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Abstract

Misophonia is a relatively underexplored condition in which specific everyday sounds, often
produced by humans, evoke strong negative emotional reactions such as anger, anxiety, or
disgust. Despite increasing interest in this condition, currently offered treatments and the
availability of relevant datasets for research are limited. In this study, a transformer-based audio
classification approach is explored using the PaSST (Patchout faSt Spectrogram Transformer)
model to identify misophonia-related trigger sounds. We explore PaSST’s performance and
compare it to a Vision Transformer (ViT) baseline. We further extend the dataset with
nine misophonia-related classes and analyze performance as audio duration decreases. PaSST
reaches higher validation accuracy (97.1%) but slightly higher validation loss (0.224) than
ViT (92.29%, 0.1956). Across 59 classes (16 misophonia), PaSST achieves a recall of 91% on
five-second clips when testing on the misophonia trigger sounds. Performance decreases with
shorter clip lengths. Recall remains above 80% down to 1.25 s, but falls below 80% at 1.0 s and
shorter. Based on these findings, we can state that the PaSST model achieves state-of-the-art
performance for misophonia trigger detection on the ESC-50 dataset, extended with the nine
misophonia categories, offering a strong foundation for future applications in adaptive noise
cancellation or other therapeutic support tools for individuals with misophonia.
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1 Introduction

Misophonia (‘hatred of sound’) is a condition
where specific sounds trigger intense emotional
reactions in individuals such as irritation, anger,
or even rage. Common examples of these sounds
include chewing, breathing, sniffing, or tapping.
Although first named and described in the early
2000s, misophonia remains under-recognized in
clinical settings, and its exact workings and diag-
nostic criteria continue to be subjects of debate.
What is clear, however, is that misophonia can
severely impact daily functioning, social interac-
tions, and mental well-being. Some individuals
may avoid environments in which misophonic
sounds will occur, and others might use coping
mechanisms, such as noise-cancelling headphones,
to help suppress sound and manage their symp-
toms. However, there are currently no standard-
ized tools to automatically detect or respond
to trigger sounds in real time. Advancements
in machine learning and audio classification may
help to address these shortcomings. This research
builds on recent developments in transformer-
based models for audio classification, in particu-
lar the Patchout faSt Spectrogram Transformer
(PaSST).
The study aims to evaluate how well such models
can recognize misophonia-related trigger sounds.
First, we use a subset of the ESC-50 dataset
focusing on eight sound categories identified in
previous literature as common misophonia trig-
gers [BBA23]. Considering the limited availabil-
ity of existing datasets for misophonia trigger
sounds, we also expand this subset with eight
new self-recorded categories to create a more
comprehensive dataset.
This thesis addresses three key objectives:

1. Exploring whether the PaSST model can
match the results of vision transformers
in classifying known misophonia trigger
sounds.

2. Assessing the model’s performance when
extending the sound dataset with more

misophonia trigger sounds, as well as non-
misophonia sounds.

3. Investigating the performance of the PaSST
model when trimming the audio clips to
shorter durations to simulate real-time
sound recognition for potential noise can-
cellation purposes.

By addressing these objectives, we aim to answer
the overarching research question:

“Can an audio transformer model like PaSST be
used to produce a state-of-the-art misophonia
trigger sound detection system?”

By evaluating the PaSST model, expanding the
ESC-50 dataset and running experiments on dif-
ferent audio fragment durations, this thesis con-
tributes to the development of potential miso-
phonia support tools. The thesis is structured as
follows: Section 2 discusses the background on
misophonia and Noise Cancellation; Section 3 dis-
cusses Vision Transformers and PaSST; Section 4
covers data and training; Section 5.1 describes
the experiments; Section 5.2 reports the results;
Section 6 discusses the results of the experiment
and the conclusions drawn from them.

2 Background

2.1 Misophonia

Misophonia was first identified and labeled by
Jastreboff and Jastreboff in 2001 [JJ01]. The
term described a distinct form of sound tolerance
that did not fit the criteria of existing conditions
on sound sensitivity, such as hyperacusis (physi-
cal sensitivity to sound) and phonophobia (fear
response to sounds). As opposed to general hy-
persensitivity to loudness, misophonia involves
strong negative emotional responses such as anger
and disgust when exposed to specific sounds (e.g.,
chewing, breathing, or tapping) [JJ01]. Although
the term was introduced in 2001, misophonia did
not attract the attention of psychiatric research
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until 2013, when Schröder et al. presented a clini-
cal case study to define the condition as a distinct
psychiatric condition [SVD13]. Since then, the
condition has gained significant research atten-
tion, and a consensus definition was not published
until recently in 2022 by researchers Swedo et
al. [SBD+22]. Despite clinical recognition, miso-
phonia is not yet formally recognized in diag-
nostic manuals such as DSM-5-TR (Diagnostic
and Statistical Manual of Mental Disorders) or
ICD-11 (International Classification of Diseases),
though clinical demand and growing empirical
evidence strive for its inclusion [MHI+23].
Studies suggest that misophonia sufferers experi-
ence involuntary emotional and physiological re-
sponses that significantly impact their daily func-
tioning, relationships, and mental health. How-
ever, treatment options are limited. Approaches
such as Cognitive Behavioral Therapy (CBT),
sound therapy, and mindfulness-based interven-
tions have been explored with some success,
though evidence remains sparse [MDW+23]. Re-
search is ongoing to better understand the con-
dition, its underlying mechanisms, and effective
treatment options.
From a neurological perspective, neuroimaging
research indicates that misophonia may not come
from issues in the auditory cortex itself. Instead,
it seems to stem from unusual connectivity be-
tween auditory processing and motor systems.
Kumar et al. [KDE+21] showed that people with
misophonia do not exhibit different responses in
the auditory cortex to trigger sounds. However,
they demonstrate stronger connections between
auditory areas and motor regions used for actions
like chewing. These motor areas are especially
active when exposed to trigger sounds. This sup-
ports a hyper-mirroring model, where harmless
sounds like chewing or breathing take on exces-
sive significance due to their strong links to the
neural systems that control those actions. This
shows, misophonia relates less to sound volume or
acoustic features and more to how specific sounds
become overly connected to meaning and social
context. Savard and Coffey [SC25] expanded on

this by proposing a broader cognitive framework.
They emphasized that misophonia cannot be sim-
plified to a single abnormal circuit. Instead, it
emphasizes the importance of deviating inter-
actions across larger brain networks, including
auditory pathways, the salience and attention
systems, and executive control networks. They
suggest that these networks together assign too
much importance to a narrow set of everyday
sounds. This framework aligns with the challenge
in machine learning, which involves teaching mod-
els to differentiate a small group of trigger sounds
from a much larger collection of neutral sounds,
even when the acoustic differences are slight.

