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Abstract

Forecasting patient outcomes is a critical task in healthcare, with applications
ranging from treatment planning to risk assessment. Although recent advances in
time series forecasting have explored counterfactual explanations, existing approaches
usually modify past observations, which limits their practical utility in clinical set-
tings where future-oriented interventions are more relevant. This thesis introduces
a new method for counterfactual time series forecasting, which generates realistic
future trajectories by adjusting exogenous variables within the forecast horizon to
achieve a desired clinical outcome. By directly altering future treatment plans, this
approach could support healthcare on a much more personal level. Counterfactual
explanations offer clinicians an intuitive way of exploring alternative future scenarios
and evaluating the potential impact of different interventions, and therefore enhanc-
ing transparency and supporting more informed and goal-aligned decision-making.

We incorporate multiple forecasting models, such as SARIMAX, OLS, GRU,
and N-BEATS, to learn the relationships between exogenous inputs and target vari-
ables, enabling the generation of interpretable and constrained counterfactuals. Ex-
tensive evaluation across two healthcare applications, glucose level forecasting using
the OhioT1DM and the SimGlucose datasets, and mortality prediction in HFpEF
patients using the MIMIC-IV, demonstrates the effectiveness and realism of the
proposed method. In particular, the GRU model achieves superior predictive perfor-
mance, with a 78% adherence to the clinical constraints with minimal intervention
costs of 1.5% average input changes on the OhioT1DM dataset, and a low predic-
tion error for the MIMIC-IV dataset. It consistently produces counterfactuals that
adhere closely to known clinical values.

Our findings show that effective counterfactual interventions typically involve
changes across multiple variables and that realistic, health-aligned adjustments can
be achieved without significantly deviating from natural data distributions. Despite
the promising results, challenges remain, particularly the need for clinical validation,
such as healthcare expert review and real-world testing, to ensure the recommenda-
tions are clinically sound and actionable. Additionally, the realism of the generated
counterfactuals inherently depends on the quality of the underlying forecasts. In-
accuracies in prediction could lead to misleading or clinically implausible results.
We outline future directions for improving clinical relevance, such as collaborating
with domain experts, integrating more extensive patient context, and optimising for
adherence.

This work establishes a foundation for the development of transparent, appli-
cable, and personalised forecasting tools in healthcare, that can simulate “what-if”
scenarios to support better clinical decision-making.
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1 Introduction

With the increasing availability of large and complex healthcare datasets, the usage of
machine learning and deep learning techniques for clinical decision support has increased
[ASFWHY 25, MPS19|. In particular, time series forecasting plays a crucial role in mon-
itoring patient states and predicting clinical outcomes based on continuously recorded
data, such as vital signs and laboratory results [KCK*20, JBS*23]. Accurate forecasts
can enable early interventions, prevent complications, and improve personalised treatment
strategies, which are essential in medical settings where timely and informed decisions can
directly affect patient outcomes.

Despite advances in predictive accuracy, many deep learning models remain black-box
models, limiting their interpretability and acceptance by clinicians. Clinicians require
transparent reasoning and actionable insights to be able to trust and act on model outputs.
Counterfactual explanations have emerged as a promising approach to enhance model
interpretability by identifying minimal and feasible changes in input features that could
lead to a more desirable prediction [VBH24, Gui24|. While counterfactual explanations
have been widely studied in static tabular data contexts, their extension to time series
forecasting, especially in real-world, multivariate medical applications, remains limited.
Existing methods often focus on altering historical data points, which is impractical in
clinical practice because the past is fixed [WSMP24].

This thesis addresses this gap by combining multivariate forecasting with counterfactual
explanations to support clinical decision-making. We focus on medical prediction tasks
where forecasts of patient outcomes are critical, and actionable recommendations are
required. Specifically, we consider scenarios in which clinicians need to anticipate changes
in patient states, such as blood glucose levels in diabetes management or cardiac function
in heart failure, so that interventions can be planned proactively. By integrating forecasts
with counterfactual reasoning, our approach not only predicts future outcomes but also
identifies which controllable factors could be adjusted to improve these outcomes, ensuring
that the predictions are both accurate and actionable.

1.1 Motivation

Healthcare presents an interesting domain for counterfactual forecasting for several rea-
sons. Patient data is complex, multivariate, and collected over time, creating rich time
series suitable for predictive modelling. Accurate forecasts can inform early interventions,
prevent complications, and improve personalised treatment strategies. Additionally, inter-
pretability is crucial, as clinicians must understand the reasoning behind predictions to
be willing to use the models. Two concrete applications are examined in this thesis:

e Diabetes management: Continuous glucose monitoring (CGM) enables real-time
tracking of glucose levels. By forecasting future glucose trends and suggesting adjust-
ments in insulin, diet, or activity, counterfactual predictions can proactively reduce
risks of hyper- and hypoglycaemia [EMA*24a, EMAT24b|.

e Heart failure with preserved ejection fraction (HFpEF): Early detection of
deteriorating cardiac function through time series forecasting of vital signs and other
patient data can guide lifestyle or treatment interventions, helping prevent hospital
readmissions and improve outcomes [BP10, PVAT16].



These examples highlight why exogenous interventions, rather than modifying historical
data, are critical for practical counterfactual forecasting in healthcare.

1.2 Main Contributions

Time series forecasting can play an important role in healthcare by predicting how well
a treatment works or predicting the risk of complications, relapse, or mortality. While
recent works, such as COMET [WSMP24|, have explored the use of counterfactuals in
time series forecasting, many existing methods work by retroactively modifying histori-
cal observations, a strategy that is not applicable in many medical contexts. This thesis
contributes to the ongoing research in counterfactual time series analysis by proposing
an alternative forecasting method that identifies optimal changes in exogenous variables
during the forecast horizon to achieve desirable outcomes. More specifically, we propose
a method that learns the relationship between the forecasted targets and exogenous vari-
ables, which leads to a more effective and interpretable decision-making in healthcare.
The main contributions of this thesis can be summarised as follows:

e We formally define a new variant of applying counterfactual explanations and mul-
tivariate forecasting to medical prediction tasks.

e We introduce a new counterfactual time series forecasting method to achieve a
desired constrained forecast by modifying exogenous variables within the forecast
horizon.

e We incorporate existing forecasting models, such as SARIMAX, OLS, GRU and
N-BEATS, for learning the relationship between exogenous variables and a target
variable to ensure actionable and interpretable predictions.

e We evaluate the models on two applications in healthcare, specifically for glucose
level prediction and HFpEF management.

e We demonstrate the practical utility of incorporating counterfactuals for medical
prediction tasks.

All code, models, and the publicly available datasets used in this thesis are available on
our GitHub Repository,! providing full reproducibility and facilitating future research.

1.3 Problem Formulation

In this section, we formally define the problem of counterfactual time series generation
in the context of time series forecasting. We introduce the notation used throughout the
thesis and describe the objectives and constraints that guide the proposed methodology.
Figure 1 illustrates the core idea of hybrid counterfactual forecasting. The upper line
shows the evolution of the target variable y (for example blood glucose level). Based
on the historical window (back horizon n), the forecasting model f produces an original
forecast y (blue curve) for the next ¢ steps. In many medical applications, these forecasts
may fall outside of clinically acceptable ranges. In this example, the predicted values
exceed the upper bound 3, violating the desired constraints (red lines). A typical use case

"https://github.com/TomkeMeyer/ThesisTomkeMeyer.git
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would be a glucose prediction that rises to 200 mg/dL, which is too high for a safe range.
Here, the goal is to keep the values within a preferable interval, for example between
a = 80 mg/dL and 8 = 140 mg/dL. By enforcing these constraints, the method ensures
that the new forecast remains both clinically safe and practically meaningful. To achieve
this, our method modifies the exogenous variables X predicted for the future horizon.
These exogenous variables, shown in the lower half, for example insulin, carbohydrate
intake or exercise intensity, are adjusted into new trajectories X* (purple curves). By
using X* for the forecasting, we obtain an alternative forecast y* (green dotted line) that
stays within the safe interval [a, 3]. In other words, the counterfactual trajectory suggests
actionable changes in controllable variables that lead to a desirable forecasted outcome.
This process illustrates the main idea behind our method: starting from an unsafe forecast,
we generate counterfactual versions of the exogenous variables that move the prediction
into a safe and clinically meaningful range.
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Figure 1: Illustration of the counterfactual forecasting problem. The model first produces
an original forecast y for the target variable. If the forecast lies outside of desired bounds
la, 3], the exogenous forecast X is modified into X*, yielding a new forecast y* that is
within the constraints.

Time series definition:
Let D := (D;)icq1,...ny denote a multivariate time series of length n (back horizon), with



each d; € R™™! composed of the target variable y; € R and the exogenous variables

X1,
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Then D can be denoted as the combined matrix of the target vector y € R*™" and the
exogenous matrix X € R™*™:
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The relationship between y and X can be described by the function:
c: Rmxn SN Rl xn

which calculates the target vector from the exogenous matrix:

cX)=y.

Forecasting model:
Given a multivariate time series forecasting model f that predicts the next ¢ values (fore-
casting horizon) of D, we define the forecast as:

f(D) = ]j = (dn+i>i6{17---vt}’ ]j - (%) .

Here, y is the forecasted target trajectory, and X the forecasted exogenous inputs. There
exist various forecasting methods that implement f; we will compare the performance of
various of these in Section 6.1.

Constraints and counterfactual objective:
For each step in the forecast horizon, we define lower and upper bounds on the target
variable, denoted as:

The objective is to generate a counterfactual time series sample X*, such that y* = ¢(X*)
satisfies the given bounds:

o <yl < BiVyfeyriie{n+1,...,n+t}

Summarised research objective:

Given a target vector y affected by the exogenous matrix X, a forecast horizon ¢, the
original forecasted vector y and the original forecasted exogenous matrix X, the goal is to
modify X to X* such that the corresponding target vector y* is within constraints [a, 3].
This corresponds to generating actionable interventions on future exogenous variables
that lead the target prediction toward desirable outcomes.



2 Background

The global population is both growing and ageing, which is resulting in a rise in chronic
diseases. This leads to a demand for more efficient, personalised, and proactive healthcare
solutions [HSL*23]. In the past, treatment was typically given only after symptoms ap-
peared, and the chosen treatment plans were often quite general. However, this reactive
approach is no longer sufficient today, as patients require more personalised and proac-
tive care. Technological advancements in the field of healthcare have had a significant
impact on healthcare providers and patients, with statistical methods being used to pre-
dict outcomes. This approach struggles with the complex nature of clinical, demographic
and molecular factors that influence the disease progression, leading to machine learning,
deep learning, artificial intelligence, and big data analytics becoming increasingly popular
fields within the medical and health science domains [ASFWHY"25|. Recent healthcare
has been characterised by an increased need for data-driven approaches, with the care
process being driven by the flow of data between patients and doctors, and the sharing
of decisions, instructions and information amongst care providers. The role that data and
information play in decision making and provision of healthcare, has only increased with
the growing digitalisation of healthcare. This results in great amounts of data, which en-
ables the implementation of advanced analytical methods, including machine learning and
artificial intelligence methods, to obtain valuable and actionable insights. These insights
are essential in supporting decision-making processes, ensuring high quality patient care,
responding to real-time situations and ultimately reducing mortality. Especially machine
learning becomes more and more relevant in healthcare applications, including predictive
analysis, treatment optimisation, and patient monitoring [MPS19|. Machine learning al-
gorithms can potentially be used to improve diagnostic accuracy, as well as support early
disease detection and prediction. Other applications include, analysing medical imaging
data, such as X-rays and MRIs, to detect signs of cancer or neurological disorders, which
allows for early diagnosis, as well as a personalised treatment plan for each patient. These
uses show the potential that machine learning has for both research and clinical trials,
and support the improvement of healthcare overall [RNZ17], [JHS*22].

2.1 Time Series Analysis and Forecasting

Time series analysis uses an ordered sequence of data points recorded over time, usually
at regular intervals, to understand patterns, trends, and relationships within the data over
time. This time series data also allows for forecasting or predicting future values, based on
historical observations. Time series forecasting plays a crucial role in a number of differ-
ent applications. Some applications include its usage in finance, for predicting stock prices
and market trends [MSG14], in meteorology for weather and climate forecasting [KS20],
in transportation, for effective traffic flow forecasting [LBF13] and especially recently in
healthcare. In healthcare, time series forecasting is increasingly relevant, as patient data
such as heart rate, blood pressure, glucose levels, and laboratory results are being collected
continuously or in regular intervals. Precise forecasting of these medical time series can
allow for early detection of negative outcomes, support the personalisation of treatment
plans, and optimise healthcare management overall [KCK™20], [JBS*23].



Generally, time series forecasting consists of finding temporal dependencies and trends
in the data. Depending on the nature of the time series, such as for example linear or
non-linear, stationary or non-stationary, and univariate or multivariate, requires different
forecasting methods. These different forecasting methods can be categorised into three
subgroups, statistical models, such as ARIMA and ETS, machine learning models, such
as Linear Regression and SVMs, and deep learning models, such as RNNs, LSTMs, GRUs
as well as transformer-based models Autoformer or DLinear [MWM24|, [Kol24].
Especially the latter models have shown promising results in recent years, achieving very
accurate predictions [WLY24]|. Despite these recent developments, many deep-learning
based forecasting systems are considered black-box models, as it is challenging to inter-
pret and understand both the modelling process and the forecasting outcome. This is
particularly problematic in healthcare applications, where particularly interpretability is
very important, as clinicians need to understand the reasoning behind the predictions to
make informed decisions.

2.2 Counterfactual Explanations

Counterfactual explanations are an emerging technique with the potential to improve the
interpretability and explainability of machine learning models. The objective is to identify
minimal changes to the input features that would result in a different, and typically more
desirable, outcome. More specifically, they provide information such as if an input data
point would be X instead of X, then the trained machine learning models prediction
would be Y instead of Y, assuming outcome Y would be more favourable [VBH'24]. So
counterfactuals are a type of explanation method in machine learning, that might help
users to understand the model predictions and decisions better. This is supported by
counterfactual explanations being actionable, since they suggest specific changes to alter
the outcome, and intuitive for humans, since they align with human reasoning about cause
and effect. Often counterfactual explanations are also model-agnostic, meaning they can
be applied to a variety of black-box models [Gui24|. A more specific example application of
counterfactuals would be a suggestion to slightly reduce a patients systolic blood pressure,
which could lead to a prediction of a lower cardiovascular risk. So these kind of insight
can not only help clinicians understand a models decisions better, but also assist in timely
intervention and treatment planning.

Traditional time series forecasting and counterfactual explanations focus mainly on pre-
dicting future values given historical observations, but modifying past values is not feasible
in real-world settings, especially in healthcare applications. Instead, a more practical ap-
proach is to explore how changing exogenous variables during the forecast horizon could
lead to a desired outcome. This approach allows continuous monitoring of patients, making
it possible to dynamically adjust treatment plans to lead towards more optimal results.

2.3 Diabetes

Diabetes is one of the most prevalent chronic diseases in the world, with it being a lead-
ing cause of death and disability. According, to the World Health Organisation (WHO),
around 830 million people worldwide suffer from diabetes, and it is the direct cause of 1.5
million deaths a year. Nowadays, it affects around 14% of adults, this number has doubled
since 1990, making it a major public health problem. Diabetes is characterised by elevated



levels of blood glucose, which over time seriously damages the heart, blood vessels, eyes,
kidneys and nerves. Type 2 diabetes is much more common and occurs when the body
either becomes resistant to insulin or does not make enough insulin. It usually has a later
onset and its development can be attributed to factors such as being overweight, not
getting enough exercise and genetic predisposition. Type 1 diabetes is a chronic condi-
tion, where the pancreas only produces little to no insulin by itself. It is caused by the
autoimmune destruction of pancreatic S-cells and affects 5-10% of the diabetes patients
[Dial, [EMA*24al. For patients with conditions such as type 1 diabetes mellitus (T1DM),
closely tracking their glucose levels is a necessity. To reduce the risk of complications such
as hyperglycaemia (high blood sugar) or hypoglycaemia (low blood sugar), these patients
often rely on continuous glucose monitoring (CGM) devices and automated insulin deliv-
ery. Hyperglycaemia can lead to serious long-term complications like nerve damage, kidney
failure, and cardiovascular issues if not properly managed. Hypoglycaemia, on the other
hand, can cause immediate dangers such as dizziness, confusion, seizures, or even loss
of consciousness. By continuously tracking glucose levels, CGM devices provide real-time
data that helps patients and clinicians maintain blood sugar within a safe range. Integrat-
ing machine learning models with CGM data can further enhance diabetes management
by predicting abnormal glucose events before they occur. This predictive capability al-
lows for timely adjustments in insulin dosage, improving overall glycaemic control and
reducing the risks associated with both hyper- and hypoglycaemia. Eventually, machine
learning-driven insights can support more personalised and effective insulin delivery plans,
contributing to better patient outcomes. By also incorporating variables such as insulin
intake, carbohydrate consumption, and physical activity, a predictive model can allow
timely interventions through the generation of actionable recommendations for patients
or healthcare providers. This allows for more dynamic treatment based on these fore-

casted expected glucose trends, which can reduce the long-term risk of diabetes-related
complications [EMA™*24b].

