Bachelor Computer Science &
Datascience and Artificial Intelligence

Modeling social creativity with large-scale multi-agent systems

and emergent properties of collective creative processes

Luuk Motz

Rob Saunders

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)
www.liacs.leidenuniv.nl 15/01/2025

www.liacs.leidenuniv.nl

Abstract

This thesis explores the modeling of social creativity using large-scale multi-
agent systems, advancing prior work by scaling simulations to hundreds
of agents to examine emergent phenomena. Existing computational mod-
els have provided valuable insights into creative social behaviors within
small agent populations but often relied on artificial constraints to observe
these behaviors. In this study, we address both technical and theoretical
challenges associated with scaling, introducing architectural innovations to
enable efficient large-scale interactions, such as combining a KNN and ResNet
for novelty detection. Through systematic experimentation, we reveal how
emergent properties such as clique formation, stylistic evolution, and knowl-
edge transfer manifest naturally in larger systems. The results demonstrate
that scaling not only uncovers new patterns of collective creativity but
also provides a deeper understanding of the self-organizing dynamics that
drive creative communities. These findings contribute to the development
of scalable computational creativity frameworks and offer insights into the
mechanisms underlying creativity in both artificial and human systems. We
find that although large-scale multi-agent simulations reveal more complex
social structures compared to small-scale approaches, fully stable clique
formation does not persist, indicating that truly emergent creativity at scale
still faces key computational and design challenges.

Contents

1 Introduction 1
1.1 Motivationo 1
1.2 Research Aims and Question 2

1.2.1 Research Question L 2
1.2.2 Hypotheses 2
1.3 Thesis overview 3

2 Related Work 4

2.1 History of Social Creativity 4
2.1.1 Understanding Creativity 4
2.1.2 Reframing Creative Processes 4
2.1.3 The Domain-Individual-Field-Interaction (DIFI) Framework 4
2.1.4 Computational Frameworks and Scaling Challenges 5

2.2 Individual Creative Agentso 6
2.2.1 Computational Approaches to Novelty Detection. 7

2.3 Multi-Agent Creative Systems 7
2.3.1 Historical Development of MAS in Creativity Research 8
2.3.2 Artificial Creative Systems 8
2.3.3 Emergence of Creative Communities 9
2.3.4 Modern Approaches to Social Network Analysis 10

2.4 Emergent Properties 11
2.4.1 Clique Formation and Social Clustering 12
2.4.2 Stylistic Evolution and Divergence 12
2.4.3 Knowledge Transfer Patterns 12

3 Methodology 13
3.1 Algorithmic Architecture of the Digital Clockwork Muse 13
3.2 Artefact Generation 15

3.2.1 Expression Trees and Quaternion Operations 16
3.2.2 Breeding and Evolution 0000000 17
3.2.3 Expression Complexity and Visual Results 18

3.3 Novelty Detection 21
3.3.1 kNN-based Approach 21
3.3.2 ResNet Feature Extraction 23
3.3.3 Novelty Score Normalization 26
3.3.4 Calculating Interest 26

3.4 Social Policies 28

3.5 Performance Optimization 30
3.5.1 Batch Processing 31
3.5.2 Algorithmic Optimization 31

3.6 Data collecting and analyses oL 32

Experiment

4.1 Variables and Parameters L
4.2 Control Conditions e
4.3 Success Criteria
4.4 Hardware used
Results

5.1 ResNet-18 Feature Dimensions,
5.2 Computational performance issues
5.3 System Results

5.4 Network structures
5.5 Network Statistics

Discussion
Conclusions
Future work

Appendices

33
33
34
35
35

36
36
37
37
40
46

48

50

50

54

1 Introduction

Social creativity is the collective process of idea generation and innovation within groups or
societies and has become an increasingly important area of study in both cognitive science and
artificial intelligence [1]-[3]. While traditional research has often focused on creativity as an
individual cognitive process [1], there is a growing recognition that creativity is fundamentally
shaped by social and cultural dynamics [5].

The computational modeling of social creativity has historically been constrained to small-
scale simulations, typically involving fewer than twenty agents [6]. While these studies have
provided valuable insights, these studies often required artificial constraints to demonstrate
phenomena like clique formation. Multi-agent systems now offer a promising framework for
modeling these complex social creative processes on larger scales [7]. By scaling simulations to
thousands of agents, each with their own creative capabilities and decision-making processes,
we can study emergent patterns of collective creativity that more naturally mirror real-world
creative processes [8], [9].

While scaling the multi-agent simulations to thousands or even more agents, problems
arise on a technical and theoretical level. From a technical perspective, the computational
demands of modeling thousands of agents, each capable of generating and evaluating creative
artifacts, require careful consideration of architecture and implementation [%]. The theoretical
obstacle lies in determining the appropriate mechanisms for agent interaction, evaluation,
and learning that can meaningfully capture the dynamics of creative communities in the real
world at scale [10].

Previous research has identified several key phenomena in creative social systems, such
as the formation of aesthetic niches or the inception of creative leadership [2], [6]. These
studies have revealed how creative communities naturally organize themselves into distinct
groups [2], [3]. However, these findings have largely emerged from small-scale simulations
where researchers needed to carefully construct the initial conditions of the agents and the
domain. Large-scale simulations show potential to study how these phenomena may emerge
naturally from more realistic starting conditions and may reveal entirely new patterns of
creative social organization [8], [9].

1.1 Motivation

This research is motivated by two key developments in computational creativity. First, while
existing models like the Digital Clockwork Muse have demonstrated creative social behaviors
in small agent populations [11], they required artificial constraints to produce phenomena like
clique formation. This raises questions about whether such properties would emerge naturally
in larger-scale simulations that better approximate real creative communities.

Recent advances in computational capabilities have made it possible to model complex
social systems at unprecedented scales. As shown by Wei, Tay, Bommasani, et al., certain be-
havioral properties only become observable when systems are scaled significantly [12]. Applied
to social creativity, large-scale simulations could reveal emergent phenomena undetectable in
smaller implementations. The interaction patterns and social structures that emerge at scale
may provide insights into how creative communities self-organize.

Furthermore, understanding large-scale creative processes has practical implications. While

individual creative agents have been extensively studied, the collective dynamics of large
creative communities remain poorly understood. By investigating how thousands of agents
interact and influence each other’s creative development, we can better understand the social
mechanisms driving innovation in human creative communities. This knowledge could inform
both the design of future computational creativity systems and our understanding of creativity
in large-scale human organizations.

This research therefore aims to bridge the gap between small-scale proof-of-concept models
and the complexity of real-world creative communities. By developing scalable frameworks
for modeling social creativity, we can examine how emergent properties arise naturally from
agent interactions rather than through artificially imposed constraints.

1.2 Research Aims and Question

The transition from small-scale proof-of-concept models to large-scale simulations of social
creativity presents both theoretical and technical challenges that this research aims to address.
While previous work has demonstrated the feasibility of modeling creative social behaviors
in limited agent populations [0], the effects of scaling these systems to thousands of agents
remain unexplored. This research investigates whether phenomena that required artificial
constraints in small-scale implementations emerge naturally at larger scales.

1.2.1 Research Question

This study addresses the following primary research question: How can larger multi-agent
systems be used to model social creativity, and what emergent properties arise
across different scales that might inform our understanding of collective creative
processes and computational creativity models?

1.2.2 Hypotheses

Based on theoretical foundations and preliminary investigations, we propose the following
hypotheses:

1. H1: Large-scale multi-agent systems (>500 agents) will demonstrate emergent creative
behaviors, particularly clique formation and stylistic evolution, without requiring the
artificial constraints necessary in smaller implementations.

2. H2: Scaling effects will reveal qualitatively different patterns of creative behavior
and social organization that are unobservable in small-scale simulations (<20 agents),
without any artificial constraints.

These hypotheses address both the technical feasibility of scaling social creativity models
and the potential emergence of new behavioral patterns. By investigating these hypotheses,we
aim to broaden our understanding of collective creative processes and contribute to the devel-
opment of more sophisticated computational creativity models [13]. The results could provide
insights into how creative communities self-organize and evolve, with potential applications
across various domains of computational creativity research. The systematic investigation

of these hypotheses requires careful consideration of both computational architecture and
experimental design, which will be detailed in subsequent chapters. Through this investigation,
we aim to bridge the gap between small-scale proof-of-concept models and the complexity of
real-world creative communities [14].

1.3 Thesis overview

This thesis is structured as follows: Chapter 2 presents a comprehensive review of the
literature on computational social creativity, multi-agent systems, and emergent phenomena.
Chapter 3 details the methodology and technical implementation of our large-scale multi-agent
framework. Chapter 4 presents the experimental setup where we conduct the simulations.
Chapter 5 displays the results from the experiments. Chapter 6 and 7 discuss and conclude
the thesis.

2 Related Work

2.1 History of Social Creativity
2.1.1 Understanding Creativity

The general definition of creativity is mainly associated with the ability to produce something
new and unexpected. For something to be classified as creative, the artefact that was
produced must be recognizable and novel. The exact process and emergence of creativity

is still unknown [15]. To frame creativity within a computational and theoretical context,
it is essential to address its dual nature. Creativity encompasses both exploration and
exploitation [10]. Exploration involves the generation of novel ideas or artifacts, while

exploitation focuses on refining and optimizing existing ones. Both components are not
independent; they exist in a dynamic interplay, where exploration feeds into exploitation, and
vice versa. This duality is fundamental to understanding how creativity operates within both
individuals and groups.

2.1.2 Reframing Creative Processes

The study of social creativity emerged as a counterpoint to the romanticized notion of the lone
creative genius, recognizing creativity as an inherently collective phenomenon that arises from
complex social interactions [16]. Csikszentmihalyi advanced this understanding by highlighting
how creativity emerges from the dynamic relationship between individual cognitive processes
and broader social-cultural contexts [17]. He challenged the prevailing computational models
of creativity that reduced it to mere problem-solving processes. These earlier models assumed
that given sufficient domain knowledge and adequate heuristic search procedures, creative
breakthroughs were simply a matter of time and computational power [17].

This critique of reductionist approaches has profound implications for computational
modeling of creative processes. Rather than focusing solely on problem-solving mechanisms,
effective models must account for what Csikszentmihalyi termed the ”non-rational components”
of creativity: the initial spark of interest that draws individuals to particular domains, their
perseverance in pushing that domains boundaries, their willingness to question established
frameworks and crucially, the social context that either nurtures or inhibits that creative
development [17]. This suggest that multi-agent systems designed to study social creativity
must incorporate mechanisms beyond simple problem-solving heuristics to capture the complex
dynamics of collective creative processes.

2.1.3 The Domain-Individual-Field-Interaction (DIFI) Framework

The Domain-Individual-Field-Interaction (DIFI) presents the core foundation upon which
this thesis is based. The idea of creativity emerges from the dynamic interaction between
these three subsystems: domain, individual, and field, which fundamentally challenges the
notion of creativity as a purely individual cognitive process [18]. The domain represents the
corpus of knowledge accumulated and cultural artifacts within a creative field, produced
by the individual. The individual draws upon the domain knowledge to produce novel
works. The field, in Csikszentmihalyi original conception, functions as a selective mechanism

determining which works merit inclusion in the domain [18]. This selectivity operates through
"gatekeepers”; individuals who occupy positions of influence and evaluation within their
respective fields. For instance, in scientific domains, these gatekeepers might be journal editors
or distinguished researchers whose judgments significantly influence what becomes accepted
into the domain’s body of knowledge.

This cyclical process creates a self-reinforcing system where creative development occurs
through continuous interaction rather than isolated innovation. The domain provides the raw
material and context that individuals need to create meaningfully within their field. Individuals
then transform this knowledge in novel ways, producing variations that must survive evaluation
by the field before potentially entering back into the domain. As Csikszentmihalyi argues,
creativity emerges from this complete system of interactions rather than residing solely in
any single component [18].

QOLTURS,
& e
f %
N Z
5 2
5
4 UAT, =
Sy v
:
©)
o
/VO VEL W oP\\(L

Figure 1: Csikszentmihalyi’s Systems View of Creativity illustrates the dynamic interaction
between domain, individual, and field in creative processes, adapted from Csikszentmihalyi
[17] by Saunders [7]

The DIFI framework’s emphasis on structured social interaction makes it particularly
suitable for computational modeling through multi-agent systems. Each component can be
explicitly represented: the domain as a repository of artifacts, individuals as agents capable of
generating and evaluating these works, and the field as the collective evaluation mechanisms
between agents. This direct mapping between theoretical framework and computational
implementation provides a robust foundation for studying creativity through simulation and
potentially at scale [3], [19], [20].

2.1.4 Computational Frameworks and Scaling Challenges

Computational frameworks for modeling social creativity have historically been constrained by
the inherent complexity of simulating large-scale creative interactions. Early implementations,
such as Saunders’ Digital Clockwork Muse, demonstrated the feasibility of modeling creative

social behaviors but were limited to small agent populations of 10-20 individuals [11]. These
constraints, while necessary for initial proof-of-concept work, significantly simplified the
potential real life dynamics in these creative societies.

As technology progresses, the power of computation has increased significantly, allowing
these large-scale models to run at previously unattainable scales. However, scaling these
models introduces fundamental technical and theoretical challenges. As Wei, Tay, Bommasani,
et al. demonstrate in their work on emergent behaviors in large-scale systems, capabilities
and phenomena that are absent or invisible at smaller scales can emerge when systems are
scaled up significantly [12]. This suggests that scaling social creativity models may reveal
emergent properties that were unobservable in smaller implementations [12].

The technical challenges of scaling creative agent systems extend beyond mere compu-
tational resources. Each agent must maintain its own creative decision-making processes,
memory of previous interactions, and evaluative mechanisms for assessing novelty. When
scaled to thousands of agents, the resource requirements for maintaining individual learning
models become prohibitive without careful architectural considerations and changes.

2.2 Individual Creative Agents

Individual creative agents form the fundamental building blocks of computational social
creativity. While the broader framework emphasizes collective dynamics, understanding how
individual agents process and generate creative works remains crucial for implementing
effective multi-agent systems. Drawing from Saunders’ work [21], individual creative agents
must possess three core capabilities: the ability to generate artifacts, evaluate novelty, and
maintain a form of creative drive or motivation.

The generative capabilities of creative agents typically involve domain-specific knowledge
and production rules. In computational implementations, these often take the form of
parameterized generative systems or evolutionary algorithms that can produce artifacts
within a defined creative space [22]. The specific choice of generative system, while important
for practical implementation, matters less than ensuring the system provides sufficient
expressive range for meaningful creative exploration. This aligns with Wiggins’ view [10] that
creative systems must balance exploration of new possibilities with exploitation of known
successful patterns.

