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Abstract

Cyber security is more important than ever. Attacks on critical infrastructure are daily occurrences, raising
the importance of secure software and patching found bugs in time. One method to find new bugs in software
is fuzzing. Currently, it can be hard to implement fuzzing in the development phase due to requiring a lot
of manual work and experience. In this work, we present a tool, called LLM2Fuzz, which can automate
the fuzzing process of C-style applications by letting Large Language Models generate the fuzzing harness,
custom mutators and seed input files. Furthermore, we try to make the fuzzing process more efficient by
learning more about the target beforehand. The Large Language Model performs an analysis on the Control
Flow Graphs of the software we want to fuzz. This analysis includes a ranking of functions which seem to
be the most vulnerable. Using this analysis, another Large Language Model can write the fuzzing harness
and custom mutator in a way we can specifically target these functions. Our experiments seem to show that
this implementation is better than the current state of the art implementations in terms of discovering new
bugs. Furthermore, the Control Flow Graph analysis seems to have a positive effect on the time efficiency.
Surprisingly, the effect of the custom mutator seems to be minimal. However, more experiment runs are
needed to confirm these results.



1 Introduction

According to the ABN Amro, one out of five Dutch companies were harmed by cyber attacks in 2024 [32].
These cyber attacks could do serious harm, ranging from financial losses to disruptions of public services.
To keep our software safe, an effective method of finding bugs in applications is necessary.

There are multiple methods to find undiscovered bugs in software, often divided between static applica-
tion testing methods (SAST) and dynamic application testing methods (DAST). With SAST, the source
code or binary files are analyzed to find vulnerable code, whereby the application is not run. With DAST,
the application is run, to see the effects of specific actions on the running application.

One DAST method is called fuzzing. As stated by the CAPEC, “Fuzzing is a software security and function-
ality testing method that feeds randomly constructed input to the system and looks for an indication that a
failure in response to that input has occurred.” [62]. On a fuzzing campaign, a fuzzer feeds random data to a
target; data that the target does not expect. The data is fed to the target using a fuzzing harness, which can
be seen as a ‘bridge’ between the fuzzer and the target. On the one ‘side’ of the bridge, the fuzzer obtains
the random generated data from the mutator, responsible for mutating the data in unexpected ways. On
the other ‘side’ of the bridge, the fuzzing harness calls the application, to see the effects of the generated input.

Using this process, the fuzzer tries to find other code paths than the ‘happy path’. A ‘happy path’ is the
path taken with a test case that uses known and expected inputs [13], and are test cases built to pass. These
paths do often not cover edge cases. With fuzzing, inputs may be generated that do cover these edge cases,
thus not following the ‘happy path’. The goal of covering these edge cases is to find new ‘buggy states’ in the
code. These ‘buggy states’ may result in a crash. The fuzzer is responsible for observing these crashes and
saving the input that triggered the crash. All this found information can be used to find new bugs in the code.

Overall, fuzzing is a heavily researched topic in Cyber Security [62], 43, [48]. Several tools, such as Google‘s
0OSS-Fuzz, has shown the importance of fuzzing [35]. As shown on the documentation of OSS-Fuzz [35], the
service has, as of May 2025, identified and fixed over 13.000 vulnerabilities and 50.000 bugs in over 1.000
projects. This indicates the importance of fuzzing in Software Security.

1.1 Current challenges of fuzzing

Fuzzing comes with some challenges, making it harder to implement a fuzzing solution. One of these chal-
lenges is that, at this moment, fuzzing requires a lot of manual work. For every different target in an
application or library that should be tested, a different fuzzing harness should be created, which takes time
and experience. Furthermore, for some targets, a custom mutator may also be necessary. This may be the
case when a part of the application can only be accessed when the input has some specific structure. To
ensure that the input is in this specific structure, a custom mutator can be written which enforces this. To
write a successful custom mutator, one should have a understanding of the structure of the inputs, which
also takes time and requires experience.

A second challenge in fuzzing is that the fuzzing campaign can take a long time and a lot of energy. As can
be seen in the results in [27], it can take up to one week to find several crashes. Running a fuzzer for this
long may not be feasible.

A third challenge in fuzzing is that it is hard to distinguish the results from a fuzzing campaign. The
fuzzer returns all the inputs that caused a crash. However, from these inputs it is not clear what the severity
of the crash is, and if it indeed results in a bug which should be fixed. Furthermore, it is hard to distinguish
duplicates. It may be the case that two different inputs crash the same function, resulting in two observed
crashes. However, this cannot be derived from the input only.

A fourth challenge is that there are not many benchmarks available. Currently, the most commonly used
ones are LAVA-M [19] and Magma [27]. This makes it harder to evaluate a fuzzer and their performance in



identifying bugs.

These reasons combined results in that although the importance of fuzzing is shown, industry can be hesitant
to implement a fuzzing implementation into their development operations.

1.2 Research Problem

Currently, there is a lack of automatic fuzzing tools. Fuzzing takes a lot of manual work and experience,
resulting in fuzzing not being widely used in industry. The main goal of this thesis is to automate the fuzzing
process, making it more approachable for industry to use fuzzing on their applications. Furthermore, using
this research, we try to see if it is possible to fuzz more efficiently by learning more about the fuzzing target
beforehand. To research this, we limit our scope to C [3I] written applications and libraries. To address
this, we set up the following Research Question: How can we automate the fuzzing process of existing C-style
programs, and generate custom mutators, fuzzing harnesses, and seed input files?

With this Research Question, we have the following sub-research questions:

e Sub-question (SR1): ‘How can we use Control Flow Graph and Large Language Models to identify
vulnerable code?’

e Sub-question (SR2): ‘What is the effect of the Control Flow Graph analysis on the efficiency of the
generated custom mutator and harnesses?’

e Sub-question (SR3): ‘How does the proposed implementation compare to current State of the Art
implementations, in terms of efficiency?’

e Sub-question (SR4): ‘How does Large Language Model generated fuzzing harnesses compare to human-
written fuzzing harnesses, in terms of efficiency?’

e Sub-question (SR5): ‘What is the cost breakdown between the analysis of the Control Flow Graphs
and the generating of custom mutators, harnesses and seed files based on this analysis?’

e Sub-question (SR6): ‘What is the effect of the custom mutator on the efficiency of the generated fuzzing
harness with the Control Flow Graph analysis?’

With this work and the stated research questions, we try to address the first three issues, by making the
whole fuzzing process an automated process. This will make fuzzing more approachable, since it minimizes
the manual work and experience needed to start a fuzzing campaign. Furthermore, we use LLMs to analyze
the generated CFGs of the source code of the software we want to fuzz to find vulnerable code, reducing the
time and energy needed to randomly fuzz the starting point of the program. The chances that LLMs could
have been used to analyze the CFGs in the same way, for the same goal, are slim. This makes it interesting
to see how well the LLMs will perform with this task.

We focus on programs written in the C-language. Furthermore, we use the LLMs to generate the fuzzing
harness and custom mutator, eliminating the manual work needed for this step. With these fuzzing har-
nesses and custom mutators, we try to target the vulnerable code directly, hopefully resulting in faster bug
discoveries. We combined both the analyzing and generating in one tool, called LLM2Fuzz.

The structure of the thesis is as follows. First, we will discuss the required background needed to un-
derstand the terms in Section All the related work will be discussed in Section After that, we will
discuss the architecture of the tool in Section 4] The experimental evaluation, with all the results, will be
discussed in Section [5] Some future work recommendations will be given in Section [6} As last, the results
will be discussed, the research questions will be answered and the conclusions will be drawn in Section [7]

1.3 Large Language Models for fuzzing

Large Language Models (LLMs) are currently used to perform several cyber security tasks. In [50], 29 dif-
ferent cyber security tasks were identified. Of these 29 different tasks, they found 119 papers covering 11



of these tasks where LLMs were used, such as bug detection and penetration testing. Furthermore, in [20],
evaluations showed that LLMs can have a significant potential of transforming into cyber security frame-
works. Another study showed that, while LLMs can have vulnerabilities such as ‘jailbreaking’, LLMs ‘have
a great potential for a wide range of cyber security tasks’ [58]. LLMs can also be used in a defensive way, as
shown in [51]. Here, LLMs are used to generate cyber security practice scenarios.

For fuzzing, Large Language Models are already used for fuzzing harness generation. Google’s OSS-Fuzz-
Gen is an extension built for Google’s OSS-Fuzz [35], which leverages the use of LLMs to generate fuzzing
harnesses for target applications. Furthermore, tools like LLamaFuzz [57] uses a LLM to fuzz structure-
aware applications, by adding the LLM output to the input queue. Another way LLMs are used is to create
a universal fuzzing application, targeting multiple application types in one. This approach is done using
Fuzz4 All [48].

These tasks shown that LLMs do have the potential to assist in cyber security related tasks. By show-
ing this potential, we have confidence that we can also use Large Language Models in our research for the
automation of the fuzzing process and improving the efficiency by analyzing the Control Flow Graphs.

1.4 Abbreviations

In this study, some abbreviations are used. All abbreviations can be found in Appendix
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2 Background

In this section, we will discuss the required background knowledge needed to understand the rest of this
work. We first will look at different type of fuzzers and how they differ from eachother. After that, we will
take a look at the required components of a fuzzing campaign, which are the fuzzing harnesses and mutator
strategies. As last, we will take a look at a small fuzzing campaign and what Control Flow Graphs are.

2.1 Type of fuzzers

In current fuzzing terminology, a difference is made between white, grey or black box fuzzers [2]. With a
white box fuzzer, the fuzzer has access to all the information about the target we want to fuzz. This can
include the source code, network diagrams and system architectures [18]. This type of fuzzing can be used to
find vulnerabilities which are very hard to spot. With black box fuzzing, one does not have any knowledge
of the inner workings of the application [2], making it harder to find deep buried vulnerabilities in the code.
Grey box fuzzing is a combination of white and black box fuzzing [2]. One usually has some information
about the target, such as the source code, but the network diagram or system architecture is missing.

In the case of white or grey-box fuzzing, we can use specific metrics to optimize our fuzzing process. Using
these metrics, the fuzzer tries to obtain inputs which correspond to the highest score on a specific metric,
such as code coverage [47] for binaries or endpoint coverage for APIs [7]. Furthermore, the fuzzer tries to find
‘buggy states’ in the application, often observed due to the application crashing. With these found crashes,
cyber security researchers try to make the available software more secure.

This metric-driven fuzzing is harder with black-box fuzzing, due the fact that, as explained earlier, we
do not know anything about the program apart of the binary. Therefore, it is harder to keep track of met-
rics, such as code coverage. Research for metric-driven fuzzing for binaries does exist, as explained in [44].