2.4 Heart Failure With Preserved Ejection Fraction

Heart failure with preserved ejection fraction (HFpEF) is a prevalent and severe cardio-
vascular condition, where the heart’s pumping strength is normal but the heart muscle
does not relax properly. This can lead to the heart not filling properly, leading to hospi-
talisation and in the worst cases to death [BP10|. Heart failure (HF) is classified based
on the left ventricular ejection fraction (LVEF) and can be split into three subcategories.
Heart failure with reduced ejection fraction (HFrEF) with LVEF <40%, heart failure with
mildly reduced ejection fraction (HFmrEF) with LVEF = 41-49%, and heart failure with
preserved ejection fraction (HFpEF) with LVEF >50% [PVA*16]. Studies have shown
that the mortality within one year is around 29%, [OHH'06], [SBA*24], with increased
mortality for patients with previous heart failure hospitalisations and other comorbidities
[MGL*19|. This makes HFpEF a very serious condition, where early diagnosis is key. So
another possible application of medical time series forecasting could be to try identifying
early warning signs of heart failure or more specific HFpEF to suggest either lifestyle or
treatment changes. Using the vital signs, as for example the heart rate and blood pressure,
of a patient as well as other factors like gender and possible comorbidities, allows specific
and personal monitoring of disease progression. This way, early warning signs of worsening
heart condition can be identified and personalised modifications to lifestyle or medication



can be suggested. Such proactive monitoring can help reduce hospital readmissions and
improve patient outcomes.



3 Related Work

The following sections introduce some related work in three different fields. First, related
methods in counterfactual forecasting are presented, focusing on the implementation of
counterfactuals to improve explainability and interpretability. Then, existing approaches
in forecasting blood glucose levels and predicting mortality for patients with HFpEF are
analysed, to highlight the necessity for our approach.

3.1 Counterfactual Forecasting Models

Recent research has explored various deep learning models for time series forecasting,
including recurrent neural network (RNN)-based models such as gated recurrent units
(GRU) and long short-term memory (LSTM), as well as attention-based architectures like
transformers [Kol24]. Transformer-based models, including Autoformer and Informer, have
demonstrated strong performance in both univariate and multivariate forecasting tasks
by capturing long-range dependencies more effectively than traditional RNN approaches.
In the clinical domain, deep learning models have been applied extensively to glucose
forecasting. For instance, Deep Multi-Output Forecasting [FAJT18| introduced a multi-
step forecasting framework that explicitly models the distribution of future glucose values
over a prediction horizon using a multi-output deep architecture. Similarly, WaveNet has
been adapted for glucose forecasting by leveraging dilated convolutional neural networks
(CNNs) to model long-term dependencies [ZLH*18|. In addition, transfer learning tech-
niques have been employed to enhance predictive performance by fine-tuning pre-trained
models on patient-specific data while incorporating exogenous covariates such as insulin
dosage and carbohydrate intake [MB20].

Beyond predictive performance, explainability remains a critical challenge in deep learning-
based forecasting models. Traditional statistical models, such as ARIMAX and VARI-
MAX, are able to quantify relationships between exogenous factors and the target vari-
able, but their forecasting accuracy is often outperformed by deep learning approaches
[PTJ*22]. Recent research has focused on integrating explainability into forecasting mod-
els to combine the strengths of both interpretability and predictive performance. For
example, N-BEATSx extends the N-BEATS method by incorporating future exogenous
variables into its deep architecture, enabling a more structured decomposition of trend
and seasonality. However, its interpretability remains static and does not fully capture
the dynamic nature of forecasting outcomes and requires future exogenous values as in-
put [SM23], [OCM*22].

To address the need for explainability, counterfactual explanations have gained traction in
time series analysis. Initial efforts focused on time series classification, where counterfactu-
als were generated through instance-based modifications and gradient-based perturbations
[AALC20]. This was done by introducing a framework for generating counterfactual expla-
nations for multivariate time series classification, identifying minimal input modifications
needed to alter the model’s decision, providing interpretability for high-dimensional time
series models.

More recently, counterfactual explanations have been extended to time series forecasting.
ForecastCF [WMSP23| proposed a deep learning-based method for generating counterfac-
tuals in time series forecasting by identifying minimal input changes required to achieve
desired prediction outcomes. Building on this, COMET [WSMP24]| extended counterfac-



tual explanations to multivariate time series forecasting, focusing on modifying exogenous
variables, such as insulin, carbohydrates, and exercise, to generate actionable recommen-
dations for glucose management.

Despite these advances, counterfactual explanations for multivariate time series analysis
remain an emerging research area. While existing methods demonstrate the feasibility
of generating counterfactuals for univariate forecasts, their generalisation to multivariate
forecasting and real-world clinical applications remains limited. This work aims to extend
on these existing methods by integrating counterfactual reasoning with multivariate fore-
casting models, focusing on modifying exogenous variables within the prediction horizon
to provide actionable and interpretable interventions.

3.2 Blood Glucose Level Prediction

Forecasting physiological indicators such as blood glucose levels, is crucial for managing
diabetes. Time series forecasting and model explainability are becoming increasingly im-
portant in this field of medical prediction tasks, as in many others. Recent contributions
to this area of research highlight the growing use of multivariate machine learning mod-
els to improve predictive accuracy and personalisation. This shows the growing need for
interpretable and actionable insights, which aligns closely with the goals of this thesis.
Recent research highlights the growing development of multivariate and deep learning-
based models for predicting glucose levels. For example, Kalita and Mirza [KM25| pro-
posed a model that combines multi-head attention layers with neural basis expansion
networks, capturing complex temporal and cross-feature dependencies in glucose data.
Similarly, Benaida et al. [BAI25] demonstrated the effectiveness of deep learning architec-
tures for both single- and multi-step glucose forecasting, emphasising the importance of
long-term prediction capabilities in real-world applications. These multivariate models are
consistent with the focus of this thesis on leveraging multiple signals, such as past glucose
levels, physiological parameters, and contextual variables, for accurate forecasting.
Personalisation has emerged as a key factor in clinical forecasting settings, as patient
diversity affects model performance. Shen and Kleinberg [SK25a] addressed this issue by
using incrementally retrained LSTM networks that adapt to each individual’s glucose dy-
namics. This improves performance, even when the CGM data is limited. Lara-Abelenda
et al. [LACMPC™25] introduced large language models to model personal glucose trends,
highlighting the capacity of foundation models to generalise across individuals while re-
taining patient-specific nuances. These methods emphasise the importance of adaptive
and context-aware forecasting.

Several works have also incorporated physiological signals beyond glucose levels to support
multivariate forecasting. For example, Giancotti et al. [GBV 24| explored the utility of
heart rate as a predictor of forecasting glucose levels in patients with type 1 diabetes,
which demonstrates that multimodal data can significantly enhance predictive accuracy.
Similarly, Rodriguez-Rodriguez et al. [RRCVR23| utilised data, such as physical activity
and diet logs, to enable more holistic and personalised glycaemic forecasting.
Interpretability remains a major challenge for deep learning-based forecasting models, es-
pecially in critical fields such as medicine. In response to this, Sun and Kosmas [SK25b|
combined a Bayesian forecasting method with expert medical knowledge to model CGM
values in type 2 diabetes patients. Their framework improves both uncertainty quan-
tification and clinician interpretability, which is an essential consideration in Healthcare
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AL The need for model transparency directly motivates the use of counterfactual expla-
nations to improve the explainability and actionability of predictive models in medical
applications. While many current studies emphasise predictive accuracy, fewer address
how predictions can be explained and acted upon by clinicians or patients.

Taken together, these studies reflect a shift towards data-driven, multivariate, and person-
alised models for medical forecasting. However, there remains a clear gap in integrating
these powerful models with robust, interpretable explanations. This thesis aims to bridge
this gap by combining multivariate forecasting approaches with counterfactual reasoning,
to provide accurate predictions and actionable, understandable explanations, which are es-
sential components for supporting medical decision-making and patient self-management.

3.3 HFpEF Mortality Prediction

Heart Failure with Preserved Ejection Fraction (HFpEF) is a complex and heterogeneous
condition, characterised by diagnostic and prognostic uncertainty. This makes it a com-
pelling use case for machine learning in clinical decision support. Recent research has
applied various machine learning techniques to improve diagnosis, predict outcomes such
as hospitalisation and mortality, and guide individualised management strategies. These
efforts emphasise the increasing relevance of multivariate forecasting and the growing
demand for explainable models, which are central to the objectives of this thesis.

A significant amount of research has focused on prognostic modelling using structured clin-
ical data. For example, Hu et al. [HMH™25] developed and validated a machine learning
model to predict the risk of readmission within one year for HFpEF patients, demon-
strating the utility of routinely collected electronic health records (EHRs) in anticipating
adverse outcomes. Similarly, McDowell et al. [MKT"24| constructed models for predicting
both mortality and morbidity in HFpEF patients, showing that complex risk factors, in-
cluding comorbidities and laboratory values, can be effectively integrated into predictive
models. These studies emphasise the importance of leveraging multivariate data sources
to forecast long-term patient outcomes.

Short-term outcome prediction has also been explored, particularly in the context of the
early identification of high-risk patients. Another study [SBA™*24| used machine learning
to predict short-term mortality, which is essential for planning acute care. Other models
are focusing on hospitalisation prediction, using historical patient trajectories to anticipate
future events. These forecasting tasks not only require accurate time series modelling but
also benefit from interpretability to inform clinical decisions.

The diagnosis of HFpEF remains a challenging area due to its symptomatic overlap with
other heart failure subtypes. Kavas et al. [KBB23| developed an machine learning-based
decision support system using photoplethysmography (PPG) signals to differentiate be-
tween HFpEF and HFYEF (Heart Failure with reserverd Ejection Fracion), demonstrating
the potential of non-invasive, sensor-based diagnostics. Liao and Hung [CLH24| further
extended this approach by incorporating data from a wearable patch device to enhance
diagnostic precision. These works highlight the growing role of physiological signal data
in heart failure classification, which directly supports multivariate modelling approaches
by introducing continuous and high-frequency signals into prediction tasks.

Genomic and molecular data have also been used to support precision medicine approaches
in HEpEF. Zhou et al. [ZGW™21]| utilised gene expression profiles to build machine learn-
ing models capable of risk stratification in HFpEF patients, adding a layer of biological
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interpretability to purely clinical models. Although these models are powerful, they are
often perceived as black boxes, emphasising the need for explainability techniques such
as counterfactual explanations to bridge the gap between model prediction and clinical
insight.

Across these studies, however, the challenge of model transparency and interpretability
remains largely unaddressed. Most existing models prioritise predictive performance with-
out offering sufficient explanations for individual predictions, which is a critical issue in
medical contexts where understanding why a prediction was made is often as important
as the prediction itself. This thesis aims to bridge this gap by integrating counterfactual
reasoning into multivariate forecasting models, offering clinicians not just a forecast, but
a clear explanation of the factors driving the prediction and the minimal changes that
could possibly alter an adverse outcome.

In summary, the current research in HFpEF prediction demonstrates the power of machine
learning to handle complex, multivariate data across diagnostic and prognostic applica-
tions. However, a lack of interpretability limits clinical adoption. This thesis tries to con-
tribute to the field by combining accurate time series forecasting with interpretable, coun-
terfactual explanations, thereby supporting more transparent and actionable decision-
making in heart failure care.
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4 Counterfactual Hybrid Forecasting

We propose an algorithm to generate counterfactual exogenous inputs X* that guide the
forecasted target y* toward a desired outcome within a multivariate time series context.
The algorithm integrates a differentiable forecasting model f and a constrained coun-
terfactual optimisation procedure, ensuring the realism of the generated counterfactuals.
It takes as input a multivariate time series D = (y,X), where y is the target vector
and X the matrix of exogenous variables. Hyperparameters include the learning rate 7,
clipping range (p, ¢), maximum number of optimisation iterations max _iter, and, when
applicable, target bounds (e, 3). The differentiable models for forecasting f(-) and coun-
terfactual generation ¢(-) are provided, where f predicts the future values D and ¢ guides
updates on X to achieve a feasible counterfactual.

The approach is structured into three main stages:

e Multivariate Forecasting: A base forecasting model f is trained to predict the fu-
ture trajectory of both the target y and the exogenous variables X given historical
observations X.

e Desired Bound Generation: Bounds [a, 3] are specified for the target forecast y,
reflecting clinically or contextually desired outcomes.

e Counterfactual Optimisation: The predicted exogenous trajectory X is iteratively
perturbed into X* using gradient-based optimisation, guided by a constrained loss
function. The constraints ensure that the resulting counterfactuals remain clinically
feasible, temporally realistic, and statistically aligned with observed trajectories.

This algorithmic approach provides an adjustable and interpretable method for generating
actionable interventions in time series forecasting tasks. By ensuring that counterfactuals
are both feasible and effective, it is particularly suited for medical prediction tasks where
unrealistic or unsafe interventions should be avoided. For tasks with binary outcomes,
the optimisation is adapted by omitting bound generation and focusing directly on the
desirable outcome. Algorithm 1 shows the pseudocode for the method.
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Algorithm 1 Counterfactual Hybrid Forecasting

1: Input: Time series data: target y, exogenous variables X, learning rate 7, desired
bounds (e, 3), clipping range (p, ¢), max iterations max _iter, differentiable forecaster
f(+), differentiable counterfactual generator c(-), weight w, historical values G
Output: Counterfactual X* with desired outcome y*

A

(¥, X) « f(y.X)

S + SelectTestSamples

[a, B] < GenerateBounds(S)

C <« ActivityTemporalConstraint

loss + L((y,X), e, B, (y,X),C)

time < 0

while (y* > 8 or y* < o) A (time < max_ iter) do
X* + AdamOptimize(X*, loss,n)
X* « Clip(X*, p, )
v o(X¥)
C' <+ HistValueConstraint(X*, G)
loss «+ L(X*, w, o, B3, (y,X), )
time < time + 1

: end while

return (y*, X*)

el e e e e =
NPT ERy P2

4.1 Desired Bound Generation

To encourage counterfactual generation toward realistic and safe outcomes, we define
personalised bounds on the target variable. These bounds function as constraints for
the optimisation, ensuring that predicted counterfactual targets remain within clinically
realistic ranges.

Formally, for each forecast step i € n+1,...,n +t, we define a lower bound «; and an
upper bound f; on the target variable y;. In applications such as glucose forecasting,
these bounds are based on the patient’s current state, allowing for a smooth and feasible
transition toward the desired target value. Let y,, 11 denote the first predicted target value
in the forecast horizon, and let y* represent the desired target after S steps. A polynomial
transition function of order p defines a target trajectory:

; * 1—n P .
(i) = Yny1 + (V" = Yns1) - g , i=n+1,....,.n+ S5

This trajectory ensures a gradual adjustment from the current value to the target. For
steps beyond S, the bounds remain flat at y*. To account for natural variability in the
time series, we add a margin proportional to the standard deviation o of the input series:

@, =bi)— Ao, Bi=bli)+ra Ael0,1]

Here, X is a tunable hyperparameter controlling the width of the bounds, typically set
to 0.5. All calculations are performed in normalised space using patient-specific scalers
derived from the training data.

For the HFpEF mortality prediction task, the target is binary (survival vs. non-survival).
In this case, no bounds are generated, and the optimisation instead focuses on achieving
the desirable outcome (survival) directly through the counterfactual perturbations.
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4.2 Constraints

To ensure that the generated counterfactual trajectories effectively alter predicted out-
comes, while remaining clinically feasible and realistic, we introduce a set of constraint
mechanisms directly into the optimisation process. These are the clipping constraint, the
historical value constraint, and the activity temporal constraint. Each of these constraints
plays a distinct role in maintaining the interpretability, trustworthiness, and clinical plau-
sibility of the counterfactuals.