Novelty evaluation represents perhaps the most crucial capability of individual creative
agents, as it drives both their creative development and social interactions. Computational
approaches to novelty detection have evolved from simple difference measures to sophisticated
machine learning models. For instance, Pidhorskyi et al. (2018) propose a probabilistic
approach using adversarial autoencoders for novelty detection, effectively computing the

likelihood that a sample was generated by the inlier distribution [23]. These evaluation
mechanisms must be computationally efficient enough for real-time interaction while remaining
sensitive enough to detect meaningful creative variations. As Boden [13] argues, the ability

to recognize and appreciate novelty forms the cornerstone of creative behavior, whether in
human or artificial systems.

The third essential component, creative drive, manifests in computational agents through
various mechanisms that maintain engagement in creative activities. This often takes the form
of interest functions or curiosity mechanisms that prevent agents from settling into static

behavioral patterns. Saunders and Gero [6] implemented this through a hedonic function
based on the Wundt curve, which models how interest varies with novelty. This approach
recognizes that both too little and too much novelty can lead to disengagement, mirroring
psychological theories of optimal arousal in human creativity [17].

2.2.1 Computational Approaches to Novelty Detection

While various approaches exist for computational novelty detection in creative systems, the
choice of mechanism significantly impacts both the quality of creative evaluation and the
scalability of the system. This choice introduces a significant trade-off that must be balanced
in order to properly scale a system. Early implementations often relied on self-organizing
maps (SOMs) for novelty detection [6], which proved effective for small agent populations
but might face scalability challenges in larger systems.

The combination of deep feature extraction through ResNet and k-Nearest Neighbors
(kNN) classification offers several advantages for large-scale creative systems. Pre-trained
convolutional neural networks like ResNet provide robust, hierarchical feature representations
that capture both low-level visual patterns and higher-level structural relationships [24].
This ability to extract meaningful features without domain-specific training makes them
particularly suitable for evaluating abstract visual artifacts. Recent advancements in deep
learning for novelty detection, such as adversarially learned one-class classifiers, also highlight
the utility of leveraging deep architectures for identifying novel patterns in complex datasets
25].

The choice of kNN for novelty detection builds on established research into computational
novelty detection [20]. Pimentel et al. provide a comprehensive review of distance-based
techniques for anomaly detection, which are highly relevant for creative evaluation in large-
scale systems. Unlike neural network-based approaches that require extensive training periods,
kNN provides immediate novelty assessments while naturally supporting the development of
individual creative preferences, giving agents the ability to change their repository over time.

The implementation of normally distributed novelty preferences among agents reflects
empirical observations of human creative communities. However, the lack of a detailed
quantitative model for this specific behavior highlights a gap in current literature. This
investigation seeks to address this gap by exploring the role of normally distributed thresholds
in fostering emergent behaviors in creative societies, inspired in part by general principles
outlined in [27].

2.3 Multi-Agent Creative Systems

Individual creative agents constitute basic units of computational creativity research, but
creativity manifests primarily through interactions within social networks and communities.
The transition from single-agent to multi-agent approaches reflects this understanding,
addressing both the collaborative and competitive aspects of creativity. Multi-agent systems
offer a framework for modeling these intricate social dynamics, allowing for the investigation
of phenomena such as stylistic evolution, creative influence, and the formation of artistic
movements. These systems extend beyond simple aggregations of individual creative behaviors,
incorporating the critical social mechanisms that shape collective creative processes.

2.3.1 Historical Development of MAS in Creativity Research

The application of multi-agent systems to study creativity represents a significant paradigm
shift from traditional cognitive models to social and distributed perspectives [11]. Early
research in computational creativity primarily focused on individual creative processes [25],
but the recognition of creativity as an inherently social phenomenon led to the emergence of
multi-agent approaches in the late 1990s.

The field’s evolution began with simple cellular automata models exploring emergent
behavior [29], before progressing to more sophisticated agent-based frameworks. A pivotal
development came with Saunders and Gero’s Digital Clockwork Muse [1 1], which demonstrated
how creative behavior could emerge from interactions between artificial agents equipped with
novelty-seeking mechanisms.

This transition to social models was further catalyzed by Csikszentmihalyi’s systems view
of creativity [30], which emphasized the role of social interactions and cultural context in
creative processes. The subsequent development of MAS frameworks allowed researchers to
computationally investigate these social dynamics, leading to insights about the emergence
of creative communities and the diffusion of innovations [31].

Recent advances in computational power and artificial intelligence have enabled the scaling
of these models from small groups of agents to large-scale social simulations [32], opening
new avenues for understanding collective creativity in real-world contexts.

2.3.2 Artificial Creative Systems

The Digital Clockwork Muse represents a foundational framework for modeling social creativity
through multi-agent interactions. At its core, the algorithm implements a cyclic process where
agents generate artifacts, evaluate their novelty, and engage in social exchange based on their
individual preferences and collective dynamics. Figure 2 provides a high-level architectural view
of implementing the DIFI framework computationally, illustrating the essential components
and their interconnections.

Early attempts to computationally model Csikszentmihalyi’s DIFI framework took different
approaches. Liu proposed the Dual Generate-and-Test model which conceptualized creativity
as two interconnected generative cycles [19]. The first cycle operates at the individual level,
implementing problem finding, artefact generation, and personal creativity testing. The
second cycle operates at the societal level, where the individual serves as the generator and
the field functions as a monolithic test of creativity. Liu’s model suggested that this societal
creativity test would likely require human judgment as an oracle to evaluate creative merit.
This interpretation maintained a centralized view of creative evaluation, where a singular
authority determines what enters the domain. In parallel, Saunders developed a distributed
approach where creative evaluation emerged from the interactions of multiple agents [21].
This distributed evaluation better reflects the emergent nature of social creativity, where
creative judgments arise from collective interactions rather than centralized authority.

| .

B K | Domain
Individual J |
|

o
o]
]
]
A\

p-creativity
test

Individual i

problem
finding

artefact

generation p-creativity »=pass=t—

I
I
I
I
I
! :
! I
! I
I

I
: f_ feedback—l :
! I
! I
! I
! I
I
I
I
I
I

Figure 2: A minimal social creativity test in an artificial creative system, figure by Saun-
ders [21].

Within this architecture, individual agents (denoted as i, j, ..., n) operate as independent
creative entities, each capable of generating and evaluating artifacts. Although the framework
accommodates a predefined number of agents, its scalability allows for populations ranging
from small groups to large creative communities. This flexibility enables the investigation of
emergent creative phenomena across different scales of social interaction.

The creative process begins with problem finding: Problem finding represents the agent’s
intrinsic mechanism for identifying unexplored creative spaces through stochastic generation
and novelty-based evaluation. Although initial artefact generation may be random, agents
may develop strategic approaches to creativity through their accumulated experiences directly
affecting novelty evaluations. This is implemented through the personal creativity (p-creativity)
test, which allows agents to assess the potential interest and value of their creative outputs
before sharing them with the broader agent community.

The individual agent 7 would continue to generate artifacts until their individual p-creativity
test had passed. If the artefact were not novel enough by the individual, it would be binned,
and a new artefact would be generated. However, in the scenario where the agent ¢ accepts
their artefact as being novel, it would be broadcast to a different agent j. Agent j then
performs their individual p-creativity test to determine if the artefact is novel enough. The
p-creativity test performed by j is not equal to the test that ¢ performed, because their
perception of the perceived artifacts is different. If agent j accepts the artefact, it is added
onto the domain.

2.3.3 Emergence of Creative Communities

Creative communities in artificial systems emerge through complex interactions between
agents, much like their human counterparts. As agents interact and share artifacts, they
naturally develop preferences and evaluation patterns that can lead to the formation of distinct
creative groups. This emergence of community structure differs from explicitly programmed
social behaviors, arising instead from the cumulative effects of individual creative decisions
and evaluations [7].

In small-scale implementations (fewer than 20 agents), researchers often needed to artifi-
cially constrain agent interactions or impose structural limitations to observe phenomena
like clique formation. For instance, [9] demonstrated that in populations of under 20 agents,
artificially constraining communication pathways was necessary to observe the formation of
creative subgroups. Similarly, [0] showed that in small agent populations, explicit limitations
on interaction patterns were required to study the emergence of specialized creative roles and
community structures.

However, studies in computational social creativity suggest that larger agent populations
might naturally develop these social structures through their creative interactions, mirroring
the way human creative communities organically form around shared aesthetic preferences and
creative approaches [3]. This natural emergence of community structure becomes particularly
relevant when scaling creative systems to populations more representative of real-world
creative communities [2].

The emergence of creative communities exhibits several characteristic patterns that parallel
human creative societies [1]. Agents tend to form loose associations based on compatible
novelty preferences and shared creative interests. Over time, these associations can strengthen
into more defined groups, each developing distinct creative styles and evaluation criteria. This
natural clustering of creative agents provides a foundation for understanding more specific
emergent properties in creative social systems and their relationship to human creative
communities, as described by [3] and [5].

2.3.4 Modern Approaches to Social Network Analysis

The analysis of large-scale social networks has fundamentally transformed with advances
in algorithmic approaches and computational capabilities. Traditional community detection
methods were limited to networks of a few thousand nodes [33], but current methodologies
can effectively analyze networks with millions of nodes and edges [31].

Community detection methods advanced significantly with the introduction of hierarchical
approaches. The Louvain method [34] introduced a computationally efficient multi-level
optimization technique based on iterative node aggregation. This reduced the computational
complexity from previous methods while retaining detection accuracy. The later development
of the Leiden algorithm [35] built upon this foundation by adding formal mathematical
guarantees missing in the original method.

Modularity-based methods face an inherent resolution limit [30], making it impossible
to detect communities below a certain relative size threshold. Research addressing this
constraint led to the development of tunable resolution parameters [37], allowing analysis
across multiple scales. However, subsequent analysis of the Louvain method uncovered
significant limitations in community connectivity [35]. Quantitative evaluation showed that
25% of detected communities lacked proper connectivity, with a subset being completely
disconnected. The Leiden algorithm [35] resolved these structural issues through provable
connectivity guarantees and improved convergence properties, while reducing computational
overhead. These methodological refinements established a more rigorous foundation for
analyzing complex network structures.

10

12
Modularity Community

OplimizatV \C\ggregation

7 14

2nd pass 26 24

—_— ‘:;3 3)

Figure 3: Hierarchical community detection process demonstrated across multiple iterations.
The algorithm proceeds in two alternating phases: First, a local optimization phase where nodes
are assigned to communities to maximize modularity. Second, a network reconstruction phase
that aggregates the discovered communities into a new, compressed network representation.
This process continues until modularity can no longer be improved [31].

Network analysis has been substantially enhanced by developments in machine learning
and information theory. The Infomap algorithm [38] introduced an information-theoretic
approach to community detection, defining communities through the patterns of information
flow in networks. More recent developments incorporate deep learning techniques through
node embeddings [39] and graph neural networks [10]. These methods map network structures
into continuous vector spaces, enabling more sophisticated analysis of network properties
and community structure. This mathematical framework has proven particularly effective for
capturing temporal dynamics in evolving social networks.

2.4 Emergent Properties

The study of emergent properties in social creativity systems reveals how complex collective
behaviors arise from simple individual interactions [3]. While traditional computational
creativity research often focused on individual creative processes, scaling these systems
to larger populations enables the observation of emergent social phenomena that mirror
human creative communities [11]. These properties emerge naturally from the interactions
between agents rather than being explicitly programmed, providing insights into how creative
communities self-organize [21].

Recent research has demonstrated that emergent behaviors in creative multi-agent systems
often parallel those observed in human artistic movements and scientific communities [12]. As
these systems scale, they exhibit increasingly complex social structures and creative patterns
that cannot be reduced to the properties of individual agents [13]. These emergent phenomena

11

include the spontaneous formation of aesthetic niches, the evolution of distinct artistic styles,
and the development of hierarchical influence networks [11].

Of particular interest is how these systems naturally develop social structures that facilitate
both innovation and tradition - a balance crucial for sustained creative development [15].
The emergence of these properties often requires a critical mass of agents, highlighting the
importance of scale in studying computational social creativity [7].

2.4.1 Clique Formation and Social Clustering

In creative multi-agent systems, clique formation manifests as emerging tightly interconnected
subgroups of agents that share similar aesthetic preferences or creative approaches. These
clusters often exhibit higher internal interaction rates compared to their external connections
[16]. Research has shown that such clustering can lead to localized creative dialects—distinct
stylistic variations that emerge within cliques while maintaining broader community-level
coherence [17]. This social structuring influences artifact generation by creating micro-
communities that might serve as evolutionary pressure chambers for specific artistic traits.

2.4.2 Stylistic Evolution and Divergence

The emergence of distinct artistic styles in multi-agent systems occurs through a process of
cultural drift and selective pressure [18]. As agents interact within their formed communities,
they develop shared aesthetic preferences that guide their creative outputs. This leads to
stylistic divergence between different agent clusters, while maintaining coherence within
clusters [19]. Studies have demonstrated that such divergence increases with system scale, as
larger populations enable the stable maintenance of multiple distinct artistic traditions [50].

2.4.3 Knowledge Transfer Patterns

The diffusion of creative innovations across agent populations follows identifiable patterns
of knowledge transfer [51]. Dominant artifacts, those that significantly influence subsequent
creative outputs, often emerge at the boundaries between different creative communities [52].
These artifacts serve as creative bridges, facilitating the exchange of aesthetic innovations
between otherwise distinct groups. The rate and pattern of this knowledge transfer is heavily
influenced by the underlying social network structure and the strength of inter-community
connections [53].

12

3 Methodology

As previously described, this research builds upon and extends the Digital Clockwork Muse
framework to investigate emergent properties in large-scale creative multi-agent systems [11].
The original framework demonstrated the feasibility of modeling creative social behaviors in
small agent populations, typically fewer than twenty agents. These early implementations
required artificial constraints to produce phenomena like clique formation and stylistic
evolution. Our methodology aims to examine whether such properties emerge naturally when
the system is scaled to thousands of agents. To achieve this, the original implementation of
the Digital Clockwork Muse had to be carefully reconsidered. Some fundamental changes have
been made to that framework and will be described thoroughly in this chapter, particularly
focusing on the computational optimizations and architectural modifications necessary to
support large-scale agent interactions while maintaining the core principles of social creativity.