2.2 Fuzzing harness

To fuzz an application, the fuzzer needs an entry point to start, called the fuzzing harness [4]. The fuzzing
harness can be seen as a wrapper over something you want to fuzz. For example, in C-terms, a fuzzing har-
ness is the int main() of a fuzzing campaign and is responsible for converting the generated and mutated
input to an input that will be accepted by the application we want to fuzz.

For example, we have function foo, which requires three parameters int a, char b and double c. Further-
more, our mutator returned 13 bytes of randomly generated data. In the fuzzing harness, we can then split
this 13 bytes up in three junks of data: one of 4 bytes for the integer, one of 1 byte for the char and one of
8 bytes for the double. This way, we can call the function we want to fuzz with all the required information.
The difference between the harness and the mutator is that the mutator is responsible for mutating the
random data, while the harness can be seen as a ‘bridge’ between the fuzzer and the target application. The
harness handles the random generated and mutated data and performs the right function call. An example
of this fuzzing harness can be seen in Listing

#include ”example.c” // File containing unsafefuncion(int32_t a, char b, double c)
#include <stdint .h>
#include <string.h>
int LLVMFuzzerTestOnelnput (const uint8_t xData, size_t Size) {
// Check if we have enough size for one int32_t, one char and one double
if (Size < ((sizeof(int32_t)) + sizeof(char) + sizeof (double)))

return 1;

// Initialize the variables

int32_t a;

char b;

double c;

// Copy the size of an integer to a
memcpy(&a, Data, sizeof(int32_t));



// Skip the integer and then copy the size of a char to b
memcpy (&b, Data + sizeof(int32_t), sizeof(char));

// Skip the integer and char and copy the size of a double to ¢
memcpy(&c, Datat+ sizeof(int32_t) + sizeof(char), sizeof(double))
// Call unsafe_function

unsafefunction (a, b, c¢);

return 0;

Listing 1: Example pseudo-code fuzzing harness.

Fuzzing harnesses can differ per application one wants to fuzz. A fuzzing harness for a binary will differ a
lot from a fuzzing harness built to fuzz a REST endpoint. Furthermore, the fuzzing harness can be used
to catch intended exceptions in the code. These exceptions are not found crashes and can result in false
positives, and should not be reported by the fuzzer.

2.3 Mutators and structured input

Most mutators of fuzzers work by altering the data using a specific strategy. These strategies are needed to
generate inputs that can reach new paths in the code. It may be the case that randomly generated data can
explore a whole new code path. This code path can have several different sub-code paths, which requires a
similar input, but have some small changes to it. Here is where the strategies come in: instead of waiting
until we randomly generated a similar input, which can take a long time, we can mutate upon these already
generated input files. This way, we ensure we keep the same structure of the input, but change small things
to reach all the different paths inside this code path.

Multiple strategies exist, such as a mutation [56] or search-based [55] strategy. With a mutation strat-
egy, the fuzzer starts with a corpus of seed files, and keep mutating these seed files into new inputs. These
seed files are often mutated by algorithms like bit-flipping or splicing the input in different subsections. With
bit flipping, random bits in the input bytes are flipped from 0 to 1, or 1 to 0. With splicing, we combine
multiple generated inputs, splice them in half and combine them both with each other to create new inputs.
With a search-based strategy, the fuzzer tries to execute a specific part of the code using various inputs
[55]. It should be noted that this is not a guarantee that the specific part of the code will be executed using
these inputs. With these types of problems, the fuzzer can use evolutionary algorithms [55]. With these
evolutionary algorithm, we have a ‘population’ of input files, where each population differs a bit from the
rest. The population which results in the most new code paths is seen as the ‘strongest’ population. The
fuzzer will continue to create new generations based on this population, and is therefore called an natural
evolution algorithm [55].

One limitation of the standard mutator strategies may be that an application can require some sort of
specific, structured input. One example of this would be a PNG handler. As specified in the PNG specifi-
cation [16], each PNG starts with the same eight bytes, namely 137 80 78 71 13 10 26 10. With these
eight bytes, a PNG handler knows that the input is a PNG file.

If we want to fuzz a PNG handler, we should make sure that every input we send to the handler, con-
forms to this specification. If not, the application will reject our input at the first check, preventing us from
fuzzing the rest of the program. The chances of the fuzzer randomly guessing the right eight bytes, allowing
is to fuzz further in the program, are extremely low. This way, we lose a lot of time and resources on fuzzing
a small part of the program.

A fix for this problem is to use custom mutators [3]. With a custom mutator, we get more control on
how we send the randomly generated input to the fuzzing harness. In the case of a PNG handler, we can
hard code the first eight bytes to be the required specification, to make sure that we will at least pass the
‘magic byte’ check. We can then place the randomly generated data after these eight bytes, to make sure
that we can fuzz the rest of the handler during our fuzzing campaign.



2.4 Seed input files

Several fuzzers rely on input seed files. These input seed files consists of valid (thus non-crashing) input for
the application, which are ‘fed’ to the application using the fuzzing harness. These input seed files are used
to start the built of a corpus [I], whereby a corpus is a set of collections using interesting input files. These
interesting input files can be used by the mutator to find new, interesting paths in the code. An input seed
file should cover as many code paths as possible.

2.5 AFLPlusPlus

AFLPlusPlus (or AFL++) [21] is a fuzzer which built upon AFL [25]. AFL++ is a gray-box fuzzer built
to fuzz C and C++ type of programs. It supports multiple extensions compared to AFL, such as more
mutation strategies and faster speeds. Furthermore, AFL++ supports libFuzzer [5] fuzzing harnesses.

2.6 Fuzzing campaign

To make the fuzzing process more clear, the whole process of a fuzzing campaign is explained here. The
example is about a small C-program which will be fuzzed using AFL++.

Let’s examine the following function in Listing

1 #include <stdio.h>

2 #include <stdlib .h>

3 #include <stdint.h>

1 void unsafefunction (int32_t a, int32_t b) {
5 if (a = 0)

6 if (b= 0) {

7 printf(” Hello world”);

8 return;

9 }

10 if (b=1) {

11 abort(); // crash!
12 }

13

14 }

\“)}

Listing 2: Unsafe C-style pseudo program.

This small, minimalistic example shows that, when a is 0 and b is 0, ‘Hello world’ will be printed to the
screen. When a is 0 and b is 1, the program will crash.

We can start by writing the fuzzing harness to address this function. The fuzzing harness can be found
in Listing

1 #include ”example.c” // File containing unsafefuncion(a, b)

2 #include <stdint .h>

3 #include <string.h>

4

5 // In here, Data is the mutated data, which we obtained from the mutator of the fuzzer
6 // Size is the size of the Data

7 int LLVMFuzzerTestOnelnput(const uint8_t xData, size_t Size) {

8 // Check if we have enough size for 2 integers

9 if (Size < (2#(sizeof(int32_t))))

10 return 1;

12 // Cast the first 4 bytes to a, second 4 bytes to b

13 // We do not care about the data after 8 bytes

14 int32_t a, b;

15 a = 0;

16 b = 0;

17 memcpy(&a, Data, sizeof (int32_t));

18 memcpy (&b, Data + sizeof(int32_t), sizeof(int32_-t));

19 unsafefunction (a, b);
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return 0;

}

Listing 3: Example pseudo-code fuzzing harness.

In this example, we first check if the size of the given data is large enough to obtain 2 integers. If this is
not the case, we immediately return out of the harness. If we do have enough data, we memcpy the returned
data to two integers and call the unsafe function.

After the creation of the fuzzing harness, we need to provide input seed files. A valid input seed file
can be 00 or 11. With 00, we can print ‘Hello world‘, and with 11, nothing happens. We can provide these
seed files to the fuzzer.

With the target, fuzzing harness and valid input seed files, we can start the actual fuzzing process. Since
this is a very small, simple example, AFL++ can quickly find the crash. After the program has crashed,
AFL++ will save the input that caused the crash (in this case, 01) and will continue to look for other code
paths.

When the fuzzing campaign is done or stopped, an output folder of all the inputs resulting in a crash
will be returned. These inputs can then be used to further investigate the ‘buggy states’ and fix the found
crashes and/or bugs.

2.7 Control Flow Graphs

Control Flow Graphs, CFGs, were proposed by Frances E. Allen, where “A control flow graph is a directed
graph in which the nodes represent basic blocks and the edges represent control flow paths” [10]. In this work,
we focus on CFGs where the basic blocks contain assembly code. The CFGs reveals a lot of information
about the code, such as the different code paths and functions used.

Nowadays, CFGs are mostly used for static analysis of source code, such as malware detection [14]. Us-
ing these CFGs, a programmer can obtain a deeper understanding of the mechanics of the code, especially
of the whole control flow of the program. CFGs make a visual representation of all paths which can be taken
in the program [10]. The same objective can be obtained with looking at the source code, but a CFG makes
this more easily understandable.

In this research, we let LLMs analyze these CFGs. Since it can be hard for LLMs to analyze pictures,
we use the DOT-language [26] to represent the CFGs in a text format.

As an example, examine the code in Listing [

#include <stdio.h>

int main() {
int a = 0;
if (a = 0) {
printf(”A is 07);
} else {
printf(”A is not 0.7);
}

return 0;

}
Listing 4: Example C program.

Using Clang, this can be converted to the CFG graph as shown in Figure[I]



%0:

%1 = alloca 32, align 4
%2 = alloca
store i320,1 %1, align 4
storei320,i3 .align 4
%3 = load i 2. align 4
%4 =icmpeqi32 %3,0

bril %4, label %35, label %7

T TN

G5 %7
5 T
%6 =call 132 (i8%,..) @printf(i8* getelementptr inbounds ([7 x i8], [7 x %8=call i32 (i8%, ...) @printf(i8* getelementptr inbounds ([12 x i8], [12
... 18]% @ str, 164 0, 164 0)) L XI8]* @.str 1,164 0,164 0))
br label %9 br label %9
\ - /
9:
reti320

CFG for 'main’ function
Figure 1: Small CFG example.
In Figure [T} we see the intermediate language where Clang converted the code to. Furthermore, we see

the two branches: the True (if a == 0) and False (if a != 0) branch, showing us the whole Control Flow
of the program.



3 Related Work

In this section, we will discuss related work in current state of the art fuzzers and fuzzer benchmarks.
Furthermore, we will discuss some related work in bug triaging.