The constraints are applied iteratively during optimisation, guiding the perturbation of
exogenous variables such that the resulting trajectories adhere to domain-specific bound-
aries and realistic temporal patterns.

4.2.1 Clipping Constraint

The clipping constraint ensures that the perturbed exogenous variables X* remain within
physically and clinically plausible ranges. Let (p, ¢) denote the minimum and maximum
allowable values for each feature, chosen based on clinical knowledge or prior observations.
After each optimisation step, elements of X* are clipped:

Xp ;= min(¢p, max(pg, Xy ;)), k€{l,....,m}, je{l,... t}
This projection ensures that counterfactuals remain within trusted ranges of realistic
values.
4.2.2 Historical Value Constraint

To maintain plausibility, counterfactual inputs should resemble historically observed pat-
terns. Let G be a dataset of historical exogenous trajectories. The historical value con-
straint penalises deviations from the closest historical sequence using a Manhattan dis-
tance:

Chist (X™) = Anist - I)l{flégkz | Xi s — Xk
7]

where At controls the strength of the constraint. This encourages the generated se-
quences to remain close to real-world data.
4.2.3 Activity Temporal Constraint

The activity temporal constraint restricts perturbations to clinically actionable time steps.
Define a binary vector C' € {0,1}, where C; = 0 allows a change at time step j, and
C; = 1 discourages it. For example, interventions such as medication, exercise, or meals
occur at specific times, and changes outside these windows are penalised:

_J 0 if intervention allowed at time j
! 1 otherwise

The corresponding penalty for temporal misalignment is:
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* /
X = Xy

CaX"X) = 326 30 | S
5]

J k

where € is a small constant to avoid division by zero. This ensures that changes primarily
occur at relevant, clinically meaningful times.

4.2.4 Combined Loss Function

The optimisation objective integrates the forecasting goal with all constraints. Let (a, 3)
denote the desired bounds for the target y*. The total loss is defined as:

L = ForecastLoss(y™, &, 3) + Anist * Chist (X™) 4+ Aact * Cact (X7, X)

where A\t and A, tune the importance of each constraint. The clipping constraint is
enforced via projection and does not appear explicitly in the loss.

These three constraints work together to guide the counterfactual generation process as
the clipping constraint ensures that variable values remain in a trusted clinical range, the
historical value constraint keeps the counterfactuals close to real, observed trajectories,
and the activity temporal constraint encourages changes to occur at appropriate, clinically
meaningful time steps. By embedding these constraints into the optimisation loop, the
generated counterfactuals are not only effective but also interpretable, and aligned with
realistic clinical dynamics.
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5 Experimental Setup

5.1 Data

While the proposed model could be broadly applied across domains beyond healthcare,
this study focuses exclusively on medical use cases. In particular, we investigate the mod-
els usefulness in optimising treatment plans for two conditions: type 1 diabetes and heart
failure with preserved ejection fraction (HFpEF). The datasets used in these experiments
contain physiological measurements and treatment-related variables, allowing for person-
alised forecasts and counterfactual intervention generation. To prepare the data for mod-
elling, several preprocessing steps have been applied. First, the data is split into training,
validation and test sets and normalised using min-max scaling to ensure stable and con-
sistent model training. The data is then separated into target variables and exogenous
inputs. Then, a sequence generator is employed to segment the time series into over-
lapping windows comprising a back horizon (historical input) and a prediction horizon
(target output). This is done both for the target variable alone and for sequences that
include both the target and exogenous features. Any sequences containing missing values
are discarded to ensure data integrity.

5.1.1 SimGlucose

The SimGlucose dataset is generated using the FDA-approved UVA/PADOVA type 1
diabetes simulator [Xiel8|, a Python-based tool that models the physiological responses
of individuals with type 1 diabetes. The simulator includes 30 virtual patients, comprising
of 10 adults, 10 adolescents, and 10 children and produces continuous glucose monitoring
(CGM) measurements along with insulin dosages and carbohydrate intake events. The
dataset is generated with a predefined CGM sampling frequency and insulin pump settings
based on the algorithm developed in [DMML*14]. For this study, simulated data was
generated for ten adult patients over a one-week period. The blood glucose levels serve
as the primary target variable, while the insulin dosage and carbohydrate intake are
used as exogenous variables influencing the glucose levels. After generation, the data
undergoes preprocessing steps as described above to prepare it for the forecasting and
counterfactual generation. An example of the generated data is shown in Figure 2. In this
example, BG denotes blood glucose levels, CHO indicates carbohydrate intake, and Insulin
reflects the administered dosage. The risk index illustrates periods of hyperglycaemic
or hypoglycaemic risk. The green band in the blood glucose trace highlights the target
glucose range (70-180 mg/dL), while red regions denote values that fall outside this range,
corresponding to hypo- or hyperglycaemia.
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Figure 2: Simulation of an adult patient over the span of one week.

5.1.2 OhioT1DM:

The OhioT1DM dataset [MB20] contains real-world glucose monitoring data collected
from 12 individuals with type 1 diabetes over an eight-week period by Ohio University.
Following prior research [CHNT21|, [WSMP24|, we extracted the most clinically relevant
features for forecasting: continuous glucose monitoring (CGM) measurements, basal in-
sulin, bolus insulin, carbohydrate intake, and physical activity. Compared to the SimGlu-
cose dataset, OhioT1DM includes a more varied set of exogenous variables, particularly
basal and bolus insulin administration, dietary intake, and physical activity data. As a
real-world dataset, it presents additional challenges such as missing values and irregular
sampling intervals. These are addressed using interpolation and resampling techniques
to ensure consistency in the input sequences. The inclusion of diverse exogenous vari-
ables enables the development of more nuanced counterfactual interventions and supports
improved forecasting performance. Figure 3 illustrates a 24-hour time window for one
patient, showing the temporal relationship between glucose levels, insulin administration,
and carbohydrate consumption. The blue dotted line represents CGM-based blood glu-
cose levels, while the black line represents the basal insulin, reflecting its slow-acting,
sustained delivery throughout the day. Orange dots indicate the amount of bolus insulin,
while small blue boxes indicate meals. Spikes in blood glucose often correspond to meal
times (carbohydrate intake), followed by bolus insulin doses that aim to bring glucose back
into the target range. This visualisation exemplifies the complex dynamics and temporal
dependencies that the model must capture to enable accurate and personalised glucose
forecasting.
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Figure 3: 24-hour measurements of one patient from the OhioT1DM Viewer [MB20].

5.1.3 MIMIC-IV:

The proposed model aims to generalise beyond diabetes forecasting to other medical appli-
cations, such as predicting disease progression in HFpEF patients. The MIMIC-IV dataset
[JBS*23] contains de-identified electronic health records (EHRs) of ICU patients, includ-
ing vital signs (heart rate, blood pressure, oxygen saturation, etc.), medication records,
and laboratory results. For this study, a subset of MIMIC-IV focusing on cardiovascular
patients is used. The target variable, mortality risk, was divided into two groups: death
within 30 days and death within one year. The exogenous variables include vital signs
and laboratory values, while sex and comorbidities are used to split the data into multiple
cohorts. By analysing the data in different cohorts, it is possible to get more specific and
accurate counterfactual interventions.

5.1.3.1 Preprocessing

Following a preceding study [SBA*24], the International Classification of Diseases (ICD)
codes were used for the initial preprocessing. The ICD-codes are a standardised interna-
tional classification system used for the categorisation and encoding of diseases, symptoms,
and associated health-related conditions. By using the appropriate ICD-9 and ICD-10
codes, as outlined in Table 1, the hospital admissions involving patients aged > 18 with
HFpEF as a primary diagnosis have been identified. Given that the diagnosis was based on
ICD codes, the clinical notes were analysed in order to validate the selection of patients.
This was achieved through filtering the clinical notes on mentions of the left ventricular
ejection fraction (LVEF) value, with a value of 50 and above being counted as a normal
LVEF value. Some clinical notes only mentioned a normal or preserved LVEF value with
out a measured LVEF. These were also counted as normal LVEF values. Table 1 also
shows the number of hospital admissions per diagnosis. The study sample consisted of
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16122 individual hospitalisations with a suspected diagnosis of HFpEF. We had access to
clinical notes for 11720 (72.7%) hospital admissions of which 4458 (38%) had an LVEF
measurement reported. Of these, 3798 (85.2%) had an LVEF value > 50%, and 400 (9%)
had an LVEF < 50%. An additional 260 (5.8%) admissions had mention of a normal
or preserved LVEF. For these 4058 admissions, vital signs and laboratory values were
available for 2432 (60%). It should be noted that in this instance, only the most recent
admission of a patient who had previously been admitted with a similar diagnosis was
taken into consideration. Prior admissions were incorporated into the analysis as a co-
morbidity, and after adding all laboratory values, vital signs and comorbidities, resulting
in 2113 hospital admissions of 1845 unique patients.

Diagnosis ICD Code Frequency
Unspecified diastolic (congestive) heart failure 15030 38
Diastolic heart failure, unspecified 42830 69
Acute diastolic (congestive) heart failure 15031 84
Acute diastolic heart failure 42381 180
Chronic diastolic (congestive) heart failure 15032 256
Chronic diastolic heart failure 42382 453
Acute on chronic diastolic (congestive) heart failure 15033 426
Acute on chronic diastolic heart failure 42833 623

Table 1: The corresponding Diagnosis and ICD-9 and ICD-10 codes for Heart Failure with
preserved Ejection Fraction.

The extracted features are listed in table 2, split into four categories. These are the
targets (Death within 30 days, Death within 1 year) as well as vital signs and laboratory
values, comorbidities, and sex of the patients. Prior admission was included in the list
of comorbidities, since it is here used as a comorbidity for the clustering and not the
forecasting.
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Feature types Specifics Occurrences

Targets
Death within 30 days 136
Death within 1 year 150
Vital signs and laboratory values
BMI 1845
Heart Rate 1845
SpO2 1845
Diastolic BP 1837
Systolic BP 1837
Temperature 1829
Creatinine 1825
Sodium 1825
Bicarbonate 1823
Hemoglobin 1814
WBC Count 1814
Platelet Count 1812
Troponin 958
NT-proBNP 76
Comorbidities
Diabetes 798
RD 768
Coronary Artery Disease 761
COPD 658
Hypertension 599
PVD 577
Atrial Fibrillation 424
AMI 230
CEVD 218
Prior Admission 188
Pulmonary Hypertension 170
Diabetes + Complications 156
Dementia 75
Cancer 65
Metastatic Cancer 50
Rheumatoid Disease 50
Mild LD 46
PUD 40
Moderate/Severe LD 30
HP/PAPL 27
Sex
Male 773
Female 1072

Table 2: All features of the MIMIC data divided by feature types: target, vital signs and
laboratory values, comorbidities, and sex.
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5.1.3.2 Clustering

The MIMIC data does not only include a wide range of features, but also a great number
of comorbidities. Since these comorbidities can influence the chances of HFpEF, it is
important to include these in the analysis. In this study, the comorbidities were used
to cluster the patients, to get more specific counterfactuals. For this, the data was split
according to patients having similar comorbidities to get factual cohorts. Another split was
made by dividing the data on sex, since HFpEF is more prevalent in female patients and
might need different treatment. Figure 4 shows the prevalence of different comorbidities
of the MIMIC patients in the clusters, divided into four sub figures depending on the
clustering coefficient and the sex.
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Figure 4: Prevalence of different comorbidities of the MIMIC patients in the clusters.
There are 4 subgroups, clustering by comorbidity with £ = 4, clustering by comorbidity
with k& = 6, clustering only the female patients with & = 4 and clustering only the male
patients with & = 4.
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Figure 5 shows the Principal Component Analysis (PCA) of the different comorbidities,
again divided into the same subgroups.
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Figure 5: Principal component analysis (PCA) clustering of different comorbidities of the
MIMIC patients. There are 4 subgroups, clustering by comorbidity with & = 4, clustering
by comorbidity with k& = 6, clustering only the female patients with £ = 4 and clustering

only the male patients with k = 4.
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Table 3 shows the prevalence of the different comorbidities of the four general clusters,
that were later used for the prediction task.

Comorbidity Cluster 0 Cluster 1 Cluster 2 Cluster 3
COPD 37.0 31.3 36.9 35.9
Atrial Fibrillation 35.3 24.9 12.1 23.0
Coronary Artery Disease 31.7 43.5 40.6 50.7
Diabetes 30.0 0.0 374 100.0
PVD 27.0 34.5 28.5 37.1
Pulmonary Hypertension 13.4 10.4 5.2 9.2
CEVD 12.1 9.9 12.6 12.0
AMI 10.0 11.3 10.2 19.1
Prior Admission 8.5 11.3 7.9 14.3
Dementia 5.1 3.8 3.2 4.4
Metastatic Cancer 4.0 4.6 1.5 1.4
Moderate/Severe LD 3.6 14 0.2 1.6
Mild LD 3.2 2.6 1.0 3.7
Rheumatoid Disease 3.2 1.2 3.4 2.5
Cancer 3.0 4.1 4.0 3.0
HP /PAPL 2.1 0.6 1.3 1.6
Diabetes + Complications 1.7 0.0 1.0 32.7
PUD 1.1 3.8 1.7 2.8
RD 0.0 100.0 0.0 97.5
Hypertension 0.0 0.9 100.0 0.0

Table 3: Prevalence of Comorbidities by Cluster in %

5.2 Experiments

The model is split into two main parts, the forecasting and the counterfactual generation.
Initially a multivariate forecasting model is used to make a first forecast for both the target
variable and the exogenous variables. This forecast is then used for the second part, where
different regression models are used to change the exogenous and target variable to get
the desired outcome. For the multivariate forecasting we used GRU and N-BEATS and
for the counterfactual generation we used four different kinds of models, like a statistical

(SARIMAX), a regression based (OLS), and two different deep learning based (GRU and
N-BEATS) models.

5.2.1 Multivariate Forecasting

For the multivariate forecasting task, two deep learning architectures were implemented
and evaluated: (1) a 2-layer Gated Recurrent Unit (GRU) model, and (2) a 4-layer Neural
Basis Expansion Analysis for Time Series (N-BEATS) model. The GRU model consisted
of two stacked layers, each comprising 200 hidden units, followed by a linear output layer
to produce the forecast. The N-BEATS model was configured with four fully connected
layers, integrating both backcast and forecast blocks, and concluded with a linear output
head to reconstruct future values. This design allows the model to capture both short-term
patterns and longer-range temporal dependencies effectively. For the application of the
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method to the HFpEF data, a multi-head approach was used, since the target is binary,
while the exogenous data is continuous. By training the target with a sigmoid layer and
the exogenous data with a linear layer, the model was able to work with this kind of data
as well.

To prevent overfitting, early stopping was employed in both architectures with a patience
of 10 epochs to ensure enough passes through the training data, and a fixed learning rate
of 0.001 was used for training. The models were trained on varying back horizons and
forecast horizons, allowing a thorough investigation of how different historical contexts
influenced future prediction accuracy. For the back horizon, 24 timesteps and 12 timesteps
were chosen for the OhioT1DM data, which correspond to 2 hours or 1 hour respectively,
with 6 timesteps being a prediction window of 30 minutes. For the SimGlucose dataset, a
similar prediction window was chosen, with 40 timesteps being 2 hours, and the forecasting
window of 5 timesteps also representing 30 minutes. The HFpEF data from the MIMIC-IV
dataset, was restricted to a 24-hour window, to allow for a magnitude of vital signs and
laboratory data. In this window a back horizon of 12 hours was chosen with a horizon of
6 hours.

