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Abstract

The increasing usage of smart devices and the development of artificial intelligence have also
sped up the growth of the digital health industry. Various digital health applications have
created new opportunities for the healthcare industry while generating massive data. Due to
the diversity and complexity of medical data, it is necessary to select appropriate data analysis
techniques for different applications. This study evaluated the usage patterns of predictive
data analysis techniques in digital health applications through a literature review, helping de-
velopers understand commonly used data analysis techniques in different medical scenarios
and select appropriate methods. Additionally, given the rapid development of deep learning
models and their increasing usage in the medical imaging field, we need systematic perfor-
mance benchmarks to assess whether these advanced techniques can bring real improvements.
Therefore, we tested various CNN-based models for glaucoma classification using fundus im-
ages on a real-world medical database and set corresponding benchmarks. Those experiments
provided evidence for model selection and indicated the trade-offs between model complexity
and accuracy in practical applications.

We conducted literature screening with the help of ASReview and systematically analyzed 249
articles from four major databases. We categorized the articles by data formats used in the
studies (audio, image, video, and structured numerical data) and analyzed the distribution
of predictive data analysis techniques. We found that traditional machine learning methods
are more suitable for structured numerical data, audio data analysis relies on feature engi-
neering, image data analysis largely depends on CNN architectures, and video data analysis
often requires computer vision tools. Additionally, we conducted comparative experiments on
the EyePACS-AIROGS-light-V2 glaucoma dataset, evaluating four groups of models: classic
stacked convolutional neural networks (CNNs), two-stage transfer learning approaches, end-to-
end transfer learning approaches, and hybrid methods combining deep learning with traditional
machine learning classifiers. Models using end-to-end transfer learning strategies achieved the
best performance. The ResNet50 based model reached 91.95% accuracy, 94.55% recall, and
0.9704 AUC-ROC. Lightweight models (MobileNetV2 and MobileNetV3-Small) also performed
well when using end-to-end training and achieved accuracy higher than 91%.

Our study shows the importance of choosing data analysis techniques according to the data
format and medical scenarios, providing a reference for application developers in selecting suit-
able analysis techniques. In addition, through multiple comparative experiments on image data,
we also set baselines and proved the potential of lightweight models such as MobileNetV2 and
MobileNetV3-Small, providing support for deploying predictive analysis tools with constrained
resources in the trend of mobile healthcare.

Keywords: digital health; predictive analysis; artificial intelligence; machine learning
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Chapter 1

Introduction

1.1 Background

The development of the healthcare industry is closely related to people's quality of life. In
recent years, the widespread of smart devices such as smartphones and smartwatches and the
rapid development of artificial intelligence have changed the way people access healthcare
services (Bajwa et al., 2021). Digital health applications provide new opportunities for the
development of the healthcare industry (Al Kuwaiti et al., 2023).

Digital health applications such as telemedicine and mHealth can make it easier for residents in
remote areas to get healthcare (Wosik et al., 2020; Peyroteo et al., 2021). The development of
wearable devices and loT technology can improve patient’s quality of life with chronic diseases
while reducing the burden on healthcare providers and increasing the efficiency of healthcare
institutions (Tan et al., 2024). In addition, the COVID-19 pandemic has also made people
realize the advantages of telemedicine and accelerated the development of digital health, which
has also generated a large amount of medical data in the process (Wosik et al., 2020; Tan
et al., 2024). The need to analyze medical data also drives the development of data-driven
digital health applications (Al Kuwaiti et al., 2023).

However, due to the complexity of medical data, there may be limitations, such as the data be-
ing in different formats, data missing (Sedlakova et al., 2023), and strict privacy requirements
(Price and Cohen, 2019). Thus, data analysis in the medical industry faces huge challenges.
In addition, since the medical industry has a direct impact on the safety of users, any digital
health service needs to be evaluated before implementation to ensure that it will not cause
harm to users. Therefore, unlike technological innovation in other industries, the speed of tech-
nique innovation in the digital health industry is usually faster than the speed of formulating
corresponding evaluation guidelines (Mathews et al., 2019). This gap between innovation and
validation has led to uncertainty about the effectiveness, safety, and reliability of many digital
health applications, and many techniques have not yet been clinically validated (Guo et al.,
2020). Only through systematic evaluation, taking into account the effectiveness, stability, and
operability of various digital analysis techniques in actual medical settings, can we identify the
most promising development directions in this large and rapidly developing field (Guo et al.,
2020).

Digital health applications are diverse and numerous, and the data analysis techniques involved
are even more complex. In order to explore this area more efficiently, it is necessary to classify
these applications first. In 2023, the World Health Organization (WHO) refined the detailed
taxonomy of Digital Interventions, Services, and Applications for Health (DISAH) (Organi-
zation, 2023). We will use this frame to categorize digital health applications and focus on
the category of "Digital Health Interventions for Data Services", particularly those related to
"Automated analysis of data to generate new information or predictions on future events".
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Applications in this category focus on the use of artificial intelligence, including machine
learning, to conduct predictive analytics. These applications can directly improve patients’
quality of life and have lots of relevant research resources and publicly available data for
validation. In general, they provide an ideal entry point for studying data analysis techniques
within digital health. Therefore, this paper focuses on investigating the models and methods
used for predictive analysis in digital health applications.

This study can provide a reference for digital health application developers and medical service
providers to help them choose appropriate data analysis techniques, especially the predictive
models for different digital health applications, and ultimately truly improve the quality of life
of every medical service user.

1.2 Problem statement

The research question we explored in this study is: Which predictive data analysis techniques
are most commonly adopted in digital health applications, how are these techniques related
to different types of medical data, and what are the distribution patterns of various predictive
data analysis techniques in real medical environments?

Currently, a wide range of techniques have been applied in the healthcare industry, from tra-
ditional machine learning techniques such as Support Vector Machines (SVM) and Random
Forests to deep learning models like Convolutional Neural Networks (CNN). Additionally, the
formats of medical data in the real world are diverse, such as images collected by medical de-
vices (e.g., CT scans) to detect joint lesions or numerical laboratory tests results to evaluate a
patient’s blood glucose. Different data formats may require distinct data preprocessing proce-
dures, feature extractions, and selection methods. Furthermore, many data analysis techniques
that perform well in laboratory environments may face challenges in real-world healthcare sce-
narios, such as computational resource constraints, data quality issues, and user acceptance.
This gap between theory and practical application can also lead to situations where cutting-
edge techniques may not be suitable for real-world digital health applications. Therefore, a
framework is needed to help digital health application developers understand the characteris-
tics of data that may be generated in real-world healthcare scenarios and the appropriate data
analysis techniques corresponding to them.