3.1 Fuzzing and type of fuzzers

At the time of writing, many different fuzzers exists. As mentioned in Section fuzzers can be classi-
fied in white-, gray- and black-box fuzzers. Some white-box code fuzzers examples are SAGE [24], KLEE
[I7] and Driller[d5]. SAGE is created by Microsoft and performs dynamic symbolic execution to speeds
up the fuzzing process. KLEE is created at Stanford, which also performs dynamic symbolic execution and
is built on top of the LLVM engine. Driller is created at UC Santa Barbara and is a guided, white-box fuzzer.

For grey-box fuzzing, some examples are AFL++ [21], libFuzzer [5] and T-Fuzz [43]. AFL++ is an enhanced
version of Google‘s AFL [25] which includes multiple community patches. T-Fuzz works by transforming
the fuzzing target to remove several checks, such as checks on magic bytes. This way, the fuzzer tries to
improve the coverage of the fuzzer for the fuzzing target. libFuzzer is created by LLVM, and is a library for
coverage-guided fuzzing.

While AFL++ is a grey-box fuzzer, it has the option to act as a black-box fuzzer with the QuickEmu-
lator, QEMU mode [12] 21]. HonggFuzz can, just like AFL++, use the QEMU mode to fuzz as a black-box
fuzzer.

As explained in Section the fuzzing harness is an important component of the fuzzing process. Dif-
ferent fuzzers for different source programs are available. For example AFL++ cannot be used to fuzz REST
APIs, while WuppieFuzz [7] can. It is also possible to fuzz other devices or systems, such as WhisperFuzz
can fuzz processors [I5] and the following paper [52] describes a way to fuzz the 5G protocol.

Apart of the mentioned fuzzers, a lot more exists. We refer the reader to survey papers [36], [54, 1] that
analyze the literature in-depth.

3.1.1 Fuzzing with LLMs

As mentioned, in our work we focus on grey-box fuzzing for C code and we apply LLMs for generating the
fuzzing harness, custom mutator and seed files. Existing research in the combination of fuzzers and LLMs
are discussed here.

LLAMAFUZZ is a fuzzer, which tries to use the LLAMA Large Language Model to better fuzz grey-box
targets by creating structure-aware inputs [57]. Their experiments show that, especially in structured-data
fuzzing, LLAMAFUZZ performs better than other state-of-the-art fuzzers available. However, it should be
noted that the LLAMAFUZZ fuzzer is evaluated on the MAGMA-benchmark [27], and that it may be the
case that the MAGMA data is used in the training set of the LLAMA model. The authors did also test LLA-
MAFUZZ on real-world programs. These experiments showed that the LLAMAFUZZ fuzzer outperforms
AFL++, reaching 27.19% more code coverage on average in absolute numbers than AFL++. In 10 out of
the 15 targets evaluated, LLamaFuzz obtained a significant higher code coverage than AFL++. Another
tool which tries the same, but with OpenAlI‘'s ChatGTP [41], is ChatFuzz [29]. With ChatFuzz, an average
improvement of 11.04% is shown upon the standard AFL++ implementation in the terms of code coverage.
It should be noted that both LLAMAFUZZ and ChatFuzz use different targets to benchmark their fuzzer.

‘Fuzz4All' [48] is a tool that tries to create a language independent fuzzing tool. Usually, fuzzers are built
for a specific programming language, such as Python or C++. However, by using LLMs, the authors tried
to create a tool which can fuzz for multiple languages without explicitly building support for it. The tool
can create language specific fuzzing harnesses, which can both address the starting point of the application
or a specific function. Experiments showed that, in a 24 hour fuzzing campaign, Fuzz4All achieved the
highest coverage compared to other state-of-the-art fuzzers [48]. These are different fuzzers than the fuzzers

10



explained above. All the used fuzzers can be found in [48]. Google’s OSS Fuzz Gen is an extension built for
Google OSS Fuzz. With OSS Fuzz [35], Google tries to distribute the fuzzing of open-source software. This
makes large-scale fuzzing more approachable and as a result, the software more secure.

To address the manual creation of the fuzzing harnessess, Google created OSS-Fuzz-Gen to automatically
create fuzzing harnesses for the target applications. Using the Fuzz Introspect [42] tool, an LLM could
investigate which function is not addressed enough. An LLM is then used to generate a fuzzing harness to
address this specific function, trying to improve the code coverage of the fuzzer.

The biggest difference between Google OSS-Fuzz-Gen and the work presented in this thesis is that OSS-
Fuzz-Gen generates harnesses using the line coverage metric for optimization. By using this approach, it
only aims to maximize the achieved line coverage, but can miss important code paths. In our work, we
aim at synthesizing harnesses based on a more fine-grained approach. Using this approach, we try to reach
specific code paths of interest in a target function.

3.2 Fuzzer benchmarks

There are several benchmarks available to evaluate the performance of fuzzers, mainly targeted to fuzz C
and C++ programs. One of them is Magma, which is a ‘ground-truth fuzzing benchmark’ [27]. Magma
works by altering a set of vulnerable code, placing so-called oracles to check if a certain bug is reached or
actually triggered by the fuzzer. The difference between the two is that with ‘reached’, the context of the
bug is reached, and with ‘triggered’, the fault actually occurred. When the canary is reached or triggered,
the function MAGMA_LOG is called, with some information on which bug is reached or triggered. This
function keeps track of the total number of reached and triggered bugs. Magma supports 138 different bugs
in 7 different projects and 22 different fuzzers out of the box. By keeping track of all the reached and
triggered bugs, Magma can make a ranking out of the fuzzers [27].

The bugs used in Magma are real bugs which were once found in the target libraries, but patched in future
versions. To let these bugs work with a newer version of the library, the bugs are ‘patched up’ and injected
into a newer version of the library. This means that some of these bugs can be quite old, with the oldest
bug implemented in Magma is found in 2011 [27].

Another benchmark for fuzzers is UniFuzz, which is, unlike Magma, metrics-driven [34]. Some metrics
used by UniFuzz are the quality of bugs and the overhead the fuzzer uses. The quality of the bug is deter-
mined by matching a bug to a Common Vulnerabilities and Exposures (CVE) number and use the Common
Vulnerability Scoring System (CVSS) score and by using the output of the Exploitable tool in GDB [22].

Besides Magma and Unifuzz, ShadowBug [60] can be used as a benchmark for fuzzers. This tool gener-
ates certain types of bugs, such as buffer overflows, and injects this into an existing code base.

In this work, we benchmarked LLM2Fuzz against Magma. We chose Magma for various reasons. The
first one is that the injected bugs are real bugs injected in real life programs. This way, we have a bench-
mark which is very close to the real world. Secondly, Magma also keeps track of when we reached the
vulnerable code path, but not triggered a bug. While this is not necessarily useful when fuzzing in real
life, it does show information about the capabilities of the LLM to identify vulnerable code paths, which is
relevant to answer one of the sub research questions.

3.3 CFG, fuzzing and vulnerability detection

In current research, Control Flow Graphs are used for both vulnerability detection and fuzzing. In detection,
CFGs are mainly used for malware detection. One study [14] uses CFG analysis for malware detection on
ToT devices. Another study uses CFGs [39] to classify malware based on weighted CFGs. We refer the reader
to a survey paper [37] about CFG analysis for malware detection to read an in-depth research on this topic.
For software vulnerability detection, there is a study [59] about identifying software vulnerabilities by using

11



an modified version of CFGs

Currently, CFGs are used in some research with fuzzing. One study states that generated CFGs by re-
verse engineering tools can help by creating fuzz targets for binaries [53]. Furthermore, another study [61]
shows the effect of CFGs used for guided fuzzing. Another studies [49] shows the effectiveness of CFGs for
the seed scheduler.

These studies show that CFGs can be an successful addition to both vulnerability detection and fuzzing.
Our approach differ from the current research due the fact that we use the Control Flow Graph to identify
vulnerable functions. The Control Flow Graphs are analyzed by Large Language Models, which summarize
the results and make a ranking of the most vulnerable functions. This analysis is then used to instruct the
fuzzing harness and custom mutator to specifically target these functions. Using this approach, we aim to
make the process more efficient. To the best of our knowledge, this approach is not yet implemented by
other research.
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4 Architecture

In this section, we will discuss the design and implementation of the custom mutators and the feedback loop
of the fuzzer, which are the main contributions of this thesis.

4.1 Design

The application is designed in a modular way, which results in an easy to maintain and extendable project.
Each stage of the program is created in their own class. Furthermore, each stage has its own LLM client,
which has its own instruction prompt for that specific task. This way, each LLM can fully focus on one
specific task. All the LLMs are instructed to a specific output format, such that the LLMs and the code can
interpret each other.

In Figure [2] a diagram is shown of the designed tool. All different paths are explained in this section.

Analysis by LLM

done, obtained CFG analysis by Generate CFle s

prioritized list of LLM (3) el c;mpl & tart (1)
functions (4) (2)

LLM generates LLM generates Start fuzzing for
custom mutator seed input files 10 minutes (9)
and harness (5) (7)
Compiler All seed
error files crash

Let LLM fix Let LLM
compiler error generate new

(6) seed files (8)
Keep
Reset custom Obtain new fuzzing e
mutator and function from same

results to LLM

ion?
function? (10)

harness LLM prioritized list
(14) (13)

(11)

Ask LLM to
improve current Yes No more
harness/mutator functions / End (15)
(12) budget

Figure 2: Overview diagram of the design.

4.1.1 Control Flow Graphs: Phase One

In the first phase, we generate and analyze the CFGs of the source code. This is shown in the diagram with
the first four blocks. The CFGs of the source code we want to fuzz are generated using the compiler, and
sent to the LLM. The CFGs are compiled on the same machine we start the fuzzing campaign later. The
LLM is asked to perform an analysis on the CFGs and return some data about the CFGs back to the user.
With this analysis the application obtains a deeper insight in the code. It is, using the CFGs, possible to
obtain all the different code paths the code can take, which can be used to be more efficient in targeting a
specific function or code path.

The context window of LLMs is currently limited, which makes it infeasible to store the whole CFG of
the program in the LLMs memory. Therefore, the CFGs are iteratively created and summarized by the
LLM. The LLM is prompted to keep the most important and vulnerable functions in the summary, as can
be seen in the prompts in Appendix [A71] After each summary, a new set of CFGs is sent to the LLM, along
with the summary.

By following this approach, a lot of valuable information can get lost. However, due to the restriction of
the limited context window, this is at the time of writing the only usable method. We try to minimize the
amount of tokens needed for the CFGs. These methods will be explained in Section
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The following data is returned from the LLM. This data is returned for each function.

Overall explanation - Small explanation of what happens in the CFG in general. This is the summary.
Name of each function we want to fuzz.

Parameters per function, where the different data types and some small details about what the param-
eter does are returned.

Vulnerability rating per function - Rating from 0-100, where 0 is probably not vulnerable and 100 is
probably fully vulnerable.

