BSc Data Science and Artificial Intelligence

Application of Transformer Models and Mixture-of-Experts

Architectures on Pairs Trading with ETFs

David Moerdijk

Supervisors:
Marc Hilbert & Mitra Baratchi

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)
www.liacs.leidenuniv.nl July 1, 2025

www.liacs.leidenuniv.nl

Abstract

Pairs Trading (PT) is a widely used quantitative trading strategy that exploits the
price relationships between asset pairs on the stock market. Recent advancements in
deep learning have opened up possible enhancements through more accurate time
series forecasting. This study contributes to the field of machine learning by applying
proven models to a novel context. Experiments forecast time series data using the
classical statistical Kalman Filter Regression as a baseline, and benchmarked this
against a Transformer model and the model Time-MoE. Time series consisted of
price spreads between pairs of two statistically cointegrated ETFs, found through the
Engle-Granger test. The results demonstrate that the benchmarked deep learning
models are able to capture temporal dependencies with more predictive accuracy
than the baseline Kalman Filter Regression across all tested time periods. Time-
MoE consistently yielded the most accurate predictions. The Transformer model
exhibited higher variance and less robustness across time periods. This superior
prediction accuracy did not propagate through to returns in trading simulations, as
the Kalman Filter was able to more accurately capture z-score breaches, triggering
trading signals correctly in the final simulation more often caused by specifics in the
types of forecast errors each model makes. Based on current findings, pre-trained and
sparse architectures hold the greatest promise for practical deployment in machine
learning in financial contexts under alternative strategies.

Contents

1. Introduction

2. Background and Theory

2.1.
2.2.

2.3.

2.4.

2.5.
2.6.
2.7.

The Research Problem o
Existing Literature
2.2.1. Model History
2.2.2. Model PT Application
2.2.3. Feature Importance
2.2.4. Data Selection and Rationale L.
2.2.5. Pair Selection Strategy o
Overview of Applied Architectures
2.3.1. Kalman Filter.
2.3.2. Transformer
2.3.3. Mixture-of-Experts
2.3.4. Trading Strategy Based On Forecasts
Research Gap o
2.4.1. Existing Applications of Transformers
2.4.2. Existing Applicationsof MoE,
Motivation and Significance L L Lo
Academic Contribution
Research Questions

3. Methodology & Study Design

3.1.

3.2.

3.3.

3.4.

3.9.

3.6.

Methodological Foundation,
3.1.1. Adapted Components
3.1.2. New Components v v v vttt e e
Dataset Construction
3.2.1. Data Gathering
Data Preprocessing
3.3.1. Incomplete Data
3.3.2. Liquidity
3.3.3. Finding Pairs
3.3.4. Scaling
Application of Prediction Models L.
3.4.1. Kalman Filter.
3.4.2. Transformer e
3.4.3. Time-MoE
Application of Trading Simulation from Forecasts
3.5.1. Returns from Simulation
3.5.2. Theoretical Return Under Perfect Information
3.5.3. Return Score
Time Series Cross-Validation
3.6.1. Hyperparameter Tuning
3.6.2. Gathering Test Metrics Lo
3.6.3. Hyperparameter Optimization Algorithm

3.7. Accuracy Metrics

. Results

4.1. Pair Profitability
4.2, Kalman Filtero
4.3. Transformer e e
4.4. Time-MoE e
4.5. Overview Profitability & Predictability Averages Across Time Periods
4.6. Overview Profitability & Predictability Averages per Time Period
4.7. Hyperparameter Optimization Results
4.8. Visual Results of Predicted Spreads
4.8.1. Kalman Filter. o
4.8.2. Transformer
4.8.3. Time-MoE
4.8.4. Interpretation Clarification,

. Discussion & Conclusion

5.1. Discussion e e e e e e e
5.1.1. Research Questions & Hypotheses
5.1.2. Limitations

5.2. Conclusions e e e

5.3. Recommendations e
5.3.1. Future Work e
5.3.2. Amendments to Current Methodology

References

A. Appendix

A.1. Pairwise Results per Time Period
A1.1. Kalman Filter.
A.1.2. Transformer
A.1.3. Time-MoE e

B. Diagnostic Analyses

B.1. Pair Discovery
B.1.1. TR-PI All Pairs e
B.1.2. Profitability, Predictability ETF Pairs

B.2. Predictability
B.2.1. Trend Sensitivity
B.2.2. Discrepancy in Model Accuracy Between Validation and Test

B.3. Profitability
B.3.1. Predictive Accuracy vs. Economic Performance

33
33
34
34
34
35
36
37
38
38
39
40
40

41
41
41
43
44
44
44
46

51

52
52
52
55
58

1. Introduction

Machine-learning techniques have long been prevalent across different sectors, including finance.
In this sector, statistical arbitrage is a rigorously studied econometric framework that exploits
statistically significant price divergences between related assets or markets | |. As an applied
case, pairs trading (PT) is one way to translate the statistical-arbitrage concept into executable
long-short positions.

"It is hard to overestimate the influence that pairs trading has had on the industry.”
— Hudson and Thames |]

Among trading strategies used in algorithmic trading by propietary firms, pairs trading (PT)
stands out for providing an approach to apply time series predictions, based on assumptions of
mean-reversion rather than the alternative of using direct price predictions to inform trading
signals. Moreover, the method is well-documented in scientific literature, being heralded as
the simplest | | and one of the most valuable | | market-neutral strategies. Despite
the surge in machine-learning advancements, most PT studies still rely on classical models or
modest recurrent networks. Transformers and Mixture-of-Experts (MoE) architectures have
exhibited performance gains in language, vision, and generic time-series tasks, yet their value for
PT remains largely unexplored. Addressing that gap, this thesis aims to serve as exploratory
research into differences between these two deep learning architectures and classical statistical
methods.

Only a handful of papers benchmark Transformers for PT, and so far no published study has
tested a sparse, pre-trained Mixture-of-Experts architecture such as Time-MoE in the current
context. This is analyzed in further detail in section 2.4. By measuring how these state-of-the-art
models perform compared to a classical Kalman Filter across five rolling out-of-sample windows,
this thesis fills a clear empirical gap and eventually analyzes the trade-off between raw predictive
power and economic pay-off in PT with ETFs.

The purpose of this investigation is to determine to what extent the two deep learning architectures
can improve one-day-ahead ETF-spread forecasts, and how those improvements translate into
higher returns. Answering this question requires three operational steps that unfold within the
same experimental pipeline. First, the study identifies cointegrated ETF pairs. Second, it assesses
the prediction accuracy of the models receiving identical features. Third, it converts those
forecasts into a common z-score mean-reversion strategy using a simulation and compares the
realised Return Scores. The remainder of the document unfolds as follows. chapter 2 reviews the
theoretical foundations, surveys deep learning advances relevant to PT and sharpens the research
gap. chapter 3 then explains the full experimental design, including the implementation details
of each model. chapter 4 presents the empirical results, pair-selection diagnostics, predictive
accuracy figures and trading simulation outcomes, while chapter 5 interprets those findings,
relates them back to the research questions and discusses limitations such as trend sensitivity
and assumptions proven to be false in section 5.1, whereas section 5.2 draws the main conclusions
and answers the central research question. Finally, section 5.3 sketches avenues for future work,
while also emphasizing how methodological design could be improved.

2. Background and Theory

2.1. The Research Problem

This study looks into the application of different models into Pairs Trading; PT, which can be
explained as follows. When one asset’s price is predicted to drop compared to the other, capital is
allocated to the cheaper asset (go long), while selling short ! the more expensive asset (go short).
The expectation is that their prices will realign over time, creating a profitable opportunity. This
specific method will be examined because the problem of forecasting a univariate spread for the
purpose of guiding a PT strategy is well-suited to be solved by machine learning techniques.
Machine learning performs well at predicting inherently noisy, complex and nonlinear time-series
data. Besides the methods being well-suited for application, there is a notable research gap
regarding the application of advanced deep learning architectures to this domain, as discussed in
greater detail in section 2.4.

2.2. Existing Literature

Since Gerry Bambeger introduced PT in the 1980s, the method has generated trading strategies
exhibiting positive excess returns [|. In recent years, particularly over the past decade,
PT has undergone a transformation, driven by the integration of deep learning techniques and
exponential growth in computational resources.

2.2.1. Model History
Kalman Filter

In statistics, the self-descriptive term linear quadratic estimation is better known as the epony-
mous Kalman Filtering. It describes an algorithm specialized in modeling noisy data to produce
estimates of unknown variables accurately. The choice to use this model is motivated mainly by
the fact that it is one of the most basic statistical methods to forecast time series in a way similar
to more complicated machine learning models. It works similar to the machine learning models
in the way that it minimizes mean squared error |] . It is also chosen for its advantageous
properties. First, it is particularly effective at modelling noisy data, making it well-suited for
financial time series. Additionally, it is versatile: the Kalman Filter is applicable across a wide
range of environments. It is also rooted in engineering and control theory. This origin outside of
econometrics mirrors the other used deep learning architectures, Transformer and MoE.

Transformer

In 2017, two revolutional new deep learning methods have been discovered; the Transformer model

architecture |] and the Mixture-of-Experts architecture |]. These methodological
advances have yielded performance gains in natural language processing and have subsequently
been found to be readily adaptable to time-series modeling |]. The Transformer model

was introduced in 2017 with the seminal paper named ” Attention is all you need”. It introduced
a revolutionary concept, the self-attention mechanism, to existing sequence-to-sequence models.

'In statistical arbitrage, short selling involves selling a borrowed asset with the expectation that its price will
fall. This is often referred to as selling short.

This enabled the processing of entire sequences of data in parallel. Soon after, Transformer
models also proved useful for time-series forecasting, specifically being applied to financial
markets | |. As all models under current methodology take a 20-day period look-back
tensor as the context to predict spreads with single-step forecasting, a multi-head Transformer
encoder is used, in accordance with literature for its ability to process entire sequences of data

[J

MoE

Parallel to Transformer’s advances, the Mixture-of-Experts approach has gained momentum
as an innovative framework. Mixture-of-Experts (MoE) models, originally associated with
ensemble-based methods in the early 1990s, have undergone a significant transformation with
the introduction of sparsely-gated deep learning architectures by Shazeer et al. |].
This modern formulation enables scalable model capacity with limited computational overhead,
allowing for pipelines more efficient than more traditional dense architectures in deep learning.
The foundational paper laid the groundwork for scalable large-scale neural networks, being
valuable in many fields. MoE architectures scale to parameter counts on the order of billions
while preserving computational efficiency. Because only a small subset of experts is active for
each input, the effective floating-point operations per token increase only marginally. This
sparsity makes MoE models suitable both for data-scarce scenarios (e.g., crisis-period economic
forecasting, where sample sizes can drop by an order of magnitude) and for high-frequency
applications that demand sub-minute training or inference latency.

2.2.2. Model PT Application

Previous studies have examined the application of Deep Learning architectures to PT. Daniels
et al. found long-short term memory (LSTM) architectures to be the most effective for finding
PT opportunities through predicting residuals between factor models? and actual prices |].
Kaur reported the same, but by more directly predicting pair spreads with LSTMs |]
In the end of Daniels” work, the use of Transformers was recommended for better results in
future research. Later, Gradzki et al. explored the utility of Transformers in the context of
foreign exchange markets, including PT. They found it to exhibit ‘high predictive power’ |].
Therefore, this study adopts the model recommended by Daniels, using Kaur’s methodology as
the reference baseline. Although Gradzki’s work provides additional evidence of Transformers’
potential, it did apply this methodolofy to ETF's, as was examined by Kaur and Daniels. To get
a deeper understanding of differences in deep learning architectures, this study will also examine
the application of another deep learning architecture.

The Mixture-of-Experts approach, an architecture originally introduced to deep learning by
Shazeer at al. in 2017, has also shown high predictive power in time-series models | |. In
contrast to the widespread adoption of Transformer-based models, Mixture-of-Experts (MoE)
architectures remain underexplored. To date, existing literature includes only a single study
focused on portfolio optimization [|, another on stock price prediction [|, and,
most notably, no known studies into its use for PT. As discussed in section 2.4, the MoE model
has demonstrated empirical robustness. This motivates its evaluation in the present study. More
specifically, the foundation model Time-MoE |], published in 2025, integrates MoE
with transformer-based architectures for time series modeling. It represents a recent effort to
improve time series models, and its superior capability and efficiency through outperforming
dense models of equivalent computation budgets position Time-MoE as a state-of-the-art solution
for time-series forecasting.

2.2.3. Feature Importance

In machine learning, identifying which features significantly contribute to performance is a
crucial step in developing a robust pipeline. Through analysis of variance (ANOVA), Niaki and
Hoseinzade found that important features for binary ETF price prediction were the returns of the
5 biggest companies and current exchange rates excluding past returns, volume and indicators
[]. In foreign exchanges, Aloud used Genetic Algorithms (GAs) to find that fundamental
analysis contributed very little to the model’s accuracy |]. Across extended prediction
windows, specifically the 20- to 60-day look-ahead horizons, Liew and Mayster reported that a
univariate model leveraging trading volume as the sole explanatory feature minimized forecast
error relative to any higher-dimensional feature sets. For shorter timespans, they recommended
”that model builders use a wide range of features guided by financial experiences and intuition’
[]. In the context of 5- to 60-day horizons?, prior research and domain knowledge suggest
that fundamental analysis contributes minimally to predictive performance. Accordingly, this
study defines the input tensor as X; = [py, ..., p19] where p; is the closing price, thereby minimizing
feature space dimensionality and eliminating a priori assumptions on feature importance. The
look-back window of 20 days is chosen based on literature research rather than a systematic
optimisation of the window size.

)

2Factor models, such as e.g. the Fama-French model, explain asset prices using a linear combination of economic
or financial factors.

3This is a similar range to the range used in this experimental design. For the trading strategy, a z-score is
calculated based on a short-term mean and standard deviation (5-day time horizon) and long-term mean
(30-day time horizon)

2.2.4. Data Selection and Rationale

The choice of which assets to use is a critical factor in ensuring the robustness of the end of the
pipeline; the trading simulation. The following factors underpin the selection of exchange-traded
funds (ETFSs) listed on the NYSE and NASDAQ. Firstly, according to Rudy et al., "one of the
greatest risks known for pair trading” is the fact that companies behind shares can go bankrupt.
They found that this risk is effectively eliminated by limiting the total set of possible assets
to ETFs. ETFs do not have a possibility of a total loss as one cannot become bankrupt. This
results in a more consistently profitable strategy. Second, one of the biggest advantages of ETF
pairs over stock pairs is how the fundamental economics of ETFs are more mean-reverting,
and thus pair cointegration is less likely fo fall apart |]. Third is the identified research
gap. As mentioned in section 2.4, other markets such as the Brazilian market have been tested
for ETFs, but not the U.S. market. Fourth is the consideration of liquidity. U.S. markets are
known for their high liquidity, which is crucical for efficient execution of pairs trading strategies.
In a later step of the pipeline, illiquid ETFs will also be removed from the total set to limit
the exponential growth of the combinatorial problem. Fifth is the specific suitability for deep
learning architectures through dataset size. Transformers and MoE-architectures are are data
hungry models. Therefore, a market that has a large size of possible ETFs and a long history of
prices ensures them to reach their potential more fully. Considering these factors, this research
focuses on ETFs listed on the U.S. market (NYSE & NASDAQ). They are expected to provide
the most relevant and insightful results for the deep learning models explored in this study given
the research objectives.

2.2.5. Pair Selection Strategy

For pair selection strategy, there are two viable approaches. The first approach would be a sector-
based strategy |]. Many ETFs are created as a bundle of assets inside a specific business
sector, with the aim of giving the investor the possibility to invest in an entire sector at once.
There is ongoing academic debate regarding how this affects the predictability and profitability
of the resulting pairs. Ter Horst found a significant difference in accuracy between different
sectors, ranging from a test RMSE of 5.97 in the real estate sector to 60.21 in the information
technology sector |]. To further support this, Do and Faff report that within-industry pairs
tend to have higher absolute returns | |. Other studies however, find the opposite to be true.
Singh and Khushi fail to reject the null hypothesis that there is no significant difference, finding
no significant improvements in performance for their ML model [|. Moreover, Sarmento
and Horta found that using sector-based analysis for finding ETF pairs leaves ”a small margin
for profit” [].

The second possible approach is to select pairs based on the statistical properties of their
time series. In 2006, Gatev, Goetzmann, and Rouwenhorst found a performance of negative
mean returns (-1.37%) for random pairs picking, as compared to 1.44% MoM | |. Zhu
examined whether these findings still hold in more modern contexts. They found in 2024 that
the classic distance-based method still yields 6.2% annual excess return and a Sharpe ratio of
1.35. Therefore, they conclude that opportunities still exist in modern markets [].

This study makes use of the Engle-Granger method for finding mean-reverting ETF pairs |].
This is firstly due to the absence of consensus on sector-based analysis. The modern shift in
ML-based pairs trading towards statistical approaches also substantiates this. As further support,
this study focuses on finding models that provide robust performance under varying market
conditions. Statistically grounded pair selection strategies offer a more data-driven foundation
than sector-based approaches. Correlations within a sector can become unstable under volatile
market conditions.

2.3. Overview of Applied Architectures

This section examines the underlying architecture of each model. The fundamental structure of
each model is analyzed as well as the characteristics of forecasts the model might be expected to
make. Eventually, the time series forecasting problem is mathematically formulated.

2.3.1. Kalman Filter
Model Architecture

In statistics, the self-descriptive term linear quadratic estimation, which is better known as
the eponymous Kalman Filtering, describes an algorithm specialized in modeling noisy data to
produce estimates of unknown variables accurately. For the application in this study, it is utilized
as a baseline classical statistical model*. While originally often used in guidance, navigation and
control of vehicles, Kalman Filtering has also been found to be useful in applications in time
series analysis, such as signal processing and econometrics |]. Kalman filtering comprises
two sequential steps. The first is the prediction phase, used for predicting the spread in the
methodology (chapter 3):

X¢i—1 = Fx¢—1 + Burg + wy (2.1)

Py =FP,_ F' +Q (2.2)

With x;;_; the predicted value at time step ¢ (using all values, known as the state, up to time
t — 1 to make this prediction), before applying the new measurement, F the transition matrix
(controls to what extent the state is updated), B the control matrix, ut the control input vector
at time ¢, P the covariance matrix (representing the uncertainty in the prediction of the value),
Q the process noise covariance matrix, w; the noise at time ¢ (with the error noise not perfectly
Gaussian in the case of the spread in the current study).

Then, the second step is correction of the current model, consisting of:

Yt =7zt — Htxt|t—17 (2.3)

with ¥; the measurement residual (how unexpected the actual measurement is), z; the actual
measurement at timestep ¢, H the observation matrix,

K; = Pt|t—1HT(HPt|t—1HT +R)™, (2.4)

with K; the Kalman Gain at time ¢ (determines the weight given to the measurement in updating
the estimate) and R the measurement noise covariance matrix.

Xyt = Xyjt—1 + Kiye, and (2.5)

Pt|t =(I- KtH)Pt|t—1 (2.6)

with I the identity matrix. Conceptually, the prediction step uses no new data, it projects
forward based on what is expected of the system. The correction step adjusts this prediction
based on the actual observation at the current time step. The residual from that is then used to
update the state estimate x;; and the uncertainty Py;.

