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BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)
www.liacs.leidenuniv.nl 30/06/2025

www.liacs.leidenuniv.nl


Abstract

Video-text retrieval is a rapidly evolving task in computer vision, yet current models often
struggle to distinguish between captions with subtle semantic differences. In this work, we take
a step toward addressing this limitation by investigating the impact of augmenting training
datasets with hard negatives and hard positives. We compare two approaches for generating
these challenging examples: a rule-based method leveraging part-of-speech tagging with
synonym/antonym substitution, and a data-driven method using large language models (LLMs).
Our experiments explore various configurations, including the number of hard negatives, the
inclusion and ratio of hard positives, and different generation and sampling strategies. We
evaluate performance using standard metrics—Recall@k and Mean Rank—as well as two
emerging, fine-grained evaluation metrics from recent research: PosRank, which measures a
model’s ability to prioritize correct captions among semantically similar ones, and Brittleness,
which captures the model’s sensitivity to minor textual variations. Our findings offer three key
insights: (1) when using only one type of hard example for augmentation, hard positives lead
to more robust and sustainable performance improvements than hard negatives; (2) LLM-
generated examples consistently outperform rule-based substitutions; and (3) for text-to-video
retrieval tasks, incorporating both hard positives and negatives yields the best results, even if
it slightly compromises performance on vision-to-text retrieval.
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1 Introduction

Computer vision plays an important role in many technologies we use every day. Examples include
FaceID for unlocking phones, automatic tagging of photos on social media, real-time translation
using the phone camera, and driver-assistance systems in cars. Among the active areas of research are
image-text and video-text retrieval. These tasks aim to align visual content with corresponding
textual descriptions—images in the former and videos in the latter. In this thesis, we focus specifically
on the task of video-text retrieval.

A good example of this task is YouTube. In its early years, YouTube could only search for videos
using metadata such as the title or description. A more advanced system would allow users to
search using the actual content of a video. For instance, if a user remembers a scene with a “pink
dog,“ they should be able to find that video by typing this phrase, even if the title or description
does not mention it. This type of search is called video-text retrieval. While platforms like YouTube
have started using this technology, they still rely mostly on metadata.

To understand video-text retrieval, it helps to first look at image-text retrieval, which follows
the same idea but with images. Imagine a large collection of images, each paired with a short text
describing what is in it. Given a text query, the goal is to find and rank the images from most to
least relevant (see Figure 1).

Figure 1: Overall schema of the image-text retrieval task

As an example, consider a database of memes. If a user is looking for a specific meme (Figure 2),
the system should return relevant results based on a textual query. The process also works in
reverse: given an image, the model should retrieve and rank matching text descriptions from the
database. Moreover, the system can handle queries or images that were not part of the original
dataset, which is a key advantage of such models.
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Figure 2: Illustrations of the image-text retrieval task on memes

1.1 Problem Definition

Although recent approaches to video-text retrieval have achieved strong performance on standard
metrics such as Recall@k and Mean Rank (see Section 4.3 for definitions), these scores do not
necessarily indicate a deep understanding of the connection between videos and their textual
descriptions. Studies have revealed that current systems often fail to distinguish between captions
that differ by subtle but critical details [1]. For example, consider Figure 3a.

We define fine-grained negatives—mainly referred to as hard negatives—as sentences
that are very similar to the original caption but differ in a minor detail. These differences might
involve changing a single word, such as the object, a property of the object, the action being
performed, or some part of the surrounding context. Because they are close in meaning but not
semantically identical, these examples are particularly challenging for models to distinguish. In
contrast, coarse-grained negatives refer to sentences that are clearly different from the original
and do not share much semantic similarity.

As Chen et al. [1] point out, current state-of-the-art models often fail to detect these fine-grained
or hard negative differences, especially when they involve subtle changes such as prepositions or
adverbs.

This difficulty stems from two main factors: the training procedure and the nature of the data.
First, the commonly used loss functions (see Section 3.1) are not designed to encourage the model
to learn such fine distinctions. They primarily optimize for recall, which does not directly reward
sensitivity to small semantic changes. Therefore, a more targeted training approach is needed—one
that helps the model recognize small differences without reducing its overall retrieval performance.

Second, the datasets themselves are often coarse in nature. Most examples are far apart in
meaning, making it difficult for the model to learn to differentiate between closely related concepts.
For instance, in Figure 3b, the nearest captions to a given sentence are still quite different in
meaning. We refer to such training as coarse-grained, and this lack of fine-grained or hard negative
examples in the dataset is a key issue addressed in this work.

1.2 Research Questions and Contributions

This paper investigates the effect of incorporating hard positives into retrieval model training on
video-text retrieval efficiency and the model’s comprehension of objects and actions within video
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(a) Coarse-grained Negatives and Positives illustra-
tion

(b) Example of a data point from MSR-VTT[2]
dataset. Noticeably, the 5 closest captions in the
dataset are quite distant in meaning.

Figure 3: Examples to illustrate the problem with coarse-grained training. Both images were taken
from Chen et al. [1]

content. Our work extends existing research that has primarily focused on hard negatives in video
retrieval systems (Chen et al. [1]) by systematically exploring the complementary role of hard
positives.

We examine several key aspects of hard positive integration: the optimal number of hard positives
and their proportion relative to hard negatives, alternative methods for generating hard sentences,
and variations in sampling strategies during training. Our experimental findings reveal that hard
positives provide more sustainable performance improvements compared to hard negatives when
employed independently. Additionally, we demonstrate that models trained with hard sentences
generated through large language models outperform those using sentences created via parts-of-
speech tagging. While the combination of hard negatives and positives yields the best text-to-video
retrieval performance, we observe a trade-off where vision-to-text retrieval performance diminishes.