Explanation per function - Small explanation on why the function has this vulnerability score.

Paths to function - All the different code paths the program can take to get to this particular function.

The different paths to the function and the vulnerability rating are especially interesting. With all the pos-
sible paths to a function listed, the application can try to find all possible combinations where it is possible
to manipulate input data which can lead to a crash. With the vulnerability rating, the application can order
the functions based on the vulnerability score. These can be functions that, for example, use other unsafe
functions on raw pointers.

The LLM is prompted to respond in JSON, where the format is described in Listing By adhering to
this JSON format, the application can easily parse the data and use the results for the next stages.

{
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"explanation": "explanation in string form here",
"functions": [

"name": "example_function_1",

"parameters": [

{
"type": Ili32l|’
"detail: "Example detail"

}

1,

"vulnerabilityRating": 30,

"explanation": "why is the function vulnerable",
"pathsToFunction": [

"main",
"function2"

] // Functions we can take to get to that function.
// Useful if we want to fuzz a private function,
// and therefore cannot call the function directly
// in our harness.

Listing 5: JSON format of the response of the LLM on the CFG analysis

As last, the CFG class is also responsible of keeping track of which function we try to fuzz. If the LLM
decides that we have fuzzed the function enough, we continue to the next function. The LLM decides this
based on the number of found crashes, code coverage by lines and path coverage by comparing the taken
paths with the CFG.
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4.1.2 Custom Mutator and Harness: Phase Two

In Phase Two, the custom mutator and harness are generated by the LLMs. In Figure [2| this phase is
represented in block 5 and 6.

It would be possible to let the LLM generate input files and use these in a queue, which can then be
sent to the fuzzer. However, an efficient binary fuzzer executes at least 1000 executions per core per second
[30]. If we were to use this approach, we would need to mix the input files of the LLM with an already
existing strategy, such as bit flipping. This would make it harder to examine the effect of the LLM generated
inputs on the target, since the distinction between input files generated by the LLM and an existing strategy
would be harder to notice. However, as discussed in Section there is some research which implemented
this design. The prompts for this instruction can be found in Appendix

In stead of letting the LLMs generate the mutated input files, we decided to let the LLM generate a custom
mutator. A custom mutator is responsible for the mutation strategy and is often used in programs which re-
quire specific input, such as a PNG handler [9]. We re-use this strategy to craft inputs which, in as little time
as possible, can efficiently reach all the different code paths. The same LLM agent creates the custom harness,
to ensure that they are built to work with each other. By using a custom mutator, we still have control over
the inputs given to the program, but we maintain the same execution speeds we normally have while fuzzing.

The following data is returned from the LLM to the code. This information is only from this LLM agent,
and not from any other data sources in the project.

e Harness - The code for the custom harness.

e Custom mutator - The code for the custom mutator.

e Harness extension - File extension of the harness source code file.

e Mutator extension - File extension of the mutator source code file.

e Explanation - Small explanation of the harness and custom mutator which are generated.

The data is returned in JSON in the format shown in Listing [f] We included the explanation to the JSON
output to make the output of the LLM more explainable to the responsible end-user.

"harness": "<harness code>",
"custom_mutator": "<mutator code>",
"harness_extension": "<harness extension>",
"mutator_extension": "<mutator extension>",
"explanation": "<small explanation>"

Listing 6: JSON format of the response of the LLM for the harness and custom mutator

The custom mutator and harness are built in a feedback loop, which will be explained further in Section

ET4

4.1.3 Seed generation: Phase Three

The third phase of LLM2Fuzz is the seed generation, where we ask the LLM to generate several seed files.
The seed files rely on the source code of the fuzzing harness, which is why this is the third phase. In Figure
this phase is shown in block number 7 and 8.

AFL++ is a mutation based fuzzer [§], which means that it tries to obtain the highest code coverage
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using mutations of previous inputs. To start, the fuzzer needs a couple of valid seed files, which at least
covers some of the code. These seed files should not crash and should be as small as possible.

The LLM is asked to generate input files based on static analysis of the code and the CFGs. This way,
the LLM can generate seed files that cover most of the code paths inside the function we want to fuzz. This
analysis is a part of the static analysis of the project. The LLM is asked to generate as many different seed
files as deemed necessary. At least one of the seed files should not crash, as this is an requirement from
AFL++. If the LLM returned less than one valid seed file, the LLM is asked to fix the invalid files, such
that they do not crash anymore. The prompts for this instruction can be found in Appendix [A-3]

4.1.4 Fuzzing process: Phase Four
Phase 4 of LLM2Fuzz is the fuzzing itself. This phase is represented in block 9 till 14 in Figure

The fuzzer is the last part of the application, where the program tries to actually find crashes. The fuzzer
is initialized with the custom mutator and harness and run with the inputs generated in the previous steps.

We did not create our own fuzzer. Instead, we built a 'wrapper’ over an existing fuzzer, AFL++. This
cover monitors the results of the fuzzer and keeps track of the custom mutator, the harness and input seed
files required for AFL++.

Concurrently with the fuzzer, a monitoring program is run, which keeps monitoring the progress of the
fuzzer. The monitor keeps track of the number of found crashes and the code coverage. The code coverage
is obtained by using the line coverage as a proxy metric. This way, we can determine if there are lines in
the code that are not taken and use this information to improve the harness and mutators. We ask the
LLM to compare the code coverage to see if any lines inside the function we want to fuzz is not yet, or
not enough, taken, to ensure targeted fuzzing. Based on this information, the LLM can decide to alter the
custom mutator to take specific paths.

These monitoring details are sent to the LLM in a customizable interval. The LLM can then decide one of
following the three options:

1. Keep fuzzing the same function with the current settings; everything looks promising, so continue.
2. Keep fuzzing the same function with other settings; thus, change the custom mutator and/or harness.

3. Start fuzzing another function; the fuzzer focused on this function enough and moved it’s interest to
another function.

This ‘feedback loop’ tries to ensure that the fuzzer will fuzz the program as efficient as possible. The LLM
can determine if certain ‘edge cases’ or different paths in the code are not taken, and rewrite the custom
mutator and harness in such a way that these cases or paths will be taken. The prompts for this instruction
can be found in Appendix

It may be the case that the LLM gets confused by a trivial error and a human intervention could be
preferable. Therefore, the application has the possibility for the human to ‘step in’ and speak to the LLM
itself. This form of ‘human in the loop’ ensures that the application does not spend too much resources
on trivial problems. The option for the human to step in is presented after 5 failed tries in compiling the
custom mutator or harness. In our final experiments, we disabled this option, to test the fully automatic
capabilities of the LLM to fuzz the target programs.

4.2 Implementation

The implementation of the code is done in Python 3.12.3. We decided to use Python since this makes
the communication with different LLMs fairly easy, especially due to the OpenAl API. It is possible to
use different models from OpenRouter [6] using this API, making it straight forward to implement different

16



models. Furthermore, Python is a convenient language to interconnect multiple components with each other,
which is also used in this implementation.

4.2.1 Use of Large Language Models

The LLMs (GPT 4.1, Google Gemini 2.5 Pro Preview and Meta LLama 4 Maverick) are accessed using an
abstract base class. In the base class, the functions _add message_to_prompt and reset_model are imple-
mented. The first function adds a message to the prompt history which will be sent to the LLM. The second
function resets the prompt history, but ensures that the system prompt stays. This function can be useful if
the application decides to switch to creating a custom mutator for another function; the LLM does not need
the history of the other functions. By removing the previous prompts, the application reduces the input
tokens, which leads in a more efficient use of the LLM.

Furthermore, the class has one abstract method, called talk to_11m(). This function should be imple-
mented on each different LLM ecosystem, since the way of communicating with the LLM differs per provider.

One thing to note about the way we used the LLMs in LLM2Fuzz is that we do not use the structured
outputs attributes, which are for example available in OpenAl LLMs [40], but also an option in Ollama
models. This option ensures that the output will be in a specific format, such as JSON. We noticed during
our own experiments with OpenAI’s models that, with the structured outputs enabled, the quality of the
harnesses and custom mutators decreased significantly. Therefore, we decided to put our expected output
format in the prompt, as explained in Section [41]

Using these abstract base classes without structured outputs, we can easily implement new LLMs in the
code, making the code modular.

4.2.2 Control Flow Graphs: Phase One

The CFGs of the code are generated using the clang [33] and opt [33] tool. The clang tool generates LLVM
intermediate representation [33] language, which can be used as a input for the opt tool. We compile the
code to the LLVM Intermediate Representation language using the -03 flag, which is used for optimizations
such as loop unrolling and vectorizing. These optimizations results in less code, thus smaller CFGs. Fur-
thermore, we strip the CFGs of all enters and unnecessary whitespaces. This way, we minimize our CFGs,
resulting in fewer tokens.

The CFGs are generated in the DOT-language [26]. Using this language, we have a textual representa-
tion of a CFG, which can be sent to the LLM.

4.2.3 Custom Mutator and Harness: Phase Two

The custom mutator and harness are generated by the LLM. It may be the case that the LLM is not capable
of generating a correct custom mutator and harness in the first try. If this is the case, the compiler error is
printed to the user and sent to the LLM, with the intention to fix the mistake. There is an option to, after
a customizable number of tries, prompt the user to talk to the LLM itself to fix trivial errors. Using this
option, the user can keep the ’human-in-the-loop’.

The prompts to this LLM client also includes the code and the output of the 1s command in the code
directory. We noticed that, when the LLM has access to the code, the LLM is less likely to generate in-
compatible code, for example by forgetting to include certain header files. Furthermore, the output of the
1s command is used to know the filenames of the headers the LLM should include. All the analysis is still
done on only the CFGs, and the Custom Mutator and Harness client is not responsible for deciding which
function or path we want to fuzz.
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4.2.4 Seed generation: Phase Three

The seed files for the fuzzing campaign are generated by the LLM. As explained in Section the seed
files should not crash. Our program checks the seed files by executing the single seed file and checking the
return status code of the fuzzer. If more than a customizable number of seed files returns in a crash, we
send these files back to the LLM and ask the LLM to fix these inputs.

4.2.5 Fuzzing process: Phase Four

The program is implemented as a multi-threaded solution to run both the fuzzer, fuzzer cover and moni-
toring system at the same time. This way, the program can monitor while the program keeps fuzzing. The
communication between the threads is done using queues, since queues in Python are thread safe [23].

The AFL_CUSTOM_MUTATOR_ONLY environment flag is enabled to ensure that the fuzzer only uses the cus-
tom mutator it generated, and not the built in fuzzing strategies.