This theoretical foundation is crucial for understanding the behavior and interpretability of the
filter’s outputs. However, practical implementation is streamlined through modern libraries, as
further detailed in chapter 3.

“In this paper, Kalman filters are classified as classical statistical models because they rely on explicit Gaussian-
noise assumptions, identical to those employed in linear regression and ARIMA models. This classification
draws a distinction between traditional econometric frameworks and deep learning approaches to time-series
prediction.

Implementation Details

Applying Kalman Filters to PT can be done in several ways. This study applies a two-step
Kalman approach, based on Kaur’s methodology |]: (1) individual smoothing of each ETF
price series using a simple > Kalman Filter, followed by (2) recursive Kalman Filter Regression
in the form of a linear model y; = 5; - x+ + a4 + €;, which models a linear relationship between
the smoothed series. In short, this is done by recursively updating the estimates o and 8 at each
timestep t, based on the incoming price data x; at timestep t.

Considerations of Gaussian Assumptions

The Kalman Filter is theoretically an optimal estimator under the assumption that the noise
is Gaussian. This assumption represents a known limitation of the method. Empirical studies
reveal that the distribution of spreads between cointegrated asset pairs exhibits statistically
significant deviations from Gaussian distributions, exhibiting heteroskedasticity |] and
"much heavier tails” []. It must be noted that a misconception in literature is that applying
Kalman Filters to non Gaussian data is not applicable, with Uhlmann and Julier finding roughly
a dozen such instances []. They report that it is still a rigorous application.

Using exclusively classical statistical methods, it is difficult to overcome such assumptions, as
these methods often rely on fixed distributional assumptions. Therefore, this study proposes
to apply deep learning-based approaches to time-series prediction, which are more flexible and
can learn from data without requiring explicit parametric assumptions about underlying noise
distributions.

2.3.2. Transformer
Model Architecture

Deep learning models offer a powerful alternative to classical statistical methods for time
series prediction. Transformer, being a deep learning model, makes no strong assumptions
about the underlying data distributions. The core advantage of the Transformer model is its
ability to capture long-range contextual relationships between datapoints through self-attention
mechanisms.

Transformer doesn’t have an inherent understanding of the order of input tokens as Recurrent
Neural Networks (RNNs) do, because all its layers are feed-forward. To still have contextual
understanding of position, Transformers inject positional encodings into input tokens. The
positional encodings utilized in the traditional Transformer model are absolute. Subsequent
sections will examine alternative forms of positional encoding ©.

The traditional architecture, in the form it was originally proposed in the paper by Vaswani et
al [|, consists of N encoder layers, and N decoder layers, where N = 6. The encoder
layer consists of (1) a multi-head self-attention sublayer, and (2) a fully connected feed-forward
network. All sublayers receive a residual connection, followed by normalization, which is referred
to in the Figure 2.1 as Add & Norm.

The decoder layer contains the same two sublayers as the encoder, but with the addition of a
third sub-layer, which comes before the two, applying masked self-attention. Decoders will not
be explained in further detail, as only the Encoder of a Transformer is explicitly applied in this
study. It is implicitly applied as the ezperts in the subsequent model Time-MoE are Transformer
decoders. Of multiple forms of attention that exist, this architecture uses scaled dot-product

®Simple’ refers to using it as a denoising tool, without applying regression. It is modeled using a 1D model
rather than the 2D model used for regression. This model is of the form x; = xt—1 + we, 2t = x+ + v+, where wy
and v; represent process and measurement noise respectively. More explanation is detailed in chapter 3.

8See subsection 2.3.3 for Rotary versions of encoding, where the transformer ezperts from the Time-MoE
architecture use this alternative form.

10

QOutput
Probabilities

Add & Norm
Feed
Forward

Muti-Head
Attention

Add & Norm

N

Add & Norm
Masked
Muiti-Head
Attention

A)

Add & Norm

Mutti-Headl
Attention

¥

\u J

Positional
Encoding

Input Output
Embedding Embedding

Inputs Qutputs
(shifted right)

Figure 2.1.: General Transformer Architecture, Using Encoder and Decoder |]

attention. It is multi-headed and self-oriented. Attention is calculated by applying the formula

. QKT
Attention (Q, K, V') = softmax V, (2.7)
Vg
scaling the dot-product terms by 1/d. This scaling, first proposed by Vaswani et al.| 1,

mitigates the vanishing-gradient problem by keeping the soft-max logits within a range where
the resulting gradient magnitudes remain computational.

Then, to achieve multi-headed attention, multiple heads of attention are calculated (and later
trained during backpropagation) in parallel. This means that the model is not only able to
attend to a single part of the input tokens at one time, but many different tokens in parallel.

L
Scaled Dot-Product J& \
Attention B

| l |

AL AL AL
Linear Linear Linear

vV K Q

Figure 2.2.: Multi-headed attention |]

As seen in Figure 2.2, these heads are then concatenated h times. Conceptually, this is what
gives the Transformer architecture its ability to capture such complex contextual relationships.

11

Implementation Details

Applying a Transformer model to forecast a univariate spread does not necessitate applying
modifications, as the model exhibits "high predictive power” in time-series prediction for intraday
and end-of-day (EOD) prices, in contexts such as forex trading | |, stock price prediction
[|, bonds | | and generally financial time series | | as was mentioned
in subsection 2.2.1. So while the Transformer architecture is already capable of producing
competitive timeseries predictions in its standard form, some changes can improve Transformer’s
performance in this specific context. Single-step forecasting does not benefit from including
a decoder in the architecture. Therefore, a transformer Encoder is used as the architecture,
allowing for its ability to process entire sequences of data, namely the 20-period look-back
window in the methodology of this study. chapter 3 explains the details of this implemented
FEncoder architecture.

2.3.3. Mixture-of-Experts
Model Architecture

A core advantage of MoE architectures over dense architectures is its sparse activation mechanism.
This allows getting significant improvements in model efficiency, while still enjoying the benefits
of multiple billion-parameter architectures. The gating network, as seen in Figure 2.3, has an
output G(X); for each expert i, known as the gate value. This value details how much that
expert should contribute given the current input z. In the case of Figure 2.3, G(x); and G(x)2
are the only non-zero gate values, and therefore the only experts used in the context of the

figure.
=

MoE layer

6(x),

Expert n

Figure 2.3.: Graph of a single MoE layer. In the specific case above, we see there are n experts,
and only 2 out of n are chosen. This demonstrates the sparse element of the MoE
architecture.

Sparse traninig in MoE does have some limitations. Most notably, MoE architectures often face
the problem of routing collapse”, where a few experts dominate in learning when focusing solely
on optimizing prediction error. This problem can be mitigated, as explained in more detail
hereafter.

"the term seems simultaneously coined in October 2023 by Chen et al. | | as well as Ostapenko [.

12

Implementation Details

To implement the MoE architecture, an existing architecture is used. Time-MoE is a pre-trained
MoE model. Released in 2025 by Shi et al., it introduces several critical innovations beyond
standard MoE architectures. As a way to mitigate routing collapse, an auxiliary loss has been
found to mitigate this effect by Dai et al. for the development of Switch Transformer |].
The formula for this auxiliary loss as used in Time-MoE is given in Equation 2.8:

N
Louwx = NZ firi, where
i=1
1 T
!ﬁ _'}{71;;;], and (2 8)
1 X
Ty = f Siyt
t=1

where f; represents the fraction of tokens assigned to expert ¢, r; denotes the proportion of
router probability allocated to expert i, N the number of experts, and I the indicator function
[)

Another advantage of the model, distinguishing it from task-specific models with fixed horizons,
is its flexible horizon length and context window. This is possible due to its decoder-only
transformer architecture with rotary positional embeddings, as explained in the section before.
See Figure 2.4 for the architecture of a single attention layer with RoPE. Third, the model
utilizes multiple-resolution forecasting. With P forecasting heads, each head predicts the next
p; steps (p; being the forecasting horizon for P, like 1, 8, 32, ..). This makes the model more
robust and generalizable across applications. Fourth, the model is pre-trained on a dataset coined
Time-300B, "the largest open-access time series data collection comprising over 300 billion
time points across 9 domains” | |. Lastly, Time-MoE emphasizes practical deployment
through its sparsity by scaling to 2.4B total parameters with only 1B activated, making it
efficient for inference on modest hardware.

Rotary Positional Embeddings (RoPE) improve upon traditional positional embeddings
by encoding relative distance between time steps rather than absolute position. This allows the
model to better generalize to longer or unseen sequences. RoPE was introduced by Su et al in
2021 [|. Figure 2.4 shows an attention layer which incorporates RoPE inside the layer.

Conecat

Iﬁwsrn

Scaled Dot-Product
Attention

$3 |
[“"fﬂ') | “F) “'F*')

Q K v

Figure 2.4.: A single attention layer in the Time-MoE architecture, utilizing RoPE to achieve
flexible inputs.

This embedding is used in the Transformer models inside of the Time-MoE model.

13

2.3.4. Trading Strategy Based On Forecasts

The preceding sections have outlined the theoretical foundations for generating price spread
predictions using various modelling techniques. Despite the difference in underlying methodology,
the output of these predictions are of identical form regardless of the model. The z-score trading
strategy is a method to simulate returns based on the generated predictions. Note that the main
aim of this paper is to compare models across various measures. This strategy allows for an
additional dimension in metrics. Specifically, the focus lies on assessing the returns a model can
achieve compared to its maximum theoretical ability, as detailed further in subsection 3.5.2.
A straightforward method to translate spread predictions into signals is to use the z-score to
generate these signals. The exact methodology for this is described in section 3.5. Once the
model has been used to predict the spread between two cointegrated assets, the trading strategy
is constructed based on the principle of mean reversion, meaning that the spread fluctuates
around a stable long-term equilibrium. Deviations from this mean equilibrum are used to create
a signal for a trading opportunity.

As mentioned before, the aim is not comparing portfolio allocation methods to find the optimal
trading strategy. Therefore the simplest method using the z-score is applied. For completeness,
some other methods that are comparatively more complicated of translating spread predictions
into signals are the Bollinger-Band rule | ,] or Ornstein—-Uhlenbeck (OU) entry/exit
levels (also based on mean-reversion) | |. Moreover, using the forecasted version of
other series such as directly forecasting price of each asset can be used to generate signals
through the same methods as mentioned before.

2.4. Research Gap

2.4.1. Existing Applications of Transformers

Previous studies have applied Transformers to stock price prediction in general contexts
[,]. In contrast, research of specifically ETF price prediction has predominantly
utilized RNN architectures such as LSTM |], or BILSTM and CNNs |]. These models
remain the current state-of-the-art for ETF price forecasting, while more advanced deep learning
architectures have not yet been extensively explored or benchmarked in this domain.

One such example of the use of mean-reverting ETF pairs for statistical arbitrage with deep
learning is the application of Transformers for ETF pairs arbitrage in the Brazilian market
[|. However, no studies have yet been known to address this approach for ETFs in the
U.S. market using Transformers. Their effectiveness has been empirically demonstrated in U.S.
pairs-trading across multiple asset classes; Gradzki (2024) reports that Transformer architectures
outperform LSTM networks in high-frequency foreign-exchange trading | |. This presents a
promising avenue for further research into the application of Transformers to ETF-based pairs
trading.

2.4.2. Existing Applications of MoE

To the best of my knowledge, there is currently no scientific research available on the application
of MoE architectures to statistical-arbitrage applied on ETF pairs. MoE models are beginning
to demonstrate their potential in stock time series modeling; one study explored its application
to portfolio optimization | | and one at general stock price prediction |].

The recently proposed Time-MoE architecture has potential for this specific approach. It has been
pre-trained on financial data as one of nine domains, and it is possible that it provides a more
nuanced and reliable forecast compared to a vanilla Transformer Encoder architecture | |-
An other possible MoE-based time series foundation fodel is Moirai-MoE, which is not chosen

14

due to underperformance compared to Time-MoE | |. Many other open-source large time
series models are dense architectures, such as Chronos | | and Timer | |. Seeing
as Time-MoE is released in the same year as the current work, direct applications of Time-MoE
in the literature remain limited. A thorough review of papers citing the original Time-MoE
model reveals that most citations originate from studies proposing alternative architectures
or methodological comparisons, rather than practical implementations. However, there are
exceptions: at least three recent studies have successfully applied Time-MoE to real-world
forecasting tasks, including supply chain management [], agricultural price prediction
[], and continual learning for time series data |]. Detailed analysis of the findings
of these studies respectively show that fine-tuning the model results in consistent improvements.
As well as the model forecasting the most accurately in monthly vegetable-price predictions, and
finding that it ”struggles with the irregular and volatile nature of short-term price fluctuations”.
Lastly, the model performed best in incremental learning, an approach where a machine learning
model learns from a continuous stream of data over time. Incremental learning is not implemented
in the current methodology. It does provide interesting insights for future work, as discussed
in section 5.3. These works overall highlight Time-MoE’s strong performance in challenging
settings, such as forecasting after fine-tuning, and underscore its potential for robust adaptation
across domains. The demonstrated robustness of the model provides a compelling rationale for
its deployment in this setting.

2.5. Motivation and Significance

Bridging this research gap is significant for several reasons. First, the gap represents a research
area with limited prior exploration despite "machine learning and neural network models
consistently [outperforming] traditional forecasting methods in terms of precision and robustness”
[]. While both architectures have shown significant promise in time-series prediction,
their performance in statistical arbitrage remains untested in this context of ETF PT in the
US market. Second, by grounding the study in this domain, the work facilitates the analysis of
core differences between Transformer-based and MoE-based models. Further, the comparison
highlights trade-offs in architectures such as absolute vs rotary positional encoding, sparse
vs dense training, pre-trained vs random® initialization. Third, ETF pair spread prediction
is a testbed from which we can learn many aspects. This can help bridge the gap between
academic model innovation and applied machine learning in noisy, high-dimensional environments.
Application to other domains is further explored in subsubsection 5.3.1. For example, this allows
for a comparison against findings of previous applications of the model to other contenxts, such
as previous claims that the model struggles with the volatility of shorter time frames [|-

2.6. Academic Contribution

In quantitative finance academia, research often explores trading strategies for two primary
purposes: to challenge the Efficient Market Hypothesis (EMH) | | by finding inefficiencies
in the pricing of certain assets, or to compare state-of-the-art techniques to existing techniques
for comparison in terms of profitability and risk. This paper will contribute in the way of the
latter. This will have multiple consequences for prioritisations. Absolute profitability will be
of secondary importance. Instead, emphasis is placed on the relative performance of advanced
models against existing proven techniques, rather than against baselines such as a buy-and-hold

8Transformer often initializes its weights strategically random, using specific methods such as Xavier or Kaiming
initialization. Radford et al. found a weight initialization method to scale across layers when developing GPT-2,
where scaling the weights of residual layers by ﬁ7 with N the number of layers, preventing the accumulation
of activations in layers by scaling down. This study uses Kaiming, Xavier and standard normal distribution
initialization for several parts of the Transformer initialization.

15

strategy. As a consequence, a measure coined Return Score is introduced in subsection 3.5.3.
Return scores are compared between models, rather than the Sharpe Ratio, a common metric
in quantitative finance academia. This paper will contribute academically by applying proven
state-of-the-art architectures in time series stock prediction to a new dataset: prediction of the
price spread between two ETF's.

2.7. Research Questions

Despite the rise of deep learning architectures, there remains limited empirical understanding of
how the examined models compare quantitatively in accuracy and trading performance, and
qualitatively in terms of robustness and diverse applicability. This study aims to bridge that
gap by evaluating whether the recent advances of Transformers and Time-MoE offer measurable
improvements over classical statistical methods.

Research Question:

To what extent can the Transformer and finetuned Time-MoE model
improve price spread prediction between two ETFs relative to a classical
statistical Kalman-Filter approach?

Operational Sub-Question 1 (Pair Discovery). Among all sufficiently liquid ETF's
listed on the NASDAQ and NYSE, which pairs of two ETFs exhibit the strongest
cointegration scores according to the Engle-Granger two-step cointegration test?

Operational Sub-Question 2 (Prediction Accuracy). Which model architecture at-
tains the lowest mean-squared error (MSSE) when forecasting that pair’s price spread?

Operational Sub-Question 3 (Profitability). Which model architecture yields the
highest Return Score when its forecasts drive a z-score mean-reversion strategy?

16

3. Methodology & Study Design

This section outlines the steps taken to develop a data pipeline for pairs trading using Kalman
Filters, Transformers and the Time-MoE architecture, with the goal of describing the exact
methods. The methodology consists of multiple steps: data collection and preprocessing, picking
pairs, baseline model implementation (Kalman Filter), Transformer implementation and Time-
MoE implementation, followed by a trading simulation based on all model’s predictions.

3.1. Methodological Foundation

A key aspect of the methodology is that it builds upon the foundational work by Kaur, particularly
the Python codebase described in |]. The findings of the work were first manually validated.
Elements of the original implementation were then directly incorporated and subsequently
modularized into distinct functions to enhance code clarity and reusability.

3.1.1. Adapted Components

Other components from Kaur’s methodology were initially adapted in their existing form and
then modified to align with the specific requirements of this research: (1) finding cointegrated
pairs through the Engle-Granger test, (2) Kalman Filter Regression and (3) A z-score trading
strategy. An important caveat in Kaur’s implementation of Kalman Filter Regression is the
introduction of look-ahead bias due to applying z-score normalization using statistics computed
from the full time series, thereby incorporating future information into past predictions. Further
explanation on z-score scaling is given in subsection 3.3.4

3.1.2. New Components

Furthermore, several components were designed and implemented independently to address
unique aspects of this study: (1) gathering data of all NYSE and NASDAQ-listed ETFs', (2)
caching logic for retrieving exact same data to improve replicability of results (2) filtering raw
data based on incomplete time series and liquidity, (3) filtering resulting pairs data, (4) designing,
training and inferencing the Transformer model, (5) training and inferencing the Time-MoFE
model, (6) designing supporting functionalities for gathering results, e.g. the Return Score as
mentioned in subsection 3.5.3 and (7) all logic for diagnostic analyses. The methodology of (7)
is not described, but results can be found in Appendix B.

Accordingly, in the following methodological subsections, each step is described in detail based
on the final implementation, rather than documenting the granular differences between this work
and Kaur’s original approach.

Though Kaur’s study incorporated the collection of stock price data, this process was facilitated using a
deprecated software package that has been nonfunctional since the release of Python 3.

17

3.2. Dataset Construction

3.2.1. Data Gathering

The dataset, comprising historical closing prices for all ETFs traded on the NYSE and NASDAQ),
was obtained using the yfinance Python module | |, which retrieves financial data from the
Yahoo Finance platform |]. Python’s yfinance library does not directly offer a method to
gather the data on which assets exist, what type of asset they are, and on which exchange they
can be found. For that first step, yahoofinance’s ETF screener was used []. A webscrape
of all ETFs gave a total of 871 tickers® for the largest time period 2008-2024, as it is a superset
of ETFs found in the subperiods introduced further in the methodology through expanding
windows. 777 of the tickers provided were valid. Given a valid ticker symbol, the yfinance library
enables the retrieval of comprehensive historical market data for a specified asset. This dataset
includes, but is not limited to, the asset’s opening and closing prices, intraday price points, and
daily trading volume. While the present study will focus on utilizing closing prices as the primary
feature for model training, the established data pipeline is readily adaptable for alternative price
intervals (with the shortest intraday interval being supplied by yahoofinance specifically being
per-minute) or additional metrics, such as trading volume forecasting.