2.2 Noise Cancellation
Technology

Noise cancellation technology, particularly active
noise cancellation (ANC), plays a vital role in
auditory interventions [BFP+25]. ANC uses de-
structive interference to cancel out sound by gen-
erating sound waves of the opposite phase. This
technology is implemented in headphones to sup-
press sounds such as air conditioning or passing
traffic. A recent study by Wunrow [Wun24] ex-
plored the potential of selective noise cancellation
as a treatment approach for misophonia. In this
work, a convolutional neural network (CNN) was
developed to recognize common trigger sounds
and selectively cancel them from audio clips. The
system was evaluated in a user study, where par-
ticipants rated their reactions to original trigger
sounds, non-trigger sounds, and selectively can-
celled trigger sounds. The findings showed that
the participants reported significantly reduced
misophonic reactions when exposed to selectively
cancelled audio. This shows the promise of this
technique as a foundation for future audiological
interventions. Although deep learning algorithms
such as Convolutional Neural Networks (CNNs)
have achieved high accuracy performance, recent
studies show that transformer models have sur-
passed CNNs as the dominant technology in the
field of audio classification [BBA23].
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3 Related Work

3.1 Vision Transformer

Bahmei et al. [BBA23] conducted one of the first
studies to recognize misophonia sounds using a
machine-learning-based approach called Vision
Transformer (ViT). The transformer, first intro-
duced by Vaswani et al. [Vas17], uses an attention
mechanism that selects the most important parts
of the input. Although the original transformer
consists of an encoder and a decoder, ViT pri-
marily uses the encoder for classification. In the
work by Bahmei et al., a 2D spectrogram (de-
rived from audio) is split into fixed-size patches.
Then, positional embeddings (encoding the or-
der of patches) and a special classification token
are added to the transformer encoder input. The
encoder learns global and relative positional infor-
mation of the patches. The transformer encoder
block itself includes three components: the Multi-
Head Self-Attention (MSA) to learn dependen-
cies, a Multi-Layer Perceptron (MLP) to capture
complex patterns, and Layer Normalization (LN)
to improve training time and performance. Fi-
nally, a classification head consisting of four fully
connected layers with ReLU activations and Soft-
max (to produce probabilities per class) is used.
The Adam optimizer is used for training, and
predicted classes are then represented as one-hot
encoded vectors. This approach effectively classi-
fied misophonia triggers on ESC-50 (+ chewing).
Their work demonstrates that transformer archi-
tectures can effectively classify trigger sounds,
motivating further research into deep learning
approaches for misophonia-related audio tasks.

3.2 PaSST

Koutini et al. [KEzW21] propose Patchout faSt
Spectrogram Transformers (PaSST) as an effi-
cient and high-performing architecture for audio
classification. The model improves upon previ-

ous transformer-based approaches like AST (Au-
dio Spectrogram Transformer) by introducing a
Patchout mechanism, which randomly removes
parts of the transformer’s input sequence during
training. This encourages the transformer to per-
form classification while using a sequence that is
incomplete. This acts both as a regularizer and
as a complexity reducer, allowing state-of-the-art
results to be achieved on large datasets such as
Audioset 1 while significantly lowering memory
usage and training time [KEzW21]. The model
has also been shown to generalize performance in
tasks such as ESC-50, OpenMIC, and FSD50K 2.
In this thesis, the PaSST model is selected over
CNN or traditional transformer models because it
is designed specifically for audio training and has
shown strong performance on short audio sam-
ples [KEzW21]. With Patchout, training time is
reduced and the model fits on a single consumer-
grade GPU [KEzW21].

3.3 Datasets in Misophonia
Research

A significant barrier in the field of misopho-
nia research has been the scarcity of dedicated
sound datasets. Researchers often rely on existing
datasets that are limited for misophonia trigger
sounds and lack coverage of individual trigger
sounds reported by sufferers. One recent attempt
to address this gap is the Free Open-Access Miso-
phonia Stimuli (FOAMS) database, introduced
by Orloff, Benesch and Hansen [OBH23]. They
offer a publicly available sound bank consisting
of 32 audio examples (8 categories with 4 audio
fragments each), complete with pilot discomfort
ratings. However, the dataset only covers a frac-
tion of recognized misophonia triggers and relies
on user-uploaded recordings from various sources,
resulting in variability in audio quality and lim-
ited diversity. Another dataset-related study uti-
lized the International Affective Digitized Sounds

1https://research.google.com/audioset//index.html
2https://github.com/kkoutini/PaSST?tab=readme-ov-file
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(IADS-2) library [BL07], which is a dataset widely
used in emotion research. Researchers Trumbull
et al. [TLM+24] used the dataset to explore af-
fective responses to the audio clips, including
trigger sounds such as chewing, sneezing, and
paper rustling. Although the study contributes
useful information, IADS-2 is not tailored to miso-
phonia and is not fully open-access, which makes
it difficult for researchers to use the sounds in
their studies. In addition to the audio datasets,
Samermit et al. [SYA+22] developed the Sound-
Swapped Video (SSV) database, pairing trigger
sounds with context-aligned, affect-neutral video
sources, to study how visual context modulates
emotional responses. Although this research is
valuable for psychological experiments, the focus
of SSV is not on standardized audio stimulus sets
that are usable for machine learning models.
In contrast to these limited resources, this the-
sis leverages and extends the ESC-50 dataset, a
widely used benchmark for environmental sound
classification introduced by Piczak [Pic15]. ESC-
50 includes 2,000 labeled audio samples evenly
distributed in 50 environmental categories (40
examples per class), with a standardized for-
mat (five-second WAV files (mono), sample rate
44.1 kHz). Several sounds within ESC-50 are rel-
evant for misophonia research (e.g., breathing,
coughing, snoring, keyboard typing), making it
a valuable foundation.
To build on this, our study introduces an expan-
sion of ESC-50 by adding eight newly recorded
misophonia-related classes, such as joint cracking,
sniffing, finger tapping, and humming, plus an
additional category chewing, which was collected
from the Kaggle dataset 3. Each new class con-
sists of 40 recordings in a format consistent with
ESC-50 4. Hereafter, we refer to the extended
dataset (ESC-50 plus nine additional classes)
as ESC-59, containing 16 misophonia-related
classes in total.