This research makes three primary contributions to the field: (i) we replicate and verify the
findings of Chen et al. [1] while extending their work to encompass hard positives, (ii) we provide
a comprehensive analysis of how hard negatives affect both standard and fine-grained retrieval
metrics, examining the impact of their quantity and quality, and (iii) we conduct a comparative
evaluation of two distinct generation methods for creating hard negatives and positives. To facilitate
future research, we have developed and released a comprehensive framework for integrating hard
positives and negatives into X-CLIP model training, which is publicly available on our research
GitHub repository.
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2 Related Work

2.1 Training and Usage

Video-text retrieval is an important topic in the vision-language domain and has received increasing
attention in recent years [3, 4, 5, 6, 7, 8]. The most commonly used training method for retrieval
models is contrastive loss, which has gained popularity due to its ability to leverage large-scale,
uncaptioned image datasets available online. This approach was formalized by Chen et al. [9] in
the SimCLR framework, which introduced contrastive learning for image data. The core idea is
to apply augmentations to different parts of the same image and bring their embeddings closer
together, while pushing apart the embeddings of different images (Figure 4). This allows the model
to learn meaningful visual representations without requiring labels.

Figure 4: SimCLR framework. Image from Chen et al. [9]

One of the most well-known applications of contrastive learning is the CLIP model [10], introduced
by Alec Radford et al. (OpenAI) in 2021. Unlike SimCLR, CLIP uses contrastive learning in a
self-supervised setting with image-caption pairs. Its development was motivated by three key
observations.

First, traditional computer vision methods relied heavily on manually labeled datasets, which
were inflexible. Adding new classes required retraining. In contrast, captions provide a more flexible
and descriptive alternative.

Second, training with captions has been shown to be more data-efficient. For example, Desai and
Johnson [11] demonstrated that a model trained on captions could be fine-tuned for classification
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tasks and still achieve strong performance with less data. Similarly, Zhang et al. [12] showed that
learning from medical images and their textual descriptions using contrastive loss produced strong
visual representations, even with a limited number of examples.

Third, large-scale NLP models such as GPT-3 [13] and T5 [14] demonstrated that training on
large datasets leads to strong generalization. CLIP applied this idea to the vision-language domain.

CLIP was trained on a large dataset of image-caption pairs (Figure 5). The images and captions
are encoded independently using separate neural networks: a vision encoder and a text encoder.
Contrastive loss is then used to bring matching image-caption pairs closer in the embedding space
while pushing non-matching pairs apart.

A key feature of CLIP is its end-to-end training: the image and text encoders are updated
jointly from raw input data. This enables the encoders to co-adapt and align their learned features
in a shared embedding space. A more detailed explanation of CLIP’s contrastive loss function is
provided in Section 3.1.

CLIP is especially useful during inference, as it supports both retrieval and zero-shot classification
(Figure 5). To classify an image, candidate class names are converted into prompts such as ”A
picture of [class]”. The model then ranks these prompts by similarity to the image embedding and
selects the highest-scoring one. Despite the simplicity of this method, it performs surprisingly well
and achieved state-of-the-art results at the time of release, outperforming models trained on labeled
data.

Figure 5: CLIP training (left) and usage (right). Images from Radford et al. [10]

2.2 Going to Video

Similarly to image-text retrieval, early video-text retrieval methods relied on pre-extracted video
and text features [15, 16, 17]. More recent approaches move toward end-to-end models that jointly
train video and text encoders, such as CLIP-BERT [18] and Frozen [19].

Following the success of CLIP [10], several models adapted its ideas to the video domain. One
of the first was CLIP4Clip [20], which initialized its encoders using pretrained CLIP weights,
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allowing the model to benefit from CLIP’s strong image-text alignment. Other examples include
VideoCLIP [21], CenterCLIP [22], and CLIP-ViP [23]. Some models introduced fine-grained tech-
niques to better capture video-text relationships. For instance, TS2-Net [24] shifts frame tokens
to better model temporal continuity and selects the top-K most informative tokens. X-CLIP [25]
computes similarities across multiple levels, including video-caption, video-word, frame-caption,
and frame-word. UCoFiA [26] uses a similar coarse-to-fine alignment strategy, though it omits
video-word alignment.

Despite these advancements, most models still face significant challenges in capturing fine-grained
semantic differences between video and text [1]. This has led to a growing interest in developing
improved training strategies, evaluation metrics, and model architectures. In the following subsection,
we review recent efforts aimed at addressing these limitations.

2.3 Recent Work

Several recent studies have proposed methods to overcome the coarse-grained nature of existing
models. The approaches discussed below represent some of the most prominent strategies in the
literature.

Hard Negatives One direction for addressing these fine-grained limitations is the use of hard
negatives during both training and evaluation. Chen et al. [1] propose such an approach, which
is described in more detail in Section 3.2. To better assess fine-grained understanding, they also
introduce a new metric called PosRank (see Section 4.3).

Similarly, Wufei et al. [27] explore alternative ways to improve fine-grained reasoning. While
Chen et al. generate hard negatives by replacing one word with its antonym, Wufei et al. use two
main techniques to construct their training data.

The first is mask filling, where a word in a sentence is removed and predicted using a language
model like BERT [28]. For example, “I [MASK] in the lake” may become “I drown in the lake.”
The second technique utilizes large language models (LLMs), such as ChatGPT [13], to rephrase
the caption. This allows for multiple word substitutions. For instance, “I swim in the lake” could
become “I drown in the deep lake.” While this increases diversity and realism, it also requires more
computational resources.

In both techniques, the introduction of hard negatives leads to a significant improvement in
performance on fine-grained evaluation metrics proposed in the respective studies. However, it also
causes a slight drop in traditional metrics such as Mean Rank and Recall@k.

Related Problem in NLP Similar efforts to improve model understanding were previously
made in the field of natural language processing, particularly with the introduction of the Winograd
Schema Challenge [29]. This benchmark was designed to evaluate a model’s ability to understand
cause-and-effect relationships and resolve pronoun references in contexts that require commonsense
reasoning, rather than relying on superficial statistical patterns.

To illustrate the challenge, consider the following two sentences from [29]:

• The city councilmen refused the demonstrators a permit because they feared violence.

• The city councilmen refused the demonstrators a permit because they advocated violence.
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In both cases, we can ask: “To whom does the pronoun ‘they‘ refer—the city councilmen or
the demonstrators?” Solving this requires a deeper understanding of the sentence semantics and
context. A model that depends only on learned statistical correlations would struggle to answer this
correctly, highlighting the need for genuine reasoning capabilities. The original challenge was later
extended by Sakaguchi et al. [30], who introduced a larger and more diverse dataset. They also
aimed to reduce biases in the questions, such as those introduced by frequent word co-occurrences
in human-written texts and biases embedded in the model’s training data.