The program uses afl-cov [38] to keep track of the coverage. This information is, in combination with
the CFGs, periodically sent to the LLM to decide if the custom mutator and harness are good enough. If
this is not the case, the LLM can generate a new custom mutator or harness and prompt the program to
restart the fuzzing campaign with the new custom mutator or harness.

By using this approach, the program combines static and dynamic analysis to ensure the most efficient way
of fuzzing, where the program will only focus on relevant crashes. This is checked by the LLM by comparing
the code coverage obtained from afl-cov after each iteration. The static analysis is done based on the CFGs
and the dynamic analysis is done based on the results from running the created custom mutators/harnesses
and input files.
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5 Experimental Evaluation

In this section, we will discuss the Experimental Evaluation of the fuzzing application. We used an existing
benchmark, Magma [27], to show the effectiveness of both tools.

With these experiments, we want to measure the effectiveness of LLM2Fuzz in detecting vulnerable code
and writing specific harnesses and custom mutators. To measure the effectiveness, Magma monitors how
many times the fuzzer reach and trigger specific bugs in a fuzzing campaign. Furthermore, we want to see
which models perform the best with a fixed price limit of $10. This price limit is chosen based on the budget
obtained from the client, which was overall 100$. To make a fair division between the experiments and
ensure that every model got a chance to run, we gave each experiment a budget of 10$. Our results show
the time it took to trigger or reach the bug, both with and without the time it took for the program to start
fuzzing.

5.1 Set up

Magma works by containerizing every combination of a target program and a fuzzing engine. The fuzzing
campaign runs inside the container. In the container, the target code is fetched from an remote repository.
The bugs for the targets are patched in the code, and after that the code will be compiled into a library,
which can be used to fuzz. For every target, Magma includes a fuzzing harness, which can be used in the
benchmark. Furthermore, Magma contains a tool set to create and maintain these fuzzing campaigns, and
keep track of the reached and triggered bugs. All the injected bugs are numbered, with for example PNG0O1
the first bug they injected into the LibPNG base. All the injected bugs with their respective numbers can
be found on the Magma site [2§].

To let LLM2Fuzz work with the Magma benchmark, we had to alter the way Magma usually container-
ize the fuzzing campaign. LLM2Fuzz works by analyzing the CFGs of the source code. We want to test the
ability of the LLMs to recognize vulnerable code and write specific mutators and harnesses for this. However,
with the Magma canaries written in the code, it may be the case that we give away the bugs to the LLM by
detecting these canaries. To avoid this, we include the source code twice: once with both the canaries and
the bugs and once with only the bugs. The first one is used to compile to a library, while the second one
is used for the CFG analysis. The logic in both codes is exactly the same, but the function call to the ca-
nary monitoring mechanism is missing. This way, the LLM cannot link the Magma canary to an injected bug.

All our experiments are run on a server with the following configuration:

Ubuntu 22.04.5 LTS.

12 core 2.4GHz CPU.

8GB of RAM.

e 100GB of SSD storage.

5.2 Results

In this subsection, we will discuss the results of the experiments with the fuzzing implementation.

5.2.1 Libraries and LLM models

For our experiments, we ran our code on two targets of Magma; LibPNG and LibTIFF. We decided to use
these two projects since both of these targets are designed to be used as a library within C or C++ projects.
Due to resource limitations, we were not able to run the benchmark for all Magma targets. Magma polls
every oracle every 5 seconds, which means that we get the updated reach and trigger count every 5 seconds.

In these experiments, three different LLMs are benchmarked: OpenAl GPT-4.1, Google Gemini 2.5 Pro
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Preview 2.5 and Meta LLama Maverick 4. The first two models are, at the time of writing, state-of-the-art

models, where the last one is not. As a result, the first two models are a lot more expensive. The prices can
be seen in Table Il

Model $/1 million input tokens $/1 million output tokens
GPT 4.1 2 8

Google Gemini 2.5 Pro Preview 1.25 10

Meta Llama 4 Maverick 0.15 0.60

Table 1: Table showing the costs per million input and output tokens.

All three models have a context window larger than 1.000.000 tokens, which is necessary for these exper-
iments.

Not all experiments ran for the same time, due to various reasons. All the different run times and rea-
sons can be seen in Table 2l

Target/model Time Reason

LibPNG - GPT 4.1 1h 3 min  Ran out of money

LibPNG - LLama 4 M 1h 51 min  Crashed (LLM did not follow instructions)
LibPNG - Google Gemini 2.5 Pro 13 min Ran out of money

LibTIFF - GPT 4.1 48 min Ran out of money

LibTIFF - LLama 4 M 4h 33 min Ran out of money

LibTIFF - Google Gemini 2.5 Pro 24 min Ran out of money

Table 2: Table showing all the runtimes of the experiments.

5.2.2 Graphs

Apart of the raw data in the tables, the data is also presented in a graph. The graphs will be explained here.

Figures [7[0] and [LI] show the cumulative number of bug events until a certain timestamp. A bug
event means that we either reached or triggered a bug. Each dot means that there is a difference in one of
the triggered bugs compared to the previous timestamp. We only plotted a dot, if there is a change in the
cumulative number of bug events on that timestamp. Furthermore, the dotted lines show all the different
milestones in the graph. All the milestones are laid out in Table [3]

Color Explanation

Blue We generated and analyzed all the CFGs.

Orange We start fuzzing a function for 10 minutes.

Green  We start fuzzing a new iteration of the function for 10 minutes.
Red We switch our focus to a new function.

Table 3: Explanation of the different milestones in the graphs.

We also included histograms of all the bug events, namely Figures 4] [6} and In these histograms,
we see the frequency of a specific bug event between two different timestamps. For example, in Figure [d] we
see that we have a bin of around 10% at 500 seconds. This means that between the 495 and 500 seconds,
PNGO006 is reached around 10% times.

Reaching a bug is not an useful metric in real-life fuzzing. If we do not know anything about the bug,
reaching the bug does not tell anything about existing; only triggering can cause a crash, which we can
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monitor. However, we still decided to show these results. Reaching a bug, in this context, can mean that the
implementation did target a function which is vulnerable. This may show that the CFG analysis is effective
in recognizing vulnerable code, but that it is harder to let the LLMs write the harness or custom mutator
to actually trigger the bug.

5.2.3 LibPNG

For LibPNG, both the GPT-4.1 and Meta LLama Maverick 4 have reached several bugs, whereby LLama
Maverick 4 also triggered one bug several times. Our budget of 10$ per run was not enough for the Google
Gemini 2.5 Pro Preview 2.5 to start the actual fuzzing process, so we do not have any results for this LLM.
The overall results can be seen in Table [

Model /bugs Bugs reached Bugs triggered Which bugs

GPT 4.1 1 0 PNGOO6

Llama 4 Maverick 2 1 PNGO02 (R+T), PNGO06 (R)
Google Gemini 2.5 Pro 0 0 None

Table 4: Number of bugs reached and triggered in LibPNG.

GPT-4.1 In Figure[3] we can see the results of the run on LibPNG with GPT-4.1. In the graph, we see
that the implementation first reached PNGO0O6 at around 450 seconds. This delay can be explained by that
the CFG analysis, creating of the mutator and harness and the creating and testing of the seed files takes time.

Furthermore, we observed some interesting behavior. We see that around the 2000 second timestamp,
we move from the PNGO06 bug to the PNGO0O5 bug. The logs show that, as intended, we switch at this point
to another identified vulnerable function, which explains why the PNGOO5 bug is reached after this point,
while the PNGOO6 bug is not. However, as explained in Section we need at least one non-crashing seed
input to start the actual fuzzing process. The logs shows that the LLM was not capable of doing this for
the PNGOO5 bug; all the times the bug is reached, is due input files that caused a crash. However, we see
in the graph that the bug is only reached, and not triggered. Nonetheless, the LLM did switch to another
vulnerable function and this shows that the LLM identified at least two vulnerable functions in the code.

Bug reached and triggered over time for LibPNG on model GPT-4.1
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Figure 3: Bug reach events on LibPNG with GPT-4.1. No bugs were triggered.
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In Figure 4] we can see a histogram of when we reached a bug. The reached bugs in the graph are a delta
of the previous timestamp. We see several breaks between the found bugs. These breaks can be explained
by the time it takes to talk to the LLM, fixing compiler errors and creating new seeds files.

Bug reached and triggered events for LibPNG on model GPT-4.1
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Figure 4: Histogram for bug events on LibPNG with GPT-4.1

Meta LLama Maverick 4 In Figure[5| we see the total number of bugs reached and triggered on LibPNG
with the Meta LLama 4 Maverick model. Firstly, it should be noted that the triggered PNGO02 and reached
PNGOO6 are the exact same line. To make them visible on the graph, we added a small buffer to the triggered
line. This means that, every time the PNGO02 bug was triggered, the PNGO06 bug was reached as well. One
explanation for this may be that after reaching the PNGO06 bug, the input triggered the PNGO02 bug. This
may be the case if the vulnerable code is called after we went through the vulnerable code of PNGO06, but
our input did not satisfy the requirements to actually trigger the PNGO06 bug.

Furthermore, we see that, starting from around 800 seconds, the model can reach and trigger various bugs.
The graph looks like that the number that PNGOO2 is reached is a multitude from the number that PNGO06
is reached, which supports the fact that PNG0O02 and PNGOO6 are connected with each other.

As last, we see that we sometimes reach a bug before we start fuzzing. This observation is explained
by the same behavior we see in Section [5.2.3} some seed files, created by the LLM can reach or trigger a bug,
which will be picked up by the benchmarking tool.

It should be noted that, due to the LLM not following the right instructions, LLM2Fuzz crashed after
around 3 dollar used. Nonetheless, the LLM was capable of reaching two bugs and triggering one bug.
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Bug reached and triggered over time for LibPNG on model Meta LLama 4 Maverick
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Figure 5: Bug reach and trigger events on LibPNG with Meta LLama 4 Maverick

In Figure [6] we see the histogram of the experiment with LibPNG and the Meta LLama 4 Maverick
model. In here, we also see a lot of breaks between the encountered bugs, with the same explanation as the
previous histogram; talking to the LLM, recompiling and fixing the seed files takes time, which is time we
cannot use to fuzz.
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Figure 6: Histogram for bug reach and trigger events on LibPNG with Meta LLama 4 Maverick

Google Gemini 2.5 Pro Unfortunately, the 10$ for the experiment was not enough to actually start
fuzzing with the Google Gemini 2.5 Pro model, resulting in no results for this experiment.
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5.2.4 LibTIFF

For LibTIFF, our approach did only reach one bug with the Meta LLama Maverick 4 model. For GPT-4.1,
our approach did not reach or trigger any bugs in the target. Our budget of 10$ was also not enough for
the Google Gemini 2.5 Pro Preview to start the actual fuzzing campaign. The overall results can be seen in
Table Bl

Model/bugs Bugs reached Bugs triggered Which bugs
GPT 4.1 0 0 None
Llama 4 Maverick 1 0 TIF012
Google Gemini 2.5 Pro 0 0 None

Table 5: Number of bugs reached and triggered in LibTIFF.

