or fail [38]. PBFT
functions through a three-phase protocol consisting of Pre-Prepare, Prepare, and Commit. This process
is managed by a primary node that assigns sequence numbers to client requests, ensuring a total order
is established before execution and response [38]. PBFT can handle up to one-third of the nodes being
faulty or malicious while still ensuring the system remains operational and secure [38].

However, there are practical issues when running PBFT in production. First, PBFT requires that the
primary node (the designated leader) deterministically order and broadcast client requests, ensuring that
every backup replica executes the same state-machine transition using identical inputs and in the same
sequence, thus arriving at the same state. Each replica is also responsible for validating these inputs,
which functions well in a steady state; however, time drift can disrupt validation, causing the entire
system to stall [39]. Additionally, since PBFT is leader-based; it is also less decentralized than leaderless
peer-to-peer designs.

Also, the true cost of disk usage and cryptographic checks are overlooked by benchmarks that display
tens of thousands of null operations per second. When you transition this system to use “real data”, the
throughput decreases by up to 100 times in comparison to those idealized figures [39]. End users could
possibly experience slow transactions (performance degradation) or timeouts.

Proof of Authority, or PoA, relies on a limited number of trusted, pre-approved validators. In this
model, the system relies on identity and reputation, meaning that the nodes involved in the network are
motivated to act appropriately in order to maintain their reputation [13, 28]. Validators are chosen prior
to deployment and are trusted, which eliminates the necessity for resource-intensive processes to reach
consensus [13, 28]. Because only a small, trusted set of nodes participates, PoA avoids energy-intensive
mining and limits network traffic. This results in higher throughput and better performance compared
to PBFT systems [28], while also being energy-efficient [13].

However, the PoA model also has unique challenges. First, fair processes are important for selecting
validators, as they can help maintain trust and prevent a centralization of power. Choosing validators
is important for the trust model (since it is authority based), also making it essential for this process
to be transparent to avoid reducing the system’s overall trustworthiness [13, 28]. One system that has
been proposed to solve this in the Ethereum Clique PoA specification is an on-chain voting scheme
that is encoded in block headers. This approach offers a transparent and tamper-evident method for
adding or removing signers [25]. Also, since only a limited, pre-approved set of authorities is allowed to
create blocks, these nodes could theoretically collectively determine which transactions are included in
the chain. This is because if the majority of them collude, they have the power to censor transactions
(censoring signer) or reverse previous blocks (malicious signer) [25].

This review is not fully exhaustive. We primarily focus on PoW, PoS, PBFT and PoA because they are
prominent in the literature that we reviewed. In addition to the mechanisms already discussed, other
consensus protocols exist, including Delegated Proof-of-Stake, Proof-of-Capacity, Proof-of-Elapsed-Time,
Proof-of-Burn, Proof-of-Weight, and BFT variants such as HotStuff. Each of these come with its own set
of trade-offs, such as additional token economics, significant storage or computational needs, dependence
on special hardware, or extensive inter-node messaging [13]. These should be considered for evaluation
in future research.

Findings and conclusions

Of the mechanisms we investigated, Proof-of-Authority is the most appropriate choice for our system.
This mechanism depends on a small group of pre-approved validators, which helps to decrease compu-
tational demands and energy consumption. Since we control the branches, this model fits our architec-
ture. PoA reduces computational requirements and minimizes network traffic by eliminating the need
for resource-intensive mining, which allows for real-time processing at the edge. The Ethereum Clique
specification introduces an on-chain voting system for managing signers. This helps ensure a clear and
tamper-evident method for adding or removing authorities. The PoA model is also energy efficient.
However, it relies on the trust placed in the chosen authorities, which requires transparent processes for
trust management. A problematic selection process or potential collusion among signers can compromise
security and enable transaction censorship.

20

4.2.3 Theme 3: Privacy with multi-party computation
Summary

Multi-party computation, or MPC, allows multiple parties to collaboratively compute a shared function
while keeping their individual inputs confidential. It can ensure confidentiality through the integration
of secret sharing and also, in some implementations, mechanisms such as message authentication codes.
Protocols, including the SPDZ family of protocols, incorporate an offline phase to transfer intensive
computations away from the online process. Active security makes it possible to identify tampering,
even in the presence of dishonest participants.

Literature review

MPC enables multiple parties, who may not trust one another, to work together in order to compute
a function using their private inputs, all while keeping those inputs confidential from each other [7].
The guarantee of confidentiality, alongside the ability to analyze data collaboratively, makes MPC a
promising option for secure and privacy-preserving data management [7, 40].

In scenarios that involve fault detection within sensitive IoT environments, where every device or branch
contains sensitive information such as sensor readings or local fault scores, this data may need to be kept
confidential at all times, even as the system calculates the outcome.

The concept and foundations of MPC has its origins in the foundational research conducted by Yao
[41, 42|, as well as the contributions from Goldreich, Micali, and Wigderson (GMW) [43, 44]. This
established the groundwork for protocols designed for both two-party and multi-party scenarios, focusing
on passive security measures against adversaries [43]. These early MPC protocols were able to provide
security against these “semi-honest, passive” parties, however, real-world systems require protection
against active attackers who may randomly deviate from the specified protocol [43, 44, 45].

Garbled-circuit methods, like Yao’s protocol [41], enhance two-party computation by minimizing com-
munication rounds. However, they require costly zero-knowledge proofs or cut-and-choose procedures for
active security [20], which can make them less suitable for regular MPCs in environments with limited
resources.

Making MPC more secure against malicious parties, while also speeding up runtime and providing
useful tools that can be used in the real world may help MPC’s utilization. One of the primary sets of
protocols identified that assist in achieving these objectives is the SPDZ family of protocols [17, 18, 19].
For example, SPDZ protocols can include information-theoretic message authentication codes with each
secret share. If any tampering occurs, it affects the MAC check and leads to the protocol’s termination,
thereby preserving correctness in spite of malicious actions [18, 19].

Beaver triples can help speed up MPC. These are generated in the offline phase and are simply hidden sets
of supporting values that are created prior to the launch of the online MPC tasks, which lets participants
bypass complex processes (as these are used as MPC operations are performed, as to avoid heavy work
during these operations) when they need to process confidential inputs at a later stage [18, 20].

The MP-SPDZ [46] and Sequre [47] frameworks offer high-level compilers that convert annotated Python
or domain-specific languages into optimized MPC protocols, which minimizes the cryptographic com-
plexities for developers. This could speed up MPC development and integration, because it makes MPC
more accessible. MP-SPDZ specifically allows users to set parameters such as the security guarantee
and the algebraic domain (the ring size), which can be adjusted depending on various input-size needs.
MP-SPDZ also can use an offline preprocessing phase to enhance overall efficiency [46].

Real-world implementations showcase the practicality of MPC. For example, MPC in healthcare allows
for the collaborative analysis of patient data for research purposes, all while maintaining patient privacy
[48]. For IoT specifically, Zhao et al. [7] performed an investigation into MPC in these environments,
demonstrating that protocols that are well-designed can securely aggregate sensor readings across dis-
tributed nodes.

Interpreting the results from the study by Zheng et al. [4], the integration between MPC and blockchain
can in theory further enhance the security, trustworthiness and reliability of data. In this system,
blockchain’s immutable, decentralized and verifiable ledger [4] could act as an enhancement to MPC,

21

which could help with securing and validating the results. This is because blockchain can store the
output data (results) on-chain, providing an immutable audit trail for these results [4].

MPC presents promising solutions for IoT fault detection systems, like the one proposed in this thesis.
However, there are several challenges that need to be addressed in order to reach its potential. To begin,
many MPC protocols introduce noteworthy computational expenses on every participant involved [7].
Traditional online phases rely on high-precision modular field operations, for example, implemented via
Montgomery arithmetic, to perform the necessary secret-shared additions and multiplications efficiently
[18].

Findings and conclusions

Our analysis indicates that MPC maintains data privacy through the integration of secret sharing along
with techniques such as MAC checks. Protocols like SPDZ incorporate information-theoretic MACs with
each share and will stop functioning if any tampering is detected, guaranteeing correctness in the context
of active attacks. Beaver triples that are created during an offline phase help to shift costly operations
away from the online phase, which minimizes the runtime overhead for participants. High-level compilers
such as the ones provided by MP-SPDZ and Sequre take annotated Python or domain-specific code and
convert it into optimized MPC protocols, making it easier for developers to work with these technologies.
Integrating blockchain with MPC enhances the security of computation outputs by recording them on
an immutable ledger, which also offers an audit trail for the results.

4.2.4 Theme 4: Edge computing for real-time IoT fault detection
Summary

Edge computing helps with the processing and storage of data for devices placed on the network edge.
This method reduces latency, saves bandwidth, and ensures that sensitive data remains on-site. Research
indicates that it has the capability to gather data from numerous sensors in milliseconds and transfer
demanding tasks to more robust edge servers. But, risks associated with physical access to edge devices
require the implementation of end-to-end encryption and security measures.

Literature review

Edge computing is a distributed computing model that processes data closer to its origin (for example:
in IoT settings this would be a device placed either physically on the same network, or close to the IoT
source devices). This approach reduces the dependence on transmitting data to distant servers, which
helps minimize delays and conserves bandwidth [10, 21]. This method moves cloud capabilities, such
as computing and storage, to nodes at the network edge and is intended to meet requirements for low
latency and high bandwidth, support security-sensitive applications, and offer more intelligent services
in close proximity to data sources [21].

These features make edge computing an appealing choice for secure and fast real-time data processing
[21], which can also apply in ToT systems where quick response times and data security can be important.
The research highlights several advantages of using edge computing in this context.

One use of edge computing in this context is the study by Liu et al. [8], which integrate a secure MPC
scheme for real-time data aggregation within a cloud-edge computing framework. This successfully
moves most of the data processing responsibilities away from both the cloud and the limited industrial
IoT (IIoT) devices. In this model, each edge server gathers raw data from its local group of sensor
nodes, performs the aggregation and processing of the data, and afterwards sends only brief, region-level
summaries to the central cloud [8]. This design reduces communication overhead by eliminating the need
for numerous individual sensor transmissions to the cloud. It also decreases end-to-end latency, as edge
servers are located closer to the devices and can process data in around 25 milliseconds for 100 nodes [8].

The study demonstrates that by maintaining raw measurements within the local network and sending only
anonymized aggregates, the framework protects device privacy while avoiding the need for complicated
encryption at the node level. In practical terms, when there are 20 to 100 IIoT nodes connected to
each edge server, the system is able to perform real-time aggregation and computation tasks within a
timeframe of single to double-digit milliseconds [8]. This performance likely satisfies the response-time
requirements of industrial applications.

22

Edge computing also specifically enhances data privacy by allowing sensitive information to remain
within localized systems. Processing data at edge devices reduces the risk of exposure that can happen
during transmission to external servers [10, 21], which is particularly relevant for applications in sensitive
domains like financial systems or critical infrastructure.

Edge computing can also lead to higher energy efficiency of the overall system. By transferring compu-
tational tasks to edge nodes, the energy consumption of individual devices can be reduced. Studies by
Wadhwa et al. [9] and Nguyen et al. [29] emphasize the role of edge computing in achieving energy-efficient
IoT operations.

Wadhwa et al. [9] suggest that the proof-of-work mining process of the blockchain could be offloaded
to a single, high-capacity edge node, which would be selected based on its CPU, RAM, and bandwidth
characteristics. Their design reduces energy consumption by approximately 21 percent and decreases
memory requirements by 24 percent, all while ensuring that block-generation rates remain suitable for
IoT networks [9].

Nguyen et al. [29] review, through studies in specific domains, how edge computing moves core IoT
processing from the cloud to local nodes. The results from this change improve the system’s respon-
siveness by reducing the time data takes to travel and decreasing the load on the network [29]. In the
first study, in the healthcare sector, edge servers play an important role by preprocessing patient data
directly on the network edge [29]. The study found this method could addresses real-time requirements
while making sure that data remains on-site, and as a result safeguard privacy as well.

Another example appears in the study focussed on smart grids, where edge-hosted nodes placed close
to generators and consumers speed up energy trading, enable quick demand response, maintain reliable
audit logs, and reduce load on the network [29].

While edge computing offers many advantages, it also presents several challenges. To begin with, resource
constraints may be a challenge in certain edge devices. Edge devices sometimes may not have enough
computational power and storage capacity to manage complex processing tasks. To address this issue,
Cao et al. [21] described edge architectures can carry out computational offloading. At first, there is a
phase referred to as the offloading decision phase, which examines what tasks to offload, the extent of
the offloading, and the appropriate location for this process. This evaluation takes into account various
metrics, including energy consumption, latency, available bandwidth, and data size [21]. Afterwards,
there is a phase dedicated to resource allocation, where tasks are assigned to one or more servers [21],
taking into account the capacity of each server.

While edge computing decreases dependence on centralized systems and speeds up local processing, it
can also expose certain security concerns. First, to begin with, having physical access to edge devices,
which can be situated in remote or public locations, enables attackers to interfere with hardware com-
ponents, such as by soldering or hardware attacks that exploit exposed ports (e.g. USB, PCle), or to
take advantage of side-channel attacks that leak data [49]. This can present a risk of data theft or
potential device malfunction. Local cyber attacks can also be initiated, for example, attackers can also
inject malicious firmware or carry out man-in-the-middle attacks on communication interfaces, enabling
interception or modification of data [49].

To protect against these threats, it is important to encrypt data whether it is stored or being transmitted
[50]. For example, cryptographic schemes at the edge help protect data, even in scenarios where an
attacker might obtain physical access [50, 49].

Findings and conclusions

Our analysis indicates that edge computing is capable of meeting the real-time needs for IoT fault
detection by handling data near its origin. According to the research by Liu et al. [8], edge servers were
able to aggregate data from as many as 100 nodes in approximately 25 milliseconds. This performance
meets the low-latency requirements typical of industrial applications. Maintaining raw measurements
on-site also helps to protect data privacy and reduces communication overhead. Offloading strategies,
as outlined by Cao et al. [21], enhance the functionality of limited edge devices. This process distributes
tasks to servers with sufficient capacity. Research by Wadhwa et al. [9] also show benefits: they observed a
21% decrease in energy consumption and a 24% reduction in memory usage when proof-of-work mining
transitioned to a single, high-capacity edge node. Similarly, Nguyen et al. [29] described similar
improvements in efficiency and responsiveness within healthcare and smart-grid contexts.

23

However, having physical access to remote or public edge devices can lead to hardware tampering,
firmware injection or side-channel attacks, as highlighted by Jin et al. [49]. Sheikh et al. [50] therefore
suggest that to address these threats it is advisable to implement end-to-end encryption for both stored
and transmitted data at the edge.

4.2.5 Theme 5: Security challenges in IoT
Summary

The distributed architecture of the IoT, along with its resource-limited devices and reliance on networks,
can lead to vulnerabilities across the entire stack, making systems susceptible to attacks across multiple
O8I layers'. The lack of uniform security protocols along with real-time threat detection can result in
breaches within IoT networks.

Literature Review

The IoT ecosystem can be useful because of the range of applications it offers, but it also brings with
it certain security challenges that need to be addressed. These challenges stem from its inherently
distributed architecture, reliance on resource-constrained devices, and dependence on network commu-
nication, which can create vulnerabilities across the entire stack [31, 3]. These weaknesses make IoT
systems susceptible to attacks, complicating efforts to ensure data privacy and secure communication,
as seen in the study by Sasi et al. [52].

One of the concerns is the centralized architecture of traditional IoT systems, which introduces risks
such as a single point of failure and reduced system reliability [3]. Security breaches in IoT devices can
lead to a chain reaction throughout networks, which can further increase these risks [31].

In industrial networks specifically, the increasing integration of IoT sensors and controllers forms a signif-
icant expansion of the attack surface. By 2020, almost half of manufacturing companies had implemented
industrial IoT, and the number of devices on factory floors is expected to more than double by 2025.
Nevertheless, 82 percent of these companies have experienced a cyber breach related to IoT within the
last two years [53]. This highlights the importance of implementing “security by design”.

IoT devices often operate under significant resource constraints, with limited computational power and
memory. These limitations make it difficult to implement strong security protocols, leaving devices
vulnerable to attacks such as impersonation, eavesdropping, and denial of service [31, 52]. Hardware
vulnerabilities can be another concern, especially given the lack of standardization in IoT device manu-
facturing [52].

In a context like banking, where unauthorized access can result in risks, encryption and real-time mon-
itoring can be important for security [54]. Here, IoT endpoints such as RFID readers and biometric
sensors are used. These devices can contain data that can be captured by IoT devices, which is useful
for analysis [54], but these could also draw the attention of cybercriminals seeking to steal or modify this
data.

In general, the risks extend across the IoT stack. In the OSI model, threats can span multiple layers.
At the network layer (Layer 3), routing attacks and replay attacks can disrupt or eavesdrop on data
flows [52]. At the application layer (Layer 7), attackers can intercept sensitive data or inject modified
commands into IoT services [52].

Centralized IoT architectures can increase these risks by creating single points of failure. These vulner-
abilities make centralized systems susceptible to data tampering and loss, which presents an important
challenge in sensitive environments [31, 29]. Adding to these issues, existing IoT systems frequently lack
real-time threat detection capabilities, delaying responses to attacks and increasing the potential damage
[52].

IThe OSI (Open Systems Interconnection) model is a conceptual framework that organizes network functions into seven
distinct layers: Physical, Data Link, Network, Transport, Session, Presentation, and Application. This structure intends
to promote interoperability and help with the design of protocols[51].

24

Findings and conclusions

Our analysis indicates that IoT systems can have vulnerabilities across all layers of the OSI model.
Devices with constraints often struggle to implement robust security protocols, making them vulnerable
to threats such as impersonation, eavesdropping, and denial-of-service attacks. Centralized architectures
can create single points of failure, which increases the risk of data tampering and loss. Examples
from industrial deployments highlight the risks: A noteworthy 82% of manufacturers have reported
experiencing an IoT-related breach within the past two years. Attacks can vary from routing and replay
exploits to command injection and data interception. Without real-time threat detection, response times
suffer and attackers have greater opportunities to inflict damage.

Therefore, implementing real-time monitoring is important for identifying anomalies early, preventing
them from spreading further. For example, in banking, a faulty RFID reader could result in unauthorized
access. Decentralized frameworks can eliminate single points of failure in systems that can detect these
anomalies and enhance auditability. This can improve and maintain trust in IoT networks.

4.2.6 Theme 6: IoT in high-security environments
Summary

In the banking sector, IoT systems provide security to protect vaults. In the industrial domain, these
systems can combine predictive maintenance with secure monitoring to prevent failures and unauthorized
access. Some of the main threats to IoT and industrial networks are ransomware targeting critical
systems, insider attacks, signal interception, and issues regarding privacy. Many organizations still do
not implement complete network segmentation, which increases the probability of cross-network attacks.