4 Methodology

4.1 Research Design

This study uses supervised learning for audio
classification using the PaSST model [KEzW21].
The goal is to investigate the effectiveness of
this transformer-based architecture in classifying
misophonia-related trigger sounds. The study fol-
lows a comparative design: It first mirrors the
structure of an existing study that used a Vision
Transformer for audio classification [BBA23],
and then extends it with additional misophonia-
related categories to evaluate the model’s scalabil-
ity and performance under variable input lengths.

4.2 Dataset

4.2.1 Initial Dataset Selection

The initial dataset used for this study was the
ESC-50 dataset and can be found on Gi-
tub5. The dataset contains 2000 labeled en-
vironmental audio recordings of five seconds
each across 50 classes (40 recordings per class).
Seven categories from ESC-50 were selected
that are commonly associated with misophonia
trigger sounds (e.g., breathing, coughing, snor-
ing, drinking, mouse clicking, keyboard typing,
and clock ticking). Since chewing is one of the
most commonly reported misophonia triggers
but is not included in ESC-50, we added this
category separately using recordings from Ma’s
2020 eating sound dataset [MGMVR20]. Ma con-
ducted 11, 141 recordings of 20 different food
types [MGMVR20]. For our curated dataset, two
recordings from each of these food types were
extracted to mimic the most variable chewing
sounds and to remain consistent with 40 record-
ings per category. Together, these eight cate-
gories (seven from ESC-50 plus chewing from

3https://www.kaggle.com/datasets/mashijie/eating-sound-collection
4The original ESC-50 dataset consists of recordings of five seconds with a sample rate of 44.1 kHz, however, all

recordings are resampled to a sample rate of 32 kHz during the PaSST model training process.
5https://github.com/karolpiczak/ESC-50
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Ma’s dataset) match the set chosen in Bahmei
et al. [BBA23].

4.2.2 Extended Dataset

After confirming that the PaSST model pro-
duces comparable results to the baseline study,
the dataset was extended with eight additional
misophonia-relevant categories. All sounds were
recorded manually, where again each category
contains 40 audio recordings.
The new categories that were chosen are: rustling,
utensils, pen clicking, throat clearing, sniffing,
joint cracking, finger tapping, and humming. The
categories were chosen based on a variety of iden-
tified trigger sounds by health sources such as
the Cleveland Clinic [Clend] and the Misopho-
nia Institute [Misnd]. The spectrum of potential
misophonia triggers is virtually infinite, so these
eight categories were merely chosen as a start-
ing point for extending the dataset with poten-
tial trigger sounds. They include a mix of oral
sounds (throat clearing, sniffing, humming), man-
ual activity sounds (pen clicking, finger tapping,
utensils), and body-related sounds (joint crack-
ing, rustling). Other triggers mentioned in these
sources, such as environmental trigger sounds
(e.g., dripping taps, household appliances), were
not chosen to extend the dataset since these
can often be eliminated or avoided. In contrast,
human-generated sounds, such as pen clicking
during a meeting or throat clearing during a lec-
ture, are harder to control.

4.3 Recording Procedure

For each of the eight categories, 40 audio samples
of exactly five seconds were recorded, matching
the sample size and duration used in the ESC-50
dataset to maintain a balanced class distribu-
tion and enable fair comparison with prior work.
Since eight new categories were manually added,
a total of 320 five-second audio fragments were
required. There were several considerations when
choosing a recording method:

• Recording setup All recordings were cap-
tured using the built-in microphone of an
iPhone via a dedicated recording applica-
tion called Voice Record Pro [Day12]. This
choice ensured consistency and clear audio
quality. Although a headphone microphone
was considered, given its relevance to po-
tential future integration with active noise-
cancelling headphones, research shows the
audio quality of an iPhone microphone is
comparable to that of a headset micro-
phone [FMH+23].

• Environments To stay consistent with
real-life conditions in which misophonia
trigger sounds occur and the ESC-50
dataset, recordings were made in both
quiet, controlled rooms and mildly noisy
public environments such as cafés and
trains. Background noise levels were kept
below conversational speech to ensure the
target sound remained clearly identifiable
while introducing some environmental vari-
ability.

• Technical parameters Recordings were
sampled at 32 kHz, 16-bit depth, mono
channel, and saved in WAV format. These
parameters match those of the ESC-50
dataset and pretrained PaSST models, en-
suring compatibility and reducing prepro-
cessing complexity.

• Quality control All recordings were man-
ually reviewed to confirm that the trigger
sound was clearly present and recogniz-
able. Samples with unrelated or obstructive
sounds were discarded and re-recorded.

