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Abstract

File systems are essential components of modern computing, enabling efficient data sharing
across processes by organizing data on storage devices. Developing new file systems is complex,
as they are typically part of the kernel. To simplify this process, Linux provides FUSE; an
interface that allows one to implement file system operations in user space. Unfortunately,
FUSE-based file systems suffer from significant performance overhead due to frequent context
switches.

Prefuse aims to solve this problem by hooking system calls and directly routing them to the
user space file system code, avoiding the costly context switches. While Prefuse demonstrates
promising performance improvements, it exhibits increased latency when used with SSHFS.

This thesis investigates the cause of this latency by firstly reproducing the results of the
Prefuse-SSHFS experiment. Next, we prove that the increase in latency is caused by a lack of
page and metadata cache through qualitative and quantitative experiments. Finally, a basic
page and metadata cache are implemented and their performance is measured.

The addition of caching to Prefuse-SSHFS results in significant performance improvements
of up to 84%. However, in case of the passthrough file system, the same caching mechanism
leads to reduced performance due to redundant caching: image-based FUSE file systems
already leverage the kernel’s page cache. These findings highlight the need to evaluate caching
strategies in the context of each specific workload and file system, rather than applying them
uniformly.
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1 Introduction

File systems have been around since the 1960’s and are a fundamental part of modern day computing
[1]. Without them, multi-user and multi-process systems as we use nowadays would not be possible.
The file system makes the storage device usable by giving it structure and by utilizing metadata.
The type of structure and the kind of metadata depends on the specific file system. File systems
also allow applications to share mass storage by making sure that processes do not access the
storage in ways that would lead to race conditions, data corruption or data loss.

Typically, file systems are part of the operating system, residing in kernel space, as opposed to most
other processes that run in user space. This has several disadvantages, one of which is the difficulty
of development. Having your code run in kernel mode means that there is no memory protection,
and any memory corruption, whether in user space of not, will cause the machine to crash [2].
Being part of the kernel also means that your code needs to be platform independent as operating
systems are expected to work on multiple different architectures. To make the development of file
systems easier, Linux comes with FUSE (Filesystem in USErspace) [3]. It exposes a simple interface
through which one can easily come up with their own file system. It is widely in use, with popular
file systems like SSHFS [!] and s3fs [7].

FUSE, however, has proven to be slow [0] in comparison with native file systems, due to its overhead,
particularly in context switching. Over the years, several solutions have been proposed to reduce
the overhead of FUSE [7, &, 9, 10, 11], the most recent of which is Prefuse [12]. Prefuse allows users
to run a file system as a dynamic library, located completely in userspace. This reduces overhead of
context-switching, thereby improving performance. Prefuse outperforms FUSE and RFUSE [10]
and is compatible with most client programs, making it an interesting option for running FUSE file
systems with greater performance. This is especially the case for file system implementation that
are not backed by an image file, such as network file systems.

However, when benchmarking SSHFS using the filebench [13] fileserver benchmark, Prefuse
unexpectedly does not outperform FUSE, only achieving slightly higher throughput and lower
overall latency. It was also found that using Prefuse in combination with SSHFS results in a significant
increase in latency for most individual file system operation, as opposed to SSHFS with FUSE. In
this thesis we will investigate the increased latency of Prefuse-SSHFS for the filebench benchmark.

1.1 Research Questions
We aim to answer the following research questions:
RQ1. What is causing the increase in latency of Prefuse-SSHFS in comparison with FUSE-SSHFS?

RQ2. What methods can be used to decrease the latency of Prefuse-SSHFS and can the latency be
decreased to be on par or to surpass that of other state-of-the-art FUSE implementations?

Besides answering these questions, this thesis has contributed to the source code of Prefuse,



available on GitHub!, through the addition of a simple page cache, metadata cache, bug fixes and
documentation.

1.2 Thesis overview

This thesis is structured as follows: in Section 2 an overview of relevant concepts and technologies
will be given. Related work will be discussed in Section 3. Section 4 presents an analysis of the
latency problem, while Section 5 outlines design choices made during the implementation of the
page and metadata cache, along with the reasoning behind them. Section 6 presents an experimental
evaluation of the implemented caches. In Section 7 limitations of Prefuse and the page cache can
be found, as well as suggestions for future work. Finally, Section 8 contains the conclusions drawn
from the experiments.

This thesis was written as part of the Bachelor’s programme in Computer Science at the Leiden
Institute of Advanced Computer Science (LIACS), Leiden University. The research was conducted
under the supervision of dr. K.F.D. Rietveld, whose insights were instrumental throughout the
process.

Thttps://github.com/sholtrop /prefuse



2 Background

This section provides an overview of relevant concepts and technologies needed to understand the
problem and its solution. While some of these concepts apply to a range of operating systems, it is
important to note that the following techniques are explained with a Linux-based operating system
in mind.

2.1 Operating Systems

An operating system (OS) is a collection of software that manages the resource allocation of the
system. This includes CPU time, memory, input devices and file systems. The OS functions as the
middle man between applications and the system’s hardware, providing an interface through which
users can easily interact with the system’s resources. Besides resource allocation, the operating
system also acts as a process management entity, which includes tasks like process scheduling and
inter process communication (IPC). Task scheduling is an research field on its own, with multiple
different techniques that all have their strengths and weaknesses [1]. Task scheduling allows the
system to work on multiple tasks at once instead of waiting for a task to finish, as was commonly
done in the advent of computing.

Having multiple processes running at once does raise some security concerns, given that the processes
run in the same physical memory. Therefore, modern day CPU’s support virtual memory, giving
each process its own address space, seperated and protected from other processes. This is done
by a mapping, called a pagetable, from the virtual memory address a process uses to a physical
memory address.

Each time the OS switches from one process to another process, it performs what is called a context
switch. Here the state of the process currently being executed is stored and a previously stored
state of another process is restored. Context switches are usually computationally expensive and
their frequency should therefore be minimized.

Context switches also occur as a result of system calls made by user space programs. Although
modern processors support multiple execution modes, operating systems conceptually operate using
two main privilege modes: user mode and kernel mode. User mode, also known as user space, is a
restricted environment in which regular applications run, with limited access to system resources.
In contrast, kernel mode grants the operating system full access to the system’s resources, such as
the hardware and memory. System calls are a way in which an application can request a service
from the operating system, such as reading a file, writing to a file or deleting a file. Once a system
call is made, a context switch occurs to transition from the user space application to kernel mode,
allowing the kernel to handle the system call. Once the kernel is done, there is another context
switch, this time from kernel mode to user mode, and the result of the system call is returned to
the application.

