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Differentiating Ordered from Disordered
Language In Older Individuals Using the
Cookie Theft Picture Description Task: A
Multimodal Machine Learning Approach
Belal Mian

s3737896

ABSTRACT

This study investigates the application of three machine learning models(Random Forest, SVM, XGBoost)
and a baseline linear regression model to distinguish disordered language patterns associated with
Alzheimer’s Disease (AD) from typical language use in the older individual populations, addressing the
research question: ”How can we use machine learning to distinguish normal from disordered language
use in monitoring Alzheimer’s Disease in older individuals?”
This study focuses on Alzheimer’s Disease, leveraging linguistic and auditory patterns as a diagnostic
tool. The dataset for this study comprises 674 participants(337 AD, 337 control) taking the Cookie Theft
picture description test, sourced from the DementiaBank database. Textual features were extracted using
Empath and sentence embeddings, while audio features were obtained from the emobase feature set
from OpenSMILE.
The feature selection consisted of three steps: statistical significance testing (p < 0.05), effect size
filtering (Cohen′s d ≥ 0.5), and multicollinearity reduction(Pearson′s r > 0.8). All models achieved ROC
AUC scores of 0.73–0.76 and recall scores of 0.72–0.73, achieving results comparable to those reported
in the literature. In contrast to expectation, audio features contributed comparably to text features.
The performance of the machine learning models compared to each other and to the baseline linear
regression model was similar, suggesting feature quality outweighed model choice. Despite promising
results, limitations include dataset size, task specificity, and non-specialized feature tools. Future work
should expand datasets, tailor features specifically to detect AD, and refine multimodal approaches by
employing a hybrid approach. This approach leverages the strengths of separate models that can be
used to train on text and audio features independently, combining their outputs via a secondary model to
improve overall prediction performance.

Keywords: Machine learning, Disordered language, Alzheimer’s Disease, Cookie Theft task, Multi-
modal analysis, Feature selection



1 INTRODUCTION
Mental health problems are the leading cause of disability[52]. This has significant economic conse-
quences, costing the U.S. economy $282 billion annually[67]. Given this substantial impact, further
research into mental health conditions is crucial, not only to prevent prolonged periods of disability, but
also to develop better interventions that can shorten them. A particularly vulnerable segment of the popu-
lation are older individuals(65 years and older), who face unique challenges in mental health assessment.
By 2030, one in six people worldwide will be aged 60 years or older[53]. The prevalence of age-related
mental health conditions such as Alzheimer’s Disease (AD) is expected to increase significantly as the
global population ages. AD is one of the most prevalent mental health disorders among older adults,
making it a critical focus area to improve diagnostic and monitoring methods[51]. The number of AD
patients is expected to reach 78 million in 2030 and 139 million in 2050, making early detection of it
more urgent[1]. Cognitive decline through normal aging or neurodegenerative conditions such as AD
complicate traditional diagnostic methods that often rely on self-reporting. These conventional approaches
may be less effective for older adults experiencing communication difficulties or cognitive impairments.
One promising area of research involves using language markers to improve the diagnosis of mental
health conditions such as AD. These markers include the words people use or the topics they frequently
discuss. Research has shown that individuals with mental health disorders exhibit distinctive linguistic
characteristics, such as increased use of negative words, disorganized sentence structures, or reduced
speech fluency[42]. Identifying these markers, however, requires analyzing large amounts of linguistic
data, often containing subtle and complex patterns that may not be evident. In light of these obstacles,
different methods are required to diagnose mental health conditions in older adults, especially for those
struggling with communication. Machine learning may offer a solution. By analyzing subtle written
and/or spoken linguistic patterns that may go undetected otherwise, it can help identify mental health
concerns, even when communication is impaired[36]. This approach could be valuable for diagnosing
or monitoring mental health conditions such as Alzheimer’s Disease in older adults. This reduces the
reliance on self-reporting while improving diagnostic accuracy. With this in mind, an important research
question arises:

”How can we use machine learning to distinguish normal from disordered language use in monitoring
Alzheimer’s Disease in older individuals?”

In this study, disordered language will be defined as difficulties in using and understanding spoken
or written language. This term aligns with the definition of language disorders used by the American
Speech-Language-Hearing Association. They define a language disorder as an impaired comprehension
and/or use of spoken, written and/or other symbol systems[8][6]. This can include challenges in speaking,
listening, reading, or writing, making it difficult for individuals to express their thoughts or comprehend
others[17]. To answer the research question, this study proceeds as follows: Chapter 2 establishes a
theoretical framework where relevant literature on Alzheimer’s Disease progression is reviewed. This also
contains linguistic markers of cognitive decline. This is followed by the challenges in older adults’ mental
health research and current gaps that motivate this study. Chapter 3 details the methodology, including
data collection from the DementiaBank database using the Cookie Theft picture description task, partic-
ipant demographics. Afterwards, the feature extraction methods, statistical analysis, feature selection,
the used machine learning models, and the training process will be discussed. Chapter 4 presents the
results. This includes feature selection effectiveness, assessing model performance based on performance
metrics, confusion matrix analysis, hyperparameter tuning value distribution, and feature importance
across models. Chapter 5 discusses these findings, highlighting unexpected insights and limitations, while
Chapter 6 concludes with a summary of key contributions, findings, and future directions.
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2 LITERATURE REVIEW
This literature review begins by examining the theoretical foundations of language patterns in Alzheimer’s
Disease (AD), and continues by exploring challenges in mental health research among older adults. It
then identifies current research trends and gaps that this study addresses.

2.1 Theoretical Framework
AD significantly affects the population of older adults. AD encompasses three stages: preclinical, pro-
dromal, and dementia AD [24]. In the preclinical stage, changes in the brain occur without noticeable
symptoms[24]. Prodromal AD, often called Mild Cognitive Impairment(MCI), represents the early stages
of cognitive decline. This is noticeable, but not yet severe [24]. Research has shown that individuals in
the early stages of AD exhibit reduced syntactic complexity, meaning that they were more prone to use
simpler sentences[12]. These sentences often lack relative clauses (dependent clauses that modify nouns,
e.g., ”who,” ”which,” or ”that”), and contain fewer multiple verbs or noun phrases[12]. Additionally, the
proportion of grammatically correct sentences also tends to decrease in the early stages of Alzheimer’s
Disease [12]. Another observed pattern is an increased reliance on using pronouns and verbs, accompanied
by a reduced noun usage[12]. For example, a patient might say ’He is doing that.’ instead of ’The man
is opening the door.’. Dementia AD is the final stage, where cognitive decline becomes severe[24].
Collectively, these three stages affect approximately 416 million people, representing 22% of the global
population aged 50 and above[24].

Given the high prevalence of AD among older individuals, diagnosing it early becomes increasingly
crucial. Early intervention may slow the progression of the disease and could preserve some neural
structures[33]. This may potentially delay the emergence of certain symptoms in patients[33]. One
promising method for diagnosing conditions such as AD is through the analysis of language, both verbal
and written. Language plays a fundamental role in shaping cognition and perception, making it a powerful
indicator of an individual’s psychological state[68]. Research suggests that linguistic features can offer
critical insights into mental health conditions, with specific language patterns serving as markers of under-
lying psychological states[45]. An individual’s psychological state often manifests in their communication
style, providing valuable cues for diagnosis. For example, individuals with mental health difficulties may
use distinctive language patterns, such as an overuse of singular personal pronouns (e.g., ”I”, ”me”) and
negative emotion words, compared to those without such difficulties[42].

AD, particularly in its early stages, also influences speech. A study found that a decline in speech
rate could be an early indicator of AD[68]. This decline in speech rate may reflect broader cognitive
and neurological changes occurring in the brain[68]. Furthermore, AD patients exhibit an unstable pitch,
where their pitch can change frequently[44]. Their average pitch also tends to be lower compared to
cognitively healthy individuals[44]. Another characteristic feature of AD is fluctuating speech volume,
which can vary irregularly throughout conversation[44]. This likely reflects reduced motor control or im-
paired self-monitoring[44]. Beyond speech acoustics, patients with AD often display a reduced or absent
grammatical structure in their speech, along with a higher frequency of repetitiveness and misspellings in
their writing[20]. The use of generic terms to refer to subjects, such as ”boy”, ”girl”, or ”woman” instead
of more specific terms like ”son”, ”brother”, ”sister”, or ”mother”, is also associated with a higher risk of
Alzheimer’s Disease[20]. In contrast, mentioning more specific details, such as ”dishcloth” and ”dishes”,
may be linked to a lower risk of AD[20]. Given these findings, linguistic markers may serve as a valuable
tool in diagnosing AD. In some cases, diagnoses based on linguistic markers have outperformed those
made through traditional clinical methods[69]. This highlights the importance of considering linguistic
markers when diagnosing mental health disorders such as AD in the older adult population, providing a
non-invasive and potentially more accurate method of early diagnosis and intervention. The linguistic
markers for Alzheimer’s Disease are summarized in table 1.

Alzheimer’s Disease Linguistic Marker Meaning
Reduced syntactic complexity Simpler sentences that lack relative clauses such as ”who” or ”which” and contain fewer multiple verbs or noun phrases.

The proportion of grammatically correct sentences decreases Fewer sentences made by AD patients are grammatically correct.
Increased reliance on using pronouns and verbs, accompanied by a reduced noun usage Instead of saying ”A woman is watching TV, eating dinner while a man watches.”, they say ”She is sitting and eating something. He looks.”

Declining speech rate Speaking slower.
Along with a higher frequency of repetitiveness and misspellings in their writing Addressing subjects multiple times and misspelling words.

The use of generic terms to refer to subjects Saying ”boy”, ”girl”, instead of more specific terms like ”brother” or ”sister”.

Table 1. Linguistic Markers for Alzheimer’s Disease
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2.2 Challenges Regarding Research on Alzheimer’s Disease of the Older Individuals
While the use of linguistic markers has been established as an effective tool for diagnosing AD, especially
in older individuals, requires analyzing large amounts of linguistic data, which presents unique challenges.
Older adults are less likely to participate in mental health studies such as those for AD [47]. Factors con-
tributing to this include decreased communicative abilities or cognitive impairments caused by conditions
such as AD[47]. This can lead to disorderly language where speech becomes incoherent, fragmented,
or difficult to follow[47]. An example of disordered language is Alogia, which can be found in patients
with AD[42]. Alogia is characterized by a noticeable decrease in quality and quantity of speech[42].
Individuals with Alogia often do not speak until spoken to, give short answers, pause for a time between
words and/or sentences and exhibit a flat vocal tone[42].