Model performance was evaluated using two standard error metrics: symmetric Mean Ab-
solute Percentage Error (sMAPE) and Root Mean Squared Error (RMSE). These met-
rics were selected to balance sensitivity to outliers (RMSE) with scale-invariant accuracy
(sMAPE), ensuring a robust evaluation of predictive performance. Lower values for both
metrics indicated better forecasting quality. Model performance was assessed using four
complementary metrics: Symmetric Mean Absolute Percentage Error (sMAPE), Root
Mean Squared Error (RMSE), Accuracy, and F1 Score.

e Symmetric Mean Absolute Percentage Error (sMAPE): sMAPE measures the rel-
ative accuracy of forecasts by comparing the absolute difference between predicted
and actual values to their average magnitude. It is scale-invariant, making it suitable
for comparing performance across different ranges. Lower sMAPE values indicate
higher predictive accuracy.

e Root Mean Squared Error (RMSE): RMSE quantifies the square root of the average
squared differences between predicted and actual values. It is sensitive to large errors
(outliers) and provides insight into the magnitude of typical prediction errors. Lower
RMSE values reflect better model performance.

e Accuracy: Accuracy represents the proportion of correctly predicted instances (both
positives and negatives) out of all predictions. It provides a straightforward measure
of overall model correctness, particularly relevant in binary classification tasks.

e 1 Score: The F1 score is the harmonic mean of precision and recall. It balances the
trade-off between false positives and false negatives, offering a robust evaluation for
imbalanced classification scenarios. A higher F1 score indicates better balance and
reliability in predicting the positive class.

These four metrics were chosen to provide a comprehensive evaluation framework. To as-
sess the continuos forecasting performance as necessary for the OhioT1DM and SimGlu-
cose datasets, sSMAPE and RMSE are used. Accuracy and F1 Score specifically evaluate
classification performance, particularly important for binary outcomes as found in the
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MIMIC dataset. In all cases, lower sSMAPE and RMSE values, along with higher Accu-
racy and F'1 scores, indicate better model quality.

After thorough evaluation across multiple configurations, the model with the lowest aver-
age error on all validation sets was selected as the baseline for subsequent counterfactual
analysis. This selection ensured that counterfactual explanations were derived from the
most reliable and accurate forecasting model available.

5.2.2 Counterfactual Generation

To evaluate our counterfactual generation approach, we conducted experiments on two
clinical prediction tasks: glycaemic forecasting for type 1 diabetes and survival prediction
for Heart Failure with Preserved Ejection Fraction (HFpEF).

The models used for the counterfactual generation span both traditional statistical meth-
ods and deep learning architectures, such as SARIMAX, OLS, GRU, and N-BEATS. Each
model was adapted to support input optimisation using either gradient-based backprop-
agation (for GRU and N-BEATS) or finite-difference approximation (for SARIMAX and
OLS).

5.2.2.1 SARIMAX

We used the Seasonal Autoregressive Integrated Moving Average with Exogenous Vari-
ables (SARIMAX) [SAR]| model to capture seasonal patterns and time dependencies in
glucose data, while including outside factors like insulin doses and carb intake. For each
data sample, we fit a SARIMAX with autoregressive order p = 1, differencing degree
d = 0, and moving average order ¢ = 0 using maximum likelihood estimation via the
statsmodels library. When generating counterfactuals, we adjusted input exogenous vari-
ables iteratively to keep the predicted glucose within set bounds or push the mortality
target towards survival. We calculated gradients approximately using finite differences
on the forecast function of the fitted model. To make changes more realistic, we applied
custom weighting for the glucose prediction focused on meal-related features during opti-
misation.

5.2.2.2 OLS

We also applied Ordinary Least Squares (OLS) [OLS] regression similarly to SARIMAX,
modeling the linear relationship between lagged inputs (including interaction terms like
insulin and carbs) and glucose levels. Each sample had its own OLS model. Counterfactual
optimisation followed the same process as SARIMAX, by using finite difference gradients
to guide input changes, constrained by feature-specific limits and for glucose prediction
weighted towards meal-related inputs to keep the results physiologically plausible.

5.2.2.3 GRU

The Gated Recurrent Unit (GRU) [GRU]| model had two recurrent layers with 100 units
each, followed by a dense layer outputting predictions. It was trained on multiple input
signals like carbs, insulin, and physical activity, with dropout of 0.2 to avoid overfitting.
Training used the Adam optimizer with a learning rate of 0.001, and early stopping
based on validation loss. For counterfactuals, gradient perturbation to get exact gradients
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of outputs with respect to inputs. This allowed efficient gradient-based optimisation of
input features under clipping limits and with custom weighting focused on meal times.
We stopped the optimisation once predicted glucose stayed within desired ranges or after
a max number of steps.

5.2.2.4 N-BEATS

N-BEATS |[N-B] is a model that can explicitly incorporate external inputs like carbs, in-
sulin, and activity into its trend and seasonal components. It used fully connected residual
blocks with 128 hidden units and was trained to minimise mean absolute error. Train-
ing used the Adam optimizer with a 0.001 learning rate. Like the GRU, counterfactual
generation was done with gradient-based optimisation, constrained by clipping and for
glucose prediction guided by meal-focused weighting. This allowed the model to capture
complex non-linear patterns while making it easier to interpret how exogenous inputs
affect predictions during counterfactual analysis.

5.2.2.5 Parameters for the Diabetes Data (OhioT1DM, SimGlucose)

For the diabetes datasets, test samples were split into subgroups based on predicted
glucose levels over a 30-minute forecast horizon:

e Hyperglycemia group: samples with any predicted value y,,; > 180 mg/dL.
e Hypoglycemia group: samples with any predicted value y, ; < 70 mg/dL.

For each group, we randomly selected 100 test samples for counterfactual generation. The
same process was repeated across datasets with dataset-specific bounds: for SimGlucose,
we used [80, 160] mg/dL, since it is an artificial dataset; for OhioT1DM, [70, 180] mg/dL.

5.2.2.6 Parameters for the HFpEF Survival Prediction

In the HFpEF dataset, binary predictions over a 24-step horizon were used to classify
samples as high-risk (non-survival) if more than 50% of the time steps predicted a non-
survival event (label 1). Due to limited availability of non-survival cases, it was not possible
to select 100 samples from each group. Instead, samples were selected as follows:

e Non-survival group: Zzzl Yoti = %, all available samples meeting this criterion were
included.

e Survival group: 22:1 Vori < %, randomly selected, for 100 samples in total.

5.2.2.7 Counterfactual Generation Procedure

We followed a consistent three-step pipeline:

e Bound Generation: For continuous targets (OhioT1DM and SimGlucose), we con-
structed soft upper and lower bounds using a polynomial interpolation function
transitioning from the current forecast to a desired safe target over a fixed number
of time steps (S = 24 for OhioT1DM, S = 20 for SimGlucose). For HFpEF, since
the target is binary, no such bounds were generated.
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e Optimisation: Exogenous inputs (for example carbohydrate intake, insulin dose,
clinical variables) were perturbed to minimise a custom loss function. For the differ-
entiable models (GRU, N-BEATS), gradients were obtained via backpropagation.
For non-differentiable models (SARIMAX, OLS), finite-difference approximations
were used. For HFpEF, optimisation aimed to flip the predicted class while min-
imising input changes, without any bound constraints.

e Loss: The loss balanced moving predictions toward the target class or within bounds
for continuous targets and minimising the magnitude of input perturbations, where
feature-specific weights emphasised intervention-relevant variables (for example in-
sulin, carbohydrates for glucose, and clinical features for HFpEF) to encourage re-
alistic and meaningful counterfactuals.

All inputs and targets were scaled using per-patient normalisers to preserve physiological
interpretability. Historical context, such as meal history, past glucose trends, was retained
to ensure the counterfactuals remained plausible within each individual’s recent clinical
trajectory.

5.3 FEvaluation Metrics

To evaluate the quality of the counterfactual interventions, multiple evaluation metrics
were implemented. First, traditional forecasting performance was measured using Root
Mean Squared Error (RMSE) and Symmetric Mean Absolute Percentage Error (sMAPE),
giving a quantitative assessment of prediction accuracy across the forecast horizon for the
diabetes data. For the HFpEF data, Accuracy and F1 score was used, to work with the
binary target data. For the evaluation of the generated counterfactuals, several additional
metrics were introduced. These have been applied to ensure that the newly generated
data for the exogenous variables is realistic, plausible and applicable.

5.3.1 Magnitude and Sparsity of Exogenous Variable Changes

The average value of change calculates the mean absolute difference between original and
counterfactual exogenous variables, averaged over all samples, time steps, and features.
It reflects the overall magnitude of adjustments required. By determining the proportion
of exogenous input entries that underwent modification, we assess the sparsity of the
intervention, providing insight into whether changes are targeted or widespread across
the input profile.

5.3.2 Severity of Change

The severity metric measures changes normalised by the original variability of each ex-
ogenous feature, enabling assessment of whether modifications are within a physiologi-
cally reasonable range. For this, we employ Local Outlier Factor (LOF) scores to identify
whether the counterfactual exogenous profiles exhibit atypical or extreme deviations from
the original data distribution, highlighting potential concerns about the realism of the
suggested interventions.
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5.3.3 Fitting of Predictions within Bounds

The extent to which counterfactual blood glucose predictions fall within the desired range
is quantified by the percentage of time points inside the bounds and the root mean squared
error (RMSE) of any violations outside these limits. This metric directly evaluates the
success of the optimisation in achieving clinically safe target blood glucose levels.

5.3.4 Comparison to Healthy Exogenous Profiles

To ensure biological and clinical plausibility, the optimised exogenous variables are com-
pared against reference exogenous profiles derived from healthy patient data. Both raw
and normalised Euclidean distances, as well as cosine similarity metrics, quantify the
alignment of counterfactual inputs with typical healthy patterns, supporting qualitative
evaluation of intervention realism.

5.3.5 Interpretation

This multi-faceted evaluation framework provides a detailed and nuanced understanding
of how effectively the optimisation generates actionable and safe counterfactual interven-
tions. The ideal outcomes achieve a careful balance between several important, sometimes
competing, goals. First, they bring predicted blood glucose levels within the desired tar-
get range without causing the forecasts to deviate excessively from the original values,
ensuring the adjustments remain realistic and consistent with the patient’s typical glucose
patterns. At the same time, the changes to exogenous variables, such as insulin dosages or
carbohydrate intake, are kept as small and infrequent as possible, since large or frequent
modifications might be impractical or even unsafe in real-world settings. Additionally,
the interventions maintain physiological plausibility by limiting the intensity of changes
and avoiding outlier values that could indicate unrealistic or extreme behaviours. Clini-
cal safety is also prioritised by strictly enforcing blood glucose predictions to stay within
safe bounds, reducing the risk of hypo- or hyperglycaemia. Finally, the adjusted exoge-
nous inputs are aligned closely with patterns observed in healthy patients, making the
suggested interventions not only effective but also clinically meaningful and believable.
By assessing performance across all these dimensions, this evaluation approach highlights
both the strengths and limitations of the counterfactual generation process, guiding future
improvements and enhancing its practical value in diabetes management.
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6 Results

6.1 Multivariate Forecasting

To evaluate the performance of the multivariate forecasting and to ensure a realistic ba-
sis for counterfactual generation, both the GRU and the N-BEATS models were tested
across multiple datasets and forecasting configurations. Models were trained on historical
segments of the data and evaluated on subsequent future segments, allowing for a ro-
bust comparison between predicted and actual values. The forecasting quality for the two
diabetes datasets was assessed using two standard metrics: Symmetric Mean Absolute
Percentage Error (sMAPE) and Root Mean Squared Error (RMSE). sMAPE was chosen
due to its scale-invariant properties, allowing for fair comparison across variables with
different magnitudes. RMSE was included to capture sensitivity to larger errors, penal-
ising substantial deviations between predictions and true values. Together, these metrics
provide a balanced view of model performance, addressing both relative and absolute er-
ror considerations. For the MIMIC-IV dataset, which involves binary survival prediction
(death vs. survival), classification metrics were more appropriate given the nature of the
target variable. Specifically, Accuracy and F1-Score were employed. Accuracy provides
a general measure of how often the model’s predictions match the true outcomes. How-
ever, due to the severe class imbalance in the MIMIC-IV dataset, where death events are
comparatively rare, F1-Score was also reported to better capture the trade-off between
precision and recall for the minority class. This combination of metrics ensures both the
overall predictive reliability and the ability to identify critical but infrequent events are
adequately evaluated.

Dataset Back Horizon Horizon Model sMAPE RMSE
OhioT1DM 12 6 GRU 6.2816  14.8471
N-BEATS 6.0328 14.1500

24 6 GRU 6.1983  14.6856
N-BEATS 5.8003 13.7677

SimGlucose 20 5 GRU 0.3792 1.6770
N-BEATS 0.3867 0.8271

40 10 GRU 1.5423  5.5572

N-BEATS 1.4303 3.0461

Table 4: Multivariate forecasting training metrics.

Table 4 summarises the results across the two diabetes datasets, prediction horizons, and
back horizons, the results for the HFpEF dataset can be found in section 6.1.3. For the
OhioT1DM dataset, N-BEATS consistently outperformed the GRU model in both sMAPE
and RMSE across all configurations. Notably, with a back horizon of 12 and a forecast
horizon of 6, N-BEATS achieved a sMAPE of 6.03 compared to GRU’s 6.28, and a lower
RMSE of 14.15 versus 14.85 for GRU. The same pattern was observed for back horizon
6 and 24, with N-BEATS slightly outperforming GRU in all cases. For the SimGlucose
dataset, N-BEATS again generally showed improved forecasting performance. While GRU
slightly outperformed N-BEATS in sMAPE for the 20-step back, 5-step horizon config-
uration (0.3792 vs. 0.3867), N-BEATS achieved a substantially lower RMSE (0.8271 vs.
1.6770), indicating more accurate absolute predictions. This performance gap widened in
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the 40-back, 10-horizon configuration, where N-BEATS clearly surpassed GRU on both
metrics.

Overall, these results demonstrate that the N-BEATS model generally offers superior per-
formance across datasets and configurations, especially in terms of RMSE, making it a
strong candidate for generating accurate multivariate forecasts and serving as a foundation
for counterfactual analysis.

To complement the quantitative evaluation of the multivariate forecasting models, several
visualisations were created to illustrate how well the N-BEATS and GRU models predict
future values compared to actual ones. Figure 6 and 7 compare the predicted time series
against the true values for randomly selected test samples from the datasets. Each subplot
presents a single test sample, with time steps on the x-axis and the corresponding variable
value on the y-axis. The actual values are shown in blue, while the predicted values are
shown in orange. These plots offer a qualitative insight into the temporal alignment and
amplitude accuracy of the forecasts, beyond what is captured by metrics like sSMAPE or
RMSE.

6.1.1 SimGlucose

For a back horizon of 40 timesteps and a horizon of 10 timesteps, the forecast horizon
is increased, making the prediction task more difficult. Figure 6 shows the N-BEATS
model’s ability to handle long-range dependencies. Although small prediction lags and
amplitude mismatches occur, the model captures the overall progression well, preserving
directionality in most sequences. When looking at the GRU predictions under the same
setup, the model struggles a bit more with extended forecasts, often showing divergence
from actual trajectories, particularly toward the final time steps. These deviations are
consistent with the slightly higher RMSE reported for this configuration. The results
for the back horizon of 20 timesteps and horizon of 5 timesteps are quite similar, the
corresponding figure can be found in Appendix A.

(a) Results of the multivariate forecasting using (b) Results of the multivariate forecasting using

GRU. N-BEATS.

Figure 6: Results of the multivariate forecasting for the SimGlucose dataset with back
horizon = 40 and forecast horizon = 10, showing the accuracy of the forecasting.
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6.1.2 OhioT1DM

Figure 7 depicts the performance of N-BEATS and GRU, with a back horizon of 24
timesteps and 6 future timesteps, The figure illustrates that N-BEATS maintains robust
trend prediction, with only modest lag or dampening effects in some samples. The model
adapts well to both upward and downward trajectories. The GRU model performs more
variably under this longer back horizon. While the general trajectory is still often captured,
the forecasts occasionally overreact or smooth out variations, resulting in lower precision
at the end of the forecast horizon.
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(a) Results of the multivariate forecasting using (b) Results of the multivariate forecasting using
GRU. N-BEATS.

Figure 7: Results of the multivariate forecasting for the OhioT1DM dataset with back
horizon = 24 and forecast horizon = 6, showing the accuracy of the forecasting.

6.1.3 MIMIC-IV

We evaluated the classification performance of GRU and N-BEATS models on the MIMIC-
IV dataset, focusing on female patients with heart failure with preserved ejection fraction
(HFpEF). Class-wise metrics for both 30-day and 1-year mortality prediction tasks are
shown in Table 27.