Reading data from a storage device is a costly operation. This is why operating systems tend to
cache data that has been read previously in the random access memory (RAM). The difference
between reading from RAM and reading from disk storage can be illustrated with the following:



suppose the latency of a single CPU instruction is scaled to 1 second, then a single read from RAM
will take about 6 minutes and a read from rotational disk storage will take a stunning 1-12 months
[15]. Reads from solid state drives (SSD’s) are much faster, but would still take between 2 and 6
days, highlighting the necessity of caching. Most CPU’s also implement some form of caching which
is even faster then reading from RAM, however, operating systems have very little control over
these caches.

2.2 File Systems

File systems (FS) are entities that govern file organization and access. They provide a data storage
that allows applications to share mass storage. Without a file system, applications could access
all data on the storage device, potentially leading to racing conditions, data corruption or even
data loss. There are many file system designs and implementation, each with their strengths and
weaknesses. Examples of file systems include FAT, NTFS, APFS, ext4 and XFS [10, 17, 18, 19]. The
most common approach to structuring data on storage devices is hierarchical [1], distinguishing
between two entities: files and directories. Most file systems also store metadata about files and
directories, such as size, creation time, owner, and more.

Modern operating systems allow the use of multiple file systems. This is made possible by the
virtual file system (VFS), which exposes a uniform interface to access different types of file systems.
It allows user application to interact with different types of file systems using the same application
interface (API), regardless of the underlying file system format. This is achieved by defining a set
of generic operations and data structures that all supported file systems must implement. Once a
user application performs a system call, such as a read, the VFS maps this system call to calls
specific to the file systems implementation. The VFS allows user applications to make use of a
variety of file systems, without requiring changes to the source code.

Besides local file systems, as mentioned before, there are also network based file systems, running
on top of the VFS. These file systems allow files to be stored on remote machines and can be
accessed over a network as if they were stored on the local machine. Examples of network file
systems include SSHFS [1] (see also Section 2.4), Amazon’s s3fs [5] and Google’s GFS [20].

2.3 FUSE

Like mentioned in Section 1, developing a file system that resides in kernel space may prove
to be a difficult task. This is why FUSE has been developed. FUSE is a software interface for
Unix-like operating systems that allows users to easily build their own file system. The file system
implementation is run in user space and FUSE bridges the gap between the kernel and the source
code. It does this by exposing a struct of function pointers [21], which can be implemented by
the user. FUSE’s functions include, but are not limited to: getattr, readlink, mkdir, rmdir,
rename, chmod, open, read, write, opendir, readdir, access, create and lseek.

FUSE consists of three modules: the FUSE kernel module (fuse.ko), a userspace library (1ibfuse)
and a mount utility (fusermount). Once an application performs a file system operation, such as
reading a file, a system call is send to the kernel, via the VFS to the FUSE kernel module. The
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Figure 1: FUSE’s architecture [12].

kernel module forwards the call to 1ibfuse in userspace, which handles the actual file system
operation. The result is returned in the same way: from 1ibfuse back to fuse.ko in kernel mode,
via the VFS to the user application in user space. Figure 1 provides a visual representation of this
process.

As illustrated in Figure 1, each file system operation done on a FUSE-based file system involves
at least four context switches. As explained in Section 2.1, these context switches cause overhead,
which should be minimized to improve performance. FUSE has been proven to be relatively slow
[6], primarily due to this overhead. Nevertheless, FUSE remains widely adopted due to its flexibility
and ease of use.

2.4 SSHFS

One of the FUSE-based network file systems is SSHFS []. SSHFS allows the user to mount a remote
file system using the SSH File Transfer Protocol (SFTP). It comes with all major Linux distributions
and has been in production use across a wide range of systems. Using SSHFS requires only invoking
the executable with a mountpoint and remote host. Once mounted, the user is able to access files
under the mountpoint as if they were stored locally, even though they physically reside on a remote
machine.

Once an application makes a system call to a file under the SSHFS mountpoint, the kernel’s VFS
handles the system call and routes it, via the FUSE kernel module, to the SSHFS user space process.
Next, the SSHFS user space process translates the generic file system operation into SFTP commands,
which are then send to the remote. On the remote side, the sftp-server daemon processes these
commands and interacts with the actual file system. The response is then packaged and send back
via SFTP to the local machine, through SSHFS, the FUSE kernel module and the VFS, back to the
user application. An visual representation of this process can be found in Figure 2.

2.5 zpoline

zpoline is a novel technique introduced by Yasukata et al. [22] that allows for system call hooking
on x86-64 CPU’s. System call hooking is the process of intercepting system calls before they get to
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Figure 2: SSHFS’s architecture.

the kernel, and alter or augment their behavior in some way. Hooking is used in many applications
such as debuggers and benchmarkers. There exist a number of solutions that allow for system
call hooking, such as strace/ptrace [23, 21] and eBPF [25], however zpoline has little overhead,
allows for extensive hooking and does not require changes to the source code of the user space
program, among other advantages [22].

zpoline operates by performing binary rewriting of user space binaries, replacing system call
instructions with short jumps to custom trampoline code. This trampoline code redirects execution
to a user-defined handler which can optionally invoke the original system call. To enable this
replacement, zpoline requires modification of the /proc/sys/vm/mmap min addr Linux kernel
tunable; otherwise the low memory addresses needed for the jump targets may be inaccessible.
While zpoline introduces some startup overhead due to its dynamic binary rewriting, this cost is
offset by its low runtime overhead and high performance during system call interception.

2.6 Prefuse

Prefuse is the result of the master thesis of Sjors Holtrop [12]. It allows one to run a file system as
a dynamic library, fully in user space, completely avoiding context switches, leading to a significant
increase in performance. Prefuse is backwards compatible with existing FUSE file systems and offers
great compatibility with client programs, thanks to its use of zpoline. According to the thesis,
it has far better performance than FUSE, making it an interesting option to use in a production
environment.