3.1 Algorithmic Architecture of the Digital Clockwork Muse

Our implementation preserves the core mechanisms of Saunders’ original work while adapting
the architecture to support significantly larger agent populations. In this section we will
explore the details of the framework.

The Digital Clockwork Muse implements a cyclic process where agents are able to generate,
evaluate, and share creative artifacts within a social framework. The core algorithm, illustrated
in Algorithm 1, defines both individual agent behavior and social interaction patterns that
together constitute the creative system. Each agent operates autonomously while participating
in a broader creative community through structured communication and evaluation processes.

13

Algorithm 1: The Original Digital Clockwork Muse algorithm, illustrating the core
mechanisms of individual agent behavior and social interaction in a multi-agent
creative system, by Saunders [21].

while t < total simulation time do
for each agent i in field F' do
update interest h; for artefact a;, h; = H;(N;(a;))
while message queue Q; is not empty do
remove artefact a” from @;, sent by agent n
calculate the hedonic value hl' = H;(N;(a™))
update memory M; to include a”
send feedback including A’ to sender agent n
if h}' > domain submission threshold (Tp) then
‘ submit artefact a” to domain D
end
if h' > h; then
‘ adopt received artefact, a; < a”, h; < h'
end

end
generate new artefact a from q;
calculate the hedonic value h; = H;(N;(a}))
update memory M; to include a
if h, > communication threshold (7¢) then
select an agent m from F, where m # i
send artefact a to agent m
end
if h, > h; then
‘ adopt generated artefact, a; <— a}, h; < h),
end
update interest level S; = aS; + (1 — a)h;
if S; < boredom threshold (Tp) then
retrieve artefact a? from domain D
calculate the hedonic value h¢ = H;(N;(a?))
update memory M; to include a?
if hf > h; then
‘ adopt retrieved artefact a; < a?, h; < hgl
end

end
end

end

The algorithm operates in discrete time steps, during which each agent ¢ in the field F’
processes three main phases of creative activity. In the first phase, agents handle incoming
communications by processing their message queue @);. For each artifact a™ received from
another agent n, the receiving agent calculates a hedonic value A} using its novelty detection
function N; and hedonic function H;. This evaluation serves two purposes: it provides feedback

14

to the sending agent and determines whether the artifact merits inclusion in the domain D
based on a domain submission threshold 7p.

The second phase focuses on artifact generation and evaluation. Each agent generates a
new artifact a; based on their current artifact a;. The hedonic value h; of this new artifact is
calculated using the same novelty detection and hedonic functions. If this value exceeds a
communication threshold 7o, the agent selects another agent m and shares the artifact. This
selective communication mechanism models the discriminating nature of creative individuals
who only share works they deem sufficiently interesting.

The final phase implements a form of creative drive through an accumulated interest level
S;, updated as a weighted sum of previous interest and current hedonic value:

Si = O./Si + (1 — Oz)hZ

When this interest level falls below a boredom threshold 75, the agent retrieves an artifact
a? from the domain D. This mechanism ensures continuous creative exploration even when
direct agent interactions fail to maintain sufficient interest.

Crucially, all evaluations of artifacts, whether received from other agents, newly generated,
or retrieved from the domain, use the same novelty detection and hedonic functions from
that specific agent. This consistency in evaluation creates a coherent creative personality
for each agent while allowing for diversity across the population through variations in these
functions’ parameters (and the agents internal state). The algorithm thus implements both
the individual generative aspects of creativity and the social dynamics of creative communities
described in Csikszentmihalyi’s systems view [17].

This architecture supports scaling to larger agent populations primarily because each
agent’s decision-making remains local, which is based only on their individual evaluation
functions and immediate interactions. However, the collective behavior emerging from these
local interactions becomes increasingly complex and potentially more representative of real
creative communities as the number of agents grows. The challenge in scaling lies not in the
algorithmic structure itself, but in efficiently implementing the novelty detection, artifact
generation, and communication mechanisms for large agent populations.

3.2 Artefact Generation

The artifact generation system in this research serves primarily as a vehicle for studying
social creativity rather than as a focus of the research itself. We implemented a quaternion-
based expression tree system inspired by Saunders’ Digital Clockwork Muse, though with
a simplified set of operations. This system generates abstract visual artworks through the
manipulation of quaternion values across a coordinate space, producing images that exhibit
sufficient visual complexity to study novelty detection and creative social behaviors. Our
implementation uses expression trees that combine basic quaternion operations to transform
input coordinates into color values. Each node in these trees represents either a mathematical
operation (such as addition, multiplication, or trigonometric functions), a constant value, or
coordinate information. The system employs a subset of the original Digital Clockwork Muse
operations, focusing on those that reliably produce visually distinct results while maintaining
computational efficiency for large-scale simulations.

15

For social creativity research, the specific method of image generation is not fundamentally
important, as long as the system provides agents with sufficient freedom to generate visually
distinguishable artifacts with adequate complexity. While the abstract mathematical patterns
produced may seem simplistic compared to contemporary Al art, they serve our research
purposes effectively by creating distinct visual outputs that agents can meaningfully evaluate.
We explored alternative approaches, including modern text-to-image models like Stable
Diffusion, but these presented significant challenges. Such an approach would require agents
to evolve text prompts over time, necessitating large language model calls for each agent to
maintain coherent and meaningful text evolution. In contrast, mathematical art generation
through quaternion operations provides an inherently complex yet computationally efficient
solution. While Stable Diffusion and similar models can generate more visually sophisti-
cated and recognizable artwork, the computational overhead would make large-scale social
creativity simulations impractical. However, exploring such advanced generative models in
social creativity research remains an interesting direction for future work, particularly as
computational capabilities continue to advance.

3.2.1 Expression Trees and Quaternion Operations

The expression trees are constructed using three types of nodes: constants, coordinate
transformations, and operations. Each node in the tree takes quaternion inputs and produces
quaternion outputs, which are ultimately mapped to RGB colors. The system maintains
a reduced set of operations compared to the original Digital Clockwork Muse, focusing on
operations that provide visual diversity while remaining computationally efficient.

Category Operation

Constants Q_IDENTITY, QI, Q.J, QK

Basic Arithmetic Addition, Subtraction, Multiplication, Division, Power, Cube
Trigonometric and Hyperbolic | sin, cos, tan, sinh, cosh

Special exp, log, sqrt, abs, mod2, floor

Transformations normalize, conjugate, rotate45, ripple, swirl, blend
Coordinate and Logical coord, imin, imax, ilog, isin

Table 1: Quaternion Operations Used in Artifact Generation

Each expression tree is evaluated across a 32x32 coordinate grid, where the coordinates
are first converted to quaternion form before being processed through the tree. However, this
model is not limited to the 32x32 resolution, as it can scale to any, but for the purpose of
our simulation and keeping the computation cost as low as possible, larger images are not
a necessity. to The final quaternion output at each coordinate is converted to RGB values
through a normalization process that maps the quaternion components to the [0,255] range.

The structure and depth of the expression trees significantly impact both the visual
complexity of the generated artifacts and the computational requirements of the system.
Through empirical testing, we established a generation depth range of 6 to 10 levels for
new expressions, which provides sufficient complexity while maintaining computational
efficiency in large-scale simulations. At the lower bound of 6 levels, expressions can still

16

produce meaningfully distinct patterns through combinations of basic operations, coordinate
transformations, and trigonometric functions. The upper bound of 10 levels allows for more
intricate compositions while avoiding the diminishing returns in visual complexity and
substantial computational overhead observed at greater depths.

3.2.2 Breeding and Evolution

The artifact generation process begins when an agent enters the simulation with no prior
experience or stored artifacts. In this initial state, the agent creates a random expression
tree using the operations described in Table 1 (Full table 3, with a depth randomly sampled
between 6 and 10 levels. This first expression serves as the agent’s starting point for creative
exploration. As agents interact within the simulation and evaluate artifacts (both their own
and those received from others), they maintain a personal repository of expressions that
they have seen before (Either their own generated works, or the ones they have approved of
from other agents). When generating new artifacts, agents utilize this repository through
a breeding mechanism that operates on the mathematical expressions themselves, rather
than working with the resulting RGB images. We made this distinction, as breeding at the
expression level allows for the preservation and combination of the mathematical structures
that produce particular visual effects.

For each new generation after the initial random creation, an agent selects a parent
expression from its repository of experienced artifacts and breeds it with its current expression.
The breeding process combines these parent expressions by randomly selecting subtrees from
each and creating a new expression that inherits properties from both parents. This mechanism
allows for the preservation of successful mathematical patterns while introducing variations
that might lead to novel visual effects. The resulting child expression maintains a depth
within the established bounds (6-10 levels) to ensure computational efficiency.

17

3.2.3 Expression Complexity and Visual Results

The generated artifacts are rendered as 32x32 pixel images for the simulation, with each
pixel’s color determined by evaluating the expression tree at that coordinate position. Figure 4
demonstrates how increasing expression tree depth leads to progressively more complex visual
patterns. At depth 2, the expressions produce simple, geometric patterns using basic quaternion
operations. As the depth increases to 4 and 6, we observe more intricate combinations of
operations, resulting in more sophisticated visual effects. At depths 8 through 12, the
expressions create complex, layered patterns through the nested combination of multiple
operations.

Depth 2

Depth 8 Depth 10 Depth 12

Figure 4: Visualization of 32 x 32 images generated by the system. The images correspond to
expression trees with increasing depths: 2, 4, 6, 8, 10, and 12. As the depth increases, the
complexity of the patterns also grows, showcasing the system’s ability to generate intricate
and visually diverse artifacts.

The expressions themselves reveal the increasing complexity of the mathematical operations
that produce these visual patterns. For example, at depth 2, we see a simple composition
of two operations (swirl and cosh), while at depth 12, the expression combines dozens of
operations in intricate ways. This growth in complexity is not merely quantitative; the layering
of operations allows for qualitatively different visual effects to emerge.

18

Image | Depth | Expression Tree

Image 1 2 (swirl (cosh (coord)))

Image 2 4 (iexp (imax (imin (sqrt (coord)) (norm (co-

ord))) (/ (ilog (coord)) (mod2 (coord)))))

Image 3 6 (- (sin (cos (cosh (sinh (conj (coord)))))) (cosh
(log (swirl (sinh (coord)))) (imin (cos (*

coord) (coord))) (ripple (conj (coord)))))))

ilog (blend (sqrt (sinh (cube (rot45 (/ (ripple

coord)) (cos (coord))))))) (exp (conj (iexp

(*
(
E
Etan (spiral (log (coord)))))))))
(ex
(
(-

—~

—~|

Image 4 8

abs (abs (log (swirl (4 (floor (sinh (isin (cube
exp (coord)))))) (mod2 (rolR (cosh (wave (*
COOFd) (coord)))))))))))

(log (- (rot45 (sqrt (sqrt (cosh (inv (rolR (cos
(cosh (isin (coord)))))))))) (swirl (rot45 (- (ilog
(imax (wave (log (mod2 (swirl (coord))))) (inv
(isin (spiral (sqrt (coord))))))) (inv (sinh (norm
(norm (sqrt (+ (coord) (coord)))))))))))) (spiral
(imax (swirl (cos (sinh (sin (ripple (rolR (conj (-
(spiral (coord)) (log (coord)))))))))) (imax (cos
(log (* (tan (floor (sin (mod2 (* (coord) (co-
ord)))))) (/ (ripple (pow (+ (- (coord) (coord))
(sinh (coord))))) (abs (imax (* (pow (coord))
(ripple (coord))) (blend (exp (coord)) (sin (co-
ord))))))))) (coord)))))

Image 5 10

Image 6 12

Table 2: Expression Trees for 32 x 32 Images at Varying Depths, showing the increasing
complexity as the depth of expression trees increase.

Table 2 provides the complete expression trees that generated each image, illustrating
how the mathematical complexity grows with depth. Even a small increase in depth can
substantially expand the range of possible patterns, as each additional level allows for more
intricate combinations of quaternion operations.

While our simulation uses 32x32 resolution images to maintain computational efficiency
across large agent populations, the expression-based generation system scales effectively to
higher resolutions. Figure 5 demonstrates this scalability by rendering two complex expressions
at 512x512 resolution with a depth of 16, showcasing the fine detail and intricate patterns
possible with our generation system

19

B ; - , -—.
(a) First high-resolution (512x512) artifact gen- (b) Second high-resolution (512x512) artifact
erated with depth 16. generated with depth 16.

Figure 5: Examples of artifact generation at 512x512 resolution with expression depth
16, demonstrating the system’s capability to produce detailed, complex patterns when not
constrained by the computational requirements of large-scale social simulation.

These generated images show that this model of evolutionary artifact generation can
effectively be used for our social creativity simulation.

20

3.3 Novelty Detection

One of the main components in modeling social creativity is the ability for agents to detect and
evaluate novelty in artifacts. In the original implementation by Saunders, novelty detection was
accomplished by using a self-organizing-map (SOM). A SOM can be used to analyze artifacts
by mapping high-dimensional image features onto a lower-dimensional grid, preserving the
relationships between them. This allows the SOM to act as a novelty detector by identifying
images that do not conform to the patterns learned from the input data. Rather than
processing raw images directly (Originally 32x32x3), the system first transformed artifacts
into binary edge representations using a combination of Laplacian edge detection and fixed
intensity thresholding. This preprocessing step reduced the dimensionality of the input while
preserving the essential structural features of the artifacts.

While the SOM approach proved effective for small-scale simulations, scaling the system
to thousands (or potentially more in the future) of agents presents significant computational
challenges. Training individual neural networks for each agent would be prohibitively expensive
in terms of computational resources and time, particularly given the continuous nature of the
learning process required for novelty detection. Additionally, as agents need to maintain their
own unique perspectives and preferences, sharing a single neural network across multiple
agents would compromise the system’s ability to model diverse creative behaviors, polarizing
the research aims.

These limitations motivated the exploration of finding a different and more modern
approach to this problem. The requirements for such a system were threefold: it needed to
be computationally efficient enough to be deployed across thousands of individual agents,
provide interpretable novelty assessments that could inform agent behavior, and avoid
the computational overhead of training periods that would make large-scale deployment
impractical. Additionally, the chosen approach needed to maintain the ability for each agent
to develop unique novelty preferences while supporting rapid evaluation of incoming artifacts.

After evaluating various novelty detection mechanisms, k-Nearest Neighbors (kNN) emerged
as a promising solution. The kNN algorithm determines novelty by calculating distances
between a new input and its closest neighbors in the agent’s accumulated experience space.
This approach offers several advantages: it requires no training phase, operates through simple
distance calculations that can be efficiently parallelized on modern hardware, and naturally
supports individual agent perspectives through their unique collections of reference points.