3.3. Data Preprocessing

3.3.1. Incomplete Data

From the 777 ETFs in the sample, some ETFs do not have observations spanning the full
analysis period due to varying inception and closure dates. For example, certain ETFs were only
launched at a date after the start of the training window, while others ceased trading before the
end of the test window. As a result, the set of ETF's included in the analysis for a given period
depends on data availability. To illustrate, 101 out of the initial 777 ETFs have a complete
series of closing prices and are retained for analysis for the period starting 2008/01/01 and
ending 2024/12/31. Differences can be found within the expanding windows ending between
2016 and 2024. A further analysis on this concept, further referred to as data availability is given
in subsubsection 5.1.1.

2Tickers are unique identifiers for assets on an exchange. For example, accessing Vanguard Total International
Stock Index Fund ETF can be done through its unique accessor VXUS.

18

3.3.2. Liquidity

To ensure higher data quality, another step of filtering has been added; a minimum threshold
for liquidity. Given that the intended strategy will be executed on a per-day basis, the required
liquidity levels are not as stringent as those necessary for higher-frequency contexts (per-minute
or per-second). An illustration of the liquidity of the current pool is given in Figure 3.1 using a
logarithmic histogram. For the remainder of 101 ETFs, the average volume is taken to give an
idea of the distribution of trading volumes across assets. This illustrates that the average Daily
Trading Volume (DTV) predominantly ranges between 10* and 10°.

Histogram of Average Volumes (Log Scale)

10% 10° 108 107
Average Volume (log scale)

Figure 3.1.: Histogram of Daily Trading Volume (DTV) for all ETFs

Based on this distribution, a threshold of 10° was selected, as it lies near the center of the
observed volume range and serves to exclude the lower tail of the distribution, thereby retaining a
sufficiently large pool of assets while mitigating the risk of low-liquidity artifacts. It is important
to note, however, that daily trading volumes can fluctuate throughout the observed period. In
addition to enhancing data quality, applying a minimum volume threshold aligns the experimental
conditions more closely with real-world market environments. This reduces the price impact
of individual trades. Given that the subsequent simulations at the end of the pipeline operate
under the assumption of negligible market impact, restricting the asset pool to higher-volume
securities minimizes the discrepancy between this assumption and actual market behavior. As
such, this filtering step not only improves the robustness of the dataset but also increases the
external validity of the simulation results.

3.3.3. Finding Pairs

Once the data has been filtered on completeness and liquidity, the Engle-Granger test is performed
on the train window. Using a brute force search, a p-value indirectly based on the closing price
of all respective pairs is calculated 2
For each possible pair of stocks S! and S2, an ordinary least-squares (OLS) regression is executed
with the first ETF’s closing price time series P! 4 as the independent variable and P? as the
dependent variable plus a constant shift c¢. Including the constant ¢ allows the spread to revert
to a non-zero mean; omitting it would force the long-run mean to zero. The regression equation
is given as:

pi=a+B-pi+e (3.1)

where « represents the equilibrium spread level between the two assets, 5 is the hedge ratio, and
€; is the spread residual representing temporary deviations from the equilibrium relationship.
To test whether the spread is stationary, an Augmented Dickey—Fuller (ADF) test is applied to

3the formula is applied directly from the stattools implementation [SP10]. An examination of equations applied

for this implementation is given in this section.

= [n]

19

the spread residual €, not adjusted for constants. The ADF test regression is:

l
Aer = yer—1 + Z GiAer—; + uy (3.2)
i=1
where [is the number of lags (determined by AIC criterion), and w; is the error term. The ADF
test statistic is:

~

4
SE(¥)

Lastly p-values are extracted from the ADF statistic , which is estimated using MacKinnon’s

approximate p-value [Mac94]:

p-value = @ (i Ti - (ADF)i> (3.4)
i=0

where @ is the cumulative distribution function of the standard normal distribution, and 7; are
the MacKinnon coefficients that depend on the regression type (in this case, only a constant)
and sample size. All pairs for which the closing prices P! and P? yield a p-value less than 0.05
are retained for further analysis in the pipeline. Figure 3.2 shows the amount of resulting pairs
with sufficiently low p-values out of the total set of combinations over all studied years.

Number of Pairs Found per Year (p<0.05)

100

80

60

40

2

0
2016 2017 2018 2019 2022 2023 2024

Figure 3.2.: Number of sufficiently cointegrated pairs for all validation and test windows.

Number of Pairs Found

Year

For further filtering, pairs with a perfect cointegration score of 0.00 are filtered out, as these
stem from different tickers tracking the exact same closing price. The spread is always zero, a
time series not possible to exploit or meaningfully predict.

20

3.3.4. Scaling

In this study, z-score normalization is chosen as the principal scaling method. Under z-score
normalization, each time series is transformed to have zero mean and unit variance, according to:

ppom = Bt (3.5)
Ow

with p’°"™ the normalized price point of at time ¢, 1, the mean of a chosen window w and oy,
the standard deviation of a chosen window w. The window w is in practice at least the length
D of an entire year, and in the case of the train window (where look-ahead bias cannot occur)
the chosen window w equals itself wyq;,. For validation and test, the window must precede the
target window and is therefore a preceding window of length D; w = wpye,. The length of wirein
is k * D, with k the amount of years in a train window (see section 3.6). To prevent look-ahead
bias, test time series are normalized with the statistics from the window before, according to
rolling z-score normalization, using:

1
pg,norm _ p; :u’wp'rev, (36)
Twprew

with the test window wyes; spanning from ¢ = (k) « D through ¢t = (kK + 1) *« D (again, see
section 3.6). Here, fiy,,,,—1 and oy,,,,—1 are computed from a window wprey = Weest — 1 that
precedes the window wyest of length D and these are used to scale the test window. This ap-
proach ensures temporal causality is maintained and future information is not leaked into earlier
phases of model development. In the case of calculating validation metrics using time series
cross-validation, the exact same calculation is used as for test metrics, but these are gathered
from sliding time windows. Further explanation of details is given in section 3.7

3.4. Application of Prediction Models

Each predictive model operates on input windows consisting of 20 consecutive data points,
utilizing this sequence to forecast the subsequent day’s value. This approach is consistently
employed during both the training and inference phases of the models. Figure 3.3 shows an
illustration of an arbitrary time series, where the next-day prediction is made based on a
look-back window of the previous 20 days.

1-Day-Ahead Prediction, Lookback Window 20 Days

—— Ground Truth [Input Data
@ Prediction
@ Ground Truth

== Residual

¢

1 2 3 4 5 6 7 & 9 10 11 12 13 14 15 16 17 18 19 20
Days

Figure 3.3.: Example of set of input data points used to predict a 1-day-ahead

21

3.4.1. Kalman Filter

The Kalman Filter is applied consecutively in two steps. The first step consists of a one-
dimensional kalman filter, referred to as Kalman Filter Averaging. The second step executes
regression to forecast future values, referred to as Kalman Filter Regression. The two steps
are implemented with the library pykalman | |. For each asset pair, a distinct time series
is defined, denoted as P! and P? respectively. Univariate Kalman Filter Averaging is applied
independently to each time-series in order to smooth out noisy price movements through choosing
the state vector z; to be one-dimensional; x; = ¢, where i is the running mean of the observed
series. This is then applied to the target time series y; = P!, and later y; = P?, resulting
respectively in Pflilt ereq and P]%ilter ed-

Then, for the next step, Kalman Filter Regression is applied on these time series P}ilt ereq and
P]%iltered’ For this, an object is initialized taking in the observation matrix H; = [x 1]
Implementing prediction through the application of Equation 2.1 and Equation 2.2, where x; is
B
e

chosen to be a 2D vector in this case; x; = such that §; is the slope, also referred to as

hedge ratio, and «y is the intercept. This lets me define the regression equation 3.7, which is to
be used internally to estimate the regression parameters via filtered data:

1 2
Pritteredt = ﬂt *Dfiltered,t + o+ & (37)

The f; that results from fitting these state means is used to predict the spread §;41 using
Equation 3.8. This does not use filtered data as input.

Si41=D¢ + B P + e (3.8)

Here, §;11 is the predicted spread at time ¢t and ¢; is the observation noise, assumed to be
Gaussian white noise. Note that these Gaussian assumptions imperfectly model the time series
data, as mentioned in subsubsection 2.3.1. Now that approximations have been made for the
state vector, Equation 3.8 is used to predict the spread using 5; as input. Predictions are made
over sliding windows as detailed in section 3.6.

22

Hyperparameter Search Space

For the Kalman Filter model, the following hyperparameters are optimized:

e State Evolution Variance §: A parameter, with similar effects to learning rate in deep
learning methods, that controls the update speed of the Kalman gain, optimized over the
range [107°,107!] (log-uniform). Is used to calculate transition covariance Q.

e Observation Covariance (Regression): A parameter controlling the role of observation
noise in regression phase, optimized over the range [0.5,4.0] (log-uniform).

e Transition Covariance (Averaging): The average value of the process (transition)
covariance, regulating how much the system dynamics are allowed to deviate, optimized
over the range [0.001,0.1] (log-uniform).

e Observation Covariance (Averaging): A parameter controlling the role of observation
noise in averaging phase, optimized over the range [0.1, 10.0] (log-uniform).

Hyperparameter ranges are chosen through starting all hyperparameters in a small range, and
expanding this range until the optimal hyperparameter found does not reach either limit of the
range anymore, using the partial dependence plot to gauge the forecasting acuraccy’s dependence
on each hyperparameter:

delta
105 107 107 1077 107

. cov_reg
6x1071 107 2x%10° 3x104x 10°

38.30

825,
2

3820 3
3

L €

/ 3815 &

38.10

38.30

38.25
38.20 :li

€
3815 &

38.10

1 g 2x100 3x 104100

825,

2
3820 §

€
3815 &

38.10

Figure 3.4.: Partial Dependence of Each Hyperparameter on Resulting NMSE.
Example: Reducing 6 (top plot) from 107° to 1072 results in an NMSE decrease of

38.30-38.10=0.20.

23

3.4.2. Transformer

The core architecture is a Transformer encoder, implemented in PyTorch, that processes sliding
windows of univariate time series data. Time series splits are done in a rolling manner. Each
input sample consists of a look-back window of features s;_19 to s; for 20 timesteps:

Xi = {pt—v41,---,pt} (3.9)

with ¢ the look-back window of 20 time steps, and X; the time series of the previous look-
back window at time ¢. As mentioned in subsection 3.3.4 All features are scaled using z-
score normalization. The model employs a Transformer encoder architecture tailored for time
series regression. The core of the model is a stack of Transformer encoder layers njqyers, €ach
employing multi-head self-attention with npeaqs heads, and feed-forward sublayers of dimension
Niayers X dmodel, With dropout regularization to prevent overfitting. Manual evaluations of loss
behavior further confirmed the absence of overfitting. After encoding, the sequence is flattened
and passed through a small feed-forward regression head: a fully connected layer with ReLLU
activation and dropout, followed by a linear layer projecting to a scalar output. This head
produces the predicted value of $;41 for each input sequence. Hyperparameters pertaining to the
model architecture, model dimension (dodel), number of attention heads, dropout, and learning
rate are selected empirically through optimization (see subsubsection 3.4.2).

o)

Feed
Forward

Multi-Head
Attention

g_J
Positional @
Encoding

Input
Embedding

Inputs

Figure 3.5.: Single Transformer Encoder Layer

Training is performed using Mean Squared Error loss (MSE) and the AdamW optimizer. Each
training pair is subjected to a maximum of 400 epochs. An early stopping mechanism is employed
after the initial 150 epochs, utilizing a tolerance threshold of 10~® for the validation loss
improvement. During evaluation, predictions are produced for the test set and then presented in
the original scale. As mentioned in section 3.7, final test and validation accuracy is measured
in NMSE. Using the test window, 1-day predictions are made for each of the inputs by rolling
through inputs X for all ¢ in the test window. The resulting predicted spread S of this testset is
used as input to the trading strategy, as detailed in section 3.5, given by

St+1 = Transformer(X;) (3.10)

24

where §; represents the predicted spread at time ¢. The entire predicted spread then consists of

S = {gtsta'r't? A é\tend} (311)

where a test window runs from tgq = (w + k) x D + 1 through tepg = (w+ k+ 1) x D as
explained in section 3.6.

Hyperparameter Search Space

The Transformer model’s hyperparameters are divided into two categories; (1) architecture
hyperparameters, and (2) training algorithm hyperparameters. This is to ensure that the training
algorithm hyperparameters can be matched exactly to the training algorithm hyperparameters
optimized through bayesian optimization for in the case of Time-MoE.

For the architecture, the following hyperparameters are optimized:

e Model depth d,,oqe1: Specifies the dimensionality of the Transformer’s internal layers,
which impacts the model’s capacity to learn comparatively more or less complex temporal
dependencies, optimized over the range [256,512,1024] (categorical).

e Amount of heads ny..qs: The number of attention heads used in the multi-head self-
attention mechanism. See Figure 2.2, optimized over the range [2,8, 16] (categorical).

e Number of layers 7,y¢,s: The total number of Transformer encoder layers stacked in
the model, optimized over the range [2, 6] (integer).

e Dropout Rate pgrop : The dropout probability applied within the Transformer encoder
and regression head, serving as a regularization mechanism to prevent overfitting during
training, optimized over the range [0.0,0.3] (linear).

For the training algorithm, the following hyperparameters are optimized through bayesian
optimization:

e Learning rate: The initial step size used by the optimizer for updating model parameters.
A cosine learning rate scheduler is used to further progress this learning rate, optimized
over the range [1079,107%] (log-uniform).

e Minimum learning rate: The minimum value to which the learning rate is decayed
during the course of training, optimized over the range [10*6, 10*4] (log-uniform).

e Warmup ratio: The fraction of total training steps used for learning rate warmup,
gradually increasing the learning rate from zero to its initial value, optimized over the
range [0.0,0.05] (linear).

e Weight decay: A regularization term that penalizes large weights to prevent overfitting,
optimized over the range [0.0,0.3] (linear).

e Batch Size: The number of time series sequences processed in parallel during each training
step, used to compute the gradient and update model parameters, optimized over the
range [64, 128] (categorical).

For both deep learning architectures, the AdamW optimizer is used with the following
hyperparameters:

e (31: The exponential decay rate for the first moment estimates in the AdamW optimizer,
optimized over the range [0.85,0.99] (linear).

25

e [35: The exponential decay rate for the second moment estimates in the AdamW optimizer,
optimized over the range [0.9,0.999] (linear).

e c: A small constant added for numerical stability in the Adam optimizer. Affects stability
and smoothness of parameter updates, optimized over the range [10*11, 10*8] (log-uniform).

Hyperparameter ranges are chosen through starting all hyperparameters in a small range, and
expanding this range until the optimal hyperparameter does not reach either limit of the range
anymore, using the partial dependence plot similarly as explained in subsubsection 3.4.1.

3.4.3. Time-MoE

The Time-MoE model represents a model with modern transformer-style attention mechanisms.
In this application, the publicly available TimeMoE-50M model is used as the base model,
which is further fine-tuned on a train window. Training is carried out via the library’s built-in
learning algorithms according to hyperparameters such as batch size, learning rate, and all others
mentioned in subsubsection 3.4.2 []. After training on the train window, the finetuned
version of the model is used for evaluation of validation or test metrics. During the inference
phase, a rolling window approach is used on the test and validation sets, in the same method as
is done for the Transformer. The finetuned model generates a one-step-ahead forecast ($441).
The predicted spread series S is used as input to the trading strategy described in section 3.5.

Hyperparameter Search Space

For Time-MoE, the identical set of training hyperparameters is used as was done in the
Transformer’s workflow. See subsubsection 3.4.2 for an exhaustive list. Below, I outline several
hyperparameters that, while potentially subject to optimization, remain fixed in the current
experimental setup:

e Warmup steps: This parameter is already implicitly determined by the chosen warmup
ratio. Therefore, it is not independently optimized.

e Evaluation batch size: The batch size used during model evaluation does not influence the
training process or its outcomes; it is not considered as a hyperparameter for optimization.

Architecture hyperparameters are not optimized, as the model is pre-trained. Remaining hy-
perparameter ranges are chosen through starting all hyperparameters in a small range, and
expanding this range until the optimal hyperparameter does not reach either limit of the range
anymore, using the partial dependence plot similarly as explained in subsubsection 3.4.1. This is
done separately from the ranges in Transformer, resulting in a different set of ranges.

3.5. Application of Trading Simulation from Forecasts

This simulation trades based on expected mean-reverting behavior of the spread between two
assets, under the assumptions that deviations from equilibrium are temporary and will revert
over time. The forecasts predict when exactly the spread will deviate from its mean, informing
the generation of signals. At each timestep ¢, a model predicts the spread §; between asset A
and asset B. The set of predictions {$;_¢, §;} is then used to compute a short-term rolling mean
Wshort(t), defined as

t ~
ZT:tfeshort ST

) 3.12
eshort ()

Hshort (t) =

26

as well as a long-term rolling mean fio,,4(t), given by

t A~
ZT:t—Zang ST

) 3.13
Elong ()

Hlong (t) =

and a short-term rolling standard deviation ogpert(t), calculated as

t

1 .
Oshort (t) = Z (87— — HMshort (t))2' (314)
zshort Tty

Finally, the z-score at time ¢ is computed as

Piong(t) = Hshort(t
Zscore(t) = Ong(a_)h t(;)ort()
shor

(3.15)

Here, 5, denotes the predicted spread at timestep 7, while spor¢ (= 5) and £jong (= 30) are
the sizes of the short and long windows respectively, and ¢ is the current timestep for which
the signal is being created. Figure 3.6 illustrates an example of z-scores, including position and
clearing thresholds.

—— Calculated Z-score

0 p=es position threshold
==+ negative position threshold
clearing threshold
30 negative clearing threshold

R I R
& @rf’q & @9“’ & @9“

>

N ré&,@’ @@p

W N NG I
SR A N
A5 A% b 22

Figure 3.6.: Example of z-score Resulting from Arbitrarily Chosen Spread
”Threshold” Labels Show Thresholds for Signal Generation

The z-score calculated from this quantifies the extent to which the spread deviates from its
recent mean, normalized by its volatility. Or as this z-score is calculated from predictions, the
z-score quantifies the predicted deviation from its historical mean. Based on the value of the
z-score, four scenarios can be distinguished, each associated with a specific action:

1. If 2z > 6 sell asset 1 and buy asset 2 (short entry).
2. If z; < —0,: buy asset 1 and sell asset 2 (long entry).

3. If |z < O.: close all open positions (deviation from mean is not strong enough to bet on
reversion)

27

4. If 0, > Zscore > e or —0) < Zgeore < 0.1 no action is undertaken (maintaining existing
positions without liquidating current holdings)

The two threshold parameters 6, and 6. allow for a manual control of risk. As explained in
subsection 3.5.1, uncertainty calculation is executed using a grid sweep. Moreover, the ground
truth spread is used to calculate an upper bound for strategy performance. Using this upper
bound and the mean return, a metric called the Return Score is calculated, which is explain in
detail in subsection 3.5.3.