Prefuse consists of three main parts: zpoline, libprefuse and FUSE-file-system-as-a-library
(FFAAL), as can also be seen in Figure 3. It works as follows: before the application runs, zpoline
binary rewrites the system calls and configures them to jump to libprefuse’s hook function.
Once the application makes a system call, the system call is not sent to the kernel, but rather to
libprefuse’s hook function. Next, libprefuse checks if the system call is meant for a file under
the mountpoint of a FUSE file system. If this is not the case, the system call is forwarded to the
kernel, thus not affecting other system calls that do not use the mountpoint. Otherwise, Prefuse
converts the system call according to FUSE’s requirements and invokes the corresponding FUSE
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Figure 3: Overview of Prefuse’s data flow [12].
function. The result of the FUSE function is then returned via libprefuse to the application.

2.7 Caching Interplay

Caching interplay refers to the coordination among various caching layers, determining what data
is cached, where it is cached, how long it is retained and who is responsible for invalidation or
refreshing. A precise understanding of these responsibilities is essential for interpreting the latency
behavior as discussed in Section 4.2. In this section, we focus on the caching behavior of FUSE-based
image and network file systems, and examine how Prefuse influences these mechanisms.

As illustrated in Figure 1, all file system operations to a FUSE file system, regardless of it being
image- or network-based, are routed through the kernel. In the case of an image-based FUSE file
system, the image must first be read from the underlying storage device into memory before FUSE
can access its contents. Most operating systems treat file system images as regular files, thus FUSE
can issue open, read, pread and close system calls on the image just like any other file. These
system calls are handled by the kernel, which may serve data directly from the page cache if the
image, or parts of it, have been accessed recently.

When a user process makes a system call targeting a file under the FUSE mountpoint, the kernel
forwards the request to the FUSE daemon. The daemon then reads the relevant data from the
image file, interprets it, and sends the result back to the kernel. The kernel, in turn, delivers the
result to the application via the VFS. Meanwhile, it caches the result in the page cache, so that
subsequent accesses to the same data range can be served directly from the cache, bypassing both
the storage layer and the FUSE daemon entirely [20].

When coupled with Prefuse, these files are still being cached by the kernel. Prefuse is only responsible
for routing the system calls directly to the FUSE file system code, which in turn uses regular system
calls like pread. The key difference is that Prefuse always invokes the FUSE daemon, which then
issues regular system calls, which may or may not be served from the kernel’s cache, depending on
the current state of the cache.
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Figure 4: SSHFS’s architecture in combination with Prefuse.

In the case of network-based FUSE file systems, the FUSE implementation packages each system call
into a network message, formatted according to the specific protocol used, and sends it to a remote
machine. On the remote end, a user space process receives the request and issues corresponding
system calls to its kernel to fulfill it. The remote kernel handles the operation and may cache data
as it deems appropriate. Once the result is ready, it is transmitted back over the network to the
originating machine, via the file system code, through the kernel to the user application. Despite
the data originating from a remote source, the local kernel is still able to cache the received content
since the result is routed through the VFS. If the application accesses a page that remains in the
local cache, the kernel is able to serve the request directly [26], bypassing the need to query the
remote machine, thereby reducing latency and improving performance. As a result, the same data
may be cached on both the remote and the local machine (not without risks, see also Section 7.2).

Using Prefuse in combination with network-based FUSE file systems changes the caching mechanics.
Since system calls bypass the local kernel, it can no longer cache data retrieved from the remote
machine. As a result, every system call triggers a new request to the remote machine, increasing
latency and degrading overall performance. However, the remote kernel still performs caching of data
in the same way as with FUSE. A visualization of the system call path for SSHFS in combination
with Prefuse can be found in Figure 4.



3 Related Work

This section contains a selective overview of prior work, aimed at improving or measuring FUSE’s
performance. In addition to research specifically on FUSE, we also include relevant studies on
caching techniques and recent developments in this field.

3.1 To FUSE or Not to FUSE

As mentioned in the introduction, FUSE is widely known for its performance limitations. Vangoor
et al. [27] conducted a comprehensive study on FUSE’s performance for a wide range of workloads,
hardware configurations and FUSE settings. The results indicate that performance degradation
ranged from unnoticeable to -83%, even with FUSE optimizations enabled. Additionally, they
observed an increase in CPU utilization of up to 31%, largely due to overheads such as context
switching.

One of the key FUSE settings leveraged in the paper was the write-back cache option, which, when
enabled, enhances performance by batching write operations. While this thesis does not implement
a full write-back strategy, it adopts a write-through approach instead. Specifically, writes in Prefuse
are applied to both the cache and the backing storage synchronously. This strategy reduces the
amount of cache entries that need to be invalidated, thus increasing the hit-ratio and improving
performance. Due to the in-process nature of Prefuse, features like background flushing are not
feasible. Section 5 outlines the implementation details of the cache, while Section 7.1 discusses its
trade-offs and limitations in more detail.

3.2 RFUSE

RFUSE is a novel user space file system framework by Kyu-Jin Cho et al. [10] designed to enhance
the performance of FUSE-based file systems by optimizing communication between the kernel and
user space. RFUSE introduces a new form of communication between kernel and user space. It
employs a per-core ring buffer as a communication channel, minimizing transmission overhead caused
by context switches and data copying. RFUSE is compatible with existing FUSE-based file systems
without any modifications, making adoption and integration simple. Besides the compatibility with
existing file systems, RFUSE also achieves a throughput close to that of the in-kernel file system
ext4, while reducing latency up to 53% compared to traditional FUSE implementations.

3.3 LDPFUSE

LDPFUSE [9] is a framework by the same author as Prefuse that allows custom file systems to be
compiled as a dynamic library. It works by exporting file system functions with the same name
as those provided by glibc. By pre-loading the library, these custom implementations overwrite
the original file system calls in the source code. Since the file system resides in the same address
space as the client process, context switches are no longer needed. Pre-loading can be done by
setting the LD_PRELOAD environment variable, instructing the dynamic linker to pre-load the given
shared libraries before others. This mechanism enables one to overwrite functions with a custom
implementation. However, LDPFUSE has some major limitations. Most importantly, it can’t intercept



all file system operations, and it doesn’t work with binaries running in secure execution mode.
These issues were a big part of what inspired the development of Prefuse.

Similar to LDPFUSE, Prefuse also makes use of the LD_PRELOAD environment variable. However,
instead of rewriting function implementations, it is used to load zpoline, which performs binary
rewriting of system calls. See Section 2.5 for more details.