3.3.1 kNN-based Approach

The kNN-based approach centers on each agent maintaining their own collection of artifacts
that serves as a personal reference library for novelty detection. This collection grows
dynamically as agents generate new artifacts and receive interesting works from other agents.
When evaluating novelty, an agent compares a new artifact against their existing collection
using distance calculations to determine how different it is from previously encountered works.
This personal collection effectively represents the agent’s accumulated creative experience
and shapes their evaluation of novelty.

21

/Agent i \
s s
ResNet Feature Add to personal Distance Novelty
extraction Feature repository Calculations Normalisation
A A

Generate Novelty Hedonic +| Check share
artifact Detection (kNN) Evaluation ”| threshold
4
\ 4
Regenate Artifact Update
cumalitive

N

interest
Wait Passes)
Next Step,/ threshold Share artifact
K No J Yes

Figure 6: Workflow diagram showing how Agent i processes artifacts through the kNN-based
novelty detection system. The process includes feature extraction, adding the features to the
personal repository, calculating the novelty value, , performing the novelty normalization,
calculating the interest value and updating it and the and decision-making for artifact sharing.

For calculating distances between artifacts, the system uses Euclidean distance in the
feature space created by ResNet (detailed explanation in the next subsection). This distance
metric was chosen for its computational efficiency and ability to capture meaningful differences
between artifacts. When a new artifact is evaluated, the agent calculates its distance to all
artifacts in their collection, identifies the k nearest neighbors, and computes the average
distance to these neighbors, which is then divided by the standard deviation of those k
distances. This normalization helps distinguish between cases where the nearest neighbors are
uniformly distant versus cases with high variance in the local neighborhood. The resulting
score serves as the base novelty score where a larger normalized distance indicates higher
novelty, with the standard deviation helping to account for different density regions in the
feature space.

The k-value in our kNN is crucial for our simulation. Therefore we must carefully select
the optimal k-value for each agent at the correct time step. The approach to determining
the optimal k-value for novelty detection evolved during implementation. While initially
considering a dynamic k-value that would scale with each agent’s artifact collection size, the
final implementation instead employs an automated elbow method. This method systematically
identifies the optimal k-value by analyzing the point where increasing k yields diminishing
returns in clustering quality. By implementing the elbow method, the system can automatically
determine an appropriate k-value for each agent’s novelty assessment without requiring manual
tuning or potentially unstable dynamic scaling approaches.

To ensure that these systems can scale, a batching feature has been added to the kNN
implementation. When agents need to process multiple artifacts simultaneously from their
message inbox, the system employs batch processing through CUDA streams rather than
handling each artifact individually. To prevent the linearly increasing amount of operations

22

required during the inbox phase, calculating distances between feature vectors takes a much
larger amount of time because each inbox was previously processed sequentially. While artifact
generation remains sequential to preserve the intentional nature of creative exploration, the
evaluation of incoming artifacts is parallelized through batching and GPU acceleration. The
batching mechanism primarily focuses on optimizing inbox operations, where agents frequently
need to evaluate multiple incoming artifacts from other agents in the community. Using
CUDA streams, each agent can process their entire inbox of messages in parallel, calculating
novelty scores for all received artifacts simultaneously.

3.3.2 ResNet Feature Extraction

Our feature extraction pipeline makes use of a modified ResNet-18 architecture to extract
features from the generated images. Through extensive testing, we found that the choice of
which network layer to use for feature extraction significantly impacts the discrimination
capabilities between different artistic styles. While it might appear logical to use either the
earliest layers for maximum detail preservation or the deepest layers for maximum abstraction,
through iterative testing of the ResNet we found several constraints.

The feature extraction process begins with the initial convolutional layer, followed by
four ResNet blocks. Figure 3 shows this progression using two fundamentally different input
images, revealing how each layer transforms the visual information. Upon examining Layer 3,
we observe that despite the input images having substantially different visual characteristics,
the feature activations become remarkably homogeneous, with nearly identical activation
patterns in several regions. This excessive homogenization makes Layer 3 unsuitable for our
purposes, as it would significantly impair the system’s ability to distinguish between different
artistic styles. Layer 4 demonstrates similar limitations in feature discrimination.

(a) Feature activation maps for input image) Feature activation maps for input image
A, showing progression through network lay- B, demonstrating consistency in feature ex-
ers (Convl, Layerl-4). Note the preservation traction patterns across different inputs while
of structural details in earlier layers and in- highlighting individual variations in struc-
creasing abstraction in later layers. tural elements.

Figure 7: Comparative visualization of ResNet-18 feature extraction across network depths,
showing the progression from detailed structural features to abstract representations for
two distinct input images, noting that for image A and B, layers 3 and 4 are almost
indistinguishable from each other.

23

Although the initial convolutional layer and Layer 1 preserve more structural details, they
present significant computational challenges for our multi-agent simulation. With thousands
of agents needing to process and compare features simultaneously, utilizing these early layers
would be computationally prohibitive due to their high dimensionality and detail preservation.
Layer 2 emerged as the optimal extraction point, providing an effective balance between
computational efficiency and feature discrimination capabilities.

It is important to note that selecting Layer 2 as our feature extraction point does not
circumvent the processing of earlier layers. The ResNet-18 architecture still processes images
through the initial convolutional layer and Layer 1 before reaching Layer 2. The key distinction
lies in which layer’s output we utilize for our feature vectors. Earlier layers, while rich in
structural information, would introduce excessive computational overhead in our kNN-based
novelty detection system and potentially bias the system toward pixel-level similarities rather
than higher-level stylistic features. Indeed, if such low-level feature comparison were desirable,
direct comparison of the original images would suffice. Layer 2 provides an appropriate level
of abstraction that captures stylistic elements while maintaining computational feasibility for
large-scale multi-agent interactions.

’ Layer 2
Modified Layer 1 Layer 3 L
Input Image [——>| Conv Layer [—»] [3x3, 64] —>] [3x3, 128] [3x3, 256]

(32x32x3) 3x3 stride=1 [3x3, 64] [3"3-21251 [3x3, 256]
X

x2 x2

Feature
Extraction Point

Figure 8: Modified ResNet-18 architecture used for feature extraction. The network processes
32x32x3 input images through successive layers, with Layer 2 serving as the optimal feature
extraction point (highlighted). The modified convolutional layer uses a stride of 1 and 3x3

kernel to accommodate the smaller input dimensions. Each ResNet block contains two 3x3
convolutional layers with the specified number of filters.

To ensure consistent feature comparison, we normalize all features extracted from Layer 2
using L2 normalization. This ensures all feature vectors have unit length, making distance
calculations in our kNN-based novelty detection more reliable and meaningful. The dimen-
sionality of these feature vectors remains a tunable parameter as we continue to optimize the
balance between computational efficiency and discriminative power.

A practical consideration in our implementation involves adapting ResNet-18 for 32x32
input images, which are significantly smaller than the network’s original training dimensions.
The original training dimensions of Resnet-18 were images sized 224x224, a 7 times increase

24

compared to our 32x32 images. We addressed this by modifying the initial convolutional
layer’s stride and kernel size. While this adaptation works effectively with Layer 2 features, it
represents another issue against using earlier layers, as they demonstrate increased sensitivity
to these architectural modifications.

25

3.3.3 Novelty Score Normalization

The novelty scores generated through the kNN-based approach operating on ResNet features
require normalization to effectively utilize the full range of the Wundt curve. In practice, the
raw novelty scores from ResNet feature comparisons tend to cluster within a narrow range,
typically between 0.1 and 0.2, with occasional outliers. This compressed distribution would
only activate a small portion of the Wundt curve, limiting the system’s ability to distinguish
between different levels of novelty effectively.

To address this, we implement a dynamic normalization approach using a rolling window of
recent novelty scores. The normalization process uses the 1st and 99th percentiles as bounds,
rather than absolute minimum and maximum values, to reduce the impact of extreme outliers.
For a given raw novelty score x, the normalized score x,,.., is calculated as:

.I'—Pl
Tnorm = 55 1
Py — P M)

where:
e P is the 1st percentile of the rolling window of novelty scores
e Py is the 99th percentile of the rolling window of novelty scores

The normalized scores are then clipped to ensure they fall within the [0,1] range:

T finar = max(0, min(1, T,orm)) (2)

This normalization scheme maintains a rolling window of the last 10,000 novelty scores,
providing a dynamic adaptation to the evolving distribution of novelty values within the
system. By regularly updating the percentile bounds (every 3 steps in our implementation,
except for the first 5 steps to ensure proper initialization), the normalization adapts to shifts
in the overall novelty distribution that may occur as agents develop their creative preferences
and the domain evolves.

The resulting normalized novelty scores span the full [0,1] range, allowing for proper use
of the Wundt curve’s entire response range and enabling more meaningful differentiation
between varying degrees of novelty in the artifacts.

3.3.4 Calculating Interest

The raw novelty scores obtained through the kNN-based approach require transformation
into meaningful interest values that can guide agent behavior. Following Saunders’ original
work, we implement this transformation using a modified Wundt curve, which models the
relationship between novelty and hedonic value in a way that captures the principle that
both too little and too much novelty can be undesirable. Our implementation extends the
original dual-sigmoid approach by incorporating normally distributed novelty preferences
across agents.

The interest value for a given novelty score is calculated as the difference between reward
and punishment cumulative Gaussian functions:

26

H(x) = R(z) — aP(x)

where R(x) and P(z) are cumulative Gaussian functions:

R(x) = F(z|p,, 0r)
P(z) = F(ﬁlﬂpjgp)

The cumulative Gaussian function F(z|u, o) is defined as:

F(z|p, o) = % [1 +erf (“;;g)}

Each agent’s reward and punishment thresholds are determined by their individual preferred
novelty level, which is sampled from a normal distribution (x4 = 0.5, o = 0.155). The standard
deviation of 0.155 was chosen as it provides adequate coverage of novelty preferences between
0.1 and 0.9 from the mean of 0.5. The reward mean p, is set to max(0.1,p — 0.2) and the
punishment mean g, to min(0.9, p + 0.2), where p is the agent’s preferred novelty level. Both
reward and punishment functions use a standard deviation of 0.15, and the punishment
weight « is set to 1.2.

Agent 15 Wundt Curve Agent 57 Wundt Curve

Agent 47 Wundt Curve

0.6

0.8 0.8

0.5 4
061 0.6

0.4 4
0.4 4 0.4
0.3 1
0.2 4 0.2

0.2 4

0.0 7 0.0

014

T T T T T T T T T T T T . . . T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 1.0

(a) Agent with preferred novelty (b) Agent with preferred novelty (¢) Agent with preferred novelty
of 0.4115 of 0.313 of 0.8551

Figure 9: Wundt curves for three different agents showing distinct novelty preferences. The
curves demonstrate how agents develop individual response patterns to novelty, with peaks
aligned to their preferred novelty values. The Y-axis represent the interest value, the X-axis
represents the input novelty value.

An agent’s accumulated interest is updated using a temporal smoothing function:

27

S,' = OJS,' + (1 — O_/)hZ

where a = 0.35 controls the decay rate of previous interest values, and h; is the current
hedonic value. The resulting interest values directly influence agent decision-making regarding
artifact adoption and sharing behaviors within the creative community, with responses ranging
from maximum aversion (-1) through neutrality (0) to maximum interest (1).

The specific parameters chosen for the implementation of the Wundt curve will be
systematically evaluated during the experiments to assess their impact on emergent creative
behaviors. This implementation creates a natural diversity in creative preferences across
the agent population, with each agent’s Wundt curve shaped by their individual novelty
preference, as demonstrated by the varying peak locations and curve shapes in Figure 9.

3.4 Social Policies

The social policies define the manner of interaction between the agents. Our implementation
maintains the core social interaction framework established in the Digital Clockwork Muse
while adapting it for large-scale simulations. The social policy system consists of three main
components: artifact sharing mechanics, dynamic thresholds, and a boredom mechanism.

The basic artifact sharing flow begins when an agent generates a new artifact. The
agent first performs a self-evaluation using their novelty detection mechanism. If the novelty
score exceeds the agent’s self threshold, the artifact is shared with N randomly selected
agents, where N is a configurable parameter. This differs from the original Digital Clockwork
Muse implementation, which broadcast to all agents in simulations of fewer than 20 agents.
Each receiving agent evaluates the artifact against their domain threshold, and successful
evaluations result in the artifact’s addition to the domain.

28

Agent i

Personal Cumulative Pass boredom
Repository _| Interest threshold No
Current
Artifact Hedonic evaluation

Y

Domain

\ J

Adopt T T Yes
Random . Pass Share

Artifact [Generate Artlfact} kNN Novelty Test Threshold

t No (Wait for next step)

\ N J
J
Share n times
Agent[j ... nj.
o
A A
. Passes Yes

Domain
Jhreshold,

kNN Novelty Test

Figure 10: Agent social interaction flow diagram showing how artifacts flow between agents
and the domain. Agent 7 evaluates and generates artifacts, potentially sharing them with
other agents (j...n) based on novelty thresholds. Successful evaluations by receiving agents
can result in artifacts being added to the shared domain. If cumulative interest is below the
boredom threshold, a random artifact from the domain is adopted and added to the agent’s
repository if it passes the self (share) novelty test. The red arrows indicate the artifact sharing
path, the blue arrows indicate the adoption path, while the black arrows show the internal
processing flow within each agent.

The number of agents N that receive each shared artifact is a static value set at initialization,
rather than dynamically adjusted during the simulation. This represents a key parameter
for investigating how different sharing patterns affect the emergence of creative behaviors at
scale.

The system implements dynamic thresholds using rolling windows of the 100 most recent
evaluations. Three distinct thresholds govern agent behavior:

e Self threshold for sharing artifacts:
self_threshold = top_percentile(step_interests_self, 80)
When an agent evaluates their own generated artifact, this threshold determines whether
it is interesting enough to share with other agents. step_interest_self is the variable of
the average interest from self evaluation across all agents. The default value is set at 0.1,

29

allowing all agents to share something in the first step with a relatively low threshold.

e Domain threshold for artifact acceptance:
domain_threshold = top_percentile(step_interests_other, 80)
When an agent receives an artifact from another agent, this threshold determines
whether it is novel enough to be added to the domain. step_interest_other is the variable
of the average interest from incoming artifacts evaluation across all agents. The default
value is set at 0.1, allowing agents to contribute their artifact to the domain.

e Boredom threshold for domain access:
boredom _threshold = top_percentile(current_interests, 10)
If an agent’s interest level falls below this threshold, they become bored and can retrieve
a random artifact from the domain for potential adoption. The boredom threshold is
set at 0.2, corresponding to the bottom 10% of agents.

