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Abstract

Wind farms are an important source of renewable energy, but their efficiency is af-
fected by wake interactions between turbines. Reinforcement learning (RL) has emerged
as a promising approach to optimize wind farm control and mitigate power losses due
to wake effects. However, RL development is constrained by the choice of training en-
vironments, which are either too simplified and may not realistically depict the problem
or too computationally expensive to train RL agents over many trajectories.

This work introduces an environment for quasi-dynamic wind farm control, balancing
computational efficiency, that enables RL training while maintaining physical realism.
The proposed environment incorporates wake transfer effects and partial observability,
both important aspects of real-world wind farm control which controllers must consider
to optimize power generation.

Through experiments, we evaluate the performance of various controllers on steady-
state and quasi-dynamic environments. Our results indicate that baselines and learned
policies developed for steady-state environments have limited transferability to quasi-
dynamic environments, with a decrease in generated power of 0.14% in our larger ex-
periments when compared to the power generated by aligning the turbines directly with
the upstream wind. In contrast, even relatively simple RL agents can effectively learn
control strategies in the more complex and high-dimensional quasi-dynamic settings,
increasing the power output by 0.33% in the same settings. These findings highlight the
importance of environment design in wind farm control and the potential of RL agents.
Through the development of the fast, quasi-dynamic environment, this study facilitates
research on such agents, helping in the development of more efficient wind farm control
strategies.

1 Introduction

Wind energy is a renewable, abundant and secure power source. As such, it plays an important
role in meeting the European Union’s decarbonization objectives while delivering clean and
affordable electricity to households and industry. The EU’s renewable energy target of at least
42.5% by 2030 will require wind energy capacity to increase, among other renewable sources
[1]. This expansion plan shows the importance of maximizing the efficiency of both existing
and future wind farm installations. One aspect of wind power production is optimal control,
which aims to reduce the impact of wake effects and maximise power production. When wind
passes through a turbine, it creates a region of reduced wind speed and increased turbulence
downstream, known as a wake. These wakes can reduce the power output of downstream
turbines significantly, with studies showing intra-farm efficiency losses in the 10%-20% range
[2] [3]. Optimizing the control strategy of individual turbines can mitigate these wake effects
and increase the total power output of the wind farm.

Different approaches exist to tackle this optimal control problem, from static yaw offset strate-
gies to learned control policies [4]. Methods for optimizing wind farm control in reinforcement
learning (RL) often rely on simulators to train or pretrain the agents. Deploying untrained
agents directly in a real wind farm is not feasible because it would cause loss of generated
energy and potential damage to structures. In wind farm optimal control, RL agents use wind
farm simulators to receive rewards based on how much power their control policy is capable of
generating. The observations provided to these agents are very limited, typically including the
yaw of the turbines, some local wind information at the turbine, and the general wind speed
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and direction. Occasionally, extra wind data from wind masts is provided, but this informa-
tion remains limited and localized. Various simulation environments have been developed to
model the complex aerodynamic interactions between turbines and their wakes. These simu-
lators serve as development and validation tools for wind farm control algorithms. However,
existing control-oriented wind farm simulators typically fall into two categories: they are either
computationally expensive to run with high accuracy or fast with reduced fidelity.
High-fidelity simulators usually run computational fluid dynamics (CFD) calculations to gen-
erate realistic flow fields and which are used to compute power production by turbines [5, 6].
SOWFA [7] is an example of a high fidelity simulator. It computes Large Eddy Simulations
(LED) to simulate wind in the wind farm. Medium-fidelity simulators sacrifice some of the
simulation quality in favor of speed. An example of such an environment is WFSim [8], which
models wind dynamics through two-dimensional Navier-Stokes equations. Although WFSim
simulations feature more realistic dynamics than low-fidelity simulators, they are unable to
model changing wind directions as boundary conditions, limiting their applicability. In con-
trast, FLORIS [9] is a fast, low-fidelity simulator which runs steady-state computations of the
flow field in wind farms. It is commonly used in wind farm optimization due to its speed and
ease of use, as Gym versions of the environment exist. While this environment allows for fast
simulation speed, all transient dynamics of the system, such as wake transport effects, are
lost due to the fact that the computed flow fields are steady-state. Moreover, the simplicity of
the simulation makes the environment fully observable through the measurements of sensors
that are commonly available in wind farms. This gap between the properties of the simulated
environment and real wind farms is problematic, as it may hinder the transfer of models and
results derived from FLORIS to real-life scenarios.
To address this limitation, multiple methods have been developed to run quasi-dynamic wind
farm simulations starting from low-fidelity steady-state simulations, like FLORIDyn [10] and
FOWFSimDyn [11]. While implmentations of these wind farm models exist, they aim to simu-
late the wind farm system and are not suitable for optimal control tasks featuring agent-system
interactions like the training of reinforcement learning agents. This hinders the applicability of
these simulators and makes it difficult for practitioners to use them to develop new algorithms.
This impact is observed in the literature, as most studies train RL agents on FLORIS and
WFSim, where it is not possible to effectively simulate changing wind directions.

This work aims to address the gap between existing wind farm simulators and reinforcement
learning needs by implementing a simplified version of the FLORIDyn dynamic wake modeling
in a standardized Gym environment. The FLORIDyn approach is based on the idea of sampling
steady-state information at each timestep through sets of points and translating them accord-
ing to wind conditions. The accumulation of these points over multiple timesteps is then used
to generate a flow field which features the movement of wake effects, despite being derived
from steady-state simulations. This is implemented within a control-oriented framework using
the FLORIS Gym environment as the foundation.

Experiments on simulation speed show that the proposed dynamic environment runs signifi-
cantly faster than existing alternatives while maintaining only a limited performance loss com-
pared to the FLORIS environment. The results of the experiments on agent performance over
different environments indicate that while strong baselines for FLORIS, such as Floris Serial-
Refine, outperform other methods in the FLORIS environment, they fail to transfer effectively
to the new dynamic environment. In contrast, even simple reinforcement learning (RL) agents
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demonstrate the ability to be trained effectively in the dynamic environment, suggesting that
RL approaches may be better suited for handling high-dimensional, partially observable wind
farm control tasks.

The scope and contributions of the study are as follows. This work aims to address the gap
between existing RL wind farm simulators and real-life wind farms. As training RL agents can
require running a significant amount of simulations, this study aims to create simulators with
low computational cost, while bridging the reality gap of current simulators by generating
quasi-dynamic flow fields from arbitrary freestream wind conditions. The contributions of the
study are the following:

• We provide a fast, quasi-dynamic wind farm simulator that enables the study of optimal
control in wind farms with partially observable conditions. The environment is shown
to be capable of computing simulations faster than real-time, achieving speeds over
65,000× faster than SOWFA, making it an efficient alternative for generating quasi-
dynamic flow fields. It also features a Gym interface for easy integration and use for
agent based modelling.

• We conduct experiments comparing existing baselines to simple reinforcement learning
(RL) agents, both in steady-state and quasi-dynamic environments, to evaluate how the
different environments affect the performance and applicability of existing methods.

• We find that RL control policies can outperform the baselines in quasi-dynamic environ-
ments.

This document is organized as follows. Section 2 discusses related work, providing an overview
of existing simulation environments and optimal control methods for wind farm control. Sec-
tion 3 details the methodology, including the problem formulation, the description of the
dynamics of the different environments that are used in the study, the wind turbine layouts,
the controllers evaluated in the study and the experimental setup. The results, presented in
Section 4, include experiments on the Serial-Refine baseline, comparisons of different con-
trollers across environments, and a brief computational efficiency analysis. Section 5 provides
a discussion of the findings, followed by the conclusions in Section 6. Finally, additional de-
tails on the hyperparameter search for PPO agents and the convergence of training are in the
Appendix A and B respectively.

2 Related Work

This section reviews previous research in wind farm control, covering both simulation environ-
ments and control strategies. Section 2.1 summarizes existing wind farm simulators, focusing
on their fidelity and applicability for control tasks. Next, Section 2.2 describes different tech-
niques for wind farm control, including both model-based and model-free methods.

2.1 Wind farm simulators

Different control oriented simulators have been used in the literature to study the control
of wind farms. These simulators have different levels of complexity to balance the trade-off
between simulation fidelity and computational costs. High-fidelity simulators aim to generate
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realistic simulations which represent the underlying physical dynamics of the wind accurately,
whereas low-fidelity simulators implement simplified wind dynamics which can be computed
more quickly. Three simulators that are commonly used in wind farm control research are
FLORIS [9], WFSim [8] and SOWFA [7].

• SOWFA is a high-fidelity simulator that models the wind dynamics in a wind farm through
a three-dimensional Large Eddy Simulation (LES) flow field model. This simulator is
capable of representing flow field dynamics with high accuracy, but this higher quality of
simulation comes at a significant computational cost. This makes the simulator a poor
choice when a high number of trajectories need to be computed.

• WFSim is a medium-fidelity simulator. At each timestep, it solves a two-dimensional form
of the unsteady turbulent Navier-Stokes equations along a horizontal plane located at the
hub height of the wind turbines within a wind farm. The two-dimensional approximation
of the system allows for faster computation, but makes the simulation less realistic,
neglecting three-dimensional wind dynamics effects. Nonetheless, additional measures
are taken to limit the negative impact of this approximation. Although this method can
simulate transient wake effects, its formulation assumes that the upstream boundary
wind conditions are fixed in direction. This limits the applicability to control tasks, as
changing wind conditions cannot be modeled with this simulator.

• FLORIS is a low-fidelity steady-state control focused wind farm simulator. It is a common
choice of environment for RL research for wind farm optimal control due to its relatively
low computational cost and ease of use, compared to the other available simulators.
It is implemented in Python and a Gym [12] wrapper is available to allow its usage in
conjunction with other RL frameworks. FLORIS simulations model the wind dynamics
as steady-state computations. To do so the simulator uses the current wind speed, wind
direction and turbine yaws to compute the state of the wind throughout the wind farm.
This kind of simulation ignores any transient dynamics of the wind throughout the farm,
such as wake meandering. Because of this, wake effects caused by turbines propagate
instantly through the wind farm at each timestep.