By using human-made trigger sounds that were
recorded in various environments and kept close
to the way ESC-50 recordings were made, the ex-
tended dataset provides a strong basis for testing
how well the PaSST model can detect misophonia
triggers.
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4.4 Audio Preprocessing

All audio samples were standardized to five-
second fragments, consistent with the audio frag-
ments of the ESC-50 dataset. For further experi-
ments, we also wanted to decrease the duration
of the audio clip to see if the model classifies
the sounds equally compared to the five-second
fragments.
For this purpose, we have written a program that
takes in an audio file and creates a new audio file
with a specified duration (i.e., 2 s, 1.5 s, 1.25 s,
1 s, and 0.5 s). The new file consists of a trimmed
segment of the original file and contains the mo-
ment where the amplitude was maximal. We also
tested different positions of this maximum am-
plitude to see if this would make a difference for
the performance of the model. For audio clips of
length 1 s up until 1.5 s, two different trimming
strategies were applied: positioning the maximum
amplitude in the audio clip at 20% of the trimmed
audio segment and at 50%. For example, when we
take audio clips of 1.5 s and a trimming method
of 20%, the maximum amplitude of the trimmed
audio file will be at 0.3 s, since 0.3/1.5 = 20%.
Vice versa, for the 50% trimming method, the
maximum amplitude of a 1.5 s audio file would
be at 0.75 s. If this is not possible because the
maximum amplitude is found at the edge of the
original audio clip, the trimmed segment will be
positioned at that edge.
After quickly reviewing all new audio segments
manually, we still had to delete some audio files
where the highest amplitude in the fragment was
not recognizable as an actual trigger sound, and
re-record this sound. After doing so, the new
testing dataset was complete.

4.5 Training Configuration

As mentioned in Section 3, the PaSST model is
used due to its strong performance and reduced
training time. Moreover, pretrained weight files
are available, allowing for initial testing of the

setup and providing a baseline for training on
the expanded dataset [KEzW21]. The pretrained
model that was used for our experiments was the
esc50-passt-s-n-f128-p16-s10-fold1-acc.967.pt,
and can be found on the PaSST github6.
Further, the training process went as follows.
Each class in the ESC-50 and the additional
misophonia trigger set contains 40 audio clips
of 5 seconds. We applied a stratified 60/40 split
per class, where 24 clips were assigned to the
training set, and 16 clips were used for the test
set.
The 24 training clips were used to fit the PaSST
model. During training, the PaSST implemen-
tation automatically reserves a portion of the
training set for internal validation (used for early
stopping and hyperparameter tuning). Thus, the
validation set is a random subset of the training
data and is not manually defined. The 16 held-
out test clips per class were never seen by the
model during either training or validation and
were used exclusively for final evaluation and
reporting of performance.
Training Details:

• Optimizer: AdamW
• Learning Rate: 0.00001
• Loss Function: Cross-entropy
• Epochs: 10
• Batch Size: 12 (training) + 20 (validation)
= 32

• Data Augmentation: Mixup (alpha = 0.3)
and SpecAugment (time mask = 80, fre-
quency mask = 48)

• Training/Validation/Test Split: Training
on 24 samples per category, testing on 16
samples per category of interest

• Training was performed using PyTorch
Lightning on an NVIDIA T4 GPU.

4.6 Experimental setup

The PaSST model was trained over 10 epochs
using a batch size of 32. The PaSST model was

6https://github.com/kkoutini/PaSST/releases/tag/v.0.0.6
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trained on the 24 training clips per class, with
an internal validation split automatically gener-
ated by the framework. Model checkpoints with
the lowest validation loss were retained. After
training, all reported results are based on the
16 held-out test clips per class, which provide
an unbiased estimate of generalization to unseen
data.

4.7 Evaluating the model

To see whether the PaSST model was suited
for further experimentation, we first trained the
model on the seven chosen misophonia trigger
sounds from the original ESC-50 dataset plus
the added chewing sounds category, and com-
puted the validation accuracy and validation
loss to compare it to the research by Bahmei
et al. [BBA23].

(a) Accuracy

(b) Loss

Figure 1: Graphs showing the training and vali-
dation accuracy and loss during 10 epochs based
on our results.

Their model shows a validation accuracy of
92.29% and a validation loss of 0.1956, see Fig-
ures 14 and 15 in the appendix. This indicates
that their model is capable of accurately classi-
fying trigger sounds. After training our PaSST
model, we observed similar results with a valida-
tion accuracy that reaches 97.1% and a validation
loss that reaches 0.224, see Figure 1.
We also compared the precision, recall, and F1
scores as well as the confusion matrix from the
Bahmei paper. Table 1 shows the performance
metrics of our PaSST model and the Bahmei
et al. paper, respectively. The numbers that are
marked show when either the PaSST model or the
ViT model outperforms one another.7 Lastly, the
confusion matrices from both the PaSST model
and Bahmei et al. can be observed; see Figure 2.

Categories
Precision Recall F1-score

PaSST ViT PaSST ViT PaSST ViT

Breathing 0.94 1.00 1.00 0.97 0.97 0.98
Coughing 1.00 0.92 1.00 1.00 1.00 0.95
Snoring 1.00 1.00 0.88 0.98 0.93 0.99
Drink sipping 0.84 1.00 1.00 0.96 0.91 0.98
Mouse clicking 0.89 1.00 1.00 0.97 0.94 0.98
Keyboard typing 1.00 1.00 0.88 0.98 0.93 0.99
Clock ticking 1.00 1.00 1.00 1.00 1.00 1.00
Chewing 1.00 - 0.88 - 0.93 -
Average 0.96 0.99 0.95 0.98 0.95 0.98

Table 1: Performance metrics for the PaSST and
ViT model on five-second audio clips, showing
precision, recall, and F1-score for each class.

These results show that the performance of our
PaSST model is sufficient for further training and
running experiments. For further performance
evaluation, the PaSST model was trained on
the aforementioned ESC-59 dataset. When mea-
suring performance metrics on the test set, we
used recall as the determining factor, as preci-
sion would only be accurate if we tested on all
categories; a non-misophonia sound classified as
a misophonia trigger sound would decrease the
precision as the number of false positives (FP)
increases, while the recall is fixed.

7Bahmei et al. [BBA23] did not include the “chewing” category in their reported metrics table, and it remains
unclear how the presented metrics were derived from the accompanying confusion matrix, see Figure 2.
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(a) PaSST

(b) Vision Transformer

Figure 2: Confusion matrices from both the
PaSST model and the Bahmei et al. study.