3.4 CuttleFS

CuttleFS is one of the results of a research paper by A. Rebello et al. [28] in which the researchers
investigate how three Linux file systems (ext4, XFS and Btrfs) behave in the presence of failures.
The commonalities and differences between these file systems are studied. Besides file systems, the
team also looked at how five widely used applications (PostgreSQL, LMDB, LevelDB, SQLite and
Redis) handle fsync failures. An fsync failure occurs when the file system’s attempt to persist
updates to the backing storage using the fsync system call fails, indicating that recent changes
may not have been safely stored and the file system consistency could be compromised. The key
finding: none of the failure-handling methods were sufficient, with fsync failures causing data loss
and corruption.

In order to deterministically cause fsync failures, one of the deliverables of the paper by A. Rebello
et al. is CuttleFS. It is a purpose-build user space file system with its own page cache that allows
for emulation of fsync failure behaviors, giving the user full control over fault injection. While
both Prefuse, as extended by this thesis, and CuttleFS implement a fine-grained user space page
cache, their motivations differ. Cutt1eFS is engineered to emulate a variety or file system failures,
whereas Prefuse is designed to support custom file system logic and performance optimizations.
This paper also confirms our motivation for not implementing a write-back cache: we can not rely
too heavily on fsync. See Section 7.1 for more details.

3.5 Unified Buffer Cache (UBC)

One of the fundamental challenges in operating system design is the separation between the file
system buffer cache and the virtual memory page cache. This led to redundant caching, inefficient
memory usage, and increased complexity in maintaining consistency between the two. Silvers [29]
addressed this problem with his implementation of the Unified Buffer Cache (UBC) for NetBSD,
which unified the file system and VM caches into a single mechanism. This approach reduced data
duplication and simplified cache coherency by allowing both subsystems to share the same physical
pages for file data. This was later implemented in other kernels, including Linux.

While it is not possible to unify caches at the physical memory level due to our userspace-based

approach, we do cache both data and metadata in the same class. Our cache can be tuned as seen
fit, as opposed to in-kernel caches like UBC, making it an attractive feature for many use cases.
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3.6 TriCache

Feng et al. [30] propose TriCache: a user transparent, multi-level block cache to enable high
performance out-of-core processing. It addresses the limitations of traditional operating system
page caches, particularly their inefficiency on cache misses and lack of scalability, by offering a
virtual memory abstraction, built on top of a block interface. The results show that TriCache can
outperform the Linux kernel’s page cache, while staying compatible with existing systems so it can
be integrated without significant changes.

The research conducted by Feng et al. illustrates that other systems are also moving cache
management from the operating system into user space, in order to achieve better performance and
to give more fine-grained control over the cache. In the case of Prefuse, implementing a user space
page cache was a somewhat constrained design decision, given that we bypass the kernel entirely.
However, TriCache shows that user space caching is not inherently a performance compromise,
but is able to match or even outperform the kernel’s page cache.

11



4 Analysis

In this section, an analysis is conducted to identify the cause of the increased latency in Prefuse-
SSHFS. First, the results from the Prefuse thesis will be validated, followed by an investigation into
the latency through three experiments.

4.1 Reproducibility Study

Before we can analyze and address the significant latency observed with SSHFS on Prefuse, we
need to be able to reproduce the performance results as presented in [12]. Due to the scope of
this thesis, only the filebench benchmark with the fileserver workload will be reproduced. This
process was rather time-consuming due to technical issues arising from the combination of fuse2
and Ubuntu 22.04, as well as the use of an incorrect filebench version; the benchmark requires
version 1.5.alphal or newer. Prior versions do not support cvars which are used in the fileserver
workload.

The benchmark was run using the same adjusted fileserver workload as used in the Prefuse thesis:
3000 files with file sizes following a Gamma distribution (mean: 128KiB, shape: 1.5), 50 threads,
mean read/write size: 1MiB, mean append size: 128KiB. The workload ran for 60 seconds, and we
took the average of 100 runs.

As shown in Figure 5, the latency in the reproduced benchmark closely matches the original in
terms of magnitude. In both experiments, the operations stat, close, open, append, and write
exhibit higher latency when using Prefuse compared to FUSE. delete and create on the other
hand perform better with Prefuse. There are some minor differences in the raw latency values.
For instance, read with FUSE has a latency of around 5ms in the original benchmark, whereas
it increases to around 7ms of latency in the reproduced experiment. This can be explained by a
difference in hardware used for the benchmark: the original results were obtained using a Samsung
980 PRO M.2 NVMe SSD in full passthrough, while the reproduced benchmark was run using a
standard Kingston A400 SATA SSD.

These results suggest that the original benchmark was valid and that its findings can be reproduced.

4.2 Latency Analysis

After successfully verifying the findings presented in the Prefuse paper, we proceeded to investigate
the root cause of the increase in latency observed in Prefuse. We hypothesize that the increase
in latency for Prefuse is due to the lack of a page cache and metadata cache. In contrast, FUSE
leverages the kernel’s caching abilities, significantly reducing access times, as explain in Section 2.7.

To investigate this hypothesis, we have conducted a series of experiments using a slightly modified
version of the test_program found in the Prefuse source code under examples/sshfs/simple_read.
Unlike the original version, which reads 512 bytes with no offset, our modified version reads a large
1GiB file in chucks of 1MiB. The reads start at an offset of 0 which is incremented by 1024 bytes
for each subsequent read. In total, 100 read system calls are performed, and the total time taken

12
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is recorded. The entire experiment is run 100 times and the results are averaged. Note that the
average is calculated across the total times of 100 separate experiment runs, each consisting of 100
reads, rather than across the 100 individual read calls within a single run. With this setup, the
reads start at offset 0 and continue up to offset 99 x 1024 = 101376. The final byte read is then
101376 + 1MiB = 1149952, or approximately 1.15MB. This ensures the accessed data lies beyond
the first page, as opposed to the original test_program, increasing the chance of observing cache
effects.

In the following experiments we make use of flags. When using open on a file, flags can be provided
to influence how the file is accessed. For example, flags like 0_RDONLY and O_WRONLY only allow
reading the file or writing to the file respectively. The 0_DIRECT flag tries to minimize cache effects of
the I/O to and from the file, meaning file operations are done directly to and from user space buffers.
This flag is interesting for our experiments since it allows us to compare FUSE’s performance with
and without caching.

4.2.1 Number of Reads

By inserting a print statement in the source code of SSHFS and recompiling it, we were able to
count the number of SSHFS read operations performed during the execution of the test program.