While both models achieved high overall accuracy, over 91% for 30-day and 90% for 1-
year predictions, they failed to correctly identify any instances of the non-survival class.
Precision, recall, and F1-score for this minority class were 0.00 across all settings. This
indicates a strong bias toward the majority survival class, likely due to class imbalance.
These results highlight a key limitation, where high overall accuracy does not reflect clini-
cally meaningful performance when models systematically miss rare but critical outcomes.
Alternative strategies, such as resampling, class weighting, or specialized loss functions,
may be needed to improve minority class detection in imbalanced clinical datasets.
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Model Target Class Precision Recall F1-Score

GRU 30 days Survived 0.94 1.00 0.97
Died 0.00 0.00 0.00
Overall Accuracy 0.9414
1 year Survived 0.94 1.00 0.97
Died 0.00 0.00 0.00
Overall Accuracy 0.9369
N-BEATS 30 days Survived 0.94 1.00 0.97
Died 0.00 0.00 0.00
Overall Accuracy 0.9398
1 year Survived 0.94 1.00 0.97
Died 0.00 0.00 0.00
Overall Accuracy 0.9362

Table 5: Classification Metrics for GRU and N-BEATS Models for Female Patients

Figure 8 illustrates the predicted 30-day mortality over time using a back horizon of
12 timesteps and a forecast window of 6. Both GRU and N-BEATS show a strong bias
toward the majority (survival) class. Even when true labels are death, the model outputs
remain consistently zero (survival), indicating a lack of sensitivity to the non-survival class.
Predictions are largely flat across timesteps and do not adapt to actual class transitions,
further showing how the model does not react properly to critical events.

This behaviour confirms the impact of class imbalance: although accuracy appears to be
high, the models do not perform well in identifying patients at risk of mortality, which is
precisely the group where accurate predictions matter most.
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(a) Results of the multivariate forecasting using (b) Results of the multivariate forecasting using
GRU. N-BEATS.

Figure 8: Results of the multivariate forecasting for the MIMIC-IV dataset with 30-day
mortality as target variable, back horizon = 12, and forecast horizon = 6, showing the
accuracy of the forecasting.

Across all clusters and subgroups, the results were quite similar, with the N-BEATS model
usually outperforming the GRU model. The complete results can be found in Appendix
B.
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6.2 Counterfactuals

6.2.1 OhioT1DM

We evaluated the performance of four models, (GRU, SARIMAX, OLS, and N-BEATS) for
generating counterfactuals, using a comprehensive set of metrics encompassing predictive
accuracy, constraint adherence, and intervention efficiency. The results can be found in
Table 6.

Metric GRU SARIMAX OLS N-BEATS
Forecast Accuracy

MAE 50.67 111.25 116.61 52.41
RMSE 50.94 111.48 116.85 56.39
Max Deviation 203.47 812.03 797.12 234.97
MAPE (%) 53.35 116.53 123.57 40.65
Constraint Adherence

In-Bound (%) 43.5 2.7 5.7 0.8
Mean Violation 5.59 R7.42 86.26 80.60

Total Violation Area 2944.51 52421.28 01689.86  48170.33

Intervention Cost (Mean % Change)

Basal Insulin 6.3 211.7 200.5 16.7
Bolus Insulin 6.2 210.9 199.6 14.3
Carbohydrates 5.8 211.8 200.5 15.0
Exercise Intensity 6.3 210.7 199.4 15.4

Table 6: Comparison of the Counterfactual Generation Methods across Evaluation Metrics

Regarding forecasting accuracy, GRU achieved the best performance in terms of Mean Ab-
solute Error (MAE = 50.67), Root Mean Squared Error (RMSE = 50.94), and maximum
deviation (203.47), indicating its strength in both average and extreme prediction errors.
N-BEATS, while slightly behind in MAE and RMSE, achieved the lowest Mean Abso-
lute Percentage Error (MAPE = 40.65), suggesting better relative error control compared
to the others. SARIMAX and OLS performed similarly and worse than both GRU and
N-BEATS across all accuracy metrics, with SARIMAX showing particularly high errors
(MAE = 111.25, RMSE = 111.48, MAPE = 116.53). To assess the feasibility and domain
realism of the counterfactuals, we examined constraint adherence metrics, including the
proportion of predictions remaining within bounds, mean violation, and total violation
area. GRU again outperformed all other models, with the highest in-bound percentage
(43.5%) and the lowest mean violation (5.59) and total violation area (2944.51), indicat-
ing superior constraint compliance. In contrast, N-BEATS had the poorest performance
in this regard, with only 0.8% of predictions within bounds and a total violation area
of 48170.33. SARIMAX and OLS showed slightly better adherence than N-BEATS but
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were still significantly worse than GRU. We further evaluated the intervention cost by
measuring the mean percentage change required in key input variables. GRU required the
smallest changes across all intervention variables (ranging from 5.8% to 6.3%), highlighting
its ability to generate realistic and efficient counterfactuals. N-BEATS incurred moder-
ate intervention costs (14.3%-16.7%), whereas SARIMAX and OLS demanded excessive
changes (approximately 200%-211%), rendering their counterfactuals largely impractical
for real-world application. In summary, GRU achieved the best balance across predictive
accuracy, constraint adherence, and minimal intervention, making it the most suitable
model for counterfactual generation in this setting. While N-BEATS demonstrated rela-
tively strong predictive performance, its poor constraint adherence and higher intervention
costs limit its applicability. SARIMAX and OLS consistently underperformed across all
evaluated dimensions.

Figure 9 and 10 present an example of generated counterfactuals for the OhioT1DM
dataset. They show a short sequence of 6 timesteps where the predicted blood glucose
level is approximately 140 mg/dL, which is higher than the very low original range of 80
to 85 mg/dL. This new blood glucose level falls within the predefined desired bounds,
indicating a plausible improvement. Notably, the generated exogenous variables, such as
insulin doses, carbohydrate intake, and exercise intensity, differ considerably from the orig-
inal values. These differences suggest actionable changes that may help achieve improved
glycaemic control.

Target Variable 1 (e.g., Blood Glucose Level)

140 4
130 4
120 - —— Original Target

Predicted Target
110 4 Desired Range

Value

100

90 1

Time Step

Figure 9: Example of the target generated using GRU for the OhioT1DM dataset. Top:
Blood glucose levels for the original and counterfactual samples (original in blue, coun-
terfactual in yellow, bounds in green).
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Figure 10: Example of the counterfactuals generated using GRU for the OhioT1DM
dataset. Comparison of exogenous variables (original in blue, counterfactual in yellow).

6.2.2 SimGlucose

Table 7 presents a comparison of the four counterfactual generation methods, GRU, SARI-
MAX, OLS, and N-BEATS, evaluated for forecast accuracy, and constraint adherence.
Among all models, SARIMAX consistently achieved the best predictive performance
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across all accuracy metrics. It obtained the lowest Mean Absolute Error (MAE) of 3.33
and Root Mean Squared Error (RMSE) of 3.58, significantly outperforming the next best
model. Additionally, SARIMAX had the lowest Maximum Deviation (15.36) and Mean
Absolute Percentage Error (MAPE) at just 2.98%. In contrast, the OLS and N-BEATS
models showed substantially higher errors, with MAEs above 68 and MAPEs exceeding
50%, suggesting poor forecasting fidelity. The GRU model showed moderate performance
with an MAE of 29.15 and MAPE of 28.19%. Constraint adherence was generally poor
across all models, with none achieving substantial in-bound prediction rates. SARIMAX
achieved a minimal in-bound percentage of 0.8%, while all other models had 0.0%. De-
spite this, GRU had a relatively lower mean violation (31.80) compared to SARIMAX
(44.30), though SARIMAX yielded the highest total violation area (44,266.23), suggest-
ing widespread deviations from desired bounds. N-BEATS demonstrated the lowest total
violation area (17,257.68), indicating it may produce more conservative but consistently
bounded outputs, despite its poor accuracy. Overall, SARIMAX stands out in terms of
forecast accuracy, but its high constraint violations leads to the assumption that the
counterfactuals are not realistic. GRU provides a more balanced trade-off between mod-
erate accuracy and moderate constraint violations, while OLS underperforms in both
dimensions. N-BEATS offers conservative outputs with smaller violations but lacks the
predictive precision required for reliable counterfactual generation.

Metric GRU SARIMAX OLS N-BEATS
Forecast Accuracy

MAE 29.15 3.33 72.12 68.47
RMSE 29.39 3.58 72.15 68.72
Max Deviation 76.91 15.36 129.43 134.68
MAPE (%) 28.19 2.98 57.65 54.25
Constraint Adherence

In-Bound (%) 0.0% 0.8% 0.0% 0.0%
Mean Violation 31.80 44.30 21.09 17.26

Total Violation Area 31796.35 44266.23 21091.24 17257.68

Table 7: Comparison of Counterfactual Generation Methods Across Evaluation Metrics

Figure 11 presents the results of counterfactual forecasting for the SimGlucose dataset
using a GRU-based multivariate forecasting model. The aim was to identify alternative
exogenous variable trajectories, specifically carbohydrate intake and insulin administra-
tion, that lead to improved blood glucose levels within a clinically desirable range. The
figure shows that the model made quite drastic changes to the exogenous variables, while
the predicted target is not within the bounds, but closer than it originally was. Both
counterfactuals for carbohydrate intake and insulin administration are noticeably reduced
compared to the original values. These reductions can also be found in the blood glucose
levels, which suggests that the model does identify the cohesion between the exogenous
variables and the target.
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Overall, these results demonstrate that the model has difficulties working with the more
streamlined and artificial SimGlucose data. Additionally the data only includes two ex-
ogenous variables, which could lead to there not being enough variance in the data, as
well as the influence of the exogenous data on the target not being measurable or clear
enough.

Target Variable 1 (e.g., Blood Glucose Level)

160

140 4
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Figure 11: Example of the counterfactuals generated for the SimGlucose dataset, with
the blood glucose level closer to the desired bounds, as well as the different exogenous
variables, with the original values in blue and the predicted in yellow.

6.2.3 MIMIC-IV

To evaluate how well our model can generate counterfactuals for clinical time series data,
we tested several modelling approaches on the MIMIC-IV dataset, focusing specifically
on patients with heart failure with preserved ejection fraction (HFpEF). The goal was
to create realistic counterfactuals that shift a patient’s predicted outcome from death to
survival (binary target = 0), by making minimal and interpretable changes to exogenous
clinical variables.

Table 8 presents the results for female HFpEF patients, while Table 9 summarizes out-
comes for male patients. All models were able to successfully shift a number of predicted
outcomes from death to survival without erroneously flipping any survival predictions to
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death. In the female cohort, all four models converted 14 predictions to survival. How-
ever, GRU and N-BEATS showed higher target prediction deviations (MAE and RMSE)
compared to SARIMAX and OLS, which had nearly negligible deviations. GRU exhibited
the most substantial changes in clinical variables, with several features, such as Heart
Rate, Haemoglobin, and WBC count, modified by over 250%, showing a lack of real-
ism. N-BEATS also made sizeable but more moderate changes (for example SpO2 with
52.3% and Bicarbonate with 46.4%). In contrast, SARIMAX and OLS made minimal ad-
justments (mostly below 5%), suggesting a preference for interpretability but potentially
oversimplified interventions. GRU’s broader feature shifts may reflect a deeper modelling
of non-linear physiological relationships, offering a more flexible mechanism for achieving
counterfactual success at the cost of interpretability.

Metric GRU SARIMAX OLS N-BEATS
Target Prediction Deviation
MAE 0.09 0.02 0.02 0.18
RMSE 0.11 0.03 0.03 0.25
Max Deviation 1.24 1.00 1.00 1.62
MAPE (%) 7.06M 33.2K 332K 15.4M
Survival Changes
Changes to Survived 14 14 14 14
Changes to Dead 0 0 0 0
Mean % Change in Exogenous Features
Heart Rate 366.5% 1.2% 1.2% 30.1%
Systolic BP 97.5% 2.3% 2.3% 36.6%
Diastolic BP 68.3% 2.8% 2.8% 40.5%
SpO2 100.1% 3.5% 3.5% 52.3%
Temperature 52.7% 0.5% 0.5% 9.5%
BMI 81.5% 0.3% 0.3% 8.4%
Bicarbonate 78.0% 2.7% 2.7% 46.4%
Creatinine 77.5% 0.9% 0.9% 23.8%
Hemoglobin 368.4% 1.5% 1.5% 25.5%
Platelet Count 76.3% 0.4% 0.4% 9.3%
WBC Count 289.4% 4.0% 4.0% 61.6%
Sodium 158.1% 0.1% 0.1% 27.4%
NT-proBNP 73.2% 0.0% 0.0% 9.2%
Troponin T 175.0% 3.5% 3.5% 50.9%

Table 8: Comparison of counterfactual generation performance across GRU, SARIMAX,
OLS, and N-BEATS on female HFpEF patients. Metrics include prediction deviation,
number of successful outcome changes, and average percent change in key clinical features.
Lower deviations and smaller, targeted feature changes are desirable.
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In the male cohort, GRU and N-BEATS achieved far greater impact in terms of survival
changes (396 successful conversions) compared to SARIMAX and OLS, which only man-
aged two each. Again, GRU demonstrated a favourable balance, with relatively low predic-
tion deviation (MAE = 0.66) and modest changes to most clinical variables. Notably, GRU
made near-zero changes to SpO2, Temperature, and Sodium, while introducing targeted
adjustments to variables like Creatinine (12.6%) and Troponin T (39.5%). N-BEATS,
while also effective in outcome changes, applied more aggressive modifications in several
features, such as Systolic BP (152.1%) and Troponin T (168.6%), raising concerns about
the clinical plausibility of such interventions.

Metric GRU SARIMAX OLS N-BEATS
Target Prediction Deviation
MAE 0.66 0.15 0.15 0.74
RMSE 0.66 0.15 0.15 0.77
Max Deviation 1.01 0.63 0.63 1.45
MAPE (%) 56025.6 178.0 14.9 5169912.5
Survival Changes
Changes to Survived 396 2 2 396
Changs to Died 0 0 0 0
Mean % Change in Exogenous Features
Heart Rate 0.1% 10.2% 10.2% 1.8%
Systolic BP 91.6% 67.1% 67.1% 152.1%
Diastolic BP 84.8% 102.1% 102.1% 176.6%
SpOs 0.1% 3.1% 3.1% 0.5%
Temperature 0.2% 4.1% 4.1% 0.7%
BMI 1.1% 18.8% 18.8% 2.9%
Bicarbonate 0.2% 9.6% 9.6% 1.6%
Creatinine 12.6% 44.2% 44.2% 19.4%
Hemoglobin 0.2% 8.2% 8.2% 1.4%
Platelet Count 8.1% 33.9% 33.9% 13.5%
WBC Count 0.9% 32.4% 32.4% 6.6%
Sodium 0.1% 1.7% 1.7% 0.3%
NT-proBNP 4.6% 23.4% 23.4% 10.0%
Troponin T 39.5% 57.5% 57.5% 168.6%

Table 9: Comparison of counterfactual generation performance across GRU, SARIMAX,
OLS, and N-BEATS on male HFpEF patients. Metrics include prediction deviation, num-
ber of successful outcome changes, and average percent change in key clinical features.
Lower deviations and smaller, targeted feature changes are desirable.

Overall, GRU consistently achieved the best trade-off between effectiveness, as seen in
the number of outcomes changed, realism, such as the magnitude of feature changes, and
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predictive fidelity, especially in the male patient cohort. SARIMAX and OLS made inter-
pretable but minimal changes that often failed to alter predicted outcomes, highlighting
their limited flexibility for counterfactual tasks. While N-BEATS was also effective, its
larger feature shifts may reduce its clinical applicability. Additional results by comorbidity
cluster are provided in Appendix C.2.

Figures 12 through 15 show examples of counterfactuals generated using four different
models for male patients: SARIMAX, Ordinary Least Squares (OLS), GRU, and N-
BEATS. In each case, the original values are plotted in blue, and the counterfactual
values, those modified to achieve a survival outcome, are shown in yellow, across six time
steps. The results for male patients can also be found in Appendix C.2.

Each model approaches the counterfactual generation task differently, and while all share
the goal of flipping the predicted outcome, they vary significantly in the magnitude and
plausibility of their feature changes.

SARIMAX (Figure 12) often introduces large, unrealistic shifts in variables like Diastolic
BP, Troponin T, and Bicarbonate. While the model adheres to temporal smoothness due
to its structure, its interventions are extreme and clinically implausible, frequently over-
shooting physiological limits. This behaviour suggests that SARIMAX lacks an effective
internal mechanism to constrain feature values within realistic bounds.
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Figure 12: Example of the counterfactuals generated for the MIMIC dataset using SARI-
MAX, with survival. The different exogenous variables, with the original values in blue
and the predicted in yellow.