GPT-4.1 OpenATl’'s GPT-4.1 did not reach or trigger any bugs for the LibTIFF target. After looking at
the coverage data, we saw that the CFG analysis focused on a non-vulnerable function at first. Furthermore,
the coverage of the targeted function is quite low; the custom mutator did not succeed in reaching all the
different code paths in the target function. After trying to improve the harness and mutator, the coverage
became even lower. In a long run, there would be a chance that the LLM can fix these errors or switch to
another function. However, due to budget restrictions, the implementation did not reach this point.

Meta LLama Maverick 4 In Figure [7, we see that we managed to reach one bug at the end of the
campaign. According to the logs, we can see that this is around the same time that we switched to another
function. Unfortunately, the implementation did not get the chance to improve the harness and custom
mutator, due to the fact that the budget was all used up almost immediately after the find of this bug.

Bug reached and triggered over time for LibTiff on model Meta LLama 4 Maverick
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Figure 7: Bug reach and bug trigger events on LibTIFF with Meta LLama 4 Maverick

In Figure [§] we see the histogram of the experiment with LibTIFF and Meta LLama 4 Maverick. As
expected, there is only one peak, since we only reached a bug at the end of the campaign.
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Target/costs (% total cost) Costs CFG Costs fuzzing

LibPNG - GPT 4.1 $2.57 (25.7%) $7.43 (T4.3%)
LibPNG - LLama 4 Maverick $0.31 (3.1%) $9.69 (96.9%)
LibPNG - Google Gemini 2.5 Pro  $6.63 (66.3%) $3.37 (33.7%, ran out at seed generation)
LibTIFF - GPT 4.1 $6.77 (67.7%) $3.23 (32.3%)
LibTIFF - LLama 4 Maverick $0.34 (0.34%)  $9.66 (96.6%)

LibTIFF - Google Gemini 2.5 Pro  $10 (100%) $0 (0%)

Table 6: Table showing the costs breakdown of the CFG vs the rest of the program
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Figure 8: Histogram for bug reach and bug trigger events on LibTIFF with Meta LLama 4 Maverick

Google Gemini 2.5 Pro Unfortunately, the 10$ for the experiment was not enough to actually start
fuzzing with the Google Gemini 2.5 Pro model, which means that there are no results.

5.2.5 Cost breakdown

Since the number of distinct bugs is quite low, it is hard to make a claim about the cost effectiveness of
the tool. Therefore, we give an overview of the costs breakdown between the CFG analysis and the actual
fuzzing.

As can be seen in Table [f] there is a big difference between several models. Google’s Gemini 2.5 Pro is
the most expensive one, while LLama 4 Maverick is the cheapest option.

5.2.6 Comparison to current fuzzers

To compare our approach with the current state-of-the-art implementations, we compared our results with
AFL++ and OSS-Fuzz-Gen. Since LLM2Fuzz is built upon AFL++, we compared our results to fuzzing
campaigns done with AFL++, to see if our approach improved the results.

For our first experiment, the comparison with AFL++, we re-used the fuzzing harnesses with are included

by the Magma benchmark. These harnesses are also used by Google’s OSS-Fuzz service and are human
written. By comparing LLM2Fuzz against these harnesses, we can see the difference between human written
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and LLM generated harnesses. Since there are no human written custom mutators available in Magma, the
included strategies in AFL++ are used. We compared this fuzzing campaign against the results shown in

Section [(.2.3] and [5.2.41

For our second experiment, the comparison against OSS-Fuzz-Gen, we compared our approach with the
current state-of-the-art in LLM based harness generation. With this experiment, we generated custom har-
nesses with OSS-Fuzz-Gen which are used in the fuzzing campaign. The goal of this comparison is to see the
effect of the Control Flow Graph analysis on the creation of fuzzing harnesses and custom mutators by LLMs.
Since OSS-Fuzz-Gen can only generate fuzzing harnesses, and not custom mutators, the included strategies
in AFL++ are used. We compared this fuzzing campaign against the results shown in Section [5.2.3|and [5.2:4]

We let AFL++ run for the same time of the longest run of our other experiments ran before it ran out
of money. In the first experiment, we used the human created harnesses, while in the second experiment, we
used the OSS-Fuzz-Gen generated harnesses. This means that we ran AFL++ for 1 hour and 39 minutes
for LibPNG and 4 hours and 21 minutes for LibTIFF.

AFL++4+ Our experiment for AFL++ on both LibPNG and LibTIFF showed that the fuzzer did not reach
or trigger any bugs for both targets in their respective time frame.

The writers of Mamga also performed experiments with their benchmark on a set of fuzzers. The results
can be found in [28]. These results show that, for both LibPNG and LibTiff, more bugs are reached and
triggered than with LLM2Fuzz.

For LibPNG, we see that in most fuzzers, most bugs are reached quickly, at around 10 seconds. It can
take a longer time to actually trigger the bug.

For LibTIFF, we see that LLM2Fuzz performed noticeably worse than the fuzzers tested with the exper-
iments from Magma. The existing fuzzers can trigger and reach many bugs in a short time span, while
LLM2Fuzz is not capable of doing that.

It should be noted that for most of these fuzzers, the fuzzing campaign ran for a longer period of time
than our fuzzing campaign. Furthermore, it should be noted that these fuzzers are instructed to get a as
high as possible code coverage, as soon as possible. LLM2Fuzz is instructed to focus on one function or
vulnerability at a time.

AFL++ and OSS-Fuzz-Gen To test the implementation against a current state-of-the-art approach, the
results of the first experiments are compared to OSS-Fuzz-Gen. As explained in Section [3.1.1} OSS-Fuzz-Gen
is a tool used to generate fuzzing harnesses. In this experiment, OSS-Fuzz-Gen generated multiple fuzzing
harnesses for the target programs. The results can be seen below.

For LibPNG, Google’s OSS-Fuzz-Gen generated three different harnesses. All these three harnesses are
tested. The harnesses were created to work out-of-the-box with Google’s OSS-Fuzz and are altered to work
with the Magma benchmark. The results can be seen in Table [7]

Harness Bugs reached Bugs triggered Which bugs
oss_png_readpng 1 0 PNGO06
oss_fuzz_png_image_finish_read 0 0 None
png_-handle_iccp 1 0 PNGO06

Table 7: Number of bugs reached and triggered by OSS-Fuzz-Gen generated harnesses.

The only bug reached by two of the three harnesses is PNGO06. No bug is triggered.
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For LibTIFF, OSS-Fuzz-Gen tried to generate different harnesses, but only two of them compiled. Both
these harnesses are tested, and just as the harnesses for LibPNG, altered to work with the Magma bench-
mark. The results can be seen in Table

Harness Bugs reached Bugs triggered Which bugs

tiffopen 0 0 None
tiffopenext 0 0 None

Table 8: Number of bugs reached and triggered by OSS-Fuzz-Gen generated harnesses.
Both with tiffopen and tiffopenext, no bugs are reached or triggered.

5.2.7 Ablation study

In this research, multiple different design choices could have an impact on the performance. These design
choices are as follows:

e The summarization of the CFGs - The quality of the summarization can have an impact on the ability
to create the fuzzing harnesses and custom mutators.

e Giving the LLMs the ability to decide when to stop fuzzing a particular function - The ability of the
decision making of the LLMs can have an input on the fuzzing process.

e Do not use the ‘human in the loop’ function - We assume that the LLMs are capable of fixing every
compiler error on it’s own.

e Use the number of crashes and code coverage as metrics for the LLM decision making - It may be the
case that other metrics can work better than these two.

e Fuzz for 10 minutes per iteration - It may be the case that, even with the aim to improve the efficiency,
10 minutes is still not long enough.

e Focus on functions based on the CFG analysis - It may be the case that analyzing the source code
works better than analyzing the CFG analysis.

e Using the LLM to generate the custom mutator, instead of creating the input files itself - It may be
the case that LLMs are not (yet) capable of generating good functioning custom mutators.

Since all these choices can have an impact on the performance, we performed ablation experiments to mea-
sure the impact of two of these choices. It was impossible to ablate all the different design choices. Therefore,
we performed two, namely the use of the CFG analysis and the use of custom mutators. We decided to
experiment with these two, since these two design choices are particularly new in the research. For further
research, it is interesting to study the impact of the other design choices in this design.

To identify the impact of the different components in the application, we performed two experiments where
we left something out. In the first experiment, we did not use any CFG analysis, and let the process run
purely based on the included source code. With this experiment, we can see the effect of the CFG analysis
on the fuzzing results.

In the second experiment, we reused the same CFG analysis used in the original experiment in Section
but did only create a custom harness and not a custom mutator. With this experiment, we can see
the effect of the custom mutator on the process. Furthermore, we can compare this result to the results of
0OSS-Fuzz-Gen, to see the impact of the CFG analysis on harness generation. We re-used the CFG analysis
to make sure that we can detect the difference between the use of a custom mutator or not, and make sure
that the CFG analysis is not better or worse than in the previous experiment.

For the ablation study, we decided to build further upon the best performing model, which is Meta LLama

Maverick 4 on the LibPNG target. This combination is the only combination which managed to trigger a
bug. As explained earlier, while reaching a bug is interesting for benchmarks, in real-life, only triggering
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a bug would result in useful results. Therefore, we decided to continue with the experiment setup which
actually triggered the bugs.

In both the ablation experiments, we see the same behavior as found in Section sometimes, a bug is
reached or triggered right before we start fuzzing a new iteration or function. This may be due the fact that,
before the implementation starts fuzzing, the implementation generates new input seed files. These seed files
can reach or trigger a bug, which is picked up by Magma, and reported back in the graph.

Experiment 1: No CFG analysis To perform the ablation without the CFG analysis, the code base
had to be altered. With this approach, we only sent the source code files to the LLM, and let the LLM itself
decide which function it would want to fuzz. For this decision, no CFG analysis is used.

All the CFG references in the prompts are deleted and the code is altered to not use any generated CFGs.

The results can be seen in Figure [J] As can be seen in the figure, we do trigger and reach some bugs,
starting from around the 2.000 seconds time mark. However, in comparison to Figure [7 the experiment
where we did use the CFG analysis, we see that it does take longer to reach the first reached and triggered
bug. Furthermore, we see that we trigger and reach it less than when we did use the CFG analysis, but even
with these lower numbers, the number of triggered bugs is still sufficient for further analysis. The conclusion
is that the main improvement of the CFG analysis, is the timing.