Literature Review

This theme explores how IoT technologies can be integrated into environments that require increased
security, such as in banking and critical industrial facilities. The aim is to identify the distinct challenges
that exist within high-security environments. The literature reveals varied use cases for IoT in these
settings, alongside challenges that must be addressed to ensure their effectiveness.

Ransomware has expanded its impact beyond only enterprise IT; it is currently an important threat to
critical real-time systems. For example, in the healthcare sector, the number of monthly ransomware
incidents more than doubled from 2021 to 2022, typically severely impacting both hospital IT and
operational technology [53]. Attacks on utilities, like the 2021 Florida municipal utility Lake City hack
[53], show that hacks can affect critical services.

In the financial sector, IoT systems fulfill an important part in preventing unauthorized access to critical
areas, including vaults. These systems use real-time anomaly detection and alert mechanisms to handle
breaches [54]. Multi-factor authentication, RFID, passwords, and facial recognition, makes sure that
only authorized personnel can access sensitive areas. This process is facilitated by IoT, which, in this
context, serves to improve both physical and digital security [55, 56]. The use of IoT-enabled monitoring
increases these capabilities through the use of sensors within vaults to identify any tampering or physical
breaches. For instance, devices that have vibration and motion detectors can constantly monitor the
surroundings, sending alerts when there are indications of suspicious activity [56, 55].

It is important to take into account the challenges associated with implementing IoT in high-security
environments. Complex threats, like insider attacks, where employees or contractors with access to secure
systems may intentionally or accidentally compromise devices, and signal interception, which involves
intercepting wireless signals to gain access to sensitive data or disrupt operations, highlight the challenges
in safeguarding these environments [52], among other risks such as impersonation, denial of service and
eavesdropping [31]. In addition, processing sensitive information, including personal biometric data and
transaction data, can create privacy issues, mostly with regard to adherence to the strict data protection
regulations such as GDPR [5].

An important case study to investigate in the context of IoT security within high-security environments is
the Stuxnet cyberattack. This incident illustrates the possible impacts of IoT vulnerabilities in settings
that require high security. The now well-known worm was aimed specifically at programmable logic
controllers (PLC’s) within Iran’s Natanz nuclear facility, and managed to get past air-gapped networks
through the use of USB drives. Stuxnet altered the speed of centrifuges involved in uranium enrichment,

25

resulting in physical damage and disruption of nuclear enrichment operations, which was the intended
consequence of the worm [57]. This attack demonstrated how cyber tools can affect critical infrastructure,
even when systems are physically isolated. It also illustrates the challenges involved in securing industrial
IoT systems and the lengths to which attackers may go to accomplish their goals.

Adding to this problem is the fact that just 24 percent of manufacturers have achieved full network
segmentation between IT and the operational technology systems [53]. The lack of separation enables
attackers to transition from enterprise systems onto operational networks, which could lead to disruptions.

Findings and conclusions

Our analysis indicates that IoT systems used in high-security environments enhance both physical and
digital access control. This is achieved through real-time anomaly detection, multifactor authentication
methods, RFID, passwords, and facial recognition, as well as sensors that monitor for vibrations and
motion to alert on any tampering attempts. These measures are designed to protect vaults and essential
infrastructure; however, they can experience complex threats like insider attacks and the interception of
wireless signals. Ransomware has become more focused on operational technology, evident from the rise
in incidents within the healthcare sector and the 2021 Lake City utility hack. Also, the Stuxnet worm
illustrates how attackers might even be able to enter air-gapped networks, leading to potential physical
damage. Only 24 percent of manufacturers have achieved complete IT-OT network segmentation. This
lack of separation leads to lateral attack paths that are vulnerable.

4.3 Discussion

The thematic review researched three technologies, blockchain, MPC, and edge computing, that as a
whole seem to be able to theoretically address the need for real-time fault detection and data privacy in
high-security IoT environments. This section explores the findings and discusses them in relation to the
design goals stated in this thesis.

To begin with, the immutable ledger of blockchain offers an effective guarantee of log integrity, which is
in line with the need for tamper-evident audit trails. However, the existing literature clearly indicates
that traditional proof-of-work chains experience significant latency and energy expenses, particularly in
environments with limited resources.

Lightweight consensus protocols like proof-of-authority offer a practical solution that preserves im-
mutability while minimizing the computational requirements associated with proof-of-work. This in-
dicates that a private chain based on a lightweight consensus mechanism offers the most practical
blockchain-based solution for secure logging in an IoT edge deployment.

Our analysis further indicates that implementing a hybrid on-chain / off-chain storage model can be
important for balancing the immutability of blockchain technology with the data-erasure requirements
by regulations such as the GDPR. This would allow for both auditability and legal compliance.

We also found that MPC improves privacy by allowing multiple parties to collaboratively compute a
function using their private inputs while keeping those inputs confidential. Our review shows that
protocols providing active security, such as SPDZ, come with overhead in terms of both computation
and communication, and therefore may necessitate the use of more powerful systems.

Finally, edge computing places processing near the data sources, which helps to lower both latency and
bandwidth usage. Research indicates that edge servers are capable of aggregating and preprocessing
sensor data in just a few milliseconds in some cases, all while maintaining privacy by keeping the raw
measurements stored locally.

In our architecture, this could mean that each branch’s edge node should also serve as the blockchain
validator, and a MPC party. This setup could help with localizing all sensitive operations and reducing
the risk of data exposure across wide-area links, while making such a system possible. This design will
be researched in this thesis.

The research we reviewed indicates that the proposed framework is feasible. When combined, these
three technologies have the potential to provide a complementing system: edge computing provides low-
latency processing, MPC safeguards inputs during score aggregation, and blockchain stores the hashes
of the data.

26

The main limitations are related to resource overhead (blockchain nodes require storage and validation
cycles, whereas MPC uses computational resources and network bandwidth). The PoA model relies on
trusted validators, which introduces a trust assumption and risk of collusion. The edge computing layer
requires physical security measures to prevent tampering and ensure device integrity. These findings
point to the need for a threat model that covers validator trust and edge node compromise.

27

Chapter 5

System design

5.1 Introduction

This chapter provides a detailed overview of the architecture for the fault-detection system, starting with
the main components and how they interact in the process of detecting, correlating, and documenting
faults in IoT devices. The major design choices and the reasoning that supports them is described in
section 5.3.

5.2 High level system architecture

The main components of the system and their interactions are illustrated in Figure 5.1, along with the
data flows between the components. The system operates through a collection of Docker containers, with
each one executing a specific function in the fault-detection process:

1.

Each branch runs an edge service designed to handle faults. In this proof-of-concept, we use a tool
called the IoT simulator, which selects this severity score. This tool allows users to create and
test virtual IoT devices in a controlled environment, which aims to replicate the functionality of
sensor devices. The process starts with picking a branch and sublocation, choosing a fault type
and assigning a severity score. Each event is sent as a JSON payload to the Coordinator API. Each
event is also timestamped when it is received by the service.

When the IoT simulator service sends a fault, it sends this to the coordinator, a service that is
present at every branch. The Coordinator obtains unprocessed fault events. It marks the time of
reception, and logs that score. This data is encrypted using AES-CBC, then written to a local
off-chain log, and a SHA-256 hash of the fault data is computed. The coordinator service transmits
that hash to the blockchain API, where it is stored as an immutable transaction. The MPC node
at that same branch also has access to a copy of this fault data, which is used during the MPC
process.

When a fault is detected, or when specifically requested, we can initiate a threat update across
multiple branches. When this is requested, the coordinator service reaches out to the local MPC
node, which holds the severity sum and event count for its branch. All MPC nodes run MP-SPDZ
simultaneously. They calculate an overall average severity without revealing the inputs from the
branches.

After the completion of the MPC-process, all nodes reveal a threat percentage (a weighted average
between the branches) to each branch operator, indicating the level of global threat. One node
gathers the results, hashes them, and then submits the score to the blockchain service. This
transaction stores the network threat score on the blockchain, in a temper-evident way. Every
branch has the ability to query the chain or retrieve their own local MPC result in order to get the
most recent score and modify its local security policies as needed.

The MPC protocol does not reveal raw sensor readings or branch scores. Rather, each branch
divides its private input into random secret shares and only exchanges those shares. Individual

28

Branch C

Data stream —__»|

Coordinator

(Running on edge

Storage

MPC Branch C BC Branch C
node) p A Branch C
(Running on (Running on 5
edge node) edge node) (BUnhinglor
edge node)
AAAAAAAAAAAAAAAAAAAAAAAAAAA | | |
| | |
| | |
+ Blockchain stores hashes of
logs from all branches, along
Each branch (A, B, and C > >
: dos not shar(e o fault) with MPC results, to ensure
1og. but only MPC- tamper-proof records. « Each branch stores the full
cogr;-n uted syeverity counts encrypted log in its own local
P) « Each branch participates in off-chain storage.
. this network.
‘ tct)12I)flir‘1)arl1letr:\:l :a?:(g: is:ﬁ)mlts « The blockchain only keeps a
form 9 « Branch A, B, and C can read reference to these logs.
) the latest global threat score
from the blockchain and
react accordingly.
I I !
| | |
t t t
Branch A ' ' '
Multi-party computation Blockchain Off-chain encrypted log
"""""""""""""""""""" Data stream storage
" - Computes a threat score - Logs data immutably
) ' ; - No raw data exposure - Stores pointers to encrypted - Stores full encrypted logs
Devices : Coo_rdlnator - Secure anomaly correlation logs - Logs have a reference ID
' (Running on edge - Outputs weighed threat - Ensures auditability which is related to the one
§ node) average stored
Motion D fv taul in the blockchain system.
ata snippet for camera fault - i i
e PP - Pre-processes Helps with compliance
raw
"device_id": "camera1”, G
9 Storage
@ - Validates fault e— MPC Branch A BC Branch A %
" Branch A
conditions €
sensors - Encrypts logs with - - -
branch key (Data snippet Data snippet . Data snippet
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, "logs": ["hash": "9f2a7d8c6e4b13d...",
. . 9 { “encrypted_log'
sends lnfo_rmatlon "device_id": "camera1", {\'iW\"\"Base64IV. jata\":\"Base64C
to blockchain ST o)
ranch': "Brancht”,
"time: "2025-06-
10T12:00:05:
- Manages MPC- mestaonpe{ Coock 7
process “iot_start' "2025-06- transactionHash": h": "Branch1”,
10T12:00:052", "0x8f2a7d8cBedb13d...", "sublocation": "Lobby"
"coordinator_received": "2025- "data": "9f2a7d8c6e4b13d..."
06-10T12:00:05.100Z",

"saved_by_branch_mpc._system":
*2025-06-10T12:00:05.2502"
y

13
"timestamps" {
iot_start":

"coordinator_forwarded": "2025- "2025-06-
06-10T12:00:05.15(
"sent_from_coordinator_to_mpc" _received”: "2025-C
"2025-06-10T12:00:05.200Z", 0Z",
"2025-

2:00:05.1502",
"sent_from_coordinator_to_mpc":'21
10T120005 2007

L

Figure 5.1: High-level system architecture of the proof-of-concept prototype for fault detection. In this
model, branch A is the branch submitting the mpc calculated outcome to the blockchain. The MPC,
Blockchain (BC), and Storage services run as services on an edge system running at each branch.

29

shares do not disclose any information on their own; it is only when all shares are brought together
that the value becomes visible.

6. Every branch operates its own blockchain node (the blockchain service) alongside the other services.
The node relays transactions to other validators, which assist in the maintenance of consensus.
Local off-chain storage retains the complete encrypted logs and help with compliance, for example,
when needing to remove data in response to deletion requests, such as those under GDPR, like
a “right to erasure” request. This approach also helps maintain a compact on-chain storage size,
since less data is stored on-chain.

7. The on-chain ledger only contains SHA-256 log hashes as well as threat-score details. The complete,
full, logs remain encrypted off-chain which allows branches to delete or archive detailed data (ac-
cording to a set schedule or manually). This separation allows the system to comply with policies
while maintaining a verifiable audit trail.

5.3 Design choices and rationale

In this chapter, we discuss the decisions for the design of the proof-of-concept system. Every section
provides a rationale for one significant decision, utilizing insights from both academic literature and
practical factors. Whenever we can, we ground the decisions in previous research, while primarily
concentrating on specific engineering requirements.

5.3.1 Choice of number of branches

In our prototype, we restrict the branch setup to three branches, which consequently limits the MPC and
blockchain parties to three as well. This decision allows us to perform the implementation and experi-
ments within the limits of our test hardware resources, while still engaging in a multi-party computation
and blockchain protocol. Three participants represent a manageable and practical deployment, like a
head office working alongside two branches, while avoiding the added coordination challenges that larger
groups would entail. We choose this minimal configuration to showcase the end-to-end functionality and
performance in our environment.

5.3.2 Choice of programming language and key libraries

We choose Python because it offers quick development, an easy-to-understand syntax (Python adheres to
the “simple is better than complex” core philosophy), and a well-established ecosystem [58]. The dynamic
typing and concise nature of Python assist in reducing redundant code, allowing for rapid prototyping
of complicated functions [59]. The widespread use of this technology in both research and the industry
guarantees that it will remain sustainable in the future [60].

We choose to incorporate the following libraries into the codebase:

e Flask is used for building HTTP APIs and lightweight dashboards, making it suitable for demon-
stration purposes. The minimal core and the extension system enable the creation of microservices.
This architecture separates functionality, such as API endpoints, dashboards, and MPC orchestra-
tion, into distinct services that can be developed, deployed, and scaled independently.

e We use the requests package to call other services via REST because its API is straightforward
and synchronous, which helps in reliably coordinating steps across services.

e Pycryptodome is used for encryption, and hashlib for SHA-256 hashing. These ensure the security
of off-chain logs and produce fixed-length digests for storing on-chain.

e Web3.py! is used for interacting with Ethereum JSON RPC?, which is a way for developers and
users to communicate with an Ethereum node, making it easier to sign and submit transactions to
Besu®.

1Web3.py is a library in Python that allows users to interact with Ethereum nodes through JSON-RPC.
2JSON-RPC is a protocol for remote procedure calls that operates in a stateless manner, utilizing JSON over HTTP.
3Hyperledger Besu is an open-source Ethereum client that supports permissioned proof-of-authority networks.

30

e python-decouple is used for managing configuration settings. It allows us to import configuration
variables from the docker-compose files, making changing these easier instead of having to hard-
code these within the scripts.

e The schedule library (in the IoT simulator) is used for periodic fault injection.

e The eth-account library is used for managing Ethereum accounts and signing transactions. It plays
a role in both the blockchain setup and the web interface, facilitating the creation and signing of
transactions.

e The eth-keys library is used via eth-account for low-level key management and for converting
between raw private and public key formats.

e Psutil is used to obtain host system information. It is used in the data collection script to collect
info about the CPU, memory, and other host features.

e The Docker package® is used in the data collection script to gather active containers, gather size
and performance metrics.

e The pytz package is used for timezone handling.

e Supporting packages include standard-library modules such as json, os, time, threading, logging,
csv, argparse, and datetime, which are used for scripting and/or input/output operations.

5.3.3 Microservices architecture

This design isolates failures, ensuring that, for example, a bug in the simulator does not lead to a crash of
the MPC service. It also allows for the ability to develop and test services simultaneously. Deployment
and upgrades are easier because we can introduce a new version of a single service without the need to
rebuild the entire system. And finally, this design also accommodates future modifications within the
system, such as testing changes proposed in the future work section.

5.3.4 Containerization with Docker

Each service is packaged in a Docker container, which combines its application code, runtime, libraries,
and configuration into one single image [61]. This guarantees that the service operates in the same way,
regardless of whether it is on a developer’s laptop, a cloud server, or an edge device.

Docker containers make use of the host operating system’s kernel, which allows them to avoid the
complete virtualization stack typically associated with virtual machines. This lightweight approach
provides isolation between containers and the host processes, resulting in CPU and memory performance
close to native execution [61]. This difference is illustrated in Figure 5.2, where Figure 5.2b shows the
main architectural differences between the Docker architecture and a virtual machine architecture.

Container Architecture Virtual Machine Architecture

VM A VM B

App A App B

DOCKER_HOST

docker build -

b A Docker daemon

Guest 0S Guest 0S

)
docker pull Containers

docker run —

Docker Engine Hypervisor

Host Operating System Host Operating System

Infrastructure Infrastructure

(a) Docker architecture overview [62]. (b) Containers vs. virtual machines [63].

Figure 5.2: (a) The Docker workflow: client commands, daemon, images, containers, and registry. (b)
Comparison of container and VM architectures.

4Docker is the official Python SDK for Docker, enabling programmatic control of containers and networks.

31

A Docker container is created using the docker build command. The client sends a Dockerfile to
the Docker daemon, which then processes each instruction to build a series of immutable filesystem
layers. The layers that make up a Docker image can be found in the “Images” panel shown in
Figure 5.2a. When you execute docker run, the daemon takes those read-only layers and adds a
thin writable layer on top, creating the running container.

e Every image consists of an operating system, a language runtime (specifically Python), along with
particular versions of libraries. When we specify exact package versions in requirements.txt and
use Docker image digests®, we ensure that each time a container is launched, it operates with the
same binaries and dependencies.

e Containers operate within distinct environments. For example, it is possible for one service to use
Python 3.11 while another operates on Python 3.9, and they can do so without any conflict. When
you upgrade or add a library in one container, it does not impact the other containers.

e We can create images for various CPU architectures, such as x86 64 and ARM. A single con-
tainer image can operate on various hardware platforms without requiring many, or even any,
modifications to the service code.

e Docker allows us to “lock in” the dependencies, which allows possible future research to reuse the
exact environment we delivered.

e Docker provides metrics such as CPU usage, memory consumption, block I/O, and network I/0
through the docker stats API. These metrics focus solely on the activities within the container,
eliminating any interference from other host processes or the overhead associated with virtual
machines. We use this API to gather container metrics®.

5.3.5 MPC framework

We aim to use a framework that integrates active security measures and offline preprocessing, while en-
suring that the codebase remains maintainable. We use MP-SPDZ by Keller [46], which is a C++-based
framework that offers support for various protocols, including SPDZ?*. It comes with detailed documen-
tation, example programs, and an active community on GitHub, with over 1100 stars, 57 contributors
and 324 forks [64]. The software is actively maintained, which adds to our choice. MP-SPDZ features a
configuration-driven approach that allows for the adjustment of parameters such as the ring size, security
level and the number of parties, while the performance figures for comparable protocols published in the
paper by Keller [46] surpass those of pure-Python frameworks, such as MPyC.

Within MP-SPDZ, we implemented the SPDZ?* protocol, which merges additive secret sharing over
7/2FZ with information-theoretic MACs to identify tampering, even when faced with a dishonest ma-
jority. We seek this behavior because, in high-security environments, we assume it is most important to
maintain correctness even when more than half of the parties may collude”.

In addition, MP-SPDZ offers the ability to switch between different protocols without the need to rewrite
the application logic much. The numerous examples and comprehensive API reference make it easy to
integrate with the containerized services.