OLS (Figure 13), by contrast, fails to make meaningful changes to the input features. In
many cases, the counterfactuals generated are identical to the originals, suggesting that
the linear nature of OLS is too rigid or underpowered for producing actionable edits in
time-dependent clinical data. Despite its simplicity, OLS does not effectively adapt the
model’s prediction, making it the least useful among the methods evaluated.
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Figure 13: Example of the counterfactuals generated for the MIMIC dataset using OLS,
with survival. The different exogenous variables, with the original values in blue and the
predicted in yellow.

GRU (Figure 14) produces subtle and targeted changes. Thanks to its ability to model
temporal dependencies, it modifies variables like Hemoglobin, Temperature, and Heart
Rate just enough to alter the predicted outcome, while maintaining plausible trajectories
and staying well within feature bounds. GRU strikes a balance between flexibility and
constraint, making it highly effective for clinical counterfactual generation.
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Figure 14: Example of the counterfactuals generated for the MIMIC dataset using GRU,
with survival. The different exogenous variables, with the original values in blue and the
predicted in yellow.

N-BEATS (Figure 15) also achieves strong results, introducing moderate and smooth
changes to clinically important variables such as NT-proBNP and Systolic Blood Pressure.
While its counterfactuals are generally realistic, it sometimes modifies features more than
necessary, and on occasionally generates less plausible clinical values. Nevertheless, its
hierarchical structure lends itself well to learning both short- and long-range patterns in
the data.
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Figure 15: Example of the counterfactuals generated for the MIMIC dataset using N-
BEATS, with survival. The different exogenous variables, with the original values in blue
and the predicted in yellow.

In summary, while all four models aim to generate plausible counterfactuals, they vary in
how effectively they do so. SARIMAX alters key variables too aggressively, often breaching
plausibility, while OLS fails to generate impactful counterfactuals at all. GRU introduces
small, controlled changes that maintain realism and interpretability, and N-BEATS pro-
duces meaningful edits with good temporal coherence but with occasional overreach.
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6.3 Evaluation Metrics
6.3.1 Model Comparison

Table 10 presents the average prediction error metrics across all samples and time steps
for each evaluated model on the example of the OhioT1DM dataset. The GRU and N-
BEATS models significantly outperform SARIMAX and OLS in all prediction accuracy
metrics. N-BEATS achieves the lowest MAPE (40.65%), indicating better proportional
accuracy, while GRU attains the lowest MAE and RMSE.

Model MAE RMSE Max Dev MAPE (%)

GRU 50.67 50.94 203.47 93.35
N-BEATS 5241 56.39 234.97 40.65
SARIMAX 111.25 111.48 812.03 116.53
OLS 116.61 116.85 797.12 123.57

Table 10: Prediction Deviation Metrics Across Models

Table 11 summarises each model’s ability to generate predictions within the desired blood
glucose bounds. GRU again performs best with 43.5% of predictions in range and minimal
violation area. Despite the low MAPE of the N-BEATS method, its bound compliance is
particularly poor (0.8%), with a large violation area, indicating that low absolute error
does not necessarily translate into physiological safety or effectiveness.

Model In Bound (%) Mean Violation Violation Area

GRU 43.5 5.59 2944.51
N-BEATS 0.8 80.60 48170.33
SARIMAX 2.7 87.42 52421.28
OLS 5.7 86.26 51689.86

Table 11: Bound Compliance and Violation Metrics

Table 12 compares the magnitude of changes to exogenous inputs required by each model.
GRU introduces the smallest average interventions across all features, with changes re-
maining under 7%. In contrast, SARIMAX and OLS generate drastic changes, exceeding
200% on average, suggesting poor optimisation stability or unrealistic control strategies.
N-BEATS strikes a balance, introducing moderate exogenous adjustments (around 15%).

Model Basal Insulin Bolus Insulin Carbs Exercise
GRU 6.3% 6.2% 5.8% 6.3%
N-BEATS 16.7% 14.3% 15.0% 15.4%
SARIMAX 211.7% 210.9% 211.8%  210.7%
OLS 200.5% 199.6% 200.5%  199.4%

Table 12: Mean Percentage Change in Exogenous Inputs
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6.3.2 Feature-wise Euclidean Distances

Table 13 summarises the average Euclidean distances between original and counterfactual
feature values, presented both in raw and normalised forms to account for feature scale
differences.

Feature Avg Euclidean Distance Normalised Euclidean Distance
Basal Insulin 1.2356 4.2353
Bolus Insulin 7.1287 4.4934
Carbohydrates 59.2930 4.2498
Exercise Intensity 0.5816 4.1659

Table 13: Average Euclidean Distances per Feature

As observed, carbohydrates exhibit the largest raw magnitude of change, while normalised
distances indicate comparable scale-adjusted changes across all features.
6.3.3 Average Change Per Feature

Table 14 shows the average magnitude of modification applied to each feature in the
counterfactual generation process.

Feature Avg Change
Basal Insulin 0.4400
Bolus Insulin 2.5774
Carbohydrates 21.0900
Exercise Intensity 0.2076

Table 14: Average Change per Feature

The carbohydrates feature undergoes the largest average adjustment, suggesting it plays
a key role in driving counterfactual changes.
6.3.4 Healthy Patient Comparison

The following Table 15 presents detailed FEuclidean distances between selected original
patient samples and their closest healthy patient counterfactuals, for both raw and nor-
malised values, per feature.

Table 15: Euclidean Distances for Healthy Patient Comparisons

Pair Target Basal Insulin  Bolus Insulin Carbohydrates Exercise Intensity
Euclidean  Act.  Norm. Act. Norm. Act. Norm. Act. Norm.
1 1.7209 0.8084 2.7711 7.6929 4.8490 48.4378 3.4718 0.3876 2.7764
2 2.1164 0.7179 2.4608 7.7761 4.9014 49.4722 3.5459 0.3764 2.6960
3 2.2299 1.5801 5.4161 11.6026 7.3134 75.4905 5.4108 0.9714 6.9587
4 2.3459 1.9827 6.7964 7.9109 4.9864 89.2984 6.4004 0.4430 3.1732
5 2.4201 1.4544 49852 5.0520 3.1844 63.4633 4.5487 0.3887 2.7841
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Figure 16 shows the corresponding plots for pair 5, to visualise how the counterfactuals
differ from a comparative patient sample.

Target Comparison: Orig 82 vs CF 36

—— Healthy Target
CF Target

145.5 4

145.0 4

1445 4

144.0 4

Blood Glucose Level

143.5 4

143.0 +

Time Step

Exogenous Comparison: Rank 5 - Orig 82 vs CF 36

1.4

124
104
5 0.8
0.6 1

—— Healthy Exo
04 Y 9
CF Exog

] 1 2 3 4 5

91 —— Healthy Exog
CF Exog

o 1 2 3 4 5

—— Healthy Exog
CF Exog

& 40 1

o 1 2 3 4 5

—— Healthy Exog
0.7 CF Exog

Exercise

Time Step

Figure 16: Example of the comparison between generated counterfactuals and similar
original data for the OhioT1DM dataset. The target and the different exogenous variables,
with the original values in green and the predicted in yellow.

Across all pairs, bolus insulin and carbohydrates exhibit the largest raw Euclidean dis-
tances, which is consistent with the trends observed in the previous results. Although
exercise intensity shows smaller changes in raw magnitude, its normalised distances reveal
that these changes are still significant relative to the feature’s scale. The target Euclidean
distances between the pairs range from 1.72 to 2.42, indicating a relatively close alignment
between the original patient samples and their predicted healthy counterparts. Addition-
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ally, there is noticeable variability in the normalised distances across features, reflecting
different adjustment requirements for each patient-feature combination.

6.3.5 Overall Counterfactual Evaluation Metrics

Table 16 compiles the key global metrics assessing the counterfactual set’s properties,
feasibility, and similarity to healthy samples.

Table 16: Global Counterfactual Evaluation Metrics

Metric Value
Fraction of Values Changed 0.9979
Average Z-Score Change 37.9923
Average Local Outlier Factor (LOF) -1.0000
Percent Within Bounds 41.6667%
Violation Root Mean Square Error 3.5656
Mean Absolute Difference to Healthy 6.8727
Cosine Similarity to Healthy 0.9085

6.3.5.1 Interpretation

Nearly all feature values are changed (99.8%), indicating extensive counterfactual modi-
fications. The large average z-score change, approximately 38, signifies substantial devia-
tions relative to the underlying feature distributions. The LOF score of -1.0 suggests that
the counterfactuals lie within the natural data manifold, meaning they are considered
inliers. However, only 41.7% of the counterfactuals satisfy the imposed bounds, which
points to potential feasibility concerns. The violation RMSE quantifies the extent of these
constraint violations and highlights areas where improvements are needed. Despite this,
the high cosine similarity of 0.91 indicates that the counterfactuals maintain a close direc-
tional alignment with the healthy samples. Finally, the mean absolute difference of 6.87
shows a moderate absolute distance from the healthy reference points.

The evaluation reveals that carbohydrates and bolus insulin features undergo the most
significant changes in producing counterfactuals. While the counterfactuals largely re-
side within the data manifold, only a portion satisfy all constraints, suggesting room for
improvement in enforcing feasibility. Overall, the counterfactuals demonstrate promising
similarity to healthy samples but warrant careful clinical validation due to the scale of
feature modifications.

6.3.6 Blood Glucose Prediction Performance

The blood glucose prediction deviations were evaluated over 100 samples and 6 time
steps. Table 17 summarises the MAE, RMSE, and MAPE metrics per time step. The
Mean Absolute Error (MAE) remained relatively stable across the time horizon, ranging
from 49.94 to 51.49, with the highest error observed at Time 4. Root Mean Squared Error
(RMSE) values followed a similar trend, varying between 64.88 and 66.91. The Mean
Absolute Percentage Error (MAPE) was consistently high, between 52.22% and 54.37%,
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indicating substantial relative errors despite moderate absolute deviations. The maximum
observed deviation across all predictions was 203.47, suggesting occasional large outliers.

Table 17: Blood Glucose Prediction Deviation Metrics (per time step)

Time Step MAE RMSE MAPE (%)

0 50.29 65.56 52.81
1 50.70 65.99 53.46
2 50.99 66.40 53.66
3 50.61 66.12 53.59
4 51.49 66.91 54.37
5 49.94 64.88 52.22
Overall Max Dev 203.47

6.3.7 Compliance with Desired Blood Glucose Bounds

Table 18 details the percentage of predictions within desired blood glucose bounds, mean
violation magnitude, and total violation area per time step. The percentage of predictions
within the clinically desired bounds varied considerably over time. Early and late time
points (timesteps 0, 3, 4, and 5) exhibited lower compliance, with in-bound percentages
around 34 to 36%, whereas the middle time steps (timesteps 1 and 2) showed improved
compliance, reaching up to 69% at timestep 2. Mean violation magnitudes were highest at
timesteps 1 and 2, reflecting that when predictions fell outside bounds during these steps,
the deviations were more severe. Total violation areas, representing cumulative out-of-
bound magnitudes, were largest at timestep 0 and gradually decreased through timestep
4, before a slight increase at timestep 5. These results indicate temporal variability in
the model’s ability to adhere to target glucose constraints, with better performance mid-
horizon but challenges at the boundaries.

Table 18: Blood Glucose vs Desired Bounds (per time step)

Time Step In Bound (%) Mean Violation Total Violation Area

0 35.0 11.93 775.71
1 52.0 12.10 580.70
2 69.0 13.50 418.36
3 34.0 5.90 389.17
4 36.0 5.43 347.79
) 35.0 6.66 432.79

6.3.8 Exogenous Variable Adjustments Over Time

The exogenous variables, basal insulin, bolus insulin, carbohydrates, and exercise intensity,
show differing magnitudes of adjustment throughout the time series, are summarised in
Tables 19 to 22. For the basal insulin, the adjustments were minimal and stable across
time, with MAE values between 0.06 and 0.08 and mean percentage changes consistently
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around 5 to 7%. Maximum deviations remained low (approximately 0.20 to 0.25 units),
suggesting small but steady basal insulin modulations.

Table 19: Basal Insulin Changes (per time step)

Time Step MAE Max Dev Mean % Change

0 0.06 0.25 5.04
1 0.07 0.24 6.25
2 0.07 0.20 6.69
3 0.07 0.22 6.43
4 0.08 0.24 6.73
) 0.07 0.21 6.47

In comparison, the bolus insulin values exhibited larger changes than basal insulin, with
MAE increasing from 0.30 to 0.42 over time and percentage changes around 5 to 7%. Max
deviations up to 1.09 units indicate moderate but significant bolus insulin adjustments.

Table 20: Bolus Insulin Changes (per time step)

Time Step MAE Max Dev Mean % Change

0 0.30 0.86 5.24
1 0.34 1.09 5.79
2 0.37 1.07 6.00
3 0.37 1.06 6.32
4 0.42 0.92 6.81
) 0.42 1.05 6.97

The largest exogenous changes occurred in carbohydrate intake, with MAE values rising
from 2.33 to 3.75 and maximum deviations exceeding 11 units. The mean percentage
change also increased over time, peaking at 7.15%, reflecting substantial dietary interven-
tions, particularly in later time steps.

Table 21: Carbohydrates Changes (per time step)

Time Step MAE Max Dev Mean % Change

0 2.33 11.11 4.22
1 2.96 10.10 9.59
2 2.98 10.74 2.57
3 3.37 11.34 6.44
4 3.75 9.89 7.15
5 3.20 8.98 6.08

For exercise intensity, the changes were minimal and consistent, with MAE around 0.03 to
0.04 and max deviations below 0.12. Mean percentage changes hovered near 6%, indicating
stable but small modifications in exercise intensity.
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Table 22: Exercise Intensity Changes (per time step)

Time Step MAE Max Dev Mean % Change

0 0.03 0.10 6.09
1 0.03 0.10 6.53
2 0.03 0.12 6.25
3 0.03 0.09 5.85
4 0.04 0.09 6.91
) 0.03 0.09 6.39

The prediction errors as well as the percentages of the targets that are in the bounds over
time, can be seen in figure 17.

Blood Glucose Prediction Errors Over Time 100 Blood Glucose In-Bound Percentage Over Time

80 4

60 1

—o— MAE
RMSE

Error
In Bound %

40

o] 1 2 3 4 5 0 1 2 3 4 5
Time Step Time Step

Figure 17: Prediction Errors and In-Bound percentage over time.
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7 Discussion

7.1 Multivariate Forecasting

The multivariate forecasting experiments show the clear differences in model behaviour
across datasets and configurations. N-BEATS consistently outperforms GRU, particularly
in terms of RMSE;, indicating better accuracy in capturing the changes in the clinical data.
This seems to hold true across both real-world (OhioT1DM) and synthetic (SimGlucose)
datasets, with N-BEATS maintaining more stable accuracy as the forecast horizon in-
creases.

While GRU performs reasonably well in detecting general data trends, it struggles with
precisely matching the test data, especially with longer horizons. The visualisations fur-
ther support this, as the N-BEATS forecasts align more closely with observed values,
particularly around small changes, whereas GRU tends to smooth over such transitions.
These findings support the use of N-BEATS as the underlying forecasting component in
counterfactual generation, ensuring that the proposed interventions are based on realistic
and consistent predictions.

While these findings strongly support N-BEATS for multivariate forecasting, the exper-
iments on the MIMIC-IV classification task introduce a significant limitation. Despite
achieving high overall accuracy in predicting 30-day and 1-year mortality, both N-BEATS
and GRU failed to identify any positive cases of the minority non-survival class, result-
ing in zero precision, recall, and F1-score for that outcome. This problem highlights the
challenge of applying these sequence models, that are designed primarily for regression,
to severely imbalanced classification problems.

This observation emphasises that model suitability is highly context-dependent: while
N-BEATS is well-aligned with continuous time-series forecasting, specialised techniques,
such as class rebalancing, may be necessary to adapt N-BEATS for classification tasks,
particularly in these healthcare scenarios where identifying rare events is critical. The
inconsistency also underlines the need to carefully select metrics and training strategies
that support task-specific goals.

In conclusion, the experimental evidence supports the usage of N-BEATS as the pre-
ferred forecasting model within the counterfactual generation method. Its robustness
across datasets and input configurations ensures that recommendations are based on real-
istic, accurate projections. At the same time, the MIMIC-IV results show that forecasting
strengths do not necessarily translate to classification accuracy in all contexts, underscor-
ing the need for context-specific model design.