Furthermore, confusion matrices were used not
only to examine recall but also to identify
whether a misclassified sound was assigned to
another misophonia trigger category.
After training on five-second fragments, a se-
ries of experiments was conducted to determine
the minimum effective audio length required
for reasonable classification performance. The
trained model was then tested on progressively
shortened audio fragments to assess performance
degradation at different timescales.

Important note: The confusion matrices are
row-normalized and restricted to the 16 misopho-
nia classes; misophonia sounds wrongly classified
as non-misophonia sounds (false negatives) are
therefore not displayed. For example, out of the
16 test samples for chewing, 15 were classified
correctly (94%), and one sample was misclassi-
fied as a non-misophonia sound. Training and
testing exclusively on misophonia trigger sounds
would reveal exactly how each sound is classi-

fied, as in the study by Bahmei et al. [BBA23].
However, we chose not to omit the other cat-
egories, since the intended application of our
model should function in real-life settings where
various sounds are continuously present. Even
with all categories included, our model achieved
similar recall, precision, and F1-scores, as well as
comparable validation accuracy and loss.

5 Experiments & Results

In this section, the conducted experiments and
the results of the experiments will be discussed.

5.1 Experiments

The experiments that were conducted to evaluate
the effectiveness of the PaSST model on different
lengths of audio clips were done in the following
manner. First, a baseline was established with
the audio clips of five seconds in duration. After
this, the model was run on the processed audio
clips of 2 s, 1.5 s, 1.25 s, 1 s, and 0.5 s. Finally,
confusion matrices and reports containing pre-
cision, recall, and F1-scores were made for the
performance comparison of the models.

5.2 Results

In this section, the results of the experiments will
be presented. The results will then be interpreted
in Section 6. For every combination of audio clip
duration and trimming method that the model
was tested on, a table with the metrics precision,
recall, and F1-score was made, as well as the
corresponding confusion matrix.

5.2.1 Baseline results

The results from the five-second audio clips are
used as a baseline for comparing the results of
the shortened audio clips. Table 2 shows the pre-
cision, recall, and F1-scores for each category.
Figure 3 shows the associated confusion matrix.
Next, the results of two-second audio clips are
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shown, as they were the shortest audio clips that
still had similar results to the five-second audio
clips. Table 3 shows the recall, precision, and F1-
scores for the two-second audio segments along
with their confusion matrix in Figure 4.

Categories Precision Recall F1-score

Breathing 0.92 0.75 0.83
Coughing 1.00 0.88 0.93
Snoring 1.00 0.94 0.97
Drink sipping 1.00 0.75 0.86
Mouse clicking 0.93 0.88 0.90
Keyboard typing 1.00 1.00 1.00
Clock ticking 1.00 0.94 0.97
Chewing 0.89 1.00 0.94
Rustling 1.00 1.00 1.00
Utensils 1.00 1.00 1.00
Pen clicking 0.85 0.69 0.76
Throat clearing 1.00 0.94 0.97
Sniffing 0.75 0.94 0.83
Joint cracking 0.80 1.00 0.89
Finger tapping 0.94 0.94 0.94
Humming 1.00 1.00 1.00

Average 0.94 0.91 0.92

Table 2: Performance metrics for the model on
five-second audio clips, showing precision, re-
call, and F1-score for each class.

Figure 3: Confusion matrix with results from the
five-second audio clips, corresponding to the
report shown in Table 2.

Categories Precision Recall F1-score

Breathing 0.88 0.94 0.91
Coughing 1.00 0.88 0.93
Snoring 1.00 0.94 0.97
Drink sipping 0.87 0.81 0.84
Mouse clicking 0.87 0.81 0.84
Keyboard typing 1.00 0.81 0.90
Clock ticking 1.00 0.56 0.72
Chewing 0.88 0.94 0.91
Rustling 0.94 1.00 0.97
Utensils 1.00 1.00 1.00
Pen clicking 0.91 0.62 0.74
Throat clearing 1.00 0.94 0.97
Sniffing 0.93 0.88 0.90
Joint cracking 0.89 1.00 0.94
Finger tapping 0.88 0.94 0.91
Humming 1.00 0.94 0.97

Average 0.94 0.88 0.90

Table 3: Performance metrics for the model on
two-second audio clips, showing precision, re-
call, and F1-score for each class.

Figure 4: Confusion matrix with results from the
two-second audio clips, corresponding to the
report shown in Table 3.

5.2.2 Shortened audio clip results

Here the average precision, recall, and F1-score
results are shown for all audio clips. For audio
clips of length 1 s up until 1.5 s, two trimming
methods were tested, namely 20% and 50%, to
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see if they would yield different outcomes. The
results in Table 4 show that the recall remained
above 80% for both trimming methods used at a
length of 1.5 s and 1.25 s.

Duration Trim Precision Recall F1-score

5s 20% 0.94 0.91 0.92
2s 20% 0.94 0.88 0.90
1.5s 50% 0.92 0.84 0.87
1.5s 20% 0.92 0.83 0.86
1.25s 50% 0.91 0.83 0.86
1.25s 20% 0.91 0.80 0.84
1s 50% 0.92 0.77 0.83
1s 20% 0.91 0.74 0.80
0.5s 20% 0.87 0.48 0.55

Table 4: Average precision, recall, and F1-score
per duration and trimming method.

Neither trimming method achieved this at 1 s.
For all durations in which different trimming
methods were tested, the performance was higher
when the loudest point in the audio was placed
in the center of the trimmed segment, so at 50%
trimmed, as shown in Table 4. Since the recall
scores of audio clips with a duration of 1 s (both
trimming methods) are already below 80%, we
did not try other trimming methods for the 0.5 s
audio clips. Lastly, Table 4 shows that for audio
clips with a duration of 0.5 s, the average preci-
sion, recall, and F1-scores significantly decrease.
More detailed results of the precision, recall, and
F1-scores, as well as the corresponding confusion
matrices of all audio clips, can be found in the
appendix, Section 10.