While we implement SPDZ?* for now, MP-SPDZ allows for the transition to other protocols in the future,
such as classic SPDZ over a prime field or semi-honest GMW. If a different trust assumption or field is
more appropriate for a specific use case, the necessary infrastructure is already established.

5.3.6 Web framework

We use Flask to expose REST endpoints and serve simple Uls. Its advantages are as following:

e The clear routing and request handling in Flask allow us to measure timing accurately for perfor-
mance metrics

5The digest refers to the SHA-256 hash derived from the image manifest JSON. This method provides a unique iden-
tification of the specific contents of an image, including its layers, metadata, and configuration. As a result, retrieving an
image by its digest (for instance, repo/mpc-mpc_node_0@sha256:abcd1234...) ensures that you always get the exact same
image, regardless of any changes to its tags.

6Please see appendix B.4 for the implementation.

7If we were to assume we have an environment where most parties are honest, we could opt for a protocol that relies on
this honest majority, which can decrease communication costs.

32

e Both the core API and the Jinja2 template engine (loading the HTML files) are lightweight.

e Plugins are available for logging and serving static files.

5.3.7 Blockchain engine

We select Hyperledger Besu as the blockchain engine due to its native support for a permissioned
Ethereum network operating in proof-of-authority mode, specifically Clique. This allows us to oper-
ate a private chain in which only pre-approved nodes have the ability to seal blocks.

Besu offers a comprehensive JSON-RPC API, including web3, which we use via Web3.py in the Flask
service. The standard interface allows the coordinator and MPC components to submit transactions,
query blocks, and monitor events without the need for custom protocol code. In the setup scripts, we
establish the network’s genesis parameters and the configuration for static nodes. This ensures that each
branch starts with the same chain rules and validator keys.

There is an active community surrounding Besu, along with well-organized documentation, which are
also important aspects to consider during development.

5.3.8 Hybrid on-chain / off-chain storage

In the design, we avoid placing the actual log data on the blockchain; instead, we use a fixed-length
“fingerprint” (a SHA-256 hash) for each entry. The complete logs, which are encrypted using AES-CBC,
remain off-chain and are stored locally. When a request is made to erase data under GDPR, this system
can delete the necessary off-chain data. Because the on-chain data only contains the hash, the contents
of the data can no longer be recovered. Auditors can still confirm that a record once existed and can
verify it later if it is restored, but no private information is left on the chain itself.

We make use of SHA-256 since it generates a consistent 256-bit output, which acts as a one-way fingerprint
for the data. It is practically impossible to revert the hash back to its original plaintext form. SHA-256
is efficient and gets broad support from standard libraries, which helps ensure that auditors can verify
event integrity with both compatibility and long-term stability in mind.

AES-CBC is what we choose for the encryption security because AES is a cipher approved by NIST, and
has extensive support for hardware acceleration, making it fast. Using CBC mode with a new random
IV for each message guarantees that even identical plaintext blocks will result in different ciphertexts.
And, AES-CBC is widely supported in standard libraries, which makes it easy to implement and ensures
strong confidentiality protections.

5.3.9 MPC parameters

We set up SPDZ2* within the ring Z/2'287, which is a 128-bit ring. The largest non-negative value
before wrap-around is 2128 — 1 ~ 3.40 x 1038. We use non-negative integers only. Each party supplies two
integers: (1) a scaled severity sum and (2) an event count. For each event, the severities range from 0 to
5. Before input, we scale the local sum by 10° to get six decimal places. Therefore, across all parties,

total _sev < 5-total events - 10°.

We securely incorporate the contributions from all parties to calculate total sev and total cnt. We then
calculate the average through a single secure division using 24-bit precision (int_div with parameter
24) and reveal only the final result. Outside of MPC, we divide by 10° to reverse the scaling and then
normalize by 5 in order to express it as a percentage.

Even with a conservative estimate suggesting that the division routine might temporarily scale by 224,

we still stay within the 128-bit wrap-around limit provided
5-total _events- 10° - 224 < 2128

which is valid for any practical workload.

In our preprocessing, we utilize 64-bit statistical security, denoted as —S 64. For this to work, & must
exceed the security parameter, which means that a 128-bit ring is the smallest standard option that
accommodates this configuration along with our fixed-point headroom.

33

5.3.10 Simulated IoT devices

We create simulations of IoT devices to enable precise control over each test and ensure exact repro-
ducibility, while also not needing actual hardware. The simulator is capable of generating faults at
adjustable intervals with full control over the fault details, which allows us to evaluate the system under
a variety of loads. Identifying real sensor failures falls outside the scope of this thesis, so for instance, a
security camera that has analytics integrated in can identify a blurry image as a problem and report it
to the system.

5.4 Low-level design

loT Simulator

loTFaultldentifier

+device_id: String +load_config(): #load sensor config

+timestamp: DateTime +generate_fault_event(): #build a fault event

+fault_type: String +get_fault_type_names(): #list fault types

+severity: Int

+send_event(): #post event to coordinator

+location: Dict

+send_fault_event(): #trigger random event

+scheduled_send_fault_event(): #fire scheduled event

+manual_trigger(): #handle /trigger
MotionSensor TemperatureSensor DoorSensor
+trigger_custom(): #handle custom fault
Fault data
+detectMotion() +monitorTemperature() +detectDoorStatus() +run_scheduler(): #run scheduler loop

+index(): #render control page

Blockchain interface

Coordinator

MPC interface

+NonceManager.initialize_nonce(): #fetch start nonce

+NonceManager.get_next_nonce: #reserve next nonce

+classify_fault() # rate fault severity

+receive_logs(): #accept MPC logs

<—I_ +load_keys(): #read encryption keys
—_> keys(P v +compute_mpc(): #run SPDZ protocol
P s +encrypt_data(): #encrypt payload

+initialize_app(): #init nonce manager +global_threat(): #aggregate and post score
) # 1 +decrypt_data(): #decrypt payload
+index(): #render web Ul +compute_local_sum_and_count(): #prep inputs

+generate_hash(): #hash input string

+get_transactions(): #list chain transactions
+write_offchain_log(): #save encrypted log
+send_transaction(): #post a transaction

+store_hash_on_blockchain(): #post hash to chain

+forward_to_mpc(): #send log to MPC MP-SPDZ MPC node

+compute_weighted_score(): #adjust local severity Input listener via shell

Besu Blockchain node " . "
+receive_fault(): #process incoming fault)
Output via shell

P2P listener on port 30303 +get_local_logs(): #return stored logs

Connection manager to other nodes

JSON-RPC API on port 8545 +global_mpc_score(): #fetch global score

i :# hl
On-disk chain data under /app/data +index(): #render dashboard

Figure 5.3: Low-level system architecture of the proof-of-concept prototype. Some helper functions are
omitted. The ToT fault identifier (not implemented in the PoC) would be the module classifying and
processing the faults from the IoT devices. This is implemented using the IoT simulator for testing
purposes.

The prototype shown in the low-level design (Figure 5.3) divides functionality into containerized services
that interact through a single Docker network (iot_network). Every service uses a REST API which
send /receive payloads. Each service shown in the design has the following functions:

e The coordinator service operates on port 4000. The system uses AES-CBC for encrypting logs.
The coordinator also calculates SHA-256 strings for each complete log and then submits these to
the blockchain using Web3.py.

e A Blockchain web interface operates on port 3055. A Flask wrapper that interfaces with Hy-
perledger Besu is responsible for managing transactions. The graphical user interface is illustrated
in Figure 5.4 and shows the transactions placed by the system, accessible through this service.

e MPC nodes operate on port 5000. Every container includes precompiled MP-SPDZ binaries
and shared libraries located in the /mp-spdz directory, which are compiled before “assembling”

34

B Blockchain transactions X B v s @ @&
(=]

« (¢] ® D http://localhost * @ &g 8 =

Blockchain transactions

Enter your message here Send transaction

Update transactions ‘

para: hsbelinlb/544Unacud/epaapadsavoreesiurns /Tsn4auavar/SnL1ynLsrss /a

Block: 7 Hash: c4eb5af50876867302627d48c631974abaafdeac68315859e25950bd8cIceddf
Data: 5413falec2b72d50b9ed9blca9d0b635c3fad9i69aba3d2a6540219cdlac2hed

Block: 8 Hash: 58fec7cc3bh64e4240a345aaa938910ca31319fc6c0b1673c81b402eba044227
Data: Global Threat Average = 32.00%

Block: 9 Hash: 6d7e754df33f9d063644ffcch771294f00632a4027de885d4e2847d6bbe65¢c1c
Data: Obdab05c6b623464b08ebh411c57¢c695887251bcc674d898b9e65fe9983aeaedl

Block: 9 Hash: 0ea970babead5679a8720187cc42e4b231e92c888e8dc8f9b249230546a7a091
Data: 509b698069517e22d8eddef835c197f39fbb77b5878856135e1710377123c%4

Block: 10 Hash: 75612d82bc53615dc04d1234640b74d193cd7c7addabb7b0e6085dddb232feal
Data: Global Threat Average = 31.43%

Block: 11 Hash: 20711ab0d957a2a0cc2db95615beh7fcce063881f9ah9126684d1e2cf5675e08
Data: e3d34149fca0f3aea00lebfab5ce4b973b2e44f44e2c7221581a8elad148c0ad

Block: 13 Hash: 27df51a94fd5af2275835528d2631e61b1f5c918bba3d024988d1277d524h81a
Data: c6036d734386f87a57b67{8e5695f14c5f63ea3bf50fa514c9dab44633e273bb

Block: 13 Hash: 6a57b4b38ecce1992279ad16c32bed2aead9f5tbde7438¢7da56d2c6ch2039a7
Data: Global Threat Average = 37.78%

Figure 5.4: The blockchain user interface

the containers 8. When we first run Fake-0ffline.x 9, it creates Beaver triples in a versioned
Player-Data folder. When running the containers (online phase), the spdz2k-party.x operates
in interactive mode with a 128-bit ring and 64-bit security. The Python wrapper processes local
logs from a JSON file, adjusts inputs for fixed-point arithmetic, and interprets the numeric output

to calculate a percentage (the threat score).

The /global_threat endpoint in the coordinator container invokes /compute_mpc (the call used
to start the calculations in the network) across all parties simultaneously. These nodes connect
with each other, calculate the MPC score'® and then check for consistent results. The results are
sent to the blockchain.

e The IoT simulator runs on port 4100. The system simulates sensors (IoT devices). The graphical
user interface is illustrated in Figure 5.5 and shows the controls that can be used to send (custom)
fault events. The service also allows for automated, preconfigured inputs though an API.

Every service uses host volumes to ensure that data and configuration are persistent. The dockerfiles are
designed to install only the necessary OS packages and Python dependencies, which helps to keep the
image size to a minimum. Services use Docker’s integrated DNS, allowing them to communicate with
each other using container names. The layout makes it easier to scale or replace individual modules and
it also isolates these into distinct, testable components.

5.5 Data and evaluation plan

We assess the prototype based on key elements, which are performance overhead and scalability. We
analyze four configurations, baseline (no BC, no MPC), blockchain only (BC on), MPC only, and the
full system (BC + MPC), to isolate the impact of each component. We measure the power consumption
in watts to evaluate energy efficiency.

8See Appendix C.2 that details this process.

9This MPC setup, which utilizes Fake-0ffline.x, is intended only for demonstration purposes. The Beaver triples that
are produced are generated offline and lack cryptographic security guarantees, so they should not be used in a production
environment. For a successful deployment, it is important to have a secure and randomized offline preprocessing phase.

10See Appendix C.4 for the program that the MPC nodes run.

35

(=] Blockchain transactions X | loT simulator control x
(=]

- C Q) (o] //localhost:4 * 2 & 8
loT simulator control

Toggle scheduler Manual trigger

Scheduler is off

Create custom fault

Device: |camerai (camera) ~
Fault type: [camera offline v
Severity: |1 v

Location: | Branch1-Vault ~

Trigger custom fault

Figure 5.5: The IoT simulator web interface

Experimental setup

All services are deployed on a single virtual Ubuntu-based Linux server. For details regarding the VM
and host, see Appendix B.1. We carry out an experiment on fault sequences, varying the number of
events. This allows us to observe the scaling of the total execution time (latency between components),
throughput, and resource usage. Between runs, we clear all logs and delete the existing containers to
start from a clean state. We also delete the volume mounts from the host system!!.

Power measurement

We connect the server’s power supply to a smart power meter'?. We sample the average power draw

during each experiment. We report both the absolute draw (in watts) and the delta relative to the
baseline configuration.

Metrics
During each experimental run, we gather the following data:

e Network traffic (in MB). This refers to the total amount of data sent and received (also called
the communication cost) by each MPC node.

e Total execution time (latency between components in ms), the duration from the moment a
sensor fault is injected until it receives confirmation from the blockchain, categorized by component
(coordinator, MPC, blockchain).

e CPU and memory usage, the CPU seconds and memory (in MB) at the container level.

e Storage used, the storage used on the disk (in MB) at the host level, per container.

H'We systematically stress-test the prototype by utilizing the generate_sequence.py tool (please see to Appendix B.3)
to create fault-event CSVs across different load conditions.

12We use the INSPELNING power meter from IKEA. The data is collected and stored by Home Assistant, a service
which can collect and store this data, which is running on a different server (not connected to the same power meter, as to
not alter the results).

36

e Power draw (Watts). Power draw is measured at the wall socket using a smart power meter
connected to the server, and sampled at a specified interval by a server. Before running the
containers, a baseline is recorded, and the power draw is determined by calculating the delta
between these values to isolate the wattage of the container.

Analysis

In line with our data collection plan, we collect metrics including traffic, latency, CPU usage, memory
usage, storage, and power draw across three runs for both the baseline and full-system tests at each
scale. From these, we can conclude:

e Network traffic in MB sent between MPC nodes.
e The latency difference between configurations.
e The extra amount of disk space used.

The extra CPU-seconds used.

e The extra memory used.
e The additional watts used on average, compared to baseline.

Next, we will visualize and engage in a discussion about the findings. All figures and insights can be
found in Chapter 7, along with direct connections to the research questions.

37

Chapter 6

Implementation

This chapter outlines the specific steps we took to develop the system architecture into a functioning
prototype’. The focus is on understanding the mechanisms behind service integration, container orches-
tration, configuration management, and the workflows that are responsible for assembling, launching,
and testing the system. When applicable, we refer to the relevant scripts and configuration files in the
appendices for comprehensive details.

6.0.1 Service integration and container setup

Every component is contained within its own Docker container?, all of which share a common virtual
network called iot_network.

Within the coordinator container, which should be present at all branches in a fully running system,
the entrypoint script looks for existing encryption keys in /app/data/config. These keys are used to
encrypt the off-chain logs. The Flask application listens on port 4000 and sets up a host directory to
store both encrypted logs and decrypted demo logs for persistence. Environment variables provide the
blockchain RPC endpoint along with the three branch-to-MPC URLs.

The blockchain setup includes four containers: three nodes dedicated to Besu (the blockchain itself) and
one node for the web interface. This web container, like the coordinator container, should be present at
all branches. Before starting the system, a Python script managed by the Docker host creates the genesis
configuration, the static-nodes list, and the validator keys, which are then stored in the blockchain/data
directory. When a Besu container starts up, it copies the necessary files into its data directory, uses an
initialization script to resolve peer hostnames to IP addresses, and then proceeds to launch Besu with
the specified Clique parameters. The web interface container uses credential files to communicate with
Besu, sets up its nonce manager, and provides REST endpoints on port 3055 for /send_transaction
and /get_transactions, used for interfacing with the blockchain.

To set up the MPC service, we begin by compiling the MP-SPDZ artifacts within a specialized “builder”
container. The builder begins by cloning the MP-SPDZ repository. Next, the spdz2k-party.x and
Fake-0ffline.x binaries are compiled for use in the container. This process also performs the prepro-
cessing phase to generate Beaver triples. The outputs are exported to mpc/compiled_mpc_bins. The run-
time containers subsequently mount these bins and libraries into /mp-spdz, along with the Player-Data
folder for each node. Each container’s Flask wrapper manages the calls to /logs, /compute_mpc, and
/global_threat, using subprocess to invoke the SPDZ binaries and then parsing the output into JSON
format.

The IoT simulator container is designed to load a JSON file that includes information on sensor types,
fault definitions, and branch sublocations. A background thread, utilizing the schedule library, submits
randomized events at a set interval. At the same time, the Flask application running on port 4100 allows
for manual triggers, API control and features a simple web user interface.

1For an overview of the prototype, please see Appendix A.2.
2See Appendix A.1 for Dockerfiles and build scripts.

38

6.0.2 Orchestration scripts

We simplified the process of environment provisioning by using two shell scripts. The script run_all.sh
is responsible for detecting (or when not present, creating) the Docker network. It triggers the MPC
build only when necessary, generates the configurations for both the blockchain and the coordinator,
and subsequently launches each service in detached mode within its respective subdirectory using the
command docker compose up -d -build.

The script run_specific.sh offers a numbered menu that allows users to select specific services. It
then goes through the same configuration steps solely for the selected options before launching them.
This can be used when changing the files in or rebooting the containers. Both scripts use set -e, which
ensures that any failure will cause the process to abort early, which avoids partial launches.

6.0.3 Continuous integration and repeatable builds

Ounly pinned (tested) versions of system packages and Python modules specified in a requirements.txt
are installed by each Dockerfile to guarantee repeatability. To avoid downloading build tools into the final
runtime images, we employ multi-stage builds for the MPC builder. The generate configs scripts replace
any outdated data before to each run, and all created artifacts (the aforementioned genesis information,
node keys, and encryption keys) are created.

6.0.4 Logging, monitoring, and health checks

Every Flask service implements a basic health endpoint (/health) that, when alive, returns a status of
200. Docker’s logging driver captures logs published to STDOUT, allowing for real-time analysis using
docker logs. We capture both web3 and raw RPC faults for the blockchain web interface. And, to
help diagnose shared-library and file-path issues when testing new binaries or versions of MP-SPDZ, we
produce detailed stdout and stderr from the SPDZ binaries in the MPC wrapper.

6.0.5 Data-collection process

collect_data.py coordinates the controlled experiments on the host computer (the Docker host)3.
The script queries the coordinator, blockchain interface, and Docker daemon for logs, transactions, and
container statistics. It also schedules fault triggers and calls /global_mpc_score, calculating the MPC
score. Docker statistics are sampled at a set interval, which includes memory consumption and CPU
seconds. The script generates a host information JSON file and four time-aligned CSV files (coordinator
report, blockchain report, Docker metrics, and MPC report) following a configurable cooldown period.
Repeatable, time-stamped data for the overhead and performance analysis in Chapter 7 are provided by
this process.

3Detailed data collection methodology and script extracts are in Appendix B.

39

Chapter 7

Results

This chapter discusses the findings from the controlled experiments. We created three fault-event se-
quences and tested each sequence across four different configurations: the baseline (which includes nei-
ther blockchain or MPC), blockchain only, MPC only, and the complete system that incorporates both
blockchain and MPC. We executed each run using the automate_collect_data.sh script. This script
initiates the services, introduces faults from the CSV files, and calls collect_data.py to collect coordi-
nator logs, blockchain transactions, Docker statistics, and MPC measurements. Next, we will examine
the four modes by looking at various factors such as latency, throughput, resource usage, network traffic,
storage, and power consumption.