Although the three methods offer different speed-accuracy trade-offs, they all have critical
shortcomings. SOWFA is computationally prohibitive for experiments that require many tra-
jectories. WFSim and FLORIS, while more efficient, introduce approximations that compromise
accuracy or generalizability, limiting their applicability in real-world scenarios. WFSim is lim-
ited to simulations with fixed freestream wind directions, and FLORIS computes steady-state
simulations.
Quasi-dynamic low-fidelity simulators were developed to overcome the limitations of the afore-
mentioned approaches. These simulators aim to model wake transport or wake meandering
while keeping computational costs reasonable. Two examples of such approaches are FloriDyn
[13, 10] and FOWFSimDyn [11]. FloriDyn uses steady-state simulations created with FLORIS
and simulates wind dynamics by propagating the wake computed by FLORIS through the wind
farm over time. To introduce wind dynamics, the FloriDyn model introduces observation points
(OPs). These OPs are used to describe the local wake characteristics of FLORIS at their spe-
cific location and are generated behind wind turbines at each timestep. As time progresses, the
OPs move downstream according to freestream wind conditions, representing the mass of air
traveling through the wind farm. This approach allows the wake effects to travel through the
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wind farm and be transported by the wind, generating effects of wake transport. This makes
the environment simulations more complex than the ones from FLORIS, where wake transport
phenomena are absent.
FOWFSim-Dyn is a dynamic simulator designed to model floating offshore wind farms, cap-
turing the coupled effects of wake propagation and platform motion under time-varying wind
conditions. It simulates wake dynamics by modeling the wake centerline propagation and mo-
mentum recovery. It also simulates the dynamics of offshore platforms.
As this study focuses on simulating quasi-dynamic wind conditions without platform dynamics,
the FloriDyn formulation is chosen as a reference for the development of the quasi-dynamic
environment. This allows the proposed environment to generate simulated trajectories quickly
while still featuring complex wind dynamics. Contrary to WFSim and FLORIS, this environment
allows for both changing freestream wind conditions and complex wind dynamics, and can be
used to find control policies in more challenging settings.

2.2 Wind farm optimal control approaches

Wind farm optimal control methods are usually separated into two types: model-based and
model-free approaches.

Model-based approaches aim to model the wind optimal control task as a constrained opti-
mization problem. These methods often feature an analytic representation of the relationship
between yaw settings of turbines and generated power or wake effects, and they use various
approaches to find yaw settings that optimize power. Due to the complexity of wind dynamics,
wind simulators cannot be used directly, and surrogate models which model wind dynamics
in tractable analytic forms are used instead. These surrogate models allow the problem opti-
mization task to be tractable and to obtain optimal yaw settings for different wind conditions.
Studies have proposed to model the wind farm system through simplified parametric wake
effect models [14, 15, 16], and used these surrogate models to develop control strategies.
While the refinement of surrogate models has allowed to improve control strategies, these
methods have been shown to be sensitive to unmodeled dynamics and uncertainties in the
system. Moreover, the actual performance of these model-based controllers can differ signifi-
cantly from the analytical results.

Model-free approaches have been explored by other studies to address these limitations of
model-based methods. These methods optimize control policies without relying on a prede-
fined mathematical model of the system. Instead of analytically solving for optimal values, they
learn from observed interactions between control variables (e.g., turbine yaw angles), system
parameters (e.g., wind speed, direction, and atmospheric conditions), and target outputs (e.g.,
power generation). These methods allow to decouple the optimal control and wind farm simu-
lation tasks, and thus avoid the problem of constructing an accurate analytic wind farm power
function. In these approaches, data of the system dynamics are either provided by real-life
measurements or generated synthetically by simulators, and different optimization methods
are applied to the data, agnostic of the underlying system dynamics formulation. Multiple
data-driven approaches have been proposed, including a game-theoretic search algorithm [17],
a gradient ascent algorithm [18], maximum power point tracking methods [19, 20], a Bayesean
optimization approach [21] and more.
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Reinforcement learning methods are data-driven approaches of particular interest, as deep
reinforcement learning methods can address the high system complexity of wind farms, while
also being robust to uncertainties and noise. These methods learn a control policy which
optimizes a reward signal by interacting with an environment. Various RL approaches have
been proposed to optimize wind farm control in recent years [22]. Most studies developed
agents using FLORIS and WFSim environments, with SOWFA being an uncommon choice
due to its low speed. These studies show the capability of RL agents for wind farm control,
and indicates a growing interest in developing such methods.
Different approaches have been used to train agents in the FLORIS environment. Multi-agent
approaches have been developed to distribute the wind farm control task at the turbine level
[23, 24]. One study has trained TD3 and SAC agents, providing a variety of sensor data to
the agents and evaluating the impact of action representation on model performance [25].
The transfer of FLORIS-trained agents to dynamic environments has also been considered, to
address the high computational cost of training in dynamic environments [26].
Multiple studies have tested variations of DDPG agents and have applied them on the WFSim
environment, augmenting the DDPG architecture with double networks [27], a composite
experience replay [28] or knowledge assisted methods to take into account the wear and tear
of the infrastructure [29].
Finally, one study has trained RL models using high-fidelity simulation data from SOWFA
[30]. It introduces a reward regularization module to address the non-markovian aspect and
stochasticity of SOWFA simulations, and splits training in offline and online RL phases.
Most works presented in this section focus on low-fidelity and medium-fidelity environments to
avoid the computational cost of training RL agents in dynamic simulators. In studies that use
low-fidelity FLORIS simulations, the quality of simulation is significantly lower, which limits
the transferability of results to real-life control tasks. Studies that use medium-fidelity WFSim
simulations can only simulate fixed wind directions, limiting the scope of the study to simple
wind conditions. A specific training process is devised to limit the number of computations
of SOWFA simulations for the work that uses the high-fidelity dynamic SOWFA simulator.
First, a set of trajectories is generated to train a DDPG model offline. After that, the model
is trained online: the learned policy is used to generate 700s of SOWFA trajectories, which
are then used to update the model. This online training process is repeated twice. While this
process allows to limit the generated trajectories to 1400s of SOWFA simulations for online
training, trajectories are created using only two versions of the control policy, which limits the
exploration of policies significantly.
This work aims to address the issues of the different simulators used in the training of control
policies for wind farm control and make the use of quasi-dynamic environments more accessible.
This is done by providing a fast quasi-dynamic environment, facilitating the development of
better data-driven methods for wind farm control.

3 Methods

This section outlines the methodologies used in the study, focusing on wind farm control en-
vironments and optimization algorithms. Section 3.1 introduces the simulation environments
used in the study, including a formulation of wind farm control as a constrained optimization
problem and MDP formulations. Section 3.2 details the control algorithms: Proximal Policy
Optimization (PPO) for reinforcement learning and Floris Serial-Refine as a baseline. Section
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3.3 describes the environment layouts, while Section 3.4 presents the experimental design,
analyzing the Floris Serial-Refine baseline, algorithm performance across the different environ-
ments, and computational efficiency of the proposed environment.

3.1 Wind farm Gym environments

This section describes the environments that are used for the experiments of this study. Three
environments are considered. The first two are based on the FLORIS [9, 31] simulator, and
use it to compute steady-state simulations for the flow field. The third environment is the one
introduced in this study and it computes the flow field through a quasi-dynamic formulation
inspired by FloriDyn. The first steady-state environment is a fixed wind environment, where
freestream wind conditions are constant throughout each episode. The second steady-state
environment features changing freestream conditions within episodes. The quasi-dynamic en-
vironment is the most complex environment of the three, featuring changing freestream wind
conditions, a much larger state space, wake transport effects and partial observability.
The optimal control problem of maximising power generation in a wind farm is formulated as
a constrained optimization problem in Section 3.1.1. The implementation details, properties
and MDP formulations of each environment are described in the following sections, with Sec-
tion 3.1.2 describing the fixed wind environment, Section 3.1.3 describing the changing wind
environment and 3.1.4 describing the quasi-dynamic environment. For each type of environ-
ment, multiple environments are created with different wind turbine layouts and wind farm
sizes to run experiments at different scales. The layouts used in the experiments are presented
in Section 3.3.

