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Abstract

The imitation of human listening and speech comprehension has long been a goal in technology.
Speech recognition (SR) refers to systems that recognize patterns in sound waves and convert
them into text. Despite rapid advances, previous research has shown that Automatic Speech
Recognition (ASR) technology remains uneven in accuracy across different user groups. This
study investigates how sensitive ASR models are to non-native speakers with diverse accents.
Three models, NVIDIA canary-1b, facebook wav2Vec2, and OpenAI’s Whisper, were evaluated
using Character Error Rate (CER), Word Error Rate (WER), and Semantic Error Rate (SER).
A dataset of 48 participants was collected via a Qualtrics survey targeting English speakers
with various accents. Statistical analyses, including two-way ANOVA and Tukey HSD tests,
were used to examine the effects of ASR model, text type, and participants’ first and second
best languages on the error metrics. Results showed that text type had a strong, consistent
effect on error rates for both best languages, with interaction effects only significant for
participants’ first best language. This suggests a greater influence of one’s strongest language
on their speech. No statistically significant differences were found across language groups with
the Tukey HSD test, suggesting limited ASR sensitivity to non-native speech. Furthermore,
model type, text type, and their interaction significantly impacted error rates, with Whisper
consistently achieving the lowest scores across all metrics. Additionally, a modest but significant
negative correlation was found between self-perceived accent heaviness and error rates using
Pearson’s r, indicating that heavier accents are associated with higher transcription errors.
These findings underscore the need to consider speaker characteristics and linguistic context in
ASR development. Future research could expand data quantity by including paid participants,
which may also increase the diversity of accents represented. In addition to this, exploration
of other state-of-the-art ASR models can help gain a broader understanding of the diversity
of their performance across various speaker characteristics in order to improve inclusivity.
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1 Introduction
The imitation of human skills for listening and understanding speech has been a long-standing goal
in technology. The concept of Speech Recognition (SR) itself is older than commonly assumed,
with the earliest system developed by Bell Labs dating back to 1952 [O8]. SR can be defined as a
system that recognizes patterns in input sound waves, which will then be translated into text. As
technology has rapidly improved in the past seventy years, SR has been integrated in our daily
lives. Systems like Apple’s Siri and Google Translate offer this SR service for free, enabling voice
commands, real-time translation, and automated transcription.

Despite these advancements, automatic speech recognition (ASR) technology is not equally accessible
or accurate for all users, as speaker characteristics affect the working of ASR programs. SR is easier
when the speaker uses the same linguistic variety that the ASR system was trained on [JM21].
A study has found that there are racial disparities in ASR due to differences in the speakers’
accents [KNL+20]. However, the extent to which speaker accents impact ASR performance as well
as whether certain accents are more affected than others remains uncertain.

This study aims to examine how sensitive the performance of ASR models is to the speech of
non-native English speakers with diverse accents. By evaluating multiple ASR systems, we assess
their performance differences across speaker groups and investigate the extent of variability in SR
accuracy.

1.1 Research question
Recent studies have shown that while ASR has improved significantly, commercial ASR performs
best on native English speakers as it is optimized for their experience [Tat17]. Different languages
use intonation in distinct ways, which can affect speech recognition. For example, Beckman (1986)
classifies English and German as “stress-accent languages”, while Japanese is a “non-stress-accent
language” [Bec86]. Despite the potential impact of such differences on the accuracy of ASR for
non-native speakers, existing research often focuses on accents within a group of native speakers,
the accents of non-native speakers whom share their first language, or the general accuracy of ASR
itself [ZZH+22].

This study aims to address the question: How sensitive are ASR models in recognizing and processing
speech from non-native speakers with diverse accents?

This research is important because it may highlight potential biases in ASR systems. This can help
guide improvements for greater accessibility in SR.

Based on prior studies and observations, this study hypothesizes that the Character Error Rate
(CER), the Word Error Rate (WER), and the Semantic Error Rate (SER) will be significantly
higher for speech with a non-native accent. Thus the error rates will be positively correlated with
the self-perceived accent strength of the speaker.
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1.2 Thesis overview
This thesis is structured as follows. Chapter 1 provides an introduction to the topic and research
problem. In Chapter 2, key definitions and concepts are introduced. Chapter 3 reviews prior research.
Chapter 4 describes the experimental setup and methodology. Chapter 5 discusses the results and
the data analysis Finally, Chapter 6 presents the conclusions of this research and discusses potential
directions for future research.

2 Background
A solid understanding of foundational concepts is essential to contextualize the evaluation of ASR
systems.

2.1 Accents and important differences in language
Accent refers the manner of a persons’ speech, which contains a significant amount of social
information about them. It can reveal to the recipient whether the speaker is a native or non-native
speaker of the language. [LZ18]

Moyer (2013) gives us the following definition:[Moy13]

“Accent is a set of dynamic segmental and suprasegmental habits that convey linguistic meaning
along with social and situational affiliation.” (p. 11)

Second language (L2) learners naturally face the challenge of adapting to unfamiliar sounds
and speech patterns, which may conflict with the phonological rules of their first language (L1).
Additionally, learners must recognize how subtle variations in intonation, rhythm, and speech rate
can convey specific meanings. The level of fluency achieved is often linked to the age at which a
learner begins their language acquisition [LM14]. Due to this, having an accent as a L2 learner
seems unavoidable.

For instance, while some languages do not treat word stress as a distinct phonological category,
English is known for its unpredictable stress patterns. It requires specific rules to describe how
stress is assigned in words. Stress refers to the prominence given to certain syllables or words, which
may or may not be realized in speech. When this prominence is realized in speech, it contributes to
what is perceived as an accent. Stress can be analyzed in two domains: word stress, which refers to
syllable prominence within individual words, and sentence stress, which differentiates meanings at
the sentence level [GTB07].

Although there exist nativized varieties of English, such as Ghanaian English, Indian English,
and Singaporean English, they are often regarded as “second best” to the western varieties of
English. This reflects a widespread belief that L2 speakers must conform to the accents of British
or American English in order to be considered “valid” [LM14] or “fluent”.
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2.2 ASR-models
ASR is a machine-operated process of transcribing audio input. This is typically done by analyzing
the input using a model or algorithm and generally produces a text output [SJ08]. Both a clas-
sification and language model are usually required for this process. Figure 1 below outlines the
sequence of steps involved in the automatic transcription of an audio file.

Figure 1: Outline of general ASR model [Pap21]

As technology through the years has progressed, there is a wide variety of ASR models available.
Some utilize Hidden Markov Modeling (HMM), while others use a hybrid approach of HMM with
Artificial Neural Networks (ANN). Researching and testing these methods in the 1980s led to
significant work on building systems for large-vocabulary continuous speech recognition [LS12].
Table 1 provides an overview of the models with their characteristics listed. These include key
factors such as model type, meaning cloud-based or local, and if the model uses real-time processing
or batch processing.
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ASR Models
Model Name Type

of
Model

API
Avail-
ability

Ease of
Use

Real-
time vs
Batch
Pro-
cessing

Pricing

Amazon Tran-
scribe

Cloud Yes Moderate Real-
time

Limited free tier
of 60 min, then
$0.0004 per sec

AssemblyAI Cloud Yes Simple Real-
time

Limited free
tier of 5 min
per month, then
$0.00025 per sec

Deepgram
Speech-to-Text
API

Cloud Yes Simple Real-
time

Free 200 min,
then $0.0003 per
sec

facebook/
wav2vec2-large-
960h (Hugging
Face)

Local No Moderate Batch Free

Google Cloud
Speech-to-Text
AI

Cloud Yes Moderate Real-
time

Limited free tier
of 1 hour per
month, then
$0.006 per 15 sec

Microsoft Azure
AI Speech

Cloud Yes Moderate Real-
time

Limited free tier
of 5 hours per
month, then $1
per hour

Mozilla Deep-
Speech

Local No Moderate Batch Free

NVIDIA/Canary-
1b (Hugging
Face)

Local No Moderate Batch Free

OpenAI Whisper Both Yes Simple Both $0.006 per
minute

Rev AI Cloud Yes Simple Real-
time

$0.005 per
minute

Vosk API Local Yes
(Lim-
ited)

Simple Real-
time

Free

Table 1: Overview of the state of the art ASR models
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2.3 Metrics
Specific metrics are required to evaluate the sensitivity of the ASR systems’ performance.

2.3.1 Character Error Rate

The CER is a metric based on how many individual characters have been incorrectly transcribed in
comparison to the reference text. This metric is calculated using the Levenshtein distance, which is
given by the minimum amount of alterations needed to change one string into the other. The list of
possible operations consists of an insertion, deletion, or substitution of a single character [MVM09].
The computation of a CER is achieved using the base formula:

CharacterErrorRate = (S + D + I)/N [MMD+]

with the following variables:
S = Number of character substitutions
D = Number of character deletations
I = Number of character insertions
N = Number of characters in the reference text

2.3.2 Word Error Rate

The WER is a metric that, similarly to the CER, is calculated using the Levenshtein distance.
However, for WER this distance is applied on each of the words of the predicted and the reference
text instead of the individual characters. This is achieved using a slightly modified base formula:

WordErrorRate = (S + D + I)/N [MMD+]

with the following variables:
S = Number of word substitutions
D = Number of word deletations
I = Number of word insertions
N = Number of words in the reference text

2.3.3 Semantic Error Rate

The SER measures how well a system captures the intended meaning of a sentence by comparing
the semantic elements between the prediction and the reference text. Unlike CER and WER, the
SER does not have a standardized formula to calculate the metric within Python libraries. As such,
the metric can be determined by comparing the semantic similarity of the sentence embeddings,
otherwise known as vectors. Then the cosine similarity, which is measured as the angle between two
embeddings with an higher similarity implying the patterns of both embeddings are more similar
[XZL15], will be calculated in order to decide the semantic similarity. Afterwards, the SER can be
computed by subtracting the semantic similarity from 1.
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3 Related Work
A study by Tatman evaluated ASR performance in the automatically generated captions of the
video-platform Youtube across two genders and five English dialects. Speech samples from the
“accent tag challenge” were used, where speakers explicitly identify their linguistic background. The
study provided insights into ASR biases by controlling for both dialect and gender, as it found
both a gender and dialect bias. There were differences found in accuracy, with women and speakers
from Scotland both scoring lower. The study concluded the high WER scores stem from unequal
training data and biases in ASR models, particularly against non-standard voice pitches and the
unique speech patterns of different dialects [Tat17].

Maxwell-Smith and Foley also investigated ASR using segments from Youtube. However, they
used Indonesian language lessons that prioritize transfer learning with English as the language of
instruction from three different channels as their data. Furthermore, separate ASR models were
used for this research. Their findings highlighted how differences in pronunciation reflected the
transfer of vowel production in the Indonesian language and in some cases speech errors resulting
from irregularities in English spelling. The study concluded that publicly available ASR models for
Indonesians are not well-suited for processing language teaching data, thus emphasizing the need
for models that are trained on possible linguistic transfer and pronunciation variations [MSF23].

A different study by Souza and Gottardi focused on how well freely available ASR-based dictation
tools for language learners can understand foreign-accented speech. Additionally, the study discusses
if these tools can help language learners with their pronunciation. English speech examples of
Brazilian Portuguese and Spanish speakers from an online database were used, with the requirement
that the length of residence of these speakers must be under 1.5 years. Microsoft Word and
VoiceNotebook were chosen to be utilized as the dictation tools. Their results indicated that both
programs understood the speakers speech well, but still made quite some mistakes based on the
pronunciation of the speakers and the way the tools were correcting these words. The words that
were most affected were connected speech and both consonant and vowel shifts [SG22].

4 Methodology
This study follows a cross-sectional design using between-participant comparisons, meaning the
data is collected from participants in a short period of time with no follow-up, and comparisons
were made between individuals rather than predefined groups. The primary goal of the study
is to compare the transcription accuracy between English speakers based on their accent. Their
audio data will be processed using numerous ASR models to determine differences in transcription
accuracy. As such, this study evaluates the performance of various ASR models, which have been
selected based on their widespread use and accessibility.