The second challenge regarding studying AD in older individuals is their health. Those challenges
include general frailty and mobility issues, both of which are exacerbated by AD[14]. Other challenges
involve sensory deficits that frequently disqualify individuals from clinical trials and broader participation.
Examples of sensory deficits are loss of hearing and vision. Both of which are linked to an increased
risk of AD[35]. As previously mentioned, a large amount of linguistic data needs to be analyzed to
identify linguistic patterns associated with Alzheimer’s Disease. One potential solution is the use of
machine learning models. They excel in analyzing large amounts of data, allowing for the capture of
subtle linguistic patterns that otherwise may have gone unnoticed. This makes machine learning models
well-suited for this task and some have already been successfully employed in some studies.

2.3 Current Research and Research Gaps
While research on linguistic markers for various mental health disorders is well-established, there has
been relatively little focus on the older individuals’ population[47]. Most recent studies have focused on
general populations, leaving a gap in research specifically targeted towards older adults. One example
of this is Spruit et al.(2022). They conducted a study on linguistic markers for mental health disorders,
using multiple machine learning and deep learning models, to predict the presence of a mental disorder
and, if present, which one. For both tests, the study employed five models. Those models included the
Decision Tree, Random Forest, Support Vector Machine(SVM), fastText and RobBERT. The features for
the Decision Tree, Random Forest and SVM were both extracted with spaCy and LIWC. The dataset in
the study was sourced from the Verhalenbank (”Storybank”) of the University Medical Centre Utrecht
(UMCU) in The Netherlands, where stories related to mental illness were collected from those who have
or had psychiatric issues or who were in contact with people with psychiatric issues[64]. While Spruit et
al. (2022) did make significant strides in identifying linguistic markers in the Dutch language for mental
health disorders, the study lacks the focus on any specific age group. This study will specifically focus on
older adults. Furthermore, this study specifically focuses on Alzheimer’s Disease. Moreover, this study
will also collect audio data, whereas Spruit et al.(2022) focused solely on textual data. The combination
of textual and audio data may bring more insight into the language patterns that are associated with
Alzheimer’s Disease than possible if only one of the two were to be used.

Another study saw the application of unimodal and multimodal approaches to predict the presence
of a mental disorder[17]. In this study, a unimodal approach means analyzing one type of data, either
text or audio, whereas a multimodal approach analyzes both[17]. The study contains two separate uni-
modal approaches, one for text and one for audio, and one multimodal approach that combined text and
audio data. The goal of this study was to compare the accuracies of those models and to emphasize the
importance of multimodal integration in the field of mental health diagnostics and to set the stage for
future research[17]. While this study did contribute in analyzing multiple types of data, it also lacks the
focus on any specific age group and the focus on AD specifically. Given that cognitive impairments can
significantly impact both speech and text data, the analysis of the combination of both types of data may
offer unique insights into recognizing the linguistic patterns associated with AD in older individuals.
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3 METHODOLOGY
Building upon the theoretical framework and research gaps identified in the literature review, this section
outlines a multimodal approach to address the research question. The multimodal approach leverages both
textual and audio features derived from a standardized cognitive assessment task, the Cookie Theft picture
description task. This section first describes the data collection process followed by the demographics
of the participants. It then explains the preprocessing steps involving statistical feature selection, and a
discussion of the application of three machine learning models with optimized hyperparameters and a
baseline linear regression model.

3.1 Data Collection
The data used in this study was collected from three studies in the DementiaBank database. All three
studies used the Cookie Theft description test. This is a test where participants have to describe as many
of the events that occur in the picture as possible[14]. The Cookie Theft picture can be found in figure 1.
The picture illustrates a mother drying the dishes next to the sink in the kitchen. The sink is overflowing

Figure 1. The Cookie Theft Picture

with water due to the mother leaving the tap open and not paying attention. At the same time, two children,
a boy and a girl are attempting to take cookies from a jar when their mother is not looking. The boy
uses a stool to get up to the cabinet, where the cookie jar is located. The stool is unstable. The girl
stands next to the stool and has her hands stretched to receive cookies[14]. Participants were sometimes
pointed to neglected features of the picture by the researcher and were asked to elaborate if the response
of the participant was less than might be expected given his or her apparent potential[14]. This test is
used to evaluate language and cognitive functions[14]. More specifically, it is utilized to prompt various
aspects of linguistic abilities of the patients such as spontaneous speech, vocabulary usage, grammatical
structures, and the ability to organize and convey information coherently[14].

As previously mentioned, three studies were selected for data collection. Not all samples from the
third study were included for analysis. In this particular dataset, the control and AD groups were not
specified explicitly. However, this could be partially inferred based on certain indicators, such as having
had a stroke, difficulty in thinking, having memory troubles and having had a diagnosed mental health
condition(either past or present). Only samples without these indicators were included and classified
as part of the control group. In all three studies, older individuals with and without AD were asked to
describe the Cookie Theft picture. These descriptions were recorded and transcribed. The transcripts
included basic demographic information such as age, sex, and diagnosis (dementia, Alzheimer’s disease,
MCI, vascular dementia, control)[41][9]. To further illustrate this, a subset of samples is shown in table 2.
The audio and the transcripts were used as input for this study.
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Language Researcher Role Age Gender Diagnosis
eng Pitt Participant(PAR) 57 male ProbableAD
eng Pitt Participant(PAR) 76 female MCI
eng Pitt Participant(PAR) 56 male ProbableAD
eng Pitt Participant(PAR) 53 male ProbableAD
eng Pitt Participant(PAR) 75 female MCI
eng Pitt Participant(PAR) 55 male ProbableAD
eng Pitt Participant(PAR) 77 female MCI
eng Pitt Participant(PAR) 59 male ProbableAD

Table 2. Subset of Samples

3.2 Participant Demographics
This section describes the demographics of the participants. This can be found in table 3. The total
number of participants included in this study is 674. Males accounted for 251(37.2%) whilst females
accounted for and 423 (62.8%). The overall mean age was 69.47 years with a standard deviation of 9.33,
with ages ranging from 46 to 99 years. Male participants had a mean age of 68.69 years with a standard
deviation of 9, ranging from 50 to 96 years. Female participants had a mean age of 69.94 with a 9.51
standard deviation, with an age range of 46 to 99. The AD group consisted of 337 participants (50% of
the total sample), which included 142 males (42.1%) and 195 females (57.9%). The mean age in this
group was 72.05 (SD = 8.75), with an age range of 47 to 91 years. The mean age for male participants in
the AD group was 70.66 years (SD = 8.76), while females had a mean age of 72.94 years (SD = 8.65).
The control group comprised 337 participants (50% of the total sample), where 117 participants were
males (34.7%) and 220 were females (65.3%). The mean age of the control group was 66.26 years (SD =
9.04), with an age range of 46 to 99 years. Male participants had a mean age of 66.04 years (SD = 8.66),
and females had a mean age of 66.38 years (SD = 9.27) for females.

Group Total (n) Males (n, %) Females %(n, %) Mean Age (Years) Age Range Mean Male %Age Mean Female Age
All Participants 674 251 (37.2%) 423 (62.8%) 69.47 ± 9.33 46-99 68.69 ± 9.00 (50–96) 69.94 ± 9.51 (46–99)
AD Group 337 (50.0%) 142 (42.1%) 195 (57.9%) 72.05 ± 8.75 47–91 70.66 ± 8.76 (50–90) 72.94 ± 8.65 (47–91)
Control Group 337 (50.0%) 117 (34.7%) 220 (65.3%) 66.26 ± 9.04 46–99 66.04 ± 8.66 (50–96) 66.38 ± 9.27 (46–99)

Table 3. Demographics of Participants by Group

3.3 Preprocessing
Preprocessing the features is a critical step to reduce the noise and improve the quality of the initially
extracted features. This section describes the systematic process of feature cleaning, statistical analysis,
and selection applied to the textual and audio features to identify the most discriminative patterns
associated with disordered language in older individuals. Feature selection reduces computational
complexity and improves classification accuracy due to the reduction of the noise.

3.3.1 Feature Extraction
As mentioned earlier, the data used for the experiments were the audio files and their transcriptions. To
extract features from the transcriptions, a modified Empath-based approach was used. Empath is a tool
that categorizes words in a given text[21]. Empath leverages word embeddings to identify words that are
semantically similar to words in its dictionary in each category[21]. This enables the tool to categorize
words that do not appear in its dictionary[21]. It will categorize the words ‘bleed’ and ‘punch’ into the
violence category[21]. Empath uses a neural embedding trained on over 1.8 billion words of fiction
to identify connotations between words and phrases[21]. This allows for the creation of new lexical
categories on demand[21]. The drawback of this method is that words in a text are assigned a category
solely based on cosine similarity within a fixed vector space, meaning that each word has one vector
representation, even if it has multiple definitions[21]. An example of this is the word ’bank’, which could
refer to the financial institution or a river bank depending on the context. Instead of relying on Empath’s
default keyword matching, each sentence in the transcript was embedded using the sentence transformer
’all-mpnet-base-v2’. Then, the cosine similarity was computed between the sentence embedding and
the embeddings of the predefined Empath category labels. Each sentence was represented as a vector
of similarity scores, indicating the degree to which it aligned with multiple Empath categories. This
allowed for more flexible and context-sensitive categorization. This may prove useful as patients with
Alzheimer’s Disease can exhibit unique linguistic patterns, such as repetitiveness, reduced grammatical
structure, and using general terms such as boy or girl instead of brother or sister, that are harder to capture
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with predefined lexical categories[20].

The audio features were extracted using OpenSMILE. OpenSMILE is a toolkit used for extracting
audio features[19]. It also classifies speech and music signals[19]. The ‘emobase’ feature set was used
to collect the audio features for this study. Emobase is a feature set that can capture features such as
speech rate, pitch of the voice, jitter(sudden change in pitch) and shimmer(sudden change in loudness).
These are all audio indicators for AD[39]. Emobase is an extensive feature set with 988 features and used
several times for cognitive monitoring[3][48][32]. Besides the extensive feature set, another advantage of
OpenSMILE is that it is written in c++, which makes it computationally efficient and suitable for real-time
audio processing. Real-time audio processing means that the audio is analyzed as it is generated, which
makes identifying trends faster[15]. An overview of all the features can be found in table 4.