Building on this idea, Thrush et al. [31] adapted the task to the vision-language domain,
resulting in the Winoground benchmark. Their goal was to address a major limitation in vision-
language models: the tendency to treat image-text matching as a bag-of-words problem [32]. In
such cases, models often match images and captions based on individual word presence, rather
than understanding how the words interact to form meaning. This limitation is also one of the core
challenges we aim to address in our work. An example from the Winoground dataset is shown in
Figure 6.

(a) Some plants surrounding a
lightbulb

(b) A lightbulb surrounding some plants

Figure 6: Example from the Winoground dataset. State-of-the-art models struggle to distinguish
between the two. Images from Thrush et al. [31].

More Approaches In the image-text domain, the inclusion of hard positives—semantically
similar but distinct pairs—has also been explored [33]. In this work, we extend that idea to the
video-text setting (see Section 5.4). Other recent ideas include hierarchy-aware embeddings [34],
though their effectiveness in the video domain remains unclear. Some works have also explored
integrating attention mechanisms for hard negatives within the InfoNCE loss [35], or using adaptive
margins [36], but these yield only minor improvements. Consequently, the question of how to
effectively enhance video-text retrieval remains open.

3 Methodology

This section outlines the methodological foundations of our work. We begin by presenting the
necessary background knowledge and definitions required to understand the proposed approach
(Section 3.1). Subsequently, we detail the loss functions employed in our experiments, including
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their formulation and relevance to the tasks at hand (Sections 3.2 and 3.3), and the sampling
strategy for hard sentences (Section 3.4).

3.1 Definitions

Similarity To measure the similarity between two vectors—representing the image and text
encodings in the same Euclidean space—we use cosine similarity. We denote this function as s(·, ·),
and define it as follows:

s(vimg, vtxt) =
vimg · vtxt
|vimg| · |vtxt|

(1)

Here, vimg represents the encoded image features, and vtxt represents the encoded text features.

Contrastive (coarse-grained) loss The most commonly used objective for training video-text
retrieval models is the contrastive loss [37], also known as InfoNCE. In this work, we refer to
this formulation as the coarse-grained loss.

To train a retrieval model, we typically consider a set of videos V and a corresponding set of
captions T , where |T | ≥ |V | since a video may have multiple associated captions. During training,
we sample matching video-text pairs (vi, ti). The coarse-grained loss is then computed as:

Lv2t = −
1

B

B∑
i=1

log
exp (s (vi, ti))∑B
j=1 exp (s (vi, tj))

,

Lt2v = −
1

B

B∑
i=1

log
exp (s (vi, ti))∑B
j=1 exp (s (vj, ti))

,

Lcoarse = Lv2t + Lt2v

(2)

Here, B denotes the batch size, vi is the encoded representation of the i-th video, and ti is the
encoded representation of the corresponding caption. Each term compares the similarity score
s(v, t) of a positive pair (i.e., a matching video and caption) against the similarities of negative
pairs within the batch. The loss encourages the model to align matching pairs while distinguishing
mismatched ones. Importantly, the batch size directly affects the strength of the contrastive signal:
larger batches provide more negative samples, which can lead to more robust and effective learning.

3.2 Fine-grained Training and Evaluation (Hard Negatives)

Chen et al. [1] propose a fine-grained training methodology aimed at improving model sensitivity
to subtle semantic differences between samples. Their approach introduces two key contributions: a
novel evaluation metric, PosRank (outlined in Section 4.3), and a training strategy that incorporates
hard negative samples to enhance contrastive learning.

The central component of their method is the use of hard negatives—samples that are semantically
close to the anchor but belong to a different class—to enforce more discriminative representations.
This encourages the model to focus on nuanced distinctions rather than relying on coarse differences.
The strategy for sampling these hard negatives is described in detail in Section 3.4.
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Abstracting away from the sampling specifics, the fine-grained training objective can be formu-
lated as follows:

Lfine = −
1

B

B∑
i=1

log
exp (s (vi, ti))∑

tneg∈N exp (s (vi, tneg))
, (3)

where B is the batch size, vi is the encoded representation of the i-th video, ti is the corresponding
ground-truth caption, and N denotes the set of hard negative captions for ti. This formulation
emphasizes the model’s ability to distinguish the correct caption from semantically similar yet
incorrect alternatives.

The final training objective combines this fine-grained loss with the standard contrastive loss as
follows:

L = Lcoarse + λfineLfine (4)

where λfine is a weighting factor that balances the contribution of the fine-grained loss, and
Lcoarse is defined in equation 2.

3.3 Hard Positives

In addition to leveraging hard negatives, we further refine the training procedure by incorporating
hard positive samples. This approach, introduced by Kamath et al. [33], addresses a key limitation of
using only hard negatives: the model may learn that any perturbation to a sentence necessarily alters
its meaning. By including hard positives—modified captions that preserve the original meaning—we
encourage the model to be more discerning, learning to distinguish between superficial changes and
those that truly affect semantics. While this idea was originally proposed in the image domain, we
adapt and extend it to the video domain. The strategy for generating these hard positive captions
follows the same methodology described in Section 3.4.

The key methodological contribution in this section lies in the adaptation of the loss function to
accommodate these positive sentences. Our formulation draws inspiration from the work of Doveh
et al. [38], who proposed a principled approach to balancing informative positives and negatives
within contrastive learning frameworks.