7.1 Sequence generation test setup

We systematically stress-test the prototype by ingesting fault-event CSVs under different load conditions,
utilizing the generate_sequence.py tool, which generates these fault-event CSVs. We examine both
the number of events and the overall time window, so we can analyze how latency, throughput, and
resource usage change in relation to scaling. In Appendix B.3, a clear explanation is given on how
generate_sequence.py processes these inputs and produces a sorted CSV of time-offset events, which
are used to test the system. As shown in Table 7.1, the sequence file provides the exact inputs used in
the code (time offsets, locations, severities, and MPC trigger flags), making later latency and throughput
measurements reproducible.

time offset location device id fault _type severity sublocation trigger mpc_calculation
799.000 Branchl temperature2 temperature spike 2 Parking-lot false
2806.000 Branch2 camera3 camera_ blurred 2 Office false
3366.000 Branchl doorlock3 door battery low 1 Vault false
3905.000 Branch2 camera3 camera_noise detected 1 Office false

Table 7.1: Excerpt from light.csv, showing the fault sequence used for testing.

7.1.1 Sequences for testing

We created three test sequences to assess the system as the load increased. Every sequence is saved as
a CSV file in the sequences/ directory and outlines a list of fault events along with their time offsets
(please see Table 7.1 for a sample). The parameters are summarized in Table 7.2.

Sequence Events Duration (s) Avg. interarrival (s) MPC triggers

Light 20 8059 382.1 1
Medium 400 10772 27.0 3
Heavy 2000 10799 5.4 8

Table 7.2: Characteristics of the three test sequences.

40

All sequences were created within the following time frame: = 3 hours for medium and heavy events,
and ~ 2.2 hours for light events, though they varied in terms of event density. The light sequence
features infrequent events, with an average interval of 382 seconds between them. Compared to this,
the medium sequence presents a moderate density of events taking place every 27 seconds. Finally, the
heavy sequence puts significant demands on the system, characterized by frequent events taking place
every b seconds. The calculation requests for the MPC are automatically coupled based on the sequence
parameters, resulting in 1, 3, and 8 triggers, respectively. These sequences enable us to see how latency,
throughput, resource usage, and power draw change as the event load increases.

7.2 Performance metrics
This analysis highlights the trade-offs between performance and privacy. This shows the impact of

blockchain and MPC on factors such as resource utilization and energy consumption, and lays the
groundwork for the conversation in Chapter 8. We connect each outcome to the research questions.

41

4

7.2.1 Overall results

run cpu_seconds_total max_mem_mb avg mem_mb disk_rw_mb energy wh avg power w diff from idle_w blockchain tx mpc_calls avg latency ms duration h
heavy _ fullsystem 20250614 133851 399.86 3313.44 224224 212.69 324.68 108.25 8.60 2011 8 13.85 3.00
heavy none_ 20250614 225137 54.31 76.29 65.88 0.55 313.85 104.64 5.00 0 0 5.58 3.00
heavy_onlybc_ 20250614 194719 332.53 2155.19 1874.51 128.17 320.98 106.99 7.35 2003 0 15.26 3.00
heavy_onlympc_ 20250614 _ 164313 113.69 840.30 212.00 85.18 319.36 106.49 6.84 0 8 3.84 3.00
light_ fullsystem 20250615 _ 015539 181.47 2025.06 1687.36 182.57 236.16 105.37 5.73 24 1 18.26 2.24
light_none_ 20250615_ 085134 1.90 57.21 55.93 0.55 230.05 102.78 3.14 0 0 14.78 2.24
light _onlybc_ 20250615 _ 063303 169.78 1831.77 1609.51 97.50 235.70 105.20 5.55 23 0 32.57 2.24
light onlympc 20250615 041430 12.27 233.39 166.14 85.18 232.59 103.93 4.28 0 1 4.22 2.24
medium_ fullsystem 20250615 110955 272.22 2260.93 1931.01 206.63 316.39 105.64 5.99 406 3 15.34 3.00
medium_none_ 20250615 _ 202117 5.69 59.89 57.31 0.55 304.85 101.90 2.26 0 0 6.68 2.99
medium_ onlybe_20250615_171731 244.44 2126.00 1792.19 121.44 315.17 105.21 5.57 403 0 17.96 3.00
medium_onlympe_ 20250615 141346 29.04 244.63 212.73 85.18 311.22 104.02 4.38 0 3 3.11 2.99

Table 7.3: Resource usage and performance across the 12 controlled runs (Light/Medium/Heavy x None/BC-only/MPC-only/Full). Each row corresponds to

one end-to-end run.

157

run container name cpu_seconds total max mem mb avg mem mb disk rw_ mb

heavy fullsystem 20250614 133851 blockchain node 0 94.21 762.58 637.39 43.23
heavy fullsystem 20250614 133851 blockchain node 1 84.04 739.28 629.03 41.70
heavy fullsystem 20250614 133851 blockchain node 2 84.10 727.62 600.88 41.57
heavy fullsystem 20250614 133851 blockchain web interface 14.80 111.23 110.29 1.01
heavy fullsystem 20250614 133851 coordinator 56.16 60.62 48.73 0.31
heavy fullsystem 20250614 133851 iot-simulator 1.43 35.39 35.32 0.24
heavy fullsystem 20250614 133851 mpc node 0 21.83 686.90 62.88 28.21
heavy fullsystem 20250614 133851 mpc node 1 21.70 943.59 60.17 28.21
heavy fullsystem 20250614 133851 mpc_ node 2 21.58 69.50 57.54 28.21
heavy fullsystem 20250614 133851 TOTAL 399.86 3313.44 2242.24 212.69
heavy none 20250614 225137 coordinator 92.83 49.62 39.21 0.31
heavy none 20250614 225137 iot-simulator 1.48 26.67 26.67 0.24
heavy none 20250614 225137 TOTAL 54.31 76.29 65.88 0.55
heavy onlybc 20250614 194719 blockchain _node 0 92.12 720.76 606.99 42.49
heavy onlybc 20250614 194719 blockchain node 1 84.85 688.76 568.81 42.00
heavy onlybc 20250614 194719 blockchain node 2 84.24 700.20 078.26 42.12
heavy onlybc 20250614 194719 blockchain web interface 14.47 55.60 54.76 1.01
heavy onlybc 20250614 194719 coordinator 55.39 50.54 39.88 0.31
heavy onlybc 20250614 194719 iot-simulator 1.45 25.82 25.82 0.24
heavy onlybc 20250614 194719 TOTAL 332.53 2155.19 1874.51 128.17
heavy onlympc 20250614 164313 coordinator 53.02 49.34 39.77 0.31
heavy onlympc 20250614 164313 iot-simulator 1.46 25.85 25.85 0.24
heavy onlympc 20250614 164313 mpc_node 0 19.88 658.71 51.13 28.21
heavy onlympc 20250614 164313 mpc_node 1 19.77 95.89 47.65 28.21
heavy onlympc 20250614 164313 mpc_node 2 19.55 94.19 47.60 28.21
heavy onlympc 20250614 164313 TOTAL 113.69 840.30 212.00 85.18

Table 7.4: Per-container metrics per run: CPU, memory and disk. Corresponding energy usage details and the total system latency can be found in Table 7.3

(1/3).

4%

run

container name

cpu_seconds_ total

max_mem_mb

avg mem mb

disk rw_mb

light fullsystem 20250615 015539
light fullsystem 20250615 015539
light fullsystem 20250615 015539
light fullsystem 20250615 015539
light fullsystem 20250615 015539
light fullsystem 20250615 015539
light fullsystem 20250615 015539
light fullsystem 20250615 015539
light fullsystem 20250615 015539
light fullsystem 20250615 015539
light none 20250615 085134

light none 20250615 085134

light none 20250615 085134

light onlybc 20250615 063303
light onlybc 20250615 063303
light onlybc 20250615 063303
light onlybc 20250615 063303
light onlybc 20250615 063303
light onlybc 20250615 063303
light onlybc 20250615 063303
light onlympc 20250615 041430
light onlympc 20250615 041430
light onlympc_ 20250615 041430
light onlympc 20250615 041430
light onlympc 20250615 041430
light onlympc 20250615 041430

blockchain node 0
blockchain node 1
blockchain node 2
blockchain web interface
coordinator
iot-simulator
mpc_node 0
mpc_node 1
mpc_node 2
TOTAL

coordinator
iot-simulator
TOTAL

blockchain node 0
blockchain node 1
blockchain node 2
blockchain web interface
coordinator
iot-simulator
TOTAL

coordinator
iot-simulator
mpc_node 0
mpc_node 1
mpc_node 2
TOTAL

D7.67
56.51
55.29
0.84
0.81
1.05
3.10
3.15
3.06
181.47
0.80
1.10
1.90
57.40
55.35
54.33
0.84
0.82
1.03
169.78
0.78
1.08
3.46
3.46
3.49
12.27

633.82
611.73
495.34
54.48
29.91
25.86
60.77
57.93
08.21
2025.06
31.36
25.85
57.21
664.32
564.15
492.46
54.23
30.90
26.20
1831.77
30.95
25.86
61.21
08.11
97.79
233.39

505.51
484.34
477.92
54.22
29.64
25.85
37.62
36.30
35.95
1687.36
30.08
25.85
55.93
531.84
493.34
474.01
54.16
29.99
26.16
1609.51
30.16
25.86
37.79
36.61
35.72
166.14

32.05
32.29
32.04
1.01
0.31
0.24
28.21
28.21
28.21
182.57
0.31
0.24
0.55
32.23
31.78
31.93
1.01
0.31
0.24
97.50
0.31
0.24
28.21
28.21
28.21
85.18

Table 7.4: Per-container metrics per run: CPU, memory and disk. Corresponding energy usage details and the total system latency can be found in Table 7.3

(2/3).

¥

run container name cpu_seconds total max mem mb avg mem mb disk rw_ mb
medium_fullsystem 20250615 110955 blockchain node 0 80.81 693.44 568.85 40.70
medium_fullsystem 20250615 110955 blockchain node 1 78.56 671.66 554.41 40.28
medium_fullsystem 20250615 110955 blockchain node 2 77.55 670.36 540.40 39.46
medium_ fullsystem 20250615 110955 blockchain web interface 3.77 55.01 54.41 1.01
medium_fullsystem 20250615 110955 coordinator 5.00 35.30 32.62 0.31
medium__fullsystem 20250615 110955 iot-simulator 1.42 25.88 25.88 0.24
medium_fullsystem 20250615 110955 mpc node 0 8.53 60.55 52.48 28.21
medium_ fullsystem 20250615 110955 mpc node 1 8.31 58.52 50.83 28.21
medium_fullsystem 20250615 110955 mpc node 2 8.27 58.82 51.12 28.21
medium_fullsystem 20250615 110955 TOTAL 272.22 2260.93 1931.01 206.63
medium_none_ 20250615 202117 coordinator 4.25 34.05 31.47 0.31
medium_none 20250615 202117 iot-simulator 1.44 25.84 25.84 0.24
medium none 20250615 202117 TOTAL 5.69 59.89 57.31 0.55
medium_onlybc 20250615 171731 blockchain node 0 80.05 730.79 600.01 40.40
medium_onlybc 20250615 171731 blockchain node 1 76.81 668.75 535.76 39.64
medium_onlybc 20250615 171731 blockchain node 2 77.83 685.42 544.26 39.84
medium_onlybc 20250615 171731 blockchain _web _interface 3.67 54.96 54.36 1.01
medium _onlybc 20250615 171731 coordinator 4.71 33.57 31.39 0.31
medium _onlybc 20250615 171731 iot-simulator 1.37 26.46 26.41 0.24
medium onlybc 20250615 171731 TOTAL 244.44 2126.00 1792.19 121.44
medium_onlympc 20250615 141346 coordinator 4.36 38.16 31.66 0.31
medium _onlympc 20250615 141346 iot-simulator 1.41 25.86 25.86 0.24
medium_onlympc 20250615 141346 mpc_node 0 7.82 64.91 53.43 28.21
medium onlympc 20250615 141346 mpc_node 1 7.71 58.49 50.92 28.21
medium_onlympc 20250615 141346 mpc_node 2 7.74 58.42 50.86 28.21
medium _onlympc 20250615 141346 TOTAL 29.04 244.63 212.73 85.18

Table 7.4: Per-container metrics per run: CPU, memory and disk. Corresponding energy usage details and the total system latency can be found in Table 7.3

(3/3).

7.2.2 Column definitions and computation

e cpu_seconds_total - For every container, gather its cumulative cpu_seconds series from the
Docker-stats CSV. In the TOTAL row, we sum up the values of all the containers.

e max_mem_mb - For each container, we read the mem_mb values and determine the maximum value,
which is represented by max_mem_mb. In the TOTAL row, we sum the mem_mb values of all contain-
ers, and then determine the overall maximum from those sums.

e avg_mem_mb - For each container, we calculate the average of its mem_mb series. For the TOTAL
row, we sum the mem_mb values of all containers and then calculate the average of those sums.

e disk_rw_mb - For every container, we read the size_rw_mb values. This refers to the R/W layer of
the container (the added data by our services) and determine the maximum. In the TOTAL row,
we sum the size_rw_mb of all containers.

e energy_wh - We calculate the duration of each sequence in seconds. First, we calculate the product
of power and duration. After that, take the result and divide it by 3600.

e avg_power_w - To calculate this, we take energy_wh, multiply it by 3600, and then divide the result
by the total run duration in seconds. This results in the average power consumption measured in
watts.

o diff_from_idle_w- We calculate the difference between the average power in watts (avg_power _w)
and the average baseline idle power obtained from baseline_energy.csv. The file contains the
average idle system power draw recorded over a one-hour period.

e blockchain_tx - We count the number of rows present in the blockchain report CSV files. Every
row corresponds to a single on-chain transaction.

e mpc_calls - In the MPC report CSV (mpc_report_.csv), we count the number of rows where
triggered is true.

e avg_latency_ms - To calculate this, we use the coordinator report CSV file (report_.csv) and
compute the average of the values in the ms_total_lifecycle column.

e duration_h - We calculate the run duration by examining the first and last timestamps. To convert
to hours, we subtract the values and then divide the result by 3600.

7.2.3 Overall results

The summary in Table 7.3 shows an overview of CPU time, memory usage, disk usage, energy con-
sumption, average power draw, on-chain transactions, MPC calls, and end-to-end latency for all twelve
experimental runs. In the baseline scenario, where neither blockchain and MPC is used, the system
operates with less than 55 CPU-seconds, consumes under 80 MB of RAM, and generates less than 1 MB
of disk traffic, while maintaining an average latency of below 6.7 ms.

Table 7.4 shows metrics categorized by container for each run, illustrating the impact of each service
component (the blockchain nodes, MPC nodes, coordinator, and simulator) to the overall figures for
CPU, memory and disk’.

The simultaneous use of both blockchain and MPC increases CPU load, ranging from three to seven
times higher than the system that just saves the log (baseline with all systems disabled). The memory
usage can grow from ten to a hundred times greater, and disk usage can reach between 120 and 215
MB. The average power draw increases by 5 to 9 watts compared to baseline. The latency increases to
a range of 13 to 18 milliseconds.

7.2.4 MPC overhead

We assessed the cost associated with each three-party SPDZ invocation by examining computation time,
communication volume, and the number of protocol rounds involved. The SPDZ-specific results are
consistent between invocations, and are shown in Figure 7.1. The output seen is the verbose output from
the spdz binaries, and can be accessed from within the Docker desktop application.

lEnergy usage details and the total system latency is only measured as a system-total per run, and therefore not present
in the per-service tables.

46

mpc_node_0

@ 79ccf76bb697 1 mpe-mpe_node_O:latest STATUS
¢ @ 7oee) S aE R Running (1 hour ago) > (9]

5000:5000 ¢

Logs Inspect Bind mounts Exec Files Stats

Te1dz7s

2025-06-22 17:59:55,884 - INFO - MP-SPDZ stderr:
Using SPDZ2k security parameter 64
Trying to run 128-bit computation
Using statistical security parameter 64
Setup took 0.0450953 seconds.
Compiler: ./compile.py -R 128 threat_score
2 triples of SPDZ2~(128+64) left
1 bits of SPDZ2~(128+64) left
Detailed costs:
2 integer inputs
2192 integer multiplications
4407 integer openings
Spent 6.8295136 seconds (0.219888 MB, 648 rounds) on the online phase and 1.889 seconds (239.674 MB, °
rounds) on the preprocessingfoffline phase
Communication details:
Broadcasting ©.006261 MB in 223 rounds, taking ©.0807482 seconds
Exchanging one-to-one 149.29 MB in 148 rounds, taking ©.187865 seconds
Receiving directly 0.736358 MB in 306 rounds, taking 0.018196 seconds
Receiving one-to-one 89.8547 MB in 84 rounds, taking ©.51956 seconds
Sending directly 8.736262 MB in 384 rounds, taking ©.88759831 seconds
Sending one-to-one 89.8547 MB in 84 rounds, taking ©.0138992 seconds
Sending to all 4.8e-85 MB in 1 rounds, taking 3.956e-85 seconds
Sending/receiving 0.800192 MB in 6 rounds, taking ©.00092528 seconds
CPU time = 2.31743
The following benchmarks are including preprocessing (offline phase).
Time = 1.93703 seconds
Data sent = 239.893 MB in ~1156 rounds (party © only)
Global data sent = 718.944 MB (all parties)
Actual preprocessing cost of program

Type int
2192 Triples
1043 Bits
23 Opens

Figure 7.1: Output from MPC node 0 upon triggering an MPC calculation.

¢ Computation time per invocation:
— ~2.3 s per party
e Network traffic per invocation:
— 2239.9 MB sent by each party (total ~718.9 MB across all three parties)
— Breakdown per party:
* Broadcasts: 0.006 MB over 223 rounds
* One-to-one exchanges: 149.3 MB sent in 148 rounds, 89.9 MB received in 84 rounds
* Direct peer-to-peer: 0.736 MB sent in 304 rounds, 0.736 MB received in 306 rounds
% Control messages (small opens, acks): 0.00019 MB in 6 rounds
e Protocol rounds:
— Total ~1 156 synchronization rounds per invocation

— Offline (preprocessing) ~516 rounds, online ~640 rounds

7.2.5 Full system - heavy setting

This scenario tested the system under full load. We tested the system with 2000 events in 3 hours with
8 MPC triggers (“heavy_fullsystem”, as defined in Table 7.3):

e CPU: 400 s total vs. 54 s baseline.
e Memory: 3.3 GB peak, 2.2 GB average vs. 76 MB peak baseline.
e Disk usage: 213 MB vs. 0.55 MB baseline.

Power: 108.3 W avg. draw (+8.6 W from baseline).