Feature Set # Features Description
Empath (textual) 194 Semantic and emotional categories (e.g., sadness, vacation, health) derived from linguistic analysis using neural embeddings [21].

OpenSMILE emobase (audio) 988 Acoustic low-level descriptors (LLDs) such as pitch, MFCCs, intensity, and jitter, combined with 21 statistical functionals (e.g., mean, std, skewness) [7]

Table 4. Overview of the Textual and Audio Features Used in the Study.

3.3.2 Statistical Analysis
The statistical analysis was conducted as part of the preprocessing of the features. The goal of the
statistical analysis was to determine the features that were the most significant when distinguishing the
speech of individuals with Alzheimer’s Disease and that of healthy controls. This provides a baseline
and enhances the understanding of the inherent differences between AD patients and control subjects[26].
Each step of the statistical analysis was performed on all features. The statistical analysis began by
calculating descriptive statistics such as the mean, variance, and frequencies of all features for both the
AD patients and the control group. These descriptive statistics served as a foundation that facilitated an
initial understanding of the differences between the groups and helped contextualize outcomes observed
in later stages of the analysis.

The next step in the statistical analysis was the calculation of Cohen’s d, which measures the dif-
ference between the means of the textual and audio features and expresses that difference in terms of the
standard deviation. This is called the effect size, which assesses the magnitude of the observed differences.
Afterwards, the Welch t-test was performed to determine the p-values of the features. The Welch t-test
was chosen over the standard Student’s t-test because it does not assume equal variances between groups,
making it more appropriate given the heterogeneity in linguistic and acoustic features between participants
with and without AD. This test allowed for the obtainment of a p-value for each feature, indicating the
likelihood that the observed difference occurred by chance.
Empath has a total of 194 categories and the emobase feature set of OpenSMILE has 988 features, totaling
1182 features[21][7]. The number of false positives with a p-value of 0.05 would be approximately 59.
The number of false positives increases with the total number of features. This is called the multiple
testing problem[2]. This was addressed by applying the Holm-Bonferroni correction, which adjusts the
significance threshold(p-value) based on the number of tests[31]. The final step involved visualization.
An effect size distribution plot is included to illustrate the magnitude and distribution of the differences
in audio and textual features between AD patients and the control group. No other visualizations are
presented, as the audio features were difficult to interpret directly. Therefore, the effect size distribution
plot remains the only viable option to illustrate the differences between the audio and textual features.

3.3.3 Feature Selection
Before preprocessing, the dataset was labeled programmatically, where ’1’ was used for AD patients and
’0’ for the control group. During preprocessing, missing values (NaNs) were checked across all features.
For features that contained missing values, values were imputed using the mean of the respective feature
column. The selection began with only retaining the features with a p-value of less than 0.05, based on
Welch’s t-test results. Afterwards, from the remaining features, those with an effect size below 0.5 were
excluded from further analysis. This ensured that only features with a moderate discriminatory effect
were retained[13]. Prior to the final step of the feature selection process takes place, a correlation matrix
was made to assess multicollinearity. Features that had a Pearson correlation coefficient greater than 0.8
were considered highly correlated. In such cases, the feature with the larger effect size was selected. In
the case of an equal effect size, the feature with the higher variance was selected. If both the effect size
and variance were identical, the tie was broken by selecting the feature with the name that appears first in

6



alphabetical order. A second correlation matrix was generated to verify the reduction in redundancy of
the features. The correlation threshold value was chosen due to it being a common value chosen in the
literature[65]. While a higher threshold value such as 0.9 would be more lenient and retain more features,
it would also risk not reducing multicollinearity sufficiently. The chosen value was selected due to it
striking a balance between retaining features and the reduction of multicollinearity.

3.4 Models Used
To discern disordered language from ordered language, several machine learning models were used. One
of which was the Random Forest model. A Random Forest model is an ensemble method that works
by constructing several decision trees[10]. Each tree is trained on a random subset of the samples with
replacement[10]. With replacement means that certain samples may appear more than once, while others
may not appear at all[10]. Moreover, only a subset of predictor variables or features is considered at each
split during the tree-building process. The Random Forest model mitigates overfitting using a combination
of bootstrapping and random feature/predictor selection and captures complex, nonlinear relationships
that may be present in the data[40]. Hason and Krishnan (2022) used a Random Forest model to analyze
157 audio files of participants taking the Cookie Theft picture description task and achieved an accuracy of
82.2%. This finding suggests that the Random Forest model is suited for this task[27]. Moreover, Random
Forest models offer several advantages such as robustness to overfitting and the ability to handle highly
non-linear data[59]. Furthermore, it can provide interpretable results when detecting for Alzheimer’s[4].
Additionally, you can make use of parallel processing to speed up the process of training the model.
Parallel processing would divide training each tree over each available core or thread of the CPU.

The second machine learning model that is used is the Support Vector Machine(SVM). Support Vec-
tor Machines work by finding the hyperplane that best separates data points of different classes in a
high-dimensional space[28]. The best separation means that the distance between the hyperplane and
the nearest data points from either class, known as support vectors, is as large as possible[28]. The
maximization of the margin between the hyperplane and the data points increase the model’s ability to
generalize to unseen data[28]. SVMs are able to capture nonlinear relationships by using the kernel
trick[30]. The kernels map the data to a higher dimensional space where the data is able to be linearly
separated[30]. SVMs have been successfully used in the past for AD classification[63]. One study
even achieved a 94.5% accuracy score for detecting distinguishing between patients Alzheimer’s and
the healthy control group[43]. The SVM is also capable of capturing non-linear relations through the
different kernels, which is important when you are working with more than 2 features[30]. Another
added advantage to the usage of the Support Vector Machine is that they remain computationally effi-
cient even when the number of features exceed the number of samples, which is the case for this study[55].

The third machine learning model to be used is the XGBoost model. The XGBoost model is an ensemble
technique that combines multiple weak learners to enhance the prediction capability of the model[49].
The weak learners that are used are often decision trees[49]. Each new tree is trained on the residual errors
made by the current ensemble[49]. This is done to gradually reduce the prediction error of the model[49].
Similar to the previous two models, XGBoost has also been used in medical cases concerning the detection
of Alzheimer’s when used on data of the Cookie Theft picture description task. One study achieved an
accuracy of 78% with the XGBoost model, highlighting its potential[38]. Additionally, XGBoost is able
to capture complex, non-linear relationships within the data, making it suitable for complex medical cases
like the one discussed in this study[5]. Moreover, it can capture feature interactions without explicitly
modeling them[70]. This is advantageous because it simplifies the modeling process.

The fourth and final model used is the linear regression model, which served as a baseline to eval-
uate whether the added complexity of the other machine learning models translate into meaningful
performance gains and can provide value beyond what a simple linear classifier achieves. All models
were trained on the same preprocessed features and evaluated using the same metrics.
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3.5 Training Process
The dataset used in this study consists of both audio and textual data. The features were extracted using
Empath, where categories are assigned based on cosine similarity between the sentence embeddings
and predefined category terms. Audio features were derived from the emobase feature set provided by
OpenSMILE. The classification model was trained on these features to distinguish patients with AD from
the control subjects. As described earlier, the dataset was preprocessed by removing features that are
statistically irrelevant and had an effect size smaller than 0.5. To mitigate multicollinearity, features were
filtered based on pairwise correlation. In cases of a high correlation, only the feature with the highest
effect size was retained. If those were equal, the feature with the highest variance was selected. Basic
class distribution statistics were calculated to identify potential class imbalances. The hyperparameters for
the final model are obtained by nested cross-validation, which helps prevent overfitting[22]. The dataset
is divided into 5 folds. In each iteration, one fold is held out as the test set and the remaining folds are
used for training.

The nested cross-validation features an inner cross-validation loop that performs grid search over key
hyperparameters (e.g., tree depth, number of estimators), while the outer loop evaluates the performance
of the model with the hyperparameters obtained by the inner loop on the test set. The hyperparameters
leading to the highest performance across folds are chosen for the final model. To ensure that the results
were not due to chance, the evaluation metrics were averaged across 10 data partitioning states, generated
by varying the random seed from an initial value of 42. The hyperparameters that were tested were
multiples of their default values, as this had been shown to be an effective approach for hyperparameter
tuning[56]. The hyperparameters for each model that were trained and their values will be shown in
Tables 2, 3, and 4, with their default values in bold.

Random forest parameters Hyperparameter values
n estimators 50 100 200
max depth None 10 30
min samples split 2 4 8
min samples leaf 1 2 4

Table 5. Random forest hyperparameters and their values

Support Vector Machines parameters Hyperparameter values
C 0.1 0.5 1
Kernel linear poly rbf
Degree 2 3 6
Gamma scale auto 0.1 (float ≥ 0)

Table 6. Support Vector Machines hyperparameters and their values

XGBoost parameters Hyperparameter values
Learning Rate 0.01 0.1 0.3
max depth 3 6 9
Gamma 0 0.1 0.2
Subsample 0.5 0.75 1

Table 7. XGBoost hyperparameters and their values

The final model is trained on 80% of the dataset and tested on the remaining 20%, as that is the most
commonly used split[18]. Its performance is evaluated using several metrics. Given the critical nature of
diagnosing Alzheimer’s, the performance metrics chosen assess the model’s ability to accurately diagnose
Alzheimer’s cases while accounting for misclassifications. The accuracy evaluates the model’s ability
to identify cases correctly. Precision quantifies how many predicted positive cases are actually correct
and thereby accounting for false positives. Recall measures how many actual positive cases are correctly
identified, thus accounting for false negatives. The F1-score is the harmonic mean between precision and
recall. The harmonic mean is calculated as the number of values divided by the sum of their reciprocals.
The last performance metric is the ROC AUC, which evaluates how well the model is able to distinguish
between the two classes across various classification thresholds. Additionally, feature importance scores
are extracted to highlight the most discriminative features, from which modality-specific contributions
can be analyzed to understand the relative importance of audio and textual inputs. To ensure variability
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and robustness in the evaluation, the splitting of the dataset into training and testing subsets, as well as
the creation of folds in the nested cross-validation process, were performed using multiple random seeds.
This approach enables the generation of different training and testing partitions, as well as varied fold
compositions across runs. A total of 10 random seeds were employed, and the reported results represent
the average values of the relevant performance metrics and figures computed across all runs.