The evaluation protocol remains consistent with that described in Section 3.2, allowing us to
isolate the impact of the enhanced loss formulation. We define the extended objective as follows:

Lhard pos = −
1

B

B∑
i=1

1

|Pi|

|Pi|∑
j=1

log
s(tj, vi)∑B
k=1 s(tj, vk)

(5)

where B denotes the batch size, and |Pi| represents the number of hard positive samples associated
with the text ti. In essence, for each sentence in the batch, we iterate over its corresponding hard
positive sentences. For each such pair, we compute the ratio between the similarity of the hard
positive to the original sentence and the total similarity of that hard positive to all other sentences
in the batch. These ratios are then summed, and the final result is normalized by both the batch
size and the number of hard positives. We combine this with other loss values as follows:

L = Lcoarse + λfineLfine + λhard posLhard pos (6)
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3.4 Hard positives/negatives sampling

To generate hard positive and negative samples, we employ two primary methods: part-of-speech
(POS) replacement, a more controlled and deterministic approach, and large language model
(LLM)-based generation, which relies on prompting LLMs to either paraphrase a given sentence
(producing hard positives) or generate syntactically plausible but semantically incorrect alternatives
(producing hard negatives). In both cases, augmented sentences are pre-generated prior to training
and subsequently sampled online during training to enhance learning robustness.

Parts of Speech (POS) Method This method follows the approach described in [1] and all
the notation is duplicated in Appendix A for a quick reference. Let us consider a dataset consisting
of a set of videos V and a corresponding set of captions T , where |V | ≤ |T | (i.e., multiple captions
may correspond to a single video). Given a video vi and its associated set of captions Ti, we aim to
construct a set of hard negative (or positive) captions Nij (or Pij) of size n for each caption tj ∈ Ti.

To achieve this, we utilize a predefined set P of five parts of speech: nouns, verbs, adjectives,
adverbs, and prepositions. The overall idea is to make subtle yet meaningful changes to the
sentence structure while preserving grammatical structure. These changes are designed to create
hard negatives and hard positives that challenge the model’s understanding of nuanced semantic
differences. The algorithm to generate hard negatives is presented in Algorithm 1.

In summary, the replacement word w′ is chosen based on the following priority:

1. An antonym of w, if available (via WordNet [39]).

2. An antonym of a hypernym or hyponym of w (via WordNet [39]).

3. If neither is available, a randomly selected word from the dataset vocabulary sharing the
same POS tag p.

This strategy ensures that substitution introduces semantic contrast while preserving the proper
grammar. Using antonyms and their semantic relatives increases the likelihood that the altered
caption becomes a true negative. Moreover, by modifying only a single word in each caption, the
method creates challenging examples that test the model’s sensitivity to fine-grained semantic
differences, such as “slow” vs. “fast”, “forward” vs. “backward”, or differences in color, age, and
gender.

In cases where no antonyms or related semantic opposites can be identified (i.e., Options 1 and 2
are not applicable), the replacement word w′ is randomly selected from a predefined dataset-specific
vocabulary. This vocabulary is constructed from the training captions and organized as a dictionary
indexed by the five part-of-speech categories (nouns, verbs, adjectives, adverbs, and prepositions).
Each entry in the dictionary contains a list of words observed in the training data that correspond
to the respective POS tag. This design ensures that all replacement words are familiar to the model,
thereby mitigating the risk of introducing out-of-distribution or unfamiliar tokens during training.
By constraining substitutions to words that the model has already encountered, we maintain the
integrity of the training distribution and avoid artificially increasing the difficulty of the task
through exposure to unseen vocabulary.

For constructing hard positives, the process is similar and presented in Algorithm 2.
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Algorithm 1 Generate Hard Negatives

Require: Sentence tj , set of parts of speech P , number of required sentences n, dataset vocabulary
V

Ensure: Set of hard negatives Nij

1: Initialize Nij ← ∅
2: Tokenize sentence tj into a list of words W
3: Get a list of available parts of speech Pavail in a sentence tj from W
4: Initialize D ← ∅ {Set of substitutions with direct antonyms}
5: Initialize H ← ∅ {Set of substitutions with antonyms of hypernyms or hyponyms}
6: for pavail in Pavail do
7: Select a random word w with POS-tag pavail from a list W
8: Get set Dw of substitutions with direct antonyms of w
9: D ← D ∪Dw

10: Get a set Hw of substitutions with antonyms of hypernyms and hyponyms of w
11: H ← H ∪Hw

12: end for
13: Nij ← Nij ∪D
14: if |Nij| < n then
15: Nij ← Nij ∪H
16: end if
17: if |Nij| < n then
18: for i = |Nij| to n do
19: Select random word w from a list W
20: Get a POS-tag pw of w
21: Find a random word wdict from V with the same POS-tag pw
22: Make substitution of w for wdict, and save it as s
23: Add s to Nij

24: end for
25: end if
26: Reduce the |Nij| to n, giving the first preference to the substitutions from D, second preference

to the substitutions from H, and the third one for all remaining random substitutions
27: return Nij
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Algorithm 2 Generate Hard Positives

Require: Sentence tj, set of parts of speech P , number of required sentences n
Ensure: Set of hard positives Pij

1: Initialize Pij ← ∅
2: Tokenize sentence tj into a list of words W
3: Get a list of available parts of speech Pavail in a sentence tj from W
4: Initialize D ← ∅ {Set of substitutions with direct synonyms}
5: Initialize H ← ∅ {Set of substitutions with synonyms of hypernyms or hyponyms}
6: for pavail in Pavail do
7: Select a random word w with POS-tag pavail from a list W
8: Get set Dw of substitutions with direct synonyms of w
9: D ← D ∪Dw

10: Get a set Hw of substitutions with synonyms of hypernyms and hyponyms of w
11: H ← H ∪Hw

12: end for
13: Pij ← Pij ∪D
14: if |Pij| < n then
15: Pij ← Pij ∪H
16: end if
17: Reduce the |Pij| to n, giving the first preference to the substitutions from D, and the second

preference to the substitutions from H
18: return Pij
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Therefore, the preference for the substitution word is the following:

1. A synonym of w, if available (via WordNet [39]).

2. A synonym of a hypernym or hyponym of w (via WordNet [39]).

The goal here is to create variants that retain the original meaning while introducing surface-level
diversity, helping the model learn that these variants still refer to the same video content. This can
aid in improving robustness to lexical variation.

LLM-Based Generation Method Our approach is inspired by [27], leveraging the paraphrasing
capabilities of LLMs to generate both hard positive and hard negative examples. Specifically, we
employ Qwen2.5-1.5B-Instruct [40], selected for its favorable balance between performance and
model size. Although it is not the most advanced variant of the Qwen family, it provides sufficient
capability for producing challenging sentence-level paraphrases.