3.5.1. Returns from Simulation

To translate the z-score signals calculated from raw forecasts into an investment performance
metric, the simulation is executed across a grid of configuration parameters. The stream of
trading signals is converted into a path that the equity follows E = {ep, .., ;} with each point e,
showing the equity on that day. First, it walks through time, updating available liquidity and
the number of both pairs in the portfolio every time the z-score breaches either the positioning
or the clearing threshold. A short z-score signal (referred to in item 1 as ”short entry”) removes
a difference of Sy(t) — S2(t)§; from the liquidity account, and a long signal (referred to in item 2
as "long entry”) performs the opposite operation. A clearing z-score signal liquidates every open
position at the prevailing market price, resets both inventories to zero, and transfers the proceeds
to cash. The first element eg of the resulting equity ath E coincides with the arbitrary starting
capital eg = Cyp = 10.000, so the path can reflect an interpretable returns metric, rather than an
absolute liquidity return. This allows for a calculation of the return percentage r using

r= (:—; — 1) % 100%. (3.16)

Though in the current methodology test windows are always exactly a year long (such that
r = Tyoy by default), one could ensure returns are yearly using

Yoy = ((Z—;)D/T — 1) * 100%, (3.17)

where D is the amount of trading days in a year, and T the length of the test window and equity
path E.

Uncertainty Calculation

Uncertainty in the equity return paths is assessed by repeating the entire exercise on a parameter
grid of different combinations of position threshold 6, and clearing threshold 6.. Calculating
equity paths E under these different thresholds, each separate return percentage per run 7 is
referred to as 7(Y). Mean annual returns and uncertainty can then be calculated using

1 N
My = Z T(l)
=1

1 N
or = | > (rD —)%,

N —1¢4
=1

2|

(3.18)

where p, is the mean, o, the standard deviation and N the total amount of return percentages
r. These metrics can be used for calculating the Return Score described in, after being converted
to scalars subsection 3.5.3.

28

Total Loss of Equity

If the computed strategy equity e; hits zero at any timepoint ¢, this conceptually means there is
no more available liquidity. To prevent any possibility of overstating performance after extinction
of liquid capital, any further point of equity e, for 7 > t is set to zero. This guarantees that
simulations which reach bankrupcy cannot re-enter the simulation on unrealistically favorable
terms. Translating this into year-over-year metrics results in the following: because the terminal-
to-initial capital ratio :—é becomes exactly zero, the expression r = (z—f) —1)*100% in turn returns
-100%. In combination with the term D/T, this can give hard-to-interpret percentages’, and
therefore any such occurrences in the result are directly reported as a total loss of equity, referred
to as TLOE.

3.5.2. Theoretical Return Under Perfect Information

This section establishes the metric that will later be referred to as the theoretical return under
perfect information (TR-PI). It represents a theoretical upper bound on profitability for the
z-score trading framework described in section 3.5 when the future one-day-ahead spread, s;41, is
known without error. Let 3441 denote the spread forecast produced by a model. In the simulation
every forecast $; is replaced with the ground truth spread s;, after which, a simulation using
ground truth spread s; gives a resulting return percentage r. This percentage is the TR-PI.
Figure 4.2 illustrates §; and s; respectively as ”Predicted Spread” and ” Actual Spread”. The
trading logic (Equations 3.12-3.15) and all hyper-parameters ({short = 5, fiong = 30, position
threshold 6,, clearing threshold 6.) remain unchanged. Hence, any discrepancy between TR-PI
returns and model-generated returns can be attributed exclusively to forecast error and the
residual stochastic variability inherent in the return-generating process.

Limitations of TR-PI

The upper bound TR-PI is consistently referred to as a theoretical upper bound, as it is still
possible for predictions with an error to probabilistically outperform the strategy; the z-score
strategy operates under the assumption that a spread will likely revert to its mean over time.
This event is probabilistic and will only happen sometimes. A z-score-based trading strategy
is not deterministically profitable, so even under perfect information negative returns can be
attained, or total loss of equity (TLOE) as mentioned in subsubsection 3.5.1.

5A percentage of -100% YoY might imply that a yearly loss of exactly -100% could go on forever under those
circumstances, whereas it actually means the strategy terminated at some point in that year. Therefore, direct
percentages are replaced with ” TLOE”.

29

3.5.3. Return Score

The trading simulation gives different return percentages even when supplied with perfect
information, which makes these percentages unfairly comparable to each other. For example, a
model reaching 2% YoY returns when TR-PI was 30% should be deemed as a less profitable
forecast then a 2% YoY return when TR-PI was 3%. To offer a more reliable metric to compare
the profitability performance of different models with each other, the Return Score is introduced.
In other literature, this score is similar to the performance ratio. The mathematical formula is
given by

-1, if Troder = —1
p={N/A, if TRPI=—1 (3.19)
%, otherwise

where p is the Return Score and 7,,04¢; the actual return resulted from a model’s forecast. The
main concept of the score is that the returns resulting from ground truth information serve as a
theoretical maximum return, represented by TR-PI. The return percentage achieved by feeding
a model’s predictions into the trading strategy is represented by 7.,0dei- Tmoder 1S likely to be
somewhere below TR-PI. The closer 7,,04e; is to TR-PI, the better the model has performed.
Any score above 1.0 means 7,,04e; 18 better than theoretical maximum returns. If the returns
resulting from the perfect noiseless information are a loss of all equity, then p = —1, which will
in turn result in a TR-PI represented in final results as N/A. In chapter 4, Return Scores that
did not result in a N/A are discussed more in-depth, as the comparison between TR-PI and
T'model 18 less meaningful if TR-PI results in a total loss of equity.

3.6. Time Series Cross-Validation

To ensure results are less dependent on regime shifts®, a standard practice in time series forecasting
is implemented; Time Series Cross-Validation. The time series cross-validation strategy employs
an expanding-window framework, which respects the chronological order of observations by
sliding the validation or test window by one year in each window. Unlike traditional k-fold
cross-validation, this method ensures that future information never leaks into the training process
as the training windows are, by construction, temporally constrained to precede its respective
validation or test window.

3.6.1. Hyperparameter Tuning

To evaluate model performance, data from the years 2020 through 2024 are withheld for use
as a testset. That held-out time series is later used for separately gathering test metrics and
cross-averaging those metrics. This time series will be referred to as the testset, and is utilized for
reporting the final metrics. Figure 3.7 shows the exact train, validation and test windows used
in the current methodology. With the remaining set, referred to as the complete train/validation
set, hyperparameter tuning is performed using expanding-window time series cross validation.
This takes place as follows. The beginning of the complete train/validation set is defined at t =
0 at 2008-01-01, as also illustrated in Figure 3.7. All closing prices from the beginning at ¢ = 0
up to time ¢t = k x D are used as the first training window for window w = 0, where k = 8 is the
amount of years skipped at the beginning and D is the length of a valdation window. In this case,
D = 252, the amount of trading days in a year, as a window is exactly one year. D can differ

SRegime shift refers to a change in the overall structure of a financial time series as seen in statistical markers
such as volatility, mean returns, correlations, or others.

30

EEN Train
Validation
N Test

Window (2008-2016)

Window (2008-2017)

Window (2008-2018)

Window (2008-2019)

Window (2008-2020)

Referred to as.

Window (2008-2021)

Window (2008-2022)

Window (2008-2023)

Window (2008-2024)

Figure 3.7.: Illustration of time structure of the expanding-window procedure.
The y-axis indicates how each window is referenced throughout the study.
The x-axis shows the corresponding calendar dates for the periods.

per calendar year. Then, the accompanying validation window begins at t = k£« D 4+ 1 and ends
at t = (k+ 1) * D. For all further windows w, the train window takes place from ¢ = 0 through
t = (w+ k) * D and the validation window from ¢ = (w + k) * D + 1 through ¢t = (w+k+ 1) * D.
To roll further to the next expanded window, the origin w is rolled forward by a fixed step size
of one year such that the train window is exactly one year longer, and the validation window
consists of a year for which data has not yet been accessed. This process continues until the
validation window would exceed the end of the complete train/validation set. Model performance
is averaged across all folds to obtain robust hyperparameter estimates.

3.6.2. Gathering Test Metrics

The sliding-window algorithm used for gathering validation metrics is the same as for gathering
test metrics. Similarly, all closing prices from the beginning” at t = 0 up to time t = (w + k) * D
are used. However, this time starting at window w = 4 and ending at window w = 8 with
endpoint ¢ = (w + k + 1) * D belonging to the date 202//31/12. Figure 3.7 illustrates each test
and validation window.

3.6.3. Hyperparameter Optimization Algorithm

Each model allows for several hyperparameters to be set, impacting the model’s accuracy. Kalman
Filter’s hyperparameters are based on noise assumptions and learning rates. Transformer’s
hyperparameters regard model architecture and train-specific parameters such as learning rates.
Time-MoE, being a pre-trained architecture, only allows changes in train-specific parameters.
For each model, Bayesian Optimization is performed using a Gaussian Process, as implemented
in the scikit-optimize package []. The search space for each hyperparameter is given in
model-specific sections. The optimization proceeded for 30 function evaluations, with 10 random
initial points to ensure adequate exploration. The objective minimized was the validation mean
squared error (NMSE) obtained from the respective workflow. All experiments are executed

"Each window originates again from the same period; 2008-01-01.

31

with a fixed random seed (3178749) to ensure reproducibility, as this is the seed used in the
entire methodology for reproducability.

3.7. Accuracy Metrics

Performance is quantified by normalized mean squared error (NMSE). This is the MSE normalized
by the variance of the ground truth series. This normalization enables the comparison of error
metrics across different data pairs. By normalizing the errors in this manner, the metric provides
a variance-independent measure of predictive accuracy. Furthermore, the runs for all metrics
reported in this study are executed using the seed (3178749).

All accuracy metrics are computed using the original, unprocessed form of the input data as
ground truth. This is then compared with the model outputs that have been correspondingly
processed to have the same scale. For validation, four time windows from 2016 through 2019
are gathered and cross-averaged, and time windows from 2020 through 2024 are gathered and
cross-averaged for the test metrics using the optimized hyperparameters from the validation set.

32

4. Results

This chapter presents the empirical findings of predictive accuracy and profitability, evaluated
using NMSE and Return score as introduced in subsection 3.5.3, for the baseline Kalman Filter,
Transformer model and Time-MoE model. These models forecasted the spread of the top 10
cointegrated ETF pairs according to the Engle-Granger test [[L(:37] across five sliding test
windows from 2020 through 2024, with results averaged across windows detailed in Table 4.1
and results per year detailed in Table 4.2. Hyperparameters, which are detailed in Table 4.3, are
optimized using time-series cross validation across four sliding windows from 2016 through 2019.
For each of the three models, identical preprocessing procedures (filtering, z-score normalization)
were performed in accordance with the methodology described in chapter 3.

4.1. Pair Profitability

The brute-force search over an average of 101 sufficiently liquid NYSE/NASDAQ ETFs, totalling
(121) = 5050 unique pairs, produced an average of 86 pairs if filtered for p < 0.05 using Engle-
Granger [[XG87]. Selecting the top 10 most cointegrated pairs per window resulted in a total of 50
pairs (from a total of 5 sliding test windows). Resulting p-values ranged between p = 1.38 x 10~*
and p = 5.3%1073. Across 50 pairs (10 per window), 11 suffered total loss of equity (TLOE). The
other 39 averaged a TR-PI of 5.80% YoY. The highest TR-PI was 43.99% YoY for SHV-PDP.
Overall, 28 pairs resulted in a TR-PI between -5% and +5% YoY, and 11 exceeded +5% YoY.

Figure 4.1 illustrates TR-PI further.

30

2%

YoY Returns

Figure 4.1.: TR-PI over All Test Windows

33

4.2. Kalman Filter

Bayesian optimization for 30 function evaluations' resulted in a reduction of 0.43 NMSE, with
specific values detailed in subsubsection 3.4.1. Across periods, test MSE values range less than
an order of magnitude from 8.63 to 47.45, with Kalman exhibiting the highest mean MSE among
all models at 28.02. In the best-case scenario, the Kalman Filter was also the least accurate,
with a Test MSE of 0.80. Return scores across test windows span the least wide range of all
three models from 0.8667 to 1.006 with the highest mean Return Score of 0.9579.

4.3. Transformer

Bayesian optimization for 30 function evaluations resulted in a reduction of 2.42 NMSE, with
specific values detailed in subsubsection 3.4.2. Across periods, test MSE values range almost
two orders of magnitude from 0.17 to 8.64, scoring 2.24 in the average case. In its best case, the
Transformer achieved a Test MSE of 0.024. In both cases it outperforms the Kalman filter but
trails Time-MoE. Better performance was observed at the optimum than on average. Return
scores across test windows span the widest spectrum from 0.531 to 1, with the lowest mean
Return Score of 0.793.

4.4. Time-MoE

Bayesian optimization for 30 function evaluations resulted in a reduction of less than 0.01 NMSE;,
with specific values detailed in subsubsection 3.4.3. Across periods, Test MSE values range the
most narrow of all models from 0.072 to 0.113, with a mean of 0.091. The lowest of all three
models. In the best-case scenario, Time-MoE also scored the most accurate of all models with
a Test MSE of 0.018. Return scores across test windows span a spectrum from 0.820 to 0.975,
outperforming Transformer but trailing Kalman with a mean of 0.902.

1One function evaluation consists of four sliding windows, returning cross-window average validation MSE.

34

4.5. Overview Profitability & Predictability Averages Across Time

Periods
Kalman Transformer Time-MoE
Cross-Year Average Results
Validation Metrics
Validation MSE 42.49 0.5857 0.1818
Test Metrics
Test MSE 28.0203 2.2436 0.0913
Return Score 0.9579 0.7932 0.9027
Overall Best-Performing Pair*
Test Metrics
Test MSE 0.80221 0.02447 0.0186
Returns YoY (%) 1.58% 4+ 0.25% 1.12% £ 0.02% 0.87% + 0.09%
TR-PI 0.53% 1.15% 0.88%
Return Score 1.01 1.0 1.0

Table 4.1.: Test metrics gathered and averaged across 5 testing windows (2020-2024).
Validation metrics are cross-validated across four validation windows (2016-2019).
*with best-performing defined as the lowest Test MSE. Taken across the top 10 pairs

for each of the 5 testing windows.

35

4.6. Overview Profitability & Predictability Averages per Time Period

Kalman Transformer Time-MoE
Average Validation Results per Year

2016

Validation MSE 2.9447 0.3326 0.30723

Test MSE - - -

Return Score - - -
2017

Validation MSE 72.1505 0.3567 0.1530

Test MSE - - _

Return Score - - _
2018

Validation MSE 57.9314 1.2846 0.0864

Test MSE - - -

Return Score - - -
2019

Validation MSE 19.6823 0.3689 0.1805

Test MSE - - -

Return Score - - -
Average Cross-Validation MSE 42.49 0.5857 0.1818

Average Test Results per Year

2020

Validation MSE - - -

Test MSE 8.6394 0.7749 0.0968

Return Score 0.8667 0.5311 0.8200
2021

Validation MSE - - -

Test MSE 26.3820 6.1121 0.0725

Return Score 0.9489 0.7289 0.9000
2022

Validation MSE - - -

Test MSE 32.7204 1.2895 0.0904

Return Score 1.0057 0.7143 0.9100
2023

Validation MSE - - -

Test MSE 24.9083 0.1694 0.0832

Return Score 0.9900 1.0000 0.9750
2024

Validation MSE - - _

Test MSE 47.4512 2.8719 0.1138

Return Score 0.9783 0.9917 0.9083
Cross-Year Average Test MSE 28.0203 2.2436 0.0913
Cross-Year Average Return Score 0.9579 0.7932 0.9027

Table 4.2.: Average results per year.
Pairwise results that result in the per year averages are explicitly given in the appendix
in section A.1.
Validation metrics are cross-validated across four validation windows (2016-2019).
Test metrics gathered and averaged across 5 testing windows (2020-2024).

36

4.7. Hyperparameter Optimization Results
Kalman Transformer Time-MoE
Classical Hyperparameters
) 0.01 - -
Observation Covariance For Regression 2.56 - -
Transition Covariance For Averaging 0.10 - -
Observation Covariance For Averaging 3.48 - -
Deep Learning Hyperparameters
Architecture
Model Depth - 256 -
Amount of Heads - 8 -
Number of Layers - 3 -
Dropout - 0.14 -
Training Algorithm
Learning Rate - 2.43%107° 2.05 % 1076
Minimum Learning Rate - 8.427° 2.61 %1076
Warmup Ratio - 0.01 0.05
Weight Decay — 0.28 0.24
Batch Size - 64 128
Optimizer-specific
51 - 0.96 0.88
Ba - 0.97 0.98
€ - 5.23 % 10710 2.74 % 10710
Average Cross-Validation MSE 42.49 0.5857 0.1818

Table 4.3.: Optimized hyperparameters using bayesian optimization cross-validated across four
windows (2016-2019) as described in section 3.6.
All hyperparameters rounded to two decimals.

37

4.8. Visual Results of Predicted Spreads

To enhance the interpretability of forecasted time series and their error characteristics, this
section visualizes the predicted and actual spread time series for the best-performing asset pair
identified by each model. Following Table 4.1, best-performing is defined as the pair with the
lowest Test MSE over all 50 pairs from the 5 test windows. Notable deviations may reveal unique
error structures, indicating strengths and weaknesses inherent to each model, implications of
which are further discussed in section 5.1.

4.8.1. Kalman Filter

The Kalman Filter’s predictions least closely track the actual spread for the best-performing
pair, which is in accordance with the highest test MSE of 0.8022. The Kalman Filter forecast
timeseries is able to capture the approximate directions of the actual spread, while its largest
deviations occur due to periods of rapid change or its unability to follow small oscillations. This
error structure is similar to the smoothed window illustrated in Figure B.6.

Predicted vs Actual Spread for Best Kalman Filter Pair (IFGL, EMB)
Test MSE: 0.8022

—— Predicted Spread Testset
—— Actual Spread Testset

Spread

2020-01 2020-03 2020-05 2020-07 2020-09 2020-11 2021-01
Month

Figure 4.2.: Predicted vs Actual Spread for Kalman Filter’s Best Pair

38

4.8.2. Transformer

The Transformer model demonstrates stronger alignment with the actual spread, capturing both
trend and volatility, in accordance with the lower forecast error compared to Kalman Filter.
Residual differences between the forecast and ground truth values remain discernible.

Predicted vs Actual Spread for Best Transformer Pair (IGIB,IEI)
Test MSE: 0.0256

1 —— Predicted Spread Testset
—— Actual Spread Testset

202203 2022-05 2022-07 2022-09 2022-11 2023-01
Month

Figure 4.3.: Predicted vs Actual Spread for Transformer’s Best Pair

39

4.8.3. Time-MoE

The Time-MoE model demonstrates stronger alignment with the actual spread compared to
Transformer’s spread. Residual differences between the predicted and ground truth values are
less discernible than for Transformer. In the best-case, the error characteristics of the forecasts
are the same as the Transformer’s discernible error characteristics, not being caused by scaling
inaccuracies or an error structure approximable by smoothing ground truth values, as is partly
the case for the Kalman Filter.