Based on this background, we can identify two specific problems:

1. What is the current usage frequency and the trend of various data analysis techniques in
the digital health field?

2. What is the most suitable matching between a specific digital health field (such as diagnosis
of a specific type of disease) and the types of data that need to be collected and the predictive
data analysis techniques that need to be applied?

1.3 Aims and objectives

This study aims to evaluate the current usage of data analysis techniques in different types
of data (structured numerical data, image, audio, and video) in digital health applications
through systematic literature analysis, identify the advantages and applicable scenarios of
various techniques, and provide suggestions for techniques selection for digital health appli-
cations. In addition, we select a real-world medical image dataset to test the applicability of
multiple predictive data analysis techniques in this specific data format, thereby providing a
partial validation of our proposed framework in the context of image data.
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1.4 Summary of contributions and achievements

Our study has two main contributions. Firstly, we conducted a systematic literature review
using ASReview, analyzing the usage patterns of various predictive data analysis techniques
according to the data formats used in the research. Secondly, in order to set systematic perfor-
mance benchmarks for CNN-based deep learning techniques in medical image analysis and to
test whether complex CNN variants and different learning strategies can provide performance
improvements in practical digital health applications, we selected several representative CNN
variants to conduct comparative experiments on the EyePACS-AIROGS-light-V2 dataset and
set benchmarks, providing references for designing image-based diagnostic systems.

1.5 Organization of the thesis report

Our thesis has six chapters: Introduction, Literature Review, Methodology, Implementation
and Results, Discussion and Analysis, Conclusions and Future Work.

Chapter 1 introduces the background and research questions of this study. Chapter 2 presents
a comprehensive literature review of predictive data analysis techniques in digital health ap-
plications. We categorize the research according to the data formats used (audio, image,
video, and structured numerical data) and analyze the usage patterns of various predictive
data analysis techniques across different medical domains. Chapter 3 describes the dataset
(EyePACS-AIROGS-light-V2), the four groups of models used for comparative experiments,
and the evaluation metrics used in this study. Chapter 4 presents the implementation details
and experimental results for all four experimental groups, including comprehensive performance
metrics (accuracy, precision, recall, F1-score, and Area Under the Curve (AUC)). Chapter 5
discusses the experimental results and the limitations of the current experiments. Chapter 6
summarizes the main findings and possible directions for future research.
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Literature Review

2.1 Review Literature with ASReview

In order to get a comprehensive view of this research area, we selected four databases in
computer science and medicine: Web of Science, IEEE Xplore, PubMed, ACM Digital Library,
and ACM Digital Library, which are the most authoritative databases in the field.

Our search query can be divided into two parts. The first part focuses on data analysis
techniques, and the second part limits the search results to the digital health field:

("data analysis" OR "machine learning" OR "artificial intelligence" OR "deep learning" OR
"predictive analytics" OR "statistical analysis" OR "data mining")

AND

("digital health" OR "mHealth" OR "eHealth" OR "telemedicine")

Table 2.1: Database Search Results by Platform

Database Search Area Document Type Number of Results

Web of Science Topic Article/ Book Chapters 3948

IEEE Metadata Conferences/ Journals/ Maga- 3284
zines/ Books

PubMed Title/ Abstract Book and Documents/ Clas- 277

sical Article/ Clinical Confer-
ence/ Clinical Trial/ Newspa-
per Article/ Clinical Study

ACM Title/ Abstract Research Article 93
/ Keyword

Total 7602

After cleaning and deduplication 7323

As shown in Table 2.1, there were too many articles in the database search phase. We used the
open-source active learning tool ASReview to simplify the screening process. ASReview uses
machine learning techniques to select and recommend the most potentially relevant papers,
significantly reducing the time needed for literature review while maintaining high sensitivity
for identifying relevant studies(van de Schoot et al., 2021). This approach enables the efficient
management of a large number of potential articles while ensuring the system comprehensively



CHAPTER 2. LITERATURE REVIEW

covers relevant literature.

We stopped screening when we got 10 irrelevant articles in a row. After using the ASReview
tool for preliminary screening of the search results, we got 860 articles most relevant to
our topic, "Automated analysis of data to generate new information or predictions on future
events." In the second round of screening, we did not use the stopping criteria and reviewed
all 860 articles to select studies that had already been tested in the real world, as these studies
have a greater impact on the real medical world. The final database contained 249 articles.

[ Identification of studies via databases and registers J
S
"E Records identified from™ Eczar:;c;ﬁfi;moved before
% Databases (n =7602) Duplicate records, insufficient
ko records removed (n = 279)
v
P
Records screened » Records excluded™
(n =7323) (n = 6463)
v
Reports sought for retrieval Reports not retrieved
2 (n = 860) ’ (n=0)
=
@
o
8 L4
o Reports excluded:
Reports assessed for eligibility > Reason: Only use public
(n = 860) datasets to test the algorithm
(n=611)
—
\J
'
e Studies included in review
= (n=249)
5 Reports of included studies
= (n=249)
—

Figure 2.1: Literature Screening - PRISMA 2020 flow diagram (Page et al., 2021)

2.2 Main findings and evaluation

We can categorize the predictive data analysis techniques involved in the final literature collec-
tion according to the model’s structure. Some models may show advantages when processing
certain types of data. Figure 2.2 shows the most frequently used models in the relevant articles
and the most frequently used models in each data type. There are four main types of data
involved in the articles we collected: audio, image, video, and structured numerical data.

2.2.1 Audio

We selected a total of 39 papers that included audio data. In these studies, researchers recorded
audio files using mobile phones, wearable sensors, or professional recording devices. The most
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Figure 2.2: Most frequently used models in the relevant articles - Most frequently
used models in each data type

common pre-processing method for these audio files is extract features from the time/fre-
quency, cepstral, and wavelet (Radouani et al., 2021b) domain. And then we can use feature
selection techniques such as ReliefF (Radouani et al., 2021b) or openSMILE (Mayr et al.,
2025) to identify the main features and then input these features into the machine learning
model for analysis to determine the health status of the subjects.