3.1.1 Constrained optimization problem formulation

The problem of finding an optimal control policy for a wind farm to maximize power generation
can be formulated as a constrained optimization problem. We consider trajectories of length
T with timesteps t ∈ T = {1, 2, . . . , T}. The number of wind turbines in the wind farm is
defined as N and turbines and their parameters are assigned indices i ∈ N = {1, 2, . . . , N}.
The freestream wind speed and direction are defined as vt and ϕt. The freestream wind
direction is initialized as a random direction ϕ0 ∼ U(0, 2π) and the freestream wind speed is
initialized within a range v0 ∼ U(vmin, vmax). The yaw offsets of each turbine i with respect
to the freestream wind direction are represented as ψi,t and are initialized within a range
ψi,0 ∼ U(−ψmax, ψmax). The vector of yaw offsets of all turbines at a given timestep is defined
as ψt = [ψ1, . . . , ψN ]. The vector representing the information provided to the control policy at
each timestep is defined as ot and it includes information about the freestream wind conditions
and the yaw offsets of all turbines. The turbine yaws are controlled according to actions at.
The actuation function f(ψt, at) rotates the wind turbines according to the control policy
and actuation constraints of speed and maximum angle. The freestream wind parameters
evolve according to a function g(ϕt, vt). The flow field is represented as Ft. In steady-state
environments the flow field is computed by a functionMSS(ϕt, vt,ψt) which takes the current
freestream parameters and turbine yaw offsets as inputs. In quasi-dynamic environments the
flow field is computed by a functionMSS(ϕt, vt,ψt, Ft−1) which also takes the representation
of the flow field computed at the previous timestep as input. The initial conditions for the flow
field in the quasi-dynamic case F0 represent the steady-state freestream flow. The problem
of finding an optimal control policy for a wind farm to maximize power generation can be
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within a range v0 ∼ U(vmin, vmax). The yaw offsets of each turbine i with respect to the
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U(−ψmax, ψmax). The vector of yaw offsets of all turbines at a given timestep is defined as
ψt = [ψ1, . . . , ψN ]. The vector representing the information provided to the control policy at
each timestep is defined as ot and it includes information about the freestream wind conditions
and the yaw offsets of all turbines. The turbine yaws are controlled according to actions at.
The actuation function f(ψt, at) rotates the wind turbines according to the control policy
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evolve according to a function g(ϕt, vt). The flow field is represented as Ft. In steady-state
environments the flow field is computed by a functionMSS(ϕt, vt,ψt) which takes the current
freestream parameters and turbine yaw offsets as inputs. In quasi-dynamic environments the
flow field is computed by a functionMSS(ϕt, vt,ψt, Ft−1) which also takes the representation
of the flow field computed at the previous timestep as input. The initial conditions for the flow
field in the quasi-dynamic case F0 represent the steady-state freestream flow. The problem
of finding an optimal control policy for a wind farm to maximize power generation can be
formulated as a constrained optimization problem. We consider trajectories of length T with
timesteps t ∈ T = {1, 2, . . . , T}. The number of wind turbines in the wind farm is defined
as N and turbines and their parameters are assigned indices i ∈ N = {1, 2, . . . , N}. The
freestream wind speed and direction are defined as vt and ϕt. The freestream wind direction
is initialized as a random direction ϕ0 ∼ U(0, 2π) and the freestream wind speed is initialized
within a range v0 ∼ U(vmin, vmax). The yaw offsets of each turbine i with respect to the
freestream wind direction are represented as ψi,t and are initialized within a range ψi,0 ∼
U(−ψmax, ψmax). The vector of yaw offsets of all turbines at a given timestep is defined as
ψt = [ψ1, . . . , ψN ]. The vector representing the information provided to the control policy at
each timestep is defined as ot and it includes information about the freestream wind conditions
and the yaw offsets of all turbines. The turbine yaws are controlled according to actions at.
The actuation function f(ψt, at) rotates the wind turbines according to the control policy
and actuation constraints of speed and maximum angle. The freestream wind parameters
evolve according to a function g(ϕt, vt). The flow field is represented as Ft. In steady-state
environments the flow field is computed by a functionMSS(ϕt, vt,ψt) which takes the current
freestream parameters and turbine yaw offsets as inputs. In quasi-dynamic environments the
flow field is computed by a functionMSS(ϕt, vt,ψt, Ft−1) which also takes the representation
of the flow field computed at the previous timestep as input. The initial conditions for the flow
field in the quasi-dynamic case F0 represent the steady-state freestream flow. The problem
of finding an optimal control policy for a wind farm to maximize power generation can be
formulated as a constrained optimization problem. We consider trajectories of length T with
timesteps t ∈ T = {1, 2, . . . , T}. The number of wind turbines in the wind farm is defined
as N and turbines and their parameters are assigned indices i ∈ N = {1, 2, . . . , N}. The
freestream wind speed and direction are defined as vt and ϕt. The freestream wind direction
is initialized as a random direction ϕ0 ∼ U(0, 2π) and the freestream wind speed is initialized
within a range v0 ∼ U(vmin, vmax). The yaw offsets of each turbine i with respect to the
freestream wind direction are represented as ψi,t and are initialized within a range ψi,0 ∼
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U(−ψmax, ψmax). The vector of yaw offsets of all turbines at a given timestep is defined as
ψt = [ψ1, . . . , ψN ]. The vector representing the information provided to the control policy at
each timestep is defined as ot and it includes information about the freestream wind conditions
and the yaw offsets of all turbines. The turbine yaws are controlled according to actions at.
The actuation function f(ψt, at) rotates the wind turbines according to the control policy
and actuation constraints of speed and maximum angle. The freestream wind parameters
evolve according to a function g(ϕt, vt). The flow field is represented as Ft. In steady-state
environments the flow field is computed by a functionMSS(ϕt, vt,ψt) which takes the current
freestream parameters and turbine yaw offsets as inputs. In quasi-dynamic environments the
flow field is computed by a functionMSS(ϕt, vt,ψt, Ft−1) which also takes the representation
of the flow field computed at the previous timestep as input. The initial conditions for the flow
field in the quasi-dynamic case F0 represent the steady-state freestream flow. The problem
of finding an optimal control policy for a wind farm to maximize power generation can be
formulated as a constrained optimization problem. We consider trajectories of length T with
timesteps t ∈ T = {1, 2, . . . , T}. The number of wind turbines in the wind farm is defined
as N and turbines and their parameters are assigned indices i ∈ N = {1, 2, . . . , N}. The
freestream wind speed and direction are defined as vt and ϕt. The freestream wind direction
is initialized as a random direction ϕ0 ∼ U(0, 2π) and the freestream wind speed is initialized
within a range v0 ∼ U(vmin, vmax). The yaw offsets of each turbine i with respect to the
freestream wind direction are represented as ψi,t and are initialized within a range ψi,0 ∼
U(−ψmax, ψmax). The vector of yaw offsets of all turbines at a given timestep is defined as
ψt = [ψ1, . . . , ψN ]. The vector representing the information provided to the control policy at
each timestep is defined as ot and it includes information about the freestream wind conditions
and the yaw offsets of all turbines. The turbine yaws are controlled according to actions at.
The actuation function f(ψt, at) rotates the wind turbines according to the control policy
and actuation constraints of speed and maximum angle. The freestream wind parameters
evolve according to a function g(ϕt, vt). The flow field is represented as Ft. In steady-state
environments the flow field is computed by a functionMSS(ϕt, vt,ψt) which takes the current
freestream parameters and turbine yaw offsets as inputs. In quasi-dynamic environments the
flow field is computed by a functionMSS(ϕt, vt,ψt, Ft−1) which also takes the representation
of the flow field computed at the previous timestep as input. The initial conditions for the flow
field in the quasi-dynamic case F0 represent the steady-state freestream flow. The problem
of finding an optimal control policy for a wind farm to maximize power generation can be
formulated as a constrained optimization problem. We consider trajectories of length T with
timesteps t ∈ T = {1, 2, . . . , T}. The number of wind turbines in the wind farm is defined
as N and turbines and their parameters are assigned indices i ∈ N = {1, 2, . . . , N}. The
freestream wind speed and direction are defined as vt and ϕt. The freestream wind direction
is initialized as a random direction ϕ0 ∼ U(0, 2π) and the freestream wind speed is initialized
within a range v0 ∼ U(vmin, vmax). The yaw offsets of each turbine i with respect to the
freestream wind direction are represented as ψi,t and are initialized within a range ψi,0 ∼
U(−ψmax, ψmax). The vector of yaw offsets of all turbines at a given timestep is defined as
ψt = [ψ1, . . . , ψN ]. The vector representing the information provided to the control policy at
each timestep is defined as ot and it includes information about the freestream wind conditions
and the yaw offsets of all turbines. The turbine yaws are controlled according to actions at.
The actuation function f(ψt, at) rotates the wind turbines according to the control policy
and actuation constraints of speed and maximum angle. The freestream wind parameters
evolve according to a function g(ϕt, vt). The flow field is represented as Ft. In steady-state
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environments the flow field is computed by a functionMSS(ϕt, vt,ψt) which takes the current
freestream parameters and turbine yaw offsets as inputs. In quasi-dynamic environments the
flow field is computed by a functionMSS(ϕt, vt,ψt, Ft−1) which also takes the representation
of the flow field computed at the previous timestep as input. The initial conditions for the flow
field in the quasi-dynamic case F0 represent the steady-state freestream flow. The problem
of finding an optimal control policy for a wind farm to maximize power generation can be
formulated as a constrained optimization problem. We consider trajectories of length T with
timesteps t ∈ T = {1, 2, . . . , T}. The number of wind turbines in the wind farm is defined asN
and turbines and their parameters are assigned indices i ∈ N = {1, 2, . . . , N}. The freestream
wind speed and direction are defined as vt and ϕt. The freestream wind direction is initialized
as a random direction ϕ0 ∼ U(0, 2π) and the freestream wind speed is initialized within a
range v0 ∼ U(vmin, vmax). The yaw offsets of each turbine i with respect to the freestream
wind direction are represented as ψi,t and are initialized within a range ψi,0 ∼ U(−ψmax, ψmax).
The vector of yaw offsets of all turbines at a given timestep is defined as ψt = [ψ1, . . . , ψN ].
The vector representing the information provided to the control policy at each timestep is
defined as ot and it includes information about the freestream wind conditions and the yaw
offsets of all turbines. The turbine yaws are controlled according to the actions at of a control
policy π(ot). The actuation function f(ψt, at) rotates the wind turbines according to the
control policy and actuation constraints of speed and maximum angle, simulating the turbine
dynamics. The freestream wind parameters evolve according to a function g(ϕt, vt). The flow
field of the wind farm is the speed and direction of the wind throughout the wind farm. Ft

represents the flow field at a given timestep. In steady-state environments the flow field is
computed by a functionMSS(ϕt, vt,ψt) which takes the current freestream parameters and
turbine yaw offsets as inputs. In quasi-dynamic environments the flow field is computed by a
functionMSS(ϕt, vt,ψt, Ft−1) which also takes the representation of the flow field computed
at the previous timestep as input. The initial conditions for the flow field in the quasi-dynamic
case F0 represent the steady-state freestream flow. At each timestep, each turbine generates
power according to a function Pi,t(Ft, ψ

abs
i,t ) which depends on the flow field and the absolute

orientation of the turbine ψabs
i,t = ϕt + ψi,t.

max
π

∑
t∈T

∑
i∈N

Pi,t(Ft, ψ
abs
i,t ) ∀i ∈ N ,∀t ∈ T

s.t.

ϕ0 ∼ U(0, 2π) (Initial wind direction)

v0 ∼ U(vmin, vmax) (Initial wind speed)

ψi,0 ∼ U(−ψmax, ψmax) ∀i ∈ N (Initial turbine yaws)

ot = [ϕt, vt,ψt] ∀t ∈ T (State observation)

at = π(ot) ∀i ∈ N ,∀t ∈ T (Control policy)
ψt+1 = f(ψt, at) ∀t ∈ T (Actuation function)

ψabs
t = ψt + ϕt ∀t ∈ T (Absolute turbine orientation)

ϕt+1, vt+1 = g(ϕt, vt) ∀t ∈ T \ {T}(Freestream wind dynamics)

Ft =

{
MSS(ϕt, vt,ψt) if steady-state or t=0

MQD(ϕt, vt,ψt, Ft−1) else
∀t ∈ T (Flow field model)
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3.1.2 Fixed wind environment

The fixed wind environment is the simplest environment used for this study. For each episode,
the initial wind direction ϕ0 and wind speed v0 are chosen at random and kept constant
throughout the episode: g(ϕt, vt) = ϕ0, v0.
As the flow field computation is done under a steady-state assumption and the freestream
wind conditions are constant, the only variable that affects the change of the flow field across
timesteps of an episode is the set of turbine yaw offsets ψt. Thus, to optimize the power
production in this environment, controllers need to find the optimal yaw configuration given
the freestream wind conditions and find efficient trajectories to achieve them. The Floris
simulator computes the steady-state flow field of the wind throughout the wind farm given the
freestream wind conditions and yaws of the turbines Ft =MSS(ϕ0, v0,ψt). In principle, the
computation of the state of a flow field would require complete knowledge of the state of the
flow field at the previous timestep. In the case of steady-state computations information about
the flow field at the previous timestep is not required, as the steady-state of the flow field is
not affected by transient dynamics. Figure 1 shows a rendering of the fixed wind environment
at two timesteps.
MDP formulation
The wind farm optimal control problem is formulated as a MDP which is defined by the tuple
(S,A, P,R, γ). As Floris computes the steady-state of the flow field, it only requires information
about the freestream wind and turbine yaws to compute a simulation step. Consequently, the
state of the environment st ∈ S can be defined as the list st = [ϕt, vt,ψt] = [ϕ0, v0,ψt].
The action at ∈ A represents the list target yaws that each turbine aims to achieve at the
next timestep. Each yaw can be encoded as an absolute target angle or relative target angle
with respect to the current freestream wind direction. The choice of representation depends
on the controller policy. Actions are provided by a policy at = π(ot) which takes sensor data
observations ot as input. In this environment the observation vector ot matches the state
vector st, i.e. the environment is fully observable, thus at = π(ot) = π(st). P represents the
transition probability distribution P (st+1|st, at). In the fixed wind environment the freestream
wind conditions are constant, and the yaws of the turbines rotate according to the target
defined by at. The rotation is constrained by a maximum absolute angle offset with respect
to the freestream wind, and a rotation speed limit. The reward function R(st, at) is a scaling
of the total power generated in the wind farm. The power is computed as Pi,t(Ft, ψ

abs
i,t ), and

depends on the flow field and the current yaws of the turbines, which are computed from the
current state. Finally, γ is the discount factor.
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Figure 1: Rendering of the fixed wind environment at two different timesteps. Top picture
shows the rendering at the first timestep after initialization and bottom picture shows the
environment at timestep 5. The colored background indicates the intensity of the wake
effect caused by the four turbines, shown here as black lines. Each turbine is assigned a
number and information about power generation is shown on the right side of the pictures.
Note that the wind conditions are fixed throughout the episode, as shown by the wind
direction indicator at the top of each figure not changing. Because of this, changes in the
wake effects are entirely driven by the orientations of the turbines.