As shown in Table 1, Prefuse performs the expected 100 reads, while FUSE performs only 10. By
adding the size and offset to the print statement, we observed that FUSE is not reading in chunks
of 1MiB as specified in the test_program, but rather in 128KiB chunks. The offsets are also not
as expected, with the first read reading at offset 0 and subsequent reads reading at increments of
128KiB, indicating that previous reads are saved and only data that has not previously been read
is requested. This can be confirmed by calculating the cached byte range: 10 x 128KiB = 1310720,
meaning bytes up to 1310720 are cached. The last byte read, at offset 1149952, falls within the
cached range, confirming that all necessary data was already cached, and no additional pages
needed to be loaded.

In contrast to FUSE, Prefuse reads in chunks of 1MiB at the offsets specified in the test_program.
Besides the difference in read behavior, there is also a significant difference in performance: FUSE
completes the test approximately 98% faster than Prefuse.

Set-up Number of reads Avg. time (ms) Std. Dev. (ms) fincore page count
FUSE 10 8.513 0.677 368
FUSE + 0DIRECT 100 372.620 69.398 336
Prefuse 100 357.898 63.713 560
Prefuse + 0_DIRECT 100 359.282 69.526 560

Table 1: Results of SSHFS read experiments: read count, latency analysis and page cache presence
across different set-ups.
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4.2.2 FUSE with O_DIRECT

To investigate the impact of the 0_DIRECT flag, and by extension the kernel’s page cache, the
experiment as described in Section 4.2.1 was repeated, only this time the file is opened with the
0_DIRECT flag enabled. In Table 1 we can clearly see that the performance of FUSE gets significantly
worse, closely matching Prefuse’s performance. This can be attributed to the local kernel no longer
caching the results from the remote, resulting in a query to the remote for every read operation,
causing significant overhead.

The 0. DIRECT flag does not seem to influence the performance of Prefuse. This suggests that
Prefuse does not benefit from the local cache. If Prefuse were to benefit from the local page cache,
enabling the 0_DIRECT flag should lead to a decrease in performance, which is not observed as the
difference in the average time for Prefuse with and without 0_DIRECT is not statistically significant
(p = 0.8835).

4.2.3 Page Cache Presence

fincore [31] is a Linux utility that counts the number of pages of file content being resident in
memory. By using this tool on our 1GiB file, immediately after executing the test_program, we
can determine whether the file’s content remain cached in memory.

mincore [32] is a Linux system call that checks which pages of a memory-mapped file are currently
resident in memory. By mapping the file into memory and invoking mincore, we can obtain a
page-level view of the file’s presence in the page cache.

Using these tools, we examined the caching behavior of the file across different configurations.
Surprisingly, the file was cached in all cases tested. This behavior is likely due to how the experiment
is setup: the remote endpoint is localhost, meaning that sftp-server runs on the same machine
as the test program. Because sftp-server relies on regular system calls, it allows the kernel to
cache data according to its standard policies, which is why fincore is able to find the file in the
page cache. Notably, the use of the 0_DIRECT flag does not appear to influence the caching behavior
on the remote machine, as the file was still cached even in setups using this flag. An additional
observation is that Prefuse shows around 200 more pages cached than FUSE. Since each page is
4KiB, this corresponds to roughly 800KiB of additional data held in memory. To investigate this
difference, we used mincore to determine which pages of the file were cached, aiming to rule out
the possibility that the beginning of the file had been evicted in the FUSE setup. The results
indicated that no such evictions occurred. Instead, Prefuse appears to cache a larger portion of the
file overall. The reason for this isn’t obvious and could be an interesting point to explore further.

To prevent sftp-server from invalidating our results, we repeated the experiment using a dedicated
remote machine. Although we were unable to find the 1GiB file in the kernel’s page cache using
fincore, FUSE without 0 DIRECT still outperformed the other configurations significantly. Manual
page presence checks using mincore did provide meaningful data, as shown in Table 2. These results
clearly demonstrate that only FUSE is leveraging the page cache, while the other configurations do
not. Notably, the number of cached pages differs between Table 1 and Table 2 for the FUSE set-up,
likely due to differing read behaviors between sftp-server and SSHFS. We chose not to include
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timing averages since communication between two devices over a network is prone to variability,
whereas using the localhost loopback interface is rather consistent.

Set-up mincore page count
FUSE 288

FUSE + 0DIRECT O

Prefuse 0

Prefuse + 0_DIRECT 0

Table 2: Results of mincore page count for SSHFS reads using two distinct machines.

These three experiments have proven that FUSE is able to utilize the local kernel’s page cache,
resulting in significantly higher performance compared to Prefuse. This highlights the need for an
in-process page cache for Prefuse to close the performance gap.
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5 Design and Implementation

In this section, any design choices made during the implementation of the page and metadata cache
and the reasoning behind them are explained.

5.1 Prefuse Page Cache

From Section 4.2 it is clear that FUSE leverages the kernel’s page cache, improving performance
significantly, whereas Prefuse does not. To make Prefuse a viable alternative to FUSE, it must at
least match FUSE’s performance. The most straightforward approach is to implement an in-process
page cache, which is exactly what we have done. We introduced a new class PageCache which
serves as a wrapper around our underlying caching data structure. This class includes additional
fields such as the number of entries and the page size, as well as convenient methods for straight
forward interation with the cache. It also keeps track of key metrics like cache hits, misses and
invalidations. Since Prefuse is used as a library, printing cache statistics on exit is non-trivial. Rust
does not support destructors for static classes, so to overcome this limitation, the cache uses shared
memory to persist its statistics. These statistics are then printed on exit of the helper binary of
Prefuse.

The data structure used is the moka: :sync: :Cache [33] class. Initially, we attempted using the
lru: :LruCache [31], however this implementation requires a lock for each read or write operation.
Since Prefuse is designed to support multi-threading, our initial tests revealed that this particular
LRU cache caused significant performance degradation due to threads blocking while waiting for
locks. In contrast, moka: :sync: :Cache supports fully concurrent lock-free reads, though writes
still require a mutex lock, making it much better suited for our requirements. moka: : sync: :Cache
offers two eviction policies: the default TinyLFU, which is a combination of LRU and LFU, and
a standard LRU policy. We have opted to use LRU as eviction policy, due to its simplicity and
predictable eviction behavior, which aligns well with typical file system access patterns.