The implementation maintains a rolling window size of 100 for threshold calculations,
balancing the responsiveness and stability of the simulation. These rolling windows are
updated at the end of each simulation step, after all agents have completed their cycles. After
each batch processing cycle, threshold values are synchronized across all agents to maintain
system consistency. The window size and percentile values for thresholds can be adjusted to
explore different social dynamics in the experimental phase.

The boredom mechanism activates when an agent’s interest level falls below the boredom
threshold. When triggered, the agent may retrieve and evaluate a random artifact from the
domain. If this artifact passes the agent’s novelty detection, it becomes their new base for
generation, providing a path out of creative stagnation. This mechanism ensures the domain
serves as an active component of the creative system rather than merely an archive.

The domain itself maintains a simple structure without regularization or self-checking
mechanisms. Once an artifact is added to the domain, it remains there indefinitely. While
this implementation serves our current research needs, future work could explore extensions
such as temporal dropout or domain curation mechanisms.

3.5 Performance Optimization

Performance optimization might be the most crucial component of this entire project. While
we have modernized the basic architecture of the model, we still need to make sure that our
model is actually scalable, to the point that a simulation with a few thousand agents is possible
in a reasonable time. The optimization processes went through several phases. Initially, the
focus was on the basic functionality before addressing any performance bottlenecks, to make
sure that the architecture actually worked as intended.

The initial implementation relied entirely on CPU-based processing, using scikit-learn for
the kNN computations and Mesa to handle the simulation. One characteristic of Mesa is that it
is deterministic and sequential, therefore, one agent must for complete it’s cycle before another
can start on their cycle for that step. While functional, this approach proved computationally
prohibitive when scaling beyond a few dozen agents. Early performance analysis revealed that
the primary constraint was not memory utilization but rather computational throughput, as
we were fully bound to CPU.

30

The first phase of optimization focused on transitioning computationally intensive com-
ponents to GPU-accelerated implementations. The kNN algorithm, being central to novelty
detection and heavily used across all agents, was rewritten from its scikit-learn implemen-
tation to a custom PyTorch-based solution. Similarly, the artifact generation pipeline and
feature extraction components were re-implemented using PyTorch to use GPU acceleration.
This initial GPU transition already provided a significant increase in iteration speed, as the
limitting factor now became the speed of the GPU, rather than the CPU.

However, while the components now used the full speed of the GPU, they still operated
sequentially, processing one agent after another. This sequential processing approach, while
functional, failed to leverage one of the GPU’s key advantages: batch processing capability.
This meant that the simulation could processes each agent in parallel rather than having to
wait before the previous agent was finished with their cycle. Performance analysis revealed
two primary bottlenecks in the GPU-enabled but sequential implementation. First, the
inbox processing phase, where agents evaluate artifacts received from other agents, created
a computational bottleneck as each artifact was processed individually through the feature
extraction and novelty detection pipeline (While they could have been batched). Second, the
artifact generation phase.

To implement the batching required careful reconsideration of Mesa’s sequential nature
while finding ways to aggregate operations across multiple agents. This meant that the steps
were now done on the model level rather than the agent level, and the agents essentially
became a data-structure rather than a processing component of the model.

3.5.1 Batch Processing

The inbox processing phase was redesigned to handle message evaluation in batches. Instead
of each agent individually processing their received artifacts, the system now collects all
pending evaluations across agents and processes them simultaneously. This batch approach
uses CUDA streams to parallel process feature extraction and novelty detection for multiple
artifacts. The implementation maintains separate streams for feature extraction and novelty
calculations, allowing for pipeline parallelism where one batch of artifacts can undergo feature
extraction while another completes novelty assessment. Artifact generation similarly benefited
from batch processing. The original implementation generated artifacts sequentially, with each
agent evaluating their expression tree and producing images one at a time. The optimized
system now groups artifact generation into batches, utilizing CUDA streams to parallel
process multiple expression trees. This batching mechanism primarily focuses on optimizing
the quaternion operations that form the core of artifact generation, allowing multiple agents
to simultaneously evaluate their expression trees and generate images.

3.5.2 Algorithmic Optimization

Beyond batch processing, significant performance improvements were achieved through algo-
rithmic optimizations of key computational components. The k-Nearest Neighbors (kNN)
implementation, also underwent substantial refinement. Rather than using a fixed k-value
or simple scaling rules, the system implements an automated elbow method to dynamically
determine optimal k-values for each agent. This approach systematically identifies the point

31

where increasing k yields diminishing returns in clustering quality, ensuring efficient novelty
detection while minimizing unnecessary distance calculations. The thresholding mechanisms
for novelty evaluation were optimized through the implementation of efficient percentile
calculations. Rather than computing exact percentiles across all historical novelty scores,
the system maintains rolling windows of scores and uses approximate quantile calculations.
This approach provides comparable thresholding accuracy while significantly reducing com-
putational overhead, particularly important for large-scale simulations where maintaining
complete historical data becomes prohibitive. Distance calculations, fundamental to both
kNN and novelty assessment, were optimized through several techniques. The implementation
uses batched tensor operations for distance computations, making use of GPU acceleration for
the matrix operations. Feature normalization, necessary for consistent distance calculations,
employs fast approximation techniques that maintain numerical stability while reducing
computational cost. These optimizations particularly benefit the simulation at scale, where
the number of distance calculations grows quadratically with the agent population.

3.6 Data collecting and analyses

To investigate the results of the forthcoming experiments, we track the following data: network
communication, individual agent behaviors, domain evolution, and evaluation patterns. Our
analysis framework combines quantitative metrics with network analysis techniques to examine
both local agent interactions and global system properties.

Network communication is tracked through directed interaction graphs, recording both
successful and failed communication attempts between agents. We analyze these networks
using the Louvain community detection method to identify emergent social structures and
measure standard network metrics including density, clustering coefficients, and path lengths.
To understand the temporal evolution of these networks, we examine community formation
and stability over time, supplemented by centrality measures (betweenness and eigenvector)
to identify influential agents within the network.

At the individual agent level, we track interest levels, novelty preferences, and contribution
patterns. Each agent’s evaluation behavior is analyzed through their k-NN parameters and
acceptance/rejection patterns. These metrics allow us to investigate how individual preferences
and behaviors contribute to collective creative dynamics.

Domain-level analysis focuses on growth patterns and artifact distribution. We measure
the rate of domain expansion, acceptance rates of submissions, and the evolution of artifact
diversity over time. These measurements help identify potential domain saturation effects,
where the rate of novel contributions may decrease as the domain matures.

Data collection is performed through Tensorboard, a platform that easily allows real-time
data visualization during the training/simulating process. The data is then extracted and
analyzed after using python libraries to create graphs or other meaningful insights.

32

4 Experiment

This research investigates how creative social behaviors emerge in large-scale multi-agent
systems through systematic experimentation with different system parameters. Our experi-
mental design aims to test two central hypotheses: first, that large-scale systems naturally
demonstrate emergent creative behaviors without requiring artificial constraints, and second,
that these behaviors manifest qualitatively differently across varying scales. Through careful
parameter selection and controlled comparisons, we examine how population size, feature
complexity, and communication patterns influence the emergence of creative social structures.

4.1 Variables and Parameters

The experimental framework manipulates three primary variables to investigate their effects
on emergent creative behaviors:

Population Size We examine creative emergence across three distinct scales:
e Small-scale: 20 agents (baseline, matching Saunders’ original work)
e Medium-scale: 50, 100, and 250 agents
e Large-scale: 500 agents

These population levels allow us to observe the transition from constrained small-scale
dynamics to emergent large-scale behaviors. They also deem as a baseline from Saunders’
work, to see if clique formation or other emergent properties arise without limitations. As
stated in the hypothesis, we assume that there will be no clique formation or other emergent
properties at this scale due to the inherent complex nature of the artifact generation and
the novelty detection. We limit the population size to 500 agents because the computational
requirements become too high beyond that point, to efficiently run the experiments for over
5000 steps.

Communication Range We implement fixed communication ranges to examine how
different sharing patterns affect creative behavior across population sizes: 1 agent (minimal
sharing), 2 agents, 4 agents, 8 agents, 16 agents, 32 agents, and broadcast (sharing with all
agents). This fixed-value approach allows us to study how specific communication ranges
impact the emergence of creative social structures, regardless of population size. For example,
when an agent shares with just 2 others in a large population, we can observe whether
localized creative communities naturally emerge. Conversely, broader sharing ranges like
16 or 32 let us examine how increased connectivity affects pattern formation and creative
development. Fixed sharing numbers enable us to investigate whether cliques form based
on intrinsic social dynamics rather than as artifacts of relative population percentages.
Additionally, comparing behaviors across different fixed ranges helps reveal whether creative
communities exhibit distinct characteristics when agents have more limited versus broader
communication capabilities. The broadest fixed sharing value (32) provides an upper bound
for examining localized communication effects, while the broadcast option serves as a control

33

case representing unconstrained communication similar to Saunders’ original work. Note that
all communication selection is done randomly, rather than selectively. Over 5000 steps, this
random selection helps prevent any artificial patterns from forming in communication networks
and ensures that agents have opportunities to interact with the entire population rather
than becoming trapped in local networks. While random selection might seem simplistic, it
provides a neutral baseline for studying emergent behaviors without the influence of selective
communication. Future work could explore more sophisticated approaches where agents learn
to selectively choose their communication partners based on past interactions or shared
creative preferences.

Feature Dimensionality To investigate how the complexity of artifact representation
affects creative evaluation, we test three ResNet feature dimension settings:

e 32 dimensions: Minimal feature representation
e 64 dimensions: Standard feature set
e 128 dimensions: Enhanced feature detection

All of these will be tested for n=20, for every sharing parameter. We will then determine
what feature dimensions will be utilized for the future experiments where we test for emergent
properties.

4.2 Control Conditions

To validate that observed clique formations and creative behaviors are genuine emergent
phenomena rather than artifacts of the system design, we implement two control conditions.
These controls will be tested with a population of 20 agents using broadcast communication,
matching Saunders’ original experimental setup. The first control, Random Communication
Control, modifies the communication mechanism by having agents share artifacts with
randomly selected peers rather than using the share threshold. While maintaining identical
communication frequency as the experimental condition, this control tests whether observed
social patterns emerge from genuine creative evaluation or merely from the communication
structure itself. All other system parameters remain constant, with random selection simply
replacing the interest-based peer choice mechanism. The second control, Uniform Novelty
Preference Control, eliminates the diversity in evaluation criteria by initializing all agents with
identical novelty preferences. This control specifically tests whether clique formation depends
on the heterogeneity of creative preferences within the population. While maintaining all
other aspects of the system, including interest calculation and communication mechanisms,
this condition allows us to isolate the role of diverse evaluation criteria in the emergence of
social structures. These control conditions help isolate the specific mechanisms responsible for
clique formation and creative development within the system. By comparing results between
experimental and control conditions, we can determine whether observed patterns arise from
meaningful creative interactions or are artifacts of the system’s basic structure.

34

4.3 Success Criteria

To evaluate our hypotheses regarding emergent behaviors in large-scale multi-agent systems,
we establish quantifiable success criteria focused on network formation and communication
patterns. The primary indicator of emergent social structure is the modularity score of agent
interaction networks, calculated using the Louvain algorithm. We consider a modularity score
exceeding 0.3 as evidence of significant community structure, with the requirement that these
structures must persist for at least 1000 simulation steps to be considered stable.

Communication patterns serve as our second metric. We examine the evolution of key
system thresholds (boredom, communication, domain) across different population sizes and
sharing parameters. Distinct separation and stabilization patterns between configurations
would indicate scale-dependent behaviors.

We also track the temporal evolution of network structures, assessing the formation and
stability of communities over time. The emergence of persistent, well-defined clusters in larger
populations (n>100) without requiring artificial constraints would support our hypotheses.

Control validation forms our final criterion. Using both random communication and
uniform novelty preference controls, we expect significantly different network structures in
experimental conditions. Success requires demonstrably higher clustering coefficients and
modularity scores in experimental conditions compared to controls, with reproducibility
verified across five independent simulation runs.

4.4 Hardware used

The hardware used to run these experiments was diverse and catered to different computational
needs. The simulations were performed on a combination of machines: a personal computer,
Google Colab, and Kaggle. The personal computer utilized an Nvidia RTX 3090 GPU with
24GB of VRAM, offering substantial computational power for local experiments. On Google
Colab, both the Nvidia A100 GPU and the T4 GPU were employed, providing significant
acceleration for large-scale simulations and data processing tasks. Kaggle’s environment
leveraged the T4x2 GPU setup; however, the slower CPU in this platform introduced a
notable overhead, impacting the overall performance and runtime efficiency of the experiments.

35

5 Results

5.1 ResNet-18 Feature Dimensions

Prior to conducting the full-scale experiments comparing different population sizes and
sharing parameters, we first determined the optimal feature dimensionality for our ResNet
implementation. We tested three configurations - 32, 64, and 128 dimensions - using a popu-
lation of 20 agents across all sharing parameters. The 64-dimensional feature representation

sssssssssssssss

P P o o 0 o0 00 o0 o 00 o am am
sss

(a) Average interest evolution (b) Boredom threshold evolution (c¢) Domain threshold evolution
over simulation steps over simulation steps over simulation steps

Figure 11: Comparison of system behavior across different feature dimensions (32D, 64D, and
128D) over 5000 simulation steps with 20 agents. The 64D configuration (green) demonstrates
optimal performance with higher sustained interest levels and domain thresholds while
maintaining stable boredom thresholds.

(shown in green in Figure 11) demonstrated superior performance across multiple metrics.
As shown in Figure 11a, it maintained the highest average interest levels throughout the
simulation, stabilizing at approximately 0.16 compared to 0.15 for 128D and 0.145 for 32D
configurations. This higher sustained interest suggests that the 64D features provided op-
timal discriminative power for novelty detection, enabling agents to maintain engagement
with the creative process more effectively. The boredom threshold evolution (Figure 11b)
remained remarkably consistent across all feature dimensions, stabilizing around 0.09 after
an initial settling period. This consistency indicates that the boredom mechanism functions
robustly regardless of feature dimensionality, suggesting it effectively maintains creative drive
independent of the chosen feature space. Most notably, the domain threshold (Figure 11c)
showed significant variation between configurations. The 64D implementation maintained
a consistently higher domain threshold (approximately 0.24) compared to both 32D (0.22)
and 128D (0.21) configurations. This higher threshold indicates that the 64D feature space
enables more selective artifact acceptance into the domain while still maintaining higher
average interest levels, suggesting a better balance between novelty discrimination and creative
engagement. Based on these results, we selected the 64-dimensional feature configuration for
all subsequent experiments. This choice represents an optimal balance between computational
efficiency and feature expressiveness, providing sufficient discriminative power without the
additional computational overhead of the 128D configuration or the reduced performance of
the 32D configuration.