Latency: 13.9 ms avg. vs. 5.6 ms avg. baseline.

47

Breakdown per service:

e Blockchain nodes (x3) consumed 262 s CPU, handled 2 011 transactions, and added ~ 15 ms per
write.

o MPC nodes (z3) consumed 65 s CPU, handled 8 invocations.
o Coordinator + Simulator remained lightweight (=~ 58 s CPU, < 60 MB RAM).
The system metrics under this load level can be seen in Figure 7.2.

In panel (a), we observe that CPU usage remains close to one second per sample, except when there is an
MPC calculation, then we can see a noticeable spike in CPU seconds, reaching a peak of ~ 17 seconds.

Panel (b) illustrates the total disk storage usage. We can see an initial spike at startup, followed by
a consistent linear increase. In panel (c), the end-to-end latency generally remains within the range of
10 ms to 20 ms for the majority of events, with a peak at 50 ms during startup. Panel (d) illustrates
the power draw, showing that the system can reach a peak of around 180 W during processing bursts.
Panel (e) illustrates the RAM usage, starting at 1.7 GB and stabilizing around 2.5 GB, with each trigger
resulting in a slight increase. Lastly, panel (f) highlights the eight MPC trigger times, with each red dot
corresponding to spikes noted in CPU, latency, and RAM.

CPU Seconds Used Since Last Sample Total Disk Read/Write Over Time

I J I

o 2000 4000 6000 8000 10000 o 2000 4000 6000 8000 10000
Elapsed Time (s) Elapsed Time (s)

(a) CPU Usage (b) Disk R/W

P seconds (a)
Disk RW Total (MB)

System Latency (sequence -+ ms) Power Usage vs. Baseline

— Energy Draw
--- Baseline

Latency (ms)
8

100 |- - T RORTRTURICR oA b o gl gl bl

1 250 500 750 1000 1250 1500 1750 2000 1411:30 1412:00 1412:30 1413:00 141330 1414:00 1414:30
Event Sequence Number Time

(c¢) Latency (d) Power Usage

Total RAM Usage Over Time

3250

MPC Trigger Times

gm0
g
8 2500
3
=

2250
2 wpC
2000

1750

o 2000 4000 00 8000 10000 4000 5000 6000

60 7000
Elapsed Time (s) Elapsed Time (s)

(e) RAM Usage (f) Triggers

8000 9000 10000

Figure 7.2: System metrics under heavy load

7.2.6 Full system - medium setting

Situation: 400 events over 3 h and 3 MPC triggers (“medium_ fullsystem”, as defined in Table 7.3):
e CPU: 272 s vs. 5.7 s baseline.
e Memory: 2.26 GB peak, 1.93 GB avg. vs. 59 MB baseline.
e Disk usage: 207 MB vs. 0.55 MB baseline.

48

e Power: 105.6 W (+5.9 W from baseline).
e Latency: 15.3 ms avg. vs. 6.7 ms avg. baseline.
Breakdown per service:
e Blockchain: Adds 237 s CPU, performs 406 writes, and adds ~ 18 ms per write.
e MP(C': Adds 25,1 s CPU, 3 calls.
The system metrics under this load level can be seen in Figure 7.3.

In panel (a), the CPU remains close to one second per sample. Each MPC trigger generates spikes
lasting up to 8 CPU seconds. In panel (b), we can observe the surge at startup, which is subsequently
accompanied by a steady rise in total disk usage, reaching approximately 200 MB. Panel (c) shows that
latency is primarily within the 15-18 ms range, although there are occasional spikes that exceed 30 ms.
Panel (d) shows that the power draw can have peaks reaching around 175 W. The RAM usage in panel (e)
increases from 1.5 GB to approximately 2.2 GB, showing slight upward fluctuations. Panel (f) highlights
the three MPC calls, each corresponding with noticeable spikes in CPU, memory, and latency.

CPU Seconds Used Since Last Sample Total Disk Read/Write Over Time

ds ()

Disk RW Total (MB)

[2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Elapsed Time (s) Elapsed Time (s)

(a) CPU Usage (b) Disk R/W

System Latency (sequence - ms) Power Usage vs. Baseline

—— Energy Draw
--- Baseline

/ent Sequence Number Time

(c) Latency (d) Power Usage

Total RAM Usage Over Time

2200

MPC Trigger Times
& 2000 99

£ 1800

o 2000 4000 6000 8000 10000 3000 4000 5000 6000 7000 8000 9000 10000
Elapsed Time (s) Elapsed Time (s)

(e) RAM Usage (f) Triggers

Figure 7.3: System metrics under medium load

7.2.7 Full system - light setting
Situation: 20 events in 2.2 h with 1 MPC trigger (“light fullsystem”, as defined in Table 7.3):
e CPU: 181 s vs. 1.9 s baseline.
e Memory: 2.03 GB peak, 1.69 GB avg. vs. 57 MB baseline.
e Disk usage: 183 MB vs. 0.55 MB baseline.
e Power: 105.4 W (+5.7 W from baseline).

49

e Latency: 18.3 ms avg. vs. 14.8 ms avg. baseline.

Here, block sealing frequency dominates latency (32.6 ms per write) since writes occur infrequently.
The single MPC call added 9.3 CPU seconds. The system metrics under this load level can be seen in
Figure 7.4.

Figure 7.4 shows that in panel (a), we observe that the CPU remains close to one second per sample.
One spike occurs during the single MPC call, when it reaches approximately 8 seconds. Panel (b) shows
a substantial increase in disk usage, occurring when the MPC system is first triggered, after which the
activity levels off, which seems to be consistent behaviour between runs. The latency observed in panel
(c) is approximately 15 ms, featuring two notable peaks around 40 ms during startup. In panel (d), we
can observe that the power draw can reach up to 180 W, when the MPC call is requested. In panel (e),
we observe that RAM usage gradually increases from 1.4 GB to approximately 2.0 GB, with a notable
spike occurring during the MPC call. Panel (f) indicates the only MPC trigger, which corresponds with
the spikes.

CPU Seconds Used Since Last Sample Total Disk Read/Write Over Time

CPU Seconds (&)
-
Disk AW Total (MB)

. o e “

o 1000 2000 3000 5000 6000 7000 8000 1 1000 2000 3000 5000 6000 7000 8000

4000 4000
Elapsed Time (s) Elapsed Time (s)

(a) CPU Usage (b) Disk R/W

System Latency (sequence - ms) Power Usage vs. Baseline

y——
o] | - aaeine

10 5 20 1500:00 1500:15 1500:30 150045 150100 1501:15 1501:30 1501:45 1502:00 150215
Event Sequence Number Time

(c¢) Latency (d) Power Usage

Total RAM Usage Over Time

1900 MPC Trigger Times
Z 1800
3 1700
H
2 MpC .

1600

[1000 2000 3000 4000 5000 6000 7000 8000 5200 5300 5400 5500 5600
Elapsed Time (s) Elapsed Time (s)

(e) RAM Usage (f) Triggers

Figure 7.4: System metrics under light load

7.2.8 Component-only configurations

To isolate each technology’s cost, we ran two partial configurations.

1: Blockchain only

Disabling MPC (defined as “onlybc_*” in Table 7.4), in the heavy setting, results in:
e CPU and memory nearly match the heavy full system test (333 s vs. 400 s CPU under heavy load).
e Disk usage ~ 60-65% of full-system (e.g. 128 MB vs. 213 MB).

e Power draw +6-7 W above baseline.

50

e Latency ~ 15-18 ms.

Blockchain alone accounts for the majority of the resource and latency overhead. The system metrics
can be seen in Figure 7.5.

This figure shows the performance impact of the isolated blockchain component during the heavy se-
quence. In panel (a), we observe CPU spikes reaching up to 4 seconds per sample, while the baseline
usage remains close to zero. Panel (b) illustrates a consistent increase in disk size, reaching approxi-
mately 130 MB. The latency values shown in panel (¢) stay under 15 ms for almost all write operations,
but can have peaks reaching around 60 ms. Panel (d) shows that peaks can reach up to 180 W. The
RAM usage in panel (e) peaks around 2100 MB for the full system.

CPU Seconds Used Since Last Sample Total Disk Read/Write Over Time

CPU Seconds (&)
Disk RW Total (MB)

o 2000 4000 6000 8000 10000 o 2000 4000 6000 8000 10000
Elapsed Time (s) Elapsed Time (s)

(a) CPU Usage (b) Disk R/W

System Latency (sequence - ms) Power Usage vs. Baseline

—— Energy Draw
-~ Baseline

Latency (ms)

Power (W)

‘ \

1 250 500 750 1000 1250 1500 1750 2000 1418:00 1418:30 1419:00 1419:30 14 20:00 142030
Event Sequence Number Time

(c¢) Latency (d) Power Usage

Total RAM Usage Over Time

2100
2000

8 1900

% 1800

H

3 1700
1600

1500

1400

o 2000 4000 6000 8000 10000
Elapsed Time (s)

(e) RAM Usage

Figure 7.5: Blockchain-only system metrics under heavy load

2: MPC only
Disabling blockchain (defined as “onlympec_*” in Table 7.4), results in:
e CPU: 114 s (heavy), 29 s (medium), 12 s (light).

e Memory: peaking at 840 MB, with 212 MB on average (heavy), 245 MB peak, 213 MB average
(medium), and 234 MB peak, 166 MB average (light).

e Disk usage: ~ 85 MB.
o Power: +4-7 W.

MPC adds modest, predictable overhead when it is not triggered too regularly. The system metrics can
be seen in Figure 7.6.

Figure 7.6 examines the MPC service while it is experiencing the same heavy load as in the blockchain
test. In panel (a), we can see that CPU usage experiences spikes around 8 seconds during each of the
eight MPC invocations, whereas the idle CPU remains close to zero. In panel (b), we can see that disk

51

usage increases to approximately 80 MB when the first trigger is requested. Panel (c) illustrates that
latency remains under 6 ms for routine logging, although there are occasional spikes to 14 ms. The power
draw in panel (d) can reach a peak of approximately 185 W. The RAM usage in panel (e) remains below
300 MB, except for a single spike reaching 800 MB. Panel (f) highlights the eight MPC trigger times,
which correspond with the CPU and power spikes.

CPU Seconds Used Since Last Sample Total Disk Read/Write Over Time

CPU Seconds (&)
-
Disk RW Total (MB)

[d

o 2000 4000 6000 8000 10000 o 2000 4000 6000 8000 10000
Elapsed Time (s) Elapsed Time (s)

(a) CPU Usage (b) Disk R/W

System Latency (sequence - ms) Power Usage vs. Baseline

—— Energy Draw
-~ Baseline

Latency (ms)

| [l [l 1
AU 00 MR 0 MR A 00 1000 1 O O | [
LT AR 1111 g RN I 1
I 1 L1l L) 0 L0 L 1 100 -~

120
i

o 250 500 750 1000 1250 1500 1750 2000 14 15:00 1415:30 1416:00 1416:30 1417:00 1417:30
Event Sequence Number

(c) Latency (d) Power Usage
Total RAM Usage Over Time

-

0
_ MPC Trigger Times
g 600
% 500
% w00
S MPC

%0 X .

- y

e o 2000 4000 6000 8000 10000 4000 5000 6000 7000 8000 9000 10000

Elapsed Time (s) Elapsed Time (s)
(e) RAM Usage (f) Triggers

Figure 7.6: MPC-only system metrics under heavy load

7.3 Hybrid on-chain / off-chain storage system

We find that the prototype guarantees that every fault entry is encrypted and stored locally by the
coordinator. The coordinator calculates the SHA-256 hash of this data and only publishes that hash
on the blockchain, as illustrated in Figure 7.7. In the encrypted view, the off-chain log shows only the
AES-CBC ciphertext. In the decrypted view, the same fields are shown in clear text for demonstration
purposes. In both instances, the blockchain display features only two hashes: the hash of the block itself
and the SHA-256 fingerprint of the event. Since no actual fault data is ever part of the chain, anyone
accessing the blockchain data gains no insight into the security events that take place.

At the same time, if the data needs to be verified, the off-chain log can be accessed and compared
against the on-chain data containing the hash to prove its integrity. When a log needs to be erased,
deleting the local encrypted file does not change any data that is stored on-chain, but the data will still
be erased. This combination results in reliable audit trails that cannot be modified, but it also keeps
sensitive information private while also making it able to be deleted.

52

3 Blockchaintransacti x loT simulator contro x = 4w o x [@ | /homefuser/Downloads/MPCx = + ~ S & &
0O « C O D httpy/localhost:3055 % fH » = 0O C O D filey//homefuser/Downloads/ ¥ & » =
JSON Raw Data Headers
- "
Blockchain transactions Ssve Copy Collapse All ExpandAll| Y Fitter J5ON
v o
w encrypted_log {"iv": "INEZpM1CrHPKglOUeuZWcQ==", “data": "B5j40EDxDQch0416hv]92sPr
Enter your message here H Send transaction xun1TqTBEIBXBETIE2Wz vh ImOvShFay¥xTr2vhul6gHh 1 4ndGZHBHS euPBLxxs hKkn+bs
_ TWI+gQgaboImkyd TBQxyDF j gokAYieh5dshlhweTb3p631fCETIOHOZ I KAa+L+elPvs Ik
C/XQ2dELEcXmBeS y(HTEAUFMAED, eWxk9vF1Z8r rwABOCIrlc40DS+R2g 11 IPTk+aVNOD
fengguBRxAMjncl T218ralgGbAIUSqrEXRKFoPyEV2BF CgFdFca/ Bukf /KCyeglLdrdNy2
Update transactions | 1a2 P— 812)
Block: 4 Hash:
OaShad25133d213de%ead71a32edd74106292e6152c3baaba3fab5d0753eccil
Data:

1a25fd786e997abe99fe21912d9db6b12792ic8b0573084eib2722768129f970

5 Blockchain transacti x oT simulator contro x = 4 v o x @ | fhomefuser/Downlo x | /homefuser/Downlo x =+ W B © &
0 « C O O http://localhost:3055 w7 NHo» = (] c QO D file:///homefuser/Downloads/i ¥ N o» =
JSON Raw Data Headers
Blockchain transactions Seve Copy Collapse All ExpandAll | 7 Fitter 15O
vo:
v decrypted_log {“device id":"cameral®,*fault type":“camera_offline®,"severity”:1,"l
Enter your message here H Send transaction {"iot_start:"2025-67-04T12:58:33.689725+60:08", "coordinator_received
Update transactions ‘
Block: 4 Hash:
OaSbad25133d213de%ead71a32edd74106292e6152c3baa5a3fab5d0753eccil
Data:

1a25fd786e997abe99fe21912d9db6b12792fc8b0573084efb2722768129f970

Figure 7.7: Coordinator’s local event log, first shown encrypted (top) and then decrypted for illustration
purposes (bottom), alongside the corresponding blockchain data. In both cases only the SHA-256 hash
of each log entry is published on chain. In the blockchain view you see two hashes: the first is the block’s

hash, and the second is the hash of the logged fault.

53

Chapter 8

Discussion

This chapter discusses the findings and offers an in-depth evaluation of how the prototype performs in
the aspects of privacy, integrity, and performance. We base the interpretations on the data we gathered,
and we suggest design choices based on the evaluations.

8.1 Overall prototype performance and privacy properties

Our controlled experiments show that the hybrid on-chain / off-chain logging method stores only cryp-
tographic hashes on the blockchain, while keeping full encrypted logs off-chain. The end-to-end latency
remained in the double digit milliseconds even during heavy load, suggesting that the system is capable
of processing real-time faults. Measurements of resources indicate that CPU and memory usage increase
in a pattern that is predictable as event volume increases, and the noted rise in power consumption seems
to be minimal on average.

We examined four different configurations: the baseline (which lacks both blockchain and MPC), blockchain
alone, MPC alone, and the complete system. This approach allowed us to identify the cost contributions
from each component.

For MPC, we find that implementing a three-party SPDZ2¥ protocol adds a noticeable computational
cost. In the most demanding test scenario, we observed that MPC added about 114 seconds to the total
CPU time when compared to a baseline that uses only local logging. On average, each invocation of
the MPC contributed just single digit milliseconds to the overall latency !, while the maximum memory
usage increased by 840 megabytes. The increase in power usage ranged from 4 to 7 watts on average.

In terms of network activity, each party transmits and receives approximately 240 MB of data with each
invocation, leading to a total of around 720 MB when looking at all three parties involved. The transfers
take place over around 1,156 synchronization rounds, which include 516 rounds for offline preprocessing
and 640 rounds for online processing. This indicates a considerable amount of bandwidth usage that
increases with the number of MPC triggers.

Overall, in high-security scenarios, the advantages of privacy offered by MPC may outweigh these per-
formance drawbacks. These performance drawbacks can be reduced if we are willing to accept reduced
numeric precision and reduced security margins. For instance, using 10% to 10* rather than 10° helps
maintain smaller numbers. This can allow for a smaller ring size k, which reduces bandwidth and memory.

Also, MPC can be arranged to take place at regular intervals rather than being triggered solely when
necessary. In the current design, MPC nodes calculate the global threat score whenever a manual request
is made. This process might unintentionally reveal which branch started the computation, and it may
be triggered due to a significant fault in that branch. To address this, we can separate the execution
of the MPC from event triggers by scheduling the protocol to run at regular intervals, such as every
10 minutes, or by combining several requests into one computation. This modification ensures that
no branch can associate a computation request with a particular event or branch, thereby maintaining

1Please see limitations, MPC calculations are performed using parallel processing

54

the confidentiality of the inputs from each individual branch, while also making sure the system is not
overwhelmed by requests.

The experiments demonstrate that integrating the blockchain layer results in a consistent resource and
latency cost. In the blockchain-only setup under heavy load, the three validator nodes used approximately
333 CPU-seconds, which took up 83% of the total CPU cost for the system under full load in the heavy
test setting. The system reached a maximum of 2.1 GB of RAM usage along with around 128 MB of data
written to disk over a three-hour period. The average power draw increased by 6 to 7 watts compared to
the baseline. The end-to-end latency for each logging event increased to between 15 and 18 milliseconds,
with some occasional spikes. The disk usage increased in a linear fashion as the number of transactions
rose, averaging around 0.06 MB for each write operation, for all three nodes, which results in 0,02 MB
per node.

The blockchain layer introduces overhead, but in return, it provides cryptographic integrity for a dis-
tributed log ledger.

8.1.1 Effects of event volume and frequency

We conducted tests at three different workload levels (light, medium, and heavy) to evaluate the scala-
bility of the system in relation to event volume and fault frequency, which reveals the following data:

Light scenario (20 events, 1 MPC trigger)

e Baseline (no blockchain, no MPC): 1.9s CPU, 57 MB RAM, 0.6 MB disk, 14.8 ms latency. Power
difference from idle: 3.14 W.

e Full system: 181s CPU (4179s), 2.03GB peak RAM (+1.97GB), 183 MB disk (+182MB),
18.3 ms latency (+3.5ms). The power difference from idle: 5.73 W; +2.59 W over baseline.

e The single MPC trigger added an 8s CPU.