In terms of machine learning techniques, traditional models such as SVM and random forest
are widely used, assisting diagnosis of various diseases. For example, detecting Parkinson's
disease through voice analysis (Radouani et al., 2021a; Zhang et al., 2020; Motin et al.,
2022) or monitoring heart condition by analyzing heart sounds (Giiven et al., 2021; Narvaez
et al., 2017). Meanwhile, with the development of the CNN model, some researchers have
also applied it to process audio data. We can convert audio signals into spectrograms or Mel-
spectrograms, use CNN to extract features from them, and then input these features into
machine learning models for analysis (Vatanparvar et al., 2021). Or we can directly use CNN
models to classify by learning the features in the spectrograms (Chia et al., 2024; Castillo-
Escario et al., 2022). In addition, similar to how we pre-train CNN models on large-scale
image datasets and then fine-tune them on small-scale medical image datasets to improve
model performance, we can also pre-train CNN models to improve accuracy in audio data
analysis (Chia et al., 2024; Hu et al., 2021).
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Audio

Figure 2.3: Most frequently applied data analysis techniques (Audio)

Audio (data format)

= audio convert to structured numerical data = audio convert to image other

Figure 2.4: Data formats related to audio

Moreover, since audio files can be regarded as changes in sound signals over time, they also
have temporal features. Therefore, in theory, recurrent neural networks, especially LSTM (Bi-
LSTM) and GRU (Bi-GRU), should also have advantages in processing audio data. The work
by Choi et al. uses a BiGRU component that is specifically designed to capture temporal
relationships in respiratory sounds to improve their model’s performance (Choi et al., 2022).
However, RNN-based approaches haven't been widely applied in medical audio data analysis.
It will be a direction for future exploration, particularly in developing hybrid architectures that
combine CNN feature extraction with the temporal modeling strengths of RNNs.

The audio data in those studies mainly comes from three aspects. First, in the research
related to Parkinson's Disease, researchers collect recordings of participants reading specific
content to analyze whether they have Parkinson's Disease (Radouani et al., 2021a; Zhang
et al., 2020; Motin et al., 2022). Secondly, audio can be collected from wearable sensors and
stethoscopes when analyzing the respiratory health status of participants (Choi et al., 2022;
Chamberlain et al., 2016). In addition, heart sounds are collected during the diagnosis process
of cardiovascular diseases, which are mainly used to detect heart rhythm based on heart sounds
and then classify health problems such as arrhythmia. For example, the low-cost electronic
stethoscope for heart disease detection developed by Jahin et al. uses heart sound recordings
and achieves an accuracy rate of 92.48% using artificial neural networks (Jahin et al., 2022).
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In general, current audio data analysis in the health field still needs to rely on feature en-
gineering and feature selection and optimization to achieve better diagnosis and predictive
analysis results. In the future, we can try to conduct more experiments on neural network
methods involving temporal feature processing to explore the application of more complex
neural networks in audio data processing.

2.2.2 Image

We selected 67 papers related to image data. Among them, 35 studies used collected images
for data analysis directly, while 10 studies transformed the collected image data into structured
numerical data and then processed it using machine learning models. Models based on CNN
architectures were applied to all 40 publications that used image data directly for diagnosis
or prediction(image, audio convert to image, video convert to image). There are various CNN
variants in those studies, and lightweight models such as MobileNetV2 (Ngeh et al., 2020) and
DenseNet121 (Warin et al., 2021) are popular in applications that have limited resources and
require faster calculations. For example, Ngeh et al. focused on developing a low-cost solution
for skin cancer detection in rural communities using edge computing. Their approach shows
lightweight CNN architectures can maintain diagnostic performance while operating within
the computational constraints of edge devices.

Furthermore, many researchers chose models pre-trained on large-scale datasets such as Im-
ageNet to reduce training costs and reduce the impact of limited dataset sizes in real-world
experiments (Hwang et al., 2019; Girmaw and Taye, 2025).

In studies that convert image data into structured numerical data, traditional machine learning
models such as SVM, Random Forest, and K-NN were widely used. This observation is consis-
tent with our findings in audio data processing. However, these studies often required carefully
designed feature engineering. For example, Zhang et al. applied a two-level stationary wavelet
entropy (SWE) technique to extract meaningful features from brain images in their study on
multiple sclerosis detection using MRI scans. The low-dimensional feature space created by
SWE was particularly suitable for distance-based classification methods, enabling the K-NN
classifier to achieve an impressive accuracy of 97.94

Furthermore, some researchers also converted data from other formats into image formats
for analysis, such as converting audio signals into image representations, which we discussed
previously. And video data can be converted into image (sequences), which we will explore in
the next subsection.

Image

60
50
40
30
20

10

CNN SVM Random K-NN Decision MLP Naive  Gradient
Forest Tree Bayes Boosting

Figure 2.5: Most frequently applied data analysis techniques (Image)
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Image (data format)

V

=image = image convert to structed numerical data = audio convert to image = other

Figure 2.6: Data formats related to image

The image data mainly collected from dermatological and ophthalmological disease diagnosis.
Standard dermatological examinations need to use a professional device such as a dermato-
scope, while Ophthalmological examinations often rely on fundus images to determine specific
disease types. However, with the widespread use of smart devices, it has become possible to
collect images using smartphones and other devices.

Overall, CNN is the most important model for analyzing image data in digital health. As
smartphones become more popular, using smartphones for preliminary screening real-time
diagnostics can significantly lower the costs to accessing healthcare services.

2.2.3 Video

We selected 19 articles that included video data. Among them, 13 studies first converted
the video data into structured numerical data and then applied traditional machine learning
techniques such as SVM and Random Forest for diagnosis and predictive analysis. This process
typically involves using tools like OpenPose and Google MediaPipe for pose estimation and
obtaining the coordinates of key points such as joints (Mejia et al., 2022; Guarin et al., 2024;
Yang et al., 2021). In addition, it is also possible to directly extract spatial and temporal
features using 3D CNNs (Zheng et al., 2022) or convert video data into sequences of images
and then apply 2D CNNs (Pourazad et al., 2020) in combination with LSTM for analysis.

Video
6
5
4
3
2
1
0
SVM Random Logistic CNN Gradient 3D CNN
Forest Regression Boosting

Figure 2.7: Most frequently applied data analysis techniques (Video)
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These video data are often collected in studies focused on movement disorders related to
Parkinson's disease. The number of studies based on video data is relatively small, indicating
that data analysis techniques for digital health applications based on video data are still in
the early stages. This is mainly due to the complexity of processing video data, which requires
specific computer vision tools and consumes significant computational resources.

In general, analyzing video data in the medical and healthcare field still faces many challenges.
However, with the widespread of smartphones, video collection has become much more con-
venient. In the future, if standardized frameworks for video collection and pre-processing can
be built, and with the development of lightweight models, there is great potential for solutions
in remote diagnosis and at-home treatment of chronic diseases.