It should be noted that, just as the previous experiment, the implementation crashed after around 4.000
seconds due the LLM not following the right instructions.

Bug reached and triggered over time for LibPNG on model Meta LLama 4 Maverick - No CFG an:
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Figure 9: Bug reach and bug trigger events on LibPNG with Meta LLama 4 Maverick without a CFG
analysis

In Figure we can see the histogram of the ablation study without the CFG analysis. Using this graph,

we can more clearly see that the number of reached and target bugs is very low, and that it takes a lot longer
without the CFG analysis to reach or target the bugs than it takes with the CFG analysis.
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Bug reached and triggered events for LibTiff on model Meta LLama 4 Maverick - No CFG analysis
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Figure 10: Bug reach and bug trigger events on LibTIFF with Meta LLama 4 Maverick - No CFG analysis

Experiment 2: No custom mutator To perform the experiment without the custom mutator, the code
also had to be altered. We deleted all the references to a custom mutator in the code, and altered the LLM
prompts to only generate a fuzzing harness and not a custom mutator.

As explained at the start of this Section, we re-used the CFG analysis we obtained in the first experi-
ment. This explains the fact that we can start fuzzing quite quickly at the start of our fuzzing campaign.
However, as seen in Figure[T1] we see that we can reach and trigger bugs quicker without the custom mutator.
Furthermore, we can see that we can reach a certain bug, PNG006, far more without a custom mutator than
with a custom mutator. This experiment shows that the effect of a custom mutator to target specific input
paths, with this target, is minimal.

It should be noted that, just as the previous experiment, the implementation crashed after around 4.500
seconds.
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Figure 11: Bug reach and bug trigger events on LibPNG with Meta LLama 4 Maverick without a custom
mutator

In Figure [I2] we can see the histogram of the experiment without the custom mutator. In here, we can
see that we can reach and target the bugs earlier than with a custom mutator, with a big spike around 3.000
seconds. In the logs, we see that this is about the time when we switched to another function, explaining
the big spike in the reached bugs.
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Figure 12: Bug reach and bug trigger events on LibTIFF with Meta LLama 4 Maverick - No custom mutator
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6 Limitations and Future Work

In this section, we will discuss the limitations of this research. Furthermore, we will provide several different
Future Work recommendations, which can be used to further explore fuzzing in combination with LLMs.

The main limitation of our work is that, due to budget limitations, we were unable to run our experi-
ments more than once. This reduces the reliability of our research, and it is an interesting further research
topic to extend the experiments to multiple runs. With these multiple runs, we can gain more confidence in
the findings. Furthermore, it would be interesting to see how the non-deterministic nature of LLMs would
work with these type of tasks, in terms of reproducibility.

In addition, our results demonstrated an unexpected result. Without the custom mutator, the implemen-
tation managed to gain more bug events for reaching the bugs than without the custom mutator. This is
unexpected, especially since we thought that a file format such as PNG would benefit from a custom mutator.
We would like to explore this in the future.

At the start of the project, we also tried to automate the bug triaging part of a fuzzing campaign. We
aimed at creating a large enough dataset using our fuzzer, which we could then use to validate our triage
tool. Due to the limited results of our fuzzer, we were not able to create a large enough dataset for this
experiment. Therefore, it is an interesting open question to experiment with the triage tool in the future, to
see if it is also possible to automate this part.

Furthermore, as explained in Section 4.1} another limitation is the limited context window of the LLMs.
Currently, we have to summarize the CFG analysis due to the limited context windows of the current LLMs.
We think it would be very interesting to see how LLM2Fuzz behaves when we have access to LLMs that
can fit the whole CFG structure in its memory. We think that a lot of valuable information gets lost in this
summarizations, which could result in a worse result.

An extra limitation is that we do not dynamically test our generated harness and custom mutator. Cur-
rently, the implementation assumes that the harness always works, and just tries to fix the input seed files
if we encounter any crashes. This is not a valid assumption and can waste resources in debugging this. It
would be interesting to research the same approach as Google’s OSS-Fuzz-Gen, where the fuzzing harness is
dynamically tested before the fuzzing campaign is started.

In our current experiments, we used one type of LLM for all the different tasks. LLM2Fuzz has the op-
tion to use two different LLMs for the CFG analysis and the creation of the custom mutators and harnesses.
It would be interesting to perform an experiment were we would use transfer learning of the LLMs. This
could be achieved by letting a state of the art model analyze the CFGs and let a faster or cheaper non state
of the art model generate the custom mutators and harnesses.

While LLM2Fuzz is capable of detecting and triggering some vulnerable code, it may benefit from a semi-
automatic approach. In this semi-automatic approach, the LLM with the CFG analysis can make the
prioritized list of vulnerable functions and a start of the fuzzing harness and custom mutator. After this, a
human can perform optimizations based on the CFG report. This implementation may still be more efficient
than fuzzing with the current state of the art implementations.

We also think it is interesting to see if we can support reversed binaries using this LLM2Fuzz. Using
several Reverse Engineering tools, such as Radare2 [46], it is possible to generate Control Flow Graphs of
binary applications. Using this, it would be possible to research the option to also fuzz binaries.

As last, we are interested to see how LLM2Fuzz would perform on obfuscated code. It may be an in-
teresting experiment to check if and to which extent LLM2Fuzz can still identify vulnerabilities, when the
vulnerable code is obfuscated. Especially reverse engineered binaries can be quite heavily obfuscated, mak-
ing it an interesting future research experiment in combination with the future research experiment to also
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support binaries.
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7 Discussion and Conclusion

In this section, we will discuss our results we obtained from our experiments. Furthermore, we will answer
the Research Questions as stated in Section [I] and give the conclusions.

With our experiments, we have seen that LLM2Fuzz is capable of detecting vulnerable code and can write
custom mutators and harnesses to fuzz these vulnerable functions. However, as the Results show in Section
we see that there are some differences between models and targets.

First, we see that more bugs are reached and triggered for LibPNG than for LibTIFF. For LibPNG, PNG002
is reached and triggered, while PNGOO5 and PNGOO6 are reached. For LibTIFF, only TIF012 is reached in
one run. One explanation for this may be that LibPNG is more widely used than LibTIFF. Due to the wide
use of LibPNG, it is possible that the LLMs have more information of the inner workings of these libraries,
and could therefore have a deeper understanding of the workings of the library. Another explanation may
be that while PNG is a heavily restricted format, TIFF has many optional fields. These optional fields
results in a lot of different code paths that can be taken, and making it harder to identify and target a
specific vulnerable code path. Nonetheless, the fact that the implementation can target these functions and
reach these bugs, shows that it seems to be possible to use Control Flow Graph and Large Language Models
to identify vulnerable code. Therefore, we can answer SR1 by that we can use Large Language Models to
analyze the Control Flow Graphs, and ask the Large Language Models to return a list of the most vulnerable
functions based on this analysis. Using this approach, we can use Control Flow Graphs and Large Language
Models to identify vulnerable code.

Our results show that LLM2Fuzz, which let LLMs generate fuzzing harnesses and custom mutators based
on the analysis of the CFGs by another LLM, works better than human written harnesses on an AFL++
campaign. While LLM2Fuzz reached three different bugs and managed to trigger one single bug, a run with
the human created harness did not trigger or reach any bug at all. While this difference is small, the ablation
study shows that the use of the CFG analysis seems to indicate that we can reach and trigger the same bug
in the half the time.

The creators of Magma also performed experiments with various fuzzers and the Magma benchmark. In
these experiments, the existing fuzzers performed better than the experiments we did with their harnesses,
and better than the experiments with LLM2Fuzz. This difference can be explained by the servers used. The
configuration of their servers for the fuzzing campaign is better than the configuration of the servers we used
for our experiments, which meant that their fuzzing speed was faster. For our conclusion, we use the results
of the experiments from our server, to make the comparison as fair as possible. With this information, we
can answer sub-question SR2 with the answer that the Control Flow Graph analysis seems to have a positive
effect on especially the time it takes to reach a vulnerable code path.

Furthermore, our results show that LLM2Fuzz works better than the OSS-Fuzz-Gen generated harnesses.
The OSS-Fuzz-Gen generated harnesses only managed to reach the PNG0O06 bug. No other bug is reached or
triggered. With this information, we can answer sub-question SR3 with the answer that LLM2Fuzz seems
to perform a bit better than current state of the art implementations.

LLM2Fuzz managed to trigger one bug. When fuzzing real life programs, triggering a bug is the only
important thing; reaching a bug does not give any information about the bug, since it does not results in a
crash. This results in that we can answer SR4 as that the implementation seems to have a positive effect
on the efficiency, compared to human-written fuzzing harnesses, but that there is room for improvement on
triggering the bugs.

One explanation for this performance may be that, due to the summarizing of the CFGs, a lot of use-
ful information is lost. The context windows of the LLMs are currently not big enough to store the whole
CFG in their context. A second explanation may be that the LLMs are (currently) not good enough in
analyzing the CFGs to identify harder to spot vulnerable code paths. This may improve when the LLMs
will get bigger and ‘smarter’. A third explanation may be that the fuzzing campaign was too short to find
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other bugs. We instruct the LLMs to generate a fuzzing harness and custom mutator to target the function
which the LLM thinks is the most vulnerable. Due to our budget, it was in most cases not possible to fuzz
the program for a long time, resulting in mostly fuzzing the same function in the fuzzing campaign. It may
be the case that, when having more budget, the implementation can more often switch to other functions
and find more bugs in there. As last, we observed that some fuzzing campaigns got stuck on a non-working
harness. The harness is not dynamically tested; the implementation assumes that when the harness compiles,
the harness is correct and will work. Furthermore, LLM2Fuzz requires to have at least one working seed
input file to start fuzzing. If we do not have any working seed input file, the LLM is asked to recreate the
input seed files, until we satisfy this requirement. This can result in an infinite loop, which can be fixed by
first dynamically testing our harness before going to the next phase.

One could argue that, since the injected bugs which are implemented by Magma can be quite old, the
LLMs have encountered these bugs in their learning phase and creates the priority list of the CFG analysis
based on their memory. While it is true that most of the bugs already existed before the cut-off date, we
think that this is not a problem. To our knowledge, we are the first who try to fuzz applications using a
LLM analysis based on CFGs. Furthermore, it is impractical to filter on bugs who were discovered after
the cut-off date. The cut-off date is quite recent, and as explained in Section the number of available
fuzzing benchmarks is low. Besides the low number of available fuzzing benchmarks, LLMs are in a rapidly
changing field, making it unrealistic to find a LLM model that is both state of the art and has a cut-off date
far in the past. Therefore, it would be impossible to find new CVEs ourselves and create a benchmark based
on the found bugs.