4 RESULTS
This section presents the findings of the analysis on distinguishing disordered language patterns in older
individuals using machine learning approaches. It begins by detailing the feature selection process that
served as a foundation for further analysis, followed by an evaluation of model performance across
multiple metrics. Subsequent sections explore class-wise prediction patterns through confusion matrix
analysis, examine hyperparameter value preferences that emerged during tuning, and investigate feature
importance to understand how different modalities contribute to classification decisions.

4.1 Feature Selection via Statistical Testing and Correlation Analysis

To improve the interpretability of the model and reduce the dimensionality of the feature space, statistical
and correlational filtering was applied. This process involved three stages: significance testing, effect
size filtering, and correlation thresholding. The feature set consists of 1182 features, of which 635 were
statistically significant. Figure 2 shows the distribution of effect sizes across all features. Effect sizes
represent the difference in a given feature between the AD and control groups, whereas the density
indicates the number of features that have a given effect size. A positive effect size means that the AD
group scores higher on those features than the control group and vice versa for a negative effect size.
Values around 0.2 indicate small effects, 0.5 medium effects, and 0.8 or higher large effects[13]. The
peaks for both modalities show that the majority of the features have a small effect in the distinction
between the two groups. This illustrates that only a small subset of features exhibit meaningful differences
between the AD patients and the control group, underscoring the need for further feature selection.

Figure 2. Effect Size Distribution of the Statistically Significant Features

After effect size filtering, only 45 features remain. Subsequently, a correlation matrix was generated
to assess multicollinearity among these features. Highly correlated features were removed to reduce
redundancy and improve model robustness. The correlation matrix before applying this correlation
threshold can be found in figure 3.
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Figure 3. Correlation of the Selected Features Before Correlation Filtering

The correlation coefficients range from dark blue (-0.75) to dark red (0.75). The correlation of the
features appears to be grouped into correlated blocks, with most blocks representing positively correlated
features. A common correlation value is a correlation of approximately 0.5, particularly among features
belonging to the same modality. The Empath categories such as real estate and vacation exhibit a
correlation of approximately 0.75, suggesting that these semantic features frequently co-occur. Similarly,
within the audio features, those belonging to the same category(i.e., voiceProb, lspFreq) tend to have
a higher correlation. However, there are examples where this pattern does not hold. For example, the
features PCM loudness and voiceProb show a correlation of approximately 0.5. This may be due to them
reflecting the same aspect of speech, namely vocal effort. The voiceProb feature measures the probability
of a voice presence in a certain audio segment, while PCM loudness quantifies the loudness or vocal
intensity of the voice. These features are therefore intertwined and cannot occur separately. In contrast,
the blocks with a near-zero correlation tend to contain a mix of textual and audio features, suggesting
that these capture distinct, non-overlapping aspects of the data. In addition to examining these statistical
interdependencies, potential hierarchical relationships between features were also assessed(e.g., features
derived from one another, such as BMI from height and weight). No such hierarchies were found, so the
assessment of interdependencies was based solely on correlation analysis.

The correlation matrix after applying correlation thresholding is shown in figure 4. The divide into
multiple correlation blocks is more pronounced now. All remaining features are either uncorrelated or
exhibit a moderate correlation(positive or negative) with each other. This pattern is particularly visible
in the top left and bottom right corners of the matrix, which primarily contains features within the
same modality, suggesting that they capture similar aspects of speech. This indicates that correlation
thresholding has successfully reduced the redundancy within the feature set.
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Figure 4. Correlation of the Selected Features After Correlation Filtering

4.2 Performance Metrics

Model Accuracy Precision Recall F1 Score ROC AUC
Random Forest 0.6859± 0.026 0.6702± 0.022 0.7326± 0.046 0.6994± 0.029 0.7567± 0.029
SVM 0.6778± 0.020 0.6612± 0.023 0.7319± 0.023 0.6944± 0.017 0.7311± 0.027
XGBoost 0.6741± 0.027 0.6582± 0.022 0.7237± 0.048 0.6889± 0.030 0.7551± 0.026
Linear Regression(Baseline) 0.6753± 0.008 0.6561± 0.005 0.7394± 0.013 0.6933± 0.009 0.7442± 0.009

Table 8. Performance Metrics of Classification Models

Table 8 shows the performance metrics of all the classification models, where for each metric, the best
performance is boldfaced. The Random Forest model is the best performing model across all metrics,
except for the recall metric. The differences between the best performing models for each metric compared
to to the other models are marginal. All four models yield similar performance levels, with only slight
variations in precision, recall, and F1 score. The ROC AUC scores of each model demonstrate that the
models perform significantly better than random classification. The Random Forest model, the linear
regression model and the XGBoost model have their highest score in the AUC metric. Furthermore, each
model achieved a recall score of over 0.70, suggesting a strong ability to recognize the linguistic patterns
associated with AD. To further illustrate the classification performance, the ROC curves for all models
are presented in figures 5, 6,7, 8, showing the trade-off between true positive rate and false positive rate
across different thresholds. The dashed line represents the performance of a random classifier.
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Figure 5. ROC Curve of the Random Forest Model

Figure 6. ROC Curve of the Support Vector Machine Model
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Figure 7. ROC Curve of the XGBoost Model

Figure 8. ROC Curve of the Linear Regression Model

The Random Forest model has a mean AUC score of 0.76(rounded to 2 decimal places). This suggests
a good ability of distinguishing between the AD class and the control group. The mean AUC score has
a standard deviation of 0.03, suggesting that the performance across the 10 runs remained similar. The
consistent performance across folds suggests that the model is robust and not overfitting to any particular
subset of the data. Similarly, the SVM and linear regression model had a mean AUC score of 0.73(SD =
0.03), and the XGBoost model reaches an AUC score of 0.76 (SD = 0.03). In all four models, the ROC
curves for individual folds are closely clustered around the mean ROC curve, suggesting that the model’s
performance is consistent across different subsets of the data. These results demonstrate that all models
generalize well and are not overfitting. The AUC values above 0.70 for all models indicate a fair to good
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level of separability between AD and control classes. This consistency supports the overall stability of
the classification framework and suggests that the models are not only able to capture relevant patterns
associated with Alzheimer’s Disease, but do so in a repeatable and dependable manner across different
subsets of data.

4.3 Confusion Matrix Analysis

To gain a more detailed understanding of the predictions of the models, confusion matrices were generated
for each model. These matrices provide insight into how well the models distinguish between the AD
and control groups by analyzing the true positives, false positives, true negatives, and false negatives.
This enables the evaluation of not only the overall performance but also class-specific strengths and
weaknesses. The confusion matrix of the Random Forest model is shown in figure 9. The true labels
are depicted on the y-axis and the predicted labels on the x-axis. The diagonal cells represent correct
predictions and the off-diagonal cells the misclassifications.
The Random Forest model correctly predicted 86 cases of Alzheimer’s Disease and 99 control cases.
However, it incorrectly classified 49 AD cases as control and 36 control cases as AD. The Random
Forest model is more effective at correctly classifying AD cases than control cases. This is further
supported by the sensitivity and specificity. The sensitivity (True Positive Rate) for the AD class is
Sensitivity = 86

86+49 ≈ 0.64 , indicating that the model correctly identifies about 64% of AD cases. The
specificity (True Negative Rate) for the control group is 99

(99+36) ≈ 0.73, indicating that approximately

73% of the control cases are correctly identified. The False Negative Rate(FNR) is 49
(86+49) ≈ 0.36 and

the False Positive Rate(FPR) is 36
(99+36) ≈ 0.27.

Figure 9. Confusion Matrix of the Random Forest Model

The SVM model correctly predicted 84 AD cases and 99 control cases, as illustrated in figure 10. It
misclassified 51 AD cases as control and 36 control cases as AD. The sensitivity is 84

84+51 = 0.62 and the
specificity is 99

99+36 = 0.73, indicating a similar performance to the Random Forest model. It correctly
identified 62% of AD cases and 73% of the control cases. Overall, the model seems to perform well. The
FPR is 36

36+99 = 0.27 and the FNR 51
84+51 = 0.38. Similar to the Random Forest model, the SVM model

performs slightly better on the control cases than on AD cases.
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Figure 10. Confusion Matrix of the Support Vector Machine Model

The confusion matrix of the XGBoost model in figure 11 reveals that it correctly classified 84 AD
cases and 98 control cases. The sensitivity is 84

(84+51) ≈ 0.62 and the specificity 98
(98+37) ≈ 0.73. The FPR

is 37
(98+37) ≈ 0.27 and the FNR is 51

(84+51) ≈ 0.38. Similarly to the previous models, the XGBoost model
appears to predict the control cases better than the AD cases.

Figure 11. Confusion Matrix of the XGBoost Model

Finally, the confusion matrix of the linear regression model in figure 12 shows it correctly classifying
81 AD cases and 99 control cases. It misclassified 54 AD cases as control and 36 control cases as AD.
The sensitivity is 81

(81+54) = 0.60 and the specificity 99
(99+36) ≈ 0.73. The FPR is 36

(99+36) ≈ 0.27 and the

FNR is 54
(81+54) ≈ 0.40. The linear regression model, in line with the other three models, appears to predict

the control cases better than the AD cases.

15



Figure 12. Confusion Matrix of the Linear Regression Model

4.4 Frequency Analysis of Selected Hyperparameter Combinations
This subsection discusses the hyperparameter values that were selected during the 10 runs for all models,
excluding the baseline model. The first model to be examined is the Random Forest model. The
frequencies of the selected hyperparameter values for this model are shown in figure 13.