36

5.2 Computational performance issues

The implementation and scaling of our multi-agent creative system revealed significant
computational challenges inherent in large-scale social creativity simulations. While smaller
populations (n<100) performed efficiently, scaling to larger agent populations imposed
substantial computational overhead. At 500 agents, even with GPU acceleration on an
NVIDIA A100, each simulation step required 15-30 seconds of processing time, primarily
due to the quadratic growth in agent interactions and the cumulative computational cost of
feature extraction and novelty detection across the population. This computational intensity
made simulations beyond 1000 iterations impractical for larger populations, as CPU overhead
from agent management and message passing became a significant bottleneck despite GPU
acceleration of core computations. These constraints particularly impacted our ability to test
broader sharing parameters in larger populations, while we could fully evaluate all sharing
parameters (1,2,4,8,16,32 broadcast) for populations up to 100 agents, we were limited to
share parameters of 1,2,4,8 16 for 250 agents, and only parameters 1 and 2 for 500 agents.
This experience highlights the significant computational challenges in scaling social creativity
simulations and suggests that future research in this domain will require both algorithmic
optimizations and more sophisticated computational resources.

5.3 System Results

Our experiments across different population sizes and sharing parameters yielded several
key metrics tracked over 5000 simulation steps. The results show both network formation
characteristics and system threshold behaviors that governed the agent interactions.

Average Clustering Evolution Over Time

Experimental Run

pop100_dims64_share1
—— pop100_dims64_share16
—— pop100_dims64_share2
—— pop100_dims64_share32
—— pop100_dims64_share4
~—— pop100_dims64_share8
—— pop20_dims64_share1
—— pop20_dims64_share16
—— pop20_dims64_share2
—— pop20_dims64_share4
—— pop20_dims64_share8
—— pop20_dims64_sharebroadcast

0.8

o
o

Average Clustering
)
>

o
)

—— pop20_dims64_sharebroadcast_noveltypref

—— pop250_dims64_share1

/ —— pop250_dims64_share16

0.0 —— pop250_dims64_share2

—— pop250_dims64_share4

——— pop250_dims64_share8

—— pop500_dims64_share1
pop50_dims64_share1
pop50_dims64_share16
pop50_dims64_share2
pop50_dims64_share32
pop50_dims64_share4
pop50_dims64_share8
pop50_dims64_sharebroadcast

0 1000 2000 3000 4000 5000
Simulation Step

Figure 12: Average clustering coefficient evolution over 5000 simulation steps across different
population sizes (20-500 agents) and sharing parameters (1-32 agents and broadcast). Higher
values indicate stronger local connectivity between agents.

Figure 12 shows the evolution of average clustering coefficients across all experimental

37

configurations. The clustering coefficients show rapid initial growth in the first 1000 steps,
followed by stabilization at different levels depending on population size and sharing param-
eters. Population size of 500 with share parameter 1 shows the slowest convergence, while
populations of 20 agents reach stable clustering values more quickly. Noting that the control
condition with the equal novelty preference has a clustering value of 1, meaning that it is a
fully connected graph. It takes a larger amount of steps for a network to get more connected
over time, which decreases with the amount of

Average Interest Evolution Over Time

Experimental Run
pop100_dims64_share1
pop100_dims64_share16
pop100_dims64_share2
pop100_dims64_share32
pop100_dims64_share4
pop100_dims64_share8
pop20_dims64_share1
pop20_dims64_share16
pop20_dims64_share2
pop20_dims64_share4
pop20_dims64_share8
pop20_dims64_sharebroadcast
pop20_dims64_sharebroadcast_noveltypref
pop250_dims64_share1
pop250_dims64_share16
pop250_dims64_share2
pop250_dims64_share4
pop250_dims64_share8
pop500_dims64_share1
pop50_dims64_share1
pop50_dims64_share16
pop50_dims64_share2
pop50_dims64_share32
pop50_dims64_share4
pop50_dims64_share8
pop50_dims64_sharebroadcast

0.20

o
®

Average Interest
o
>

o
=

0.12

0 1000 2000 3000 4000 5000
Simulation Step

NARRRNRRRNRRRNRRRNRRRNRY

Figure 13: Average interest evolution over 5000 simulation steps across different experimental
configurations. Interest levels indicate agents’ responses to received artifacts based on their
novelty preferences.

Figure 13 presents the evolution of average interest levels throughout the simulation.
Interest levels show initial volatility in the first 500 steps before converging to stable values
between 0.12 and 0.17, with different configurations maintaining distinct steady-state levels.
The uniform novelty preference control condition (pop20_dims64_sharebroadcast_noveltypref)
maintains the lowest stable interest level at approximately 0.12.

38

0.120

0.115

0.110

0.105

0.100

Boredom Threshold

0.095

0.090

Boredom Threshold Evolution Over Time

1000 2000 3000 4000
Simulation Step

5000

ANRRNRRNRRNRRRRRRRRRRRNEY

Experimental Run
pop100_dims64_share1
pop100_dims64_share16
pop100_dims64_share2
pop100_dims64_share32
pop100_dims64_share4
pop100_dims64_share8
pop20_dims64_share1
pop20_dims64_share16
pop20_dims64_share2
pop20_dims64_share4
pop20_dims64_share8
pop20_dims64_sharebroadcast
pop20_dims64_sharebroadcast_noveltypref
pop250_dims64_share1
pop250_dims64_share16
pop250_dims64_share2
pop250_dims64_share4
pop250_dims64_share8
pop500_dims64_share1
pop50_dims64_share1
pop50_dims64_share16
pop50_dims64_share2
pop50_dims64_share32
pop50_dims64_share4
pop50_dims64_share8
pop50_dims64_sharebroadcast

Figure 14: Boredom threshold evolution over simulation time for all experimental configu-
rations. The threshold determines when agents seek new artifacts from the domain due to
insufficient interest in current interactions.

Figure 14 illustrates the boredom threshold evolution across all experimental configurations.
Most configurations stabilize between 0.09 and 0.095 after initial fluctuations, with population
250 share parameter 1 maintaining a higher threshold around 0.115. The control condition
shows distinct behavior with consistently lower threshold values around 0.09.

0.35

o o o
N N @
o (%, o

Communication Threshold

O
o

Communication Threshold Evolution Over Time

1000 2000 3000 4000
Simulation Step

5000

Experimental Run
pop100_dims64_share1
pop100_dims64_share16
pop100_dims64_share2
pop100_dims64_share32
pop100_dims64_share4
pop100_dims64_share8
pop20_dims64_share1
pop20_dims64_share16
pop20_dims64_share2
pop20_dims64_share4
pop20_dims64_share8
pop20_dims64_sharebroadcast
pop20_dims64_sharebroadcast_noveltypref
pop250_dims64_share1
pop250_dims64_share16
pop250_dims64_share2
pop250_dims64_share4
pop250_dims64_share8
pop500_dims64_share1
pop50_dims64_share1
pop50_dims64_share16
pop50_dims64_share2
pop50_dims64_share32
pop50_dims64_share4
pop50_dims64_share8
pop50_dims64_sharebroadcast

Figure 15: Communication threshold evolution over simulation time. This threshold determines
when agents share their generated artifacts with other agents in the population.

Figure 15 shows the evolution of communication thresholds. After initial volatility in
the first 500 steps, configurations establish distinct stable levels between 0.12 and 0.32.

39

The control condition maintains the lowest stable threshold at approximately 0.12, while
population 20 with broadcast sharing maintains the highest threshold at 0.32.

Domain Threshold Evolution Over Time

0.40 Experimental Run
pop100_dims64_share1
pop100_dims64_share16
pop100_dims64_share2
pop100_dims64_share32
pop100_dims64_share4
pop100_dims64_share8
pop20_dims64_share1
pop20_dims64_share16
pop20_dims64_share2
pop20_dims64_share4
pop20_dims64_share8
pop20_dims64_sharebroadcast
pop20_dims64_sharebroadcast_noveltypref
pop250_dims64_share1
pop250_dims64_share16
pop250_dims64_share2
pop250_dims64_share4
pop250_dims64_share8
pop500_dims64_share1
pop50_dims64_share1
pop50_dims64_share16
pop50_dims64_share2
pop50_dims64_share32
pop50_dims64_share4
pop50_dims64_share8
pop50_dims64_sharebroadcast

0.35

0.30

0.25

Domain Threshold

0.15

0 1000 2000 3000 4000 5000
Simulation Step

AERERRERRRNRERRRRRRRRN Y

Figure 16: Domain threshold evolution across different experimental configurations. This
threshold governs the acceptance of artifacts into the shared domain.

Figure 16 presents the domain threshold evolution throughout the simulation period.
Population 500 with share parameter 1 shows the most distinctive behavior, starting at 0.4
before gradually converging to 0.32 after 4000 steps. Other configurations stabilize between 0.17
and 0.27, with the control condition maintaining the lowest domain threshold at approximately
0.13. All threshold metrics demonstrate rapid initial adjustment periods followed by long-term
stability, with distinct separation between different population sizes and sharing parameters.
The control condition consistently shows divergent behavior from experimental configurations
across all metrics, maintaining lower threshold values throughout the simulation. These
results show clear differences between control conditions and experimental configurations,
particularly in clustering coefficients and interest levels.

5.4 Network structures

After examining system-level metrics, we analyzed the emergent network structures across
different experimental configurations. We begin by examining the baseline broadcast commu-
nication cases.

40

pop20_dims64_sharebroadcast - Step 4800 | 20 nodes pop20_dims64_sharebroadcast_noveltypref - Step 3900 | 20 nodes

-
%= °
®
(a) Network structure for population 20 (b) Network structure for control condi-
with broadcast sharing tion (uniform novelty preferences)

Figure 17: Comparison of network structures between experimental broadcast and control
conditions with 20 agents. Node positions are determined by a force-directed layout algorithm,
where relative distances between nodes indicate connection strength. Edge colors represent
different types of creative interactions, with yellower edges indicating stronger connections.

Figure 17 presents network structures from two key configurations: the standard broadcast
sharing condition and the control condition with uniform novelty preferences. The node
positions in these visualizations are determined by a force-directed layout algorithm (spring
layout). Nodes that share more, or stronger, connections tend to appear closer together,
forming visually distinct clusters. The absolute positions (the x- and y-coordinates) do not
represent any real-world measurement; they serve only as a spatial arrangement to improve
interpretability. Both networks show high connectivity, with each node connected to most
other nodes in the network, reflecting the broadcast communication parameter. However,
subtle differences emerge in the connection patterns. In the standard broadcast condition
(Figure 17a), node 6 emerges as a central hub with varying connection strengths to other
nodes, indicated by the different edge colors. In contrast, the control condition (Figure
17b) shows more uniform connection patterns radiating from node 17, with a more even
distribution of edge colors suggesting more homogeneous interaction strengths.

41

pop50_dims64_share16 - Step 300 | 50 nodes pop50_dims64_share16 - Step 3000 | 50 nodes pop50_dims64_share15 - Step 4800 | 50 nodes

o 8 & & =
'c'*!;%%ﬂ“:f/ - 5® .
- P
o) .//.* i ol .“/’, }._. ® ® .

ey ewT ”K: . . e ;'f;: oo

o et o
’,ﬂ o\ o

o~ “ o® i S

(a) Early phase (Step 300) (b) Middle phase (Step 3000) (c) Late phase (Step 4800)

Figure 18: Temporal evolution of network structure for population 50 with share parameter 16.
Node positions are determined by a force-directed layout algorithm, where distances represent
connection strengths. Edge colors indicate interaction strength, with yellow representing
stronger connections. The network evolves from initial scattered connections to a stable
three-hub structure.

The evolution of network structure in larger populations reveals distinct phases of organi-
zation. Figure 18 shows three time points in the development of a 50-agent population with
share parameter 16. In the early phase (Step 300), the network shows initial organization
around multiple nodes, with agents 21, 11, and 1 emerging as potential hubs. The connections
are relatively scattered, with varying edge strengths indicated by the diverse color patterns.
By the middle phase (Step 3000), the network has self-organized into a clear three way hub
structure, with agents 21, 11, and 1 establishing themselves as primary connection points.
These hubs are connected by strong bridges (indicated by yellow edges), while maintain-
ing their own clusters of connected agents. The force-directed layout algorithm reveals the
natural separation of these clusters through spatial positioning. The late phase (Step 4800)
demonstrates the stability of this three-hub structure, with the same major hubs maintaining
their positions and connection patterns. The network maintains its fundamental organization
while showing minor adjustments in the peripheral connections. This stability suggests that
the three-hub structure represents a natural equilibrium state for this population size and
sharing parameter.

42

pop100_dims64_share4 - Step 4400 | 100 nodes

Figure 19: Network structure for population 100 with share parameter 4 at step 4400, demon-
strating distinct cluster formation. The network exhibits four clearly defined communities
connected by strong bridging links (yellow/green edges). Node colors indicate community
membership as detected by the Louvain algorithm.

The most visually(!) striking example of emergent clustering behavior appears in the
100-agent population with share parameter 4 (Figure 19). This configuration produces four
distinct clusters, each organized around a central hub node. The clusters vary in size but
maintain similar structural characteristics, with peripheral nodes connected primarily to their
local hub. The force-directed layout algorithm clearly separates these communities, reflecting
their relative independence in the interaction space. The clusters are connected by strong
bridging links, shown in yellow and green edges, forming a chain-like meta-structure. These
bridges represent robust communication channels between communities while maintaining
their distinct identities. The limited sharing parameter (4) appears crucial in allowing these
distinct communities to emerge naturally, as it prevents the oversaturation of connections
that occurs with higher sharing values. Each cluster shows a similar internal organization: a
central hub node with multiple direct connections radiating outward in a star-like pattern.
The hub nodes serve as local centers of influence, mediating most of the cluster’s external
communications through the bridge connections. This hierarchical organization emerged
naturally from the system’s dynamics, without any explicit programming of hub roles or
cluster structures.