The dataset for this study will be constructed by collecting audio recordings from English speakers
with different accents via a survey on Qualtrics, a platform for creating and analyzing online surveys.
This will serve as the input for evaluating the performance of ASR models across these different
groups [Qua25].

A participant criterion will be used in order to ensure the evaluation is based on the accent
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rather than other factors. Specifically, participants must not have speech impairments. Above this,
participants will fill in a form containing questions about their language and general background in
order to label the data. Participants were required to submit a short audio recording as the last
part of the survey. Feedback and participant behavior recorded by Qualtrics suggested that this
requirement led to non-completion for some respondents.

Numerous questions regarding the language background of the participants were asked, in order to
determine as closely as possible the type of accent they might have, as well as question about how
they perceive their own accent. Other questions were used to gather general information regarding
the participants’ age and gender. The passages used as references for the participants to read
and record can be divided into different types of audio; the first passage is a narrative text type,
originating from the book “Alice in Wonderland”, and the second consists of a list of commands.
The first passage was chosen as it has no copyright restrictions and covers intonation and rhythm,
while the second passage was created to resemble natural speech.

A total of 50 responses were collected, with 2 being found unusable due to incorrect file uploading.
In both cases image files had been uploaded instead of audio files. This is likely due to confusion
or misunderstanding of the requested tasks. These entries have been deleted from the collected
dataset. The survey has been created in a way to specifically ensure incomplete entries, meaning
answers missing from one or more questions, are not saved. In spite of that, Qualtrics shows that
another 15 people started the survey without finishing it. However, it should be noted that these
may not be different individuals, but rather the same people completing the survey at a different
time, resulting in multiple survey attempts.

The selected ASR models include: NVIDIA Canary-1b (canary), facebook wav2vec large 960h
(facebook wav2vec), and OpenAI Whisper (Whisper). The first two models are open-source and
available on the HuggingFace platform [Hug25]. The latter model, OpenAI’s Whisper, is developed
by OpenAI and can be accessed through an application programming interface (API) for local
deployment [Ope22]. These models have been implemented in separate Python files, which can be
seen in Appendix C, in order to efficiently transcribe the audio files. A formatting issue with the
canary model led to the multiplication of the audio files. This was resolved by processing each file
individually rather than using a loop.

To assess ASR performance, CER, SER, and WER have been used. To do so, the datasets.load metric(“wer”)
from Hugging Face computes the WER automatically using its base formula word-tokenized. The
CER is calculated using the jiwer library with the same base formula but character-tokenized
[Sme20]. For the computation of SER both the reference and the transcription texts have to firstly be
transformed into embeddings. This is done utilizing the SentenceTransformer library. Then the co-
sine similarity between both embeddings will be calculated using the sentence transformers.util
package [RG20]. Afterwards, the SER can be computed by subtracting the semantic similarity from
1. This can be seen in Appendix D.

As the hypothesis proposes that the performance of the ASR models would depend on the perceived
accent of the participants, a two-way analysis of variance (ANOVA) will be conducted for each
metric in RStudio [Pos23], which can be seen in Appendix E. This has been performed on model
type, text type, and their interaction and on first/second best language of the participant and its
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interaction with text type. If there is a significantly low p-value of the performance in the variables
individually or in their interaction with one another, the Tukey’s Honestly Significant Difference
(HSD) will be performed as a post-hoc test to determine which groups differ significantly from each
other. In addition to this, a correlation using Pearson’s r is utilized to analyse the self-perceived
accent heaviness of the participants on the error metrics achieved. Accent heaviness was rated using
a 5-point Likert scale, which first had to be numerized to the following:

• 1 = “People usually do not understand me”

• 2 = “People often do not understand me”

• 3 = “People understand me with some effort”

• 4 = “Most people understand me relatively easily”

• 5 = “My accent does not hinder understanding me”

5 Results
The survey delivered a database consisting of 48 participants, after cleaning the data. It is noteworthy
to mention that a significant number of participants withdrew after reaching the audio recording
section, which suggests that this requirement may have affected the overall response rate and
consequently the results of this research.

After calculating the different metrics on transcriptions, divided based upon model and text type,
outliers can be observed across scatter plots 2, 3, 6, 7, 10 and 11 in Appendix B. While outliers are
expected in the data, a few audio files particularly stand out depending on the text type rather
than the model. For text type 1, this would be Response ID R 9nWoBgpTutS4wTv, a woman between
the ages 55 to 64 with a self-noted Indonesian accent. For text type 2, this would be Response ID
R 9KIqHuN968p2vYY, a woman between ages 18 to 24 with a self-noted American accent. Both have
noted to be residents of Indonesia.

Two outliers, with Response ID’s R 2SYrXQ0DOLH5HOx and R 6O2ZobEcF2rpnuD, have been found
that performed significantly bad, both being men between 18 to 24 years old with no clear self-noted
description of their accent.

To determine whether text type and participants’ first and second best languages have an effect
on error metrics, the data was regrouped and then an ANOVA was conducted. After regrouping
the languages that were submitted, a total of 9 different languages for first best languages and 6
for second best languages were chosen, visualized in the bar charts 14 and 15 in Appendix B. The
results of the ANOVA in tables 2 and 3 show that text type has a consistent and strong effect on
both CER and WER across participants’ first and second best languages. Interactions between text
type and participants’ best languages were found to be significant for CER with their first best
language, but not with their second best language. This suggests that participants’ best language
plays a greater role in shaping their speech patterns, therefore influencing how they handle different
text types.
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Two-way ANOVA Results – First Best Language
Metric Effect of Df Sum Sq Mean Sq F-value p-value
CER text type 1 0.337427243 0.337427243 48.41654139 2.61E-11
CER Q4 clean 8 0.165335008 0.020666876 2.96543529 0.00338
CER Interaction 8 0.140310950 0.017538869 2.51660582 0.01182
CER Residuals 270 1.881698961 0.006969255
WER text type 1 0.131658320 0.131658320 8.04991707 0.00490
WER Q4 clean 8 0.225727629 0.028215954 1.72519357 0.09255
WER Interaction 8 0.159209128 0.019901141 1.21680525 0.28905
WER Residuals 270 4.415914596 0.016355239
SER text type 1 0.046242869 0.046242869 4.69130011 0.03119
SER Q4 clean 8 0.085569201 0.010696150 1.08511543 0.37369
SER Interaction 8 0.022100583 0.002762573 0.28026070 0.97208
SER Residuals 270 2.661431644 0.009857154

Table 2: Results of the two-way ANOVA examining the effects of text type, first best language,
and their interaction on each error metric

Two-way ANOVA Results – Second Best Language
Metric Effect of Df Sum Sq Mean Sq F-value p-value
CER text type 1 0.337427243 0.337427243 46.12857259 6.79E-11
CER Q5 clean 5 0.088102962 0.017620592 2.40885344 0.03686
CER Interaction 5 0.080321495 0.016064299 2.19609766 0.05494
CER Residuals 276 2.018920462 0.007314929
WER text type 1 0.131658320 0.131658320 8.00795567 0.00500
WER Q5 clean 5 0.153343643 0.030668729 1.86538777 0.10051
WER Interaction 5 0.109808240 0.021961648 1.33579028 0.24922
WER Residuals 276 4.537699469 0.016440940
SER text type 1 0.046242869 0.046242869 5.10978627 0.02457
SER Q5 clean 5 0.137922437 0.027584487 3.04805560 0.01073
SER Interaction 5 0.133416640 0.026683328 2.94847848 0.01304
SER Residuals 276 2.497762352 0.009049864

Table 3: Results of the two-way ANOVA examining the effects of text type, second best language,
and their interaction on each error metric
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Across both the first and second best languages, the Tukey post-hoc tests for CER, WER, and
SER revealed no statistically significant differences between any language pairs, as all the adjusted
p-values are found to be above 0.05. While some comparisons showed relatively larger mean
differences, such as Mandarin vs. Indonesian, they remained non-significant. This suggests that error
rates were generally consistent across languages for all metrics. Assuming that participants who
listed a language other than English as their first best language are non-native English speakers,
these findings contradict the initial hypothesis.

In addition to this, in Appendix B, the scatter plots 16-21 show the CER, WER and SER metrics
divided by the best languages of the participants, with a color scheme based on the type of text
and model used. Furthermore, scatter plots and histograms 8-19 show that the general performance
of text type 1 receives higher error rates than that of text type 2. This could be explained by the
difference in language use, as text 1 originated from 1865 [Car65], while text 2 is a text created
specifically for this research in 2025 and thus in a modern context.

Presented in table 4 are the results yielded by a two-way ANOVA examining the effects of model,
text type, and their interaction on error rates. As can be seen by the consistently low p-values
with corresponding high F-values, the table reveals significant effects across all three factors. These
findings indicate that both the individual models and text types, as well as their interaction, have a
great effect on the error rates. The effects are visualized in Bar Charts 22-24 in Appendix B, which
include confidence intervals.

A low WER combined with a high CER for the same model may indicate that multiple character-
level errors occur within the same words. This is particularly evident when the SER is also high,
suggesting that entire words are being misrecognized and replaced by different, incorrect words.
In contrast, a high WER accompanied by a low CER may imply wide-spreading of the character
errors. These patterns suggest that each model exhibits different methods in transcribing, or rather
a distinct specialization.

As a result of the significant effects found with the two-way ANOVA, a post-hoc test was conducted
to determine which specific group differences were statistically significant. For this, Tukey HSD has
been utilized in Rstudio. The results in table 5 show that all pairwise model comparisons show
statistically significant p-values, except for the comparison between the models Whisper and canary
on SER. This implies that for SER, both models perform similarly. Overall, the Whisper model
receives the lowest error rates for this test, followed by facebook wav2vec, and then canary.
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Two-way ANOVA Results
Metric Effect of Df Sum Sq Mean Sq F-value p-value
CER model 2 0.257626274 0.128813137 22.63020057 7.68E-10
CER text type 1 0.337427243 0.337427243 59.28002668 2.32E-13
CER Interaction 2 0.324549284 0.162274642 28.50879796 5.29E-12
CER Residuals 282 1.605169361 0.005692090
WER model 2 1.974441848 0.987220924 116.96675486 1.02E-37
WER text type 1 0.131658320 0.131658320 15.59898704 9.90E-05
WER Interaction 2 0.446277639 0.223138819 26.43767263 2.99E-11
WER Residuals 282 2.380131866 0.008440184
SER model 2 1.209771900 0.604885950 116.68116911 1.19E-37
SER text type 1 0.046242869 0.046242869 8.92014766 0.00307
SER Interaction 2 0.097415501 0.048707750 9.39561788 0.000112
SER Residuals 282 1.461914028 0.005184092

Table 4: Two-way ANOVA results for each error metric based on model, text type, and their
interaction

Tukey HSD Results
Metric Comparison Diff Lower Bound Upper Bound p-value
CER fb - canary -0.03190 -0.06223 -0.00157 0.03666
CER Whisper - canary -0.07307 -0.10340 -0.04274 1.02 × 10−7

CER Whisper - fb -0.04117 -0.07150 -0.01084 0.00438
WER fb - canary 0.06483 0.03018 0.09947 4.38 × 10−5

WER Whisper - canary -0.13402 -0.16866 -0.09937 5.13 × 10−13

WER Whisper - fb -0.19884 -0.23349 -0.16420 4.84 × 10−13

SER fb - canary 0.13246 0.10694 0.15799 4.84 × 10−13

SER Whisper - canary -0.00955 -0.03508 0.01597 0.65224
SER Whisper - fb -0.14201 -0.16754 -0.11649 4.84 × 10−13

Table 5: Tukey HSD post-hoc test results for pairwise comparisons between models for each error
metric
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In table 6 the results of the correlation between self-perceived accent heaviness and the error metrics
can be found. Notably, the two lowest Likert scale categories were not selected by any participants,
and thus were excluded from the analysis.

The results revealed a statistically significant negative correlation for all three metrics, indicating
that stronger perceived accent heaviness is associated with higher error rates. This correlation is
visualized in the linear regression plots 25-27 in Appendix B. Despite the relatively small effect
size, with Pearson’s r ranging from -0.12 to -0.14, the results still indicate a consistent, but modest,
association between these factors. Although the correlation is statistically negative due to the
coding of the Likert scale, with higher values representing lighter accents, this finding aligns with
the hypothesis: heavier perceived accents are associated with higher error rates.