Video (data format)

= video convert to structured numerical data
= video convert to image (sequences)

other

Figure 2.8: Data formats related to video

2.2.4 Structured Numerical Data

We selected 132 articles that used structured numerical data (excluding those that were trans-
formed from images, audio, video, or text). For structured numerical data, traditional machine
learning models such as SVM, Random Forest, and Decision Tree are generally applied rather
than deep learning methods. This may be due to their lower computational requirements, ease
of implementation, and the data’s inherent structure, making it easier to process.
NS
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Figure 2.9: Most frequently applied data analysis techniques (Structured numerical
data)
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Regarding data sources, researchers collected data using mobile devices such as wearable
sensors or phone sensors in more than half of the studies. This reflects the trend of mobile
medical devices and the integration of healthcare services into users' daily lives. Xiang et al.
use mobile phone data for blood pressure prediction and show that daily routine patterns can
effectively predict blood pressure (Xiang et al., 2022). Park et al. use sensor-inherited insoles
and machine learning to classify abnormal gaits (Park et al., 2024). Fazeli et al. use smartwatch
sensor and deep learning to monitor stress levels, showing that physiological signals such as
heart rate can predict anxiety in daily life (Fazeli et al., 2022).

Most of these structured numerical data were collected in studies related to human activity
recognition, gait analysis and fall detection (Park et al., 2023; Pan and Nan, 2024; Liu et al.,
2023; Zhang et al., 2024). The high proportion of such studies in our literature list may also be
due to our selection criteria, which required that studies involve real-world experiments rather
than only tested on public datasets. The wearable sensors in these human activity recognition
studies have, to some extent, lowered the barrier to conducting experiments, making it more
possible for such research to be tested in real-world settings. Additionally, data collection in
these experiments typically involves only a few dozen participants, each generating a large
number of data points by performing multiple types of activities with sensors—another reason
why these studies are easier to conduct.

Another source of structured numerical data comes from physiological data obtained in med-
ical examinations. Electrocardiogram (ECG) data is the most common type (Randazzo et al.,
2024). As a result, there are a group of studies focusing on cardiovascular health. Kashani
et al. developed a lightweight and comprehensive AF detection system. Using only five HRV
features with a depth-5 decision tree achieved good performance (98.63% accuracy on AFDB
with 99.22% sensitivity) (Kashani et al., 2022). Their work shows signal preprocessing, fea-
ture engineering, and model selection can lead to good performance with relatively simple
algorithms.

2.2.5 Text

Besides audio, images, videos, and structured numerical data, text is also a common data
format in our daily lives. However, among the literature we collected, only five articles used
unstructured text data. Only two of them rely entirely on text data. Tariq et al. use the
posts from the mental illness-related sections on the Reddit platform to predict mental health
state (Tariq et al., 2019), and Soguero-Ruiz et al. use unstructured text medical records from
hospitals to predict postoperative complications (Soguero-Ruiz et al., 2016). Both of them
use bag-of-words models to extract features after pre-processing and cleaning, and then use
traditional machine learning models for predictive analysis. We do not have enough articles
for further analysis. It might be because the text related to medical diagnosis contains patient
privacy, and annotating medical texts is more challenging, making it difficult to obtain large-
scale datasets, which limits the development of related research.

2.3 Summary

By analyzing the selected papers according to the types of data used, we found that different
data formats tend to be preferred in the study of different health conditions, and each data
type is typically associated with specific suitable data processing techniques. Studies using
structured numerical data for analysis are the most common, with more mature data anal-
ysis techniques and more standardized analytical methods, usually using traditional machine
learning models such as SVM and Random Forest. For audio data, although some researchers
tend to convert audio to images and use CNN and other deep neural network models, the
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combination of feature engineering with traditional machine learning models is still widely
used. The application of video data faces greater challenges, with relatively few related stud-
ies, as it typically requires computer vision tools and needs complex preprocessing steps. The
unstructured text data, such as medical records, faces even more challenges, including patient
privacy protection and the time costs of annotation by medical experts. In contrast, research
based on medical image data for predictive analysis has higher potential and practical value.
First of all, from the perspective of data collection, the development of cameras in various
consumer devices, such as mobile phones, makes it more convenient to take images that can
be used for medical diagnosis. Moreover, compared with the high requirements for recording
audio and video, taking images is more convenient and feasible. Especially for research on
skin-related diseases that mainly rely on the appearance of the lesion, although there are
more accurate devices such as dermatoscopes, some researchers have used mobile phones to
collect image data and applied them for medical diagnosis research, which greatly reduces the
threshold and cost of data collection. For example, Pangti et al. developed a mobile application
based on DenseNet-161, using smartphones to take photos with varying camera quality and
lighting conditions to prove the possibility of Al-assisted skin disease diagnosis in a real clinical
environment (Pangti et al., 2021).

Secondly, from the perspective of data analysis techniques associated with image data, the
continuous development of deep learning models provides more practical and efficient options
in this field. As we mentioned earlier, image data analysis relies heavily on CNN models, and
the emergence of CNN variants in recent years has provided more choices. Particularly, the
development of lightweight architectures such as MobileNet has made it more practical to
deploy those high-performance image analysis models. The application of pre-trained models
and transfer learning techniques is particularly suitable for the relatively small scale of medical
datasets. Using large-scale datasets such as ImageNet to provide foundational features for
models, enabling them to achieve good performance on relatively small medical image datasets.
Additionally, from our previous literature review in section 2.2.1 and 2.2.3, we can also find
that image data serves as a commonly used type for data format conversion ( Figure 2.4,
Figure 2.8 ). Both audio and video data can be transformed into image data and then benefit
from the powerful analytical capabilities of various CNN models. Further proving the potential
of image based medical data analysis. Therefore, we should focus on data analysis techniques
required for image data-based digital health applications, especially the practical performance
of various CNN based techniques under different medical circumstances.
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Chapter 3

Methodology

As mentioned earlier, Convolutional Neural Network (CNN) models have been applied widely to
assist medical diagnoses based on images. However, there are lots of variations based on CNN,
and there are different training strategies that can also lead to performance differences. This
experiment aims to conduct a comprehensive comparison of multiple machine learning methods
based on CNN in the task of glaucoma detection using fundus images, test the effectiveness of
these predictive data analysis techniques, and set performance benchmarks. This comparison
will also help future researchers identify the most potential architectures and training strategies
for predictive analysis based on medical data in image format. More specifically, this study will
test whether more computationally expensive model architectures(Resnet 50) and training
strategies(two-stage fine tuning) provide sufficient performance improvements compared to
simpler alternatives(classic CNN, Mobilenet V2, Mobilenet V3small; end-to-end training).