The generation parameters are configured as follows: a temperature of 0.6, left-side tokenizer
padding, and a maximum output length of 30 tokens per paraphrase. This cap was chosen based
on the dataset’s average sentence length of 14.25 words. By allowing for up to 20 words and
assuming an average of 1.5 tokens per word, we ensure coverage of most sentence lengths while
avoiding excessive computational overhead. Detailed statistics on sentence length distribution and
the specific prompts used are provided in Appendices B and C, respectively.

LLM responses are not always perfectly aligned with the intended paraphrasing task; occasionally,
the generated outputs may be unsuitable (fewer sentences than were asked) or duplicated. To address
this, we developed an iterative filling-and-filtering pipeline that ensures a complete and diverse set
of hard examples. The key idea is to repeatedly invoke the model to generate missing paraphrases
for underfilled caption sets, while simultaneously filtering out repeated outputs associated with the
same original sentence.

The augmentation process is formalized in Algorithm 3. The function FillUp identifies which
original captions lack a sufficient number of paraphrases and re-invokes the LLM to generate the
required number of additional examples, using the same prompt (Appendix C) with a different
number of sentences needed. The FilterRepetitions function ensures that each generated
paraphrase set contains unique entries for a given caption ID by removing duplicates. This iterative
process continues until a pass through the loop results in no further changes to the dataset size,
indicating convergence.

Sampling As mentioned earlier, we generate all sentences prior to training and store them in a
separate file. The number of generated sentences varies depending on the method and sentence
type, as shown in Table 1.

Positives Negatives
POS 100, 20, 5 40, 20, 5
LLM 20 20

Table 1: Number of generated sentences by method and sentence type. For POS-generated sentences,
we create three sets with varying numbers of items to support the experiment described in Section 5.6.
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Algorithm 3 Iterative Hard Sentence Augmentation Using LLMs

Require: Original caption set C, initial generated sentence set G
Ensure: Augmented set of hard sentences G
1: G← FilterRepetitions(G)
2: finished← false
3: while not finished do
4: G← FillUp(G,C)
5: s1 ← Size(G)
6: G← FilterRepetitions(G)
7: s2 ← Size(G)
8: if s1 − s2 = 0 then
9: finished← true
10: end if
11: end while
12: return G

The sampling strategy reflects the capabilities and constraints of each generation method. For
the POS-based method, it is relatively easy to generate a large number of hard negative examples by
leveraging a predefined dictionary. However, the number of positive examples that can be generated
depends on the specific word in question and varies significantly. Therefore, the numbers shown in
the table for the POS method represent the maximum possible number of sentences that can be
generated. A detailed distribution of these counts can be found in the Appendix D.

In contrast, for the LLM-based method, we generated exactly 20 sentences for both positive and
hard negative examples, due to the peculiarities of the generation algorithm (Algorithm 3).

Quality To empirically assess the quality of the generated sentences, we present two illustrative
examples in a Table 2.

Table 2: Examples of generated hard positive and negative sentences using different methods. Full
table may be found in Appendix E

Method Generated Sentence

Original: A couple of people roping a calf in a ring and riding horses.

POS
Hard Negative

A couple of people roping a calf in a shanty and riding horses.

POS
Hard Positive

A couple of citizenry roping a calf in a ring and riding horses.

LLM
Hard Negative

A party of individuals are attempting to herd an animal using only
their legs.

LLM
Hard Positive

Two folks encircling a bull with ropes as they gallop their mounts.

Continued on next page

14



Table 2 – continued from previous page

Method Generated Sentence

Original: a man is showing how a square knot looks like with a white string.

POS
Hard Negative

a man miss showing how a square knot looks like with a white
string.

POS
Hard Positive

a man is picture how a square knot looks like with a white string.

LLM
Hard Negative

A man tries to teach others how to perform a square knot using
blue rope.

LLM
Hard Positive

A person clarifies the elements of a square shackle employing a soft
beige thread.

The POS-based methodology tends to produce sentences that closely resemble the original
ones, but it is prone to grammatical or logical errors. In contrast, the LLM-based approach, while
generally more diverse, is not without its limitations. For instance, in the case of hard negatives,
it may produce sentences that deviate too much from the original, making them insufficiently
challenging as negative samples. For hard positives, the LLM can sometimes introduce content
not present in the original sentence—so-called hallucinations—which may significantly alter the
intended meaning. This is exemplified in the second example in Table 2. However, in that specific
instance, the original caption is arguably ambiguous, allowing for multiple valid interpretations,
including the generated one.

In a manual evaluation of 25 additional sentences, we identified only two instances where
the LLM-generated hard positive captions introduced hallucinated content. One such case is the
modification: “A young girl gives a wink and then waves her hand goodbye” → “She lifts her hand
to wave goodbye, making sure everyone knows that the party is coming to an end,” where the LLM
adds a new narrative element not present in the original sentence. A more significant example is:
“Two amazing catches by high school football quarterbacks and receivers”→ “Two incredible throws
thrown by elite high school quarterbacks and wideouts,” in which the term “elite” is introduced
without justification, and the semantic shift from “catches” to “throws” alters the meaning to the
extent that the generated sentence is arguably more appropriate as a hard negative than a positive.

An additional characteristic of the LLM-based generation is its ability to significantly expand the
dataset’s vocabulary. Nevertheless, as most new terms are synonymous with those in the original
captions and correspond to visual elements in the videos, they do not pose a problem for the
training process.

Distribution Following Algorithms 1 and 2, we obtain sets of hard negatives and positives, whose
part-of-speech (POS) distributions are shown in Figure 7.