6 Discussion

In this section, the results of Section 5.2 are in-
terpreted and the limitations of the study are
discussed. As stated in the introduction of Sec-
tion 5.1, we will use the recall score as a perfor-
mance metric to evaluate the shortest audio clips
that still perform well. In this study, we consider
a recall score of ≥ 80% to be sufficient. From

Table 2 and Table 3, we can see the average recall
of 91% and 88%, respectively. This indicates that
our trained model still reaches our desired recall
score for the audio clips of 5 s and 2 s.
When the recall score is high (e.g. ≥ 0.8), it sug-
gests that the audio fragments in the category
are classified correctly in most cases. In contrast,
recall scores below 0.8 may require examination
to understand the underlying causes. For exam-
ple, looking at Figure 4, we can see a 56% recall
score for the category clock ticking and 62% recall
score for the category pen clicking. This indicates
that only 59% ((0.56 + 0.62)/2) of the audio seg-
ments labeled as clock ticking or pen clicking
were correctly classified. Although these two cat-
egories were misclassified 41% of the time, they
were still assigned to another, similar-sounding
misophonia trigger category (e.g., mouse click-
ing, joint cracking, or finger tapping) 19% of the
time. The remaining 22% of the time was an-
other non-misophonia trigger sound in the ESC-
50 dataset. Furthermore, it is important to note
that if we were to calculate recall by grouping all
categories into just two classes: “misophonia” and
“non-misophonia”, the resulting recall would be
much higher (59% + 19% = 78% in the example
above for clock ticking/pen clicking). However,
this value would be slightly biased since more
than a quarter of the entire dataset of the current
categories falls under misophonia triggers.
Table 4 shows that audio samples with a duration
of 1.5 s and 1.25 s still reach the desired average
recall score of 80%. However, as shown in Fig-
ures 7, 8, 9, and 10, some categories start to be
misclassified more often. We have already men-
tioned that pen clicking and clock ticking have
a relatively low recall, which has continued in
the tests for these shorter audio segments. Fur-
thermore, the recall scores of chewing, keyboard
typing, drink sipping, and finger tapping have
also fallen below 80%.
Both trimming methods for the one-second audio
clips have not reached our required minimum for
recall, as the average score is 0.77 when trimmed
at 50% and 0.74 when trimmed at 20%, as shown

10



in Table 4. Lastly, we have also shown at what
rate the average recall further drops when testing
on 0.5-second audio segments.

Categories → Misclassification

Snoring
Sniffing

→ Breathing

Keyboard typing
Joint cracking
Pen clicking
Finger tapping
Clock ticking

→ Mouse clicking

Chewing → Drink sipping

Rustling → Chewing

Table 5: Categories misclassified as other cate-
gories, both misophonia trigger sounds.

Tables 12, 13, and 14 show that not all categories
perform weakly, even when given a duration of
0.5 seconds. For example, breathing, snoring, and
mouse clicking still have a recall score above 80%.
The corresponding confusion matrices shown in
Figures 11, 12, and 13 give even more insights;
not only the recall scores, but also the categories
that perform poorly due to similarities with other
sounds, which are summarized in Table 5. For
example, Table 5, shows that many short and
snappy sounds, such as joint cracking or pen click-
ing, are frequently misclassified as mouse clicking,
which clarifies the relatively low precision score
for mouse clicking in the reports.
Additionally, several limitations of this study
should be acknowledged. First, the extended
dataset of eight newly recorded categories pro-
vides a valuable starting point. However, the num-
ber of recordings remains relatively small, which
limits the model’s exposure to other misophonia
trigger sounds and therefore the generalizability
of the model as well.
Second, the PaSST model used in this study
relied on pretrained weights and was not specifi-
cally fine-tuned for the misophonia classification

task. While this approach already produced suf-
ficiently strong results, more rigorous fine-tuning
could potentially improve performance further,
particularly on the shorter audio segments where
accuracy declined.
Lastly, the comparison between PaSST and the
ViT results should be interpreted with caution.
The ViT model reported in earlier work was
trained exclusively on misophonia-related sounds,
whereas PaSST in this study was trained on both
misophonia and non-misophonia classes. This dif-
ference in training scope makes the comparison
less straightforward, and future studies should
aim to evaluate the models under more consistent
conditions.

7 Conclusion

This thesis aimed to investigate whether an au-
dio classification model, PaSST (Patchout faSt
Spectrogram Transformer), can be effectively ap-
plied to misophonia trigger sound recognition. By
addressing three key objectives: 1) benchmark-
ing the PaSST model against the ViT model, 2)
assessing the PaSST model with the extended
ESC-59 dataset, and 3) running experiments
on trimmed audio fragments, we aim to answer
the research question: Can an audio transformer
model like PaSST be used to produce a state-of-
the-art misophonia trigger sound detection sys-
tem?

1. We first replicated the setup of previous re-
search using a Vision Transformer (ViT) on
a subset of the ESC-50 dataset and found
that PaSST reached performance metrics
similar to the ViT ((validation accuracy,
validation loss) = (97.1%, 0.224) for PaSSt,
the ViT achieved (92.29%, 0.1956)).

2. Next, we extended this dataset by adding
eight self-recorded sound categories plus
one online-collected category. This yielded
a total of 59 classes, 16 of which are related
to misophonia. The training results on the
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extended dataset showed that the PaSST
model still reaches a 91% recall score on
five-second audio clips when tested on miso-
phonia trigger sounds, which confirmed the
model’s robustness.

3. Additionally, we explored the model’s per-
formance on shorter audio durations. Al-
though classification performance declined
with shorter clips, the model remained suf-
ficient (recall above 80%) down to 1.25-
second clips, indicating that the model is
suitable for live misophonia trigger detec-
tion.

Overall, these results demonstrate that PaSST
achieves state-of-the-art performance for miso-
phonia trigger sound recognition, as evaluated
on our extended ESC-59 dataset. Even though
the model is not specifically fine-tuned for miso-
phonia, its performance still matches ViT-based
approaches under the same experimental condi-
tions. In summary, this work demonstrates that
PaSST can serve as a strong foundation for build-
ing a misophonia sound recognition system, with
state-of-the-art performance in audio classifica-
tion tasks.