Figure 13. Hyperparameter Frequencies of the Random Forest Model

The tuned hyperparameters for the Random Forest model were: n estimators, max depth,
min samples split, and min samples leaf. The hyperparameter n estimators defines the
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number of trees in the forest. When increased, it can improve the model’s performance by reducing
variance, but is computationally more expensive. max depth sets the maximum depth of each decision
tree. Limiting this can help prevent overfitting. The third hyperparameter, min samples split, refers
to the minimum number of samples required to split an internal node. When this is decreased, the size of
each decision tree increases. Similarly, min samples leaf sets the minimum number of samples each
leaf node has. This can also make the tree larger when this value is small and small when the opposite
occurs. The value that was most frequently selected for n estimators was ’200’, followed by ’100’
and ’50’. This suggests that complexity of the task warrants using more trees. For max depth, the
value ’10’ was selected most often in 4 out of 10 runs, followed by ’30’ and ’None’. Both selected in
3 out of 10 runs. The small difference in the selection frequency suggests that the model has no strong
preference for any hyperparameter value. For min samples split, the value ’8’ was selected the
most in 4 runs, while ’4’ and ’2’ were each selected in 3 runs. The model again shows no clear preference
for any hyperparameter value. In contrast, for min samples leaf, the value ’1’ was chosen in 7 out
of 10 runs and ’2’ in 3 runs, clearly favoring smaller leaf sizes and deeper trees.

For the SVM model, the tuned hyperparameters were C, kernel, degree, and gamma. The hy-
perparameters and the frequency at which the values were chosen, can be found in figure 14.

Figure 14. Hyperparameter Frequencies of the Support Vector Machine Model

C controls the trade-off between a low training error and a low testing error, kernel determines
the function used to transform the feature space. The degree hyperparameter controls the degrees of
the polynomial function and gamma controls the influence each training sample has on the decision
boundary. A higher value for gamma means that it will only consider points nearby the decision boundary,
potentially leading to overfitting. A lower value means that it will consider samples that are further
apart, leading to a smoother decision boundary which may result in underfitting. The most frequently
selected value for C was ’1’, followed by ’0.5’ and ’0.1’. This may indicate that the model tried to
balance the optimization of the training and test error. The ’rbf’ kernel was selected in 9 out of 10 runs
and the ’linear’ kernel once. This indicates that the model has a strong preference for the ’rbf’ kernel
over the ’linear’ kernel. For degree, the value ’2’ was chosen in all 10 runs. Regarding gamma, the
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’scale’ value was selected in 6 out of 10 runs, while the float value ’0.1’ was chosen in 4 runs. The
’scale’ value for gamma adjusts the influence each training sample has based on the dataset. A value of
’0.1’ means that training samples have far-resulting influence, leading to a more smooth decision boundary.

The hyperparameters tuned for the XGBoost model were: learning rate, max depth, gamma,
and subsample. These can also be found in figure 15.

Figure 15. Hyperparameter Frequencies of the XGBoost Model

The learning rate controls the speed at which the model learns. A smaller learning rate value
forces the model to learn more gradually and makes it more robust against overfitting, but requires more
trees to converge. max depth controls the depth of each individual tree. A higher value makes the tree
deeper and more able to capture complex patterns, at an increased risk of overfitting. gamma sets the
minimum reduction of the loss required for a node to split. A higher gamma value would lead to fewer
splits and smaller trees, while a lower gamma value would do the opposite. subsample defines the
proportion of the training data used to train each tree of the model. A lower value may introduce more
variation which may decrease the risk of overfitting, but also has the risk of underfitting. A higher value for
subsample may increase the risk of overfitting. The values ’0.01’ and ’0.1’ for the learning rate
were both selected for 5 runs, while the value of ’0.3’ was not selected for a single run, suggesting a
preference for a lower learning rate and slower convergence. For max depth, the value ’3’ was selected
in 5 runs, followed by ’6’ in 3 runs and ’9’ in 2 runs. This may indicate that a max depth of ’3’ offers
the best balance between variance and bias. The gamma value of ’0’ was chosen 8 times, followed by
’0.1’ and ’0.2’ that were chosen ones each. This shows that the model may perform better when the tree
has fewer inhibitors to grow. The last hyperparameter subsample, follows a similar distribution of
max depth. The value ’0.5’ was selected for 5 runs, ’0.75’ for 3 runs and ’1’ for 2 runs. This may imply
that using half of the training data for each tree yields the best performance.
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4.5 Feature Importance Analysis

This section covers the feature importance of the selected features across all four models. First, the feature
importance for the Random Forest model will be discussed. The feature importance scores for this model
are shown in figure 16.

Figure 16. Feature Importance of the Selected Features of the Random Forest Model

The top five most important features are primarily audio features, with only one text feature included.
There is a significant difference in the feature importance of the most important and second most important
feature. Beyond this, the difference between the feature importance scores gets significantly smaller,
tapering off towards the two lowest-ranked features. Overall, audio features appear to be more influential
than the text features. The model seems to rely more heavily on audio features, particularly those related
to frequency and voice probability, to make predictions. The text features still contribute meaningfully,
particularly the categories related to environmental and movement contexts, though are less influential.
This may suggest a more balanced approach, where both audio and text features add value, but audio
features play a more critical role in the model’s performance. While audio features were more influential,
the model’s use of specific text categories still reveals meaningful semantic patterns warranting further
analysis. To better understand how specific Empath categories were activated by the words of the
participants, a script was run that computed the cosine similarity between each individual word of the
participant and each Empath category label. The ten words that had the largest cosine similarity for each
category were extracted to guide further interpretation. For instance, the weather category may be linked
to the water overflowing the sink because the word ’flooding’ was used to describe it, which falls under
the weather category. Similarly, the movement category most likely refers to the boy standing and almost
falling off the stool, through words such as ’falling’ and ’tumbling’. The sleep and night category might
have been triggered by a phrase as: ’The mother is daydreaming’, since the word ’dreaming’ falls under
the sleep category and ’daydreaming’ under the night category. The vacation category could be associated
with phrases such as ’like a summer afternoon’, since ”summer” is directly tied to vacation-related
contexts. Additionally, the word ’lalaland’ used to describe the mother was not paying attention might
contribute to the vacation category due to their metaphorical connection to being mentally ’away’ or ’not
present’. The second model to consider is the SVM model, for which the feature importance scores are
displayed in figure 17.
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Figure 17. Feature Importance of the Selected Features of the Support Vector Machine Model

The SVM model does not have native feature importance scores, so these were derived using permutation
importance. Permutation importance is calculated by shuffling the value of a feature across all samples
and measuring the drop in performance. A bigger drop in performance indicates a higher importance.
The top five most important features are primarily text features, although less influential than the audio
features, that are occupying the first and second place. The audio features generally have higher feature
importance scores than text features. Similarly to the previous model, this relies slightly more on audio
features than text features to make a prediction. The most important audio features seem to relate to the
voice frequency and voice probability. Important text features related to movement, the weather and
domestic work categories.

The feature importance scores for the XGBoost model are shown in figure 18.

Figure 18. Feature Importance of the Selected Features of the XGBoost Model

In contrast to the previous two models, the top five most important features are dominated by text
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features, with the weather category being the most important. Text features generally appear to be more
important than audio features. Textual features such as the weather, sleep, and real estate categories seem
to be the most important. For the audio features, those related to voice frequency, voice probability and
loudness are more prominent. This is also the first model where some features have an importance score
of zero, indicating they do not contribute to the model’s predictions.
Finally, the feature importance scores of the baseline model are displayed in figure 19.

Figure 19. Feature Importance of the Selected Features of the Linear Regression Model

The five most important features consist mostly of text features, comparable to the SVM and XGBoost
model. The most important feature is the domestic work category, followed by the weather category,
the movement category, the appearance category and the voiceProb audio feature. In general, the
text features seem more influential than the audio features. Feature importance scores vary little within
defined feature index ranges ( 1–5, 6–8, 9, 10-15, 16-19, 20), but differ more between them. The five
most important features for each model are summarized in table 9, in the order of most important to fifth
most important.

Linear Regression(Baseline) Random Forest Support Vector Machine XGBoost
Domestic Work range of lspFreq range of lspFreq Weather

Weather Weather voiceProb Sleep
Movement voiceProb Movement PCM Loudness
Appearance max value of lspFreq Weather Real Estate
voiceProb linregerrQ lspFreq Domestic Work Night

Table 9. The Five Most Important Features for each Model
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5 DISCUSSION
This study began by using statistical analysis to identify relevant features, after which three machine
learning models and a linear regression model(baseline) were trained and evaluated. The results provided
insight into how audio and text-based features contributed to model performance. Moreover, they
highlighted the different ways in which features were utilized, resulting in varying feature importance
scores and overall model performance. The results demonstrated consistent patterns across performance
metrics, such as three out of four models achieving their highest scores in the ROC AUC metric. The
confusion matrices also revealed a recurring pattern: all four models were more accurate in predicting
control cases than cases of Alzheimer’s Disease. Furthermore, hyperparameter tuning highlighted the
impact different values for the hyperparameters had on the performance metrics, and in some cases,
demonstrated clear preferences for specific hyperparameter settings. Collectively, these findings not only
validate the effectiveness of the selected features, but also uncovered the different manners in which each
model leveraged audio and text data to make predictions. This offers valuable guidance for future model
development and feature engineering in similar contexts.

5.1 Effectiveness of Statistically Selected Features in Model Performance
This section discusses the results of the feature selection based on statistical analysis and its impact on the
performance metrics. The statistical analysis began by retaining only the features that were statistically
significant. Of the remaining features, those with an effect size below 0.5 were removed. To reduce
multicollinearity, features with a correlation above 0.8 underwent further filtering: the feature with the
higher effect size was retained. If the effect sizes were equal, the feature with the higher variance was
selected. In the event of a tie, the feature with the earlier alphabetical name was selected.