3.1.3 Changing wind environment

The second type of environment that is used in this study is a Floris environment with changing
freestream wind conditions. In this environment it is possible to define a wind process that
dictates the changes in freestream wind conditions at each timestep. For this study, the wind
process used to model changing freestream wind conditions implements a random walk of
wind direction and speed. In practice g(ϕt, vt) samples new values for wind direction and
speed uniformly within a range: ϕt+1 ∼ U(ϕt − ϵϕ− , ϕt + ϵϕ+), vt+1 ∼ U(vt − ϵv− , vt + ϵv+).
Freestream velocity is also clipped to be within a set range. The maximum direction change of
the wind is 3 degrees per timestep and the maximum wind speed change is 1m/s per timestep.
The Floris simulator computes the steady-state flow field of the wind throughout the wind farm
given the freestream wind conditions and yaws of the turbines Ft = MSS(ϕt, vt,ψt). Note
that contrary to the fixed wind environment, the freestream wind conditions change at each
timestep in this environment. This means that given starting freestream wind conditions, the
flow field is no longer fully controllable by actuating the wind turbine, and depends on factors
that the controllers have no impact over. Thus, the optimal yaw configuration for the windfarm
turbines changes at every timestep. The flow field is modelled as steady-state and computed
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through Floris. Note that as opposed to the fixed wind environment, this computation now
depends on the changing freestream wind conditions: Ft =MSS(ϕt, vt,ψt).
This change in the environment ensures that, given an appropriate choice of wind process, the
environment will be closer to real wind farms, where the wind conditions change over time,
and controllers have to take these changes into account to maximise power. Figure 2 shows a
rendering of the changing wind environment at three timesteps.
MDP formulation
The wind farm optimal control problem is formulated as a MDP which is defined by the
tuple (S,A, P,R, γ). The MDP can be formulated similarly to the case of the fixed wind
environment. The actions at ∈ A are defined in the same way, as the environment is still
fully observable: at = π(ot) = π(st) and ot = st. The reward function R(st, at) and discount
factor γ are also defined in the same way as in the fixed wind environment. The state of the
environment st now features changing wind directions and is defined as st = [ϕt, vt,ψt]. The
transition probability function P (st+1|st, at) implements the turbine actuation in the same way
as the fixed wind environment, and the random walk wind process as described above.
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Figure 2: Rendering of the changing wind environment at three different timesteps. Pic-
tures from top to bottom show the rendering at timesteps 1, 5 and 10. The colored
background indicates the intensity of the wake effect caused by the four turbines, shown
here as black lines. Information on the turbines, wind and power generation is shown in
the same way as in the fixed wind environment. Note that in this environment the wind
conditions change over the episode, as shown by the wind direction indicator changing
over time.

3.1.4 Quasi-dynamic environment

This study introduces a novel type of environment for RL based on the FloriDyn approach.
This environment, which is referred to as quasi-dynamic in this work, is the third type of
environment used in this study. It aims to bridge the reality gap of existing RL wind farm
environments by implementing system dynamics where the evolution of the flow field of the
wind in the wind farm is no longer steady-state, but depends on the previous state of the
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wind instead. The evolution of the flow field over time is modeled through a set of points,
called observation points, which travel through the wind farm and carry information about
steady-state wake effects. The flow field computation for this environment is expressed as
Ft =MQD(ϕt, vt,ψt, Ft−1) to reflect the dependence on previous states of the flow field. In
this formulation, flow field representation Ft includes both information about the wind speed
and direction of the wind throughout the wind farm, and information about the current set of
observation points, which are used to update the flow field at the next timestep. The freeflow
wind conditions change in the same way as in the changing wind environment, following a
random walk of the ϕt and vt parameters.

The increased complexity of this environment makes it so the observation vector ot is no longer
capable of fully capturing the true state of the environment. Because of this, the Sequential
Decision Problem (SDP) of this environment is expressed as a Partially Observable Markov
Decision Process (POMDP) to account for the partial observability of the environment state.

Quasi-dynamic flow field computation
The environment dynamics are a simplified version of the ones described in the FloriDyn
paper. They are based on the idea of transporting information of steady-state wake effects
throughout the wind farm through so-called observation points. The generation and evolution
of observation points over time and flow field computation are described in Algorithm 1. The
computation of generated power and rewards from the current flow field is described in Algo-
rithm 2.

The step-by-step process of the algorithm is described in detail as follows. At every timestep,
the freestream wind conditions ϕt and vt are updated according to the wind process. By
default this is the same random walk wind process used for the Floris environments. The
updated freestream wind conditions are used to compute the steady-state wake of the wind
farm through a Floris simulation step. Then a set of observation points OPt are created for
each wind turbine. These observation points carry information about their location in the
wind farm, the timestep of their creation and the wake effect they represent. Each observation
point stores part of the current steady-state wake effect as a list of steady-state wake values at
increasing distances from the turbine, in the direction of the freestream wind. These values are
stored so that over time the observation point can represent farther and farther sections of the
stored wake. Figure 3 displays the process of generating new observation points, highlighting
their location and the information they store and represent.
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Algorithm 1 Observation points and flow field computation

Input: Timestep t, freestream wind direction ϕt and speed vt, turbine yaw angles
ψt = [ψ1,t, . . . , ψN,t], maximum observation point age TOP, previous flow field rep-
resentation Ft−1 = [vt−1(p), ϕt−1(p),OPt−1], with observation points OPt−1 =
{OP1, . . . ,OPMt−1}, two dimensional Gaussian G and simulation parameters (e.g.,
simulation ∆t, wind farm bounds, etc.)

Output: Updated flow field Ft = [vt(p), ϕt(p),OPt]
1: Fss,t =MSS(ϕt, vt,ψt)
2: ∆p = [vt cosϕt, vt sinϕt] ·∆t
3: OPt ← {}
4: for all OPi ∈ OPt−1 do
5: pi, FWake, t0 ← OPi

6: if t− t0 < TOP then
7: OPt ← OPt ∪ {[pi +∆p, FWake, t0]}
8: end if
9: end for
10: for all wind turbines WT do
11: p1, . . . ,pK ← pointsBehind(WT) //equally spaced behind the turbine
12: for k=1,. . . ,K do
13: FWake ← [Fss,t(pk +∆p · j)]TOP

j=0

14: OPt ← OPt ∪ {[pk, FWake, t]}
15: end for
16: end for
17: ∆vt(p),∆ϕt(p) =

∑Mt

i=1G(p− pOPi
) · FWake,OPi

[t− tOPi
]

18: vt(p) = vt −∆vt(p)
19: ϕt(p) = ϕt −∆ϕt(p)
20: return Ft = [vt(p), ϕt(p),OPt]

Algorithm 2 Wind farm generated power and rewards from observation points

Input: Flow field Ft = [vt(p), ϕt(p),OPt], freestream wind direction ϕt and wind speed
vt, turbine yaws with respect to the north ψabs

t = [ψabs
1,t , . . . , ψ

abs
N,t], timestep t, reward

scaling KR.
Output: Generated power Pt and reward Rt.
1: for all wind turbines WTi do
2: p1, . . . ,pK ← pointsAhead(WTi)
3: vi,t =

1
K

∑K
k=1 vt(pk)

4: ϕi,t =
1
K

∑K
k=1 ϕt(pk)

5: Pi,t = PFloris(vi,t, ϕi,t, ψ
abs
i,t )

6: end for
7: Pt =

∑N
i=1Pi,t

8: Rt = KR · Pt

9: return Pt, Rt
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Figure 3: Rendering of the environment highlighting the observation point generation
process. The red crosses indicate the points at which the steady-state wake effects are
sampled and stored. Upon generation, observation points represent the steady-state wake
effect behind the turbines. Over time they represent wake effects farther from their turbine
of origin. In the figure this progression is visible as lines of red crosses starting from the
back of each turbine. The colored circles next to the wind turbines represent the obser-
vation points. Their color indicates the magnitude of the wake effect that they represent.
The wake effects of the turbines in the background are the steady-state wake effects com-
puted with Floris.

After the generation of new observation points, all observation points are updated as follows.
The position of each observation point is updated with velocity and direction corresponding to
the freestream wind conditions. Note that while it would be possible to move each point with
the local wind speed and direction it represents, this approach is not used in the more recent
formulations FloriDyn [10]. Figure 4 shows how the observation points change over time, both
in position and value of represented wake.

19



Figure 4: Rendering of the environment at three timesteps highlighting the movement of
observation points over time. Left to right, pictures represent the environment at timesteps
1, 5 and 10. The observation points are updated over time both in their location and in the
magnitude of the wake that they represent, shown here as the color of each observation
point. The movement of the observation points over time allows steady-state information
to propagate through the wind farm over time. The grey square sorrounding the farm rep-
resents the boundaries of the wind farm. Observation points crossing them are discarded.