The distributions of parts of speech used to generate hard negatives and positives closely resemble
the appearance of these parts of speech in the original dataset. This alignment holds especially for
larger set sizes. However, for smaller sets, more noticeable deviations appear (see Appendix F). This
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Figure 7: Distribution of parts of speech across generated sentences. For the first two legend groups
(hard negatives and positives), the coverage value indicates the percentage of sentences in which a
specific part of speech was substituted. For the final legend group (“Sentence Proportion by Chen
et al.”), the value represents the proportion of sentences in the VATEX [41] dataset containing the
corresponding part of speech, as reported by Chen et al. [1]. The plots for smaller set sizes may be
found in the Appendix F

is primarily because we prioritize direct antonyms or synonyms and, in cases where fewer sentences
are needed, rely less on the dataset vocabulary. As a result, while nouns and verbs are frequently
substituted, parts of speech like prepositions are often underrepresented due to the difficulty of
finding suitable synonyms or antonyms.

In particular, we observe that no hard positive substitutions involving prepositions were generated.
This is due to the lack of available synonyms for prepositions and the fact that our hard positive
generation process (Algorithm 2) does not incorporate vocabulary from the dataset. While the
absence of synonyms does not necessarily imply the absence of antonyms, most hard negatives
involving prepositions were likely generated using the dataset vocabulary.

4 Data, Model, and Evaluation

4.1 The Dataset

In this work, we utilize the VATEX dataset [41], which contains over 41,250 videos and 825,000
captions in both English and Chinese. VATEX was selected due to several key advantages over other
commonly used datasets, such as YouCook2 [42], DiDeMo [43], ActivityNet [44], MSR-VTT [2],
MSVD [45], and TGIF [46]. Notably, VATEX contains the highest proportion of captions with
adjectives, adverbs, and prepositions [1], making it particularly challenging and informative for
evaluating a model’s understanding of parts of speech—an aspect central to the PosRank (see
Section 4.3) metric.

In addition to its linguistic richness, VATEX is also the largest dataset among those mentioned
in terms of the number of captions, which is particularly important given our focus on assessing the
effectiveness of hard negative and positive caption augmentations. Furthermore, the dataset employs
the Recall@k and Mean Rank metrics for evaluation, which are consistent with the methodology
used in our experiments.

VATEX builds upon the Kinetics-600 dataset [47], offering more diverse and descriptive annota-
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tions. Compared to the widely used MSR-VTT [2], it provides longer, multilingual captions and a
larger volume of data. For the purposes of this study, we restrict our use to the English captions.

It is worth noting that the English captions were collected via Amazon Mechanical Turk, with
contributions limited to workers from English-speaking countries, specifically Australia, Canada,
Ireland, New Zealand, the United Kingdom, and the United States.

Since the videos are hosted on YouTube, the dataset authors are not permitted to redistribute
the video files. As a result, we had to download the videos ourselves. However, not all videos
were still available—some had been deleted or made private—so we were only able to partially
reconstruct the dataset (see Table 3).

Split Collected Original Percentage Collected
Train 23,778 25,991 91.5%
Val 2,375 3,000 79.2%
Test 3,391 6,000 56.5%
Total 29,544 34,991 84.4%

Table 3: VATEX download statistics

Although we report statistics for the test split, we do not use it in our experiments to remain
consistent with the approach of Chen et al. [1], who used the validation set for evaluation due to
the unavailability of the test set at the time.

4.2 The Model

In all our experiments, we employ the X-CLIP model proposed by Yiwei et al. [25]. The choice of
X-CLIP is motivated by several key factors. Firstly, to maintain consistency with prior work by Chen
et al. [1], who evaluated multiple models including UCoFiA [26], Frozen [19], X-CLIP [25], and TS2-
Net [24], we selected X-CLIP for its demonstrated susceptibility to subtle semantic variations. This
sensitivity is crucial when working with hard positive and negative samples, as X-CLIP is explicitly
trained to capture localized semantic cues rather than relying solely on global video-text matching.
Consequently, it is more capable of reflecting nuanced changes in fine-grained retrieval metrics.
Moreover, X-CLIP consistently outperforms many baseline methods on standard benchmarks such
as MSR-VTT [2], ActivityNet [44], and DiDeMo [43], providing a robust and reliable foundation
for our analysis. This strong performance ensures that observed effects in our experiments can be
attributed to the augmentation strategies rather than baseline model weaknesses.

X-CLIP builds on CLIP4Clip [20], which itself is based on the CLIP model [10] (more about it
in Section 2.2). While CLIP4Clip aligns full video clips with full text descriptions (video-sentence
alignment), X-CLIP improves this by introducing cross-grained contrastive learning (see Figure 8).
Instead of only comparing video-sentence pairs, it also learns to align finer-grained elements, such
as individual video frames with words. This is achieved through a component called Attention Over
Similarity Matrix, which allows the model to focus on relevant frame-word interactions.

Overall, X-CLIP is trained to optimize alignment at four different levels: (1) video–sentence, (2)
video–word, (3) frame–sentence, and (4) frame–word. This multi-level alignment helps the model
learn a richer and more detailed understanding of the video-text relationship. A simplified diagram
of the model architecture is provided in Figure 9.
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Figure 8: Illustration of the concept of cross-grained contrast used in X-CLIP model. Image is taken
from Yiwei et al. [25].

4.3 Evaluation Metrics

To evaluate the performance of our retrieval system, we employ four key measures: Recall@k,
Mean Rank, PosRank [1], and Brittleness [33]. Recall@k and Mean Rank are widely used in the
video-text retrieval literature and serve as standard benchmarks. However, our primary focus is on
PosRank and Brittleness, which are better suited for assessing fine-grained retrieval performance.
These allow us to evaluate the model’s ability to distinguish subtle semantic differences between
videos and captions. While Recall@k and Mean Rank are still reported for completeness, they are
treated as secondary indicators. Our objective is to enhance fine-grained retrieval quality while
maintaining—or potentially improving—performance on conventional benchmarks.

Recall@k Recall@k measures the proportion of relevant items that appear in the top-k results.
It is defined as:

Recall@k =
1

N

N∑
i=1

1 (rank(yi) ≤ k) (7)

where N is the number of queries, yi is the ground-truth item for the i-th query, and rank(yi)
denotes the rank of the correct item in the list of retrieved results. The indicator function 1(·)
returns 1 if the condition is true and 0 otherwise.