7.1.1 Limitations and Future Work

While the GRU and N-BEATS models demonstrate strong performance for the diabetes
datasets, a critical limitation was observed in their inability to detect the minority non-
survival class for the MIMIC-IV dataset. Both models focused on the majority survival
class, which skewed performance metrics such as accuracy and mean squared error. This
imbalance is especially problematic in clinical prediction settings where identifying high-
risk patients is most important. The observed class imbalance basically biases the learning
process, causing the models to overlook lesser occurring but clinically significant outcomes.
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This limitation suggests that relying only on conventional evaluation metrics may pro-
vide an incomplete picture of model utility in imbalanced clinical datasets. The results
highlight the need for incorporating alternative strategies, such as resampling techniques,
class weighting, or cost-sensitive learning, to ensure more unbiased predictive performance
across all outcome classes. Without such interventions, these models may fail to provide
actionable insights in real-world healthcare applications, where missing minority class in-
stances can have serious implications.

Addressing the limitations outlined above should be a central focus of future research.
Several promising strategies could be explored to reduce the effects of class imbalance
and improve minority class detection. One approach involves implementing class weighting
during model training, adjusting the loss function so that misclassifying instances of the
minority non-survival class receive a higher penalty. This adjustment would lead to the
models paying greater attention to these critical cases.

In conclusion, while the GRU and N-BEATS models show promising results on contin-
uous predictive tasks, realising their full clinical utility requires the implementation of
targeted strategies to enhance minority class performance. Addressing class imbalance
through these techniques will be essential for developing predictive models that are not
only statistically robust but also practically valuable in healthcare decision-making con-
texts.

7.2 Counterfactuals

The results show that generating multivariate counterfactuals for time series forecasting
is not only possible but also practically useful. By adjusting exogenous variables while
preserving the general shape of the data, the counterfactual sequences successfully reach
desired target outcomes, such as keeping key variables within certain clinical ranges, with-
out introducing unrealistic values. For example, in the diabetes datasets, the method often
suggests reducing the predicted glucose level by adjusting exogenous variables such as in-
sulin or carbohydrate intake. In practice, this translates into actionable recommendations
like a slightly higher insulin dose at mealtime or moderating carbohydrate consumption.
Similarly, in the HFpEF use case, the counterfactuals may involve improving blood pres-
sure, oxygen saturation, or electrolyte levels.

Both visual and quantitative evaluations suggest that the counterfactuals stay within the
bounds of what we would expect from real patient data. When compared with natu-
rally occurring trajectories that lead to similar outcomes, the counterfactuals often follow
different trajectories using different combinations of features. This reflects a main char-
acteristic of multivariate time series, where multiple input patterns can lead to similar
predictions due to adaptability or redundancy in the system.

We also observed that the difference between counterfactuals and nearby real samples
helps highlight how features can work together to get a particular outcome. Instead of
relying on a single-variable change, the models tend to adjust several features at once,
much like how real clinical decisions often involve multiple interventions happening at the
same time.

Taken together, these findings support the idea that multivariate counterfactual gener-
ation can be a valuable tool for time series forecasting tasks where interpretability and
actionable insight are important. The following sections discuss the findings for the dif-
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ferent datasets in more detail, highlighting the different strengths and weaknesses of the
various methods and datasets.

7.2.1 OhioT1DM

The evaluation of counterfactual generation methods on the OhioT1DM dataset highlights
a key problem in clinical time series modelling, which is the trade-off between predictive
accuracy and real-world usability. While models like N-BEATS achieve strong forecast
accuracy, their lack of constraint adherence and high intervention costs limit their prac-
tical applicability in managing blood glucose levels. This reinforces a critical point, that
numerical accuracy alone is not sufficiant for clinical decision-making if the suggested
interventions are not clinically plausible.

GRU emerged as the most balanced model, offering strong performance across accuracy,
constraint satisfaction, and low intervention cost. Its ability to suggest small, targeted
changes, particularly in insulin and carbohydrate inputs, makes it well-suited for action-
able recommendations in diabetes management.

The OLS model, though interpretable, required extreme changes of the exogenous vari-
ables to get the desired predictions, making them unsuitable for intervention planning.
Similarly, SARIMAX, despite having moderate accuracy, also lacked plausibility due to
high interventions. These findings underscore that interpretability alone does not guaran-
tee practical utility.

The analysis also revealed that key features, especially bolus insulin and carbohydrates,
consistently drive changes toward healthy glucose predictions. While effective, these fea-
tures changes lead to significant interventions, which requires clinical oversight to imple-
ment safely. Normalised distance metrics showed that even small raw changes in features
like exercise can represent meaningful deviations, highlighting the need for scale-aware
evaluation when assessing these counterfactuals.

Comparisons with healthy patient data confirmed the biological plausibility of the gener-
ated counterfactuals. Metrics such as cosine similarity and low outlier scores indicate that
the recommendations stay within a realistic data range and align closely with healthy
data trajectories, even when requiring substantial changes across multiple inputs.

In summary, GRU-based counterfactuals demonstrate a promising balance between pre-
dictive ability and clinical plausibility. However, this evaluation also reveals opportunities
to improve constraint satisfaction and reduce the necessary amount of intervention. Future
work should explore adaptive strategies, such as personalised constraints or cost-aware op-
timization, to further align counterfactuals with clinical feasibility and individual patient
needs.

7.2.2 SimGlucose

In the SimGlucose setting, the counterfactual sequences take a slightly different approach.
The model tends to propose conservative strategies, minimising both carbohydrate intake
and insulin doses to improve blood glucose levels. In many cases, insulin is reduced to zero,
and carb intake is either flat or only slightly increased in later time steps. These subtle
adjustments lead to the blood glucose predictions often not falling within the desired
range, but staying closer to the original glucose range. This behaviour shows that, while
there is quite some potential, the SimGlucose dataset needs a more specific approach to
be able to generate realistic and meaningful counterfactuals.
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7.2.3 MIMIC

This study explored the use of counterfactual generation in clinical time series data,
focusing on patients with heart failure with preserved ejection fraction (HFpEF) in the
MIMIC-IV dataset. The goal was to generate alternate trajectories for exogenous clinical
variables that could change a predicted outcome from death to survival, in a way that
remains realistic and interpretable.

The results show that all four modelling approaches (SARIMAX, OLS, GRU, and N-
BEATS) successfully changed the predicted outcomes to survival without introducing
new death predictions. However, the extent of the feature adjustments varied significantly
across models. GRU achieved the best trade-off between predictive accuracy and counter-
factual plausibility, with relatively low prediction deviation, with MAE = 0.09 for females,
0.66 for males, and meaningful, targeted feature changes. N-BEATS also showed strong
adaptability but introduced larger adjustments, such as a Heart Rate change of 30.1% for
females, which could make clinical implementation and interpretability difficult.

In contrast, SARIMAX and OLS applied minimal modifications (for example a Heart Rate
change of 1.2% for females), preserving interpretability but potentially oversimplifying the
underlying dynamics of HFpEF progression. This careful behaviour is reflected in their
low target prediction deviation (MAE = 0.02 for females and 0.15 for males), but the
subtle changes may not always represent realistic interventions.

A closer look at the exogenous features changes shows that the models selectively modi-
fied clinically relevant variables. For example, Heart Rate, Systolic BP, and Troponin T
exhibited the largest changes under GRU and N-BEATS, particularly in female patients,
such as a Heart Rate change of 366.5%. Conversely, features like BMI and NT-proBNP
remained relatively stable across all models, suggesting that these variables were deemed
less critical for changing survival outcomes. This selective behaviour strengthens the inter-
pretability of the counterfactuals, but shows again the lack of realism of the interventions.
Interestingly, male patients required fewer drastic adjustments compared to female pa-
tients for the GRU model. This could be explained by the fact, that the initial percentage
of females surviving HFpEF was much larger, but it also suggests possible sex-specific dif-
ferences in how clinical trajectories influence predicted outcomes, a finding which would
be interesting to further explore in a clinical research setting.

SARIMAX, as a classical statistical model, produced gradual and trend-consistent coun-
terfactuals, but also introduced some very abrupt changes. This could be explained by
the restricted adaptability due to its linear architecture. OLS, really struggled with the
counterfactual generation, often predicting a changed outcome, without adapting any
of the features. This makes OLS a less trustworthy method for this problem in clinical
decision-making.

On the other hand, the deep learning models, GRU and N-BEATS, were better at mod-
elling the non-linear dependencies and complex temporal patterns of the data. GRU gener-
ated counterfactuals that were both targeted and consistent, making it the most clinically
promising among the models tested. N-BEATS often required larger shifts, that might be
difficult to align with realistic clinical interventions.

The findings underscore the potential of counterfactual modelling to provide “what-if” sce-
narios for critical care. By demonstrating how slight adjustments to key clinical variables
might alter predicted outcomes, these models can support treatment planning and deci-
sion support. However, the results also reveal model-specific trade-offs between flexibility
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and interpretability.

Overall, GRU emerged as the most effective approach, balancing accuracy, interpretability,
and realistic feature adjustments, while SARIMAX and OLS provided valuable baselines
due to their transparency. N-BEATS demonstrated strong pattern modelling capabilities
but requires careful evaluation to avoid over-adjusting the variables. These findings set
a foundation for building clinically actionable counterfactual models that enhance trans-
parency and trust in time series forecasting for healthcare.

7.3 Limitations and Future Work

While our evaluation framework provides valuable insights into the behaviour and plausi-
bility of the generated counterfactual interventions, there are several important limitations
to note. Firstly, although the counterfactuals often align with clinical norms and appear
visually and quantitatively plausible, our evaluation remains limited by the absence of
clinical domain experts on the research team. As demonstrated in the OhioT1DM and
MIMIC analyses, the models sometimes suggest changes, such as insulin adjustments or
large heart rate shifts, that may seem numerically reasonable but seem to be clinically
unrealistic or unsafe. Collaborating with a diverse group of healthcare professionals, is
essential to validate the realism, safety, and applicability of these suggestions in actual
medical practice.

Another limitation is, that our counterfactual generation is guided primarily by math-
ematical objectives, such as euclidean distances, z-scores, and LOF scores, rather than
by patient-centric considerations such as behavioural adherence, lifestyle constraints, or
individual variability in insulin sensitivity. Consequently, the suggested interventions may
overlook factors like meal timing, stress, or simultaneous medications, which can strongly
influence the blood glucose levels. For example, in SimGlucose, the model often reduces
insulin to zero, which may not reflect practical or safe treatment trajectories. Similarly, in
OhioT1DM, while small input shifts (for example in carbohydrates or bolus insulin) led
to improved glycaemic trajectories, some interventions represented substantial perturba-
tions that might not align with real-world adherence patterns or safety thresholds. Future
work should embed clinical rules, lifestyle patterns, and personalised behaviour models to
guide counterfactual generation more realistically.

Our current approach computes counterfactual perturbations using feature-wise distances
normalised by global variance, assuming independence between variables. However, in
clinical contexts, features often interact in non-linear ways, as seen in the differential
impacts of insulin and carbohydrate intake in OhioT1DM, or sex-specific variation in
MIMIC. Future work should move toward joint and conditional distance measures, multi-
objective-based constraints, and domain-informed regularisation strategies that better
capture multivariate dependencies. Additionally, our findings show that counterfactual
quality and realism vary across datasets and model types. In SimGlucose, for example,
overly conservative counterfactuals often fail to move the predicted glucose level into the
target range, indicating that further adjusting the approach to simulator-based or syn-
thetic environments would be necessary. This also suggests the need for adaptive strategies
that adjust the amount of interventions and more detailed implementation of constraints
depending on dataset characteristics, clinical context, and model behaviour.

To address these limitations, several solutions could be investigated. Firstly, as already
mentioned above, including clinicians and healthcare professionals will be essential to re-
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fine constraint design, define safe intervention ranges, and assess model outputs in pilot
or retrospective clinical studies. This will improve the clinical relevance and safety of the
counterfactuals, especially in sensitive healthcare domains. Another future implementa-
tion could incorporate more detailed patient metadata, such as age, comorbidities, insulin
sensitivity profiles, and lifestyle habits, which could allow for truly individualised coun-
terfactuals. Integrating behavioural models to estimate adherence likelihood, and employ-
ing multi-objective optimisation to jointly optimise for outcome, plausibility, and patient
load, could significantly enhance model usability as well. Finally, as shown by the irregu-
lar behaviour of GRU, N-BEATS, OLS, and SARIMAX across datasets, different models
offer different strengths. Future work could explore ensemble or hybrid approaches that
combine the interpretability of linear models with the expressiveness of neural networks,
while dynamically adjusting the intervention intensity. By addressing these limitations,
future iterations of this work can move towards developing trustworthy, interpretable, and
clinically actionable counterfactual explanations for time series forecasting in healthcare.
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8 Conclusion

This thesis presents a new method for counterfactual time series forecasting that focuses
on modifying exogenous variables within the forecast horizon to achieve desired outcomes,
rather than altering historical data. This approach attempts to fill a critical gap in cur-
rent research, offering a more actionable and interpretable alternative for clinical decision
support. By learning the relationship between forecasted targets and exogenous inputs
using models such as SARIMAX, OLS, GRU, and N-BEATS, we enable the generation
of realistic, constrained counterfactuals that respect the temporal dynamics of healthcare
data.

Comprehensive experiments across two distinct healthcare contexts, blood glucose fore-
casting using OhioT1DM and SimGlucose datasets, and mortality prediction in HFpEF
patients with MIMIC-IV, demonstrate both the strengths and limitations of the proposed
approach. In forecasting tasks, N-BEATS consistently outperformed GRU in terms of ac-
curacy and temporal stability, particularly over longer horizons, establishing it as the most
effective model for high-accuracy prediction. However, GRU proved to be more adept at
generating clinically plausible and constrained counterfactuals, especially when interven-
tion feasibility and physiological adherence were critical, as seen in the OhioT1DM case.
In contrast, OLS and SARIMAX, while interpretable, often failed to suggest realistic or
effective interventions, either requiring impractical input changes or neglecting necessary
adjustments. The counterfactuals generated using GRU and N-BEATS often mirrored
realistic multi-variable interventions, supporting their potential role in personalised treat-
ment planning.

Importantly, the analysis revealed that generating meaningful interventions often involves
coordinated adjustments across multiple variables, reflecting real-world clinical strategies.
However, limitations such as poor minority class detection for the MIMIC-IV dataset and
the absence of clinical domain input highlight the need for further refinement. Moreover,
while the models produce mathematically and physiologically coherent counterfactuals,
their real-world clinical utility remains uncertain due to the lack of domain-expert in-
put and patient-specific behavioural considerations. The proposed interventions, though
promising, may not fully reflect constraints like treatment adherence, lifestyle feasibility,
or individual variability in response.

Future work should involve collaboration with clinicians to evaluate the realism and safety
of suggested interventions, and integrate patient metadata and behavioural modelling to
enhance personalisation. Additionally, optimisation techniques that account for adher-
ence, safety, and ethical considerations, could further improve the interpretability and
practicality of the proposed method.

In summary, this work demonstrates that counterfactual generation for time series fore-
casting is both feasible and clinically relevant. It provides a foundation for building trans-
parent, adaptive, and patient-centred decision support systems capable of suggesting per-
sonalised, data-driven interventions based on realistic future scenarios.
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A Detailed Results of the Multivariate Forecasting

The following figures provide some additional results for the Multivariate Forecasting with
different back horizons and horizon for both the SimGlucose and the OhioT1DM dataset.

Time steps

sssssssssss

Time steps

(a) Results of the multivariate forecasting using (b) Results of the multivariate forecasting using
GRU. N-BEATS.

Figure 18: Results of the multivariate forecasting for the SimGlucose dataset with back
horizon = 20 and forecast horizon = 5, showing the accuracy of the forecasting.
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(a) Results of the multivariate forecasting using (b) Results of the multivariate forecasting using
GRU. N-BEATS.

Figure 19: Results of the multivariate forecasting for the OhioT1DM dataset with back
horizon = 12 and forecast horizon = 6, showing the accuracy of the forecasting.
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B Detailed Classification Metrics for MIMIC Dataset

The following section includes tables that provide comprehensive classification metrics
(precision, recall, F1-score, and overall accuracy) for GRU and N-BEAT'S models across all
patient clusters and gender subgroups in the MIMIC dataset, as well as the corresponding
figures visualizing these results.