The cache is of type <PageKey, Page>, where PageKey is a tuple consisting of a filename and a
page number relative to the start of the file. Ideally, the key would be a tuple of an inode and the
page number; however, obtaining the inode requires issuing another system call, which would add
overhead to the cache, reducing its efficiency. The Page struct contains a vector holding the data
and a size field indicating how much of this data is valid. This size field was added to support
reading from partial pages in the cache, ensuring that reads do not extend beyond the end of the
file. The cache is initialized once on the first time it is accessed, also called lazy initialization, and
is static so that all threads share the same cache instance.

The cache is used as follows: during a read system call that is delegated to Prefuse, we first verify
that caching is enabled. If it is, we determine the page numbers that correspond to the requested
read range. To determine which memory pages are affected by the read operation, we compute the
index of the first and last page touched. This is done as follows:

let page_first
let page_last

offset as usize / page_size;
(offset as usize + count - 1) / page_size;
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Here, page _first represents the index of the first memory page accessed by the read. It is calculated
by dividing the byte offset (where the read begins) by the page_size of the page cache and
casting this to an integer. page_last gives the index of the last page that the read ends on. This
is calculated by taking the offset plus the number of bytes to read (count), subtracting 1 (since
offsets are 0-based), and then dividing by the page size, again casting to an integer.

For each of the page numbers in this range (inclusive), we check whether the page is present in
the cache. If the page is cached, the requested bytes are copied from the cached page into the
buffer and we continue with the next page. If the page is not found in the cache, a regular, full
page read is performed and the result is copied to a new Page struct, which is then inserted into
the cache. The relevant portion of the result is then copied into the user-provided buffer. Write
operations follow a similar logic, with the key difference that they do not issue a read in the case
of a page miss. Currently, the caching method used is write-through. Ideally the cache would be
write-back, however this is a non-trivial task. See Section 7.1 for a more in-depth discussion. On
write system calls we have opted to not invalidate the pages in the cache, but rather update them,
after which the write is also done to the backing storage. This reduces the number of evictions,
thus improving performance.

5.2 Prefuse Metadata Cache

Initial tests using Prefuse’s page cache showed promising results, with significantly improved latency
compared to when the page cache was disabled. However, further investigation into FUSE’s read
policy showed that FUSE does not read in chuncks of 1MiB, as specified in the filebench workload.
Instead, it reads in smaller batches (pages), with the final read often being of seemingly arbitrary
size. Our hypotheses is that FUSE uses the metadata of a file to avoid reading past its size, which
causes the final read operation to have a variable length. We aimed to replicate this behavior to
explore whether metadata caching could further improve Prefuse’s performance. Therefore, we
added another moka: :sync: :Cache to our Cache class with the file name and FUSE’s stat struct
as the key-value pair.

To utilize the metadata cache, the prefuse_read function had to be altered slightly: on each page
cache miss, it tries to retrieve the file size from the metadata cache. If the file size is cached, we
verify that the requested read does not extend beyond the end of the file (EOF). In such cases,
we read only up to EOF, cache the result if needed and return immediately. If the file size is not
available in the cache, we invoke the prefuse_stat function, which is used for the fstat system
call, to obtain the file size. Although this introduces some overhead, it does not cause a noticeable
increase in latency since file systems, SSHFS included [1], often perform directory and file attribute
caching themselves. The main performance benefit comes from avoiding unnecessarily large reads
beyond EOF. Avoiding repeated fstat calls provides an additional, though smaller, improvement.

To maintain cache consistency, entries are invalidated upon file changes. Since Prefuse does not yet
implement all system calls, this currently applies to chmod, chown, release, unlink and write
system calls. In addition to the read system call utilizing the metadata cache, the stat system
calls have also been modified to use cached data whenever it is available.
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5.3 Configuration

To allow for enabling and the configuration of both caches, we have extended Prefuse’s configuration
file with fields such as page_size and page_cache_size. An overview of the configuration file
extension can be found in Figure 6.

# Enable write-though page and metadata cache, default: false
cache = true

# Number of entries in the page cache, default: 5000
page_cache_size = 7500

# Size of pages to cache in bytes, default: 128KiB

page_size = 262144

# Number of entries in the metadata cache, default: 5000
meta_cache_size = 2500

Figure 6: Prefuse’s extended configuration file.
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6 Experiments

In this section we evaluate the performance of Prefuse with caching enabled against FUSE and
Prefuse without caching. This is done by making use of various workloads where metrics like latency,
throughput and execution time are measured.

6.1 Experiment Setup

Hardware. All experiments were performed on the same machine, running a Ryzen 5 2600x
@3.6GHz, 16GB of dual channel RAM @3200MT /s and a Kingston A400 SATA SSD.

Software. The experiments were run on Ubuntu 24.04 LTS using WSL2. The filebench version
used is version 1.5alpha3, as found in the RFUSE repository [10]. This specific version is custom
compiled to allocate more shared memory to support bigger workloads.

6.2 Page Cache Benchmark

To interpret the results of experiments done on Prefuse with caching enabled, it is important
to know the characteristics of the actual page- and metadata cache. For this, we have written
multiple benchmarks that interact directly with the cache implementation, bypassing Prefuse
entirely. The benchmarks do not rely on a file system, as all operations are performed in RAM.
They are implemented using the criterion benchmark library, which automatically performs
statistical analysis and visualizes the results. Each benchmark records the time taken to perform
1000 operations (such as reads or writes) in a single iteration, which in turn is repeated 100
times. The benchmarks use a page cache with 1000 entries and 128KiB pages. An overview of all
benchmarks and their behaviors can be found in Table 3.

Benchmark Description

cache write Write 1000 pages to an empty cache.

cache overwrite Write 1000 pages to an already filled cache.

cache read Read 1000 existing pages from the cache.
cache_read miss Read 1000 non-existing pages from the cache.
metacache write Write 1000 file stat structs to an empty cache.
metacache overwrite Write 1000 file stat structs to an already filled cache.
metacache_read Read 1000 existing file stat structs from the cache.

metacache read miss Read 1000 non-existing file stat structs from the cache.

Table 3: Overview of Page Cache and Metadata Cache Benchmarks

The benchmark results can be found in Table 4. It shows that writing to a cache takes considerably
longer than reading from it. This is due to the fact that reading from the moka: :sync: :Cache
does not require a lock, whereas writing to it does. From the difference between cache_write and
cache overwrite we can see that evicting an entry also add overhead. Looking at Table 4, it is
clear that both caches perform very well, with single operations only taking between 0.1 and 1 ps
on average.