43

Pop250_dims64_shares - Step 500 | 250 nodes

%
® N o o0 @
(a) Initial phase (Step 500) (b) Transition phase (Step 2100) (c) Stable phase (Step 4200)

Figure 20: Evolution of network structure in a 250-agent population with share parameter 8.
The system progresses from initially scattered small clusters through a transitional chain-like
structure to a final state with distinct, interconnected communities.

The 250-agent population demonstrates a more complex clustering behavior evolving
through three distinct phases. Initially (Step 500), agents form numerous small, isolated
clusters distributed across the interaction space. During the transition phase (Step 2100), these
clusters begin connecting through bridge nodes, creating an extended chain-like structure
with multiple branch points. By the stable phase (Step 4200), the network consolidates into
several major clusters connected by strong bridging links, with smaller satellite communities
maintained at the periphery. This progression reveals how larger populations naturally
organize into hierarchical community structures, with both major and minor creative clusters
coexisting in a stable configuration.

POPS00_dims64_share1 - Step 100 | 500 nodes POp500_dims64_share1 - Step 2600 | 500 nodes
POp500_dims64_share - Step 4900 | 500 nodes

:2; g o L B

o. ﬂ." @.%‘ (9] - w‘! g b

e o

".‘?*f» R v o
4% * ° ® o®® ®e ®

(a) Initial distribution (Step 100) (b) Mid-simulation (Step 2600) (c) Final state (Step 4900)

Figure 21: Network evolution in a 500-agent population with minimal sharing (share=1). The
system fails to develop large-scale community structures, instead forming numerous small,
isolated clusters.

The 500-agent population with minimal sharing parameter (share=1) demonstrates the
limits of cluster formation in large-scale creative networks. Initially, agents form a scattered
distribution with minimal structure. As the simulation progresses, instead of developing into
larger communities as seen in smaller populations, the network fragments into numerous
small clusters of 2-5 agents. These micro-clusters remain largely isolated, with minimal bridge
connections between groups. By the final state, the network maintains this fragmented struc-
ture, suggesting that the minimal sharing parameter prevents the formation of larger coherent

44

communities in populations of this scale. This fragmentation is notably different from the
organized clustering seen in smaller populations or with higher sharing parameters, indicating
a threshold effect in the relationship between population size and sharing requirements for
coherent community formation.

45

5.5

Network Statistics

modularity Across lterations

pop50_dims64_share8

—— pop100_d!m564_share1 num_communities Across Iterations
0.35 ~@— pop100_dims64_share16 175
—e— pop100_dims64_share2 —&— pop100_dims64_share1
0.30 —8— pop100_dims64_share32 —&— pop100_dims64_share16
—8— pop100_dims64_share4 15.0 —e— pop100_dims64_share2
0.25 —8— pop100_dims64_share8 —8— pop100_dims64_share32
> ~&— pop20_dims64_share1 125 —8— pop100_dims64_share4
5020 —8— pop20_dims64_share16 2 —8— pop100_dims64_share8
3 pop20_dims64_share2 2 100 \ —o— pop20_dims64_share1
20_15 —o— pop20_dims64_shared E —8— pop20_dims64_share16
—e— pop20_dims64_share8 g ” pop20_dims64_share2
—e— pop20_dims64_sharebroadcast e 75 'xf\ ﬂ 3 —— pop20_dims64_share4
040 —8— pop20_dims64_sharebroadcast_noveltypref E “‘ &" \4 —&— pop20_dims64_share8
—8— pop250_dims64_share1 < 50 ‘\"" ~®— pop20_dims64_sharebroadcast
0.05 L —®— pop250_dims64_share16 —8— pop20_dims64_sharebroadcast_noveltypref
& —®— pop250_dims64_share2 25 —&— pop250_dims64_share1
0.00 N —o— pop250_dims64_share4 i —e— pop250_dims64_share16
—8— pop250_dims64_share8 —8— pop250_dims64_share2
0 1000 200) 0 0.0 ’
o pop500_dims64_share1 —®— pop250_dims64_share4
T pop50_dims64_share1 0 1000 20‘—0— pop250_dims64_share8
—e— pop50_dims64_share16 < pop500_dims64_share1
—&— pop50_dims64_share2 T pop50_dims64_share1
—8— pop50_dims64_share32 —&— pop50_dims64_share16
—8— pop50_dims64_share4 —&— pop50_dims64_share2
—e— pop50_dims64_share8 —8— pop50_dims64_share32
—8— pop50_dims64_sharebroadcast —8— pop50_dims64_share4
-
——

(a) Evolution of network modularity across differ-
ent experimental configurations, showing initial
community formation followed by increasing in-

pop50_dims64_sharebroadcast

(b) Number of detected communities over time,
demonstrating population size effects on commu-

terconnection. nity formation.
avg_eigenvector Across lterations avg_path_length Across lIterations
0.225 e —e— pop100_dims64_share1 275 —8— pop100_dims64_share1
\ ~ —e— pop100_dims64_share16 —&— pop100_dims64_share16
0.200 —e— pop100_dims64_share2 2.50 —®— pop100_dims64_share2
vff& —e— pop100_dims64_share32 —8— pop100_dims64_share32
0.175 —e— pop100_dims64_share4 295 —— pop100_dfm564_share4
5 —e— pop100_dims64_share8 < == pop100_filmsﬁ4_share8
8 0.150 —o— pop20_dims64_share1 gZOO =0= popZO_dfm564_share1
2 —&— pop20_dims64_share16 =i —8— pop20_dims64_share16
80125 W pop20_dims64_share2 £ pop20_dims64_share2
o —e— pop20_dims64_share4 31.75 —o— pop20_dims64_share4
%0100 —e— pop20_dims64_share8 F #: —®— pop20_dims64_share8
W—O— pop20_dims64_sharebroadcast 1.50 —®— pop20_dims64_sharebroadcast
0.075 —e— pop20_dims64_sharebroadcast_noveltypref ¢ s pop20_din.1564_sharebroadcast_noveltypref
: —e— pop250_dims64_share1 125 —8— pop250_dims64_share1
W—o— pop250_dims64_share16 ’ —e— pop250_dims64_share16
0.050 —8— pop250_dims64_share2 —8— pop250_dims64_share2
—o— pop250_dims64_shared 1.00 ~&— pop250_dims64_share4
0 1000 20‘—0— pop250_d?m564_share8 0 0 1000 200—0— pop250_d?m364_share8
< pop500_dims64_share1 < pop500_dims64_share1
~ —e— pop50_dims64_share1 " —e— pop50_dims64_share1
—o— pop50_dims64_share16 —8— pop50_dims64_share16
—&— pop50_dims64_share2 —&— pop50_dims64_share2
—e— pop50_dims64_share32 —8— pop50_dims64_share32
—&— pop50_dims64_shared —8— pop50_dims64_share4
—e— pop50_dims64_share8 —— pop50_dims64_share8
—— pop50_dims64_sharebroadcast —e— pop50_dims64_sharebroadcast

(c) Average eigenvector centrality evolution, in-
dicating influence distribution patterns across
network configurations.

(d) Average path length development, showing
network connectivity patterns across different
scales.

Figure 22: Evolution of network metrics across different population sizes and sharing parame-

ters over 5000 simulation steps.

Modularity measurements (Figure 22a) show an initial spike within the first 100 steps across
all configurations, reaching maximum values between 0.35-0.37. This is followed by a rapid
decline and stabilization below 0.1 after approximately 2000 steps. The uniform novelty

46

preference control condition (pop20_dims64_sharebroadcast_noveltypref) consistently shows
the lowest modularity values, indicating minimal community structure. Community detection
analysis (Figure 22b) reveals distinct patterns based on population size. Population 500 with
share parameter 1 maintains the highest number of communities, consistently showing 8-10
distinet groups. Medium-sized populations (n=100, 250) stabilize between 3-7 communities
depending on sharing parameters, while smaller populations (n=20) typically maintain 1-3
communities. The broadcast sharing conditions consistently show the lowest number of
communities across all population sizes. Eigenvector centrality measurements (Figure 22c¢)
demonstrate clear stratification based on population size. Larger populations (n=500) exhibit
lower average centrality values (0.04-0.05), while smaller populations maintain higher values
(0.20-0.22 for n=20). This indicates more evenly distributed influence in larger networks
compared to concentrated influence in smaller ones. Average path lengths (Figure 22d) show
initial volatility before stabilizing between 1.0 and 2.75. Population 500 with share parameter
1 exhibits the longest average paths, starting at 2.75 and gradually decreasing to 1.8. Most
other configurations stabilize between 1.2 and 1.6, with the control condition maintaining the
shortest path length at 1.0. Higher sharing parameters consistently result in shorter average
path lengths across all population sizes.

47

6 Discussion

The computational requirements of scaling multi-agent systems proved to be a fundamental
limiting factor in this research. Our experimental results demonstrate that the relationship
between system scale and computational cost follows a steeper curve than initially pro-
jected, directly impacting the scope and depth of our investigation. Architectural decisions
that allowed more sophisticated agent interactions in small populations became significant
bottlenecks when scaled to larger groups.

The primary bottleneck came from the cumulative cost of data tracking, novelty detection
and the image generation. Despite implementing GPU acceleration and batch processing
optimizations (Section 3.5), simulations with 500 agents required 15-30 seconds per step on
an NVIDIA A100 GPU. This computational intensity made extended simulations impractical
for larger populations, limiting our ability to fully explore emergent behaviors over longer
time periods. The constraint became particularly evident in our communication experiments,
where we could only test limited sharing parameters (1 and 2) for the 500-agent population,
compared to the full range of parameters (1-32 and broadcast) available for populations under
100 agents. As seen from the results, the 500 agents simulations require a lot more time to
converge, compared to the smaller simulations. However, when viewed from a practical stand
point, it would make sense that the amount of shares would have to scale with the population,
in order to achieve similar convergence time.

Our batch processing implementation, while effective for optimizing GPU utilization, could
not fully mitigate these scaling issues, as GPU overhead remained an issue. The fundamental
architecture of the system, particularly the need for individual agents to maintain their own
creative preferences and evaluation criteria, are the root cause of this issue. This manifests
clearly in the network structures shown in Figure 21, where the 500-agent population
with minimal sharing demonstrates qualitatively different behavioral patterns compared to
smaller populations. These computational constraints highlight a crucial challenge in scaling
social creativity models: the trade-off between population size, interaction complexity, and
computational feasibility. While we attempted to demonstrate potential emergent creative
behaviors in populations up to 500 agents, significantly larger than previous studies [0], the
results suggest that further scaling may require fundamental architectural innovations.

The interest levels (Figure 13) demonstrate a consistent trend across configurations, stabi-
lizing between 0.12 and 0.17, with the control condition maintaining the lowest stable interest
at 0.12. This stabilization, occurring within the first 500 steps, suggests that the interest
calculation mechanism functions effectively, regardless of population size. Communication and
domain thresholds (Figure 15 and 16) exhibit more varied behavior, with larger populations
showing higher initial thresholds that gradually decrease over time. Notably, the 500-agent
population with share parameter 1 displayed unique characteristics, starting at 0.4 and
converging to 0.32 after 4000 steps, which is significantly higher than other configurations.
The behavior of this simulation indicates that larger populations with restricted sharing
develop more selective communication patterns.

Inherently, the interest values are arbitrary and carry no real value, only to the agents
themselves, and as long as the same novelty detection mechanism is applied consistently
over all simulations. Regardless of the absolute values observed in our experiments, the key
factor is that the interest calculation provides sufficient differentiation for agents to make

48

meaningful decisions about artifact sharing and evaluation. The stability we see in interest
ranges could be entirely different at larger scales, but this wouldn’t invalidate the system
dynamics as long as the relative differences between interest values stay significant.

Visual inspection of the network structures, specifically Figure 19, appears to show clearly
defined cliques. However, when compared to the modularity value, a criterion we set ourselves,
the results fall short. Our requirement for emergent behavior was to maintain a modularity
value above 0.3 for at least 1000 steps. In the specific simulation, the modularity peaked
briefly at 0.32 but quickly dropped well below 0.1 before stabilizing. This rapid decline
indicates that while the visual clustering suggests organization, the quantitative measure of
modularity does not support the claim of stable emergent properties.

For the 500 agent simulations (Figure 21), the clustering appears more diffuse, with
intermediary agents acting as bridges between groups. This creates the appearance of dynamic
interactions and potential knowledge transfer. However, the modularity values for these
simulations remained consistently below 0.25, failing to meet the stability criterion. The lack
of sustained modularity above 0.3 further challenges the evidence for emergent properties in
larger populations.

The communication patterns and threshold dynamics provide additional insight. In the
100 agent simulations, communication thresholds stabilized around 0.18 after 500 steps, as
shown in Figure 15. Domain thresholds followed a similar trend, stabilizing at 0.15. These
values indicate some degree of stabilization, but the lack of separation between configurations
suggests that the dynamics are not scale-dependent as hypothesized.

In the 500 agent simulation, thresholds started higher but gradually decreased over time.
Communication thresholds settled at 0.22, while domain thresholds converged around 0.19
(Figure 16). Despite these trends, the larger population introduced more variability between
the generated artifacts, which could be argued as a form of emergent property due to increasing
complexity. Unlike smaller populations, where interactions are more predictable and localized,
larger populations appear to generate more dynamic and less uniform patterns of behavior.
This increasing complexity might represent an emergent property of the network, highlighting
how scale introduces new dynamics that are not evident in smaller simulations. While these
patterns do not align with our original criteria for stable modularity, they provide evidence
that larger-scale systems behave qualitatively differently, which aligns with some definitions
of emergent behavior.

Before coming to a conclusion, we analyze the extracted network statistics. Eigenvector
centrality decreases as population size grows, indicating a shift toward distributed influence
across agents. This aligns with observations of reduced centralization in larger networks.

Path length analysis shows shorter average paths in smaller networks, which appears to
be very low. This analysis would mean that the agents are interconnected in a way that you
could reach any agent within 1-2 links, meaning that the clusters are not very deep.

The length of communities over time does not demonstrate anything remarkable, other
than the fact that the highest values also reflect on the modularity and the average path
length. For example, the highest number of communities is in a population of 20, highlighting
an issue with the Louvain method on lower populations (Or all the agents are too separate
that they form individual communities).