Mean Rank Mean Rank computes the average rank position of the ground-truth item over all
queries:

Mean Rank =
1

N

N∑
i=1

rank(yi) (8)

Lower values of Mean Rank indicate better retrieval performance, as they imply that relevant
items are retrieved closer to the top of the list.
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Figure 9: Illustration of the X-CLIP model, taken from Yiwei et al. [25]. The input text is tokenized
with positional encodings and passed through a text encoder to produce both coarse-grained
(single-token) and fine-grained (multi-token) features. The input video is first divided into frames,
which are processed through a frame encoder. Each frame becomes a token, also augmented with
positional information. These frame tokens are passed into a temporal encoder to generate fine-
grained video features. The coarse-grained video representation is then computed by averaging
these fine-grained outputs. Finally, the model computes the four types of similarities between video
and text representations.

PosRank PosRank quantifies a model’s ability to distinguish the ground-truth caption from
synthetically generated hard negatives, conditioned on a specific part of speech (POS). This metric
is closely aligned with the hard negative generation methodology introduced in Section 3.4, and we
adopt the same notation here (see Appendix A for reference).

Given the test set, which, in this work, corresponds to the validation set Dval (used for this
purpose due to the reasons outlined in Section 4), we generate a set of n hard negatives Nij for
each reference caption tj corresponding to a video vi. Each hard negative in Nij is created by
altering a single word in tj , targeting one of five specified parts of speech in a set P={nouns, verbs,
adverbs, adjectives, prepositions}. Because the part of speech to be modified is selected uniformly
at random, the distribution of POS types among the generated perturbations in Nij is expected to
be approximately uniform across the set.

We define Np
ij ⊆ Nij as the subset of hard negatives in which the altered word belongs to POS

p ∈ P . We then construct the evaluation set

Q = Np
ij ∪ {tj},

which includes the original caption and its associated hard negatives modified on POS p.
By computing the similarity between each sentence in Q and the corresponding video vi, we

obtain a ranking of all candidate captions in Q. Let rpij denote the rank of the original caption tj
within this list (lower rank indicates higher similarity).
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The PosRank for part of speech p is then defined as:

PosRankp =
1

|Dval|

|Dval|∑
i=1

|Ti|∑
j=1

1

rpij
(9)

Recall that, ideally, Dval would be replaced by a dedicated test set Dtest under standard evaluation
protocols.

Brittleness Brittleness measures a model’s susceptibility to confusion between semantically
similar (hard positive) and misleading (hard negative) captions, and was introduced by Kamath et
al. [33]. Unlike PosRank, which evaluates performance on hard negatives alone, Brittleness accounts
for both hard positives and hard negatives, thus providing a more holistic view of the model’s
discriminative capacity.

Given the test set (although we use Dval as a stand-in for a test set), we generate for each
reference caption tj ∈ Ti (associated with video vi) a set of n hard negatives Nij and a matching set
of m = n hard positives Pij . Brittleness is then computed as the proportion of evaluation instances
where the model ranks the hard negative between the original and hard positive captions. Formally:

Brittleness =
1

|Dval||Ti||Nij|

|Dval|∑
i=1

|Ti|∑
j=1

|Nij |∑
n=1

1

[
s(tj, vi) > s(tnegn , vi) > s(tposn , vi)
s(tposn , vi) > s(tnegn , vi) > s(tj, vi)

(10)

Here, the symbol [ denotes the logical “or“, and tnegn ∈ Nij and tposn ∈ Pij represent a hard
negative and a hard positive sample, respectively. The indicator function 1(·)] returns 1 when either
condition is satisfied, signifying that the hard negative is incorrectly ranked between the reference
and the hard positive. See Appendix A for all other notation. The final Brittleness score quantifies
the proportion of such ambiguous rankings across the dataset. A lower value (↓) indicates greater
robustness, suggesting that the model more consistently assigns higher similarity scores to positive
captions over negative ones.

In all experiments, we set n = m = 1, generating one hard negative and one hard positive per
reference caption. Both are constructed using the POS-based methodology described in Section 3.4.
By limiting the number of generated sentences, we ensure high-quality and controlled perturbations.

5 Results

In this section, we evaluate various training augmentation strategies for video-text retrieval models,
focusing on the following research questions: (i) How does the number of hard negatives included
during training impact the model’s final performance and accuracy? (ii) What is the effect of
including hard positives on performance and accuracy? (iii) How does the method used to generate
hard sentences influence the model’s outcomes? (iv) How does the proportion of hard positives to
negatives and the size of the hard sentence pool affect performance and accuracy? These questions
are addressed in Sections 5.3 through 5.6. Sections 5.1 and 5.2 provide the justification and details
of the experimental setup.
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5.1 Replication of Original Study

We begin by replicating the original study conducted by Chen et al. [1]. Unlike their work, we
use a single dataset—VATEX (see Section 4.1)—and a single model—X-CLIP (see Section 4.2).
The training configuration is aligned with that described in the original publication: the model is
optimized using Adam, trained for 5 epochs with a batch size of 64. The initial learning rate for
the visual and text encoders is set to 1× 10−7, while the remaining modules use an initial learning
rate of 1× 10−4. The results from the original study and our replication are presented in Figure 10.
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Figure 10: Results for PosRank (left) and Recall (right) evaluations for the original and replicated
models. Avg. Recall refers to the average of Recall@1, Recall@5, and Recall@10. For comparison, a
model trained with a batch size of 16 is also included to justify its use in subsequent experiments.
V2T and T2V denote vision-to-text and text-to-vision retrieval tasks, respectively.

As shown in the plots, the highest PosRank scores are observed for nouns and adjectives, while
the lowest are recorded for prepositions. This can likely be attributed to two factors: (i) prepositions
require a deeper understanding of spatial and temporal relationships across objects and frames,
in contrast to nouns and adjectives, which can often be inferred from a single object in a single
frame; and (ii) the dataset contains fewer sentences involving prepositions than those containing
adjectives or verbs (see Section 3.4).

As for the recall values, there is a slight decrease when comparing the original and replicated
models. This is likely because the replicated model was trained on only 91.5% of the training
dataset, as we did not manage to collect the full body of data (see Section 4.1).