Pearson Correlation Results
Metric Pearson’s r 95% Confidence In-

terval
t-value df p-value

CER -0.1197 [-0.2321, -0.0042] -2.039 286 0.0424
WER -0.1216 [-0.2339, -0.0061] -2.071 286 0.0392
SER -0.1399 [-0.2514, -0.0247] -2.390 286 0.0175

Table 6: Pearson’s r correlation between self-perceived accent heaviness and each error metric

6 Conclusions and Further Research
The study’s results demonstrate that text type had a strong and consistent effect on error rates
(CER, WER, SER) across both participants’ first and second best languages. Significant interaction
effects were only observed for participants’ first best language, suggesting that a speaker’s strongest
language has a greater influence on how they handle different text types in speech. However, it
did not find that ASR models performed particularly sensitive to non-native speakers’ speech, as
the Tukey HSD test yielded no statistically significant results, thus rejecting the first part of the
proposed hypothesis. Furthermore, the choice of ASR model significantly impacted transcription
accuracy. The interaction effects between this factor and text type further influenced the error
rates, highlighting the complexity of speech recognition performance across different conditions.
Additionally, the self-perceived heaviness of a speaker’s accent is negatively correlated with the
transcription quality. Although the effects were modest, the results indicate that the heavier a
participant perceived their accent to be, the higher their error rates and thus the less sensitive the
models would perform on their speech. This supports the second part of the hypothesis. Notably,
Whisper almost consistently outperformed the other models, followed by facebook wav2vec2, and
lastly canary.

These findings highlight the importance of considering speaker characteristics and text context
when evaluating and deploying ASR systems. Possible directions for future work may include
paid participants in order to increase data quantity. This issue needs to be addressed in future
research designs, especially given the high dropout rate at the audio recording stage. Furthermore,
expanding the participant group to include a more diverse range of accents would allow for a deeper
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investigation into the sensitivity of these models across different speech patterns and linguistic
backgrounds.

A different direction would be to evaluate other models, such as Google Cloud Speech-to-Text
and AssemblyAI. By exploring other state-of-the-art models, we can gain a broader understanding
of how diverse ASR systems perform across various speaker characteristics and text contexts,
potentially identifying strengths and weaknesses unique to each platform.
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[SJ08] Andrew. Sears and Julie A. Jacko. The human-computer interaction handbook : funda-
mentals, evolving technologies, and emerging applications. Human factors and ergonomics.
Lawrence Erlbaum Associates, New York, NY [etc, 2nd ed. edition, 2008.

[Sme20] Jitsi Smeets. jiwer: Speech recognition evaluation tool. https://github.com/jitsi/
jiwer, 2020.

[Tat17] Rachael Tatman. Gender and dialect bias in youtube’s automatic captions. In Proceedings
of the First ACL Workshop on Ethics in NLP, pages 53–59, Valencia, Spain, April 2017.
Association for Computational Linguistics.

[XZL15] Peipei Xia, Li Zhang, and Fanzhang Li. Learning similarity with cosine similarity
ensemble. Information sciences, 307:39–52, 2015.

[ZZH+22] Yuanyuan Zhang, Yixuan Zhang, Bence Mark Halpern, Tanvina Patel, and Odette
Scharenborg. Mitigating bias against non-native accents. In Proceedings of Interspeech
2022, Incheon, Korea, September 2022.

15

https://openai.com/index/whisper/
https://openai.com/index/whisper/
https://leidenuniv.eu.qualtrics.com/jfe/form/SV_0IIXp0eTzkt0h2C
https://leidenuniv.eu.qualtrics.com/jfe/form/SV_0IIXp0eTzkt0h2C
https://github.com/UKPLab/sentence-transformers
https://github.com/jitsi/jiwer
https://github.com/jitsi/jiwer


A Appendix: Survey Questionnaire
This survey will gather information about your language background to help us analyze speech and
accents. Your responses will remain confidential and will only be used for research purposes. We
appreciate your time and contribution!

If you have any questions about the survey or research, or if you wish to withdraw your information,
please contact t.k.nanhekhan@umail.leidenuniv.nl.

This study is conducted as part of a Bachelor’s thesis at Leiden University, Faculty of Science.

[Q1] By continuing with this survey, you confirm that you are voluntarily participating, that you
understand how your data will be used, and that you agree to the anonymity and confidentiality of
your responses.

• I agree and wish to participate

• I do not agree and wish to exit the survey

Q[2] What is your age?

• Under 18

• 18-24

• 25-34

• ...

• 75-84

• 85 or older

Q[3] What is your gender?

• Male

• Female

• Non-binary / third gender

• Prefer not to say

Q[4] What is your first best/most fluent language?
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Q[5] What is your second best/most fluent language?

Q[6] What is your third best/most fluent language?

Q[7] In which country do you currently reside?

• Afghanistan

• Albania

• Algeria

• ...

• Zimbabwe

Q[8] Do you have any speech impairments or conditions affecting pronunciation?

• Yes

• No

Q[9] At what age did you start learning English?

• Under 18

• 18-24

• 25-34

• ...

17



• 75-84

• 85 or older

Q[10] Where did you (mainly) learn English?
(Participants were permitted to select multiple options.)

• At home through family

• At school (as part of formal education)

• Through media (movies, music, books, etc.)

• Through (voluntary) language courses or tutoring

• Through work or professional environment

• *Other

Q[11] How often do you speak English in daily life?

Once a year Once every 3 months Once every month Once every week Daily
O O O O O

Q[12] How would you describe your English accent without referencing its quality? For example:
South British or nasal

Q[13] how heavy is your accent when speaking English (1-5 labelled)?

People usually People often People understand Most people My accent does
do not do not me with understand me not hinder
understand me understand me some effort relatively easily understanding me
O O O O O

Q[14] How comfortable do you feel speaking English?
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Extremely Somewhat Neither comfortable Somewhat Extremely
uncomfortable uncomfortable nor uncomfortable comfortable comfortable
O O O O O

Q[15] Do you use voice assistants while speaking English? (Example: Siri and Google Voice Search)

Once a year or never Once every 3 months Once every month Once every week Daily
O O O O O

Q[16] How well did/do voice assistants understand you?

Not well at all Slightly well Moderately well Very well Extremely well Not Applicable
O O O O O O

Q[17] For the following part, we ask you to read and record a passage from the book “Alice in
Wonderland” by Lewis Carroll.

What you need to do: 1. Read the passage aloud and at a comfortable pace, in a way you would
naturally speak. Make sure that your recording is clear and your voice is audible. Try to minimize
mistakes, small errors are acceptable but try not to repeat sentences. 2. Save the recording in a
common audio format (e.g. MP3 or WAV). This can be done using the “Voicerecorder”-app via
Windows or via a voice memo app on Macbook and mobile. 3. Upload your recording through the
provided upload location below in this survey.

If you need help, please refer to the tutorials below on how to record and upload:

• on Windows: https://youtu.be/sMcTWII4oiY

• on mobile: https://youtube.com/shorts/A1JfMHXu75s?feature=share

The passage is as follows: Alice waited a little, half expecting to see it again, but it did not appear,
and after a minute or two she walked on in the direction in which the March Hare was said to live.
“I’ve seen hatters before,” she said to herself; “the March Hare will be much the most interesting,
and perhaps as this is May it won’t be raving mad—at least not so mad as it was in March.” As
she said this, she looked up, and there was the Cat again, sitting on a branch of a tree. “Did you
say pig, or fig?” said the Cat. “I said pig,” replied Alice; “and I wish you wouldn’t keep appearing
and vanishing so suddenly: you make one quite giddy.” “All right,” said the Cat; and this time it
vanished quite slowly, beginning with the end of the tail, and ending with the grin, which remained
some time after the rest of it had gone.

Choose file

No file chosen
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Q[18] For the next section, we ask you to read and record the following instructions/commands,
which have been combined into a single text.

What you need to do: 1. Read the passage aloud and at a comfortable pace, in a way you would
naturally speak. Make sure that your recording is clear and your voice is audible. Try to minimize
mistakes, small errors are acceptable but try not to repeat sentences. 2. Save the recording in a
common audio format (e.g. MP3 or WAV). This can be done using the “Voicerecorder”-app via
Windows or via a voice memo app on Macbook and mobile. 3. Upload your recording through the
provided upload location below in this survey.

If you need help, please refer to the tutorials below on how to record and upload:

• on Windows: https://youtu.be/sMcTWII4oiY

• on mobile: https://youtube.com/shorts/A1JfMHXu75s?feature=share

Read out loud the following instructions/commands as if you are instructing a voice assistant:

• Set an alarm for seven o’clock.

• Explain this part using the following mathematical equation.

• What is the solution to this question?

• Find nearby Italian restaurants that provide gluten-free and vegetarian options.

• What is the name of the song that contains the following text: Look at me now, will I ever
learn? I don’t know how, but I suddenly lose control.

• Send a text message to Tim saying, I will be there in twenty minutes.

• Set a reminder for a hairsalon appointment on April fiftheenth at one O’clock.

• Find the best cafe near the Eiffel Tower and give the directions to it.

Choose file

No file chosen

We thank you for your time spent taking this survey.

Your response has been recorded.
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B Appendix: Plots

Figure 2: Scatterplot of all error rates for text type 1 (Q17) on NVIDIA/canary-1b model

Figure 3: Scatterplot of all error rates for text type 2 (Q18) on nvidia/canary-1b model
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Figure 4: Histogram of all error rates for text type 1 (Q17) on NVIDIA/canary-1b model

Figure 5: Histogram of all error rates for text type 2 (Q18) on NVIDIA/canary-1b model
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Figure 6: Scatterplot of all error rates for text type 1 (Q17) on facebook/wav2vec2-large-960h model

Figure 7: Scatterplot of all error rates for text type 2 (Q18) on facebook/wav2vec2-large-960h model
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Figure 8: Histogram of all error rates for text type 1 (Q17) on facebook/wav2vec2-large-960h model

Figure 9: Histogram of all error rates for text type 2 (Q18) on facebook/wav2vec2-large-960h model
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Figure 10: Scatterplot of all error rates for text type 1 (Q17) on OpenAI’s Whisper model

Figure 11: Scatterplot of all error rates for text type 2 (Q18) on OpenAI’s Whisper model
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Figure 12: Histogram of all error rates for text type 1 (Q17) on OpenAI’s Whisper model

Figure 13: Histogram of all error rates for text type 2 (Q18) on OpenAI’s Whisper model
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Figure 14: Bar chart of listed first best languages (Q4) after regrouping

Figure 15: Bar chart of listed second best languages (Q5) after regrouping
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Figure 16: Scatterplot of CER divided based on first best language

Figure 17: Scatterplot of CER divided based on second best language
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Figure 18: Scatterplot of WER divided based on first best language

Figure 19: Scatterplot of WER divided based on second best language
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Figure 20: Scatterplot of SER divided based on first best language

Figure 21: Scatterplot of SER divided based on second best language
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Figure 22: Bar chart of mean CER per model and text type with confidence interval

Figure 23: Bar chart of mean WER per model and text type with confidence interval
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Figure 24: Bar chart of mean SER per model and text type with confidence interval

Figure 25: Linear regression plot of correlation between Self-perceived accent heaviness and CER
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Figure 26: Linear regression plot of correlation between Self-perceived accent heaviness and WER

Figure 27: Linear regression plot of correlation between Self-perceived accent heaviness and SER
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C Appendix: ASR Model Implementations (Jupyter code)
C.1 NVIDIA/canary-1b implementation
# −∗− coding : u t f −8 −∗−
””” canary2 . 0 . ipynb

Automat ica l l y genera ted by Colab .