A maximum observation point age TOP is also defined as a parameter of the environment.
Points that have existed for more than the age maximum are deleted before the update step.
While this step hinders realism, as it limits the maximum number of timesteps during which
wind information can travel, this mechanism limits the computational cost of the simulation.
As observation points can only exist for a fixed number of timesteps, the maximum number of
existing points is always bounded by the product of number of turbines, number of observation
points generated per turbine, and maximum age of observation points. This ensures that the
computational cost of the simulation is bounded.
Finally, the set of observation points is used to compute a flow field. To compute the flow
field, the local information of the wake effects carried by the observation points is diffused
through the flow field using a Gaussian centered at the location of the observation points.
Then, the wind speed and direction offsets of the wake effects are added to the freeflow wind
represented by the global wind speed and direction. This process allows to compute the flow
field at arbitrary locations in the wind farm. An example of a dynamic flow field computed in
this way at different timesteps is shown in Figure 5. The power generated by each wind turbine
is computed through Floris by providing an average estimate of the wind speed perpendicular
to the wind turbine. In practice, to reduce computational costs, the flow field is computed and
stored as values at grid locations through a matrix representation. The spatial resolution of
the matrix can be tweaked to create more coarse representations that are faster to compute.
This coarser resolution decreases computational requirements for larger wind farms, allowing
the model to scale more efficiently with increasing farm size.
MDP formulation
The wind farm optimal control problem is formulated as a POMDP which is defined by the
tuple (S,A, P,R,Ω, O, γ). The action at ∈ A and discount factor γ are defined in the same
way as the previous environments. The flow field computation for this environment is different
from the previous environments. In this case the flow field is generated through a smoothing
of the information carried by the observation points, which are transported according to the
freestream wind. The flow field for this environment is represented as Ft = [vt(·), ϕt(·),OPt],
and its evolution is governed by Ft =MQD(ϕt, vt,ψt, Ft−1). The operations represented by
this function are described in Algorithm 1.
Given the current values of observation pointsOPt = {OP1, . . . ,OPMt}, freestream wind ϕt, vt
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and turbine yaws ψt, the environment is fully defined. Thus, the state of the environment st ∈
S can be expressed as st = [ϕt, vt,ψt,OPt]. While this state fully represents the environment
at each timestep, its information is not available through sensors which are usually available
in real-life wind farms. Because of this, the observations of the environment ot, belonging
to the set of all possible freestream wind conditions and yaw configurations ot ∈ Ω, are
modeled through a conditional observation probability function O(ot|st, at). This function is
deterministic in the case of this environment and maps each state to the observation vector
ot = [ϕt, vt,ψt]. Given the aforementioned definitions of state and action, the transition
probability function P (st+1|st, at) represents the evolution of freeflow wind conditions and
observation points. The turbine actuation and random walk wind process is defined in the
same way as in the previous environments. The evolution of the set of observation points
OPt, which generates new points and updates old ones, is described in Algorithm 1. The
reward function R(st, at) is computed from the flow field Ft as described in Algorithm 2 and
represents a scaling of the total power generated in the wind farm at each timestep.
This work also explores the impact of privileged information on agent performance in this envi-
ronment. Thus, a privileged set of observations õt ∈ Ω̃ is defined. It contains the information of
observations ot and expands it with information about the flow field at a set of locations. Priv-
ileged information is thus described as õt = [ϕt, vt,ψt, vt(p̃1), ϕ(p̃1), . . . , vt(p̃P ), ϕ(p̃P )] with
p̃1, . . . , p̃P being the points at which flow field information is observed. The conditional privi-
leged observation probability function Õ(õt|st, at) maps each state st to privileged observations
õt. Information about the flow field at points p is obtained from the flow field representation Ft.

Figure 5: Three representations of the dynamic flow field computed from observation
points. From left to right the flow field is computed at timesteps 1, 5 and 10. The colored
background shows the wind speed at every point in the wind farm, with darker colours
rerpesenting slower wind speeds. Orange arrows represent the wind direction offset stored
at each observation point, and the blue arrows represent the total wind direction computed
at each position. Red crosses are examples of locations at which the flow field can be
sampled to be provided as input to control policies and agents.

The dynamic environment offers two key advantages over steady-state simulators:

• Wake effects are affected by wake transport: The wake generated by upstream
turbines affects downstream turbines with a delay in time. This is implemented by the
movement of observation points throughout the wind farm.
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• Agents are unable to observe the full state of the system: The state of the
flow field at a given timestep depends on the set of observation points at the previous
timestep. As these observation points move throughout the wind farm, and real wind
farm usually feature sensors which are sparse and usually positioned at the wind turbines,
realistic agents are unable to observe the full state of the system.

Both of these properties of the simulation are present in real-life wind farms, where the impact
of wake effects on downstream turbines is delayed, and the information available to the wind
turbine controller is limited. This allows the simulator to be more similar to real wind farms,
possibly aiding in the transfer from simulated controllers to real ones.

3.2 Algorithms

This section presents the two algorithms used for wind farm control in this study. Section
3.2.1 introduces Proximal Policy Optimization, a reinforcement learning method, and outlines
the training process used in this study. Section 3.2.2 introduces Floris Serial-Refine, a strong
baseline for wind farm control in steady-state conditions.

3.2.1 Proximal Policy Optimization

The reinforcement learning algorithm used for the experiments is Proximal Policy Optimization
(PPO). PPO is an Actor-Critic algorithm, meaning that during training it uses two networks
to train a policy and a value function. The policy function is a parametric function πθ(a|s) and
is used by the agent to choose what action to do in the environment. The value function is a
parametric function Vω(s) and is used to estimate the value of observed states. PPO optimizes
a policy by minimizing a clipped surrogate objective, which prevents excessively large policy
updates to achieve more stable learning.

The objective function for the policy is:

LCLIP(θ) = Et

[
min

(
rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât

)]
,

where:

• rt(θ) =
πθ(at|st)

πθold
(at|st) is the probability ratio of the current policy πθ to the old policy πθold .

• Ât is the advantage estimate at time t, calculated using the Generalized Advantage
Estimation (GAE) method [32].

• ϵ is a hyperparameter that controls the clipping range to limit the magnitude of policy
updates.

The value function Vω(s) is optimized to minimize the mean squared error (MSE) between its
predictions and a target:

LVF(ω) = Et

[
(Vω(st)− Vtarget(st))2

]
where Vtarget(st) is computed using GAE and the old value function Vtarget(st) = Ât+Vωold

(st).
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The total loss function combines the clipped surrogate loss, value loss, and an entropy bonus
to encourage exploration:

L(θ, ϕ) = LCLIP(θ)− c1LVF(ω) + c2H[πθ],

where c1 and c2 are coefficients, and H[πθ] is the entropy of the policy.

The PPO implementation that is used is provided by the Stable-Baselines3 library [33]. The
training process for PPO agents is as follows: each agent is trained on an environment for
0.1M timesteps. During training, each agent is periodically evaluated environments on a set
of fixed seeds. Then, the model weights that achieve the best validation performance during
training are evaluated again, on a set of test seeds for the environment. The average total
reward on the test seeds is the performance score of the agent. This metric is used to compare
the model to other methods.
In practice, to ensure that all models are evaluated fairly and to minimize the effects of stochas-
ticity, two sets of 10 wind processes are created at random and saved. One set corresponds
to the set of validation seeds and the other corresponds to the set of testing seeds. During
training, each agent is evaluated periodically on the validation wind processes, and their aver-
age total reward is recorded. The model weights that achieve the highest average total reward
on the validation wind processes are saved and tested on the test wind processes. The aver-
age total reward and average total power of these model weights are then saved and used to
compare the performance to the model to other baselines. Note that all performance metrics
that are used for comparison are run on the preset evaluation wind processes, to ensure that
the comparisons are not affected by the stochasticity of the wind processes. PPO agents are
evaluated using their policy in deterministic mode.
The hyperparameters used for each PPO model are found through random search. Details on
the hyperparameter search and training process are provided in Appendix A.

3.2.2 Floris Serial-Refine

Serial-Refine is a method to optimize the yaw angles of turbines for wake steering in a steady-
state context. Given a fixed wind farm layout, this method learns a map from freestream wind
direction to turbine yaw offsests which maximise steady-state power generation:

ΨSR(ϕ) = argmax
ψ

N∑
i=0

Pi(Fss(ϕ, v,ψ), ψi)

where Fss represents the steady-state flow computed through Floris Fss =MSS(ϕ, v,ψ), and
wind speed v is kept constant. Note that there is no dependence to time t, as this method
works under steady-state assumptions, and there is no wind process involved, as freestream
wind conditions are sampled by the algorithm.
To find the optimal set of turbine yaws, the algorithm works in two distinct phases: the Serial
pass and the Refine pass. The turbines are first ordered from upstream to downstream, and
then the algorithm proceeds as follows:

• Serial pass: In the Serial pass, the algorithm iterates through the wind farm turbines
from upstream to downstream, and for each one it evaluates a fixed number of different
yaw angles. For each turbine the algorithm selects the yaw angle that maximizes the
total wind farm power production and stores it for subsequent power evaluations of
downstream turbines.
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• Refine pass: After the initial Serial pass, the algorithm moves to the Refine pass. This
second pass refines the yaw angles by evaluating different angles, but now the angles
are evaluated in a smaller offset range centered around the previously chosen yaw angle
from the Serial pass.

By performing these two passes, the Serial-Refine method finds the optimal yaw angles effi-
ciently while avoiding the exhaustive search over all possible yaw angles that would be required
in more computationally expensive methods. The result is an approach that balances computa-
tional efficiency with the ability to optimize wind farm power output. The algorithm is outlined
in Algorithm 3.
In our study, we use Serial-Refine as a benchmark to compare the effectiveness of other
methods, particularly focusing on the quality of solutions it produces, which have been shown
to be comparable in performance to more expensive and exhaustive numerical optimization
methods. As this method yields a set of optimal yaws, and not a control policy, the yaws
computed by the method have been used in conjunction with a proportional controller. This
has multiple advantages. Firstly, using a proportional controller allows this method to be
compared to other control policies. The set of yaws found by Serial-Refine optimizes the total
power generation of the wind farm. In the case of wind farms simulated with Floris, this
generated power corresponds to the power generated at the steady-state. To compare policies,
such as those implemented by RL agents, to this metric, these agents would have to be ran
for multiple timesteps, until the control policy converges to a set of turbine yaws, and then
the power generated at the final step would constitute a metric of the power generated at
the steady-state. While this metric can be used to compare a RL agent to Serial-Refine, it
has significant drawbacks. This metric is not affected by the trajectory taken to achieve the
final state and effectively ignores the actual control for all timesteps except the last. Because
of this, policies that traverse suboptimal intermediate states in these trajectories can yield
the same performance metric as policies that implement the optimal trajectory and yield the
maximum total generated power.
Moreover, while the optimal yaws can be used to be obtain performance metrics for the case of
fixed wind speed and directions, they are unable to be used in the case of environments where
the wind conditions change over time. Setting the turbine yaws to the optimal ones at each
timestep would be possible, but it ignores the control constraints present in real-life scenarios,
where the actuation of the rotation of the wind turbines to achieve a given yaw setting is
limited in speed and range. A proportional controller based on the optimal Serial-Refine yaws
is able to control the yaws of the turbines of the wind farm in the case of changing wind
conditions, allowing the method to be evaluated in a broader set of environments.

3.3 Environment layouts

Three wind farm layouts are defined for this study. The first layout, referred to as the 4
Symmetric layout, consists of four turbines positioned at the vertices of a 250x250m square.
The second and third layouts, named the 8 LHS layout and 16 LHS layout, are generated using
the Latin Hypercube Sampling (LHS) method to place wind turbines apart from one another.
In the 8 Turbines LHS layout, the turbines are distributed within a 750x750 meter area, while
the 16 Turbines LHS layout covers a larger 1500x1500 meter area. The LHS method ensures
that turbines are distributed randomly along the x and y axes while maintaining adequate
spacing between them. This approach achieves a balance between randomness and realism,
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Algorithm 3 Floris Serial-Refine Algorithm for Wind Farm Yaw Optimization

Input: Turbine layout, set of Q freestream wind direction discretizations ϕ =
[ϕ1, . . . , ϕQ], wind speed v, coarse yaw offsets δcoarse (default {-30°, -15°, 0°, 15°, 30°}),
fine yaw offsets δfine (default {-7.5°, -3.75°, 0°, 3.75°, 7.5°}).