3.1 Dataset descriptions

Glaucoma is the second leading cause of blindness worldwide, and early diagnosis is critical to
preventing irreversible vision loss. In addition to basic clinical examinations such as intraocular
pressure and visual field tests, Al-based analysis of fundus images can offer a convenient
solution for large-scale population screening for glaucoma. In the screening process, the label
RG (Referable Glaucoma) indicates that the fundus image shows suspicious glaucomatous
signs and the patient should be referred to a specialist for further examination or treatment;
NRG (Non-Referable Glaucoma) means no obvious signs of glaucoma have been detected,
and the patient doesn't need to be referred to a specialist.

We chose the EyePACS-AIROGS-light-V2 dataset, which contains 9,540 standardized color
fundus images. It is a balanced subset selected by Kiefer et al. from the large-scale Rotterdam
EyePACS AIROGS dataset, specifically designed for machine learning research (Kiefer, 2024).
The dataset is divided into a training set (RG: 4,000 images; NRG: 4,000 images), a validation
set (RG: 385; NRG: 385), and a test set (RG: 385; NRG: 385). All images are standardized
using the CROP method, which proved to be the most effective strategy in their ablation
study (Steen et al., 2023). They removed the black background in the fundus images before
cropping and resizing, preserving the maximum useful information about the retina.

3.2 Experiments design

3.2.1 Compared models

We selected four groups of representative models for this study. Classic stacked convolutional
neural network; Lightweight models represented by MobileNetV2 (Sandler et al., 2018) and
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MobileNetV3-Smal (Howard et al., 2019); And a deep, high-performance model represented
by ResNet50 (He et al., 2016). In terms of training strategies, we compared two main ap-
proaches: Two stages transfer learning and End-to-end training (Yosinski et al., 2014). Finally,
we introduced a hybrid method that combines traditional machine learning classifiers with deep
learning models as feature extractors to explore more possibilities of predictive data analysis
techniques in the medical field.

The first model uses a fully customed convolutional neural network architecture, and the re-
sults can be used as the baseline. This convolutional neural network contains five convolutional
blocks, each of them having a convolutional layer, batch normalization, ReLU activation func-
tion, and max pooling layer. Followed by global average pooling and a fully connected layer
for binary classification.

The second group of models uses the two-stage transfer learning approach. We use ResNet50,
MobileNetV2, and MobileNetV3-Smallas backbone networks, all of which were pre-trained on
the ImageNet dataset. In the first stage, all parameters of the pre-trained backbone are frozen,
and only the newly added classifier head is trained. With the learning rate set to 0.0005 and
training for 15 epochs. The purpose of this stage is to make our newly added classifier adapt
to the mapping relationship from pre-trained features to glaucoma detection labels.

In the second stage, we unfreeze the last 30 layers of the pre-trained network and use a lower
learning rate of 0.00005 to fine-tune the models on the EyePACS-AIROGS-light-V2 dataset
for 10 epochs. The fine-tuning stage allows the model to adapt to the specific characteristics
of the dataset, and a lower learning rate is used to avoid losing the useful representations that
the models learned during the pre-training process.

The third group of models uses the end-to-end training strategy. We also use pre-trained
ResNet50, MobileNetV2, and MobileNetV3-Small as backbone networks. However, unlike the
second group, we won't use the freeze-unfreeze approach. Instead, all parameters of the entire
network are set to be trainable, allowing for gradient updates across all layers. The learning
rate is set to 0.0005, and the training is conducted for 15 epochs in total to ensure the
networks have sufficient time for comprehensive parameter optimization.

The fourth group of models uses a hybrid approach. We select the best-performing model
from the third group as a feature extractor and train it on the current dataset for 15 epochs
to fully learn features and generate feature vectors. These extracted features will be used as
inputs of the traditional machine learning classifiers to produce the final binary classification
results.

3.2.2 Evaluation

We evaluated the predictive performance of each method using accuracy, precision, recall,
Fl-score, and AUC-ROC (Goodfellow et al., 2016). Since in medical practice, the cost of
misclassifying a positive patient as negative (false negative) is usually higher than the opposite,
we will tend to choose models with higher recall when other performances are similar to reduce
the risk.

Predicted
Actual | Positive | Negative
Positive TP FN
Negative FP TN

Table 3.1: Confusion Matrix
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TP+ TN

Accuracy = T 5 T TN+ FP+ FN (31)
TP
Precision = TP+ FP (3.2)
TP
Recall = —— .
T TPIFN (3:3)

2 x Precision x Recall
F1- = 3.4
score Precision + Recall (3.4)

The Area Under the Receiver Operating Characteristic Curve (AUC-ROC) is calculated as:
1
AUC-ROC = / TPR(FPR™Y(t)) dt (3.5)
0

TPR (True Positive Rate) is equal to Recall and FPR (False Positive Rate) is defined as:

FP

FPR= —
FP+TN

(3.6)
Through these four groups of systematic comparative experiments, we aim to assess the effec-
tiveness of various predictive data analysis techniques, provide practical insights for developers
of digital health applications, and promote the real-world application of artificial intelligence
in the early screening of ophthalmic diseases.
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Chapter 4

Implementation and Results

We systematically evaluated various CNN based deep learning methods on the task of glau-
coma classification using fundus images. From classical CNN to pre-trained models and hybrid
methods combining deep learning with traditional machine learning, we explored how model
architecture and training strategies affect the results of medical image analysis tasks.