Predicted vs Actual Spread for Best Time-MoE Pair (IGSB, BND)
Test MSE: 0.0186

—— Predicted Spread Testset
4 —— Actual Spread Testset

Spread
M3

2022-03 2022-05 2022-07 2022-09 2022-11 2023-01
Month

Figure 4.4.: Predicted vs Actual Spread for Time-MoE’s Best Pair

4.8.4. Interpretation Clarification

Showing these graphs as predicted vs actual spread might misleadingly imply the entire blue
graph is predicted using multi-step forecasting. However, as mentioned in the methodology in
section 3.4, single-step forecasting is applied. A multi-step forecasting approach would be to
apply one model to predict the value for the next time step, using the existing predicted value as
an input to forecast the value for the next time step [\WBB22]. As only ground truth values are
used to predict a day ahead, the current approach is single-step forecasting. Therefore, the graph
in Figure 3.3 is deemed important context for interpreting these three graphs, as it illustrates
how a single prediction is made with data points of length ¢, the size of the look-back window.

40

5. Discussion & Conclusion

5.1. Discussion

Building on the empirical results presented in the previous chapter, this discussion interprets
how the observed predictive and economic performance of the Kalman Filter, Transformer and
Time-MoE model align with expectations based on existing theory. I highlight the methodological
choices such as cointegration-based pair selection and time rolling window cross-averaging test
metrics that most strongly influenced the findings. Finally, I examine the practical implications
and limitations of the work, outlining avenues for further research.

Supplementary findings are delineated in Appendiz B. In that section, their significance and
characteristics are discussed in the conventional format of a results section. Its implications are
discussed in the current discussion section.

5.1.1. Research Questions & Hypotheses
Sub-Research Question 1: Pair Discovery

Out of all sufficiently liquid ETF's listed on the NASDAQ and NSYE, an average of 86 per time
window passed the Engle-Granger test out of an average of 5050 pairs in total. This provided
a set of pairs large enough to proceed further in the pipeline to address subsequent research
questions. The least cointegrated pair of the top 10 pairs examined scored a value of 5.3 1073.
This is an order of magnitude more signifact than the threshold of p < 0.05. Therefore, any
issues in predictability or profitability are unlikely to be caused by insufficiently cointegrated
pairs. Furthermore, the chosen combination of this pair selection method and trading strategy
yield outcomes consistent with the premise of profitability. With an average TR-PI of 5.80% YoY
when excluding pairs resulting in Total Loss of Equity (TLOE), it achieves a percentage similar
to returns found in other literature (see subsection 2.2.5). Out of 50 pairs (10 across the 5 sliding
windows), 11 resulted in TLOE. Table B.1 shows the difference per window, with 1 of the top 10
cointegrated pairs resulting in total loss of equity in 2020, a difference from 4 out of 10 in 2024.
Figure B.2a and Figure B.2b demonstrate that selecting 2007 rather than 2008 as the first year
of a train window materially alters data availability. A substantial number of ETFs had either
not yet been launched or lacked sufficient trading volume in 2007, highlighting the necessity for
the methodology to take into account this significant surge in availability of ETF's starting from
2008. Subsequent studies should equally take note of this. It also suggests a constraint in the
models’ further outcomes: even with perfect predictive accuracy, the proportion of profitable
strategies is constrained to 22% by the underlying properties of the pairs identified via the
Engle-Granger method. Consequently, the initial assumption that higher predictive accuracy
would directly lead to proportionally higher profitability appears less tenable, as perfect accuracy
does not invariably translate into profitability.

Sub-Research Question 2: Prediction Accuracy

Cross-averaged over sliding test windows, the Time-MoE model attained most accurate forecast
of the ETF pairs’ price spread. In the best-case scenario, Time-MoE also achieved the lowest
Test MSE among all models. Moreover, the model empirically demonstrates to be more robust
across time periods by having the tightest MSE range. Figure B.4a illustrates some observed
inconsistency between validation and test MSE is caused by inaccurate scaling. With a larger

41

inconsistency shown in Figure B.4b. From this difference, it can be inferred that cross-averaging
over windows mitigates the inconsistency between validation MSE and test MSE. However, it
does not completely get rid of it. The Transformer model demonstrated superior forecasting
accuracy relative to the Kalman baseline but attained lower accuracy than that achieved by
Time-MoE, in the per-year, cross-year average, and best case. Furthermore, the Transformer
exhibited the highest variability in test MSE suggesting susceptibility to poor performance based
on time periods. These results indicate it is the least robust to regime shifts compared to its
best-case. The baseline Kalman Filter achieved less accurate results than both Transformer
and Time-MoE. As seen in Figure 4.2, it serves well as a baseline for prediction, following the
general trend with one-day-ahead predictions. It shows less variability in prediction accuracy
to Transformer, implying similar but more robustness to regime shifts. Overall, the results
reveal a consistent ordering across all evaluation metrics, including per-year average, cross-year
average, and best-case scenario. The empirical results reveal outperformance of deep learning
architectures compared to the baseline model. subsection 5.1.2 examines the observed trend
sensitivity by the Transformer model and the Kalman Filter in further detail.

Sub-Research Question 3: Profitability

Cross-averaged over sliding test windows from 2020 through 2024, the baseline model Kalman
Filter yielded the highest average Return Score of 0.9579 according to the back-tested simulations.
The original assumption was that profitability scales in proportion to prediction accuracy. Earlier
results (subsubsection 5.1.1) have previously suggested that this assumption is less tenable.
Finally, this assumption is empirically observed to be false, reflected in the profitability outcomes.
Accuracy is decoupled from profitability due to some underlying reason. The most accurate
model Time-MoE scored a lower mean than the Kalman Filter. Transformer ranked the lowest.
Nevertheless, a consistent ordering is shown. Per-year averages and cross-year averages all show
the same ordering. Only with Kalman Filter ranking most profitable and Time-MoE second,
the ordering is different from the one expected due to predictability. Transformer consistently
delivered the lowest Return Score across the averages of all five back-tested time frames. To
elucidate the observed decoupling between accuracy and profitability, the structure of forecast
errors is inspected in the following section.

Predictive Accuracy vs. Economic Performance

The inverted logarithmic relationship between forecast error (artificially caused by increased noise
levels) and returns as seen in the Gaussian plot in Figure B.5 initially supports the assumption
that accuracy is a primary driver of profitability in z-score trading strategies. However, the
error-returns relationship shows other relationships when simulated differently. These all provide
insight into the missing translation of MSE into profitability. First, a smoother prediction causes
more inaccurate forecasts reflected in higher MSE, but more profitable trading. This is likely
because the ability to capture z-score breaches is not affected by this smoothing. Second, higher
scaling is observed to improve profitability in spite of increasing error metrics. This originates
from specific mechanics in the trading strategy. Position sizing is related to the size of the
spread, such that greater absolute spread values produce proportionally larger trades, while
diminished spreads yield smaller position sizes. Consequently, any amplification of the spread
scale magnifies the trade size. Therefore, any ampliciation in scale amplifies profitability (and
conversely amplifies losses in an unprofitable case). Thus, scaling changes result in the scaling
of profitability, causing decoupling between relationship of MSE vs returns. When considered
alongside the finding that smoothed versions of ground truth do not diminish resulting z-score
profitability, the observation that Kalman Filters yield lower predictive accuracy yet still produce
profitable simulation outcomes relative to deep learning architectures becomes understandable,
rendering original assumptions false.

42

5.1.2. Limitations
Trend Sensitivity

The wider accuracy range observed in the Transformer and Kalman Filter is partly caused by
inaccurate scaling. The current methodology calculates the mean and standard used for z-scale
normalization from a previous window. In Figure B.3, this window is labelled as ” Groundtruth
Spread Previous Window”. The figure shows such an an example of larger predictive error being
caused by inaccurate scaling. Certain models can correct for this trend sensitivity better than
others. Future research can improve predictive accuracy by normalization methodologies less
sensitive to trends. Examples of this are correcting for trends in the input time series, using
normalizations more temporally proximate to tested windows, or using preprocessing techniques
other than normalization that rely less on trends.

Despite a thorough understanding of its underlying causes, the trend sensitivity remains a
limitation in the predictive performance of models examined in this study. Time-sensitive models
will stay inherently susceptible to performance degradation in the presence of trend differences. As
the most reliable alternative, this study provides empirical evidence supporting the effectiveness
of a model with low temporal sensitivity, Time-MoFE, to address the limitation most effectively
compared to the other models.

Predictive Accuracy Metrics

Although analyses like subsubsection 5.1.1 go further into depth about specifics of the errors
and suspected error structures, a more accurate examination would have been possible if more
forecasting error metrics besides NMSE were used. For example, scale-invariant measures such as
Mean Absolute Percentage Error (MAPE) could have allowed for better analysis of systematic
scaling inaccuracies in the predicted spread amplitudes, and Quasi-Likelihood Loss could have
allowed for better analysis of heteroskedasticity in the forecast errors |], as well as being
in line with other studies on financial time series.

Profitability Metrics

The research question focuses on improving price spread prediction through machine learning
techniques. As discussed in section 2.6, the analysis of profitability metrics then serves as a
complementary means of evaluating model performance, offering an additional perspective.
Therefore, emphasis is placed on relative performance under a consistent trading framework,
rather than on the absolute level profitability achieved, resulting in an emphasis on Return
Score rather than YoY returns. While the trading strategy was not examined to understand
how well it performs relative to other possible strategies, it nevertheless serves to offer an
insightful additional dimension to view the model’s performance. Consequently, the predictive
accuracy metrics in this report are presented with more confidence than the profitability metrics.
Reflecting the profitability metrics’ dependence on secondary factors such as transaction costs,
strategy design, and the fact that trading simulations are conducted subsequent to the predictive
modeling phase within the workflow. Overall, this step in the pipeline incorporates a broader set
of assumptions and dependencies than the predictability.

43

5.2. Conclusions

In conclusion, to answer the research question, sufficienty predictable ETFs were found using
the Engle-Granger test | |. This allowed Time-MoE to achieve the most accurate forecasts
of all examined models. Using the forecasts, the Kalman Filter resulted in the most profitable
back-tested simulations. The current empirical results reinforce and extend the evidence for deep
learning-based architectures in finance. The use of Transformer was recommended for better
results in the end of Daniels’ work (as an improvement to LSTM models) |]. This study
built further on that concept, implementing Transformer and Time-MoE by using a foundational
component of the methodology introduced by Kaur []. This component is adapted to the
methodological context of the current study, while also eliminating poor procedures such as the
introduction of look-ahead bias. This finding of superior accuracy challenges findings by Zhao et
al. that Time-MoE would struggle with short-term price fluctuations |]. The finding that
the highest attainable profit, TR-PI, can still probabilistically result in a Total Loss Of Equity
(TLOE) confirms that a statistically significant cointegration relationship is a necessary but
not a sufficient condition for profitability. Using five non-overlapping sliding test windows, the
Time-MoE model consistently achieved the lowest NMSE (0.0725-0.1138 across sliding windows,
with an average NMSE of 0.0913), confirming the strength of its sparse architecture followed by
a pre-training and finetuning approach. Cross-validation demonstrated that the MoE’s accuracy
exhibited minimal sensitivity to the choice of hyperparameters. The Transformer model ranked
second in accuracy with an average of 2.2436, and last in profitability with an average Return
Score of 0.7932. Its error variance was an order of magnitude larger than Time-MoE’s, indicating
trend sensitivity to regime shifts. Kalman Filter regression, constrained by linear-Gaussian
assumptions, lagged behind in accuracy with an average MSE of 28.0203 and under-reacted to
rapid changes in spread. Kalman’s outperformance in terms of profitability appears to stem
from residual error structures that better accommodate a z-score trading framework despite its
lower accuracy when measured with MSE. Lastly, due to a difference in the examined model
architectures, the results do not yet specifically highlight whether pre-training, sparse activation,
or a combination of the two is responsible for Time-MoE’s most accurate forecasts.

5.3. Recommendations

5.3.1. Future Work

After applying Transformers as recommended by Daniels |] and Time-MoE for its pre-
trained and sparse architecture to a research context introduced by Kaur [], I anticipate
that it is most promising not to apply other models to the same context, but rather applying
the strengths exhibited by new underexplored models to novel contexts. This study’s central
takeaway for future work is that the pre-trained and sparse Time-MoE architecture can quickly
capture complexr dependencies in time series data. This could be applied most promisingly to
financial time series in three ways.

Financial Time Series

Firstly, the model’s ability to accurately predict prices with small data budgets positions it
for use in financial time series prediction in contexts of crisis, where a small data budget is
a definitive limitation. For example, few-shot financial forecasting has been proposed to be
applied in the advent to the economic crisis of 2020 following the the COVID-19 pandemic
[]. The newly found accurate Time-MoE model could prove to be one of the models
well adapted to quickly adapt to new market conditions in a benchmarking study compared to
many other models. This could prove a great application of online inferencing where the model
runs continuously [].

44

Secondly, it could be applied promisingly in an area where the shorter training and inference
times that were observed in the model can be especially useful; High-Frequency Trading (HFT)
represents a significant context for the application of Pairs Trading. The sparse and pre-trained
nature of Time-MoE demonstrates considerable potential in time windows that are orders of
magnitude smaller than the current feature selection of per-day closing prices. Compared to
dense architectures trained from scratch with randomly initialized weights, the sparse pre-trained
nature of Time-MoE grants it rapid inference capability! combined with enhanced predictive
accuracy relative to all other models as empirically found in this study. This indicates suitability
for deployment within HF'T contexts. The main remaining task would be a rigorous examination
of the underlying theoretical assumptions that may differ from the current, whereas the required
methodological adjustments are minimal. As mentioned in subsection 3.2.1, the current pipeline
is readily adaptable to train and inference models on different time scales.

Thirdly, The application of both Transformers and MoE-architectures applied to a specific quasi-
multivariate framework, called ETF arbitrage?, is a promising context. A multivariate framework
in PT, as opposed to a univariate framework, is when one security is traded against a weighted
portfolio of comoving securities, rather than separate securities being traded |]. Quasi-
multivariate refers to only one of the two in a pair consisting of a group of assets. Multivariate
PT is not to be confused with a multivariate time series, which means a timeseries constituting
multiple dimensions. Importantly, Figueira et al. chose to feed their ML model a multivariate
timeseries as feature input to machine learning models and reported that this yielded superior
predictive accuracy [|. The biggest indicator for this promising context is that in spite of
the deep learning architectures’ outperformance in terms of predictive accuracy, their maximum
ability of capturing complex interdependent relationships has not been tested to its maximum.
Using more complex multivariate features, as suggested by Figueira et al., with features such as
the ETF’s market price, the Net Asset Value (NAV) of underlying holdings, and premiums or
discounts at which it is trading as an input to predict expected discrepancies could prove to
use the strengths of deep learning architectures to a larger extent, further utilizing its superior
complex predictive abilities over classical statistical models. Moreover, despite these anticipated
advantages, ETF arbitrage is less saturated regarding the application of Machine Learning
models, according to publicly available research, with mainly use classical arbitrage techniques
[11 1]. However, techniques have been applied in recent years to my best
knowledge, such as genetic algorithms | |, or Random Forests and Gradient Boosting
Decision Trees | -

General Time Series

While the present study focuses on financial data, the empirical advantages of the sparse, pre-
trained Time-MoE architecture (rapid fine-tuning, efficient inference, and an ability to model
long-range, non-linear dependencies with limited task-specific data) extend naturally to other
domains that share analogous statistical characteristics.

For example, electric-power systems require accurate forecasts at 15-minute to hourly horizons for
unit commitment and demand-response scheduling. This lends such energy demand forecasting
well to the empirically found advantages. These series exhibit pronounced daily and annual
seasonality through weather-dependent regime shifts. Future work could provide insights into
whether the model responds better to such seasonal trends compared to classical model or
models.

1Specifically, training on a single time series using an NVIDIA A100 GPU required tens of seconds, with inference
times taking a few seconds. While these figures are not definitive benchmarks, they provide a practical
approximation of feasibility.

2Not to be confused with regular statistical arbitrage methods such as pair trading applied to ETFs. ETF
Arbitrage entails finding price irregularities between an ETFs Net Asset Value (NAV) and its current trading
price |].

45

Moreover, Electrocardiogram (ECG) recordings are high-frequency signals where periodicity is
of greater importance than both contexts mentioned before. The ability of Time-MoE to capture
both fine-grained morphology and long-range contextual information makes it a strong candidate
for anomaly detection in that context.

Building on the cross-benchmark analysis presented in the original study |], investiga-
tions within individual domains are warranted to examine the model’s domain-specific behavior
and to facilitate the exchange of insights across these domains.

5.3.2. Amendments to Current Methodology

Besides novel contexts offering promising applications, amendments to the current methodology
could also provide more insights. As detailed in subsubsection 5.1.1, reliable data on exchange-
traded funds (ETFs) are sparse before 2008. Accordingly, future studies should explicitly assess
whether their research questions can be addressed using the shorter, modern sample interval for
which comprehensive ETF coverage is available.

The principal finding of this study can be summarized as follows. Time-MoE and Transformer
produced the most accurate models, but the z-score based simulation strategy failed to reflect
this performance. As this discrepancy has been discussed to be likely caused by error structures
and probabilistic outcomes of trading simulations, future research could examine the input of
accurate forecasts into more simulations that are 1) more deterministic and 2) decoupled from
raw signal magnitude. Examples include altered versions of the current strategy decoupled from
raw signal magnitude, or fixed-threshold Ornstein—Uhlenbeck entry/exit rules as mentioned
in subsection 2.3.4. Testing accurate forecasts within these more deterministic, magnitude-
decoupled frameworks should reveal a more easily interpretable link between forecast accuracy
and simulated trading performance. As a further recommendation, future research could adopt
methodologies less sensitive to trends, such as correcting for trends using detrending procedure
or anchoring z-score normalizations to sliding reference periods that are shorter and therefore
exhibit statistics closer to those of the evaluation window. Moreover, research could also explore
preprocessing strategies that do not hinge on trend stationarity as z-score normalization does,
such as seasonal-trend decomposition or using more robust versions of scaling using median
or inter-quartile ranges, ensuring that inferential results remain robust to evolving baseline
dynamics.

46

Bibliography

[Alo20]

[Arol9]

[AST+24]

[BDR20]

[Bol92]
[Boo06]
[CT10]

[CCD*23)

[CGKT24]

[CGR18]

[Chal3]

[CLLK23]

[Dan22]

Monira Essa Aloud. The role of attribute selection in deep anns learning framework
for high-frequency financial trading. Intelligent Systems in Accounting, Finance
and Management, 2020. First published: 12 March 2020.

Ran Aroussi. yfinance: Download market data from yahoo! finance’s api. https:
//github.com/ranaroussi/yfinance, 2019. Accessed: 2025-03-31.

Abdul Fatir Ansari, Lorenzo Stella, Caner Turkmen, Xiyuan Zhang, Pedro Mercado,
Huibin Shen, Oleksandr Shchur, Syama Sundar Rangapuram, Sebastian Pineda
Arango, Shubham Kapoor, et al. Chronos: Learning the language of time series.
arXw preprint arXiw:2403.07815, 2024.

David C Brown, Shaun William Davies, and Matthew C Ringgenberg. Etf arbitrage,
non-fundamental demand, and return predictability*. Review of Finance, 25(4):937—
972, 10 2020.

John Bollinger. Using bollinger bands. Stocks & Commodities, 10(2):47-51, 1992.
Richard Bookstaber. A Demon of Our Own Design. Wiley, 2006.

Jesse Cooke et al. pykalman: Kalman filter, smoother, and em algorithm for python.
https://github.com/pykalman/pykalman, 2010. Accessed: 2025-06-11.