Or i g ina l f i l e i s l o c a t e d at
h t t p s :// co l ab . re search . goog l e . com/ dr i v e /1

B7REaf7Gf2iD905PkE1fYN1jtDbeLFyx
”””

! pip i n s t a l l protobuf ==3.20.3
! pip i n s t a l l huggingface hub ==0.19.4
! pip i n s t a l l t r ans f o rmer s ==4.35.2
! pip i n s t a l l nemo too lk i t [ ’ a s r ’ ]

! pip i n s t a l l numpy==1.24.3 numba −−force −r e i n s t a l l

import numpy
import os
from os import l i s t d i r
from os . path import i s f i l e , j o i n

from goog l e . co lab import dr iv e

# Mount Google Drive
dr iv e . mount ( ’ / content / dr iv e ’ )

# The d i r e c t o r y path ( ad j u s t the path to the f o l d e r in Google Drive )
audiopath 1 = ’ / content / dr iv e /My Drive / audio1 ’
audiopath 2 = ’ / content / dr iv e /My Drive / audio2 ’
t extpath 1 = ’ / content / dr i v e /My Drive / text1 ’
t extpath 2 = ’ / content / dr i v e /My Drive / text2 ’

# Ensure output d i r e c t o r i e s e x i s t
os . makedirs ( textpath 1 , e x i s t o k=True )
os . makedirs ( textpath 2 , e x i s t o k=True )

from nemo . c o l l e c t i o n s . a s r . models import EncDecMultiTaskModel

# load model
canary model = EncDecMultiTaskModel . f r om pre t ra ined ( ’ nv id ia /canary −1b ’
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)

# update dcode params
decode c fg = canary model . c f g . decoding
decode c fg . beam . beam size = 1
canary model . change decod ing s t ra t egy ( decode c fg )

# Function to f i x audio format
def f i x a u d i o f o r m a t ( f i l e p a t h ) :

waveform , s r = torchaudio . load ( f i l e p a t h )
i f waveform . shape [ 0 ] > 1 :

waveform = waveform . mean(dim=0, keepdim=True )
e l i f waveform . ndim == 1 :

waveform = waveform . unsqueeze (0 )

i f s r != 16000 :
waveform = torchaudio . t rans forms . Resample ( o r i g f r e q=sr ,

new freq =16000) ( waveform )

f i x ed pa th = f i l e p a t h . r e p l a c e ( ” . wav” , ” f i x e d . wav” )
torchaudio . save ( f ixed path , waveform , 16000)
return f i x ed pa th

! pip i n s t a l l torch
! pip i n s t a l l torchaudio

import torchaudio
import torch

# Spec i f y the f i l ename you want to proces s
f i l ename = ” [ f i l ename ] ”

# Construct f u l l path to the f i l e
f i l e p a t h = os . path . j o i n ( audiopath 1 , f i l ename )

# Ensure the f i l e e x i s t s and i s a v a l i d audio format
i f os . path . i s f i l e ( f i l e p a t h ) and f i l ename . lower ( ) . endswith ( ( ’ . wav ’ , ’ .

f l a c ’ , ’ .mp3 ’ , ’ . m4a ’ ) ) :
# Fix the audio format
f i x ed pa th = f i x a u d i o f o r m a t ( f i l e p a t h )

# Ensure f i x e d f i l e e x i s t s
i f os . path . i s f i l e ( f i x ed pa th ) :

# Transcr ibe us ing canary model
p r e d i c t i o n = canary model . t r a n s c r i b e ( audio =[ f i x ed pa th ] ) [ 0 ]
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c l eaned = p r e d i c t i o n . t ex t . s t r i p ( ) . lower ( ) . c a p i t a l i z e ( )

# Generate output path
base name = os . path . s p l i t e x t ( os . path . basename ( f i x e d pa th ) ) [ 0 ]
o u t p u t f i l e = os . path . j o i n ( textpath 1 , f ”

c a n a r y t r a n s c r i p t i o n 1 {base name } . tx t ” )

# Save t r a n s c r i p t i o n
with open( o u t p u t f i l e , ”w” , encoding=” utf −8” ) as f :

f . wr i t e ( c l eaned + ”\n” )
else :

print ( ” Fixed  f i l e  not  found : ” , f i x ed pa th )
else :

print ( ” S p e c i f i e d  f i l e  i s  i n v a l i d  or  does  not  e x i s t : ” , f i l e p a t h )

# Spec i f y the f i l ename you want to proces s
f i l ename = ” [ f i l ename ] ”

# Construct f u l l path to the f i l e
f i l e p a t h = os . path . j o i n ( audiopath 2 , f i l ename )

# Ensure the f i l e e x i s t s and i s a v a l i d audio format
i f os . path . i s f i l e ( f i l e p a t h ) and f i l ename . lower ( ) . endswith ( ( ’ . wav ’ , ’ .

f l a c ’ , ’ .mp3 ’ , ’ . m4a ’ ) ) :
# Fix the audio format
f i x ed pa th = f i x a u d i o f o r m a t ( f i l e p a t h )

# Ensure f i x e d f i l e e x i s t s
i f os . path . i s f i l e ( f i x ed pa th ) :

# Transcr ibe us ing canary model
p r e d i c t i o n = canary model . t r a n s c r i b e ( audio =[ f i x ed pa th ] ) [ 0 ]
c l eaned = p r e d i c t i o n . t ex t . s t r i p ( ) . lower ( ) . c a p i t a l i z e ( )

# Generate output path
base name = os . path . s p l i t e x t ( os . path . basename ( f i x e d pa th ) ) [ 0 ]
o u t p u t f i l e = os . path . j o i n ( textpath 2 , f ”

c a n a r y t r a n s c r i p t i o n 2 {base name } . tx t ” )

# Save t r a n s c r i p t i o n
with open( o u t p u t f i l e , ”w” , encoding=” utf −8” ) as f :

f . wr i t e ( c l eaned + ”\n” )
else :

print ( ” Fixed  f i l e  not  found : ” , f i x ed pa th )
else :

print ( ” S p e c i f i e d  f i l e  i s  i n v a l i d  or  does  not  e x i s t : ” , f i l e p a t h )
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C.2 facebook/wav2vec2-large-960h implementation
# −∗− coding : u t f −8 −∗−
””” f a c e b o o k h f . ipynb

Automat ica l l y genera ted by Colab .

Or i g ina l f i l e i s l o c a t e d at
h t t p s :// co l ab . re search . goog l e . com/ dr i v e /16

T7h9M4kAX4DC HqmpjCZ0ON0a9mgnCz
”””

import os
from os import l i s t d i r
from os . path import i s f i l e , j o i n
from t rans f o rmer s import Wav2Vec2Processor , Wav2Vec2ForCTC
import torchaudio
import torch

from goog l e . co lab import dr iv e

# Mount Google Drive
dr iv e . mount ( ’ / content / dr iv e ’ )

# The d i r e c t o r y path ( ad j u s t the path to the f o l d e r in Google Drive )
audiopath 1 = ’ / content / dr iv e /My Drive / audio1 ’
audiopath 2 = ’ / content / dr iv e /My Drive / audio2 ’
o u t pu t d i r 1 = ’ / content / dr iv e /My Drive / text1 ’
o u t pu t d i r 2 = ’ / content / dr iv e /My Drive / text2 ’

# Create output d i r e c t o r i e s i f they don ’ t e x i s t
os . makedirs ( output d i r 1 , e x i s t o k=True )
os . makedirs ( output d i r 2 , e x i s t o k=True )

# C o l l e c t audio f i l e s
a u d i o f i l e s 1 = [

os . path . j o i n ( audiopath 1 , f )
for f in os . l i s t d i r ( audiopath 1 )
i f os . path . i s f i l e ( os . path . j o i n ( audiopath 1 , f ) ) and f . lower ( ) .

endswith ( ( ’ . wav ’ , ’ . f l a c ’ , ’ .mp3 ’ , ’ . m4a ’ ) )
]

a u d i o f i l e s 2 = [
os . path . j o i n ( audiopath 2 , f ) # Construct f u l l f i l e path
for f in os . l i s t d i r ( audiopath 2 )
i f os . path . i s f i l e ( os . path . j o i n ( audiopath 2 , f ) ) and f . lower ( ) .
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endswith ( ( ’ . wav ’ , ’ . f l a c ’ , ’ .mp3 ’ , ’ . m4a ’ ) )
]

# Load Facebook Wav2Vec2 model
proc e s s o r = Wav2Vec2Processor . f r om pre t ra ined ( ” facebook /wav2vec2−large

−960h” )
fb model = Wav2Vec2ForCTC . f rom pre t ra ined ( ” facebook /wav2vec2−large −960

h” )

def t ransc r ibe Facebook ( mypath ) :
waveform , sample rate = torchaudio . load ( mypath )

i f waveform . ndim > 1 :
waveform = waveform [ 0 , : ]

waveform = waveform . squeeze ( )

resampler = torchaudio . t rans forms . Resample ( o r i g f r e q=sample rate ,
new freq =16000)

waveform = resampler ( waveform )

inpu t va lu e s = proc e s s o r ( waveform , sampl ing ra te =16000 ,
r e t u r n t e n s o r s=” pt ” ) . i npu t va lu e s

with torch . no grad ( ) :
l o g i t s = fb model ( i npu t va lu e s ) . l o g i t s

p r e d i c t e d i d s = torch . argmax ( l o g i t s , dim=−1)
t r a n s c r i p t = proc e s s o r . batch decode ( p r e d i c t e d i d s ) [ 0 ]
return t r a n s c r i p t

# Transcr ibe and save audio1 −> t e x t 1
for audiopath in a u d i o f i l e s 1 :

t r a n s c r i p t i o n = transc r ibe Facebook ( audiopath )
base name = os . path . s p l i t e x t ( os . path . basename ( audiopath ) ) [ 0 ]
f i l ename = f ” f b t r a n s c r i p t i o n 1 {base name } . tx t ”
output path = os . path . j o i n ( output d i r 1 , f i l ename )

c leaned = t r a n s c r i p t i o n . s t r i p ( ) . lower ( ) . c a p i t a l i z e ( )
with open( output path , ”w” , encoding=” utf −8” ) as f :

f . wr i t e ( c l eaned + ”\n” )

# Transcr ibe and save audio2 −> t e x t 2
for audiopath in a u d i o f i l e s 2 :

t r a n s c r i p t i o n = transc r ibe Facebook ( audiopath )
base name = os . path . s p l i t e x t ( os . path . basename ( audiopath ) ) [ 0 ]
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f i l ename = f ” f b t r a n s c r i p t i o n 2 {base name } . tx t ”
output path = os . path . j o i n ( output d i r 2 , f i l ename )

c leaned = t r a n s c r i p t i o n . s t r i p ( ) . lower ( ) . c a p i t a l i z e ( )
with open( output path , ”w” , encoding=” utf −8” ) as f :

f . wr i t e ( c l eaned + ”\n” )

””” tussendoor ”””

# F i l e names ( add the co r r e c t e x t ens i on )
f i l e 1 = ”R 2GKyoIqEiRRcFmO WhatsApp  Audio  2025−04−13  at  1 4 . 1 0 . 1 3 .mp3”
f i l e 2 = ”R 2GKyoIqEiRRcFmO WhatsApp  Audio  2025−04−13  at  1 4 . 1 6 . 0 2 .mp3”

# Fu l l pa ths
a u d i o f i l e 1 = os . path . j o i n ( audiopath 1 , f i l e 1 )
a u d i o f i l e 2 = os . path . j o i n ( audiopath 2 , f i l e 2 )

# Load model
proc e s s o r = Wav2Vec2Processor . f r om pre t ra ined ( ” facebook /wav2vec2−large

−960h” )
fb model = Wav2Vec2ForCTC . f rom pre t ra ined ( ” facebook /wav2vec2−large −960

h” )

# Transcr ip t ion func t i on
def t ransc r ibe Facebook ( f i l e p a t h ) :

waveform , sample rate = torchaudio . load ( f i l e p a t h )
i f waveform . ndim > 1 :

waveform = waveform [ 0 , : ]
waveform = waveform . squeeze ( )

resampler = torchaudio . t rans forms . Resample ( o r i g f r e q=sample rate ,
new freq =16000)

waveform = resampler ( waveform )

inpu t va lu e s = proc e s s o r ( waveform , sampl ing ra te =16000 ,
r e t u r n t e n s o r s=” pt ” ) . i npu t va lu e s

with torch . no grad ( ) :
l o g i t s = fb model ( i npu t va lu e s ) . l o g i t s

p r e d i c t e d i d s = torch . argmax ( l o g i t s , dim=−1)
t r a n s c r i p t = proc e s s o r . batch decode ( p r e d i c t e d i d s ) [ 0 ]
return t r a n s c r i p t . s t r i p ( ) . lower ( ) . c a p i t a l i z e ( )

# Transcr ibe and save f i l e 1
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t r a n s c r i p t 1 = transc r ibe Facebook ( a u d i o f i l e 1 )
out path 1 = os . path . j o i n ( output d i r 1 , f ” f b t r a n s c r i p t i o n { os . path .

s p l i t e x t ( f i l e 1 ) [ 0 ] } . tx t ” )
with open( out path 1 , ”w” , encoding=” utf −8” ) as f :

f . wr i t e ( t r a n s c r i p t 1 + ”\n” )

# Transcr ibe and save f i l e 2
t r a n s c r i p t 2 = transc r ibe Facebook ( a u d i o f i l e 2 )
out path 2 = os . path . j o i n ( output d i r 2 , f ” f b t r a n s c r i p t i o n { os . path .

s p l i t e x t ( f i l e 2 ) [ 0 ] } . tx t ” )
with open( out path 2 , ”w” , encoding=” utf −8” ) as f :

f . wr i t e ( t r a n s c r i p t 2 + ”\n” )

C.3 OpenAI’s Whisper implementation
# −∗− coding : u t f −8 −∗−
””” Whisper . ipynb

Automat ica l l y genera ted by Colab .