20



Benchmark Mean (ps) Std. Dev. (ns)

cache_write 928 55
cache_overwrite 1041 67
cache_read 223 11
cache_read miss 155 9
metacache_write 1162 74
metacache_overwrite 1192 78
metacache_read 266 21
metacache_read miss 185 10

Table 4: Benchmark results: mean execution time and standard deviation (in microseconds) for
1000 operations, averaged over 100 runs.

6.3 File Server Workload

This benchmark will prove whether Prefuse with page caching enabled improves the per operation
latencies as shown in Figure 5. The workload used is the same as the one used in the results
verification experiment: 3000 files with file sizes following a Gamma distribution (mean: 128KiB,
shape: 1.5), 50 threads, mean read/write size: 1MiB, mean append size: 128KiB. The workload ran
for 60 seconds, and we took the average of 100 runs. The metadata cache is kept constant at 5000
entries, which is sufficient since the workload uses 3000 files.

6.3.1 SSHFS

Page cache configuration has a significant impact on the performance of an application. Therefore,
we first conduct an experiment to find the optimal page size/cache size ratio for this particular
workload in combination with SSHFS. In order to decrease the duration of this experiment, we took
the average latency for the read operation of only 10 runs for each combination of page size and
cache size. We tested the following page sizes: 32KiB, 64KiB, 128KiB, 2566KiB and 512KiB. Cache
sizes tested were: 5000, 7500, 10000, 125000 and 15000.

The results, shown in Figure 7, reveal that smaller pages (32KiB and 64KiB) are insufficiently sized
for effective caching in this workload. We also observed a trend: increasing the number of cache
entries generally reduces the latency per operation. This is expected behavior, since caching more
data results in more hits and thus less cache miss overhead. The best performance was achieved
using 512KiB pages with a cache size of 12500 entries, resulting in an average latency of 6.3ms per
operation. Despite this, we have opted to use the second best performing combination of 256KiB
pages with a cache size of 7500. This decision is made due to practical considerations: a 512KiB
x 12500 cache would consume up to 6.3GiB of memory, while the chosen configuration (256KiB
x 7500) limits the cache footprint to approximately 1.9GiB. This trade-off ensures that Prefuse
performs well, without excessively consuming system resources.

Now that we have found a good configuration for the page cache, we can repeat the experiment as

described in Section 4.1, only this time with the Prefuse cache enabled. The metadata cache size
is kept constant at 5000 entries. We also conduct additional runs with only the metadata cache
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Figure 7: Cache performance by page size and entry count for the fileserver workload in combination
with SSHFS.

enabled, as well as only the page cache, to isolate and compare their individual and combined
effects.

The results, as presented in Figure 8, look very promising, showing a notable performance improve-
ment across all file system operations when using both metadata and page cache. This outcome
was somewhat unexpected, given that the cache was specifically designed to improve the latency for
the stat and read system calls. These proved to be accelerated, with a relative acceleration for the
stat and read system calls of 52% and 84% respectively. stat now matches FUSE’s performance,
whereas read is almost twice as fast.

We initially expected the latency for write to increase, due to the additional overhead of writing to
both the page cache as well as the backing storage device. This overhead is evident when comparing
the performance of write with only the metadata cache enabled (which avoids write-through)
to that with only the page cache enabled. Contrary to our expectations, the latency for write
and other file system operations, besides stat and read, also decreased when using the combined
cache. We hypothesize that the performance improvements in stat and read help reduce overall
I/O pressure. This, in turn, frees up system resources and allows other threads to execute more
efficiently, resulting in broader performance gains beyond the operations directly targeted by the
cache.

Furthermore, it is clear that most of the performance gain of the read operation can be attributed

to the page cache. Interestingly, the performance of stat with only the metadata cache enabled is
almost equal to that achieved with only the page cache. At the same time, both caches appear to
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Figure 8: Latency per file system operations using FUSE, baseline Prefuse, and Prefuse with page
and metadata caching enabled (SSHFS).

introduce overhead, as operations not directly influenced by the cache, such as close, open and
create, slow down.

6.3.2 Passthrough

Since the underlying file system significantly affects system performance, it is important to repeat
the previous experiment using alternative file systems. For this purpose, we have selected the
passthrough file system. Initial tests revealed that the cache configuration used in the previous
experiment was not a good fit for this file system. Therefore the cache configuration experiment
was also repeated. All other parameters were kept consistent with the original setup.

The results shown in Figure 9 indicate that, unlike SSHFS, the passthrough file system performs
worse with larger page size when page caching is enabled. For our setup, the optimal cache
configuration was found to be 64KiB pages with a total of 12500 pages, resulting in a maximum
memory footprint of approximately 0.8GiB. Using this configuration, we repeated the latency
experiment for the fileserver workload with passthrough as backing file system. The experiment
follows the same methodology as descibed in Section 6.3.1, with the only difference being the file
system used. Based on the previous experiment, the combined cache configuration consistently
outperformed the individual caches. Therefore, we have chosen to test only the combined cache
in this experiment. The FUSE results are excluded from Figure 10 to maintain readability, as its
much larger scale (1-5ms compared to 0-150ps) would distort the visualization.
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Figure 9: Cache performance by page size and entry count for the fileserver workload in combination
with passthrough.
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Figure 10: Latency per file system operation for Prefuse and Prefuse with page and metadata cache
enabled (passthrough). Error bars represent the standard error of the mean (SEM).
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From the results shown in Figure 10, it is clear that the passthrough file system does not benefit
from our page and metadata cache. Only the read and delete system calls show slight improvement,
the latter likely not due to our cache, but rather the randomness in the workload’s fileset. For stat,
the overhead introduced by the cache actually outweighs the benefits, making it about 8% slower
when caching is enabled. The write operation also sees a performance drops, which is logical since
it can not take advantage of the page cache. Instead, the added latency is due to the overhead of
writing to both the cache and the backing storage. Despite filebench’s millisecond time resolution,
the observed 66.4% increase in latency for the close operation is supported by very low standard
errors (3.25 x 107° vs. 4.71 x 107°), suggesting the result is statistically significant. However, the
absolute difference is minimal (approximately 1ps) and is unlikely to have any practical impact.
The underlying cause of this increase remains unclear.