Table 4.1: Performance Comparison of All Models

Model Accuracy Precision  Recall  F1-Score AUC-ROC
Classic CNN

Classic CNN 83.12%  79.86%  88.57%  83.99% 0.9143
Two-Stage Transfer Learning

ResNet50 89.22%  88.72%  89.87%  89.29% 0.9362
MobileNetV2 83.64%  82.95% 84.68%  83.80% 0.9193
MobileNetV3-Small 84.81%  83.50% 86.75%  85.10% 0.9228
End-to-End Transfer Learning

ResNet50 92.34%  89.37% 96.10% 92.62% 0.9756
MobileNetV2 92.47% 92.69% 92.21%  92.45% 0.9728
MobileNetV3-Small 90.65%  91.08%  90.13%  90.60% 0.9631
Hybrid Approach

ResNet50+SVM 87.01%  86.45% 87.79% 87.11% 0.9301

ResNet50+RandomForest  81.43% 78.54%  86.49%  82.32% 0.9084

4.1 Classic stacked convolutional neural network

The classic stacked convolutional neural network uses a progressive feature extraction strat-
egy. After data augmentation (including normalization, horizontal flipping, vertical flipping,
and brightness adjustment), the image data will flow into the model. The number of filters
gradually increases from 32, 64, 128, 256 to 512. Each convolutional block includes batch
normalization and RelLU activation function, followed by global average pooling with dropout
regularization. The final output layer uses a sigmoid activation function for binary classifi-
cation. The model uses the Adam optimizer with an initial learning rate 0.0001 and binary
cross-entropy as the loss function. We use an adaptive learning rate scheduling strategy (Re-
duceLROnPlateau) to prevent overfitting during training. It will reduce the learning rate to
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85% of the original value when the loss on the validation set stops improving, with a minimum
learning rate limit of 0.00001.
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Figure 4.1: Training accuracy and loss of the classic stacked CNN model

As can be seen from figures 4.1a and 4.1b, during the training process, the model's accuracy
on the training set improved, and the loss decreased. On the test set, the model achieved
an overall accuracy of 83.12%, AUC-ROC of 0.9143, precision of 79.86%, recall of 88.57%,
and Fl-score of 83.99%. The confusion matrix in figure 4.2a shows that the model tends to
predict the image as the positive class (RG), causing 86 false positives and 44 false negatives.
The ROC curve 4.2b is obviously convex, which means the model has high sensitivity and
specificity under most threshold settings, further proving that classic CNN is already effective
on this dataset.
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Figure 4.2: Confusion matrix and ROC curve of the classic stacked CNN model

4.2 Two-stage transfer learning

In the second group of experiments, we used three ImageNet pre-trained models as backbones:
ResNet50, MobileNetV2, and MobileNetV3-Small. All three models adopted the same two-
stage training strategy to ensure fairness and comparability of the experiments.
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In the first stage, we froze the backbone part of the pre-trained network, removed the original
classification head, and added a global average pooling layer and a single sigmoid output node
for binary classification. Image data was preprocessed using the preprocess input function spe-
cific to each backbone network to ensure input data corresponded with the pre-trained models.
We also keep the data augmentation strategies on the training dataset, including horizontal
flipping, vertical flipping, and brightness adjustment, to improve model generalization ability.
After training for 15 epochs using the Adam optimizer with a learning rate of 0.0005, we pro-
ceeded to the second stage, where we unfroze the last 30 layers of the backbone network and
reduced the learning rate to 0.00005 for fine-tuning. Both stages employed the same adaptive
learning rate decay strategy (ReduceLROnPlateau) as used in the first group of experiments.
As we can see in the table 4.1, ResNet50 shows its excellent learning capability on this medical
image dataset. MobileNetV2 and MobileNetV3-Small, as representatives of lightweight mod-
els, also performed well. Especially MobileNetV3-Small is a choice that balances lightweight
with good performance. It has the most stable training process, with the least fluctuation in
validation loss, indicating good generalization ability.
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Figure 4.3: Training accuracy and loss (two-stage ResNet50)
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Figure 4.4: Training accuracy and loss (two-stage MobileNetV?2)
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Figure 4.5: Training accuracy and loss (two-stage MobileNetV3Small)

On the other hand, as shown in figures 4.3 and 4.4, we should notice that due to their complex
structure and the large number of parameters, they have a higher risk of overfitting compared
to the other two models. If we want to use them in medical practice, they might require more
refined regularization strategies.

By comparing the confusion matrices and ROC curves of the three models in figures 4.6, 4.7
and 4.8, we can find that ResNet50 has predictive ability in both classes with no obvious
bias. It maintains a balance between high sensitivity and specificity across various threshold
settings. MobileNetV2, as a lightweight model, has more misclassifications than ResNet50, but
its classification is relatively balanced. MobileNetV3-Small is the lightest model, producing 66
false positives and 51 false negatives, indicating a slightly unbalanced performance. However,
its AUC value of 0.9228 suggests that the model is still effective.
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Figure 4.6: Confusion matrix and ROC curve (two-stage ResNet50)
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Figure 4.7: Confusion matrix and ROC curve (two-stage MobileNetV2)
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Figure 4.8: Confusion matrix and ROC curve (two-stage MobileNetV3Small)

When comparing these three pre-trained and two-stage fine-tuned models with the classical
CNN used in the first experiment, the performance improvement is not as significant as ex-
pected. This may be because, during two-stage fine-tuning, the lower layers of the models
were frozen, preventing them from capturing features that are crucial for glaucoma classifica-
tion. In the third experiment, we will conduct end-to-end training using the same backbone
architectures to test whether they can get those crucial features and better results.

4.3 End-to-end transfer learning

In the third group of experiments, we used the same pre-trained models as in the second group
(ResNet50, MobileNetV2, and MobileNetV3-Small) but switched from a two-stage transfer
learning approach to an end-to-end training strategy. Therefore, we can evaluate whether
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directly fine-tuning the entire pre-trained model could achieve better performance in this
application scenario. We adopted the same data preprocessing strategy as in the second group,
using the preprocess input function specific to each model to ensure consistent input formats,
along with the same data augmentation techniques (horizontal flipping, vertical flipping, and
brightness adjustment). Unlike the second group, we removed the backbone freezing step and
set all layers to be trainable from the beginning. We used a unified learning rate of 0.0005
and the same adaptive learning rate scheduling strategy (ReduceLROnPlateau). Each model
was trained for 15 epochs.

As it shown in table 4.1, the accuracy of the ResNet50 model under the end-to-end training
strategy is 92.34%, and the AUC-ROC value is 0.9756. From the confusion matrix in the figure
4.12, we can see that ResNet50 misclassified 44 NRG samples as RG and 15 RG samples as
NRG. It means that ResNet50 tends to predict the image as the positive class (RG), causing
a large number of false positives (44), and the model's performance on the two categories
is unbalanced. The accuracy of MobileNetV2 is 92.47%, and the AUC-ROC is 0.9728. The
confusion matrix in the figure 4.13 shows that MobileNetV2 misclassified 28 NRG samples
as RG and 30 RG samples as NRG. The nearly equal distribution shows that MobileNetV2
has nearly balanced performance on the two categories. Although MobileNetV3Small has the
lowest overall accuracy of 90.65%, its AUC-ROC is 0.9631, meaning that the model is still
effective. And according to the confusion matrix in the figure 4.14, it misclassified 34 NRG
samples as RG and 38 RG samples as NRG. Although the total number of misclassifications
(72) is higher, the error distribution is balanced, indicating that it also has nearly balanced
performance on the two categories.