Or i g ina l f i l e i s l o c a t e d at
h t t p s :// co l ab . re search . goog l e . com/ dr i v e /1

u8kxXXqbJvK33SNrXPMStOSZoHhVvSxH
”””

! pip i n s t a l l g i t+https : // github . com/ openai / whisper . g i t

! pip i n s t a l l −−upgrade −−no−deps −−force −r e i n s t a l l g i t+https : // github .
com/ openai / whisper . g i t

! sudo apt update && sudo apt i n s t a l l f fmpeg

import whisper

model whisper = whisper . load model ( ”medium” )

import os
from os import l i s t d i r
from os . path import i s f i l e , j o i n

from goog l e . co lab import dr iv e

# Mount Google Drive
dr iv e . mount ( ’ / content / dr iv e ’ )
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# The d i r e c t o r y path ( ad j u s t the path to the f o l d e r in Google Drive )
audiopath 1 = ’ / content / dr iv e /My Drive / audio1 ’
audiopath 2 = ’ / content / dr iv e /My Drive / audio2 ’
t extpath 1 = ’ / content / dr i v e /My Drive / text1 / text1 ’
t extpath 2 = ’ / content / dr i v e /My Drive / text2 / text2 ’

# L i s t a l l f i l e s in the d i r e c t o r i e s and f i l t e r f o r audio f i l e s
a u d i o f i l e s 1 = [

os . path . j o i n ( audiopath 1 , f )
for f in os . l i s t d i r ( audiopath 1 )
i f os . path . i s f i l e ( os . path . j o i n ( audiopath 1 , f ) ) and f . lower ( ) .

endswith ( ( ’ . wav ’ , ’ . f l a c ’ , ’ .mp3 ’ , ’ . m4a ’ ) )
]

a u d i o f i l e s 2 = [
os . path . j o i n ( audiopath 2 , f )
for f in os . l i s t d i r ( audiopath 2 )
i f os . path . i s f i l e ( os . path . j o i n ( audiopath 2 , f ) ) and f . lower ( ) .

endswith ( ( ’ . wav ’ , ’ . f l a c ’ , ’ .mp3 ’ , ’ . m4a ’ ) )
]

# Make sure the output d i r e c t o r i e s e x i s t
os . makedirs ( textpath 1 , e x i s t o k=True )
os . makedirs ( textpath 2 , e x i s t o k=True )

# Process audio f i l e s in aud iopath 1
i f os . path . i s d i r ( audiopath 1 ) :

for root , d i r s , f i l e s in os . walk ( audiopath 1 ) :
for f i l ename in f i l e s :

i f f i l ename . lower ( ) . endswith ( ( ’ . wav ’ , ’ . f l a c ’ , ’ .mp3 ’ , ’ .
m4a ’ ) ) :

f i l e p a t h = os . path . j o i n ( root , f i l ename )
r e s u l t = model whisper . t r a n s c r i b e ( f i l e p a t h , fp16=False

)
t r a n s c r i p t = r e s u l t [ ” t ex t ” ] . s t r i p ( )

base name = os . path . s p l i t e x t ( f i l ename ) [ 0 ]
o u t f i l e = os . path . j o i n ( textpath 1 , f ”

w h i s p e r t r a n s c r i p t i o n 1 {base name } . tx t ” )
with open( o u t f i l e , ”w” , encoding=” utf −8” ) as f :

f . wr i t e ( t r a n s c r i p t + ”\n” )

# Process audio f i l e s in aud iopath 2
i f os . path . i s d i r ( audiopath 2 ) :

for root , d i r s , f i l e s in os . walk ( audiopath 2 ) :
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for f i l ename in f i l e s :
i f f i l ename . lower ( ) . endswith ( ( ’ . wav ’ , ’ . f l a c ’ , ’ .mp3 ’ , ’ .

m4a ’ ) ) :
f i l e p a t h = os . path . j o i n ( root , f i l ename )
r e s u l t = model whisper . t r a n s c r i b e ( f i l e p a t h , fp16=False

)
t r a n s c r i p t = r e s u l t [ ” t ex t ” ] . s t r i p ( )

base name = os . path . s p l i t e x t ( f i l ename ) [ 0 ]
o u t f i l e = os . path . j o i n ( textpath 2 , f ”

w h i s p e r t r a n s c r i p t i o n 2 {base name } . tx t ” )
with open( o u t f i l e , ”w” , encoding=” utf −8” ) as f :

f . wr i t e ( t r a n s c r i p t + ”\n” )
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D Appendix: Metric Calculation and Plotting (Jupyter
code)

# −∗− coding : u t f −8 −∗−
””” metr ic s . ipynb

Automat ica l l y genera ted by Colab .

Or i g ina l f i l e i s l o c a t e d at
h t t p s :// co l ab . re search . goog l e . com/ dr i v e /1

WTqexqxb tFsoBcF0UtSbo7AvJfd1Txx
”””

! pip i n s t a l l j i w e r sentence−trans f o rmer s

import os
import re
import pandas as pd
from j i w e r import wer , c e r
from s e n t e n c e t r a n s f o r m e r s import SentenceTransformer , u t i l

# Reference t e x t s
r e f e r e n c e 1 = ” Al i c e  waited  a  l i t t l e ,  h a l f  expect ing  to  s e e  i t  again ,  

but  i t  did  not  appear ,  and  a f t e r  a  minute  or  two  she  walked  on  in  
the  d i r e c t i o n  in  which  the  March  Hare  was  s a id  to  l i v e .  Ive  
seen  h a t t e r s  be fore ,  she  s a id  to  h e r s e l f ;  the  March  Hare  w i l l  
be  much  the  most  i n t e r e s t i n g ,  and  perhaps  as  t h i s  i s  May  i t  w o n t  
be  rav ing  m a d at  l e a s t  not  so  mad  as  i t  was  in  March .  As  she  
s a id  th i s ,  she  looked  up ,  and  the re  was  the  Cat  again ,  s i t t i n g  on  a  
branch  o f  a  t r e e .  Did  you  say  pig ,  or  f i g ?  s a id  the  Cat .  I  
s a id  pig ,  r e p l i e d  A l i c e ;  and  I  wish  you  w o u l d n t  keep  
appear ing  and  van i sh ing  so  suddenly :  you  make  one  qu i t e  giddy .  

All  r i ght ,  s a id  the  Cat ;  and  t h i s  time  i t  vanished  qu i t e  
s lowly ,  beg inning  with  the  end  o f  the  t a i l ,  and  ending  with  the  gr in
,  which  remained  some  time  a f t e r  the  r e s t  o f  i t  had  gone . ”

r e f e r e n c e 2 = ” Set  an  alarm  f o r  seven  o ’ c l o ck .  Explain  t h i s  part  us ing
 the  f o l l o w i n g  mathematical  equat ion .  What  i s  the  s o l u t i o n  to  t h i s  
ques t i on ?  Find  nearby  I t a l i a n  r e s t a u r a n t s  that  prov ide  g luten−f r e e  
and  vege ta r i an  opt ions .  What  i s  the  name  o f  the  song  that  conta in s  
the  f o l l o w i n g  t ex t :  Look  at  me  now ,  w i l l  I  ever  l e a rn ?  I  don ’ t  know  
how ,  but  I  suddenly  l o s e  c o n t r o l .  Send  a  t ex t  message  to  Tim  saying ,
 I  w i l l  be  the re  in  twenty  minutes .  Set  a  reminder  f o r  a  h a i r s a l o n  
appointment  on  Apr i l  f i f t h e e n t h  at  one  O’ c l o ck .  Find  the  bes t  c a f e  
near  the  E i f f e l  Tower  and  g ive  the  d i r e c t i o n s  to  i t . ”
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# Mount Google Drive
from goog l e . co lab import dr iv e
d r i v e . mount ( ’ / content / dr iv e ’ )

# Set paths
f o l d e r s w i t h r e f e r e n c e s = {

”/ content / dr iv e /MyDrive/ text1 ” : r e f e r e n c e 1 ,
”/ content / dr iv e /MyDrive/ text2 ” : r e f e r e n c e 2

}
csv path = ”/ content / dr iv e /MyDrive/ csv /”

# Load Sentence Embedding model
semantic model = SentenceTransformer ( ’ paraphrase−MiniLM−L6−v2 ’ )

import os
import re
import pandas as pd
from j i w e r import wer , c e r
from s e n t e n c e t r a n s f o r m e r s import SentenceTransformer , u t i l

def l o a d t r a n s c r i p t i o n s ( f o l d e r r e f m a p ) :
# Map f o l d e r names to t e x t t ype s
f o l d e r n a m e t o t e x t t y p e = {

” text1 ” : ” n a r r a t i v e  audio ” ,
” text2 ” : ”command−or i en t ed ”

}

a l l d a t a = [ ]
for f o l d e r , r e f e r e n c e t e x t in f o l d e r r e f m a p . items ( ) : # I t e r a t e

through f o l d e r and re f e r ence t e x t
# Extrac t f o l d e r name only ( l a s t par t o f path )
fo lder name = os . path . basename ( os . path . normpath ( f o l d e r ) )

# Determine t e x t t y p e based on f o l d e r name
t ex t type = f o l d e r n a m e t o t e x t t y p e . get ( fo lder name , ”unknown”

)

for fname in sorted ( os . l i s t d i r ( f o l d e r ) ) :
i f fname . endswith ( ” . txt ” ) :

f u l l p a t h = os . path . j o i n ( f o l d e r , fname )
with open( f u l l p a t h , ” r ” , encoding=” utf −8” ) as f :

pred = f . read ( ) . s t r i p ( )

# Filename pa t t e rn : <model> t r a n s c r i p t i o n <r e f i d > <
audio >. t x t
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match = re . match ( r ” ( [A−Za−z ]+) t r a n s c r i p t i o n ([0 −9]+)
( . ∗ ) \ . tx t ” , fname )

i f not match :
print ( f ”  Skipping :  Unexpected  f i l ename  

format   { fname}” )
continue

model , r e f i d , aud i o id = match . groups ( )

a l l d a t a . append ({
” f i l ename ” : fname ,
”model ” : model . lower ( ) ,
” r e f e r e n c e i d ” : r e f i d ,
” aud io id ” : aud io id ,
” t ex t type ” : t ext type ,
” p r e d i c t i o n ” : pred , # Add the p r e d i c t i o n t e x t

here
” r e f e r e n c e ” : r e f e r e n c e t e x t

})
return pd . DataFrame ( a l l d a t a )