We do see that there is a difference between the models, as can be seen in Table [ and Although
the differences are very minimal, LLama 4 Maverick can reach and trigger the most bugs. Furthermore, an
interesting result is the result with GPT-4.1. GPT-4.1 is a state-of-the-art model. With this, the cost to use
the model is higher, and it takes more time to generate an answer. Nonetheless, GPT-4.1 is the model who
is the quickest in reaching the PNGOO6 bug. We do see that the Meta LLama 4 model identifies these bugs
later, but can also trigger PNG002. One explanation for this can be that, since the cost to use Meta LLama
4 is lower, we have more room to improve the generated code. Furthermore, we can switch more between
which function we want to target, increasing our chances that we find an entry that can reach or trigger
vulnerable code.

Additionally, we see that there is no clear distinction between the costs of generating the CFGs and the
fuzzing process. The amount of money used to analyze the CFGs differs a lot per model and target. There-
fore, we cannot answer SR5.

The ablation experiment without a custom mutator shows that the use of a custom mutator is actually
worsening the results of the fuzzing campaign. Without the custom mutator, we see that we can reach and
trigger a bug more than with a custom mutator. This shows that, at least with this particular target, the
custom mutator has not the expected effect on the fuzzing campaign. We can answer sub-question SR6 with
the answer that the custom mutator seems to have a negative effect on the efficiency of the generated fuzzing
harness with the Control Flow Graph analysis.

With all the information gathered from answering the sub-research questions, we can answer our research
question ‘How can we automate the fuzzing process of existing C-style programs, and generate custom mu-
tators, fuzzing harnesses, and seed input files?’. The different experiments show that, depending on the
model, LLM2Fuzz is capable of automating the fuzzing process by automatically writing fuzzing harnesses,
custom mutators and seed files. We automated these steps by using Large Language Models to generate the
required files. The automating process can further be improved by dynamically testing the fuzzing harness
before we start creating seed input files. We do see a small improvement of the distinct number of bugs
reached against human written and by OSS-Fuzz-Gen generated harnesses. As our ablation study shows, we
see that the Control Flow Graph analysis seems to have a positive effect on the time it takes to reach a bug,
while the use of custom mutators seems to have a negative effect on the distinct number of bugs found. This
does seem to show that the use of the Control Flow Graph analysis has a positive effect on the efficiency,
while the use of custom mutators does have a negative effect on the efficiency. However, more runs with
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LLM2Fuzz are needed to prove the effectiveness of the tool.

In conclusion, we see that LLM2Fuzz is capable of automating the fuzzing process, by generating fuzzing
harness, custom mutators and seed input files. Furthermore, the CFG analyzed, LLM generated harnesses
and custom mutators seem to perform a bit better than humanly written harnesses and current state of the
art solutions. In addition, the implementation seems to show a positive effect on the time it takes to reach
the first bug. Nonetheless, the differences are slim, and future research using larger LLMs or dynamically
tested harnesses are needed to verify the impact of the CFG analysis on the generation of fuzzing harnesses
and custom mutators.
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Appendixes

Two appendixes are added to the thesis. Appendix [A] contains all the used prompts, and Appendix
contains all the abbreviations.

A  Prompts

The following prompts are used in the implementation.

A.1 CFG generation
The following prompts are used for the CFG generation.

A.1.1 JSON format example

JSON_CFG_EXAMPLE = """

{

"explanation": "explanation in string form here",
"functions": [

"name": "example_function_1",

"parameters": [

{
lltypell: lli32ll’
"detail: "Example detail"

}

:l E
"vulnerabilityRating": 30,
"explanation": "explanation why the function is vulnerable",
"pathsToFunction": [
"main",
"function2"
]
]

}

A.1.2 CFG generation prompt

cfg_generation_instruction_prompt = (

” You are prompted with a CFG in the DOT-language generated by Clang/LLVM.
The programs are written in C/C++. It may be possible that you get
multiple CFGs, f.e. for different functions used in the code. We start
every CFG with <CFG_.index> and end the CFG with </CFG_index>, where
index is a number. We want to use these CFGs for guided—fuzzing. Your

job is to list all functions that can be fuzzed, so we can prompt
another chat to generate the fuzzing harnasses. Make a list of”

all the functions that can be fuzzed and give some details about the
parameters. Furthermore, examine the code to see which function would
be most prone to vulnerable bugs, so we can fuzz these function first.
Make a list”

b2
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” of these functions and give them a rating from 0-100% on how vulnerable
you think they are. At last, describe al the”

7 different paths the code execution can take to get to that function.
List ALL the different and ALL the paths the program should take to
get to the vulnerable functions; use the REAL function names, NOT the
addresses.”

7 After the initial prompt, you can be asked to redo the analysis. Use the
same CFGs as the first prompt, but start with your analysis from 0.”

f” Return the response in JSON the following format: {JSON.CFGEXAMPLE}.
ONLY return the JSON, do NOT include the ‘‘‘json ‘‘‘ tags: THIS IS
VERY IMPORTANT. Please do NOT include any standard functions, so no
functions that are in the standard library (STD), iterators or
anything else. List ALL the functions you found in the CFG/in the code
; even in the rating is low.”

A.2 Mutator and Harness generation

The mutator example, harness example and mutator documentation can be found in the code. (note/ques-
tion: these are very long prompts, and not very intersting. Should I include them here?)

A.2.1 Generation prompt

mutator_generation_instruction_prompt = (

"You are a cyber security testing engineer with the task to write a AFL++
fuzzing harness and custom mutator. Your task is to write these custom
mutators and harnesses using Control Flow Graphs.”

"Your job is to use this domain—specific information, the analysis based
on Control Flow Graphs, to create a harness and custom mutator which
targets all the different code paths ”

7in the function you are assigned to target. Make sure to ONLY target this
function , and not any other. Make really sure to use the anaysis for
this task.”

7 For this, you are given the following information:

”1. The analysis done on the Control Flow Graphs by a previous Al agent.
In here, you see which functions are probably the most vulnerable and
which you should target first. This is given between <ANALYSIS> and </
ANALYSIS> tags. Please adhere to this information. ”

72. The source code of the program. This is given to you between <
CODE FILENAME> and </CODEFILENAME>. Header files are given to you by
using <CODEHFILENAME> and </CODEHFILENAME>, where FILENAME is the
name of the file. Use this information to include the right files in
the fuzzer! ”

”73. The function we want to target. This is given to you between <FUNC>
and </FUNC>"

4. The output of ’ls’ in <LS> and </LS>. Here you can find the right file
names to include.”

"Make sure to identify which files you have to include, and get the
included files right!”

R

f” Avoid hardcoding strings; we do want to reach all the paths, but try to
create a generic mutator for this. The following functions can be used
for the mutator: <code> {mut_functions} </code>, with the following
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documentation: <documentation> {mut_documentation} </documentation>. A
mutator example can be found here: <code> {mutator_example} </code>"
7 Also, do NOT create weak links for functions. We can NOT fuzz using this
approach. Use the FILENAMES to INCLUDE (using #include) the right
files! Does including the .h file not work? Try including the .c file

b

b2

"We expect the following output, in JSON:

71. The source of the harness, with \”harness\” as tag. Do use the
LLVMFuzzerTestOnelnput function instead of main.”

72. The custom mutator, with \”custom_mutator\” as tag.”

”3. The harness file extension of the file (.c¢ or .cpp), with \”
harness_extension\” as tag.”

74. The custom mutator file extension (.c¢ or .cpp) of the file, with \”
mutator_extension\” as tag.”

5. A small explanation, with \”explanation\” as tag”

”Make sure to adhere to this output, and do not add anything else.”

7 After the first prompt, we can ask you one of the following things:”

”1. Create a custom mutator and harness to reach another function. ”

”72. Fix the current harness or mutator. We will give you the compiler
error.”

”73. Improve the current custom mutator and harness. We will prompt you
with a LCOV Trace File and the number of unique crashes. Try to
improve or write a new current harness to obtain better coverage and,
more importantly , find new crashes. You should say so if you think if
the custom’

"mutator and harness are already on it’s best, so we can continue to the
next function. Try to avoid improving the current custom mutator or
harness; we want to continue to the next function in reasonable time.
Please remember that a higher number of crashes means that the fuzzing

is better.”

A.3 Seed generation
A.3.1 JSON format example

J
{

SON_SEEDS_EXAMPLE = """

"files": [
{
"file": "filename_1",
"content": "content file 1",
"explanation": "small explanation of the file"
}
{
"file": "filename_2",
"content": "content file 2",
"explanation": "small explanation of the file",

}
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A.3.2 Generation prompt

seeds_generation_prompt = (

"You are a cyber security testing engineer who wants to create input files
which can be used to fuzz a program with AFL++. Your job is to create
input files , whereby each input file will take another code path in
the function we want to fuzz. Make sure that we take ALL the different
paths in the function we want to fuzz. ”

"Make sure that these inputs do NOT crash; that is a requirement of AFL++.
Double check this requirement with the code; perform static analysis
to achieve this! Explore as much code lines as possible for the
function we provide, but again, let the program NOT CRASH. ”

”Check your seeds with the Control Flow Graphs (CFGs) that are returned to
ensure that all possible, non—crashing paths are taken. Please do a
deep analysis on the source code and CFGs which are presented to you,

b2

f”and respond according to the following format: {JSONSEEDSEXAMPLE}. Do
NOT add the ’“‘‘json’ / ¢¢‘’ tags. Always, no matter what, adhere to
this format. \n You will be prompted as follows: \n <CFGS> CGS HERE </
CFGS> <CODE> CODE HERE </CODE> \n <FUNC> FUNCTION TO WRITE THE INPUT
FILES FOR </FUNC>.”

71t may be the case that we will ask you to fix certain files , f.e. if

they still crash. If we do that, come up with completely new seed
files. 7

B Abbreviations

In this research, multiple abbreviations are used. This list contains all full-written abbreviations in alphabetic
order.

e AFL - American Fuzzy Lop

e AFL++ - American Fuzzy Lop plus plus

o Al - Artificial Intelligence

e CAPEC - Common Attack Pattern Enumerations and Classifications
e CFG - Control Flow Graph

e CVE - Common Vulnerabilities and Exposures

e CVSS - Common Vulnerability Scoring System

e GDB - GNU Debugger

e LLM - Large Language Model

e PNG - Portable Network Graphics

e TNO - Nederlandse organisatie voor toegepast-natuurwetenschappelijk onderzoek

QEMU - QuickEmulator
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