Output: Approximate optimal yaw offsets for each wind direction discretization: ΨSR =
[ψϕ1

, . . . ,ψϕQ
]

1: ΨSR ← [0, . . . ,0]
2: for each wind direction discretization ϕi ∈ ϕ do
3: ψopt ← 0
4: Popt = P (ϕ, v,ψ)

{Serial Pass - Coarse Search}
5: for each turbine j, sorted upstream to downstream do
6: for δ ∈ δcoarse do
7: ψtest ← ψopt

8: ψtest,j ← δ
9: Ptest ← P (ϕ, v,ψtest)

10: if Ptest > Popt then
11: Popt ← Ptest

12: ψopt ← ψtest

13: end if
14: end for
15: end for

{Refine Pass - Fine Search}
16: for each turbine i, sorted upstream to downstream do
17: for δ ∈ δfine do
18: ψtest ← ψopt

19: ψtest,i ← δ
20: Ptest ← P (ϕ, v,ψtest)
21: if Ptest > Popt then
22: Popt ← Ptest

23: ψopt ← ψtest

24: end if
25: end for
26: end for
27: ΨSR[i] = ψϕi

← ψopt

28: end for
29:

30: return ΨSR
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reflecting the design of real wind farms where turbines are spaced to optimize wind flow and
minimize the impact of wake effects. Renderings of the three layouts are shown in Figure 6.

Figure 6: Rendering of the three environment layouts with randomized initial turbine
yaws. From left to right, 4 Symmetric, 8 LHS and 16 LHS wind turbine layouts. The red
crosses represent possible grids for the localization of privileged information sensing.

3.4 Experimental design

This section describes the experiments that are run in this study. For the first set of exper-
iments, the Floris Serial-Refine algorithm is run on all environment layouts to replicate the
experiments from the original paper and evaluate its performance and compare it to other
solvers. Next, we conduct experiments to compare the performance of PPO with the Floris
Serial-Refine proportional controller across the three environment types: fixed wind, changing
wind, and quasi-dynamic wind conditions. These experiments are aimed at showing how the
environment properties affect the applicability of each algorithm.

3.4.1 Floris Serial-Refine Analysis

The first experiments consist of running the optimization algorithm of Floris Serial-Refine and
comparing it to other solvers. The methods being compared find optimal yaw configurations
for different freestream wind conditions in a steady-state setting and are not control policies.
Experiments are run on all environment layouts and a different set of optimal wind turbine
yaws is found for each. The performance of Floris Serial-Refine is compared to other numerical
optimization methods, to confirm its validity as a powerful baseline on these environments.
The optimization methods that Serial-Refine is compared to are the Sequential Least Squares
Programming (SLSQP) optimizer from the Scipy library [34] and a geometric method [35]
which finds approximately optimal yaw angles based on the wind farm geometry. Both the
SLSQP and geometric optimizers are implemented as part of the Floris simulator, with SLSQP
being the default optimizer used in Floris prior to the development of Floris Serial-Refine. The
evaluation metric used to compare the different optimizers is normalized power gain. This
metric is computed as the ratio between the total power generated by a given method divided
by the power generated by the SLSQP optimization method. The total power is computed by
summing the generated power over all wind directions. In these experiments, the 360 degree
range is divided into 120 intervals, each separated by a 3 degree step.
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The optimal yaws computed through the Floris Serial-Refine algorithm are then used to quali-
tatively evaluate their adaptability to changing wind conditions. This is done by computing the
difference in adjacent optimal yaws for each turbine. This metric shows the optimal one-step
action that a control policy would have to implement to be able to always traverse optimal
states, for each 3-degree change in wind direction. This is of interest because if it were possible
to implement such a policy, then there would be no need to optimize over trajectories, as once
an optimal state is reached, single-step control policies would already achieve optimal control
in the fixed wind and changing wind environments.

3.4.2 Fixed and changing wind environment

Then experiments are run on the fixed and changing wind environments which are based on the
FLORIS steady-state simulations. In these experiments different control policies are compared
to evaluate their effectiveness in these two environments. The wind farm layouts that are used
for these experiments are the 4 Symmetric layout and the 8 LHS layout, to limit computational
costs. The control policies that are compared in these experiments are the following:

• Random policy: This policy randomly samples an action from the action space at every
step.

at = [ψ̂1, . . . , ψ̂N ] ψ̂i ∼ U(−ψmax, ψmax) ∀i ∈ N

• Näıve policy: This policy always acts to point the wind turbines directly to the wind.
This corresponds to always aiming to have zero offset with respect to the freestream
wind direction.

at = [ψ̂1, . . . , ψ̂N ] = [0, . . . , 0]

• Proportional Serial-Refine: This policy implements a proportional controller to move the
turbine yaws towards the optimal steady-state configuration computed through the Floris
Serial-Refine algorithm. While this policy takes steady-state wake effects into account, as
the yaws are optimized to minimize its effect on power generation, the trajectories taken
by this control policy are not optimized for it. They simply traverse intermediate states
in the segment between the current yaw configuration and the optimal yaws, regardless
of whether they may be suboptimal for power generation or not.

at = [ψ̂1, . . . , ψ̂N ] = ΨSR(ϕt)

• PPO: This is the policy obtained by training PPO on the given environment. This policy
is run deterministically for evaluation purposes. Contrary to the Proportional Serial-
Refine policy, this policy is trained to maximise the cumulative reward corresponding to
total power generation. This means that it will try to optimize control considering the
whole trajectory of an episode, including the traversal of suboptimal yaw configurations.

at = [ψ̂1, . . . , ψ̂N ] = πθ(ot)

In the case of privileged observations, the observation taken as input for the policy is
changed accordingly:

at = [ψ̂1, . . . , ψ̂N ] = πθ(õt)
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For these experiments the evaluation metric is the average total power generated in an episode,
and all the control policies are evaluated on the same set of randomized evaluation wind pro-
cesses. For the fixed wind environment the randomized wind processes implement fixed wind
conditions for 10 randomly chosen wind directions and speeds, and for the changing wind en-
vironment they consist in 10 randomly sampled wind processes of changing wind direction. For
the fixed wind environment, a curve of total generated power over all possible wind directions
is computed, to evaluate how the model performs across different wind conditions.

3.4.3 Quasi-dynamic environment

Finally, experiments are run on the quasi-dynamic environment. They are run 4 Symmetric lay-
out and the 8 LHS layout. This experiment compares the average total generated power of the
different control policies used in the changing wind environment. The same set of randomized
wind process trajectories used in the changing wind environment is used for evaluation. As
this environment is characterized by partial observability, some additional PPO control policies
featuring privileged observations are evaluated. These observations include measurements of
wind direction and speed at different locations in the wind farm. The measurement locations
are distributed across the wind farm, arranged in a grid pattern. Coarser and finer spacings
of the grid pattern are evaluated for each environment layout. For the 4 symmetric layout
spacings of 25, 75 and 125 meters are evaluated, whereas for the 8LHS layout the spacings
are of 100, 150 and 200 meters, due to the differences in size between them.
As the dynamic environment features a different observation space and system dynamics than
the steady-state environments, the Serial-Refine optimal yaw computations should in principle
be recomputed for this. Unfortunately this is not feasible due to the increased dimensionality
of the problem. The Serial-Refine method is designed for the simpler steady-state formulation
of the wind farm dynamics problem where the wake effects are primarily determined by the
current wind direction. This allows to consider all the possible discretized states of the wind
direction, and search the optimal yaw angles for each of them. The method then prdouces a
lookup table with these results. However, this approach is not applicable to real-world wind
farms, where the wind state depends on a significantly larger number of variables. In the
steady-state case, the Serial-Refine algorithm must perform a search for each quantization
of the global wind direction. In scenarios featuring wind dynamics that are not steady-state,
assuming that only realistic sensors are available, the algorithm would need to run a search for
optimal yaws for each combination of possible values of global wind direction, turbine yaws
and initial wind conditions throughout the entire trajectory. This is because without having
perfect information of the state of the flow field of the wind farm at each step, the history of all
these variables is required to derive the current state of the wind farm. This is different in the
steady-state case, where the current global wind conditions and turbine yaws entirely define
the system state. Defining Qwind and Qyaws as the quantization of the representation of the
global wind direction and turbine yaws, N the number of turbines and H as trajectory length,
the number of searches required by the Serial-Refine method for the two type of environments
can be expressed as follows:

Steady searches = Qwind

Dynamic searches = (Qwind ·QN
yaws)

H
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when assuming fixed starting flow field conditions. These formulas show that the number of
searches and size of the lookup table generated by the Serial-Refine method scales exponentially
both with the number of turbines in the wind farm and with the length of the trajectory
horizon. In the case of the 8LHS layout, assuming a quantization angular metrics into 120
values and considering a short trajectory horizon of 5 timesteps, this results in a lookup
table of (120 ∗ 1208)5 ≈ 3.66 × 1093 entries, each corresponding to an optimal yaw search
problem, making the overall computation intractable. Because of this, experiments on the
quasi-dynamic environment have to use the steady-state Serial-Refine controller as proxy, as
applying the algorithm to the quasi-dynamic case is impossible without significant changes.

3.4.4 Computational efficiency comparison

A computational efficiency study is run on the quasi-dynamic environment to measure its
speed and compare it to other environments. The experiment closely resembles the one ran
in another work [36]. The average time to compute simulation steps is compared between
SOWFA, FLORIS, and the proposed quasi-dynamic environment. Measurements of simulation
speed for SOWFA that are considered are the ones reported in the earlier study [36]. Simulation
speeds of FLORIS and the quasi-dynamic environment are computed and averaged over one
episode for two different settings. The first features and environment layout with two turbines
aligned in the direction of incoming wind, ϕt = 270. The wind is fixed in direction and speed,
with a constant speed of vt = 8m/s for 1000s. The second setting features 9 turbines placed
in a 3x3 grid in a wind farm of 3x3km. The wind speed has constant value of vt = 8m/s, and
its direction follows:

ϕt =


255◦, 0 ≤ t < 300 s

255◦ + (195◦−255◦)
300

(t− 300), 300 ≤ t < 600 s

195◦, 600 ≤ t ≤ 900 s

For the quasi-dynamic environment, for both layouts the flow field wind direction and speed
are computed at locations in a 150x150 grid, and the simulation timestep is ∆t = 5s. The
time limit TOP for observation points is set to unbounded for this experiment.