# Compute metr ic s
def compute metr ics ( df ) :

wers , cer s , s e r s = [ ] , [ ] , [ ]
for , row in df . i t e r r o w s ( ) :

wers . append ( wer ( row [ ” r e f e r e n c e ” ] , row [ ” p r e d i c t i o n ” ] ) )
c e r s . append ( ce r ( row [ ” r e f e r e n c e ” ] , row [ ” p r e d i c t i o n ” ] ) )

# Semantic s i m i l a r i t y
ref emb = semantic model . encode ( row [ ” r e f e r e n c e ” ] ,

c o n v e r t t o t e n s o r=True )
pred emb = semantic model . encode ( row [ ” p r e d i c t i o n ” ] ,

c o n v e r t t o t e n s o r=True )
s i m i l a r i t y = u t i l . cos s im ( ref emb , pred emb ) . item ( )
s e r s . append (1 − s i m i l a r i t y )

df [ ”wer” ] = wers
df [ ” c e r ” ] = c e r s
df [ ” s e r ” ] = s e r s
return df

# Run the p i p e l i n e
d f t r a n s c r i p t i o n s = l o a d t r a n s c r i p t i o n s ( f o l d e r s w i t h r e f e r e n c e s )
d f w i t h m e t r i c s = compute metr ics ( d f t r a n s c r i p t i o n s )

# Save r e s u l t s
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o u t p u t f i l e = os . path . j o i n ( csv path , ” a l l m o d e l s m e t r i c s . csv ” )
d f w i t h m e t r i c s . t o c s v ( o u t p u t f i l e , index=False )

print ( ”  Metr ics  computed  and  saved  to : ” , o u t p u t f i l e )
print ( d f w i t h m e t r i c s . head ( ) )

”””# Graphs ”””

! pip i n s t a l l matp lo t l i b

import matp lo t l i b . pyplot as p l t
import seaborn as sns
import numpy as np

sns . set ( s t y l e=” whi t eg r id ” , p a l e t t e=”muted” )

# Create output d i r e c t o r y i f needed
os . makedirs ( csv path , e x i s t o k=True )

metr i c s = [ ”wer” , ” ce r ” , ” s e r ” ]
models = d f w i t h m e t r i c s [ ”model” ] . unique ( )

d f w i t h m e t r i c s [ ” datase t ” ] = d f w i t h m e t r i c s [ ” r e f e r e n c e i d ” ] . apply (
lambda x : ” text1 ” i f x == ”1” else ” text2 ”

)

save path = ”/ content / dr i v e /MyDrive/ p l o t s ”

# Create s epe ra t e s c a t t e r p l o t s per metr ic per model per t e x t type
for d a t a s e t l a b e l in [ ” t ext1 ” , ” text2 ” ] :

d a t a s e t d f = d f w i t h m e t r i c s [ d f w i t h m e t r i c s [ ” datase t ” ] ==
d a t a s e t l a b e l ]

for metr ic in metr i c s :
for model in models :

model subset = d a t a s e t d f [ d a t a s e t d f [ ”model” ] == model ]

p l t . f i g u r e ( f i g s i z e =(18 , 10) )
sns . s c a t t e r p l o t (

data=model subset ,
x=” aud io id ” ,
y=metric ,
s =100 ,

)
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p l t . t i t l e ( f ”{ metr ic . upper ( ) }  f o r  model :  {model}  ({
d a t a s e t l a b e l }) ” )

p l t . y l a b e l ( f ”{ metr ic . upper ( ) }  (0 1 ) ” )
p l t . x l a b e l ( ”Audio  Filename ” )

# Improve x−ax i s spac ing
u n i q u e l a b e l s = model subset [ ” aud i o id ” ] . unique ( )
x p o s i t i o n s = np . arange ( len ( u n i q u e l a b e l s ) )
p l t . x t i c k s ( x p o s i t i o n s , un ique l abe l s , r o t a t i o n =60, ha=’

r i g h t ’ )

p l t . y t i c k s (np . arange (0 , 1 . 1 , 0 . 1 ) )
p l t . yl im (0 , 1)
p l t . g r i d ( True , a x i s=’ y ’ , l i n e s t y l e=’−− ’ , alpha =0.7)

p l t . t i g h t l a y o u t ( )

# Save f i g u r e to s p e c i f i e d path
f i l ename = f ”{ metr ic } {model} { d a t a s e t l a b e l } . png”
p l t . s a v e f i g ( os . path . j o i n ( save path , f i l ename ) )
p l t . show ( )
p l t . c l o s e ( )

# Create s c a t t e r p l o t s wi th a l l metr i c s per model per t e x t type
for d a t a s e t l a b e l in [ ” t ext1 ” , ” text2 ” ] :

d a t a s e t d f = d f w i t h m e t r i c s [ d f w i t h m e t r i c s [ ” datase t ” ] ==
d a t a s e t l a b e l ]

for model in models :
model subset = d a t a s e t d f [ d a t a s e t d f [ ”model” ] == model ]

p l t . f i g u r e ( f i g s i z e =(18 , 10) )

u n i q u e l a b e l s = model subset [ ” aud i o id ” ] . unique ( )
x p o s i t i o n s = np . arange ( len ( u n i q u e l a b e l s ) )

for metr ic in metr i c s :
m e t r i c v a l u e s = [ ]

for aud io id in u n i q u e l a b e l s :
va lue = model subset . l o c [ model subset [ ” aud i o id ” ] ==

audio id , metr ic ]
m e t r i c v a l u e s . append ( va lue . va lue s [ 0 ] i f not value .

empty else np . nan )
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p l t . s c a t t e r (
x p o s i t i o n s ,
met r i c va lue s ,
l a b e l=metr ic . upper ( ) ,
s=100 # Marker s i z e

)

p l t . x t i c k s ( x p o s i t i o n s , un ique l abe l s , r o t a t i o n =60, ha=’ r i g h t ’
)

p l t . y t i c k s (np . arange (0 , 1 . 1 , 0 . 1 ) )
p l t . yl im (0 , 1)
p l t . g r i d ( True , a x i s=’ y ’ , l i n e s t y l e=’−− ’ , alpha =0.7)

p l t . t i t l e ( f ” Al l  Metr ics  f o r  Model :  {model}  ({ d a t a s e t l a b e l }) ” )
p l t . x l a b e l ( ”Audio  Filename ” )
p l t . y l a b e l ( ” Score  (0 1 ) ” )
p l t . l egend ( t i t l e=” Metric ” )
p l t . t i g h t l a y o u t ( )

# Save f i g u r e
f i l ename = f ” a l l m e t r i c s {model} { d a t a s e t l a b e l } . png”
p l t . s a v e f i g ( os . path . j o i n ( save path , f i l ename ) )
p l t . show ( )
p l t . c l o s e ( )

# Create s epe ra t e h is tograms per metr ic per model per t e x t type
for d a t a s e t l a b e l in [ ” t ext1 ” , ” text2 ” ] :

d a t a s e t d f = d f w i t h m e t r i c s [ d f w i t h m e t r i c s [ ” datase t ” ] ==
d a t a s e t l a b e l ]

for model in models :
model subset = d a t a s e t d f [ d a t a s e t d f [ ”model” ] == model ]

for metr ic in metr i c s :
p l t . f i g u r e ( f i g s i z e =(10 , 6) )
sns . h i s t p l o t (

data=model subset ,
x=metric ,
kde=True ,
b ins =20,
c o l o r=’ skyblue ’

)

p l t . t i t l e ( f ”{ metr ic . upper ( ) }  Histogram   Model :  {model}  
({ d a t a s e t l a b e l }) ” )
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p l t . x l a b e l ( f ”{ metr ic . upper ( ) }  (0 1 ) ” )
p l t . y l a b e l ( ” Frequency ” )
p l t . xl im (0 , 1)
p l t . t i g h t l a y o u t ( )

f i l ename = f ”{ metr ic } h i s togram {model} { d a t a s e t l a b e l } .
png”

p l t . s a v e f i g ( os . path . j o i n ( save path , f i l ename ) )
p l t . show ( )
p l t . c l o s e ( )

# Create h is tograms wi th a l l metr i c s per model per t e x t type
for d a t a s e t l a b e l in [ ” t ext1 ” , ” text2 ” ] :

d a t a s e t d f = d f w i t h m e t r i c s [ d f w i t h m e t r i c s [ ” datase t ” ] ==
d a t a s e t l a b e l ]

for model in models :
model subset = d a t a s e t d f [ d a t a s e t d f [ ”model” ] == model ]

# Reshape data : conver t wide to long format
l o n g d f = model subset . melt (

i d v a r s =[” aud io id ” ] ,
va lu e va r s=metr ics ,
var name=” metr ic ” ,
value name=” value ”

)

p l t . f i g u r e ( f i g s i z e =(12 , 6) )
sns . h i s t p l o t (

data=long d f ,
x=” value ” ,
hue=” metr ic ” ,
b ins =20,
kde=True ,
p a l e t t e=” Set2 ” ,
element=” step ”

)

p l t . t i t l e ( f ” Metric  Comparison  Histogram   Model :  {model}  ({
d a t a s e t l a b e l }) ” )

p l t . x l a b e l ( ” Score  (0 1 ) ” )
p l t . y l a b e l ( ” Frequency ” )
p l t . xl im (0 , 1)
p l t . t i g h t l a y o u t ( )
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# Save
f i l ename = f ” a l l m e t r i c s h i s t o g r a m {model} { d a t a s e t l a b e l } . png

”
p l t . s a v e f i g ( os . path . j o i n ( save path , f i l ename ) )
p l t . show ( )
p l t . c l o s e ( )

# Check the number o f rows f o r the ’ canary ’ model f o r each da t a s e t
for d a t a s e t l a b e l in [ ” t ext1 ” , ” text2 ” ] :

d a t a s e t d f = d f w i t h m e t r i c s [ d f w i t h m e t r i c s [ ” datase t ” ] ==
d a t a s e t l a b e l ]

canary subse t = d a t a s e t d f [ d a t a s e t d f [ ”model” ] == ” canary ” ]
print ( f ”Number  o f  rows  f o r  ’ canary ’  model  in  { d a t a s e t l a b e l } :  { l en

( canary subse t ) }” )
print ( canary subse t )
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E Appendix: Data analysis and Plotting (RStudio code)
# Load requ i r ed packages
l ibrary ( dplyr )
l ibrary ( openxlsx )
l ibrary ( ggp lot2 )
l ibrary ( ggpubr )

# Read the f i l e s
df1 <− read . csv ( ” survey va lues . csv ” , s t r i ng sAsFac to r s = FALSE)
df2 <− read . csv ( ” a l l models met r i c s . csv ” , s t r i ng sAsFac to r s = FALSE)

# Extrac t response ID from f i l ename
df2 <− df2 %>%

mutate ( response ID = sub ( ” . ∗ (R [A−Za−z0 −9]+) . ∗” , ”\\1” , f i l ename ) )

# Ensure response ID i s charac t e r in both
df1$response ID <− as . character ( df1$ResponseId )
df2$response ID <− as . character ( df2$response ID)

# Merge a l l r e l e v a n t columns from df2
merged df <− df1 %>%

l e f t j o i n ( df2 , by = ” response ID” )

# Define columns to remove
columns to remove <− c (

” StartDate ” , ”EndDate” , ” Status ” , ” IPAddress ” , ” Progres s ” , ” Duration
. . in . seconds . ” ,

” Fin i shed ” , ” RecordedDate ” , ” RecipientLastName ” , ” RecipientFirstName
” , ” Recip ientEmai l ” ,

” Externa lRe fe rence ” , ” Locat ionLat i tude ” , ” Locat ionLongitude ” , ”
Dis t r ibut ionChanne l ” ,

” UserLanguage ” , ”Q1” , ”Q6” , ”Q7” , ”Q8” , ”Q9” , ”Q10” , ”Q10 6 TEXT” , ”
Q11” ,

”Q14” , ”Q15” , ”Q16” , ”Q17 S i z e ” , ”Q17 Type” , ”Q18 S i z e ” , ”Q18 Type”
)

# Clean the merged da t a s e t
merged df c l eaned <− merged df %>%

s e l e c t (−one o f ( intersect ( columns to remove , names( merged df ) ) ) )