Tianlong Chen, Xuxi Chen, Xianzhi Du, Abdullah Rashwan, Fan Yang, Huizhong
Chen, Zhangyang Wang, and Yeqing Li. Adamv-moe: Adaptive multi-task vision

mixture-of-experts. In Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), pages 17346-17357, October 2023.

Lucas Correia, Jan-Christoph Goos, Philipp Klein, Thomas Béck, and Anna V
Kononova. Online model-based anomaly detection in multivariate time series: Tax-

onomy, survey, research challenges and future directions. Engineering Applications
of Artificial Intelligence, 138:109323, 2024.

Leopoldo Catania, Stefano Grassi, and Francesco Ravazzolo. Predicting the volatil-
ity of cryptocurrency time-series. Mathematical and Statistical Methods for Actu-
arial Sciences and Finance: MAF 2018, pages 203-207, 2018.

Ernest P. Chan. Algorithmic Trading: Winning Strategies and Their Rationale,
volume 625. John Wiley & Sons, 2013.

Jinhyung Eric Cho, GUN HEE LEE, Woneung Lee, and Bongjun Kim. Machine
learning approach for predicting us etfs’ tracking errors—implications on us invested
fund. Machine Learning Approach for Predicting US ETFs’ Tracking Errors—
Implications on US Invested Fund (October 16, 2023), 2023.

Prateek Samuel Daniels. Machine Learning Techniques for Pricing, Hedging and
Statistical Arbitrage in Finance. PhD thesis, University of Technology Sydney,
Faculty of Business, 2022. Under the supervision of Assoc. Prof Christina Skiibosios
Nikitopoulos, Dr Otto Konstandatos, Prof. Xue-Zhong (Tony) He, Dr Mesias Alfeus.

47

https://github.com/ranaroussi/yfinance
https://github.com/ranaroussi/yfinance
https://github.com/pykalman/pykalman

[DF10]

[EG87]

[EVDHMO5]

[Fam70)

[FH22]

[FZS22]

[GGRO6]

[GOPZ21]

[GW24]

[HH12]

[HHLS24]

[HKN*20]

[HMP+25]

[Hu21]

[Kaul§]

[Kral6]

[LALP21]

Bailey Do and Robert Faff. Does simple pairs trading still work? Financial Analysts
Journal, 66(4):83-95, 2010.

Robert F. Engle and Clive W. J. Granger. Co-integration and error correction:
Representation, estimation, and testing. Econometrica, 55(2):251-276, 1987.

Robert J Elliott, John Van Der Hoek*, and William P Malcolm. Pairs trading.
Quantitative Finance, 5(3):271-276, 2005.

Eugene F. Fama. Efficient capital markets: A review of theory and empirical work.
The Journal of Finance, 25(2):383-417, 1970.

Miguel Figueira and Nuno Horta. Machine learning-based pairs trading strategy
with multivariate. Awvailable at SSRN 4295303, 2022.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to
trillion parameter models with simple and efficient sparsity. In Transactions on
Machine Learning Research (TMLR), 2022.

Evan Gatev, William N. Goetzmann, and K. Geert Rouwenhorst. Pairs trading:
Performance of a relative-value arbitrage rule. The Review of Financial Studies,
19(3):797-827, 02 2006.

Jorge Guijarro-Ordonez, Markus Pelger, and Greg Zanotti. Deep learning statistical
arbitrage. SSRN Electronic Journal, 2021.

Przemystaw Gradzki and Piotr W¢jcik. Is attention all you need for intraday forex
trading? Expert Systems, 41(2), 2024.

Thomas A Hanson and Joshua Hall. Statistical arbitrage trading strategies and
high frequency trading. Awvailable at SSRN 2147012, 2012.

Eli Hadad, Sohail Hodarkar, Beakal Lemeneh, and Dennis Shasha. Machine
learning-enhanced pairs trading. Forecasting, 6(2):434-455, 2024.

Tim Head, Manoj Kumar, Holger Nahrstaedt, Gilles Louppe, and laroslav
Shcherbatyi. scikit-optimize/scikit-optimize, September 2020.

Mahmudul Hasan, Zannatul Mifta, Sumaiya Janefar Papiya, Paromita Roy, Pronay
Dey, Nafisa Atia Salsabil, Nahid-Ur-Rahman Chowdhury, and Omar Farrok. A
state-of-the-art comparative review of load forecasting methods: Characteristics,
perspectives, and applications. FEnergy Conversion and Management: X, page
100922, 2025.

Xiaokang Hu. Stock price prediction based on temporal fusion transformer. In
2021 3rd International Conference on Machine Learning, Big Data and Business
Intelligence (MLBDBI), pages 60-66, 2021.

Simerjot Kaur. Quantitative trading strategies using deep learning: Pairs trading.
CS5230, 2018.

Christopher Krauss. Statistical arbitrage pairs trading strategies: Review and
outlook. Journal of Economic Surveys, 31(2):513-545, May 2016.

Bryan Lim, Sercan O Arik, Nicolas Loeff, and Tomas Pfister. Temporal fusion
transformers for interpretable multi-horizon time series forecasting. International
Journal of Forecasting, 37(4):1748-1764, 2021.

48

[LIF+25]

[LLW+24]

[LM17]

[LZL*24]

[Mac94]

[MNV10]

[MPV05]

[MRD™*24]

[NH13]

[0CS*23]

[PHL24]

[PZ17a)

[PZ17b]

[SAD*23]

Jia Liu, Cheng Jinguo, Xia Fang, Zhenyuan Ma, and Yuankai Wu. Evaluating
temporal plasticity in foundation time series models for incremental fine-tuning,
2025.

Xu Liu, Juncheng Liu, Gerald Woo, Taha Aksu, Yuxuan Liang, Roger Zimmermann,
Chenghao Liu, Silvio Savarese, Caiming Xiong, and Doyen Sahoo. Moirai-moe:
Empowering time series foundation models with sparse mixture of experts. arXiw
preprint arXi1w:2410.10469, 2024.

Jim Kyung-Soo Liew and Boris Mayster. Forecasting etfs with machine learning
algorithms. The Journal of Alternative Investments, 20(3):58-78, 2017.

Yong Liu, Haoran Zhang, Chenyu Li, Xiangdong Huang, Jianmin Wang, and
Mingsheng Long. Timer: Generative pre-trained transformers are large time series
models. arXiv preprint arXiv:2402.02368, 2024.

James G. MacKinnon. Approximate asymptotic distribution functions for unit-root
and cointegration tests. Journal of Business & Economic Statistics, 12(2):167-176,
1994.

Ben R Marshall, Nhut H Nguyen, and Nuttawat Visaltanachoti. Etf arbitrage.
Massey University, 2010.

Matthew Q. McPherson, Joseph Palardy, and Jon Vilasuso. Are international
stock returns predictable?: An application of spectral shape tests corrected for
heteroskedasticity. Journal of Economics and Business, 57(2):103-118, 2005.

Amit Milstein, Guy Revach, Haoran Deng, Hai Morgenstern, and Nir Shlezinger.
Neural augmented kalman filtering with bollinger bands for pairs trading. IEFE
Transactions on Signal Processing, 2024.

Seyed Taghi Akhavan Niaki and Saeid Hoseinzade. Forecasting s&p 500 index
using artificial neural networks and design of experiments. Journal of Industrial
Engineering International, 9(1), 2013.

Oleksiy Ostapenko, Lucas Caccia, Zhan Su, Nicolas Le Roux, Laurent Charlin,
and Alessandro Sordoni. A case study of instruction tuning with mixture of
parameter-efficient experts. In NeurIPS 2023 Workshop on Instruction Tuning
and Instruction Following, 2023.

Weiying Ping, Yuwen Hu, and Liangqing Luo. Price forecast of treasury bond
market yield: Optimize method based on deep learning model. IEEFE Access,
12:194521-194539, 2024.

Kevin Pan and Yao Zeng. Etf arbitrage under liquidity mismatch. SSRN Electronic
Journal, 2017.

Kevin Pan and Yao Zeng. Etf arbitrage under liquidity mismatch. Working Paper 59,
European Systemic Risk Board, Frankfurt am Main, Germany, December 2017.
Also circulated as ESRB Working Paper No. 2017/59.

Md Rasel Sarkar, Sreenatha G Anavatti, Tanmoy Dam, Mahardhika Pratama,
and Berlian Al Kindhi. Enhancing wind power forecast precision via multi-head
attention transformer: An investigation on single-step and multi-step forecasting.

In 2023 international joint conference on neural networks (IJCNN), pages 1-8.
IEEE, 2023.

49

[SH20]

[Shu23]

[SK21]

[SKCS*25]

[SLP+21]

[SMM*+17]

[SP10]

[SWN+25]

[SWX+23]

[tH22]

[Tha25]

[Tim25]

[UJ24]

[Val24]

Simao Moraes Sarmento and Nuno Horta. Enhancing a pairs trading strategy with
the application of machine learning. Fxpert Systems with Applications, 158:113490,
2020.

Alexander Shulzhenko. Copula-based deviation measure of cointegrated financial
assets. arXiv preprint arXiw:2312.02081, 2023.

Jaideep Singh and Matloob Khushi. Feature learning for stock price prediction
shows a significant role of analyst rating. Applied System Innovation, 4(1):17,
March 2021.

Jens Soerlie Kvaerner, Julio A Crego, Dag Einar Sommervoll, Aavald Sommervoll,
and Niek Stevens. Genetic mimicking portfolios for etf arbitrage. Awvailable at
SSRN 5302810, 2025.

Jianlin Su, Yu Lu, Shengfeng Pan, Bo Wen, and Yunfeng Liu. Roformer: Enhanced
transformer with rotary position embedding. In Proceedings of the 59th Annual
Meeting of the Association for Computational Linguistics (ACL), 2021.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geof-
frey Hinton, and Jeff Dean. Outrageously large neural networks: The sparsely-gated
mixture-of-experts layer. In International Conference on Learning Representations

(ICLR), 2017.

Skipper Seabold and Josef Perktold. Statsmodels: Econometric and statistical
modeling with python. Proceedings of the 9th Python in Science Conference,
57:92-96, 2010.

Xijaoming Shi, Shiyu Wang, Yuqi Nie, Dianqi Li, Zhou Ye, Qingsong Wen, and
Ming Jin. Time-moe: Billion-scale time series foundation models with mixture of
experts. In International Conference on Learning Representations (ICLR), 2025.

Shuo Sun, Xinrun Wang, Wanqi Xue, Xiaoxuan Lou, and Bo An. Mastering stock
markets with efficient mixture of diversified trading experts. In Proceedings of the
29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD
'23), page 11 pages. ACM, August 2023.

Jonas ter Horst. Machine learning for exchange traded fund price predictions.
TScIT 87, 37, July 2022. (C) 2022 University of Twente. Permission granted for
personal and classroom use.

Hudson & Thames. The comprehensive introduction to pairs trading. https:
//hudsonthames.org/pairs-trading-introduction, 2025. Accessed: 2025-04-
11.

Time-MoE (Xiaoming Shi et al.). Time-MoE: billion-scale time-series foundation
models (official code). https://github.com/Time-MoE/Time-MoE, 2025. Accessed:
2025-06-30.

Jeffrey Uhlmann and Simon Julier. Gaussianity and the kalman filter: A simple
yet complicated relationship. arXiv preprint arXiv:2405.00058, 2024.

Diego Vallarino. A dynamic approach to stock price prediction: Comparing rnn
and mixture of experts models across different volatility profiles. Independent
Research, October 2024.

50

https://hudsonthames.org/pairs-trading-introduction
https://hudsonthames.org/pairs-trading-introduction
https://github.com/Time-MoE/Time-MoE

[Vido4]

[VSPT17]

[WBB*22]

[WKRZ23]

[WZL*25]

[WZZ122]

[XDB24]

[Yah25a)

[Yah25b]

[Zhe21]

[Zhu24]

[ZKST23]

[ZMO00]

[ZWZ+25]

Ganapathy Vidyamurthy. Pairs Trading: quantitative methods and analysis. John
Wiley & Sons, 2004.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances
in Neural Information Processing Systems, volume 30, 2017.

Can Wang, Mitra Baratchi, Thomas Béack, Holger H Hoos, Steffen Limmer, and
Markus Olhofer. Towards time-series feature engineering in automated machine
learning for multi-step-ahead forecasting. Engineering Proceedings, 18(1):17, 2022.

Kieran Wood, Samuel Kessler, Stephen J Roberts, and Stefan Zohren. Few-shot
learning patterns in financial time-series for trend-following strategies. arXiv
preprint arXiv:2310.10500, 2023.

Shiyu Wang, Xinyue Zhong, Jiawei Li, Rongwei Liu, Yidong Feng, Congcong
Hu, Fan Huang, and Zhou Ye. Enhancing e-commerce supply chain management
through large time series model. In Companion Proceedings of the ACM Web
Conference Workshop 2025 (WWW’25 AIJTS Workshop), pages 1-8, Sydney,
NSW, Australia, April 2025. ACM.

Qingsong Wen, Tian Zhou, Chaoli Zhang, Weiqi Chen, Ziqing Ma, Junchi Yan,
and Liang Sun. Transformers in time series: A survey. 2022.

Jue Xiao, Tingting Deng, and Shuochen Bi. Comparative analysis of Istm, gru, and
transformer models for stock price prediction. In Proceedings of the International
Conference on Digital Economy, Blockchain and Artificial Intelligence, DEBAIT 24,
page 103-108, New York, NY, USA, 2024. Association for Computing Machinery.

Yahoo Finance. Yahoo finance website. https://finance.yahoo.com, 2025.
Accessed: 2025-03-31.

Yahoo Finance. Yahoo finance website specific subpage: Etf screener, 2025. Ac-
cessed: 2025-03-31.

Wenjian Zheng. Exchange-traded fund price prediction based on the deep learning
model. In 2021 China Automation Congress (CAC), pages 7429-7434, 2021.

Xuanchi Zhu. Examining pairs trading profitability. Senior Essay, Department of
Economics, Yale University, April 2024.

Zhen Zeng, Rachneet Kaur, Suchetha Siddagangappa, Saba Rahimi, Tucker Balch,
and Manuela Veloso. Financial time series forecasting using cnn and transformer,
2023.

Paul Zarchan and Howard Musoff. Fundamentals of Kalman Filtering: A Practical
Approach. American Institute of Aeronautics and Astronautics, Incorporated, 2000.

Chenyun Zhao, Xiaodong Wang, Anping Zhao, Yunpeng Cui, Ting Wang, Juan
Liu, Ying Hou, Mo Wang, Li Chen, Huan Li, et al. A vegetable-price forecasting
method based on mixture of experts. Agriculture, 15(2):162, 2025.

51

https://finance.yahoo.com

A. Appendix

A.1. Pairwise Results per Time Period

A.1.1. Kalman Filter
Pairwise Results Top 10 Cointegrated Pairs 2020

Theoretical Return

Pair Cointegration Score test MSE ~ YoY Returns (std) Under Perfect Return Score
Information
1. (SHV,SMH) 2.46 x 1074 6.24861 4.96% + 0.35% TLOE* N/A
2. (SHV,ONEQ) 4.04 x 1074 7.31014 3.23% £ 0.22% 33.16% 0.78
3. (SHV,PHO) 4.13 x 1074 8.91065 1.14% + 0.06% 14.67% 0.88
4. (SHV,PDP) 9.15 x 1074 7.17672 3.39% £ 0.39% 43.99% 0.72
5. (DVY,PEY) 1.41 x 1073 22.46558 0.03% =+ 0.02% 0.10% 1.00
6. (PFF,EMB) 1.45 x 1073 10.39903 1.36% + 0.24% 0.71% 1.01
7. (IGSB,BND) 1.56 x 1073 3.46026 0.10% £ 0.16% -0.36% 1.00
8. (IFGL,SHV) 3.95 x 1073 4.17398 —59.52% + 49.03% 0.41% 0.40
9. (PRFZ,SCZ) 4.47 x 1073 1544644 0.76% + 0.24% 0.31% 1.00
10. (IFGL,EMB) 4.61 x 1073 0.80221 1.58% + 0.25% 0.53% 1.01

Table A.1.: Model performance and return statistics for all tested pairs.

Pairwise Results Top 10 Cointegrated Pairs 2021

Theoretical Return

Pair Cointegration Score test MSE YoY Returns (std) Under Perfect Return Score
Information
1. (PFF,EMB) 7.71 x 1074 1.23317 0.68% =+ 0.07% 0.35% 1.00
2. (IFGL,EMB) 1.98 x 1073 6.62449 0.74% £+ 0.16% -0.03% 1.01
3. (IFGL,SHV) 2.30 x 1073 4.47843 1.17% + 0.16% 0.32% 1.01
4. (IGSB,BND) 2.75 x 1073 31.00205 0.32% + 0.09% 0.19% 1.00
5. (IFGL,SOXX) 2.88 x 1073 23.39865 3.17% £+ 0.64% 23.38% 0.84
6. (IFGL,SMH) 2.91 x 1073 24.67326 3.31% +0.77% 19.67% 0.86
7. (IFGL,PHO) 2.93 x 1073 34.76899 1.62% + 0.05% 12.06% 0.91
8. (IFGL,PDP) 2.97 x 1073 72.84399 0.78% =+ 0.06% TLOE* N/A
9. (IFGL,FTCS) 2.99 x 1073 44.07794 1.71% + 0.19% 12.47% 0.90
10. (IFGL,USIG) 3.01 x 1073 20.71949 0.49% + 0.08% -0.11% 1.01

Table A.2.: Model performance and return statistics for all tested pairs.

02

Pairwise Results Top 10 Cointegrated Pairs 2022

Theoretical Return

Pair Cointegration Score test MSE ~ YoY Returns (std) Under Perfect Return Score
Information
1. (PFF,EMB) 5.58 x 1074 20.34508 4.49% £ 0.77% 0.61% 1.04
2. (IFGL,EMB) 1.40 x 10~2 16.96470 0.87% = 0.04% 0.43% 1.00
3. (IGSB,BND) 1.89 x 1073 31.51380 5.10% £ 0.26% 0.88% 1.04
4. (USIG,IEI) 2.78 x 1073 2.49067 0.73% £ 0.14% 1.30% 0.99
5. (IGF,DVY) 2.82 x 1073 129.67840 0.48% +0.11% TLOE* N/A
6. (DVY,PEY) 3.45 x 1073 3.14572 0.18% + 0.03% 0.27% 1.00
7. (IGIB,IEI) 4.50 x 1073 4.97859 1.25% £+ 0.27% 1.15% 1.00
8. (IFGL,SOXX) 4.65 x 1073 30.83984 0.45% £ 0.06% TLOE* N/A
9. (IFGL,SMH) 4.65 x 1073 35.56703 0.43% £ 0.06% TLOE* N/A
10. (IFGL,PHO) 5.30 x 1073 51.68065 0.46% + 0.10% 3.70% 0.97

Table A.3.: Model performance and return statistics for all tested pairs.