4 Results

This section presents the results of the experiments of this study. Section 4.1 shows the
results of the Floris Serial-Refine baseline validation, reproducing results from the original paper
and analyzing the optimal yaw angles it finds on the various environment layouts. Section
4.2 compares PPO to the baseline controllers in fixed wind steady-state conditions, while
Section 4.3 extends this comparison to changing wind steady-state scenarios. Section 4.4
evaluates the performance of the PPO and privileged PPO control policies in the quasi-dynamic
environment, comparing them to the baselines. Finally, Section 4.5 presents the results of the
computational efficiency study, comparing the proposed quasi-dynamic environment to the
SOWFA and FLORIS simulators using data from a previous study.
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4.1 Floris Serial-Refine

The Floris Serial-Refine algorithm and two other optimization algorithms were applied to all
three environment layouts to find the set of angles that optimize the power generation in a fixed
wind steady-state scenario. The results normalized with respect to the most computationally
expensive method, SLSQP, are shown in Figure 7. In all cases, Floris-Serial refine is able to
achieve the best performance. In the simpler environment with the 4 Symmetric layout both
methods display the same performance. In the more complex environments with 8 and 16
turbines, the Serial-Refine algorithm outperforms SLSQP despite its lower computational cost.
The geometric algorithm performs significantly worse than the rest in all cases. These results
show that Serial-Refine is a suitable baseline to evaluate against in fixed wind, steady-state
conditions. The results also match with the findings of the original paper, where layouts with
more turbines showcase a higher power gain for Serial-Refine against SLSQP.

Figure 7: Normalized power gain plots for Floris Serial-Refine, SLSQP and the geometric
algorithm. The normalized power gain is the ratio of the power gain of a method and the
SLSQP method with respect to the näıve policy.

Figure 8 shows the results regarding how the optimal angles of the turbine yaws change with
respect to the global wind direction. The first two plots show that when transitioning between
adjacent global wind directions the optimal turbine yaws can change significantly. For the 4
Symmetric and 8 LHS environment layouts, the optimal yaw change for some turbines can
reach as much as 17.19 and 25 degrees. This means that in the case that the global wind
direction changes by 3 degrees, the angle granularity of the plots, the wind turbines may have
to rotate by those angles in a single timestep in the worst case.
This shows that an optimal controller may not always traverse optimal states in a changing
wind scenario where steady-state simulations compute the wind flow if the turbines are unable
to rotate sufficiently quickly. The plot on the right in Figure 9 shows how the percentage
of global wind directions where it is possible to avoid suboptimal yaw configurations changes
depending on the turning speed constraints of the wind turbines. It shows that in environments
with more turbines it is more common to traverse suboptimal states, but the effect is mitigated
in turbines with faster actuation.
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Figure 9: Fraction of wind directions where optimal actuation is possible as a function of
single timestep turning constraints of the turbines. All turbine layouts are considered.

Figure 8: Absolute angle difference between optimal yaw configurations corresponding to
adjacent global wind directions for the 4 symmetric and 8 LHS layouts as found by the
Serial-Refine algorithm. Adjacent global angles are 3 degrees apart from one another.

4.2 Fixed wind environment

The results of the experiments of the fixed wind environment on all wind turbine layouts are
shown in Figure 10. Results show that in all environments the best performing method to
maximise power generation in this context is the Proportional Serial-Refine controller. This
result is expected as the method extensively searches good wind turbine configurations and
leverages them to implement a control policy. While potentially limited in identifying optimal
controls from suboptimal initial yaw positions, the method’s performance remains robust when
considering the full trajectories of episodes. The PPO models perform similarly to the näıve
policy, producing slightly more power. The random policy performs the worst out of all the
approaches considered, as expected. These results are consistent across all environment layouts.
Over a one-year period, the Proportional Serial-Refine and PPO controllers would generate
an increase in energy production of up to 4,072 MWh (+1.47%) and 6.58 MWh (+0.002%),
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respectively, in the 16-turbine wind farm layout, based on the results. While both control
policies yield an increased power output, these gains remain minor relative to the baseline
output.

Figure 10: Performance of the Proportional Serial-Refine policy, random policy, and PPO
policy on the fixed wind environment. Plots left to right concern the 4 Symmetric, 8 LHS
and 16 LHS environment layouts. Results are the average power increase over the näıve
policy of 10 evaluation runs with the same seed. Standard deviation is plotted for the
random and PPO policies to show the variability of performance, as the random policy is
stochastic, and PPO agents vary in performance across different training runs.

Figure 11 shows the power generation for different wind directions. It shows that the Propor-
tional Serial-Refine policy is able to consistently outperform all others. This effect is especially
clear in the LHS environments with more wind turbines. These results also show that while
the näıve and PPO policies perform similarly on average, the power they generate for differ-
ent wind directions is not always the same. These effects could be attributed to the training
process of PPO, in which the wind conditions are randomized for each episode. The change in
performance across different angles with respect to the näıve policy can be caused by random
fluctuations in the wind directions that are encountered during training.
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Figure 11: Power generation curve of the different control policies over different global
wind directions. Plots left to right, top to bottom correspond to the 4 Symmetric, 8 LHS
and 16 LHS environment layouts respectively.

4.3 Changing wind environment

The results of the experiments on the changing wind environment on all wind turbine layouts
are shown in Figure 12. Similarly to the fixed wind environment results, the performance of the
PPO policies and the näıve policy are similar. Moreover, the proportional controller based on
the optimal yaws found through Serial-Refine is still the best performing agent. The random
policy performs the worst in all cases. Over a one-year period, the Proportional Serial-Refine
and PPO controllers would generate an increase in energy production of up to 5,575 MWh
(+2.02%) and 46 MWh (+0.017%), respectively, in the 16-turbine wind farm layout, based on
the results. As in the fixed wind environment, the gains remain minor relative to the baseline
output. The similarity in the results with the previous experiment suggests that changing wind
conditions do not affect the complexity of the environment in the studied cases.
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Figure 12: Performance of the Proportional Serial-Refine policy, random policy, and PPO
policy on the changing wind environment. Plots left to right correspond to the 4 Sym-
metric, 8 LHS and 16 LHS environment layouts. Results are the average power generated
by each method. Standard deviation is plotted for the random and PPO policies to show
the variability of performance, as the random policy is stochastic, and PPO agents vary
in performance across different training runs.

4.4 Quasi-dynamic environment

The results of the experiments on the quasi-dynamic environment on the 4 Symmetric and 8
LHS wind turbine layouts are shown in Figure 13. In this environment type, PPO is the method
that achieved the best performance, closely followed by PPO with privileged information. Con-
trary to the steady-state environments, the performance of the PPO policies showcase a higher
variability across training runs. The näıve baseline performed worse than the PPO methods,
followed by the Proportional Serial-Refine and random policies. These results are in contrast
with the ones of the fixed and changing wind environments, where Proportional Serial-Refine
was the best approach in all cases. This is especially evident in the case of the 4 Symmetric
layout, where this method performs only slightly better than the random policy. The impact
on energy generation over a one-year period in the larger 8LHS wind farm layout with respect
to the näıve policy is the following. The Proportional Serial-Refine controller generates less
energy with a 155 MWh (-0.14%) decrease, whereas the PPO and privileged PPO policies
generate 356 MWh (+0.33%) and 213 MWh (+0.20%) more energy. Similarly to the other
environments, while these results demonstrate a positive impact on energy production, the
effect remains modest.
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Figure 13: Performance of the Proportional Serial-Refine policy, random policy, and PPO
policies on the changing wind environment. Plots left to right concern the 4 Symmetric,
8 LHS and 16 LHS environment layouts. Results are the average power increase over the
random policy of 10 evaluation runs with the same seed. Standard deviation is plotted
for the random, PPO and privileged PPO policies to show the variability of performance,
as the random policy is stochastic, and PPO agents vary in performance across different
training runs.

The performance gap between the PPO agents and the other approaches suggests that a
learned control policy may be better suited to the quasi-dynamic environment. Contrary to
the fixed wind and changing wind environments, the wind dynamics of the quasi-dynamic
environment feature wake transport. This means that the wake effects of upstream turbines
requires multiple timesteps to propagate to the downstream turbines. This difference makes
approaches such as the Proportional Serial-Refine controller unsuitable for this task. This
is because this controller leverages the optimal steady-state turbine yaws configuration to
implement a control policy. While this works well in steady-state environments, the optimal
yaw configuration of the steady-state cannot be used in a quasi-dynamic wind case, where the
global wind conditions affect different parts of the wind farm with different delays.
It is also interesting to note that the privileged PPO model performs better than the PPO
model in the 4 symmetric layout, but the opposite is observed in the 8LHS layout. In principle,
as the environment features limited observability, providing the agent with more information
should allow it to perform better, as it would be able to better infer the true state. The
inferior performance in the 8LHS case could be due to multiple reasons. For example, an
increased observation space can increase the sampling complexity of the problem. This may
affect the convergence of the models. Appendix B shows learning curves of the PPO agents
during hyperparameter search to illustrate this. Another possible reason for the performance
degradation with respect to PPO is the choice of privileged information. While the points at
which the privileged information is sampled were equally spaced to ensure a full coverage of the
wind farm, these points do not depict the entire wind flow of the farm. The different layouts
of the turbines may cause the points at which data is collected to be less valuable in the case
of the 8LHS layout, as opposed to the 4 Symmetric one.
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4.5 Computational efficiency comparison

Figures 14 and 15 shows the rendering of simulations created with the quasi-dynamic envi-
ronment on the two considered environment layouts at different timesteps on the 2 turbines
and 3x3 turbines layouts respectively. Table 1 reports the average computation time of each
timestep for the different layouts and simulators. These results show that the quasi-dynamic
computations slow down the simulation speed by one order of magnitude. Nevertheless, the
proposed quasi-dynamic environment generates simulations more than 65,000 times faster
than SOWFA. This shows that the quasi-dynamic environment is a fast alternative when a
high number of non steady-state trajectories are needed.

Figure 14: Flow field generated in the quasi-dynamic environment for the two turbines
layout with fixed wind direction and speed.

Figure 15: Flow field generated in the quasi-dynamic environment of the 3x3 wind turbine
layout with changing wind direction. From left to right renders correspond to times 300s,
450s and 600s.
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Wind Turbines Farm Size SOWFA* FLORIS* FLORIS Gym Quasi-Dynamic
Fixed 2 2×2km 0.29 · 104 0.15 0.34 · 10−2 0.07

Changing 3×3 3×3km 0.27 · 105 0.4 0.012 0.41

Table 1: Computation speed of each timestep for different wind conditions and farm
layouts across simulators. Computation speed is represented as the average ratio of the
time to compute a timestep and the simulation time that is computed in that interval.
FLORIS and FLORIS Gym compute steady-state simulations while SOWFA computes
dynamic simulations. The Quasi-Dynamic column refers to the environment introduced
in this study. Columns indicated with an asterisk show the values reported a previous
study [36].