# === Two−way ANOVA: model type x t e x t type packages on metr ic s ===
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anova r e s u l t 1 <− aov ( c e r ˜ model ∗ text type , data = merged df c l eaned
)

summary(anova r e s u l t 1 )
anova r e s u l t 2 <− aov ( wer ˜ model ∗ text type , data = merged df c l eaned

)
summary(anova r e s u l t 2 )
anova r e s u l t 3 <− aov ( s e r ˜ model ∗ text type , data = merged df c l eaned

)
summary(anova r e s u l t 3 )

to df <− function ( r e s u l t , metr ic name) {
df <− as . data . frame (summary( r e s u l t ) [ [ 1 ] ] )
df$ E f f e c t <− rownames( df )
rownames( df ) <− NULL
names( df ) [ which(names( df ) == ”Pr(>F) ” ) ]
df <− df [ , c ( ” E f f e c t ” , names( df ) [ 1 : 5 ] ) ]
df$Metric <− metr ic name
return ( df )

}

anova df1 <− to df (anova r e su l t 1 , ” ce r ” )
anova df2 <− to df (anova r e su l t 2 , ”wer” )
anova df3 <− to df (anova r e su l t 3 , ” s e r ” )

# Combine a l l i n t o one t a b l e
a l l anova df <− rbind (anova df1 , anova df2 , anova df3 )

# Save to CSV
write . csv ( a l l anova df , ” anova r e s u l t s a l l . csv ” , row .names = FALSE)

# Save to XLSX ( s i n g l e sh ee t )
write . x l sx ( a l l anova df , ” anova r e s u l t s a l l . x l s x ” , rowNames = FALSE)

# Function to c a l c u l a t e mean and CI
summary s t a t s <− function (data , metr ic ) {

data %>%
f i l t e r ( ! i s . na(model) , ! i s . na( text type ) ) %>% # <−−− Add t h i s

l i n e
group by(model , text type ) %>%
summarise (

mean = mean ( . data [ [ metr ic ] ] , na .rm = TRUE) ,
sd = sd ( . data [ [ metr ic ] ] , na .rm = TRUE) ,
n = n ( ) ,
se = sd / sqrt (n) ,
c i = qt ( 0 . 97 5 , df = n − 1) ∗ se ,
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. groups = ” drop ”
) %>%
mutate ( metr ic = metr ic )

}

# Get summaries f o r a l l metr i c s
ce r summary <− summary s t a t s ( merged df cleaned , ” ce r ” )
wer summary <− summary s t a t s ( merged df cleaned , ”wer” )
s e r summary <− summary s t a t s ( merged df cleaned , ” s e r ” )

# Combine a l l i n t o one dataframe
a l l summary <− bind rows ( ce r summary, wer summary, s e r summary)

# Function to p l o t f o r one metr ic
plot metr ic <− function (summary df , metr ic name) {

ggp lot (summary df %>% f i l t e r ( metr ic == metr ic name) ,
aes ( x = model , y = mean, f i l l = model) ) +

geom bar ( stat = ” i d e n t i t y ” , p o s i t i o n = p o s i t i o n dodge ( width = 0 . 9 )
, width = 0 . 7 ) +

geom er ro rba r ( aes ( ymin = mean − ci , ymax = mean + c i ) ,
width = 0 . 2 , p o s i t i o n = p o s i t i o n dodge ( width = 0 . 9 ) )

+
f a c e t wrap (˜ text type ) +
labs ( t i t l e = paste ( ”Mean” , metr ic name , ”by  Model  and  Text  Type” ) ,

y = metr ic name , x = ”Model” ) +
theme minimal ( ) +
theme ( axis . text . x = element text ( ang le = 45 , h ju s t = 1) ) +
scale f i l l brewer ( palette = ” Set2 ” )

}

# Plot each metr ic
plot ce r <− plot metr ic ( a l l summary, ” c e r ” )
ggsave ( ” ce r model p l o t . png” , plot cer , width = 8 , he ight = 5)

plot wer <− plot metr ic ( a l l summary, ”wer” )
ggsave ( ”wer model p l o t . png” , plot wer , width = 8 , he ight = 5)

plot s e r <− plot metr ic ( a l l summary, ” s e r ” )
ggsave ( ” s e r model p l o t . png” , plot ser , width = 8 , he ight = 5)

# === Tukey HSD: model t ype s on metr i c s ===

# Run one−way ANOVA fo r Tukey HSD
anova ce r <− aov ( c e r ˜ model , data = merged df c l eaned )
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anova wer <− aov ( wer ˜ model , data = merged df c l eaned )
anova s e r <− aov ( s e r ˜ model , data = merged df c l eaned )

# Run Tukey HSD post−hoc t e s t s
tukey ce r <− TukeyHSD(anova ce r )
tukey wer <− TukeyHSD(anova wer )
tukey s e r <− TukeyHSD(anova s e r )

# Convert each to data frame and add i d e n t i f i e r s
df ce r <− as . data . frame ( tukey ce r $model)
df ce r $Comparison <− rownames( df ce r )
df ce r $Metric <− ” ce r ”

df wer <− as . data . frame ( tukey wer$model)
df wer$Comparison <− rownames( df wer )
df wer$Metric <− ”wer”

df s e r <− as . data . frame ( tukey s e r $model)
df s e r $Comparison <− rownames( df s e r )
df s e r $Metric <− ” s e r ”

# Combine a l l i n t o one t a b l e
tukey a l l <− rbind ( df cer , df wer , df s e r )

# Reorder columns
tukey a l l <− tukey a l l [ , c ( ” Metric ” , ”Comparison” , ” d i f f ” , ” lwr ” , ” upr

” , ”p  adj ” ) ]

# Save as CSV
write . csv ( tukey al l , ” tukey model comparisons . csv ” , row .names = FALSE)

# Save as XLSX
write . x l sx ( tukey al l , ” tukey model comparisons . x l sx ” , rowNames = FALSE

)

summary s t a t s tukey <− function (data , metr ic ) {
data %>%

f i l t e r ( ! i s . na(model) ) %>%
group by(model) %>%
summarise (

mean = mean ( . data [ [ metr ic ] ] , na .rm = TRUE) ,
sd = sd ( . data [ [ metr ic ] ] , na .rm = TRUE) ,
n = n ( ) ,
se = sd / sqrt (n) ,
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c i = qt ( 0 . 97 5 , df = n − 1) ∗ se ,
. groups = ” drop ”

) %>%
mutate ( metr ic = metr ic )

}

# Create summaries f o r tukey p l o t s ( model on ly )
ce r tukey summary <− summary s t a t s tukey ( merged df cleaned , ” ce r ” )
wer tukey summary <− summary s t a t s tukey ( merged df cleaned , ”wer” )
s e r tukey summary <− summary s t a t s tukey ( merged df cleaned , ” s e r ” )

tukey summary a l l <− bind rows ( ce r tukey summary, wer tukey summary,
s e r tukey summary)

# Then p l o t wi th t h i s new summary
plot tukey metr ic <− function (summary df , metr ic name) {

ggp lot (summary df %>% f i l t e r ( metr ic == metr ic name) ,
aes ( x = model , y = mean, f i l l = model) ) +

geom bar ( stat = ” i d e n t i t y ” , p o s i t i o n = p o s i t i o n dodge ( width = 0 . 7 )
, width = 0 . 6 ) +

geom er ro rba r ( aes ( ymin = mean − ci , ymax = mean + c i ) ,
width = 0 . 2 , p o s i t i o n = p o s i t i o n dodge ( width = 0 . 7 ) )

+
labs (

t i t l e = paste ( ”Mean” , toupper ( metr ic name) , ”by  Model  with  95%  
CI” ) ,

x = ”Model” ,
y = metr ic name

) +
theme minimal ( ) +
theme ( axis . text . x = element text ( ang le = 45 , h ju s t = 1) ) +
scale f i l l brewer ( palette = ” Set2 ” ) +
guides ( f i l l = ”none” )

}

# Plot and save
plot ce r tukey <− plot tukey metr ic ( tukey summary al l , ” c e r ” )
ggsave ( ” tukey ce r barp lo t . png” , plot ce r tukey , width = 8 , he ight = 5)

plot wer tukey <− plot tukey metr ic ( tukey summary al l , ”wer” )
ggsave ( ” tukey wer barp lo t . png” , plot wer tukey , width = 8 , he ight = 5)

plot s e r tukey <− plot tukey metr ic ( tukey summary al l , ” s e r ” )
ggsave ( ” tukey s e r barp lo t . png” , plot s e r tukey , width = 8 , he ight = 5)
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# === Two−way ANOVA: t e x t type X Best Language (Q4 & Q5) ===

# Standard i ze Q4 va l u e s
merged df c l eaned$Q4 c l ean <− to lower ( trimws ( merged df c l eaned$Q4) )
merged df c l eaned$Q4 c l ean <− recode ( merged df c l eaned$Q4 clean ,

” neder lands ” = ” dutch ” ,
” e n g l i s h ” = ” e n g l i s h ” ,
” e n g l i s c h ” = ” e n g l i s h ” ,
” a rab i c ” = ” arab i c ” ,
” ne ther lands ” = ” dutch ” ,
” dutch ” = ” dutch ” ,
” indones ian ” = ” indones ian ” ,
” bahasa  i ndone s i a ” = ” indones ian ”

)

# Standard i ze Q5 va l u e s
merged df c l eaned$Q5 c l ean <− to lower ( trimws ( merged df c l eaned$Q5) )
merged df c l eaned$Q5 c l ean <− recode ( merged df c l eaned$Q5 clean ,

” cantonese ” = ” cantonese ” ,
” ch inee s ” = ”mandarin” ,
” e n g l i s h ” = ” e n g l i s h ” ,
” e n g l i s c h ” = ” e n g l i s h ” ,
” bahasa  i ndone s i a ” = ” indones ian ”

,
” indone s i a ” = ” indones ian ” ,
” indones ian ” = ” indones ian ” ,
” dutch ” = ” dutch ” ,
” neder lands ” = ” dutch ” ,
” papiamentu ” = ” papiamentu ”

)

View ( merged df c l eaned )

# Count and ad j u s t Q4 c lean f r e q u e n c i e s
q4 c l ean counts <− as . data . frame ( table ( merged df c l eaned$Q4 c l ean ) )
colnames ( q4 c l ean counts ) <− c ( ”Language” , ”Count” )
q4 c l ean counts$Adjusted Count <− q4 c l ean counts$Count / 6

# Bar char t f o r Q4
ggp lot ( q4 c l ean counts , aes ( x = reo rde r ( Language , −Adjusted Count ) , y

= Adjusted Count ) ) +
geom bar ( stat = ” i d e n t i t y ” , f i l l = ”#4682B4” ) +
labs ( t i t l e = ” Par t i c i pan t  Count  by  F i r s t  Language  (Q4  − Cleaned ) ” ,
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x = ” F i r s t  Language” , y = ”Number  o f  P a r t i c i p a n t s ” ) +
theme minimal ( ) +
theme ( axis . text . x = element text ( ang le = 45 , h ju s t = 1) )

ggsave ( ” bar q4 c leaned counts . png” , width = 8 , he ight = 5)

# Count and ad j u s t Q5 c lean f r e q u e n c i e s
q5 c l ean counts <− as . data . frame ( table ( merged df c l eaned$Q5 c l ean ) )
colnames ( q5 c l ean counts ) <− c ( ”Language” , ”Count” )
q5 c l ean counts$Adjusted Count <− q5 c l ean counts$Count / 6

# Bar char t f o r Q5
ggp lot ( q5 c l ean counts , aes ( x = reo rde r ( Language , −Adjusted Count ) , y

= Adjusted Count ) ) +
geom bar ( stat = ” i d e n t i t y ” , f i l l = ”#6A5ACD” ) +
labs ( t i t l e = ” Par t i c i pan t  Count  by  Second−Best  Language  (Q5  − 

Cleaned ) ” ,
x = ” Second  Language” , y = ”Number  o f  P a r t i c i p a n t s ” ) +

theme minimal ( ) +
theme ( axis . text . x = element text ( ang le = 45 , h ju s t = 1) )

ggsave ( ” bar q5 c leaned counts . png” , width = 8 , he ight = 5)