Pairwise Results Top 10 Cointegrated Pairs 2023

Theoretical Return

Pair Cointegration Score test MSE YoY Returns (std) Under Perfect Return Score
Information
1. (PFF,EMB) 2.82 x 1074 2.44415 0.26% £ 0.04% -0.06% 1.00
2. (IFGL,EMB) 7.70 x 10~* 7.37119 0.33% £ 0.07% 0.65% 1.00
3. (IGF,DVY) 117 x 1073 38.25796 0.95% +0.04% TLOE* N/A
4. (IGIB,IEI) 1.25 x 1073 56.77418 1.34% + 0.22% 0.50% 1.01
5. (DVY,PEY) 1.57 x 1073 2.53301 0.01% £ 0.01% 0.15% 1.00
6. (USIG,IEI) 1.67 x 1073 36.09742 1.06% =+ 0.14% 0.61% 1.00
7. (IFGL,BND) 1.93 x 1073 37.54439 0.22% + 0.02% 0.25% 1.00
8. (IFGL,SMH) 2.58 x 1073 9.56665 4.55% =+ 0.44% 16.05% 0.90
9. (IFGL,MBB) 2.63 x 1073 4548007 0.28% + 0.04% 0.27% 1.01
10. (IFGL,SOXX) 2.70 x 1073 13.00471 3.08% £ 0.21% TLOE* N/A

Table A.4.: Model performance and return statistics for all tested pairs.

93

Pairwise Results Top 10 Cointegrated Pairs 2024

Theoretical Return

Pair Cointegration Score test MSE ~ YoY Returns (std) Under Perfect Return Score
Information
1. (PFF,EMB) 1.38 x 1074 47.79868 0.77% £ 0.13% 0.10% 1.01
2. (IFGL,MBB) 4.45 x 1074 55.19024 1.20% + 0.14% TLOE* N/A
3. (IFGL,EMB) 7.27 x 1074 2.23287 1.09% + 0.12% 0.39% 1.01
4. (IGIB,IEI) 7.97 x 1074 52.11113 1.13% £ 0.15% 0.05% 1.01
5. (IGF,DVY) 8.40 x 1074 55.44654 1.55% + 0.21% TLOE* N/A
6. (USIG,IEI) 1.09 x 1073 141.67952 0.74% £ 0.16% 0.25% 1.01
7. (IFGL,BND) 1.20 x 1073 56.49230 0.79% £ 0.07% TLOE* N/A
8. (IFGL,SMH) 1.64 x 1073 16.84568 11.50% £ 0.67% 26.74% 0.88
9. (IFGL,SOXX) 1.82 x 1073 35.82744 6.31% + 0.64% 11.34% 0.95
10. (IGF,PPH) 2.29 x 103 10.88732 0.78% £ 0.07% TLOE* N/A

Table A.5.: Model performance and return statistics for

54

all tested pairs.

A.1.2. Transformer

Pairwise Results Top 10 Cointegrated Pairs 2020

Theoretical Return

Pair Cointegration Score test MSE ~ YoY Returns (std) Under Perfect Return Score
Information
1. (SHV,SMH) 2.46 x 1074 2.22423 TLOE* TLOE* N/A
2. (SHV,0ONEQ) 4.04 x 10~ 1.27594 TLOE* 33.16% -1.00
3. (SHV,PHO) 4.13 x 1074 1.61198 —10.92% =+ 46.61% 14.67% 0.78
4. (SHV,PDP) 9.15 x 10~4 0.63493 TLOE* 43.99% -1.00
5. (DVY,PEY) 1.41 x 1073 0.16805 0.07% £ 0.01% 0.10% 1.00
6. (PFF,EMB) 1.45 x 1073 0.32286 0.32% £ 0.01% 0.711% 1.00
7. (IGSB,BND) 1.56 x 1073 0.98751 0.44% £ 0.02% -0.36% 1.01
8. (IFGL,SHV) 3.95 x 1073 0.13834 —0.17% £ 0.04% 0.41% 0.99
9. (PRFZ,SCZ) 4.47 x 1073 0.08079 0.19% =+ 0.02% 0.31% 1.00
10. (IFGL,EMB) 4.61 x 10~3 0.30447 0.22% + 0.05% 0.53% 1.00

Table A.6.: Model performance and return statistics for all tested pairs.

Pairwise Results Top 10 Cointegrated Pairs 2021

Theoretical Return

Pair Cointegration Score test MSE YoY Returns (std) Under Perfect Return Score
Information
1. (PFF,EMB) 7.71 x 1074 0.04681 0.28% =+ 0.02% 0.35% 1.00
2. (IFGL,EMB) 1.98 x 1073 0.07437 —0.08% + 0.03% -0.03% 1.00
3. (IFGL,SHV) 2.30 x 1073 0.08526 0.24% + 0.02% 0.32% 1.00
4. (IGSB,BND) 2.75 x 1073 0.07438 0.18% =+ 0.02% 0.19% 1.00
5. (IFGL,SOXX) 2.88 x 1073 18.40974 TLOE* 23.38% -1.00
6. (IFGL,SMH) 2.91 x 1073 16.40023 3.48% £ 0.16% 19.67% 0.86
7. IFGL,PHO) 2.93 x 1073 9.25424 7.40% + 0.15% 12.06% 0.96
8. (IFGL,PDP) 2.97 x 1073 12.14490 TLOE* TLOE* N/A
9. (IFGL,FTCS) 2.99 x 1073 4.48763 8.12% =+ 0.08% 12.47% 0.96
10. (IFGL,USIG) 3.01 x 1073 0.14323 —21.66% + 41.49% -0.11% 0.78

Table A.7.: Model performance and return statistics for all tested pairs.

95

Pairwise Results Top 10 Cointegrated Pairs 2022

Theoretical Return

Pair Cointegration Score test MSE ~ YoY Returns (std) Under Perfect Return Score
Information
1. (PFF,EMB) 5.58 x 1074 0.07043 0.59% + 0.06% 0.61% 1.00
2. (IFGL,EMB) 1.40 x 1073 0.04347 0.35% + 0.03% 0.43% 1.00
3. (IGSB,BND) 1.89 x 1073 0.24700 0.83% £ 0.03% 0.88% 1.00
4. (USIG,IEI) 2.78 x 1073 0.04934 1.10% =+ 0.05% 1.30% 1.00
5. (IGF,DVY) 2.82 x 1073 8.62643 TLOE* TLOE* N/A
6. (DVY,PEY) 3.45 x 1073 0.11978 0.36% % 0.02% 0.27% 1.00
7. (IGIB,IEI) 4.50 x 1073 0.02447 1.12% =+ 0.02% 1.15% 1.00
8. (IFGL,SOXX) 4.65 x 1073 0.95163 TLOE* TLOE* N/A
9. (IFGL,SMH) 4.65 x 1073 0.78920 TLOE* TLOE* N/A
10. (IFGL,PHO) 5.30 x 1073 1.97333 TLOE* 3.70% -1.00

Table A.8.: Model performance and return statistics for all tested pairs.

Pairwise Results Top 10 Cointegrated Pairs 2023

Theoretical Return

Pair Cointegration Score test MSE YoY Returns (std) Under Perfect Return Score
Information
1. (PFF,EMB) 2.82 x 107* 0.16529 0.09% + 0.01% -0.06% 1.00
2. (IFGL,EMB) 7.70 x 1074 0.09328 0.43% £ 0.07% 0.65% 1.00
3. (IGF,DVY) 1.17 x 1073 0.08200 TLOE* TLOE* N/A
4. (IGIB,IEI) 1.25 x 1073 0.06271 0.48% £ 0.03% 0.50% 1.00
5. (DVY,PEY) 1.57 x 1073 0.05569 0.21% + 0.01% 0.15% 1.00
6. (USIG,IEI) 1.67 x 1073 0.18978 0.35% £ 0.03% 0.61% 1.00
7. (IFGL,BND) 1.93 x 1073 0.14912 0.16% = 0.09% 0.25% 1.00
8. (IFGL,SMH) 2.58 x 1073 0.48091 15.78% £ 0.31% 16.05% 1.00
9. (IFGL,MBB) 2.63 x 1073 0.22387 0.01% =+ 0.08% -0.27% 1.00
10. (IFGL,SOXX) 2.70 x 1073 0.19171 TLOE* TLOE* N/A

Table A.9.: Model performance and return statistics for all tested pairs.

o6

Pairwise Results Top 10 Cointegrated Pairs 2024

Theoretical Return

Pair Cointegration Score test MSE ~ YoY Returns (std) Under Perfect Return Score
Information
1. (PFF,EMB) 1.38 x 1074 0.14245 0.11% £ 0.01% 0.10% 1.00
2. (IFGL,MBB) 4.45 x 1074 0.29027 —72.77% £ 47.72% TLOE* N/A
3. (IFGL,EMB) 7.27 x 1074 0.15208 0.35% £ 0.02% 0.39% 1.00
4. (IGIB,IEI) 7.97 x 1074 0.09651 0.09% =+ 0.00% 0.05% 1.00
5. (IGF,DVY) 8.40 x 10~ 0.22685 TLOE* TLOE* N/A
6. (USIG,IEI) 1.09 x 1073 0.25826 —0.21% £ 0.03% -0.25% 1.00
7. (IFGL,BND) 1.20 x 1073 0.44944 TLOE* TLOE* N/A
8. (IFGL,SMH) 1.64 x 1073 17.19063 15.15% £ 0.46% 26.74% 0.91
9. (IFGL,SOXX) 1.82 x 1073 9.49619 15.51% £ 0.73% 11.34% 1.04
10. (IGF,PPH) 2.29 x 1073 0.41636 TLOE* TLOE* N/A

Table A.10.: Model performance and return statistics for all tested pairs.

o7

A.

1.3. Time-MoE

Pairwise Results Top 10 Cointegrated Pairs 2020

Theoretical Return

Pair Cointegration Score test MSE ~ YoY Returns (std) Under Perfect Return Score
Information
1. (SHV,SMH) 2.46 x 1074 0.02923 —47.57% £ 69.90% TLOE* N/A
2. (SHV,ONEQ) 4.04 x 1074 0.02700 —31.11% + 59.98% 33.16% 0.52
3. (SHV,PHO) 4.13 x 1074 0.04419 —59.32% + 55.14% 14.67% 0.35
4. (SHV,PDP) 9.15 x 10~4 0.02771 —26.66% + 63.59% 43.99% 0.51
5. (DVY,PEY) 1.41 x 1073 0.14001 0.04% + 0.02% 0.10% 1.00
6. (PFF,EMB) 1.45 x 1073 0.22588 0.41% £ 0.15% 0.711% 1.00
7. (IGSB,BND) 1.56 x 1073 0.29892 0.06% £ 0.12% -0.36% 1.00
8. (IFGL,SHV) 3.95 x 1073 0.04271 0.13% £ 0.23% 0.41% 1.00
9. (PRFZ,SCZ) 4.47 x 1073 0.08381 0.25% £+ 0.10% 0.31% 1.00
10. (IFGL,EMB) 4.61 x 1073 0.04807 0.81% =+ 0.45% 0.53% 1.00

Table A.11.: Model performance and return statistics for all tested pairs.

Pairwise Results Top 10 Cointegrated Pairs 2021

Theoretical Return

Pair Cointegration Score test MSE YoY Returns (std) Under Perfect Return Score
Information
1. (PFF,EMB) 7.71 x 1074 0.05746 0.24% + 0.08% 0.35% 1.00
2. (IFGL,EMB) 1.98 x 1073 0.08541 —0.15% £ 0.03% -0.03% 1.00
3. (IFGL,SHV) 2.30 x 1073 0.07188 0.26% =+ 0.08% 0.32% 1.00
4. (IGSB,BND) 2.75 x 1073 0.09011 0.12% =+ 0.05% 0.19% 1.00
5. (IFGL,SOXX) 2.88 x 1073 0.07939 —1.31% =+ 51.50% 23.38% 0.80
6. (IFGL,SMH) 2.91 x 1073 0.08343 —44.97% + 59.89% 19.67% 0.46
7. IFGL,PHO) 2.93 x 1073 0.03839 9.21% + 2.02% 12.06% 0.97
8. (IFGL,PDP) 2.97 x 1073 0.09252 —91.43% + 32.19% TLOE* N/A
9. (IFGL,FTCS) 2.99 x 1073 0.02703 9.89% =+ 2.83% 12.47% 0.98
10. (IFGL,USIG) 3.01 x 1073 0.09892 —10.79% + 31.19% -0.11% 0.89

Table A.12.: Model performance and return statistics for all tested pairs.

o8

Pairwise Results Top 10 Cointegrated Pairs 2022

Theoretical Return

Pair Cointegration Score test MSE ~ YoY Returns (std) Under Perfect Return Score
Information
1. (PFF,EMB) 5.58 x 1074 0.05012 0.54% £ 0.12% 0.61% 1.00
2. (IFGL,EMB) 1.40 x 1073 0.04573 0.33% £ 0.13% 0.43% 1.00
3. (IGSB,BND) 1.89 x 1073 0.01860 0.87% £ 0.09% 0.88% 1.00
4. (USIG,IEI) 2.78 x 1073 0.02754 0.89% =+ 0.30% 1.30% 1.00
5. (IGF,DVY) 2.82 x 1073 0.20267 TLOE* TLOE* N/A
6. (DVY,PEY) 3.45 x 1072 0.11510 0.07% =+ 0.09% 0.27% 1.00
7. (IGIB,IEI) 4.50 x 1073 0.02443 0.83% £ 0.34% 1.15% 1.00
8. (IFGL,SOXX) 4.65 x 1073 0.17117 TLOE* TLOE* N/A
9. (IFGL,SMH) 4.65 x 1073 0.19464 TLOE* TLOE* N/A
10. (IFGL,PHO) 5.30 x 1073 0.05408 —61.78% £ 52.34% 3.70% 0.37

Table A.13.: Model performance and return statistics for all tested pairs.

Pairwise Results Top 10 Cointegrated Pairs 2023

Theoretical Return

Pair Cointegration Score test MSE ~ YoY Returns (std) Under Perfect Return Score
Information
1. (PFF,EMB) 2.82 x 107* 0.09098 —0.02% %+ 0.02% -0.06% 1.00
2. (IFGL,EMB) 7.70 x 1074 0.08899 0.53% £ 0.17% 0.65% 1.00
3. (IGF,DVY) 1.17 x 1073 0.05588 TLOE* TLOE* N/A
4. (IGIB,IEI) 1.25 x 1073 0.06727 0.27% £+ 0.19% 0.50% 1.00
5. (DVY,PEY) 1.57 x 1073 0.05366 0.12% =+ 0.03% 0.15% 1.00
6. (USIG,IEI) 1.67 x 1073 0.08134 0.38% £ 0.24% 0.61% 1.00
7. (IFGL,BND) 1.93 x 1073 0.15046 0.46% £ 0.14% 0.25% 1.00
8. (IFGL,SMH) 2.58 x 1073 0.02390 —8.15% + 48.13% 16.05% 0.79
9. (IFGL,MBB) 2.63 x 1073 0.18685 0.25% £ 0.10% -0.27% 1.01
10. (IFGL,SOXX) 2.70 x 1073 0.03220 —58.97% + 55.89% TLOE* N/A

Table A.14.: Model performance and return statistics for all tested pairs.

99

Pairwise Results Top 10 Cointegrated Pairs 2024

Theoretical Return

Pair Cointegration Score test MSE ~ YoY Returns (std) Under Perfect Return Score
Information
1. (PFF,EMB) 1.38 x 1074 0.09364 0.08% + 0.02% 0.10% 1.00
2. (IFGL,MBB) 4.45 x 1074 0.09236 —42.19% + 51.16% TLOE* N/A
3. (IFGL,EMB) 7.27 x 1074 0.07025 0.44% £ 0.07% 0.39% 1.00
4. (IGIB,IEI) 7.97 x 1074 0.08799 0.02% =+ 0.01% 0.05% 1.00
5. (IGF,DVY) 8.40 x 10~ 0.16539 TLOE* TLOE* N/A
6. (USIG,IEI) 1.09 x 1073 0.18845 —0.21% £ 0.05% -0.25% 1.00
7. (IFGL,BND) 1.20 x 1073 0.09422 —52.57% + 52.18% TLOE* N/A
8. (IFGL,SMH) 1.64 x 1073 0.14566 —21.83% + 54.49% 26.74% 0.62
9. (IFGL,SOXX) 1.82 x 1073 0.16738 —7.09% + 32.49% 11.34% 0.83
10. (IGF,PPH) 2.29 x 1073 0.03281 TLOE* TLOE* N/A

Table A.15.: Model performance and return statistics for all tested pairs.

60

B. Diagnostic Analyses

To gain deeper insight into the observed results, this section presents additional interpretative
and diagnostic analyses. These analyses present graphs and describe what is seen in the graphs
following the conventions of a results section. Actual implications of those findings are discussed
in section 5.1.

B.1. Pair Discovery
B.1.1. TR-PI All Pairs

Using the combination of Engle-Granger cointegration testing and a z-score-based trading
strategy simulation, a portion results in a total loss of equity even when supplied with the actual
future spread. Over all the pairs for which data was gathered, as detailed in Table B.1, p-values
were scored in a total range between a p-value of p = 1.38 % 10~* and a p-value of p = 5.3 % 1073,
During the years 2020 through 2024 the total loss of equity occurred as follows: once in 2020,
once in 2021, three times in 2022, twice in 2023, and four times in 2024. This means that across
50 pairs, 11 pairs resulted in total loss of equity (TLOE). The other 39 pairs averaged a TR-PI
of 5.80% YoY. The highest TR-PI among all pairs was 43.99% YoY for the pair (SHV-PDP).
Examining all pairs, including those that did not result in top 10 pairs per period, an analysis
for the year 2024 showed the differences in statistics for time series that resulted in a TLOE
TR-PI and those that did not. This is illustrated in Figure B.1, with standard deviation (o)
values ranging from o = 3.16 to 0 = 32.40 over the observation period. In contrast, non-TLOFE
pairs display a more narrow volatility range, from ¢ = 5.43 to 0 = 21.44. Furthermore, the
testing period for unprofitable pairs ends its time window with the spread approximately 8 ticks
lower than at its commencement, whereas profitable pairs experience an increase of 3 ticks in
spread over the same period.