The underwhelming results are likely due to the kernel caching files read by passthrough, resulting
in double caching, both by Prefuse as well as the kernel. As outlined in Section 2.7, Prefuse forwards
system calls under the mountpoint to passthrough, which invokes regular system calls and allows
the kernel to cache the requested data. Prefuse then caches that same data in user space, resulting in
redundant caching and overhead. We validated this hypothesis by conducting an experiment similar
to that in Section 4.2.3, using passthrough as the backing file system. When Prefuse was run
without the 0_DIRECT flag, 416 pages were found in the kernel’s page cache. In contrast, enabling
0_DIRECT resulted in no cached pages, confirming that passthrough leverages the kernel’s page
cache by default.
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7 Discussion

Throughout the course of this thesis, we encountered several limitations of Prefuse and its cache.
In this section, we outline and discuss the most notable ones.

7.1 Flushing Dirty Pages on Exit

Initially the page cache was only used by read system calls, while write operations simply
invalidated any pages affected. This led to a decrease in hit-ratio and therefore we researched the
idea to make the cache fully write-back. This entails writing to the cache, marking the page as
dirty and then return the result of the write operation to the application. A separate thread then
occasionally writes all dirty pages to the backing storage. Typically, flushing dirty pages is managed
by the kernel. The kernel retains memory mappings even after a process exits, ensuring that all
dirty pages are eventually written back to the disk.

Prefuse, however, runs entirely in user space as a library (libprefuse) and therefore lacks a
centralized entry or exit point. The cache is implemented as a static class, which means it has
no destructor or similar mechanism to flush dirty pages when the process ends. Even if such a
mechanism were introduced, it would still not guarantee correctness in cases where the process
terminates unexpectedly, for example due to a signal.

Another method that could be used to flush dirty pages is to force the underlying file system to
make a fsync (or a similar) system call before it exits. However, as demonstrated by A. Rebello et
al. [28] (see Section 3.4), this method is not foolproof: failures of the fsync sytem call still result in
data loss and corruption. Moreover, not all file systems explicitly call £sync on exit by default,
SSHFS being one of them, which requires us to modify their source code; an undesirable solution.

The author of the Prefuse paper [12] also acknowledges this limitation in the context of memory-
mapped files. He similarly concluded that, in user space, it is not possible to provide the same
guarantees as the kernel when it comes to writing back dirty pages.

To improve the hit-ratio of the page cache, we have opted to write to both the cache and the
backing storage. While this approach introduces some overhead to write system calls, it ensures
cache consistency and allows subsequent reads to benefit from cached data, improving overall
performance for read-heavy workloads.

7.2 SSHFS Page Caching

While caching can significantly improve performance for SSHFS, it also introduces a risk of data
inconsistency. Since the cache operates locally, any changes made on the remote side, such as by
another user or process, are not reflected in the cache. As a result, cached data might become stale,
leading to potential mismatches between what the application sees and what is actually written
on the backing storage. This undermines the reliability of the file system in environments where
multiple clients or processes may access and modify shared data. Therefore, caching in combination
with SSHFS should be used with caution.
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It is worth noting that this issue is not specific to Prefuse-SSHFS, but also applies more broadly to
network-based file systems. As described in Section 2.7, the kernel maintains its own data cache for
FUSE file systems. However, the kernel is unaware that the underlying file system is remote and
potentially mutable by other clients, which further increases the risk of stale data.

7.3 Future Research

Future work could focus on extending the use of the cache to support more file system operations,
such as append, truncate, and other modifications that currently bypass caching logic. This would
further improve performance and consistency across a wider range of workloads.

Additionally, implementing the same write-through mechanism the page cache has for the metadata
cache could reduce the number of entry invalidations, resulting in reduced latency for all operations
that use file metadata in some way.

Another area worth exploring is reducing the cache overhead for the read system call. Currently,
pages are page-sized and zeroed on initialization, whereas we might want to store a partial page,
leading to unnecessary memory usage and overhead. Investigating techniques such as lazy allocation
could help reduce this overhead, further increasing performance.

Finally, another important direction would be to explore cache invalidation mechanisms, such as
time-based expiration or remote change detection, to reduce the risk of stale data in environments
where files can be modified outside of the current client, like mentioned in Section 7.2. These
improvements would make the caching system more robust and adaptable to real-world use cases.
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8 Conclusion

The increase in per-operation latency for Prefuse when used with SSHFS, as identified in the Prefuse
paper [12] and confirmed by our measurements (Figure 5), is primarily due to the absence of a
caching mechanism. This finding directly answers Research Question 1.

While introducing a page cache reduced read latency to approximately one quarter of the original,
we aimed to more closely replicate the kernel’s caching behavior by leveraging file metadata, such as
file size. This led to the implementation of a dedicated metadata cache. Together, these two caches
significantly improved performance for operations that make direct use of cached data, most notably
read and stat, which saw speedups of 84% and 52% respectively. However, these performance gains
were only observed in the context of the SSHFS file system. When the same caching mechanism
was tested on the passthrough file system, no major improvements were observed; in fact, most
operations showed a slight decline in performance. The passthrough FUSE file system directly
accesses files stored on the local file system, thereby already leveraging the local kernel’s page cache.
Consequently, adding a user-space cache via Prefuse results in redundant (double) caching without
any measurable performance benefit, and should therefore be avoided in such cases.

This answers Research Question 2: the implementation of a page cache and metadata cache in
Prefuse improves the performance of specific operations, namely those that directly benefit from
caching, within the SSHFS file system. However, these improvements do not generalize to all
operations or file systems.

In conclusion, adding a metadata cache and page cache to Prefuse significantly improved performance
for the SSHFS file system, while it had an adverse effect on the passthrough file system. This
highlights the importance of empirically evaluating the impact of caching and its configuration
for each specific workload and backing file system before deployment. As we have seen in this
thesis, user-space caching should be avoided for FUSE file systems that can leverage the local
kernel’s page cache, as this introduces redundant caching without tangible performance benefits.
This includes file systems that directly access files that are stored on the local file system. The
impact on performance of image-based file systems that access an image file, rather than a regular
file, on the local file system, will be investigated in future work. Nonetheless, we believe that further
extending the cache’s capabilities, applying it to a broader range of system calls, and reducing its
overhead could make it a valuable enhancement to Prefuse.
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