# TWO−WAY ANOVA for Q4 ( Best f i r s t language )
anova q4 ce r <− aov ( c e r ˜ text type ∗ Q4 clean , data = merged df

c l eaned )
anova q4 wer <− aov ( wer ˜ text type ∗ Q4 clean , data = merged df

c l eaned )
anova q4 s e r <− aov ( s e r ˜ text type ∗ Q4 clean , data = merged df

c l eaned )

# TWO−WAY ANOVA for Q5 ( Best second−b e s t language )
anova q5 ce r <− aov ( c e r ˜ text type ∗ Q5 clean , data = merged df

c l eaned )
anova q5 wer <− aov ( wer ˜ text type ∗ Q5 clean , data = merged df

c l eaned )
anova q5 s e r <− aov ( s e r ˜ text type ∗ Q5 clean , data = merged df

c l eaned )

# Convert ANOVA summaries to data frames
anova q4 df ce r <− to df (anova q4 cer , ” ce r ” )
anova q4 df wer <− to df (anova q4 wer , ”wer” )
anova q4 df s e r <− to df (anova q4 ser , ” s e r ” )
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anova q5 df ce r <− to df (anova q5 cer , ” ce r ” )
anova q5 df wer <− to df (anova q5 wer , ”wer” )
anova q5 df s e r <− to df (anova q5 ser , ” s e r ” )

# Combine and save ANOVA r e s u l t s
anova q4 a l l <− rbind (anova q4 df cer , anova q4 df wer , anova q4 df

s e r )
anova q5 a l l <− rbind (anova q5 df cer , anova q5 df wer , anova q5 df

s e r )

write . csv (anova q4 al l , ” anova q4 language r e s u l t s . csv ” , row .names =
FALSE)

write . csv (anova q5 al l , ” anova q5 language r e s u l t s . csv ” , row .names =
FALSE)

write . x l sx (anova q4 al l , ” anova q4 language r e s u l t s . x l sx ” , rowNames =
FALSE)

write . x l sx (anova q5 al l , ” anova q5 language r e s u l t s . x l sx ” , rowNames =
FALSE)

# POST−HOC TUKEY TESTS fo r Q4
tukey q4 ce r <− TukeyHSD(aov ( c e r ˜ Q4 clean , data = merged df c l eaned )

)
tukey q4 wer <− TukeyHSD(aov ( wer ˜ Q4 clean , data = merged df c l eaned )

)
tukey q4 s e r <− TukeyHSD(aov ( s e r ˜ Q4 clean , data = merged df c l eaned )

)

df q4 ce r <− as . data . frame ( tukey q4 ce r $Q4 c l ean )
df q4 wer <− as . data . frame ( tukey q4 wer$Q4 c l ean )
df q4 s e r <− as . data . frame ( tukey q4 s e r $Q4 c l ean )

df q4 ce r $Comparison <− rownames( df q4 ce r ) ; df q4 ce r $Metric <− ” ce r ”
df q4 wer$Comparison <− rownames( df q4 wer ) ; df q4 wer$Metric <− ”wer”
df q4 s e r $Comparison <− rownames( df q4 s e r ) ; df q4 s e r $Metric <− ” s e r ”

tukey q4 a l l <− rbind ( df q4 cer , df q4 wer , df q4 s e r )
tukey q4 a l l <− tukey q4 a l l [ , c ( ” Metric ” , ”Comparison” , ” d i f f ” , ” lwr ”

, ”upr” , ”p  adj ” ) ]

write . csv ( tukey q4 al l , ” tukey q4 language comparisons . csv ” , row .names
= FALSE)

write . x l sx ( tukey q4 al l , ” tukey q4 language comparisons . x l sx ” ,
rowNames = FALSE)
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# POST−HOC TUKEY TESTS fo r Q5
tukey q5 ce r <− TukeyHSD(aov ( c e r ˜ Q5 clean , data = merged df c l eaned )

)
tukey q5 wer <− TukeyHSD(aov ( wer ˜ Q5 clean , data = merged df c l eaned )

)
tukey q5 s e r <− TukeyHSD(aov ( s e r ˜ Q5 clean , data = merged df c l eaned )

)

df q5 ce r <− as . data . frame ( tukey q5 ce r $Q5)
df q5 wer <− as . data . frame ( tukey q5 wer$Q5)
df q5 s e r <− as . data . frame ( tukey q5 s e r $Q5)

df q5 ce r $Comparison <− rownames( df q5 ce r ) ; df q5 ce r $Metric <− ” ce r ”
df q5 wer$Comparison <− rownames( df q5 wer ) ; df q5 wer$Metric <− ”wer”
df q5 s e r $Comparison <− rownames( df q5 s e r ) ; df q5 s e r $Metric <− ” s e r ”

tukey q5 a l l <− rbind ( df q5 cer , df q5 wer , df q5 s e r )
tukey q5 a l l <− tukey q5 a l l [ , c ( ” Metric ” , ”Comparison” , ” d i f f ” , ” lwr ”

, ”upr” , ”p  adj ” ) ]

write . csv ( tukey q5 al l , ” tukey q5 language comparisons . csv ” , row .names
= FALSE)

write . x l sx ( tukey q5 al l , ” tukey q5 language comparisons . x l sx ” ,
rowNames = FALSE)

# Create a new v a r i a b l e to make separa t i on o f model type x t e x t type
merged df c l eaned$model text type <− paste ( merged df c l eaned$model ,

merged df c l eaned$text type , sep = ” ” )

# Clean up the rows o f the dataframe
merged df c l eaned <− merged df c l eaned [

! i s . na( merged df c l eaned$model) &
! i s . na( merged df c l eaned$text type ) &
merged df c l eaned$Q4 != ” Imported ( rcd3 text ) ” &
merged df c l eaned$Q4 != ”What  i s  your  F i r s t /Best/Most  Fluent  

Language?” , ]

# CER by F i r s t Language
ggp lot ( merged df cleaned , aes ( x = Q4 clean , y = cer , c o l o r = model

text type ) ) +
geom j i t t e r ( width = 0 . 2 , alpha = 0 . 6 ) +
labs ( t i t l e = ”CER by  F i r s t  Language  (Q4) ” , x = ” F i r s t  Language” , y =
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”CER” , c o l o r = ”Model  + Text  Type” ) +
theme minimal ( ) +
theme ( axis . text . x = element text ( ang le = 45 , h ju s t = 1) )

ggsave ( ” s c a t t e r c e r q4 . png” , width = 8 , he ight = 5)

# WER by F i r s t Language
ggp lot ( merged df cleaned , aes ( x = Q4 clean , y = wer , c o l o r = model

text type ) ) +
geom j i t t e r ( width = 0 . 2 , alpha = 0 . 6 ) +
labs ( t i t l e = ”WER by  F i r s t  Language  (Q4) ” , x = ” F i r s t  Language” , y =

”WER” , c o l o r = ”Model  + Text  Type” ) +
theme minimal ( ) +
theme ( axis . text . x = element text ( ang le = 45 , h ju s t = 1) )

ggsave ( ” s c a t t e r wer q4 . png” , width = 8 , he ight = 5)

# SER by F i r s t Language
ggp lot ( merged df cleaned , aes ( x = Q4 clean , y = ser , c o l o r = model

text type ) ) +
geom j i t t e r ( width = 0 . 2 , alpha = 0 . 6 ) +
labs ( t i t l e = ”SER by  F i r s t  Language  (Q4) ” , x = ” F i r s t  Language” , y =

”SER” , c o l o r = ”Model  + Text  Type” ) +
theme minimal ( ) +
theme ( axis . text . x = element text ( ang le = 45 , h ju s t = 1) )

ggsave ( ” s c a t t e r s e r q4 . png” , width = 8 , he ight = 5)

# CER by Second Language
ggp lot ( merged df cleaned , aes ( x = Q5 clean , y = cer , c o l o r = model

text type ) ) +
geom j i t t e r ( width = 0 . 2 , alpha = 0 . 6 ) +
labs ( t i t l e = ”CER by  Second  Language  (Q5) ” , x = ” Second  Language” , y

= ”CER” , c o l o r = ”Model  + Text  Type” ) +
theme minimal ( ) +
theme ( axis . text . x = element text ( ang le = 45 , h ju s t = 1) )

ggsave ( ” s c a t t e r c e r q5 . png” , width = 8 , he ight = 5)

# WER by Second Language
ggp lot ( merged df cleaned , aes ( x = Q5 clean , y = wer , c o l o r = model

text type ) ) +
geom j i t t e r ( width = 0 . 2 , alpha = 0 . 6 ) +
labs ( t i t l e = ”WER by  Second  Language  (Q5) ” , x = ” Second  Language” , y

= ”WER” , c o l o r = ”Model  + Text  Type” ) +
theme minimal ( ) +
theme ( axis . text . x = element text ( ang le = 45 , h ju s t = 1) )

ggsave ( ” s c a t t e r wer q5 . png” , width = 8 , he ight = 5)
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# SER by Second Language
ggp lot ( merged df cleaned , aes ( x = Q5 clean , y = ser , c o l o r = model

text type ) ) +
geom j i t t e r ( width = 0 . 2 , alpha = 0 . 6 ) +
labs ( t i t l e = ”SER by  Second  Language  (Q5) ” , x = ” Second  Language” , y

= ”SER” , c o l o r = ”Model  + Text  Type” ) +
theme minimal ( ) +
theme ( axis . text . x = element text ( ang le = 45 , h ju s t = 1) )

ggsave ( ” s c a t t e r s e r q5 . png” , width = 8 , he ight = 5)

# === Corre l a t i on : t e x t type X Accent heav ines s (Q13) ===

# Corre l a t i on c a l c u l a t i o n o f accent heav ine s s
merged df c l eaned$Q13 numeric <− as . numeric ( recode ( merged df c l eaned$

Q13 ,
” People  u sua l l y  do  

not  understand  me
” = 1 ,

” People  o f t en  do  
not  understand  me
” = 2 ,

” People  understand  
me  with  some  
e f f o r t ” = 3 ,

”Most  people  
understand  me  
r e l a t i v e l y  e a s i l y
” = 4 ,

”My accent  does  not
 h inder  
understanding  me”
= 5

) )

summary( merged df c l eaned$Q13 numeric )

cor . t e s t ( merged df c l eaned$Q13 numeric , merged df c l eaned$ ce r )
cor . t e s t ( merged df c l eaned$Q13 numeric , merged df c l eaned$wer )
cor . t e s t ( merged df c l eaned$Q13 numeric , merged df c l eaned$ s e r )

# Save data to CSV and p l o t
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cor data <− merged df c l eaned %>%
s e l e c t ( response ID , Q13 numeric , cer , wer , s e r )

write csv ( cor data , ”q13 numeric cor data . csv ” )

plot with lm <− function ( yvar , l a b e l ) {
ggp lot ( cor data , aes ( x = Q13 numeric , y = . data [ [ yvar ] ] ) ) +

geom point ( alpha = 0 . 6 ) +
geom smooth ( method = ”lm” , se = TRUE, c o l o r = ” blue ” ) +
labs (

t i t l e = paste ( ” Cor r e l a t i on  between  Accent  Percept ion  and” ,
toupper ( yvar ) ) ,

x = ” Accent  Heaviness  (Q13 numeric ) ” ,
y = l a b e l

) +
theme minimal ( )

}

# Create and d i s p l a y p l o t s
plot ce r <− plot with lm( ” ce r ” , ”CER” )
plot wer <− plot with lm( ”wer” , ”WER” )
plot s e r <− plot with lm( ” s e r ” , ”SER” )

print ( plot ce r )
print ( plot wer )
print ( plot s e r )

# Save p l o t s
ggsave ( ”q13 vs ce r . png” , plot cer , width = 6 , he ight = 4)
ggsave ( ”q13 vs wer . png” , plot wer , width = 6 , he ight = 4)
ggsave ( ”q13 vs s e r . png” , plot ser , width = 6 , he ight = 4)

write . csv ( merged df cleaned , ”merged df c l eaned . csv ” , row .names =
FALSE)

write . x l sx ( merged df cleaned , ”merged df c l eaned . x l sx ” )
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