61

Pair Cointegration Score TR-PI

2020
1. (SHV,SMH) 2.46 x 104 TLOE*
2. (SHV,ONEQ) 4.04 x 1074 33.16%
3. (SHV,PHO) 413 x 1074 14.67%
4. (SHV,PDP) 9.15 x 1074 43.99%
5. (DVY,PEY) 1.41 x 1073 0.10%
6. (PFF,EMB) 1.45 x 1073 0.71%
7. (IGSB,BND) 1.56 x 1073 -0.36%
8. (IFGL,SHV) 3.95 x 1073 0.41%
9. (PRFZ,SCZ) 4.47 x 1073 0.31%
10. (IFGL,EMB) 4.61 x 1072 0.53%
2021

1. (PFF,EMB) 771 x 1074 0.35%
2. (IFGL,EMB) 1.98 x 1073 -0.03%
3. (IFGL,SHV) 2.30 x 1073 0.32%
4. (IGSB,BND) 2.75 x 1073 0.19%
5. (IFGL,SOXX) 2.88 x 1073 23.38%
6. (IFGL,SMH) 291 x 1073 19.67%
7. (IFGL,PHO) 2.93 x 1073 12.06%
8. (IFGL,PDP) 2.97 x 1073 TLOE*
9. (IFGL,FTCS) 2.99 x 1073 12.47%
10. (IFGL,USIG) 3.01 x 1073 -0.11%
2022

1. (PFF,EMB) 5.58 x 1074 0.61%
2. (IFGL,EMB) 1.40 x 1073 0.43%
3. (IGSB,BND) 1.89 x 1073 0.88%
4. (USIG,IEI) 2.78 x 1073 1.30%
5. (IGF,DVY) 2.82 x 1073 TLOE*
6. (DVY,PEY) 3.45 x 1073 0.27%
7. (IGIB,IEI) 4.50 x 1073 1.15%
8. (IFGL,SOXX) 4.65 x 1073 TLOE*
9. (IFGL,SMH) 4.65 x 1073 TLOE*
10. (IFGL,PHO) 5.30 x 1073 3.70%
2023

1. (PFF,EMB) 2.82 x 1074 -0.06%
2. (IFGL,EMB) 7.70 x 1074 0.65%
3. (IGF,DVY) 1.17 x 1073 TLOE*
4. (IGIB,IEI) 1.25 x 1073 0.50%
5. (DVY,PEY) 1.57 x 1073 0.15%
6. (USIG,IEI) 1.67 x 1073 0.61%
7. (IFGL,BND) 1.93 x 1073 0.25%
8. (IFGL,SMH) 2.58 x 1073 16.05%
9. (IFGL,MBB) 2.63 x 1073 -0.27%
10. (IFGL,SOXX) 2.70 x 1073 TLOE*
2024

1. (PFF,EMB) 1.38 x 1074 0.10%
2. (IFGL,MBB) 4.45 x 1074 TLOE*
3. (IFGL,EMB) 727 x 1074 0.39%
4. (IGIB,IEI) 7.97 x 1074 0.05%
5. (IGF,DVY) 8.40 x 10~* TLOE*
6. (USIG,IEI) 1.09 x 1073 -0.25%
7. IFGL,BND) 1.20 x 1073 TLOE*
8. (IFGL,SMH) 1.64 x 1073 26.74%
9. (IFGL,SOXX) 1.82 x 1073 11.34%
10. (IGF,PPH) 2.29 x 1073 TLOE*

Table B.1.: Table showing TR-PI of top 10 cointegrated pairs over all five test windows (2020-
2024).

62

Impact of TLOE on Resulting Spread

Unprofitable
150
= Train
= Dev
— Test
100 ++e Train (mean)
«++o Dev (mean)
ey ove Test (mean)
P ! «++= Volatiity (20, 0=(3.16-32.40))
8 50
0
B
g
=X
n 0
; o .58
’h\'\ ,'MN"‘".
1N "hn’?'v‘""*wum*y",
50 g e asiy
)
|
')
Profitable
— Train
100 — Dev
— Test
5 +oo Train (mean)
«++ Dev (mean)
++ Test (mean)
B 0 o <ven Volatlity (20, 0=(5.43-21.44))
8 ’ . st
0
E 2%
¢
Q
)
0
-25
50
2008 2010 2012 2014 2016 2018 2020 2022 2024
Time

Figure B.1.: Above: Complete time series of pairs that result in a -100% (total loss of equity)
return
Below: Complete time series of remaining pairs

63

B.1.2. Profitability, Predictability ETF Pairs

To assess the viability of the cointegrated ETF pairs discovered via the Engle-Granger two-step
cointegration test (threshold p < 0.05), this proxy-based analysis shows the two key dimensions
that are tested in this study; profitability and predictability. The y-axis in the resulting scatter
plot, as shown in Figure B.2a and Figure B.2b, represent the Mean Squared Error (MSE) from
the baseline Kalman Filter model over the set of all available pairs'. The x-axis represents the
theoretical maximum profitability - defined as the cumulative return assuming perfect foresight,
with access to future values of the spread.

For the period starting in 2008, between 43 and 95 ETF's remain across all time periods. This
graph also shows the great difference in profitable opportunities across years. Some years, such
as 2024, shows only 9 possibly profitable trading pairs under perfect information, whereas the
previous year shows 35 such pairs from all pairs with p < 0.05.

LA larger set than the total of top 10 cointegrated pairs

64

2007.01.01-2016.12.31

001
@ o1
H
S 02
% o °
- e
& ==
10
100% 50% % 0% 100%
Profitabilty (%)
2007.01.01-2019.12.31
001
@ o1
:
S 02
3 R e
g o o [mowsoow
-
.
o
100% S50% 0% 50% 100%
Profitabilty (%)
2007.01.01-2022.12.31
001
@ oo
:
S o2
H O conom
VSES027
g os o) Profit=56.7%
3 e T .
£ .
10
-100% 50% 50% 100%
Profitability (%)
2008.01.01-2016.12.31
001
g o
2 02 O v
feaas,
z (e
2 o5 S v oo [
g 3
- LR LT S
H < L X
o o ° "
s 3 5%
.
10 .
100% 50% % 0% 100%
Profitabilty (%)
2008.01.01-2019.12.31
001
g o1
[}
2 02 s
z .
£ .
Fos ° . -
T . e
- .
P .
.
10
.
-100% 50% % 0% 100%
Profitabilty (%)
2008.01.01-2022.12.31
001
01
ICH
£
> 05
3 1
£
-
2
4
10 —
o
-100% 50% % 50% 100%

Profitabilty (%)

Pair Availability per Time Window (Starting 2007)

1000%

1000%

1000%

1000%

1000%

1000%

2007.01.01-2017.12.31
001

01 @
02

SoXKSH)
Profit=64.9%

Predictability (MSE)

10
-100% 50% [50%
Profitabilty (%)

2007.01.01-2020.12.31

100%

001

o o

®coisin
Poti45.6%

Predictability (MSE)
o
)

.
-100% 50% [
Profitabilty (%)

2007.01.01-2023.12.31

100%

001

@ o1 @ iizocy)
2 VSE<0.08
Er Prof=130 5%
z
3 .
g o5
E .
8 .
g1 e

10

-100% 50% 50% 100%
Profitability (%)

2007.01.01-2018.12.31

(a) With 2007 as starting year.

2008.01.01-2017.12.31

001
@ o1 .rmxsm‘
. E=0.09
2 0 3 %
2
g o5
g 1 O
a
10
-100% 50% [100%
Profitability (%)
2008.01.01-2020.12.31
001
o 01 SE |
% 02 ° . Profit=143 7%
.
2 . . e . 0 [XN
£ os 4 Soge o %
E 1 L o0 0
3 ®° o0
a . %,
o ® .
10 °
.
L
-100% 50% [50% 100%
Profitability (%)
2008.01.01-2023.12.31
0.01
.W
Vses003
Pr °
o
)
£
-y
¥
]
2
=
2
&

Profitabilty (%)

Pair Availability per Time Window (Starting 2008)

001
[TEY
2
S 02
3
g os .
s USVOVY)
g . W”@ =
. o |6
10
1000% -100% 50% o 50% 100%
Profitability (%)
2007.01.01-2021.12.31
001
o 01
2
2 o
> @ soxcsuin
£ MSE=02
2 05 |Po-i000%)
8
s 1
e
[
. .
.
10
.
1000% -100% 50% 100%
Profitability (%)
2007.01.01-2024.12.31
001
[TEY
-3
2
3
8
s
3
2
[
10
1000% -100% 50% 50% 100%
Profitability (%)
2008.01.01-2018.12.31
001
g 01
@
2 02
2
3 o0s
5
5 1
2
I
.
.
10
1000% -100% 50% o 50% 100%
Profitability (%)
2008.01.01-2021.12.31
001

01
® socsiin
02 wse12

Predictability (MSE)
°

A .
.
10
1000% % 100%
Profitability (%)
2008.01.01-2024.12.31
001
— o1
@
g 02 .
2
£o ¢
g ;0 .‘
£ o o°
e
[
10
.
1000% -100% 50% 100%

Profitabilty (%)

(b) With 2008 as starting year.

65

Figure B.2.: Profitability vs Predictability

1000%

1000%

1000%

1000%

1000%

1000%

B.2. Predictability

B.2.1. Trend Sensitivity

To examine the suspected observation of trend sensitivity in the Transformer and Kalman Filter
model, Figure B.3a shows an empirical example of a pair with high test MSE. The figure shows
on both sides the window w;_; in red, and window w; in yellow and purple (respectively the
prediction and groundtruth). As z-score rolling normalization is used, a difference of mean gy
and o;_1 at time ¢ — 1 are observed, with normalization of the prediction at time ¢ at a different
scale. Specifically, the statistics are observed to be p;—1 = 0.5 and o;—1; = 0.4, whereas the
intended values should be puy = 1.7 and 0,1 = 1.4.

On the other hand, Figure B.3b shows a figure where scaling statistics of window w;_; are
comparatively more similar. Because pu;—1 = 1.7, 0y—1 = 0.4, which are comparatively similar in
scale to the actual scaling statistics of the current window, with pu; = —1.0 and oy = 1.4. The
prediction for this combination, labeled as predicted spread test in the figure, is also observed
to be more accurate. In the figures, compared to the difference in scales, there is no easily
discernible difference in the ability of the forecasts to follow the form of the ground truth spread.

66

lllustration of High Difference Scaling Statistics Transformer
Test MSE: 0.2598
Scaling statistics w(t-1): p=-0.5, 0=0.4
Scaling statistics w(t) [assuming look-ahead bias]: p=1.7, 0=1.4

4
2
T 0
I
o
7]
-2
—— Actual Spread Full Timesernes
o D Groundtruth Spread Previous Window (For Scaling)

—— Groundtruth Spread Test
—— Predicted Spread Test

2008 2010 2012 2014 2016 2018 2020 2022
Year

(a) Transformer: Empirical example of high test MSE caused by scaling differences.

lllustration of Low Difference Scaling Statistics Transformer
Test MSE: 0.0256
Scaling statistics w(t-1): uy=1.7, 0=0.4
Scaling statistics w(t) [assuming look-ahead bias]: p=-1.0, c=1.4

2
0
-2
B
I
o
7]
-4
_6
—— Actual Spread Full Timeseries
= Groundtruth Spread Previous Window (For Scaling)
-8 —— Groundtruth Spread Test
—— Predicted Spread Test

2008 2010 2012 2014 2016 2018 2020 2022
Year

(b) Transformer: Empirical example of low test MSE caused by similar scaling statistics.

Figure B.3.: Comparison of Transformer and Time-MoE: Both show low test MSE and high
validation MSE due to similar train and test timeseries patterns.

67

B.2.2. Discrepancy in Model Accuracy Between Validation and Test

Empirical observations indicated that there was a divergence between validation and test accuracy,
illustrated in figure Figure B.4b. This result was mitigated through TSCV. It has exhibited
lower validation MSE relative to test MSE with a moderate degree of consistency. This analysis
aims to elucidate the potential causes underlying these observations and to determine whether
the apparent magnitudes of these differences are statistically significant.

Refer to Figure B.4b for a graphical representation of divergence for the three models before
implementation of Time Series Cross-Validation. This figure presents validation MSE on the
x-axis and test MSE on the y-axis for each model. In a standard machine learning pipeline, it
is anticipated that the plotted data points would approximate the identity line y = x within a
predictable range of standard deviation. While the Time-MoE model adheres to this expected
relationship, the Kalman Filter and Transformer model demonstrate a deviation characterized
by elevated test MSE values.

68

MSE Comparison Across Models

Kalman Filter MSE Transformer MSE TimeMoE MSE
175 o 8 0.30 ®
10' H
150 T
° ° . 025
125 -
020
0
w 100 10
E
0.15
75
50 010
10
% 0.05
0
Validation MSE Test MSE Validation MSE Test MSE Validation MSE Test MSE

Data Type

(a) Comparison of validation and test MSE over all three models, with Expanding Window TSCV.
Boxplot used due to lack of direct pairing between validation and test MSE values across years
(2016-2019 vs. 2020-2024). Aggregated distributions are compared as temporal correspondence is

absent.
Validation-Test Error Consistency Across Models
Kalman Filter Transformer Time-MoE
test MSE higher: 41 (avg diff = 4.821) test MSE higher: 45 (avg diff = 5.838) test MSE higher: 34 (avg diff = 0.047)
val MSE higher: 19 (avg diff = 4.378) val MSE higher: 15 (avg diff = 2.259) val MSE higher: 26 (avg diff = 0.064)
-~ Identity line y=x s - Mdentity line y=x L -+~ Identity ine y=x
W0 o o o
. ° 020
& [3
L
o
X .
» Q 015 (- e
% £ L
w L4 w L ° .
) @ 1}
= = =1
= B 20 B
2 2 - ki . @ .. * .
010 -
LX) e d
15 o *
L)
10 B 005 . LA
» L]
. ih %y . P L
‘u p ° *
0 - 000 **
20 30 40 0 5 10 15 2 % 30 35 40 000 005 0.10 015 020
Validation MSE Validation MSE Validation MSE

(b) Comparison of validation and test MSE over all three models, before Expanding Window TSCV.
Scatter plot used due to direct pairing between validation and test MSE values across years (test
windows 2020-2024 used, with old window methodology). Pointwise comparisons are therefore enabled.

Figure B.4.: Comparison of validation and test MSE over all three models, with and without
Expanding Window TSCV.

69

B.3. Profitability

B.3.1. Predictive Accuracy vs. Economic Performance

To evaluate the robustness of predictive signals utilized as inputs in the z-score-based trad-
ing strategy, it is crucial to establish that high predictive accuracy translates into sustained
profitability. To quantitatively investigate this relationship, various methods were employed to
introduce mean squared error (MSE) into the ground truth spread values, thereby enabling a
systematic analysis of the impact of types of erratic predictions the models made. Specifically,
the following perturbations were applied: (i) the addition of synthetic Gaussian noise to the
predictions, (ii) temporal lagging of predicted values, (iii and iv) scaling the spread by multi-
plicative factors to simulate both amplified (higher) and attenuated (lower) predictions, and
(v) simulating trend-following behavior with reduced accuracy at turning points, as is observed
with the Kalman Filter-based approach, achieved via the application of smoothing windows to
ground truth values. Figure B.6 shows an illustration of an arbitrary time series to allow for
better interpretability of the effects of the perturbations.

Figure B.5 illustrates all five perturbations. Some perturbations caused expected effects to
the resulting profitability. Introducing Gaussian error results in a logarithmic fit showing a
profitability of approximately 30% when test MSE is zero?, whereas the profitability reduces
to 0% for a test MSE of 12, and logarithmically grows more unprofitable the further the MSE
rises. Similarly, prediction error caused by innacurate scaling shows a decrease in profitability
for higher test MSE. However, this finding is juxtaposed with inaccurately high scaling causing
the exact opposite effect.

The results of this analysis, averaged across the top 30 cointegrated pairs during the 2023 and
2024 periods, are presented in Figure B.5. It shows a relationship, with the highest returns
accompanying a test MSE under a value of 2, rising the closer it gets to zero for both time
periods.

2Note that a YoY return percentage under a Test MSE of zero is the same concept as the concept of TR-PI, as
often mentioned in this paper. A complete explanation on TR-PI is given in subsection 3.5.2

70

Effect of Types of Accuracy on Trading Returns
Inaccuracy Caused by Gaussian Error

Profitability (Yo Mean %)

L
=]

L]
5 10 15 20 5

=]

Inaccuracy Caused by Higher Scale

35.50
35.25
35.00
.75
.50

34.25

Profitability (YoY Mean %)

34.00

000 025 050 075 100 125 150 175 200
Inaccuracy Caused by Overly Smooth Predictions

575 * o

L]

55.0

3
[42]

=
(=)

475

Profitability (YoY Mean %)

&

425

03 0.4 0.5 06 07 0.8 09 10
Test MSE

Figure B.5.: Predictive Accuracy vs. Economic
Errors
Using artificially added noise to see

71

Inaccuracy Caused by Lagging Predictions
3
35.2 L]

1.0 15 20 25 30 35 40 45 50

Inaccuracy Caused by Lower Scale

33.75
33.50
33.25
33.00
32.75
32.50

32.25

000 025 050 075 100 125 150 175 200
Test MSE

Performance Comparison Between Types of

effect on returns.

Time Series Resulting from Accuracy Types

Gaussian Error Lagging Predictions
-5
= QOnginal Time Seres 15 = Onginal Time Senes
-10 = (Collection of Artificially Noisy Time Series = (ollection of Artificially Noisy Time Series
-15
-20
®
8 -25
[« R
D _30
-35
-40
-45
2024-01 2024-03 2024-05 2024-07 2024-09 2024-11 2025-01 2024-01 2024-03 2024-05 2024-07 2024-09 2024-11 2025-01
Higher Scale Lower Scale
15 = Qriginal Time Series -10 = Qriginal Time Series
= Collection of Artificially Noisy Time Series = (ollection of Artificially Noisy Time Series
20 -15
25 -20
el
o
& -a0 -25
35 -30
-40 35
-40
2024-01 2024-03 2024-05 2024-07 2024-09 2024-11 2025-01 2024-01 2024-03 2024-05 2024-07 2024-09 2024-11 2025-01
. Date
Overly Smooth Predictions
15 = Qriginal Time Series
= Collection of Artificially Noisy Time Series
-20
B -25
o
[+ %
(7]
-30
-35
-40
2024-01 2024-03 2024-05 2024-07 2024-09 2024-11 2025-01

Date

Figure B.6.: Illustrated Time Series For Five Error Structures:
i) Gaussian Error: simulating normally distributed residuals
ii) Lagging Predictions: simulating autocorrelated residuals
iii) Higher Scale: simulating heteroskedasticity resulting in over-amplified predictions
due to inaccurate normalization
iv) Lower Scale: simulating heteroskedasticity resulting in under-amplified predic-
tions due to inaccurate normalization
v) Overly Smooth Predictions: simulating low variance residuals

72

	Introduction
	Background and Theory
	The Research Problem
	Existing Literature
	Model History
	Model PT Application
	Feature Importance
	Data Selection and Rationale
	Pair Selection Strategy

	Overview of Applied Architectures
	Kalman Filter
	Transformer
	Mixture-of-Experts
	Trading Strategy Based On Forecasts

	Research Gap
	Existing Applications of Transformers
	Existing Applications of MoE

	Motivation and Significance
	Academic Contribution
	Research Questions

	Methodology & Study Design
	Methodological Foundation
	Adapted Components
	New Components

	Dataset Construction
	Data Gathering

	Data Preprocessing
	Incomplete Data
	Liquidity
	Finding Pairs
	Scaling

	Application of Prediction Models
	Kalman Filter
	Transformer
	Time-MoE

	Application of Trading Simulation from Forecasts
	Returns from Simulation
	Theoretical Return Under Perfect Information
	Return Score

	Time Series Cross-Validation
	Hyperparameter Tuning
	Gathering Test Metrics
	Hyperparameter Optimization Algorithm

	Accuracy Metrics

	Results
	Pair Profitability
	Kalman Filter
	Transformer
	Time-MoE
	Overview Profitability & Predictability Averages Across Time Periods
	Overview Profitability & Predictability Averages per Time Period
	Hyperparameter Optimization Results
	Visual Results of Predicted Spreads
	Kalman Filter
	Transformer
	Time-MoE
	Interpretation Clarification

	Discussion & Conclusion
	Discussion
	Research Questions & Hypotheses
	Limitations

	Conclusions
	Recommendations
	Future Work
	Amendments to Current Methodology

	References
	Appendix
	Pairwise Results per Time Period
	Kalman Filter
	Transformer
	Time-MoE

	Diagnostic Analyses
	Pair Discovery
	TR-PI All Pairs
	Profitability, Predictability ETF Pairs

	Predictability
	Trend Sensitivity
	Discrepancy in Model Accuracy Between Validation and Test

	Profitability
	Predictive Accuracy vs. Economic Performance