Medium scenario (400 events, 3 MPC triggers)
e Baseline: 5.7s CPU, 59 MB RAM, 0.6 MB disk, 6.7 ms latency. Power difference from idle: 2.26 W.

e Full system: 272s CPU (4266s), 2.26 GB peak RAM (+2.20GB), 207 MB disk (+206 MB),
15.3ms latency (+8.6ms). The power difference from idle: 5.99 W; +3.73 W over baseline.

e Each of the three MPC triggers caused CPU spikes up to around 8s.

Heavy scenario (2000 events, 8 MPC triggers)
e Baseline: 54s CPU, 76 MB RAM, 0.6 MB disk, 5.6 ms latency. Power difference from idle: 5.00 W.

e Full system: 400s CPU (4346s), 3.31 GB peak RAM (+3.23GB), 213MB disk (+212MB),
13.9ms latency (+8.3ms). The power difference from idle: 8.60 W; +3.60 W over baseline.

e The eight MPC triggers led to repeated CPU spikes of about 8s each and corresponding memory
and power peaks.

In all three settings, overhead from blockchain and MPC grows with event count and trigger frequency.
Blockchain alone contributes most of the CPU, memory and disk growth. MPC added short compute
and network spikes at each trigger. Latency rises to double-digit milliseconds. Overall, the system can
process up to 2000 security events in under three hours, maintain end-to-end latency below 20 ms, and
deliver integrity and privacy guarantees with resource usage that scales with workload.

8.1.2 Limitations

Although our prototype shows promising results in controlled tests, there are several limitations that
should be considered when interpreting these findings.

First, we test the system using synthetic fault events. This approach allows us to have full control over
the timing and load of the events. This method does not account for a variety of real-world factors, such
as variable network latency, packet loss, and jitter, which are not included in our evaluations.

55

Also, by running all services on one virtual machine in optimal network conditions, we can avoid the
challenges that come with a real-world distributed setup, which can alter the results in a real-world
scenario. In a real-world deployment, every branch would also operate its own “orchestrator” node
along with a blockchain interface, resulting in three of each in our three-branch scenario. These are
currently shared in our current proof of concept. The multi-orchestrator setup can introduce additional
inter-service coordination and associated latency.

In our experiments, we focus solely on a minimal three-party MPC setup, which is combined with a
corresponding three-validator private blockchain. Changes in the network size or topology can impact
communication complexity and costs.

Our prototype shows that using SPDZ%* within the MP-SPDZ framework is feasible, but this performance
is closely linked to the specific protocol and framework selected. Exploring alternative protocols as well
as different implementations (frameworks) may (significantly) alter the characteristics of CPU, memory,
network, and latency. Overall, the results represent just one aspect of the design space. They might not
apply broadly if there are changes to the underlying MPC or the blockchain layer.

From a security perspective, we do not expose the system to adversarial challenges. We do not conduct
tests involving malicious nodes, network-level attacks, or key compromises. A comprehensive threat
analysis is important for identifying practical vulnerabilities and strengthening the system against active
attackers.

In terms of hardware, our server which performs the experiments is equipped with an AMD Ryzen 7
5800x processor. Devices that have limited resources, like older hardware, could show a greater overhead
in terms of CPU, memory, and power usage. The impact on performance might be more noticeable on
less capable servers.

The method we use to gather our data can influence the results we observe during the collection process.
We collect Docker statistics every five seconds to prevent overloading the API. However, each polling
cycle could take as long as 1.8 seconds to finish, which means that short, small resource spikes might go
unnoticed. The measurements of power draw are also influenced by a polling interval, set by the hardware
and software we utilize for measuring the power draw (the hub and the power measuring device, and
also the Home Assistant server receiving the data).

And lastly, we deliberately execute each MPC computation in a background thread to keep per-event
latency low. If we run MPC synchronously (not in the background), the several seconds required for
each invocation can significantly affect the overall system latency.

56

Chapter 9

Conclusions

9.1 Answers to the research questions

e SQ1: How does a decentralized fault detection system leveraging blockchain improve the
security and integrity of fault logs compared to a centralized alternative?

The system logs every fault hash on a private proof-of-authority blockchain. Across branches, the
validators jointly seal blocks in a consensus process. This approach helps to secure the data on
the blockchain. Modifying off-chain logs changes the hash. Auditors have the ability to verify logs by
comparing the hashes stored on-chain with the entries stored off-chain. The distributed ledger provides
a level of tamper resistance and ensures that it remains continuously available.

¢ SQ2: What performance penalty does multi-party computation introduce in high-security
IoT fault detection?

Every time a MPC computation request is made, it results in approximately 2.3 seconds of compu-
tational time for each party involved (around 7 seconds in total) and generates around 240MB of
network traffic for each node. The end to end latency is not significantly impacted when the computa-
tion is being run in the background. The memory usage increases by less than 1GB, while the power
consumption goes up by 4 to 7 watts. These costs remain consistent per request.

e SQ3: What are the trade-offs between decentralization, auditability, and regulatory com-
pliance in an IoT-based security monitoring system?

By decentralizing fault detection across multiple branches, we can avoid a single point of failure in
the IoT systems, such as vault monitoring equipment. When we use a private blockchain, each branch
is able to encrypt and store its own security events on-site and only shares cryptographic hashes
on the private blockchain ledger. This makes sure that an immutable audit trail is made available.
MPC enables different branches to collaboratively calculate a joint threat score aimed at identifying
coordinated attacks while keeping the input data confidential.

The hybrid on-chain / off-chain storage model that combines on-chain and off-chain elements stores
only SHA-256 hashes on the blockchain, while it keeps the complete logs encrypted off the chain.
This design ensures that auditability is possible while also facilitating compliance with data erasure
or modification requirements.

e SQ4: How do latency, throughput, and resource overhead compare between system con-
figurations with and without blockchain and MPC?

We performed tests on four different system configurations: a baseline setup without blockchain or
MPC, one with only blockchain, another with only MPC, and at last, the complete system. The goal
is to assess latency, throughput, and resource usage across these configurations.

57

In the heavy test scenario, the baseline configuration (without blockchain or MPC) manages to process
2,000 events while utilizing 54 CPU-seconds, 76 MB of RAM, and 0.6 MB of disk space, resulting in
an average latency of 5.6 milliseconds per event. When we introduce just the blockchain component,
we see a large rise in CPU consumption, reaching 333 CPU-seconds, a 6.2-fold increase. Additionally,
peak memory usage grows to 2.1 GB, marking a 27.6-fold increase, while latency increases to between
15 and 18 milliseconds per event, making it 2.7 to 3.2 times slower.

In comparison, also in the heavy test scenario, the MPC-only setup utilizes 114 CPU-seconds (rep-
resenting a 2.1-fold increase) and requires 840 MB of RAM (an 11-fold increase). It maintains the
per-event latency at the baseline of 5.6 ms, due to parallel processing. MPC adds eight processing
events of 2.3 CPU-seconds per party, where each party exchanges also shares about 240 MB of data.
Because the MPC calculations do not block the main process, it does not effect the thoughput of the
system.

The complete system, which includes both blockchain and MPC, utilizes 400 CPU-seconds results in
a 7.4-fold overhead. The system reaches a peak memory usage of 3.3 GB of RAM, which is 43.4 times
higher than the baseline, and requires 213 MB of disk space, reflecting a 355-fold increase. Additionally,
the system maintains an average latency of 13.9 milliseconds per event.

For a system that combines both blockchain and MPC, this latency is likely acceptable for real-time
IoT monitoring, demonstrating that such integration is feasible. The blockchain layer dominates
CPU/memory /disk, while MPC adds predictable bursts of CPU, memory and bandwidth each time
it runs.

9.2 Future work

The first opportunity for future research is to improve the current hybrid on-chain / off-chain storage
model by including threshold decryption capabilities. In this system, each log entry would be encrypted
using a public key, with the corresponding private key divided between several branches. The decryption
key can only be reconstructed when a specific number of branches work together using a MPC protocol.
This approach ensures that no single party holds enough information to independently decrypt logs. At
the same time, it permits authorized auditors to access and examine specific entries as needed.

Another important area to investigate is how the system responds during (simulated) branch outages,
and research how the system can be improved to work better in these scenarios. This research can help
identify vulnerabilities and help with enhancements to maintain high availability, even under challenging
conditions.

For blockchain specifically, comparing proof-of-authority, proof-of-trusted-work, and proof-of-stake con-
sensus mechanisms in permissioned IoT deployments could present important information which could
alter the protocol choice. Measuring CPU, memory, and network utilization for each protocol under the
same workloads would allow for identification of which approach effectively balances security, throughput,
and resource efficiency the best.

Besides the aforementioned protocols, an overall broader, systematic comparative analysis of all available
other consensus methods would help with the selection the most appropriate protocol for this specific
application. Investigating performance characteristics, security guarantees, and how well they fit into
resource-constrained edge environments would possibly bring forward a more appropriate consensus
mechanism.

For MPC specifically, it would be beneficial to conduct a systematic benchmark for different alternative
MPC protocols and frameworks, ensuring that they are tested under the same IoT-edge workloads. This
should encompass MPC protocols along with different frameworks. To determine the best trade-offs for
each threat model, it is important to compare key metrics such as CPU usage, memory consumption,
network traffic, round-trip times, and end-to-end latency directly against one another.

To improve the system further, investigating techniques like anomaly scoring to evaluate the significance
of individual log entries in a dynamic way could help with real-world usage. For example, by giving
each event a “priority” score, the system can more effectively enable the ability to audit the most critical
security incidents first, placing the focus on the most important issues.

58

Additionally, research into the expansion of the number of branches in the network is important to explore
how growth affects system metrics. Research how growth in terms of branches affects consensus latency,
end-to-end throughput, MPC communication complexity, blockchain storage growth, network bandwidth
consumption, and the usage of CPU and memory. A scalability study like this, which involves changing
the number of participating nodes, would help identify bottlenecks and advise architectural improvements
for larger deployments.

Finally, expanding the system from just one edge server to a network of local edge nodes could allow for
improved redundancy and load balancing. Utilizing an offloading framework that intelligently allocates
tasks among nodes, while considering factors like energy consumption, round-trip latency, available
bandwidth, and data size can mitigate load spikes and ensure a failover method in case of individual
node failures. This multi-node edge architecture could have the potential to expand the possibilities in
low-latency, privacy-preserving IoT fault detection.

59

Bibliography

1

2]

3]

4]

[5]

[6]

7]

18]

19]

[10]

[11]

R. Hasan. Design framework for internet of things based next generation video surveillance. Master’s
thesis, University of Saskatchewan, 2017. URL https://harvest.usask.ca/bitstream/10388/
8320/1/HASAN-THESIS-2017.pdf.

S. Rizvi, R. Pipetti, N. Mclntyre, J. Todd, and I. Williams. Threat model for securing internet
of things (iot) network at device-level. Internet of Things, 9:100073, 2020. URL https://wuw.
sciencedirect.com/science/article/pii/S2542660520300731.

Md Ashraf Uddin, Andrew Stranieri, Igbal Gondal, and Venki Balasubramanian. A survey on the
adoption of blockchain in IoT: challenges and solutions. Blockchain: Research and Applications, 2
(2):100006, 2021. ISSN 2096-7209. doi: https://doi.org/10.1016/j.bcra.2021.100006. URL https:
//www.sciencedirect.com/science/article/pii/S2096720921000014.

Zibin Zheng, Shaoan Xie, Hong-Ning Dai, Xiangping Chen, and Huaimin Wang. An overview
of blockchain technology: Architecture, consensus, and future trends. 06 2017. doi: 10.1109/
BigDataCongress.2017.85. URL https://www.researchgate.net/publication/318131748_An_
Overview_of_Blockchain_Technology_Architecture_Consensus_and_Future_Trends.

European Parliament and Council of the European Union. Regulation (eu) 2016/679 of the european
parliament and of the council of 27 april 2016 on the protection of natural persons with regard to
the processing of personal data and on the free movement of such data, and repealing directive
95/46/ec (general data protection regulation), may 2016. URL https://eur-1lex.europa.eu/eli/
reg/2016/679/0j/eng.

Wenxian Li, Yong Feng, Nianbo Liu, Yingna Li, Xiaodong Fu, and YongTao Yu. A secure and
efficient log storage and query framework based on blockchain. Computer Networks, 252:110683,
2024. ISSN 1389-1286. doi: https://doi.org/10.1016/j.comnet.2024.110683. URL https://wuw.
sciencedirect.com/science/article/pii/S1389128624005152.

Chuan Zhao, Shengnan Zhao, Minghao Zhao, Zhenxiang Chen, Chong-Zhi Gao, Hongwei Li, and
Yu an Tan. Secure Multi-Party Computation: Theory, practice and applications. Information
Sciences, 476:357-372, 2019. ISSN 0020-0255. doi: https://doi.org/10.1016/;.ins.2018.10.024. URL
https://www.sciencedirect.com/science/article/pii/S0020025518308338.

Dengzhi Liu, Geng Yu, Zhaoman Zhong, and Yuanzhao Song. Secure multi-party computation
with secret sharing for real-time data aggregation in IIoT. Computer Communications, 224:159—
168, 2024. ISSN 0140-3664. doi: https://doi.org/10.1016/j.comcom.2024.06.002. URL https:
//www.sciencedirect.com/science/article/pii/S0140366424002068.

Shivani Wadhwa, Shalli Rani, Kavita, Sahil Verma, Jana Shafi, and Marcin Wozniak. FEnergy
Efficient Consensus Approach of Blockchain for IoT Networks with Edge Computing. MDPI Sensors,
22,10 2022. URL https://www.mdpi.com/1424-8220/22/10/3733.

Sheetal Zalte-Gaikwad. Edge Computing Technology: An Overview. ResearchGate, 7:96—
99, 03 2022. URL https://www.researchgate.net/publication/359616603_Edge_Computing_
Technology_An_Overview.

M Asif, S Wang, MF Shahzad, and M Ashfaq. Data privacy and cybersecurity challenges in the
digital transformation of the banking sector. Computers & Security, 2024. URL https://www.
sciencedirect.com/science/article/pii/S0167404824003560.

60

https://harvest.usask.ca/bitstream/10388/8320/1/HASAN-THESIS-2017.pdf
https://harvest.usask.ca/bitstream/10388/8320/1/HASAN-THESIS-2017.pdf
https://www.sciencedirect.com/science/article/pii/S2542660520300731
https://www.sciencedirect.com/science/article/pii/S2542660520300731
https://www.sciencedirect.com/science/article/pii/S2096720921000014
https://www.sciencedirect.com/science/article/pii/S2096720921000014
https://www.researchgate.net/publication/318131748_An_Overview_of_Blockchain_Technology_Architecture_Consensus_and_Future_Trends
https://www.researchgate.net/publication/318131748_An_Overview_of_Blockchain_Technology_Architecture_Consensus_and_Future_Trends
https://eur-lex.europa.eu/eli/reg/2016/679/oj/eng
https://eur-lex.europa.eu/eli/reg/2016/679/oj/eng
https://www.sciencedirect.com/science/article/pii/S1389128624005152
https://www.sciencedirect.com/science/article/pii/S1389128624005152
https://www.sciencedirect.com/science/article/pii/S0020025518308338
https://www.sciencedirect.com/science/article/pii/S0140366424002068
https://www.sciencedirect.com/science/article/pii/S0140366424002068
https://www.mdpi.com/1424-8220/22/10/3733
https://www.researchgate.net/publication/359616603_Edge_Computing_Technology_An_Overview
https://www.researchgate.net/publication/359616603_Edge_Computing_Technology_An_Overview
https://www.sciencedirect.com/science/article/pii/S0167404824003560
https://www.sciencedirect.com/science/article/pii/S0167404824003560

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

21]

[22]

23]

[24]

[25]

[26]

Antar Shaddad Abdul-Qawy, PJ Pramod, E Magesh, and T Srinivasulu. The internet of things
(iot): An overview. International Journal of Engineering Research and Applications, 5(12):71-
82, 2015. URL https://www.researchgate.net/publication/323834996_The_Internet_of_
Things_IoT_An_Overview.

Kebira Azbeg, Ouail Ouchetto, Said Jai Andaloussi, and Fetjah Laila. =~ An Overview of
Blockchain Consensus Algorithms: Comparison, Challenges, and Future Directions. In Pro-
ceedings of the International Conference on FEmerging Technologies and Intelligent Systems,
Advances in Intelligent Systems and Computing. Springer, 10 2020. ISBN 978-981-15-6048-4.
doi: 10.1007/978-981-15-6048-4 31. URL https://wuw.researchgate.net/publication/
344865960_An_0Overview_of_Blockchain_Consensus_Algorithms_Comparison_Challenges_
and_Future_Directions.

David Evans, Vladimir Kolesnikov, and Mike Rosulek. Defining multi-party computation. In A
Pragmatic Introduction to Secure Multi-Party Computation, chapter 2. NOW Publishers, 2018. URL
https://securecomputation.org/docs/ch2-definingmpc.pdf.

Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of Applied Cryptogra-
phy. CRC Press, Boca Raton, FL, 1996. URL https://galois.azc.uam.mx/mate/propaganda/
Menezes.pdf.

Amos Beimel. Secret-sharing schemes: A survey. pages 11-46, 05 2011. ISBN 978-3-642-20900-0. doi:
10.1007/978-3-642-20901-7 2. URL https://www.researchgate.net/publication/220776045_
Secret-Sharing_Schemes_A_Survey.

Ivan Damgard, Valerio Pastro, Nigel Smart, and Sarah Zakarias. Multiparty computation from
somewhat homomorphic encryption. Cryptology ePrint Archive, Paper 2011/535, 2011. URL https:
//eprint.iacr.org/2011/535.pdf.

Ivan Damgard, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl, and Nigel P. Smart.
Practical covertly secure mpc for dishonest majority -or: Breaking the spdz limits. In Furopean
Symposium on Research in Computer Security (ESORICS), volume 8134 of Lecture Notes in Com-
puter Science, pages 1-18. Springer, 2013. URL https://link.springer.com/chapter/10.1007/
978-3-642-40203-6_1.

Ronald Cramer, Ivan Damgard, Daniel Escudero, Peter Scholl, and Chaoping Xing. Spdz2k: Effi-
cient MPC mod 2k for dishonest majority. Cryptology ePrint Archive, Paper 2018/482, 2018. URL
https://eprint.iacr.org/2018/482.

Donald Beaver. Efficient multiparty protocols using circuit randomization. In CRYPTO ’91:
Proceedings of the 11th Annual International Cryptology Conference on Advances in Cryptology,
volume 576 of Lecture Notes in Computer Science, pages 420-432. Springer-Verlag, 1992. URL
https://link.springer.com/content/pdf/10.1007/3-540-46766-1_34.pdf.

Keyan Cao, Yefan Liu, Gongjie Meng, and Qimeng Sun. An overview on edge computing research.
IEEE access, 8:85714-85728, 2020. URL https://ieeexplore.ieee.org/document/9083958.