The effectiveness of this feature selection method is demonstrated by the consistent performance of
all four models across the performance metrics. Performance differences between models were marginal,
and all four models achieved moderately high ROC AUC scores. This suggests that the features were
both informative and relevant for the classification task. In medical contexts such as disease recognition,
recall is crucial for identifying as many of the true positive cases as possible [50]. All four models
achieved recall scores of between 0.72 and 0.74, which aligns with results reported in prior studies. The
recall in the literature often ranges from 0.68 to 0.84[46][66][34]. While this study employed machine
learning models to classify AD, it is important to note that the previously discussed studies used different
methodologies. For instance, Miller et al. (2014) used MRI images as input for AD classification, while
Twait et al. (2023) used a combination of MRI images and biometric assessments. Prior studies have
often shown that text-based feature models consistently outperform those based on audio in Alzheimer’s
Disease classification tasks [57, 37]. Based on this, it was expected that text features would play a more
significant role in model performance. This expectation was not met. This may be due to the utilization
of different audio features. Lin and Washington (2024) extracted features using Wav2Vec. Wav2Vec, in
contrast to OpenSMILE, does not use preprocessed features but directly operates on raw audio[60]. It
works by trying to predict missing parts of the audio based on the surrounding sounds[60]. The emobase
feature set from OpenSMILE is tailored towards recognizing emotions. The feature set has features for
measuring certain auditory indicators of Alzheimer’s Disease such as a flat tone in their voice(lspFreq)
and measuring the pause between words and/or sentences(voiceProb, PCM loudness), but not
every auditory signal of AD. This may make Wav2Vec more suitable for AD detection than the emobase
feature set of OpenSMILE.
Another factor potentially influencing the performance of the model could be the lack of data augmen-
tation in this study. Lin and Washington(2024) applied data augmentation, which may have improved
the robustness and diversity of their model. The absence of data augmentation in this study could have
limited the performance. Another unexpected yet informative result was the near-zero correlation between
most text and audio features in the correlation matrices. This implies that the different modalities capture
distinct aspects of speech, which supports the case for multimodal modeling. Finally, the performance of
the three machine learning models, both compared to each other and to the baseline model, was similar. It
was anticipated that one model would outperform the others and that the machine learning models would
significantly outperform the baseline model. This could be attributed to the limited size of the dataset. The
dataset used in this paper had 674 samples. A study found that the XGBoost model reaches its AUC peak at
approximately 9960 samples and 3404 for the Random Forest model[62]. This study may not have had the
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sample size needed to measure significant differences in the performance of the three models to each other
and the baseline model. Furthermore, the sample size may have caused the more complex models to overfit.

In conclusion, the method of statistical feature selection demonstrated its effectiveness in identifying
relevant features, as evidenced by the consistent performance of all four models across key metrics. The
achieved recall scores (0.72–0.74) align with prior studies, reinforcing the practical utility of the selected
features for AD classification. It was expected that text-based features would dominate performance,
which was not the case. The audio features contributed more than expected, potentially influenced by the
use of OpenSMILE’s emobase feature set, which emphasizes emotion-related auditory indicators, versus
the Wav2Vec framework employed in other studies. Additionally, the absence of data augmentation in this
study may have limited feature robustness compared to other studies. The near-zero correlation between
text and audio modalities further underscores their complementary nature, advocating for multimodal
approaches. The similar performance among the three machine learning models as well as in comparison
to the baseline model, likely stems from the dataset’s limited size (674 samples), which may not have
provided sufficient statistical power to fully distinguish model capabilities. These findings highlight the
interaction between the feature selection method, modality-specific extraction techniques, and dataset
constraints in shaping model outcomes.

5.2 Interpreting Class-wise Performance Through Confusion Matrix Analysis
To gain deeper insight into the model’s behavior beyond aggregate performance metrics, this section
will analyze the results of the confusion matrix analysis. This enables the examination of class-wise
predictions. While performance metrics such as accuracy and ROC AUC provide a broad understanding
of the model’s performance, the confusion matrix offers critical insight into how well each class was
distinguished. This is particularly important for identifying AD cases. In the context of AD detection,
understanding the number of misclassified AD cases can open new paths for further research, given that
an early and correct diagnosis of AD is beneficial. The Random Forest model correctly predicted 64% of
the AD cases and 73% of the control cases. Both the SVM and XGBoost models correctly predicted 62%
of the cases of Alzheimer’s Disease and 73% of the control cases. Lastly, the baseline model predicted
60% of the AD cases and 73% of the control cases correctly. All three machine learning models and
the baseline model consistently performed better on control cases than on AD cases. The consistency
of this pattern across all models suggests that the issue likely stems from the input features and class
characteristics rather than specific inherent limitations of any of the models.
Hernández-Domı́nguez et al. (2018) achieved a sensitivity of 87%. They took 25 descriptions of the
Cookie Theft picture from healthy older adults and used those to create a baseline or “ideal” version of
what a good, informative answer looks like[29]. Then, they evaluated 517 samples, 257 AD samples,
217 control samples, and 43 samples of individuals with mild cognitive impairment[29]. Their linguistic
features included the total word count, number of unique words, and word frequency counts[29]. For the
audio features, they only used the first 12 to 13 coefficients of the Mel-Frequency Cepstral Coefficients
(MFCCs), based on the assumption that the first 12 to 13 capture the most important patterns. MFCCs
measure how the sound energy is distributed across frequencies. They checked how similar and informa-
tive each person’s description was compared to the model answer[29]. More focus was on information
coverage, where the researchers checked if the participant omitted important details, focused on irrelevant
aspects, and clearly referred to people and objects(e.g., ”the boy” vs. ”he”)[29]. This study achieved a
lower sensitivity, which may be explained by their use of features specifically tailored towards detection of
AD. Another study achieved a sensitivity of 76% with the Random Forest model[11]. Their text features
focused on measures of speech quantity (e.g., total words, total number of nouns) and fluency (e.g., filler
words(um, uh, hmm))[11]. They also assessed the use of specific word types (e.g., definite/indefinite
articles, verbs)[11]. These features are a reflection on how varied, informative and fluent the language of
the participants was. These features were specifically tailored towards detecting AD, whereas the sentence
transformer employed in this study is intended for general use. Additionally, the absence of audio features
may explain the difference.

The number of AD and control samples were equal in the present study, ruling out class imbalance
as an explanation for the disparity in performance. One possible explanation lies in the variability of
speech among AD patients. A study that analysed 1000 voice samples found that those with AD had
moderate variety in mean speech segment duration and high variety in total duration of speech, mean

23



pause duration, and speech rate[58]. This variability suggests that AD affects individuals vocal features
differently, leading to a broader range of speech behaviors and patterns. As a result, machine learning
models may struggle to generalize, particularly when trained on relatively small datasets. Unlike more
uniform speech patterns typically observed in control subjects, the acoustic diversity of patients with
Alzheimer’s Disease may prevent models from learning consistent, discriminative features. This could
make it harder to capture underlying patterns of speech in AD patients. Another potential explanation
may lie in how the emobase feature set works. The features in emobase are derived by using statistical
functions, such as the mean and the standard deviation, on 26 Low Level Descriptors[16]. This results in
a summary of the audio signal rather than a detailed account of how the signal changes over time.
While this may suffice for emotion recognition tasks, it could have made the model miss subtle details
that could have been important for distinguishing the AD group from the control group. This disparity in
performance also raises concerns about potential bias in the models. The tendency to perform better on
control cases than on AD cases may indicate that the models are more attuned to structured or typical
speech patterns. This has severe implications from an ethical perspective. A false negative, where an AD
case is misclassified as cognitively healthy, can delay diagnosis and further intervention. These are not
merely statistical errors, but can have severe consequences on affected individuals.

In conclusion, the confusion matrix analysis highlights key areas where the models fall short, par-
ticularly in detecting language patterns associated with AD. The models in this study underperformed
when compared to those in the literature. This underscores the importance of specifically tailoring the
features towards detecting AD. It also reinforces the need for larger, more diverse datasets and careful
attention to ethical considerations in clinical applications. To further unpack where the models went
wrong, an error analysis was conducted. Across all four models, sentences such as ’the mother is dryin(g)
a plate.’, ’the mother’s oblivious to all.’, ’the woman is, the the mother is washing drying the dishes.’ and

’the sink, the the faucet’s on’ contributed to a significant number of misclassifications. For the first two
sentences, it appears that the models classified too many short, telegraphic- like sentences as AD. While it
is correct that patients with AD tend to use shorter sentences more frequently than healthy individuals,
this feature is not unique to AD. In fact, in the Cookie Theft picture description task, even healthy controls
often produce short, simple sentences, since the task encourages brief descriptive utterances rather than
complex narratives. The models therefore seem to have over-associated short sentences with AD. This
may have been due to the limited number of samples. For the last two sentences, the transcripts show
that participants sometimes restart their description. For example, one individual began with ’the woman
is’, but then corrected it to ’the mother is’. Similarly, in the final example, ’the sink’ was corrected
to ’the faucet’. Individuals with Alzheimer’s Disease are more likely to restart and self-correct, which
can be noted as a disfluency, which is a marker for AD. However, in these cases, the models may have
over-weighted these disfluencies as evidence of AD.

5.3 Implications of Observed Hyperparameter Frequencies
This section discusses the implications of hyperparameter frequencies observed across the three machine
learning models. Understanding why and which hyperparameter values were frequently selected can
help prioritize tuning efforts in future work. For example, if the learning rate consistently requires
fine-tuning across models, it likely plays a crucial role in model performance. The tuned hyperparame-
ters for the Random Forest model were: n estimators, max depth, min samples split, and
min samples leaf. For the SVM model, they included C, kernel, degree, and gamma.
The XGBoost model used learning rate, max depth, gamma, and subsample.

The first hyperparameter to be discussed is one that appears in both the Random Forest and XGBoost
models. A comparison of max depth across models revealed that non-default values were selected
as the best option in 70% of cases for both Random Forest and XGBoost. While the Random Forest
model showed no strong preference for any of the non-default values for the max depth hyperparame-
ter, XGBoost clearly preferred shallower trees (value 3) compared to the default (value 6). This result
suggests that max depth is an important hyperparameter to tune for both models. For this dataset,
simpler trees worked better for XGBoost, while Random Forest was more flexible regarding tree depth.
Additional hyperparameters controlling the complexity of the trees include min samples split, and
min samples leaf for the Random Forest model and gamma for the XGBoost model. The default
value ’0’ for gamma was chosen 8 out of 10 runs. For the XGBoost model, the default value of gamma
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increases the size of each individual tree. However, the tree depth was already constrained in this study,
with the max depth hyperparameter set to a value of 3 in 5 out of 10 runs. The alternative values ’6’ and
’9’ also represent shallow trees. Given these constraints, additional restrictions on the tree size via gamma
were redundant. For the Random Forest model, the default min samples split=2 was selected in
3 out of 10 runs, meaning that 7 runs do not pick the default value, whereas min samples leaf=1
(default) was selected in 7. For two out of three hyperparameters controlling tree complexity, the model
strongly preferred the default value. This suggests that shallow splits could have often led to many small,
unstable nodes that resulted in overfitting, while small leaf sizes did not.