49

7 Conclusions

This research examined whether scaling multi-agent systems to larger populations naturally
yields emergent creative behaviors and stylistic evolution without artificial constraints. The
findings show that while larger populations produce more complex and fragmented interaction
patterns, stable clique formation did not consistently meet the strict modularity criterion for
conclusive evidence of long-term clustering. Nonetheless, increasing the number of agents led
to novel interaction structures, including multi-hub topologies and isolated micro-clusters,
which differ from small-scale results and indicate partially new dynamics as hypothesized.
Moreover, in contrast to H1, high-modularity communities were not conclusively sustained,
though larger populations displayed persistent subgroups and bridging agents not present in
smaller systems. Regarding H2, scaling effects did reveal distinct interaction modes that were
not observed with fewer than 20 agents, suggesting that large-scale modeling captures creative
behaviors otherwise absent in small-scale frameworks. Despite these promising indicators,
computational overhead limited the range of possible sharing parameters in populations over
500 agents, restricting a full exploration of the system’s capabilities and potential emergent
properties.

Overall, we tested whether large-scale multi-agent systems could form emergent creative
cliques without artificial constraints, finding that scaling to hundreds of agents did uncover
new behaviors (most notably multi-hub networks and ephemeral clusters) yet stable, high-
modularity groupings never fully materialized. These findings indicate that while scaling fosters
increased complexity, fundamental computational constraints and agent-level interaction rules
may inhibit the formation of truly persistent creative communities. Future work could explore
adaptive social policies, selective sharing, and novel architectural optimizations to determine
if stable emergent creativity can be sustained at scale. Ultimately, these results suggest
that scaling can unlock new modes of social creativity, provided computational limits are
addressed, opening pathways to more nuanced explorations of large-scale creative phenomena.

8 Future work

Future work could enhance the computational architecture by refining data handling and
expanding parallelization. Asynchronous data collection, coupled with a more efficient novelty
detection framework, may reduce the overhead that limited the scale of current experiments.
Upgrading from single-GPU settings to GPU clusters or multi-threaded environments could
also enable investigations of larger populations and longer simulation runs, revealing whether
more pronounced or stable community structures emerge under heavier computational budgets.

Another research direction lies in broadening the simulation’s parameter space to explore
more sophisticated social policies. Selective artifact sharing, domain policies that govern
which artifacts remain in circulation, and repository mechanisms that induce forgetting could
all shift the dynamics of community formation. Novel approaches to agent interactions, such
as chained or conditional communication protocols, might highlight whether high-modularity
cliques become more persistent under more context-specific decision rules.

Lastly, future implementations could introduce more diverse agent types with specialized
roles in the creative process. For instance, some agents could focus on critique, offering more

50

stringent evaluations, while others emphasize exploration of new artifact forms. Further
varying the image generation component and enabling cross-domain or external artifact
sharing might provide different perspectives.

References

[1] M. Csikszentmihalyi, “16 implications of a systems perspective for the study of creativ-
ity,” Handbook of creativity, vol. 313, 1999.

[2] G. Fischer, E. Giaccardi, H. Eden, M. Sugimoto, and Y. Ye, “Social creativity: Making
all voices heard,” International Journal of Human-Computer Studies, vol. 63, no. 4-5,
pp. 369-387, 2005.

3] R. K. Sawyer, “Explaining creativity: The science of human innovation,” Creativity
Research Journal, vol. 18, no. 3, pp. 391-394, 2006.

[4] B. A. Hennessey and T. M. Amabile, “Creativity,” Annual Review of Psychology, vol. 61,
pp. 569-598, 2010.

[5] V. P. Glaveanu, “Paradigms in the study of creativity: Introducing the perspective of
cultural psychology,” New Ideas in Psychology, vol. 28, no. 1, pp. 79-93, 2010.

[6] R. Saunders and J. S. Gero, “Curious agents and situated design evaluations,” Al
EDAM, vol. 18, no. 2, pp. 153-161, 2004.

[7] R. Saunders, “Towards autonomous creative systems: A computational approach,”
Cognitive Computation, vol. 4, pp. 216225, 2012.

[8] R. Saunders and O. Bown, “Computational social creativity,” Artificial Life, vol. 21,
no. 3, pp. 366378, 2015.

[9] S. Linkola, T. Takala, and H. Toivonen, “Novelty-seeking multi-agent systems,” Associ-
ation for Computational Creativity, 2016, pp. 1-8.

[10] G. A. Wiggins, “A preliminary framework for description, analysis and comparison of
creative systems,” Knowledge-based systems, vol. 19, no. 7, pp. 449458, 2006.

[11] R. Saunders and J. S. Gero, “Artificial creativity: A synthetic approach to the study of
creative behaviour,” Computational and Cognitive Models of Creative Design V, Key
Centre of Design Computing and Cognition, University of Sydney, Sydney, pp. 113-139,
2001.

[12] J. Wei, Y. Tay, R. Bommasani, et al., “Emergent abilities of large language models,”
arXiv preprint arXiw:2206.07682, 2022.

[13] M. A. Boden, The creative mind: Myths and mechanisms, 2004.

[14] R. L. Goldstone and T. M. Gureckis, “Collective behavior,” Topics in cognitive science,
vol. 1, no. 3, pp. 412-438, 2009.

[15] J. S. Gero and M. L. Maher, Modeling creativity and knowledge-based creative design.

Psychology Press, 2013.

51

[18]
[19]
[20]
[21]
[22]

[23]

[24]

[25]

[26]

E. Watson, “Who or what creates? a conceptual framework for social creativity,” Human
Resource Development Review, vol. 6, no. 4, pp. 419441, 2007.

M. Csikszentmihalyi, “Motivation and creativity: Toward a synthesis of structural and
energistic approaches to cognition,” New Ideas in psychology, vol. 6, no. 2, pp. 159-176,
1988.

M. Csikszentmihalyi and M. Csikszentmihalyi, Society, culture, and person: A systems
wiew of creativity. Springer, 2014.

Y.-T. Liu, “Creativity or novelty?: Cognitive-computational versus social-cultural,”
Design Studies, vol. 21, no. 3, pp. 261-276, 2000.

S. Hanna, “Where creativity comes from,” Proceedings of Human Interaction 2005,
pp. 45-70, 2005.

R. Saunders, “Multi-agent-based models of social creativity,” Computational creativity:
The philosophy and engineering of autonomously creative systems, pp. 305-326, 2019.

G. Ritchie, “Some empirical criteria for attributing creativity to a computer program,”
Minds and Machines, vol. 17, no. 1, pp. 67-99, 2007.

S. Pidhorskyi, R. Almohsen, D. A. Adjeroh, and G. Doretto, “Generative probabilistic
novelty detection with adversarial autoencoders,” arXiv preprint arXiw:1807.02588,
2018.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770—

778, 2016.

M. Sabokrou, M. Khalooei, M. Fathy, and E. Adeli, “Adversarially learned one-class
classifier for novelty detection,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2018, pp. 3379-3388. por: 10.1109/CVPR.2018.00356.

M. A. Pimentel, D. A. Clifton, L. Clifton, and L. Tarassenko, “A review of novelty
detection,” Signal Processing, vol. 99, pp. 215-249, 2014. po1: 10.1016/j.sigpro.
2013.12.026.

D. K. Simonton, “Taking the us patent office creativity criteria seriously: A quantitative
three-criterion definition and its implications,” Creativity Research Journal, vol. 24,
no. 2-3, pp. 97-106, 2012.

M. A. Boden, “Creativity and artificial intelligence,” Artificial Intelligence, vol. 103,
no. 1-2, pp. 347-356, 1998.

C. G. Langton, “Studying artificial life with cellular automata,” Physica D: Nonlinear
Phenomena, vol. 22, no. 1-3, pp. 120-149, 1986.

M. Csikszentmihalyi, “Implications of a systems perspective for the study of creativity,”
Handbook of creativity, vol. 313, p. 321, 1999.

L. Gabora, “Modeling cultural dynamics,” Proceedings of the Association for the
Advancement of Artificial Intelligence, pp. 1-8, 2010.

H. Sayama and R. Sinatra, “Robust self-organized meta-population dynamics on
networks,” Physical Review E, vol. 82, no. 1, p. 016 111, 2010.

52

https://doi.org/10.1109/CVPR.2018.00356
https://doi.org/10.1016/j.sigpro.2013.12.026
https://doi.org/10.1016/j.sigpro.2013.12.026

S. Fortunato, “Community detection in graphs,” Physics reports, vol. 486, no. 3-5,
pp. 75-174, 2010.

V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast unfolding of
communities in large networks,” Journal of statistical mechanics: theory and experiment,
vol. 2008, no. 10, P10008, 2008.

V. A. Traag, L. Waltman, and N. J. Van Eck, “From louvain to leiden: Guaranteeing
well-connected communities,” Scientific reports, vol. 9, no. 1, pp. 1-12, 2019.

S. Fortunato and M. Barthélemy, “Resolution limit in community detection,” Proceed-
ings of the national academy of sciences, vol. 104, no. 1, pp. 36-41, 2007.

J. Reichardt and S. Bornholdt, “Statistical mechanics of community detection,” Physical
Review FE, vol. 74, no. 1, p. 016 110, 2006.

M. Rosvall and C. T. Bergstrom, “Maps of random walks on complex networks reveal
community structure,” Proceedings of the National Academy of Sciences, vol. 105, no. 4,
pp. 1118-1123, 2008.

A. Grover and J. Leskovec, “Node2vec: Scalable feature learning for networks,” Pro-
ceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery
and data mining, pp. 855-864, 2016.

T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional
networks,” arXiww preprint arXiv:1609.02907, 2017.

R. K. Sawyer, “Explaining creativity: The science of human innovation,” Ozford
university press, 2012.

E. B. Kennedy, “Modeling collective creativity using evolutionary algorithms,” Neural
Computing and Applications, vol. 30, no. 2, pp. 385-394, 2018.

A. J. Cropley, Creativity in education and learning: A guide for teachers and educators.
Routledge, 2018.

M. Csikszentmihalyi, “The systems model of creativity and its applications,” The Wiley
handbook of genius, pp. 533-545, 2014.

V. P. Glaveanu, “Distributed creativity: Thinking outside the box of the creative
individual,” Springer, 2014.

D. Centola, “The spread of behavior in an online social network experiment,” Science,
vol. 329, no. 5996, pp. 1194-1197, 2010.

B. Uzzi and J. Spiro, “Collaboration and creativity: The small world problem,” American
Journal of Sociology, vol. 111, no. 2, pp. 447-504, 2005.

J. Henrich, “Cultural transmission and the diffusion of innovations: Adoption dynamics
indicate that biased cultural transmission is the predominate force in behavioral change,”
American Anthropologist, vol. 103, no. 4, pp. 992-1013, 2001.

M. Muthukrishna, B. W. Shulman, V. Vasilescu, and J. Henrich, “Sociality influences
cultural complexity,” Proceedings of the Royal Society B: Biological Sciences, vol. 281,
no. 1774, p. 20132511, 2014.

53

[50] M. Derex, M.-P. Beugin, B. Godelle, and M. Raymond, “Population size affects cultural
evolution in nonintuitive ways,” Proceedings of the Royal Society B: Biological Sciences,
vol. 280, no. 1767, p. 20123072, 2013.

[51] E. M. Rogers, Diffusion of innovations. Simon and Schuster, 2010.

[52] S. Perry, “Social learning of foraging techniques in wild white-faced capuchin monkeys
(cebus capucinus),” Animal Cognition, vol. 6, no. 2, pp. 77-87, 2003.

[53] M. S. Granovetter, “The strength of weak ties,” American Journal of Sociology, vol. 78,
no. 6, pp. 1360-1380, 1973.

9 Appendices

o4

Category Operation Description
Q-IDENTITY Quaternion constant representing (1, 0, 0, 0).
Constants Q.1 Quaternion constant representing (0, 1, 0, 0).
Q.J Quaternion constant representing (0, 0, 1, 0).
QK Quaternion constant representing (0, 0, 0, 1).
Addition Component-wise addition of two quaternions.
Subtraction Component-wise subtraction.
. . . Multiplication Hamilton product of two quaternions.
Basic Arithmetic Division Division of quaternions using the conjugate.
Power Raises a quaternion to a random real power.
Cube Computes the cube of a quaternion.
sin Quaternion sine function.
cos Quaternion cosine function.
Trigonometric and Hyperbolic tan Quaternion tangent function.
sinh Quaternion hyperbolic sine function.
cosh Quaternion hyperbolic cosine function.
exp Quaternion exponential function.
log Quaternion natural logarithm.
Special sqrt Quaternion square root function.
abs Computes the absolute value.
mod?2 Computes the modulo operation with 2.0.
floor Rounds down to the nearest integer.
normalize Scales the quaternion to unit length.
conjugate Computes the conjugate of the quaternion.
Transformations rotate4) Rotates a quaternion by 45 degrees.
ripple Generates ripple patterns based on radial dis-
tance.
swirl Generates swirl patterns based on radial and
angular coordinates.
blend Smoothly blends between two quaternions.
coord Converts x, y coordinates into a quaternion.
imin Selects the quaternion with the smaller norm.
Coordinate and Logical Operations imax Selects the quaternion with the larger norm.
ilog Logarithm with emphasis on the imaginary
components.
isin Sine function with emphasis on the imaginary

components.

Table 3: Quaternion Operations Used in Artifact Generation

55

	Introduction
	Motivation
	Research Aims and Question
	Research Question
	Hypotheses

	Thesis overview

	Related Work
	History of Social Creativity
	Understanding Creativity
	Reframing Creative Processes
	The Domain-Individual-Field-Interaction (DIFI) Framework
	Computational Frameworks and Scaling Challenges

	Individual Creative Agents
	Computational Approaches to Novelty Detection

	Multi-Agent Creative Systems
	Historical Development of MAS in Creativity Research
	Artificial Creative Systems
	Emergence of Creative Communities
	Modern Approaches to Social Network Analysis

	Emergent Properties
	Clique Formation and Social Clustering
	Stylistic Evolution and Divergence
	Knowledge Transfer Patterns

	Methodology
	Algorithmic Architecture of the Digital Clockwork Muse
	Artefact Generation
	Expression Trees and Quaternion Operations
	Breeding and Evolution
	Expression Complexity and Visual Results

	Novelty Detection
	kNN-based Approach
	ResNet Feature Extraction
	Novelty Score Normalization
	Calculating Interest

	Social Policies
	Performance Optimization
	Batch Processing
	Algorithmic Optimization

	Data collecting and analyses

	Experiment
	Variables and Parameters
	Control Conditions
	Success Criteria
	Hardware used

	Results
	ResNet-18 Feature Dimensions
	Computational performance issues
	System Results
	Network structures
	Network Statistics

	Discussion
	Conclusions
	Future work
	Appendices