National Institute of Standards and Technology. Advanced encryption standard (aes). FIPS Pub-
lication 197, NIST, May 2023. URL https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.
197-upd1l.pdf.

National Institute of Standards and Technology. Recommendation for block cipher modes of op-
eration: Methods and techniques. Special Publication 800-38A, NIST, Dec 2001. URL https:
//nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-38a.pdf.

National Institute of Standards and Technology. Secure hash standard (shs). FIPS Publication 180-
4, NIST, Aug 2015. URL https://nvlpubs.nist.gov/nistpubs/fips/nist.fips.180-4.pdf.

Peter Szilagyi. Eip-225: Clique proof-of-authority consensus protocol, 2017. URL https://eips.
ethereum.org/EIPS/eip-225.

ConsenSys Software Inc. Besu ethereum client, 2025. URL https://besu.hyperledger.org/.
Accessed June 30, 2025.

61

https://www.researchgate.net/publication/323834996_The_Internet_of_Things_IoT_An_Overview
https://www.researchgate.net/publication/323834996_The_Internet_of_Things_IoT_An_Overview
https://www.researchgate.net/publication/344865960_An_Overview_of_Blockchain_Consensus_Algorithms_Comparison_Challenges_and_Future_Directions
https://www.researchgate.net/publication/344865960_An_Overview_of_Blockchain_Consensus_Algorithms_Comparison_Challenges_and_Future_Directions
https://www.researchgate.net/publication/344865960_An_Overview_of_Blockchain_Consensus_Algorithms_Comparison_Challenges_and_Future_Directions
https://securecomputation.org/docs/ch2-definingmpc.pdf
https://galois.azc.uam.mx/mate/propaganda/Menezes.pdf
https://galois.azc.uam.mx/mate/propaganda/Menezes.pdf
https://www.researchgate.net/publication/220776045_Secret-Sharing_Schemes_A_Survey
https://www.researchgate.net/publication/220776045_Secret-Sharing_Schemes_A_Survey
https://eprint.iacr.org/2011/535.pdf
https://eprint.iacr.org/2011/535.pdf
https://link.springer.com/chapter/10.1007/978-3-642-40203-6_1
https://link.springer.com/chapter/10.1007/978-3-642-40203-6_1
https://eprint.iacr.org/2018/482
https://link.springer.com/content/pdf/10.1007/3-540-46766-1_34.pdf
https://ieeexplore.ieee.org/document/9083958
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197-upd1.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197-upd1.pdf
https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-38a.pdf
https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-38a.pdf
https://nvlpubs.nist.gov/nistpubs/fips/nist.fips.180-4.pdf
https://eips.ethereum.org/EIPS/eip-225
https://eips.ethereum.org/EIPS/eip-225
https://besu.hyperledger.org/

[27]

(28]

[29]

[30]

[31]

32]

[33]

[34]

135]

[36]

37]

[38]

[39]

[40]

[41]

Roel Wieringa. Design science methodology: Principles and practice. In Proceedings of the
32nd International Conference on Software Engineering, ICSE '10. ACM, 2010. doi: 10.1145/
1810295.1810446. URL https://ris.utwente.nl/ws/portalfiles/portal/6133973/Wieringa_
2010_Design_science_methodology_principles_and_practice.pdf.

Arzoo Miglani, Neeraj Kumar, Vinay Chamola, and Sherali Zeadally. Blockchain for Internet of
Energy management: Review, solutions, and challenges. Computer Communications, 151:395-418,
2020. ISSN 0140-3664. doi: https://doi.org/10.1016/j.comcom.2020.01.014. URL https://wuw.
sciencedirect.com/science/article/pii/S0140366419314951.

Tri Nguyen, Huong Nguyen, and Tuan Nguyen Gia. Exploring the integration of edge computing and
blockchain IoT: Principles, architectures, security, and applications. Journal of Network and Com-
puter Applications, 226:103884, 2024. ISSN 1084-8045. doi: https://doi.org/10.1016/j.jnca.2024.
103884. URL https://www.sciencedirect.com/science/article/pii/S1084804524000614.

S. Zafar, K. M. Bhatti, M. Shabbir, F. Hashmat, and A. H. Akbar. Integration of blockchain and
Internet of Things: challenges and solutions. Annals of Telecommunications, 77:13-32, 2021. doi:
10.1007/s12243-021-00858-8. URL https://doi.org/10.1007/s12243-021-00858-8.

Vinay Gugueoth, Sunitha Safavat, Sachin Shetty, and Danda Rawat. A review of IoT security and
privacy using decentralized blockchain techniques. Computer Science Review, 50:100585, 2023. ISSN
1574-0137. doi: https://doi.org/10.1016/j.cosrev.2023.100585. URL https://www.sciencedirect.
com/science/article/pii/S1574013723000527.

Fateme Fathi, Mina Baghani, and Majid Bayat. Light-PerIChain: Using lightweight scalable
blockchain based on node performance and improved consensus algorithm in IoT systems. Computer
Communications, 213:246-259, 2024. ISSN 0140-3664. doi: https://doi.org/10.1016/j.comcom.2023.
11.011. URL https://www.sciencedirect.com/science/article/pii/S0140366423004024.

Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. Online: www.bitcoin.org,
2008. URL https://bitcoin.org/bitcoin.pdf.

Jon Huang, Claire O’Neill, and Hiroko Tabuchi. Bitcoin Uses More Electricity Than Many Coun-
tries. How Is That Possible? The New York Times, 2021. URL https://www.nytimes.com/
interactive/2021/09/03/climate/bitcoin-carbon-footprint-electricity.html. Accessed:
2024-12-08.

Elizabeth Howcroft and Hannah Lang. Explainer: Ethereum’s energy-saving
Merge upgrade, September 2022. URL https://www.reuters.com/technology/
ethereums-energy-saving-merge-upgrade-2022-09-15/. Accessed: 2024-12-08.

Matthew Sparkes. Cryptocurrency Ethereum has slashed its energy wuse by
99.99 per cent, April 2023. URL https://www.newscientist.com/article/
2369304-cryptocurrency-ethereum-has-slashed-its-energy-use-by-99-99-per-cent/.
Accessed: 2024-12-08.

Sunny King and Scott Nadal. Ppcoin: Peer-to-peer crypto-currency with proof-of-stake, August
2012. URL https://peercoin.net/assets/paper/peercoin-paper.pdf. Whitepaper.

Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance. In Proceedings of the Third
Symposium on Operating Systems Design and Implementation, 02 1999. URL http://pmg.csail.
mit.edu/papers/osdi99.pdf.

Nikos Chondros, Konstantinos Kokordelis, and Mema Roussopoulos. On the Practicality of ‘Prac-
tical’ Byzantine Fault Tolerance, 10 2011. URL https://arxiv.org/abs/1110.4854.

Oladayo Olufemi Olakanmi and Kehinde Oluwasesan Odeyemi. Trust-aware and incentive-based
offloading scheme for secure multi-party computation in Internet of Things. Internet of Things,

19:100527, 2022. ISSN 2542-6605. doi: https://doi.org/10.1016/j.i0t.2022.100527. URL https:
//www.sciencedirect.com/science/article/pii/S2542660522000294.

Andrew Chi-Chih Yao. How to generate and exchange secrets. page 162-167, 1986. URL https:
//ieeexplore.ieee.org/document/4568207.

62

https://ris.utwente.nl/ws/portalfiles/portal/6133973/Wieringa_2010_Design_science_methodology_principles_and_practice.pdf
https://ris.utwente.nl/ws/portalfiles/portal/6133973/Wieringa_2010_Design_science_methodology_principles_and_practice.pdf
https://www.sciencedirect.com/science/article/pii/S0140366419314951
https://www.sciencedirect.com/science/article/pii/S0140366419314951
https://www.sciencedirect.com/science/article/pii/S1084804524000614
https://doi.org/10.1007/s12243-021-00858-8
https://www.sciencedirect.com/science/article/pii/S1574013723000527
https://www.sciencedirect.com/science/article/pii/S1574013723000527
https://www.sciencedirect.com/science/article/pii/S0140366423004024
https://bitcoin.org/bitcoin.pdf
https://www.nytimes.com/interactive/2021/09/03/climate/bitcoin-carbon-footprint-electricity.html
https://www.nytimes.com/interactive/2021/09/03/climate/bitcoin-carbon-footprint-electricity.html
https://www.reuters.com/technology/ethereums-energy-saving-merge-upgrade-2022-09-15/
https://www.reuters.com/technology/ethereums-energy-saving-merge-upgrade-2022-09-15/
https://www.newscientist.com/article/2369304-cryptocurrency-ethereum-has-slashed-its-energy-use-by-99-99-per-cent/
https://www.newscientist.com/article/2369304-cryptocurrency-ethereum-has-slashed-its-energy-use-by-99-99-per-cent/
https://peercoin.net/assets/paper/peercoin-paper.pdf
http://pmg.csail.mit.edu/papers/osdi99.pdf
http://pmg.csail.mit.edu/papers/osdi99.pdf
https://arxiv.org/abs/1110.4854
https://www.sciencedirect.com/science/article/pii/S2542660522000294
https://www.sciencedirect.com/science/article/pii/S2542660522000294
https://ieeexplore.ieee.org/document/4568207
https://ieeexplore.ieee.org/document/4568207

42]

[43]

[44]

[45]

|46]

[47]

(48]

[49]

[50]

[51]

[52]

53]

[54]

[55]

Andrew C. Yao. Protocols for secure computations. In 28rd Annual Symposium on Foundations of
Computer Science (sfes 1982), pages 160-164, 1982. doi: 10.1109/SFCS.1982.38.

Wikipedia contributors. Secure multi-party computation, 2025. URL https://en.wikipedia.org/
wiki/Secure_multi-party_computation. Accessed Jan 23, 2025.

O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. In Proceedings of
the Nineteenth Annual ACM Symposium on Theory of Computing, STOC 87, page 218-229, New
York, NY, USA, 1987. Association for Computing Machinery. ISBN 0897912217. doi: 10.1145/
28395.28420. URL https://doi.org/10.1145/28395.28420.

Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. = Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In Proceedings of the Twentieth Annual
ACM Symposium on Theory of Computing, STOC ’88, page 1-10, New York, NY, USA, 1988.
Association for Computing Machinery. ISBN 0897912640. doi: 10.1145/62212.62213. URL
https://doi.org/10.1145/62212.62213.

Marcel Keller. Mp-spdz: A versatile framework for multi-party computation. Cryptology ePrint
Archive, Paper 2020/521, 2020. URL https://eprint.iacr.org/2020/521.pdf.

Haris Smajlovié¢, Ariya Shajii, Bonnie Berger, Hyunghoon Cho, and Ibrahim Numanagi¢.
Sequre: a high-performance framework for secure multiparty computation enables biomed-
ical data sharing. Genome Biology, 24, 01 2023. doi: 10.1186/s13059-022-02841-5.
URL https://www.researchgate.net/publication/367045174_Sequre_a_high-performance_
framework_for_secure_multiparty_computation_enables_biomedical_data_sharing.

Steven Kerr, Chris Robertson, Cathie Sudlow, and Aziz Sheikh. Enabling health data analyses
across multiple private datasets with no information sharing using secure multiparty com-
putation. BMJ health and care informatics, 32, 05 2025. doi: 10.1136/bmjhci-2024-101384.
URL https://www.researchgate.net/publication/392161985_Enabling_health_data_
analyses_across_multiple_private_datasets_with_no_information_sharing_using_
secure_multiparty_computation.

Xin Jin, Charalampos Katsis, Fan Sang, Jiahao Sun, Ashish Kundu, and Ramana Kom-
pella. Edge security: Challenges and issues. 06 2022. doi: 10.48550/arXiv.
2206.07164. URL https://www.researchgate.net/publication/361324539_Edge_Security_
Challenges_and_Issues/citations.

Abdul Manan Sheikh, Md. Rafiqul Islam, Mohamed Hadi Habaebi, Suriza Ahmad Zabidi,
Athaur Rahman Bin Najeeb, and Adnan Kabbani. A survey on edge computing (ec) security
challenges: Classification, threats, and mitigation strategies. Future Internet, 17(4), 2025. ISSN
1999-5903. doi: 10.3390/fi17040175. URL https://www.mdpi.com/1999-5903/17/4/175.

International Organization for Standardization and International Electrotechnical Commission. In-
formation Technology - Open Systems Interconnection - Basic Reference Model: The Basic Model.
ISO/IEC Standard No. 7498-1:1994, 1994. URL https://www.iso.org/standard/20269.html.

Tinshu Sasi, Arash Habibi Lashkari, Rongxing Lu, Pulei Xiong, and Shahrear Igbal. A comprehen-
sive survey on IoT attacks: Taxonomy, detection mechanisms and challenges. Journal of Information
and Intelligence, 2(6):455-513, 2024. ISSN 2949-7159. doi: https://doi.org/10.1016/j.jiixd.2023.12.
001. URL https://www.sciencedirect.com/science/article/pii/S2949715923000793.

A Shaji George, T Baskar, and P Balaji Srikaanth. Cyber threats to critical infrastructure: assessing
vulnerabilities across key sectors. Partners Universal International Innovation Journal, 2(1):51—
75, 2024. URL https://www.researchgate.net/publication/378078435_Cyber_Threats_to_
Critical_Infrastructure_Assessing_Vulnerabilities_Across_Key_Sectors.

Manasvi Rizvi and Amer Taga. A Review of IoT in Banking Industry. ResearchGate, 9:2319-5045,
09 2020. URL https://www.researchgate.net/publication/372188477_A_Review_of_IoT_in_
Banking_Industry.

D. Shanthi Chelliah, V. Parthiban, S. Bharathi, and R. Naveen Kumar. IoT-Based Security Sys-
tem for Bank Vaults. RestPublisher, 2(4), 2022. URL https://restpublisher.com/wp-content/
uploads/2022/12/10.46632-daai-2-4-17-2.pdf.

63

https://en.wikipedia.org/wiki/Secure_multi-party_computation
https://en.wikipedia.org/wiki/Secure_multi-party_computation
https://doi.org/10.1145/28395.28420
https://doi.org/10.1145/62212.62213
https://eprint.iacr.org/2020/521.pdf
https://www.researchgate.net/publication/367045174_Sequre_a_high-performance_framework_for_secure_multiparty_computation_enables_biomedical_data_sharing
https://www.researchgate.net/publication/367045174_Sequre_a_high-performance_framework_for_secure_multiparty_computation_enables_biomedical_data_sharing
https://www.researchgate.net/publication/392161985_Enabling_health_data_analyses_across_multiple_private_datasets_with_no_information_sharing_using_secure_multiparty_computation
https://www.researchgate.net/publication/392161985_Enabling_health_data_analyses_across_multiple_private_datasets_with_no_information_sharing_using_secure_multiparty_computation
https://www.researchgate.net/publication/392161985_Enabling_health_data_analyses_across_multiple_private_datasets_with_no_information_sharing_using_secure_multiparty_computation
https://www.researchgate.net/publication/361324539_Edge_Security_Challenges_and_Issues/citations
https://www.researchgate.net/publication/361324539_Edge_Security_Challenges_and_Issues/citations
https://www.mdpi.com/1999-5903/17/4/175
https://www.iso.org/standard/20269.html
https://www.sciencedirect.com/science/article/pii/S2949715923000793
https://www.researchgate.net/publication/378078435_Cyber_Threats_to_Critical_Infrastructure_Assessing_Vulnerabilities_Across_Key_Sectors
https://www.researchgate.net/publication/378078435_Cyber_Threats_to_Critical_Infrastructure_Assessing_Vulnerabilities_Across_Key_Sectors
https://www.researchgate.net/publication/372188477_A_Review_of_IoT_in_Banking_Industry
https://www.researchgate.net/publication/372188477_A_Review_of_IoT_in_Banking_Industry
https://restpublisher.com/wp-content/uploads/2022/12/10.46632-daai-2-4-17-2.pdf
https://restpublisher.com/wp-content/uploads/2022/12/10.46632-daai-2-4-17-2.pdf

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

Sanjoy Mondol, Weining Tang, and Sakib Hasan. A Case Study of IoT-Based Bio-
metric Cyber Security Systems Focused on the Banking Sector. ResearchGate, 03 2023.
URL https://www.researchgate.net/publication/369245820_A_Case_Study_of_IoT_Based_
Biometric_Cyber_Security_Systems_Focused_on_the_Banking_ Sector.

Marie Baezner and Patrice Robin. Stuxnet. Technical Report 4, Center for Security Studies (CSS),
ETH Zurich, Zurich, October 2017. URL https://doi.org/10.3929/ethz-b-000200661.

Wikipedia contributors. Python (programming language), 2025. URL https://en.wikipedia.
org/wiki/Python_(programming_language). Accessed June 23, 2025.

Lutz Prechelt. An empirical comparison of ¢, c++, java, perl, python, rexx, and tcl for
a search/string-processing program. 04 2000. URL https://www.researchgate.net/
publication/36451181_An_empirical_comparison_of_C_C_Java_Perl_Python_Rexx_and_
Tcl_for_a_searchstring-processing_program.

TIOBE Software. The python programming language. TIOBE Index, June 2025. URL https:
//www.tiobe.com/tiobe-index/python/. Accessed June 23, 2025.

Wes Felter, Alexandre Ferreira, Ram Rajamony, and Juan Rubio. An updated performance com-
parison of virtual machines and linux containers. IBM, jul 2014. URL https://dominoweb.draco.
res.ibm.com/reports/rc25482.pdf.

Ravi Patel. Understanding docker architecture: A comprehen-
sive guide, feb 2024. URL https://medium.com/@ravipatel.it/
understanding-docker-architecture-a-comprehensive-guide-5ce9129dfia4. Accessed

June 23, 2025.

Bitovi Academy. What is docker. URL https://www.bitovi.com/academy/learn-docker/
what-is-docker.html. Accessed June 23, 2025.

GitHub repository. data6l/MP-SPDZ: Versatile framework for multi-party computation. URL
https://github.com/data61/MP-SPDZ. Accessed: 2025-08-07.