For SVM, the most frequently chosen value for C was 1 (default), selected in 6 out of 10 runs. Lower
values such as 0.5 and 0.1 were chosen in 3 and 1 run, respectively. The SVM shows a strong preference
for the default value, which leads to moderate regularization. Lower values for C allow for more classifi-
cation errors which leads to a higher margin, while higher values prioritizes a higher training accuracy
leading to a narrower margin. The remaining hyperparameters to be discussed are learning rate,
subsample, and the kernel hyperparameter.
The learning rate values ’0.01’ and ’0.1’ for the XGBoost model were both chosen 5 times, while
the default value ’0.3’ was never selected. The dataset may have had more complex patterns or noise that
required more gradual and more controlled learning. A higher value such as ’0.3’ may lead the model to
fail to converge. Similarly, for subsample, values of 0.5, 0.75, and 1 were selected 5, 3, and 2 times,
respectively, with 0.5 being most frequently chosen.
The default value was chosen the fewest number of times. That may be due to the values 1 and 0.75
leading to overfitting. Subsampling for the value 0.5 likely acted as a stochastic regularizer leading to
a more diverse training set. This, in conjunction with shallower trees, may have contributed to a more
favorable bias-variance tradeoff. The last hyperparameter to be discussed is the kernel hyperparameter
of the SVM model. The ’linear’ and ’rbf’ values were chosen 1 and 9 times respectively. This suggests
the data exhibited non-linear patterns, which the RBF kernel could better capture. The linear kernel was
chosen once. This may be due to a specific train-test split where classes were able to be separated linearly.
Since the poly kernel was never selected, the degree hyperparameter became irrelevant in practice.

For the Random Forest model, the min samples split and max depth hyperparameter fluctu-
ate the most from their default values, suggesting they are highly sensitive and require tuning to avoid
overfitting. In the SVM model, degree varied the most from the default value due to the ’poly’ kernel
not being chosen for a single run, which nullifies its influence. The most sensitive hyperparameter for
the XGBoost model is subsample. The default value was chosen in 2 out of 10 runs. As previously
mentioned, this may have been due to trying to prevent the model from overfitting. The overall preferred
values for the Random Forest model suggest an emphasis on controlling the tree complexity in addition to
limiting the tree depth(max depth=10). This is in combination with trying to prevent overfitting by making
the requirements to make splits higher. This means that the dataset likely has some complexity that benefits
from many trees (n estimators=200), but also comes with a risk of overfitting that requires constraints on
the size of each tree, hence the higher values for min samples split and min samples leaf.
The SVM model leaned towards the default value ’1’ for C. and strongly preferred the non-linear rbf
kernel. For degree, the value ’2’ was chosen 10 times and for gamma the ’scale’ value was chosen
6 times. These results indicate that the SVM model needed a certain flexibility to capture non-linear
patterns, but did not require severe regularization.

Finally, the XGBoost model showed a strong preference for slower, more careful learning(learning rate=0.01
or 0.1), shallow trees(max depth=3), and stochastic regularization via subsample=0.5. The
model may have benefited from simpler trees. The default value ’0’ for gamma was chosen 8 times. Addi-
tional split constraint may not have been necessary, since the tree depth was already limited (max depth=3).
This can indicate that the primary regularization came from the tree depth and learning rate. This combi-
nation of selected hyperparameter values suggests that the model required some complexity and careful
optimization to fully capture the patterns in the dataset. Furthermore, it showed that the model had
overfitting tendencies that needed multiple regularization approaches to be mitigated. There was no need
for severe split constraints since tree depth already limited growth.
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These findings highlight that hyperparameter sensitivity is inherently dataset-specific, with parame-
ters such as the learning rate, kernel choice, and tree depth emerging as critical across models. While
general patterns, such as conservative learning rates generalizing and performing better for the XGBoost
model and the Radial Basis Function(RBF) being effective for non-linear data align with broader ML
principles, the exact optimal values reflect unique dataset characteristics[71]. This underscores the
importance of prioritizing tailoring tuning parameters that showed high sensitivity (e.g., XGBoost’s
subsample, Random Forest’s split criteria), while recognizing that defaults may suffice for less impactful
hyperparameters. Future work should leverage these insights by focusing tuning efforts on high-impact
parameters, while balancing model-specific needs with dataset complexity.

5.4 Interpreting Feature Importance Results
This section discusses the implications of the results of the feature importance analysis across all four
models. Comprehending the reason certain features were consistently ranked as important, may facilitate
feature selection and engineering efforts in future work. If a specific modality or specific features, such as
audio spectral characteristics, consistently exhibited high importance across models, that would indicate
that those features were critical to the task.

The first model to be discussed is the Random Forest model. The top ten most important features
in the Random Forest model were evenly split between text and audio modalities, suggesting a nuanced
interplay between acoustic and linguistic cues in participants’ descriptions of the Cookie Theft picture.
Among the text features, the most prominent Empath categories were weather, movement, sleep, night,
and vacation. Among the top ten most important features, the audio modality was represented primarily
by lspFreq and voiceProb. The Random Forest model aims to make each individual branch of each
tree as pure as possible, and the resulting importance scores reflect features that frequently contribute to
such splits. The Cookie Theft task requires coherent and on-topic descriptions of a boy stealing cookies,
a girl standing nearby, a mother washing dishes and the water overflowing from the sink. The Empath
categories activated in the participants’ descriptions of the Cookie Theft picture suggest that the Random
Forest model is able to detect localized semantic patterns. This is mainly due to individual trees being
built using different subsamples of the training data.
For the audio features, the voiceProb category quantifies the probability of voice activity. It reflects
speech activity, capturing when participants start, stop, pause, or hesitate. In language tasks such as
the Cookie Theft picture description, these aspects tie directly to fluency, hesitation, narrative flow, and
coherence, which are key task-related signals[14][54]. The voiceProb feature helps the model separate
fluent from hesitant speech, by measuring a lower value for it for hesitant speech and higher value for
fluent speech. Due to fluency being a key-signal, splitting based on the voiceProb feature may help
reduce the gini impurity, which explains the feature importance score. The lspFreq feature measures the
distribution of energy across frequencies. So, it can effectively give an outline of a speech and distinguish
certain speech, therefore, it can reduce the gini impurity, resulting in higher importance scores.

For the SVM model, the top ten most important features consisted of five text features and five au-
dio features. The text features in order of importance were: movement, weather, work, appearance, and
clothing. In non-linear models such as the SVM model with an RBF kernel, the feature importance
is measured by how much a feature contributes to the model’s ability to create separation between
classes[61]. These categories may have been those that were most easily separated by a decision boundary.
The movement category likely reflects the boy nearly falling off the stool, as indicated by the word
’tumbling’ being used. The weather category seems to be triggered by the water falling out of the sink
and flooding the room, arguably one of the most distinctive events in the picture. The work category
was likely associated with the word ’housework’, referring to the mother doing the dishes. Similarly,
the appearance and clothing category may have been activated by the word ’dress’, used to describe the
mother’s outfit. The importance scores seem to be in the order of most distinctive events to the least.
The top audio features included lspFreq, voiceProb and mfcc. lspFreq values vary significantly between
voices, making it very unlikely for the energy distribution among frequencies to be equal for two voices,
making them useful for distinguishing between speakers. The second-ranked feature, voiceProb, captures
voice activity. This partially overlaps with features such as PCM Loudness, suggesting that, while it
contributes unique timing-related information, its distinctiveness is partially shared with energy-based
acoustic properties such as PCM Loudness.
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The third model, the XGBoost model, had a top ten most important features that primarily included text
features, with six out of ten being text features and four audio features. The XGBoost model makes
decisions by building trees sequentially, where each tree corrects the error of the previous tree. The
gradient of the loss function represents how sensitive the loss function is to changes in predictions.
A ”high-gradient region” is an area where the model is currently making significant errors, and small
improvements in prediction can lead to substantial loss reduction. The correlation matrix in figure 4 shows
that the correlation between the text features is positive. The red areas in the lower right show positive
correlations between text features. The weather category does not exist in isolation in the Cookie Theft
picture description task because it represents part of a contextual framework. An example of this is the
appearance and weather category, that may co-occur when describing the mother wearing a dress and
the water overflowing the sink and flooding the kitchen. The predictions for the weather category may
have produced the highest prediction errors, which in turn can make the reduction in loss relatively large
when improved. Another possibility is that the weather category contributes the most predictive value as
part of a feature combination. The audio features in the top ten most important features are dominated
by PCM Loudness, lspFreq, and voiceProb. PCM Loudness might be the most important audio feature
because it likely divides data into regions with similar prediction errors, making subsequent corrections
more efficient. This then can lead to a steeper slope in the loss function. The second most important audio
feature is the lspFreq category. The difference between these is marginal, approximately 0.066. The same
applies to the difference between the lspFreq and voiceProb categories. This means that the reduction
in loss was similar for all of them and that the various audio features likely capture related but distinct
aspects of speech. No single audio feature dominated because the task required the analysis of features
that capture complementary aspects of speech. Finally, the ten most important features of the baseline
model were primarily text features, with seven out of ten being text features and three audio features. The
baseline model is a linear regression model where the final coefficients are those that lead to the lowest
mean squared error(MSE). All features were normalized prior to modeling, so importance scores reflect
predictive contribution rather than differences in scale. The domestic work Empath category emerged as
the most important feature. This may be explained by it having a relatively low correlation with other
features, with its highest correlation approximating 0.5. This indicates that the information it brings is
more unique. This more unique information is able to reduce the unexplained error (residuals) more,
leading to a greater decrease in MSE. In contrast, the second most important category weather is more
correlated with other features overall. As a result, it explains less unique variance and therefore contributes
less to lowering the MSE. This becomes more apparent when comparing the two most important audio
features with each other. The most important audio feature belongs to the voiceProb category and the
second most important audio feature to the lspFreq category. The voiceProb category is significantly
lower correlated with other features than the lspFreq category.