Model Target Class Precision Recall F1-Score
GRU 30 days Survived 0.91 0.86 0.88
Died 0.00 0.00 0.00
Overall Accuracy 0.7882
1 year Survived 0.90 0.91 0.90
Died 0.00 0.00 0.00
Overall Accuracy 0.8235
N-BEATS 30 days Survived 0.92 0.97 0.94
Died 0.00 0.00 0.00
Overall Accuracy 0.8922
1 year Survived 0.90 0.96 0.93
Died 0.06 0.02 0.03
Overall Accuracy 0.8706

Table 23: Classification Metrics for GRU and N-BEATS Models Cluster 0

Model Target Class Precision Recall F1-Score
GRU 30 days Survived 0.80 0.22 0.35
Died 0.07 0.50 0.12
Overall Accuracy 0.2486
1 year Survived 1.00 0.05 0.10
Died 0.10 1.00 0.19
Overall Accuracy 0.1475
N-BEATS 30 days Survived 0.90 0.93 0.91
Died 0.00 0.00 0.00
Overall Accuracy 0.8424
1 year Survived 0.91 0.97 0.94
Died 0.26 0.08 0.13
Overall Accuracy 0.8871

Table 24: Classification Metrics for GRU and N-BEATS Models Cluster 1
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Model Target Class Precision Recall F1-Score
GRU 30 days Survived 0.90 0.53 0.67
Died 0.12 0.50 0.19
Overall Accuracy 0.5291
1 year Survived 0.91 0.61 0.73
Died 0.14 0.50 0.21
Overall Accuracy 0.5979
N-BEATS 30 days Survived 0.89 0.99 0.94
Died 0.18 0.02 0.04
Overall Accuracy 0.8807
1 year Survived 0.90 0.88 0.89
Died 0.15 0.18 0.16
Overall Accuracy 0.7982

Table 25: Classification Metrics for GRU and N-BEATS Models Cluster 2

Model Target Class Precision Recall F1-Score
GRU 30 days Survived 0.95 1.00 0.97
Died 0.00 0.00 0.00
Overall Accuracy 0.9487
1 year Survived 0.95 1.00 0.97
Died 0.00 0.00 0.00
Overall Accuracy 0.9487
N-BEATS 30 days Survived 0.95 1.00 0.97
Died 0.00 0.00 0.00
Overall Accuracy 0.9484
1 year Survived 0.95 1.00 0.97
Died 0.00 0.00 0.00
Overall Accuracy 0.9487

Table 26: Classification Metrics for GRU and N-BEATS Models Cluster 3
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Model Target Class Precision Recall F1-Score

GRU 30 days Survived 0.94 1.00 0.97
Died 0.00 0.00 0.00
Overall Accuracy 0.9414
1 year Survived 0.94 1.00 0.97
Died 0.00 0.00 0.00
Overall Accuracy 0.9369
N-BEATS 30 days Survived 0.94 1.00 0.97
Died 0.00 0.00 0.00
Overall Accuracy 0.9398
1 year Survived 0.94 1.00 0.97
Died 0.00 0.00 0.00
Overall Accuracy 0.9362

Table 27: Classification Metrics for GRU and N-BEATS Models for Female Patients

Model Target Class Precision Recall F1-Score
GRU 30 days Survived 0.93 1.00 0.96
Died 0.00 0.00 0.00
Overall Accuracy 0.9299
1 year Survived 0.93 1.00 0.96
Died 0.00 0.00 0.00
Overall Accuracy 0.9299
N-BEATS 30 days Survived 0.93 1.00 0.96
Died 0.00 0.00 0.00
Overall Accuracy 0.9298
1 year Survived 0.93 1.00 0.96
Died 0.00 0.00 0.00
Overall Accuracy 0.9296

Table 28: Classification Metrics for GRU and N-BEATS Models for Male Patients
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(a) Results of the multivariate forecasting using (b) Results of the multivariate forecasting using
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Figure 20: Results of the multivariate forecasting for the MIMIC dataset with 1-year
mortality as target variable, back horizon = 12, and forecast horizon = 6, showing the
accuracy of the forecasting for cluster 0.
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(a) Results of the multivariate forecasting using (b) Results of the multivariate forecasting using
GRU. N-BEATS.

Figure 21: Results of the multivariate forecasting for the MIMIC dataset with 30-day
mortality as target variable, back horizon = 12, and forecast horizon = 6, showing the
accuracy of the forecasting for cluster 1.
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(a) Results of the multivariate forecasting using (b) Results of the multivariate forecasting using
GRU. N-BEATS.

Figure 22: Results of the multivariate forecasting for the MIMIC dataset with 1-year
mortality as target variable, back horizon = 12, and forecast horizon = 6, showing the
accuracy of the forecasting for cluster 1.
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(a) Results of the multivariate forecasting using (b) Results of the multivariate forecasting using
GRU. N-BEATS.

Figure 23: Results of the multivariate forecasting for the MIMIC dataset with 30-day
mortality as target variable, back horizon = 12, and forecast horizon = 6, showing the
accuracy of the forecasting for cluster 2.

71



GRU Multinead Model Binary Predictions vs Actual NBEATS Multihead Model Binary Predictions vs Actual

L T e
3o
ampis
1 ‘ ,,,,,,,, ‘
Sos
eeeeeeee
L0 —
H . e
2O prediaed
500
B 3
,,,,,,,,,,
Sample 135
H | —= 1 ‘
O preduted
S -
Sampl 208 Semple 156
1 ‘ o 1 } ‘‘‘‘‘‘‘‘ ‘
Fhed Predictea Fid
s

(a) Results of the multivariate forecasting using (b) Results of the multivariate forecasting using
GRU. N-BEATS.

Figure 24: Results of the multivariate forecasting for the MIMIC dataset with 1-year
mortality as target variable, back horizon = 12, and forecast horizon = 6, showing the
accuracy of the forecasting for cluster 2.
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(a) Results of the multivariate forecasting using (b) Results of the multivariate forecasting using
GRU. N-BEATS.

Figure 25: Results of the multivariate forecasting for the MIMIC dataset with 30-day
mortality as target variable, back horizon = 12, and forecast horizon = 6, showing the
accuracy of the forecasting for cluster 3.
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(a) Results of the multivariate forecasting using (b) Results of the multivariate forecasting using
GRU. N-BEATS.

Figure 26: Results of the multivariate forecasting for the MIMIC dataset with 1-year
mortality as target variable, back horizon = 12, and forecast horizon = 6, showing the
accuracy of the forecasting for cluster 3.
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(a) Results of the multivariate forecasting using (b) Results of the multivariate forecasting using
GRU. N-BEATS.

Figure 27: Results of the multivariate forecasting for the MIMIC dataset with 30-day
mortality as target variable, back horizon = 12, and forecast horizon = 6, showing the
accuracy of the forecasting for the female cluster.
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(a) Results of the multivariate forecasting using (b) Results of the multivariate forecasting using
GRU. N-BEATS.

Figure 28: Results of the multivariate forecasting for the MIMIC dataset with 1-year
mortality as target variable, back horizon = 12, and forecast horizon = 6, showing the
accuracy of the forecasting for the female cluster.
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(a) Results of the multivariate forecasting using (b) Results of the multivariate forecasting using
GRU. N-BEATS.

Figure 29: Results of the multivariate forecasting for the MIMIC dataset with 30-day
mortality as target variable, back horizon = 12, and forecast horizon = 6, showing the
accuracy of the forecasting for the male cluster.
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(a) Results of the multivariate forecasting using (b) Results of the multivariate forecasting using
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Figure 30: Results of the multivariate forecasting for the MIMIC dataset with 1-year
mortality as target variable, back horizon = 12, and forecast horizon = 6, showing the
accuracy of the forecasting for the male cluster.
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C Detailed Results for the Counterfactual Generation

C.1 OhioT1DM

The following section shows the detailed results for the OhioT1DM counterfactual gener-
ation, for all four methods.
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Figure 31: Example of counterfactuals generated using GRU for the OhioT1DM dataset.
Top: Blood glucose levels for the original and counterfactual samples. Bottom: Comparison
of exogenous variables (original in blue, counterfactual in yellow, bounds in green).
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Figure 32: Example of counterfactuals generated using SARIMAX for the OhioT1DM
dataset. Top: Blood glucose levels for the original and counterfactual samples. Bottom:
Comparison of exogenous variables (original in blue, counterfactual in yellow, bounds in
green).
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Figure 33: Example of counterfactuals generated using OLS for the OhioT1DM dataset.
Top: Blood glucose levels for the original and counterfactual samples. Bottom: Comparison
of exogenous variables (original in blue, counterfactual in yellow, bounds in green).
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Figure 34: Example of counterfactuals generated using N-BEATS for the OhioT1DM
dataset. Top: Blood glucose levels for the original and counterfactual samples. Bottom:
Comparison of exogenous variables (original in blue, counterfactual in yellow, bounds in
green).
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C.2 MIMIC-IV

The following section shows the detailed results for the MIMIC-IV counterfactual genera-
tion, for all four methods. This includes some example visualizations for the male cluster,
as well as the detailed metrics for the clustering according to comorbidities.
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Figure 35: Example of the counterfactuals generated for the MIMIC dataset using SARI-
MAX, with survival. The different exogenous variables, with the original values in blue
and the predicted in yellow.
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Figure 36: Example of the counterfactuals generated for the MIMIC dataset using OLS,
with survival. The different exogenous variables, with the original values in blue and the
predicted in yellow.
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Figure 37: Example of the counterfactuals generated for the MIMIC dataset using GRU,
with survival. The different exogenous variables, with the original values in blue and the
predicted in yellow.
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Figure 38: Example of the counterfactuals generated for the MIMIC dataset using N-
BEATS, with survival. The different exogenous variables, with the original values in blue
and the predicted in yellow.
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Metric GRU SARIMAX OLS N-BEATS

Target Prediction Deviation

MAE 0.00 0.06 0.06 0.02
RMSE 0.00 0.06 0.06 0.02
Max Deviation 0.04 1.09 1.09 0.32
MAPE (%) 251495.87  6293314.07  6292890.42 1973553.19
Survival Changes
Changes to Survived (0 — 1) 0 0 0 0
Changes to Dead (1 — 0) 0 44 44 0
Mean % Change in Exogenous Features
Heart Rate 99.6% 6.7% 6.3% 288.2%
Systolic BP 175.7% 8.6% 7.4% 309.4%
Diastolic BP 2.1% 2.1% 2.1% 28.0%
Sp0O2 3.4% 1.0% 1.0% 14.5%
Temperature 0.1% 0.1% 0.1% 0.9%
BMI 31.8% 2.0% 2.0% 75.9%
Bicarbonate 3.5% 1.2% 1.2% 19.4%
Creatinine 13.3% 3.5% 3.4% 78.2%
Hemoglobin 2.1% 0.9% 0.9% 16.2%
Platelet Count 4.5% 2.3% 2.3% 32.8%
WBC Count 40.0% 21.3% 21.3% 182.3%
Sodium 0.4% 0.3% 0.3% 4.5%
NT-proBNP 7.4% 3.4% 3.4% 55.2%
Troponin T 89.0% 8.4% 7.7% 918.7%

Table 29: Cluster 0: Comparison of counterfactual generation performance across GRU,
SARIMAX, OLS, and N-BEATS. Metrics include prediction deviation, survival outcome
flips, and average percent change in key exogenous clinical features. Lower deviations and
smaller, targeted feature changes are desirable.
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Metric GRU SARIMAX OLS N-BEATS

Target Prediction Deviation

MAE 0.01 0.08 0.08 0.05
RMSE 0.01 0.09 0.09 0.06
Max Deviation 1.00 1.23 1.23 1.10
MAPE (%) 316022.05 7729621.81 7729251.27  4484177.31
Survival Changes
Changes to Survived (0 — 1) 4 4 4 4
Changes to Dead (1 — 0) 0 54 54 0
Mean % Change in Exogenous Features
Heart Rate 0.9% 1.4% 1.4% 3.0%
Systolic BP 0.7% 1.6% 1.6% 2.5%
Diastolic BP 251.3% 246.3% 246.3% 376.4%
SpO2 1.5% 0.8% 0.8% 2.0%
Temperature 0.1% 0.1% 0.1% 0.2%
BMI 2.8% 1.6% 1.6% 4.7%
Bicarbonate 1.2% 1.6% 1.6% 2.4%
Creatinine 113.3% 4.2% 4.2% 124.1%
Hemoglobin 1.0% 1.1% 1.1% 1.9%
Platelet Count 14.2% 9.1% 9.1% 17.4%
WBC Count 11.4% 10.3% 10.3% 16.9%
Sodium 0.1% 0.3% 0.3% 0.4%
NT-proBNP 15.8% 3.0% 3.0% 21.7%
Troponin T 67.8% 8.1% 8.1% 102.2%

Table 30: Cluster 1: Comparison of counterfactual generation performance across GRU,
SARIMAX, OLS, and N-BEATS. Metrics include prediction deviation, survival outcome
flips, and average percent change in key exogenous clinical features. Lower deviations and
smaller, targeted feature changes are desirable.
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Metric GRU SARIMAX OLS N-BEATS

Target Prediction Deviation

MAE 0.00 0.11 0.11 0.06
RMSE 0.00 0.11 0.11 0.07
Max Deviation 0.01 1.02 1.02 0.25
MAPE (%) 181858.38  10527415.13 10527024.89  6225617.23
Survival Changes
Changes to Survived (0 — 1) 0 0 0 0
Changes to Dead (1 — 0) 0 78 78 0
Mean % Change in Exogenous Features
Heart Rate 0.2% 2.1% 2.1% 25.9%
Systolic BP 0.2% 2.0% 2.0% 25.0%
Diastolic BP 73.4% 12.7% 12.7% 652.7%
SpO2 0.3% 0.5% 0.5% 11.1%
Temperature 1.2% 1.4% 1.4% 25.9%
BMI 0.4% 2.9% 2.9% 37.5%
Bicarbonate 0.3% 1.6% 1.6% 26.1%
Creatinine 30.3% 9.1% 9.1% 231.4%
Hemoglobin 0.3% 1.8% 1.8% 25.8%
Platelet Count 0.7% 4.1% 4.1% 59.1%
WBC Count 48.2% 13.0% 13.0% 474.3%
Sodium 0.1% 0.4% 0.4% 5.9%
NT-proBNP 2.7% 4.5% 4.5% 62.7%
Troponin T 58.3% 12.0% 12.0% 3274.8%

Table 31: Cluster 2: Comparison of counterfactual generation performance across GRU,
SARIMAX, OLS, and N-BEATS. Metrics include prediction deviation, survival outcome
flips, and average percent change in key exogenous clinical features. Lower deviations and
smaller, targeted feature changes are desirable.
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Metric GRU SARIMAX OLS N-BEATS

Target Prediction Deviation

MAE 0.00 0.04 0.04 0.04
RMSE 0.00 0.05 0.05 0.05
Max Deviation 0.01 0.87 0.87 0.16
MAPE (%) 245085.05  4497574.79  4497170.58  4457559.15
Survival Changes
Changes to Survived (0 — 1) 0 0 0 0
Changes to Dead (1 — 0) 0 36 36 0
Mean % Change in Exogenous Features
Heart Rate 3.7% 1.2% 1.2% 7.6%
Systolic BP 29.9% 0.8% 0.8% 32.9%
Diastolic BP 3.8% 1.5% 1.5% 8.9%
SpO2 2.9% 0.7% 0.7% 3.8%
Temperature 2.5% 0.7% 0.7% 3.9%
BMI 3.1% 1.0% 1.0% 6.8%
Bicarbonate 0.9% 1.0% 1.0% 4.1%
Creatinine 161.8% 4.0% 4.0% 160.0%
Hemoglobin 0.6% 0.7% 0.7% 2.6%
Platelet Count 3.1% 1.5% 1.5% 10.9%
WBC Count 2.0% 1.9% 1.9% 10.5%
Sodium 0.1% 0.2% 0.2% 0.7%
NT-proBNP 13.2% 5.0% 5.0% 18.1%
Troponin T 48.4% 5.8% 5.8% 93.1%

Table 32: Cluster 3: Comparison of counterfactual generation performance across GRU,
SARIMAX, OLS, and N-BEATS models. Includes prediction deviation metrics, survival
flips, and mean percentage changes in key exogenous clinical features.
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