5 Discussion

This study introduces a novel quasi-dynamic environment for wind farm simulation focused
on the training of reinforcement learning agents. This environment solves some limitations
of fast steady-state environments by implementing quasi-dynamic wind behaviour, featuring
wake transport and partial observability, two important properties present in the real-life wind
farm control. The environment dynamics are based on the ones described in the FloriDyn
environment, which leverages fast-to-compute, steady-state simulations to implement a wind
farm simulator with the aforementioned properties. This environment and steady-state Floris
environments are then used in this study to compare the performance of PPO agents with
other wind farm control baselines and evaluate their applicability to the different simulators.

5.1 Contributions of the study to the literature

This work extends previous efforts in developing fast quasi-dynamic wind farm simulators [10,
11]. It presents a novel quasi-dynamic wind farm environment based on the FloriDyn wind
dynamics formulation, and designed to be compatible with RL frameworks by following the
Gym paradigm. This aims to facilitate the use of the environment for reinforcement learning
research, where previous environments were limited either by the simplicity of dynamics or
by the implementation choices that made them difficult to integrate with modern machine
learning and reinforcement learning frameworks. Moreover, the comparison with baselines and
reinforcement learning agents highlights the need for different approaches in quasi-dynamic
environments, where the assumptions of the simpler steady-state case no longer hold. Specif-
ically, strong baselines for steady-state environments such as the Proportional Serial-Refine
controller do not perform as well in the more complex quasi-dynamic environment, whereas
the PPO agents are capable of learning policies which outperform all the baselines in these
more complex environments.
This finding is in line with expectations, as the Serial-Refine method is specifically designed
for smaller input spaces. In contrast, RL agents learn a fixed-size parametric function that
maps the large input space to actions by identifying and leveraging patterns in the system
dynamics. Moreover, RL models can take real-valued observations as input and thus can
represent input data more efficiently than the Proportional Serial-Refine controller, which
relies on the discretization of continuous values to build a lookup table. Because of these
reasons, RL models are a more natural choice of agents for the higher-dimensional problem of
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control in the case of the quasi-dynamic environment than the Serial-Refine method, which
cannot be adapted to it. The results of this study align with these considerations, suggesting
that RL may be a more suitable approach to solve these problems. Additionally, RL approaches
can leverage existing research on POMDP problems and physics-informed neural networks to
further enhance performance.
In summary, the findings of the study are the following. This study has shown that PPO can
be an effective choice of agent for wind farm control in dynamic environments, where other
approaches may fail. Moreover, privileged information has been leveraged to learn stronger
policies in some cases. These results can help guide researchers working on realistic wind farm
control problems. The findings of this study can help develop better control strategies for
wind farms, leading to more green power generation in both new and existing farms. The
novel quasi-dynamic environment will allow researchers and practitioners to develop control
algorithms for complex wind farm environments more easily, as it features wake transport and
partial observability, while leveraging the low computational cost of steady-state simulators,
and can be integrated with existing RL frameworks.

5.2 Limitations

Despite its contributions, this study has several limitations. Firstly, the quasi-dynamic envi-
ronment simulation is not based on a physically derived formulation of wind dynamics, unlike
simulators which are based on computational fluid dynamics (CFD) [7, 8] or steady-state sim-
ulators [9]. This may affect the transferability of simulation-trained RL models to real wind
farms. Instead, it is an implementation based on physical models that balances fidelity and
computational efficiency while preserving important properties of real wind farm dynamics. A
validation study would be useful to assess the extent of this trade-off, particularly in terms
of its impact on the transfer of RL policies trained on the environment to real wind farms.
Secondly, the study focuses on a limited set of simple RL agents. Expanding the investigation
to include a broader range of models, including models tailored to POMDPs like recurrent
PPO [37], could be beneficial.
Another limitation of this study concerns the assumptions regarding the wind farm control
environment, which are based on the parameters defined in the FLORIS Gym environment.
In this environment, wind turbines are actuated at each timestep and are only limited in
the maximum rotation per timestep. However, real-world wind farms may have stricter control
constraints, such as permitting yaw adjustments only at fixed intervals rather than continuously.
This discrepancy could be significant, as in the case of infrequent actuation the ability to
optimize for dynamic wind conditions may be limited. The transient wind dynamics may subside
in the interval between actuations, reducing the effectiveness of control strategies.

5.3 Future work

This work also provides several possible avenues for future research. The simulator could be
improved in multiple ways. Making the underlying code faster by porting it to JAX [38] for
GPU support, would allow for more extensive training, although porting the FLORIS simulation
to JAX may not be trivial. Another option is to develop a neural simulator that mimics the
trajectories of high-fidelity simulators like SOWFA. While this would also enable GPU support,
creating such a simulator would require significant computational resources.
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This study has evaluated PPO policies and compared them to baselines. This has shown the
potential of RL policies in this task, but the policies that were evaluated are simple and do not
fully address the partial observability of the optimal control problem. Exploring the performance
of models specific to POMDPs could allow to more accurately assess the potential of RL
policies for wind farm control. A natural extension to this study would be to evaluate recurrent
PPO[37]. Evaluating further POMDP models might be fruitful in finding effective controllers
for this task.
The study on partial observability has mainly looked at how privileged information affects
performance. However, since this information isn’t available in real wind farms, it would be
important to study how to transfer knowledge from policies trained with privileged information
to policies that work with limited information. Several approaches could be suitable for this,
such as Scaffolder [39] or Informed Dreamer [40]. Moreover, privileged data used in this study
mainly focuses on wind flow information sampled in a grid pattern. Future works could explore
different ways to provide partial observability data to agents, such as finding effective patterns
to sample wind information at. Another option would be to leverage convolutional neural
networks to processes the full environment state. This could help agents learn which areas of
information are most important for control decisions.
Finally, physics-informed models could be effective in learning control policies [41]. These
methods could help agents learn the underlying physics and then use this knowledge to de-
velop effective policies that can be adapted to real-world scenarios with limited information.
This direction is particularly important, since wind farms have very limited observability, and
understanding the underlying physics of the system could help fill these information gaps.

6 Conclusion

This work addresses the limitations of traditional low-fidelity steady-state wind farm simulators
for power optimization, such as FLORIS, which implement simplified wind farm dynamics in
favour of computational speed. A novel quasi-dynamic wind farm simulator environment is
introduced, based on the FloriDyn formulation and tailored to reinforcement learning. This
environment leverages the low computational costs of computing steady-state simulations
to produce wind farm environments that feature complex wind dynamics. The environment
features wake transport dynamics and partial observability, both properties of real wind farms
that must be taken into account in the design of a wind farm controller. It is compatible with
popular reinforcement learning frameworks, making it a useful tool for researching RL-based
wind farm control, contributing to both reinforcement learning research and to the production
of sustainable wind energy.
Through experiments, this study shows that strong lookup table-based methods like Floris
Serial-Refine are capable of effectively addressing the task of optimizing power generation
in the simpler steady-state environments, but fail when addressing the novel quasi-dynamic
environment. In contrast, results indicate that RL agents are capable of learning policies in the
quasi-dynamic environment which outperform all considered baselines. These results suggest
that reinforcement learning algorithms may be better suited for tackling the high-dimensional,
partially observable problem of wind farm optimal control. Preliminary results also suggest that
leveraging privileged information at training time to then be distilled into deployable models
may be an effective approach to create strong control policies, but further work is required in
this direction.
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Despite these advancements, the study has limitations. The RL methods that are evaluated
in the experiments are simple and not specific to POMDP problems. This suggests that while
the results are promising, more improvements should be possible with approaches tailored to
this problem. Additionally, while the quasi-dynamic environment introduces system dynamics
which are present in real wind farms to simpler steady-state environments, validation is needed
to assess the transferability of results to real wind farms.
Future work should focus on addressing these limitations and expanding the scope of the
research. Moreover, RL methods tested in this study are not specific to POMDPs. Testing
approaches specific to POMDPs could further improve the performance of RL controllers.
In conclusion, this study introduces a novel wind farm simulation environment that features
important dynamic properties of real wind farms while maintaining computational efficiency,
providing a valuable tool for reinforcement learning research in wind farm control. Results in
the environments suggest that RL agents, in particular PPO, have the potential to outperform
traditional baselines in quasi-dynamic settings, highlighting their suitability for complex control
tasks. Although there are limitations, including the need for validation studies and broader
agent exploration, the findings of this study can help guide future improvements in wind farm
control and optimization. Future work can leverage partial observability and physics-informed
models to enhance the performance of RL-based control strategies to real wind farms, leading
to more efficient and sustainable energy production.
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A Hyperparameter search and training details

The hyperparameters used for the PPO agents in the different experiments were found through
random search. 10 different configurations of hyperparameters are evaluated for each experi-
ment. Each configuration of hyperparameters is evaluated twice and its scores are averaged to
reduce the impact of the stochasticity of the training process on the score metric. The ranges
and different possible values for hyperparameters are defined in Table 2.

Table 2: Hyperparameter search ranges for PPO agent experiments

Hyperparameter Search Range/Values
Discrete Values
Batch Size {128, 256, 512}
Network Layers {2, 3, 4, 5}
Network Width {128, 256, 512}
Number of PPO Epochs {5, 10, 15}
Privileged obs spacing {25, 75, 125} or {100, 150, 200}
Continuous Ranges
Learning Rate [1× 10−5, 1× 10−3]
Discount Factor (γ) [0.8, 0.99]
GAE Lambda (λ) [0.9, 1.0]
Clip Range [0.1, 0.3]
Entropy Coefficient [0.0, 0.1]
Value Function Coefficient [0.4, 0.6]
Maximum Gradient Norm [0.25, 0.75]

B Convergence of PPO training

All PPO models were trained for 100,000 steps during the hyperparameter search. While this
is computationally expensive due to the complexity of the environment, it may be fruitful
to train models for more steps. A higher step count may be particularly necessary for larger
environments (e.g., LHS8 or LHS16) or privileged agents, which involve larger observation
spaces and may require more exploration. This section presents learning curves to provide
qualitative insights into the convergence behavior of different PPO models in the quasi-dynamic
environment, comparing standard PPO and privileged PPO agents. The learning curves for
the 4 Symmetric environment are shown in Figure 16 and the learning curves for the 8LHS
environment are shown in Figure 17.
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Figure 16: Learning curves of PPO agents in the 4 Symmetric quasi-dynamic environment.
Plots show the average reward of the model during training for the evaluation seeds.
Results are shown for 10 iterations of random search.

Figure 17: Learning curves of PPO agents in the 8LHS quasi-dynamic environment. Plots
show the average reward of the model during training for the evaluation seeds. Results
are shown for 10 iterations of random search.

The plots indicate that most seeds seem to have converged by the end of training for the 4
Symmetric and 8LHS layouts. Some hyperparameter settings show performance degradation
over training in the 8LHS environment. Finally, some seeds do not seem to have converged
by the end of training in the 8LHS environment. This may indicate that longer training runs
could help improve the performance of privileged PPO in the 8LHS environment, but more
experiments are needed to confirm this.
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