The end-to-end training strategy led to significant performance improvements across all three
models. All the pre-trained models now outperform the classical CNN used in Experiment 1,
proving the effectiveness of those pre-built CNN variations and their pre-trained weights.
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Figure 4.9: Training accuracy and loss (end-to-end ResNet50)
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Figure 4.10: Training accuracy and loss (end-to-end MobileNetV?2)
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Figure 4.11: Training accuracy and loss (end-to-end MobileNetV3Small)

Comparing the results of the second and third groups, we can find that models using end-to-
end training strategies actually performed better than those using two-stage fine-tuning on the
specific dataset. Considering the dataset we used, the reason might be that glaucoma detection
requires attention to features such as optic disc morphology and nerve fiber layer thickness.
End-to-end training allows lower-level convolutional blocks to adjust according to the texture
and color features of retinal images, while the freezing stage in two-stage learning may limit
the model’s ability to learn these medical image-specific features, potentially causing feature
mismatch in two-stage training. Additionally, due to the small size of the dataset, the original
pre-trained weights in the backbone network can provide a good initialization that enables
the model to better adapt to the feature distribution of limited data. Two-stage training may
disrupt some of the features learned by the backbone network. Therefore, end-to-end training
may get better results when dealing with small medical datasets.
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Figure 4.12: Confusion matrix and ROC curve (end-to-end ResNet50)
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Figure 4.14: Confusion matrix and ROC curve (end-to-end MobileNetV3Small)
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4.4 Hybrid approach

In the fourth group of experiments, we combined deep learning networks with traditional
machine learning models. We used a pre-trained ResNet50 network as a feature extractor,
inputting the extracted 2048 dimension feature vectors into two traditional machine learning
classifiers: Support Vector Machine (SVM) and Random Forest for glaucoma classification.
The hyperparameter search range for SVM included C uniformly distributed within 0.1-10,
gamma within 0.0001-0.1, with fixed RBF kernel function. The hyperparameters for Random
Forest included n estimators selected from [100, 200, 300], max depth varying among [None,
10, 20], min samples split from [2, 5, 10], and min samples leaf varying among [1, 2, 4].
Both algorithms used RandomizedSearchCV for hyperparameter optimization, with 20 search
iterations, 3-fold cross-validation, and AUC-ROC as the evaluation metric.

As can be seen from the table 4.1, based on feature extraction using ResNet50, SVM achieved
87.01% accuracy, outperforming Random Forest’s 81.43%. This indicates that SVM's kernel
function mechanism can better handle the complex 2048-dimensional feature representations
extracted by ResNet50. From the confusion matrix in the figure 4.15, we can see the ResNet50
+ SVM model misclassified 53 NRG samples as RG and 47 RG samples as NRG, indicating
that its performance on the two categories is relatively balanced. The confusion matrix in the
figure 4.16 shows that the ResNet50 + Random Forest model misclassified 91 NRG samples
as RG and 52 RG samples as NRG. The number of misclassifications is significantly higher
than that of the ResNet50 + SVM model. It also means the model is unbalanced on the two
categories, and its ability to classify the NRG samples is relatively weak. The AUC-ROC value
of ResNet50 4+ SVM is 0.9301, and the AUC-ROC value of ResNet50 + Random Forest model
is 0.9084, indicating that both of them are reliable in this task. However, compared with the
results of the third group of experiments, end-to-end learning still performs better. This may
be because when used as a feature extractor, ResNet50’s weights are fixed and cannot be
adjusted for the specific characteristics of medical images, further proving the importance of
feature space adaptability.
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Figure 4.15: Confusion matrix and ROC curve (ResNet50+SVM)
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Figure 4.16: Confusion matrix and ROC curve (ResNet50+RandomForest)

4.5 Gradient-weighted Class Activation Mapping

As mentioned earlier, people might not trust deep learning models due to the lack of inter-
pretability. To reduce the distrust and test our assumption that the two-stage transfer learning
model cannot adapt to the unique features of this specific medical dataset, we used Gradient-
weighted Class Activation Mapping (GRAD-CAM) to visualize the models’ interest areas when
they made predictions.

4.5.1 True positive examples

From figures 4.17 to 4.23, we can see that all models mainly focus on the optic disc area
when making predictions, which is consistent with real medical diagnoses, indicating that the
features used by the models are reasonable.

True: RG | Pred: RG

Conf: 0.999 Grad-CAM Heatmap Overlay

Figure 4.17: Classic CNN True positive
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Original
True: RG | Pred: RG
Conf: 1.000

Grad-CAM Heatmap Overlay

Figure 4.18: Two-stage ResNet50 True positive
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True: RG | Pred: RG
Conf: 1.000 Grad-CAM Heatmap

Figure 4.19: Two-stage MobileNetV2 True positive

Overlay
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Conf: 0.999 Grad-CAM Heatmap Overlay
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Figure 4.20: Two-stage MobileNetV3Small True positive

26



CHAPTER 4. IMPLEMENTATION AND RESULTS 27

True: RG | Pred: RG
Conf: 1.000 Grad-CAM Heatmap

Figure 4.21: End-to-End ResNet50 True positive
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Figure 4.22: End-to-End MobileNetV2 True positive

True: RG | Pred: RG

Conf: 1.000 Grad-CAM Heatmap Overlay

Figure 4.23: End-to-End MobileNetV3Small True positive

4.5.2 True negative examples

However, Figures 1 to 7 show that some models failed to detect the optic disc when making
negative class predictions. Models like Classic CNN and End-to-End ResNet50 focus on the
edges of the image, which can lead to incorrect predictions. To solve this problem, future
research could try to do segmentation before inputting data into the predictive model.
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Figure 4.24: Classic CNN True negative
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Figure 4.25: Two-stage ResNet50 True negative

Original
True: NRG | Pred: NRG

Conf: 0.493 Grad-CAM Heatmap

Overlay

Figure 4.26: Two-stage MobileNetV2 True negative
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Figure 4.27: Two-stage MobileNetV3Small True negative
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Figure 4.28: End-to-End ResNet50 True negative
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Figure 4.29: End-to-End MobileNetV2 True negative
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True: NRG | Pred: NRG