8 Future Work

Although this study shows the potential of PaSST
for detecting misophonia triggers, several areas
still need further exploration. Future work could
look at how well the model works in a live detec-
tion system. This could be applied in wearable
devices, such as noise-cancelling headphones, that
would suppress only misophonia trigger sounds,
following the work by [Wun24]. To accomplish
this, the model must be able to quickly recognize
sounds, especially short, high-frequency misopho-
nia trigger sounds. Moreover, the development of
targeted noise-cancellation methods is necessary
as ANC systems do not yet effectively suppress
specific high-frequency sounds. As people differ in

their sensitivity to specific triggers, personaliza-
tion could also improve performance; for example,
using an adaptive mobile application that asks
for user feedback could improve detection preci-
sion.
Furthermore, future studies should test how well
the model performs in different recording de-
vices and environmental conditions to improve
generalizability. Expanding the dataset with a
wider range of both misophonia sounds and
non-misophonia sounds would also contribute
to model performance and inclusion. In general,
future work is essential to apply the experimental
models to practical tools that can assist misopho-
nia sufferers in their daily lives.
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[SVD13] Arjan Schröder, Nienke Vulink,
and Damiaan Denys. Misopho-
nia: diagnostic criteria for a new
psychiatric disorder. PloS one,
8(1):e54706, 2013.

[SYA+22] Patrawat Samermit, Michael
Young, Allison K Allen, Hannah
Trillo, Sandhya Shankar, Abigail

Klein, Chris Kay, Ghazaleh
Mahzouni, Veda Reddy, Veronica
Hamilton, et al. Development and
evaluation of a sound-swapped
video database for misophonia.
Frontiers in psychology, 13:890829,
2022.

[TLM+24] Jacqueline Trumbull, Noah Lanier,
Katherine McMahon, Rachel
Guetta, and M Zachary Rosenthal.
Using a standardized sound set to
help characterize misophonia: The
international affective digitized
sounds. Plos one, 19(5):e0301105,
2024.

[Vas17] Ashish Vaswani. Attention is all
you need. Advances in neural in-
formation processing systems, 30:I,
2017.

[Wun24] Timothy Wunrow. Selective noise
cancelling application for misopho-
nia treatment. Mississippi State
University, 2024.

14

https://misophoniainstitute.org/misophonia-triggers/
https://misophoniainstitute.org/misophonia-triggers/
https://misophoniainstitute.org/misophonia-triggers/


10 Appendix

10.1 Reports

Categories Precision Recall F1-score

Breathing 0.92 0.75 0.83
Coughing 1.00 0.88 0.93
Snoring 1.00 0.94 0.97
Drink sipping 1.00 0.75 0.86
Mouse clicking 0.93 0.88 0.90
Keyboard typing 1.00 1.00 1.00
Clock ticking 1.00 0.94 0.97
Chewing 0.89 1.00 0.94
Rustling 1.00 1.00 1.00
Utensils 1.00 1.00 1.00
Pen Clicking 0.85 0.69 0.76
Throat clearing 1.00 0.94 0.97
Sniffing 0.75 0.94 0.83
Joint cracking 0.80 1.00 0.89
Finger tapping 0.94 0.94 0.94
Humming 1.00 1.00 1.00

Average 0.94 0.91 0.92

Table 6: Performance metrics for the model on
five-second audio clips, showing precision, re-
call, and F1-score for each class.

Categories Precision Recall F1-score

Breathing 0.88 0.94 0.91
Coughing 1.00 0.88 0.93
Snoring 1.00 0.94 0.97
Drink sipping 0.87 0.81 0.84
Mouse clicking 0.87 0.81 0.84
Keyboard typing 1.00 0.81 0.90
Clock ticking 1.00 0.56 0.72
Chewing 0.88 0.94 0.91
Rustling 0.94 1.00 0.97
Utensils 1.00 1.00 1.00
Pen clicking 0.91 0.62 0.74
Throat clearing 1.00 0.94 0.97
Sniffing 0.93 0.88 0.90
Joint cracking 0.89 1.00 0.94
Finger tapping 0.88 0.94 0.91
Humming 1.00 0.94 0.97

Average 0.94 0.88 0.90

Table 7: Performance metrics for the model on
two-second audio clips, showing precision, re-
call, and F1-score for each class.

Categories Precision Recall F1-score

Breathing 0.88 0.94 0.91
Coughing 1.00 0.88 0.93
Snoring 0.93 0.88 0.90
Drink sipping 0.67 0.75 0.71
Mouse clicking 0.81 0.81 0.81
Keyboard typing 1.00 0.81 0.90
Clock ticking 1.00 0.50 0.67
Chewing 0.80 0.75 0.77
Rustling 1.00 0.94 0.97
Utensils 0.94 1.00 0.97
Pen Clicking 0.92 0.75 0.83
Throat clearing 0.93 0.88 0.90
Sniffing 0.93 0.88 0.90
Joint cracking 1.00 1.00 1.00
Finger tapping 0.93 0.81 0.87
Humming 1.00 0.81 0.90

Average 0.92 0.84 0.87

Table 8: Performance metrics for the model on
1.5-second audio clips (50% trim), showing
precision, recall, and F1-score for each class.

Categories Precision Recall F1-score

Breathing 0.88 0.94 0.91
Coughing 1.00 0.88 0.93
Snoring 1.00 0.94 0.97
Drink sipping 0.76 0.81 0.79
Mouse clicking 0.72 0.81 0.76
Keyboard typing 1.00 0.75 0.86
Clock ticking 1.00 0.50 0.67
Chewing 0.80 0.75 0.77
Rustling 1.00 0.94 0.97
Utensils 0.93 0.88 0.90
Pen Clicking 0.91 0.62 0.74
Throat clearing 0.93 0.88 0.90
Sniffing 0.93 0.88 0.90
Joint cracking 0.94 1.00 0.97
Finger tapping 0.87 0.81 0.84
Humming 1.00 0.88 0.93

Average 0.92 0.83 0.86

Table 9: Performance metrics for the model on
1.5-second audio clips (20% trim), showing
precision, recall, and F1-score for each class.
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Categories Precision Recall F1-score

Breathing 0.94 0.94 0.94
Coughing 1.00 0.88 0.93
Snoring 0.88 0.88 0.88
Drink sipping 0.75 0.75 0.75
Mouse clicking 0.67 0.88 0.76
Keyboard typing 1.00 0.75 0.86
Clock ticking 1.00 0.56 0.72
Chewing 0.80 0.75 0.77
Rustling 0.94 0.94 0.94
Utensils 1.00 1.00 1.00
Pen Clicking 0.90 0.56 0.69
Throat clearing 1.00 0.94 0.97
Sniffing 0.93 0.88 0.90
Joint cracking 0.89 1.00 0.94
Finger tapping 0.92 0.69 0.79
Humming 1.00 0.88 0.93

Average 0.91 0.83 0.86

Table 10: Performance metrics for the model on
1.25-second audio clips (50% trim), showing
precision, recall, and F1-score for each class.