64

https://www.researchgate.net/publication/369245820_A_Case_Study_of_IoT_Based_Biometric_Cyber_Security_Systems_Focused_on_the_Banking_Sector
https://www.researchgate.net/publication/369245820_A_Case_Study_of_IoT_Based_Biometric_Cyber_Security_Systems_Focused_on_the_Banking_Sector
https://doi.org/10.3929/ethz-b-000200661
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Python_(programming_language)
https://www.researchgate.net/publication/36451181_An_empirical_comparison_of_C_C_Java_Perl_Python_Rexx_and_Tcl_for_a_searchstring-processing_program
https://www.researchgate.net/publication/36451181_An_empirical_comparison_of_C_C_Java_Perl_Python_Rexx_and_Tcl_for_a_searchstring-processing_program
https://www.researchgate.net/publication/36451181_An_empirical_comparison_of_C_C_Java_Perl_Python_Rexx_and_Tcl_for_a_searchstring-processing_program
https://www.tiobe.com/tiobe-index/python/
https://www.tiobe.com/tiobe-index/python/
https://dominoweb.draco.res.ibm.com/reports/rc25482.pdf
https://dominoweb.draco.res.ibm.com/reports/rc25482.pdf
https://medium.com/@ravipatel.it/understanding-docker-architecture-a-comprehensive-guide-5ce9129df1a4
https://medium.com/@ravipatel.it/understanding-docker-architecture-a-comprehensive-guide-5ce9129df1a4
https://www.bitovi.com/academy/learn-docker/what-is-docker.html
https://www.bitovi.com/academy/learn-docker/what-is-docker.html
https://github.com/data61/MP-SPDZ

Appendix A

Proof of concept prototype

A.1 Full source code

The prototype is available at:

https://github.com/cosmic7159/pp-iot-fault-detection-poc

A.2 Prototype architecture

The system consists of microservices that are connected through a local Docker network:

IoT simulator: Generates synthetic fault events for cameras, motion sensors, door locks, and
temperature sensors distributed across three branches.

Coordinator: The coordinator is responsible for receiving faults, classifying their severity, en-
crypting and storing logs off-chain, forwarding branch events to the MPC system, and storing
hashes or summaries on the private blockchain.

MPC layer: Three MP-SPDZ parties collaboratively compute an aggregate global threat score,
specifically the average severity, without the need to exchange raw logs. The service stores the
result on the private blockchain.

Private blockchain: A three-node Besu (Proof of Authority) network used to store log hashes
and MPC results for auditability.

Minimal web Uls: Dashboards designed for simulator control, coordinator score visualization,
and blockchain transaction analysis.

A.2.1 End-to-end data flow (simplified)

1.
2.
3.

The IoT simulator produces a fault event, complete with timestamps and location metadata.
The coordinator receives the fault and sends the per-branch subset to the relevant MPC node.

MPC parties input their local aggregates to compute a global threat score through secure compu-
tation.

. The coordinator encrypts the complete log, stores this off-chain and commits a hash to the private

blockchain to serve as an integrity validator.

65

https://github.com/cosmic7159/pp-iot-fault-detection-poc

T W N =

© 0 N O

10

11

Appendix B

Data collection

This appendix describes how the data is collected in the proof of concept. All timings and resource
metrics are gathered via the script collect data.py. The script runs on the docker host and runs a
predefined fault sequence from a csv file, interacting with the full system (running the predefined actions
in the csv). At the end of the sequence, the script queries logs from the coordinator and blockchain
services, it saves docker stats, and writes consolidated csv reports which can be used for analysis.

B.1 Host system configuration

The system runs on a type 1 hypervisor (VMware ESXi, 8.0.3, build 24677879) that runs directly on
the host hardware, avoiding the need for a general-purpose operating system in between. This setup
introduces minimal additional software layers. All services run within a single Ubuntu 24.04 virtual
machine (installed with the minimal configuration option) on this hypervisor. The only added packages
in this virtual machine are Docker, Docker Desktop and Python3.

The proof-of-concept prototype is deployed on the following host environment. These details are captured
using Python’s platform module.

{

"system": "Linux",

"node": "ubuntu-x64-1",

"release": "6.11.0-26-generic",

"version": "#26724.04.1-Ubuntu SMP PREEMPT_DYNAMIC Thu Apr 17 19:20:47 UTC 2
= ",

"machine": "x86_64",

"cpu_count": 16,

"memory_total_mb": 15988.12,

"cpu_model": "amd ryzen 7 5800x 8-core processor",

"cpu_flags": "fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov
> pat pse36 clflush mmx fxsr sse sse2 syscall nx mmxext fxsr_opt pdpelgb
— rdtscp 1lm constant_tsc rep_good nopl xtopology tsc_reliable
< nonstop_tsc cpuid extd_apicid tsc_known_freq pni pclmulqdq ssse3 fma
~ cx16 sse4_1 ssed4_2 x2apic movbe popcnt aes xsave avx f16c rdrand
<~ hypervisor lahf_1lm svm extapic cr8_legacy abm sse4a misalignsse 3
<~ dnowprefetch osvw topoext ssbd ibrs ibpb vmmcall fsgsbase bmil avx2
<~ smep bmi2 erms invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt
> xsavec xgetbvl xsaves user_shstk clzero wbnoinvd arat npt svm_lock
~— nrip_save vmcb_clean flushbyasid decodeassists umip pku ospke vaes
~ vpclmulqdq rdpid overflow_recov succor fsrm"

}

66

B.2 Fault triggering logic

In the data collect _data.py collection script, the run__controlled sequence function reads a csv of events
with time offsets (the time the script waits until each new action). it waits until each offset, then posts
a fault to the coordinator. if the row requests an mpc calculation it also calls the global mpc score
endpoint. This triggers the MPC system to calculate the global threat score.

def run_controlled_sequence(sequence_csv):

C%
start_time = time.time ()
rows = []
with open(sequence_csv, , encoding=) as f:

reader = csv.DictReader (f)

for row in reader:
Convert time_offset to float
row [] = float (row.get (, 0))
rows .append (row)

Sort by time_offset ascending
rows.sort (key=lambda x: x[ID)

if elapsed >= offset:

trigger_fault (loc, dev_id, ftype, sev, subloc)
triggered = row.get(,).lower () in (s R
=)

Listing B.1: run_controlled sequence: scheduling and triggering faults

B.3 Generation of sequences

We include a Python script, generate_sequence.py, that builds three CSV files with synthetic fault
events. The script creates a sequences folder to store the output CSVs. These faults are used to test
the system. Each file contains a synthetic fault sequence used for testing:

1. LIGHT (1ight.csv)
2. MEDIUM (medium.csv)
3. HEAVY (heavy.csv)

B.3.1 Fault sampling

The function choose_fault_with_severity() picks a fault with the right severity:
. Expand SEVERITY_WEIGHTS into a weighted list of severity levels.
. Pick one severity at random.

. Find all fault types in FAULT_TYPES with that severity. If none match, use all faults.

1

2

3

4. Choose one fault name from that list.

5. From the fault’s category, pick a device ID in DEVICES.
6

. Pick one allowed sublocation for that fault.

67

B.3.2 Sequence generation
The function generate_sequence(...) builds a list of event dictionaries:
e For each of the num_events:
— Sample time_offset:

* With probability burst_weight, pick a random burst_center and add a uniform offset
in [—burst_radius, burst_radius].

* Otherwise pick uniformly in [0, TOTAL_SECONDS].

Call choose_fault_with_severity().

Pick a random branch from BRANCHES.

— Decide trigger_mpc_calculation:

* It must be at least allow_mpc_every seconds since the last true.
* Then do a probability test: 80% inside a burst, 5% outside.

e Store each event as a dict with keys: time_offset, location, device_id, fault_type, severity,
sublocation, trigger_mpc_calculation.

e Sort all rows by time_offset before returning.

B.4 Docker stats

Along with the system logs the docker stats are also captured. We do this by connecting to the docker
socket on the host and polling container metrics. This allows for the analysis of the overall system
performance in each container. It does the following:

1. Connects to the Docker daemon.

2. Lists running containers with size info.

3. For each container:
e Reads total CPU usage (nanoseconds) and converts to seconds.
e Reads memory usage (bytes) and converts to megabytes.
e Reads root-fs sizes (bytes) and converts to megabytes.

4. Builds a record with these fields: timestamp, container_id, container_name, cpu_seconds,
mem_mb, size_rw_mb, size_root_fs_mb, size_total_mb.

5. Appends the record to an in-memory list for later export.

def collect_docker_stats () :

now_str = datetime.datetime.now(datetime.timezone.utc).isoformat ()
start = time.perf_counter ()

Connect via low-level client
api = docker.APIClient (base_url=RUNNING_DOCKER_SOCK, version=)
try:

api.ping()

For each container, collect CPU, memory, and disk usage
for info in infos:
cid_full = info.get(5)

68

short_id = cid_full[:12]

CPU & memory via stats ()
cpu_s = None
mem_mb = None
try:
stats = api.stats(container=cid_full, stream=False)
cpu_ns = stats|[1t 1t]
cpu_s = cpu_ns / 1le9
mem_mb = stats[1L] / (1024x%x%2)
except Exception as e:
logging.warning (£)

Disk usage fields from the same containers() call

size_rw_mb = info.get (s 0) / (1024%%2)
size_root_mb = info.get (, 0) / (1024%%2)
size_total_mb = size_rw_mb + size_root_mb

Build row and store under 1lock

row = {
now_str,
short_id,
name ,
round (cpu_s, 3) if cpu_s is not None else None,
round (mem_mb, 2) if mem_mb is not None else None,
round (size_rw_mb, 2),
round (size_root_mb, 2),

round (size_total_mb, 2),

}

Listing B.2: The core of the collection and processing logic for container metrics

B.5 Final report generation

After the test sequence completes, the script stores all collected data into the following report files under
collected-data/ folder:

1. host _info.json: JSON with OS, CPU model, core count, memory, and Linux CPU flags. The
example output is shown in appendix B.1.

2. report YYYYMMDD HHMMSS.csv: Combined coordinator logs. The example output is shown
in appendix B.6.1.

3. docker report YYYYMMDD HHMMSS.csv: Docker stats snapshots. The example output is
shown in appendix B.6.2.

4. blockchain report YYYYMMDD HHMMSS.csv (if enabled): Blockchain transactions. The ex-
ample output is shown in appendix B.6.3.

5. mpc_report YYYYMMDD HHMMSS.csv (if enabled): MPC-calls. The example output is shown
in appendix B.6.4.

B.6 Sample collected data outputs

This section shows example outputs generated by the data collection script. These files are available in
the repository under collected-data and show the format of the final reports.

69

B.6.1 Coordinator report example

The main coordinator report consolidates per-fault timings and metadata.

data_type,device_id,fault_type,location_branch,location_sublocation,ms_
< coordinator_received,ms_coordinator_forwarded,ms_sent_from_coordinator_to
— _mpc,ms_saved_by_branch_mpc_system,ms_blockchain_stored,ms_total_
— lifecycle,timestamp_collected
coordinator_log,base_device,base_fault,Branchl,base_subloc,0,0,0,9,49,49,2025-0
— 6-14T11:38:51.637685+00:00
coordinator_log,base_device,base_fault,Branch2,base_subloc,0,0,0,5,20,20,2025-0
— 6-14T11:38:51.674487+00:00
coordinator_log,base_device,base_fault,Branch3,base_subloc,0,0,0,5,18,18,2025-0
— 6-14T11:38:51.698440+00:00
coordinator_log,camera2,camera_blurred,Branchl,Parking-10t,0,0,0,3,15,15,2025-0
— 6-14T11:39:06.737778+00:00

Listing B.3: collected-data/examples/report 20250614 133851.csv

B.6.2 Docker stats example

All docker stats are recorded here.

data_type,timestamp,container_id,container_name,cpu_seconds,mem_mb,size_rw_mb,
<~ size_root_£fs_mb,size_total_mb

docker_stats,2025-06-14T11:38:51.576597+00:00,7a8373a54d9%e,iot-simulator,0.406,
— 34.5,0.24,1059.53,1059.77

docker_stats,2025-06-14T11:38:51.576597+00:00,34cecc2e674c,mpc_node_1,0.425,31.
— 5,0.01,1073.69,1073.7

docker_stats,2025-06-14T11:38:51.576597+00:00,1d371c97ff2a,mpc_node_2,0.456,32.
— 1,0.01,1073.69,1073.7

docker_stats,2025-06-14T11:38:51.576597+00:00,1c7bdfe5ab86,mpc_node_0,0.428,33.
— 88,0.01,1073.69,1073.7

Listing B.4: collected-data/examples/docker report 20250614 133851.csv

B.6.3 Blockchain report example

All on-chain transactions (hashes and scores) are recorded here.

data_type,block_timestamp,block_number,transaction_data
blockchain_tx,2025-06-14T11:38:52+00:00,13,b0219e25f14b89eed9ccbaaac96e51dfd003
— ceb9fb9d5bcb67734861e7c593ab
blockchain_tx,2025-06-14T11:38:52+00:00,13,28471c82710733232534c22db95790b993fd
— 9bb1c215705660253f017dcf3£fb6
blockchain_tx,2025-06-14T11:39:07+00:00,14,d90f0d6c66c51e6f14e9dc6a486c834194£f3
— 4clabela6533ff8eb5af9cbed17ab
blockchain_tx,2025-06-14T11:39:07+00:00,14,347£f941121c9274c267a62159c5£1d2b93d7
— f£7dbf63d2a6428d815d889bc7al’
blockchain_tx,2025-06-14T12:38:52+00:00,253,Global Threat Average = 31.457

Listing B.5: collected-data/examples/blockchain _report 20250614 133851.csv

B.6.4 MPC call records example

Each MPC invocation’s timing and results are captured here.

branch,device_id,triggered,start_timestamp,end_timestamp,ms_mpc_call,status,
— data
Branchl,camera2,False,2025-06-14T11:39:06.743051+00:00,2025-06-14T11:39:06.7430
— 51+00:00,,,

70

3

5

Branch3,motion2,False,2025-06-14T11:39:24.779604+00:00,2025-06-14T11:39:24.7796

— 04+00:00,,,

Branch2,motion2,False,2025-06-14T11:39:25.803450+00:00,2025-06-14T11:39:25.8034

— 50+00:00,,,

Branchl, temperaturel,True,2025-06-14T12:38:40.756853+00:00,2025-06-14T12:38:45.
— 344364+00:00,4587,200,"{’blockchain_response’: {’transactionHash’: ’6b8fe

5 62ae51770049ca4f0e6d2d19a2d1428ca71f25fc6055fc677109b91£fd75°},
< threat_score’: 31.44714}"

’global_

Listing B.6: collected-data/examples/mpc_report 20250614 133851.csv

71

Appendix C

MPC implementation

This appendix provides a summary of the MPC component in the prototype system. The MPC imple-
mentation consists of a python wrapper, which orchestrates the MPC executables (MP-SPDZ), and a
compilation script which builds these executables the wrapper interacts with. The MPC calculations are
performed with MP-SPDZ. We use the SPDZ?¥ protocol.

C.1 Overview

The MPC component of the PoC implements a three-party secret sharing system using MP-SPDZ to
compute a weighted average of fault severities. Each party holds the following data, which is used to
calculate the overall average severity:

e A sum of accumulated severity at a local level.

e A local event count.

C.2 Build and deployment

C.2.1 Building MP-SPDZ artifacts

Before the MPC system can be used, the binaries that handle the MPC protocols have to be compiled.
If the binaries do not exist on the host machine, the helper script mpc/build_mpc_binaries.sh starts
a Docker container that:

1. Clones the MP-SPDZ source code.

2. Builds spdz2k-party.x (ounline binary) and Fake-0ffline.x.
3. Compiles the threat_score.mpc program.
4

. Performs offline preprocessing.

C.3 Service API

e The service API is in run_mpc.py (them python wrapper).
e The received branch-level faults are stored on the respective local MPC system.
e GET /compute_mpc:

1. Reads local logs -> computes (sum, count).

2. Scales sum by 10° for fixed-point.

3. Runs spdz2k-party.x interactively:

72

cmd_stage2 = [
MP_SPDZ_BIN,

-v", # verbose

"-I", # Using -I activates interactive mode (necessary in order to
<~ reveal the output to ALL parties)

"-R", str(BITLEN), # ring mode

"-N", str(TOTAL_NODES), # number of parties

"_S", str(SECPAR), # must match the Fake-0ffline.x invocation

"-h", first_host, # only the host for party O

"-pn", "14000", # port number

str (NODE_INDEX), # this party’s index

MPC_PROGRAM # .mpc bytecode name

try:
proc = subprocess.run/(
cmd_stage2,

4. Parses returned secret result and converts to percentage.

e GET /global_threat handles /compute_mpc calls to all three parties, verifies consistency, and
posts the agreed score to the blockchain.

C.4 MPC program: threat_score.mpc

The MPC program that is used in MP-SPDZ:

from Compiler.types import sint
from Compiler.library import print_1n

Accumulate total severity and total count
total_sev = sint (0)
total_cnt = sint (0)

Each party provides two inputs in sequence:

1) sum of its local severity scores

2) number of events it contributed

for p in range(3):
Read the aggregated severity sum and count from party p
sev_sum = sint.get_input_from(p)
cnt = sint.get_input_from(p)

total_sev += sev_sum
total_cnt += cnt

Compute the integer average: total_sev / total_cnt
Use a safe bit-length
avg_sev = total_sev.int_div(total_cnt, 24)

Reveal and print just the numeric average
print_1n(’%s’, avg_sev.reveal())

73

	Abstract
	Acknowledgements
	Introduction
	Thesis structure
	Introduction
	Research problem
	Research questions
	Scope
	Contribution

	Background
	Terminology and concepts
	Internet of things
	Blockchain
	Consensus mechanism
	Hybrid on-chain / off-chain storage
	Multi-party computation
	Secret sharing
	MPC frameworks and SPDZ2k
	Edge computing
	Encryption and verification methods
	Hyperledger Besu

	Method
	Literature review
	Inclusion criteria
	Related work

	System design
	Design science phases
	Prototype and simulation setup

	Literature review
	Summary
	Thematic review
	Theme 1: Blockchain combined with IoT fault detection
	Theme 2: Consensus mechanisms for IoT suitability
	Theme 3: Privacy with multi-party computation
	Theme 4: Edge computing for real-time IoT fault detection
	Theme 5: Security challenges in IoT
	Theme 6: IoT in high-security environments

	Discussion

	System design
	Introduction
	High level system architecture
	Design choices and rationale
	Choice of number of branches
	Choice of programming language and key libraries
	Microservices architecture
	Containerization with Docker
	MPC framework
	Web framework
	Blockchain engine
	Hybrid on-chain / off-chain storage
	MPC parameters
	Simulated IoT devices

	Low-level design
	Data and evaluation plan

	Implementation
	Service integration and container setup
	Orchestration scripts
	Continuous integration and repeatable builds
	Logging, monitoring, and health checks
	Data-collection process

	Results
	Sequence generation test setup
	Sequences for testing

	Performance metrics
	Overall results
	Column definitions and computation
	Overall results
	MPC overhead
	Full system - heavy setting
	Full system - medium setting
	Full system - light setting
	Component-only configurations

	Hybrid on-chain / off-chain storage system

	Discussion
	Overall prototype performance and privacy properties
	Effects of event volume and frequency
	Limitations

	Conclusions
	Answers to the research questions
	Future work

	Proof of concept prototype
	Full source code
	Prototype architecture
	End-to-end data flow (simplified)

	Data collection
	Host system configuration
	Fault triggering logic
	Generation of sequences
	Fault sampling
	Sequence generation

	Docker stats
	Final report generation
	Sample collected data outputs
	Coordinator report example
	Docker stats example
	Blockchain report example
	MPC call records example

	MPC implementation
	Overview
	Build and deployment
	Building MP-SPDZ artifacts

	Service API
	MPC program: threat_score.mpc