In conclusion, the analysis of the feature importance scores across the three models revealed how different
machine learning models prioritized information. These models all prioritized information in distinct
ways. The Random Forest model captures different localized aspects of the picture, such as semantic
patterns in text (e.g., water falling on the floor belonging to the weather category) and speech markers
(e.g., voiceProb) , by training each purity-driven tree on different data subsamples and aggregating the
results through ensembling.
The SVM model, focused on margin maximization, emphasized features that created clear separation
boundaries, particularly distinctive event-related text categories such as the boy falling off the stool related
to the movement category, and unique spectral characteristics like lspFreq.
XGBoost’s sequential error correction strategy uniquely favors text features as weather where the mis-
takes were similar, which created high-gradient regions where small improvements yield significant loss
reduction. However, audio features showed more balanced importance due to their complementary roles
in capturing different aspects of speech.
The final model, the baseline model, determines feature importance based on how much they reduce the
MSE. Features that lead to a greater reduction in MSE are considered more important. The features that
are more important tend to be features that have a lower correlation with other features, as they contribute
more unique information to the model.
These findings highlight a key insight: feature importance scores are not an inherent property of the data.
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It emerges from the interaction between the model architecture, optimization objective, and task-specific
signals. This is the reason each model assigned different feature importance scores from each other. The
consistent presence of both textual and audio features across all models underscores that both types of
features capture complementary aspects of speech in the Cookie Theft picture description task. Future
work could explore feature engineering that explicitly models the interactions to create new features that
leverage the strengths of different model types for optimal performance.

5.5 Model Complexity vs. Performance
This section will discuss the trade-off between model complexity and performance, with a particular
focus on whether the use of the machine learning models was justified. The baseline linear regression
model performed comparably to the machine learning models, and even outperformed them in terms of
the recall. The class-wise performance of the baseline model is largely indistinguishable from that of the
SVM and XGBoost model. However, the ranking of the feature importance scores did differ from the
machine learning models. This may be attributed to the different manners of which the scores were given
across the models. The linear regression directly minimizes the loss, whereas SVM and XGBoost do so
indirectly. They do so by iteratively following the gradient of the steepest descent of the loss function.
Several factors may explain why the baseline model performed similarly to the more complex models.
One of which may be the relatively small sample size of 674. The complex machine learning models may
have been prone to slight overfitting, as the machine learning models were too complex for the small
sample size. As previously mentioned in this chapter, the XGBoost model and the Random Forest model
reach their AUC peak at approximately 9960 and 3404 respectively[62]. The second contributing factor
for the small gap in performance of the baseline model and the machine learning models may have been
the preprocessing of the features. By filtering on statistical significance and effect size, noise was reduced.
Additionally, multicollinearity was reduced by removing the features that had a correlation of greater
than 0.8. This makes it feasible for the linear regression model to capture patterns that may have been
infeasible to capture otherwise. The more complex models may offer marginal increase in performance.
This difference in performance may have been bigger if the features were either not preprocessed or
preprocessed in a different manner. Finally, the number of retained features used for the models also
played a role. The number of retained features was 20. Under such conditions, linear regression is able to
remain stable and effective. However, if the number of retained features was equal to 200, the performance
of the baseline model would have been substantially worse. This is because the machine learning models
are sufficiently robust for high-dimensional data, unlike linear regression. Linear regression becomes
unstable or overfits as the feature count increases, even with preprocessing, which leads to a decrease in
performance[72].
Taken together, these findings allow for the addressation of whether the use of more complex machine
learning models was justified in this study. The machine learning models have a higher complexity and
have a higher computational cost. The performance of the machine learning models is similar to the
baseline model and were even outperformed by the baseline in terms of the recall. The baseline model
runs significantly faster than the machine learning models. In this case, the machine learning models
achieved a similar performance to the baseline model, but at a higher computational cost. Given the
absence of a clear performance advantage, the additional computational burden does not appear to be
justified.

5.6 Limitations and Future Work
This section outlines the limitations of the present study and proposes directions for future research. This
study has several limitations. First, the size of the dataset of 674 participants may not be sufficient to
capture the full complexity of language patterns of AD patients, particularly given the acoustic diversity
observed in speech patterns of Alzheimer’s Disease patients. Second, while the Cookie Theft picture
description task provides a standardized assessment, the test may not fully reflect naturalistic language
use. Furthermore, participants may be prompted to elaborate or clarify if they omit details, introducing
variability and reducing the validity of the test. As a result, the task might not generalize well to everyday
conversational settings. Third, the feature extraction methods, while comprehensive, may miss subtle
acoustic or linguistic patterns that could be more discriminative.
For the text features, Empath’s predefined categories might miss specific linguistic patterns related to
older individuals with AD. The categories such as weather, sleep, and movement might be too broad or not
sufficiently tailored towards the capture of nuanced complex language changes associated with AD, such
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as reduced syntactic complexity, pronoun overuse, or specific word-finding difficulties. The categories
not being tailored towards AD detection could also make interpretation difficult, as was apparent for
the water falling on the floor being put in the weather category. Regarding the audio features, those
were extracted using the emobase feature set provided by OpenSMILE. The emobase feature set was
primarily designed for emotion recognition, which may not align perfectly with detecting AD-related
speech patterns[25]. AD affects language and cognition in ways that may not directly map to emotional
categories. While emobase can detect a ”flat tone”, which is relevant for AD, it may miss signals such as
word-finding difficulties. Moreover, each feature in emobase is treated with equal importance, regardless
of its relevance to AD-specific vocal traits, such as word-finding pauses or disfluencies.

For future work, it is recommended to increase the sample size and increase the demographic diversity.
This strengthens the models’ ability to generalize. Furthermore, new feature engineering approaches
should be explored, where interactions between text and audio features are explicitly modeled, potentially
creating composite features that capture the complementary aspects of speech. Another promising di-
rection is the use of a hybrid model approach. Hybrid modeling approaches can leverage the strengths
of various machine learning models. As discussed in chapter 3, the Random Forest and SVM model
offer robustness to overfitting and the ability to handle highly non-linear data[59]. These models may
be particularly well-suited for processing textual features. The XGBoost model has the added benefit
of being able to handle feature interactions without explicitly modeling them[23]. This might be more
beneficial for the audio modality in this case because it has more features. The additional advantage of
this is that each model can be tuned for a specific task such as tuned on the text or audio features. Smaller,
specialized models for each modality are computationally less expensive than a single large model.
A practical implementation of this hybrid strategy could involve having one model, Random Forest or
SVM, that captures linguistic patterns. The XGBoost model or a neural network such as a Convolutional
Neural Network(CNN) could be used to capture audio patterns and extract audio features. Afterwards, the
output of the text and audio models should be combined by a model such as the XGBoost model, if not
used in the previous step, or a simple neural network.

In summary, while this study adds to the existing body of literature exploring multimodal approaches
to Alzheimer’s Disease detection, several limitations must be acknowledged. These include the modest
sample size making generalization harder, task-specific constraints of the Cookie Theft picture description
task, which may make it too different from natural language use, and potential misalignment of both
Empath text categories and emobase audio features with AD-specific markers. Future research should
seek to increase the diversity of the samples, engineer composite features that capture interaction between
linguistic nuance and auditory signals, and explore a hybrid model pipeline specifically tailored to this
domain. By employing modality-optimized models, including the Random Forest or SVM model for text
features, XGBoost model or CNN for audio features, and unifying their outputs through a fusion model,
the strengths of different models can be harnessed. Such an architecture not only improves computational
efficiency but also enables robust, task-specific tuning, ultimately laying the groundwork for a scalable
and adaptable Alzheimer’s Disease detection tool.
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6 CONCLUSION
This study investigated the research question: “How can we use machine learning to distinguish normal
from disordered language use in monitoring Alzheimer’s Disease in older individuals?” The findings
demonstrate that machine learning, when applied to statistically selected multimodal features, effectively
distinguishes disordered language associated with Alzheimer’s Disease from typical language in the
population of older individuals. This answer was obtained by analyzing both the transcriptions and
audio segments of participants in three studies taking the Cookie Theft picture description task. For the
transcripts, features were extracted by embedding each sentence of each participants’ transcript using the
sentence transformer ‘all-mpnet-base-v2’. Cosine similarity was then computed between the sentence
embeddings and the embeddings of the predefined Empath category labels. Unlike the standard Empath
method, which relies on keyword matching, this approach captures higher-level semantic relationships
and enables a more nuanced representation of the transcript’s content. Audio features were extracted using
the emobase feature set provided by OpenSMILE, which emphasizes emotion-related auditory indicators
(e.g., flat tone, pauses).
The features were selected based on statistical analysis, where statistically significant(p < 0.05) features
were retained, were filtered by effect size (≥ 0.5), and checked for multicollinearity. Features with a
correlation above 0.8 were removed, unless they had the highest effect size or, if equal, the highest
variance. This yielded a final set of 20 features.
These features were used as input for a baseline linear regression model and three machine learning
models: Random Forest, Support Vector Machine, and XGBoost. Hyperparameter tuning was conducted
via 5-fold cross validation, and performance was averaged over 10 runs with different data splits. The
models achieved ROC AUC scores between 0.73 and 0.76, and recall scores between 0.72 and 0.73,
aligning with clinical benchmarks. The results directly address the research question: machine learning
models successfully leveraged the selected features to distinguish ordered from disordered language in
older individuals. This study also revealed unexpected insights: audio features contributed comparably to
text features, challenging prior assumptions that text features dominate Alzheimer’s Disease classification.
This finding underscores the complementary nature of multimodal data in capturing nuanced language
and acoustic patterns associated with cognitive decline. Additionally, the similar performance of all three
machine learning models compared to each other and the baseline model suggests that the core signal
statistically selected features were the primary drivers of performance, rather than algorithmic complexity.
This raises the question of whether the added computational cost of more complex machine learning
models was justified in this case. Given that the baseline linear regression achieved comparable results
while being computationally more efficient, the use of advanced models may not offer substantial practical
advantages under the current conditions. This outcome could also have been a reflection of the limited
sample size, which may have constrained the Random Forest and SVM models from realizing their full
potential.
While the study answers the research question affirmatively, limitations remain. The dataset size of 674
participants limits generalizability. Furthermore, the task-specific nature of the Cookie Theft picture
description task may not reflect naturalistic conversational contexts, which may also hinder generalizability.
Additionally, feature extraction tools used in the present study, Empath and OpenSMILE, may not fully
capture the nuanced linguistic or acoustic patterns related to Alzheimer’s Disease, such as word-finding
difficulties or syntactic complexity. Future work should focus on using an expanded dataset, engineering
Alzheimer’s Disease-specific features, and exploring hybrid model approaches to refine detection accuracy.
These directions could enhance model performance and support the development of scalable, multimodal
tools for monitoring Alzheimer’s Disease in older individuals in real-world clinical and home-based
settings.
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