Categories Precision Recall F1-score

Breathing 0.83 0.94 0.88
Coughing 0.93 0.88 0.90
Snoring 1.00 0.88 0.93
Drink sipping 0.67 0.75 0.71
Mouse clicking 0.70 0.88 0.78
Keyboard typing 1.00 0.69 0.81
Clock ticking 1.00 0.44 0.61
Chewing 0.73 0.69 0.71
Rustling 1.00 0.88 0.93
Utensils 1.00 0.88 0.93
Pen Clicking 0.91 0.62 0.74
Throat clearing 1.00 0.81 0.90
Sniffing 1.00 0.88 0.93
Joint cracking 0.94 1.00 0.97
Finger tapping 0.86 0.75 0.80
Humming 1.00 0.88 0.93

Average 0.91 0.80 0.84

Table 11: Performance metrics for the model on
1.25-second audio clips (20% trim), showing
precision, recall, and F1-score for each class.

Categories Precision Recall F1-score

Breathing 0.88 0.94 0.91
Coughing 1.00 0.81 0.90
Snoring 0.93 0.88 0.90
Drink sipping 0.85 0.69 0.76
Mouse clicking 0.67 0.88 0.76
Keyboard typing 1.00 0.56 0.72
Clock ticking 1.00 0.38 0.55
Chewing 0.67 0.62 0.65
Rustling 1.00 0.75 0.86
Utensils 1.00 0.94 0.97
Pen Clicking 0.92 0.75 0.83
Throat clearing 0.94 0.94 0.94
Sniffing 1.00 0.88 0.93
Joint cracking 1.00 1.00 1.00
Finger tapping 0.89 0.50 0.64
Humming 1.00 0.88 0.93

Average 0.92 0.77 0.83

Table 12: Performance metrics for the model on
one-second audio clips (50% trim), showing
precision, recall, and F1-score for each class.

Categories Precision Recall F1-score

Breathing 0.80 1.00 0.89
Coughing 0.93 0.81 0.87
Snoring 1.00 0.81 0.90
Drink sipping 0.80 0.75 0.77
Mouse clicking 0.68 0.81 0.74
Keyboard typing 0.90 0.56 0.69
Clock ticking 1.00 0.44 0.61
Chewing 0.67 0.62 0.65
Rustling 1.00 0.75 0.86
Utensils 1.00 0.81 0.90
Pen Clicking 0.90 0.56 0.69
Throat clearing 0.81 0.81 0.81
Sniffing 1.00 0.69 0.81
Joint cracking 1.00 1.00 1.00
Finger tapping 1.00 0.62 0.77
Humming 1.00 0.81 0.90

Average 0.91 0.74 0.80

Table 13: Performance metrics for the model on
one-second audio clips (20% trim), showing
precision, recall, and F1-score for each class.
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Categories Precision Recall F1-score

Breathing 0.71 0.94 0.81
Coughing 0.92 0.69 0.79
Snoring 0.87 0.81 0.84
Drink sipping 0.50 0.50 0.50
Mouse clicking 0.46 0.81 0.59
Keyboard typing 1.00 0.19 0.32
Clock ticking 1.00 0.19 0.32
Chewing 1.00 0.06 0.12
Rustling 1.00 0.31 0.48
Utensils 1.00 0.69 0.81
Pen Clicking 0.67 0.38 0.48
Throat clearing 0.82 0.56 0.67
Sniffing 1.00 0.50 0.67
Joint cracking 1.00 0.38 0.55
Finger tapping 1.00 0.12 0.22
Humming 1.00 0.56 0.72

Average 0.87 0.48 0.55

Table 14: Performance metrics for the model on
0.5-second audio clips, showing precision, recall,
and F1-score for each class.

10.2 Confusion matrices

Figure 5: Confusion matrix with results from the
five-second audio clips, corresponding to the
report shown in Table 6.

Figure 6: Confusion matrix with results from the
two-second audio clips, corresponding to the
report shown in Table 7.

Figure 7: Confusion matrix with results from the
1.5-second audio clips (50% trim), correspond-
ing to the report shown in Table 8.
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Figure 8: Confusion matrix with results from the
1.5-second audio clips (20% trim), correspond-
ing to the report shown in Table 9.

Figure 9: Confusion matrix with results from
the 1.25-second audio clips (50% trim), corre-
sponding to the report shown in Table 10.

Figure 10: Confusion matrix with results from
the 1.25-second audio clips (20% trim), corre-
sponding to the report shown in Table 11.

Figure 11: Confusion matrix with results from
the one-second audio clips (50% trim), corre-
sponding to the report shown in Table 12.
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Figure 12: Confusion matrix with results from
the one-second audio clips (20% trim), corre-
sponding to the report shown in Table 13.

Figure 13: Confusion matrix with results from
the 0.5-second audio clips, corresponding to the
report shown in Table 14.

Figure 14: Graph shown in a study by Bahmei,
presenting the training and validation accuracy
during 100 epochs [BBA23].

Figure 15: Graph shown in a study by Bahmei,
presenting the training and validation loss during
100 epochs [BBA23].

Figure 16: Graph showing the training and vali-
dation accuracy during 10 epochs based on our
results.

Figure 17: Graph showing the training and vali-
dation loss during 10 epochs based on our results.
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