Conf: 0.000 Grad-CAM Heatmap

Figure 4.30: End-to-End MobileNetV3Small True negative

Overlay
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Chapter 5

Discussion and Analysis

5.1 Analysis of results

The experimental results show a clear performance difference. The classic stacked CNN, used
as our baseline model and trained from scratch, achieved an accuracy of 83.12% and an AUC-
ROC of 0.9143 on the test set. It means that even without pre-trained weights or complex
architectures, a simple CNN model can effectively complete the glaucoma classification task
on this dataset. The two-stage transfer learning approach showed improvements over this
baseline. The ResNet50-based model with ImageNet pre-trained weights achieved the highest
accuracy of 89.22%. However, the improvement was limited compared to our expectations.
This limitation is because the first stage freezes the lower-layer weights of the model, limiting
its ability to learn task-specific features from medical images, such as the optic disc morphol-
ogy and nerve fiber layer thickness in this dataset. The end-to-end transfer learning strategy
improves all three models significantly. The model based on ResNet50 achieved an accuracy
of 92.34%, an AUC-ROC of 0.9756, and a recall of 96.10%. This improvement shows the ben-
efits of end-to-end training in medical image analysis. By allowing the entire network to adapt
to the target task, low-layer weights can be optimized based on unique textures and color
patterns in medical images, enabling deeper and task-specific feature learning. In addition,
lightweight models also showed excellent performance with end-to-end training. The accuracy
of MobileNetV3-Small increased from 84.81% to 90.65%, and MobileNetV?2 achieved 92.47%,
showing the potential of lightweight architectures. These results offer practical solutions for
deploying medical image classification systems with constrained resources. In the fourth ex-
periment, we used ResNet50 as a feature extractor and combined it with traditional machine
learning algorithms. The model combined with SVM achieved an accuracy of 87.01%, while
the random forest model only achieved 81.43%. Both of them were lower than the end-to-end
trained ResNet50. It further proves the importance of feature space adaptability.

Overall, our comparative experiments validate the effectiveness of pre-trained models with end-
to-end strategies for glaucoma classification on the EyePACS-AIROGS-light-V2 dataset. We
also proved the potential of lightweight models such as MobileNetV2 and MobileNetV3-Small.
The performance difference between end-to-end training and two-stage training indicates that
adapting the entire network to the dataset might have more advantages when dealing with
medical image data that differs from natural images.

5.2 Limitations

Although we obtained these results from our experiments, there are still some limitations. First,
all our experiments were conducted on a standardized dataset (EyePACS-AIROGS-light-V2).
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The distributions of RG and NRG in the training, validation, and test sets are balanced, and
the images are preprocessed. This may reduce the complexity of the original dataset. And the
image data in the clinic may have class imbalance and varying image quality, both of which
can impact the model's real-world performance.

Additionally, since the dataset was already split, we did not evaluate the robustness of the
models under different data split strategies or cross-validation methods. Furthermore, this
study only focused on the binary classification of RG and NRG using fundus images. The
findings may not generalize to predictive tasks for other diseases, as those images might have
different features and require different methods.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

Our study explored predictive data analysis techniques in digital health applications through a
systematic literature review and then evaluated the performance of multiple CNN based meth-
ods on glaucoma classification tasks using the EyePACS-AIROGS-light-V2 dataset through
four comparative experiments.

We first used ASReview to screen 7,323 articles from four major databases, and considering
the impact on real medical systems, we selected 249 articles for a systematic literature review
to analyze the usage patterns of predictive analysis techniques in digital health applications.
We found a correlation between the data format and data analysis techniques. Structured nu-
merical data is the most common category, mainly using traditional machine learning methods
such as SVM and Random Forest. Image data analysis heavily relies on CNN architectures
and is often enhanced through transfer learning strategies to deal with limited data in med-
ical applications. In audio data processing, traditional feature engineering methods are still
widely used, but there is also a trend toward converting signals into spectrograms and then
using CNN to analyze them. Research using video data is relatively limited because it usually
requires complex preprocessing procedures and relies on computer vision tools with higher
computational resource requirements. However, with the spread of smart devices, video col-
lection has become more convenient, and data analysis using video data will have greater
potential. We found the important role of CNN architectures in medical image analysis in our
literature review, so we used the EyePACS-AIROGS-light-V2 glaucoma dataset to conduct four
comparative experiments to evaluate the effectiveness of different CNN variants and training
strategies. We found that classic stacked CNNs already have efficient baseline performance
(accuracy of 86.36%, AUC-ROC of 0.9377), indicating that even simple CNN architectures
can effectively handle medical image classification tasks. Two-stage transfer learning models
showed improvement, with ResNet50 achieving 87.66% accuracy, but due to frozen lower-
layer weights, they cannot learn specific features of medical images, so the improvement was
limited. End-to-end transfer learning strategies led to significant performance improvements
for all models. ResNet50 achieved 91.95% accuracy, 94.55% recall, and 0.9704 AUC-ROC.
End-to-end transfer learning also made lightweight models perform better, with MobileNetV3-
Small achieving 91.69% accuracy and MobileNetV2 achieving 91.30% accuracy, showing their
potential in medical applications with limited resources. When ResNet50 was used as a feature
extractor combined with traditional classifiers, the model with SVM classifier achieved 87.01%
accuracy, further proving the superiority of end-to-end trained CNN models in medical image
analysis.

Overall, this study provides a reference for predictive data analysis technique selection in
digital health applications through a systematic literature review and specifically analyzes the
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performance of multiple CNN variations in medical image data analysis through comparative
experiments.

6.2 Future work

As mentioned earlier, although this study has achieved some results on the EyePACS-AIROGS-
light-V2 dataset, there are still many limitations, and future work can improve these areas.
First, since EyePACS-AIROGS-light-V2 is a standardized and balanced dataset extracted from
the Rotterdam EyePACS AIROGS, the numbers of RG and NRG samples in the training,
validation, and test sets are all equal. It is different from real clinical data. Future research
could try to evaluate model performance using non-standardized images and class-imbalanced
data in actual medical scenarios.

Additionally, this study only designed experiments for CNN based models on image format
datasets. Future work could design experiments for other data formats and corresponding
data analysis techniques to set benchmarks. For example, exploring the actual performance
of RNN models in processing audio format medical data, standardizing the framework for
medical video data collection and preprocessing, etc. Furthermore, this study only focused
on data analysis techniques related to predictive analysis in digital health applications, mainly
used for disease diagnosis and classification. There are many other data analysis techniques for
different purposes that need further research exploration. In summary, due to the complexity
of medical data in form and content and the characteristic that the medical industry is closely
related to people’s quality of life, there is still a lot of chance to explore data analysis in digital
health applications.
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