Regarding the comparison between models, the performance differences are negligible. Addition-
ally, we include a third model trained with a reduced batch size of 16. This configuration is less
demanding on GPU memory, making it suitable for less powerful hardware. Given the minimal
impact on performance, we adopt a batch size of 16 for all subsequent experiments.

5.2 Partial Data Usage

Following the previous experiment, we now examine the performance trends observed when
transitioning from standard training to training that includes hard negatives, in both the original
and replicated settings. For the replicated models, we use the same configuration as described in
Section 5.1, including a reduced batch size of 16. The results are presented in Figure 11.

As shown in the plots, we observe a consistent trend between the original and replicated
experiments, even though our setup differs in three key ways: (i) the batch size is reduced from
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Figure 11: Results for PosRank (left) and Recall (right) evaluations for the original and replicated
models. Avg. Recall represents the average of Recall@1, Recall@5, and Recall@10. The replicated
models are trained with a reduced batch size of 16 and use only 20% of the dataset, compared to the
original models, which use a batch size of 64. Despite these differences, the observed trend—namely,
performance improvement with the inclusion of hard negatives—remains consistent across both
settings. V2T and T2V refer to vision-to-text and text-to-vision retrieval tasks, respectively.

64 to 16, (ii) the number of hard negatives per caption is decreased from 16 to 2, and (iii) only
20% of the full dataset is used for training. These modifications significantly reduce computational
requirements without notably impacting the observed trends. Given the resource efficiency and
consistency of results, we adopt this reduced configuration for all subsequent experiments.

5.3 Hard Negatives

Having established a reliable experimental setup, we now examine the impact of incorporating
hard negatives on video-text retrieval performance. Using the same configuration as described in
Section 5.1, we assess the effectiveness of training with varying numbers of hard negatives. The loss
formulation is provided in Section 3.2. The results are summarized in Figure 12.
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Figure 12: Evaluation results for PosRank (left) and Brittleness (right) across different quantities
of hard negatives used during training. Avg. Recall denotes the average of Recall@1, Recall@5, and
Recall@10.

From the PosRank plot, we observe a consistent improvement in performance with the inclusion
of additional hard negatives. However, the magnitude of this improvement is modest, with a
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maximum gain of approximately 0.04.
In contrast, the Brittleness metrics do not exhibit a uniform trend. For example, Brittleness

increases with more hard negatives in the case of nouns and adjectives, while it decreases for verbs.
Adverbs and prepositions display non-monotonic behavior, with a peak in Brittleness occurring at
Neg=4.

These fluctuations in Brittleness for prepositions and adverbs may be attributed to the nature of
the hard negatives generated for these categories. Specifically, adverb substitutions yield the fewest
hard negatives, while preposition-based augmentations rely heavily on existing dataset vocabulary,
resulting in less informative negatives (see Section 3.4). Furthermore, the augmentation of verbs
appears to be the most effective: it leads to the largest improvement in PosRank and the smallest
increase in Brittleness, which even decreases as the size of the negative set grows.

Interestingly, prepositions—and to a lesser extent, adjectives—show the highest Brittleness
scores without any clear gains in PosRank. While we do not currently have a definitive explanation
for this pattern, it appears consistently across all later experiments (see Sections 5.4, 5.5, and 5.6).
This makes it a useful direction for future work.

The Recall@k and Mean Rank metrics exhibit minor fluctuations but do not show substantial
changes across configurations. These plots are provided in Appendix G.

In summary, the addition of hard negatives appears to enhance sentence understanding, as
reflected in the PosRank and recall-based metrics. However, increasing the number of hard negatives
beyond 2 yields diminishing returns and may exacerbate Brittleness for specific parts of speech,
potentially indicating overfitting.

It is also worth noting that prior work by Chen et al. [1] identified 16 hard negatives as
optimal, though on a different dataset—VLN-UVO [48]. Since our experiments utilize the VATEX
dataset [41], which differs in structure, vocabulary, sentence length, and complexity, the optimal
number of hard negatives may be dataset-dependent.

5.4 Hard Positives and LLM-Generated Sentences

As we have seen, using a small number of hard negatives leads to the best balanced performance. In
this section, we explore a different approach by adding hard positives to the training process. The
modified loss function used for this setup is described in Section 3.3. In addition, we experiment with
generating both hard negatives and hard positives using LLMs (see Section 3.4), instead of relying
on POS-generated sentences (see Section 3.4). Based on the results from previous experiments, we
limit the number of hard negatives or positives to fewer than 2. The results of these experiments
are shown in Figures 13 and 14.

Looking at the PosRank results, POS-generated sentences clearly perform better. This may be
because the PosRank evaluation itself is based on POS-generated sentences, which could lead to a
form of overfitting.

When we include hard positives, we do not observe significant changes—values remain close
to each other. However, for LLM-generated sentences, adding hard positives often leads to slight
improvements in performance compared to training with only negatives.

Additionally, for the LLM method, PosRank scores for both negative-only and combined
augmentations show a decreasing trend from noun to preposition. The same trend is observed
for the POS method, but starting with the verb. Recall that the PosRank metric evaluates how
well the model can distinguish between an original sentence and its hard negative variations (see

23



noun adj verb adv prep
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9 Training Condition
Control                                 
(Neg=0, Pos=0)
Neg=2
Neg=2 - LLM
Neg=2, Pos=2
Neg=2, Pos=2 - LLM

PosRank on Evaluation Set (0.2 data, batch 16)

noun adj verb adv prep
0

0.1

0.2

0.3

0.4

0.5

0.6
Training Condition

Control
(Neg=0, Pos=0)
Neg=2
Neg=2 - LLM
Neg=2, Pos=2
Neg=2, Pos=2 - LLM

Brittleness on Evaluation Set (0.2 data, batch 16)

Figure 13: Results for PosRank (left) and Brittleness (right) evaluations for the inclusion or exclusion
of hard positives and LLM-generated sentences.

Section 4.3). This suggests that models trained on POS-generated sentences are best at detecting
changes to nouns, while those trained on LLM-generated sentences are better at detecting changes
to verbs. In both methods, adjectives are the second most distinguishable part of speech.

We propose the following explanation. For POS-generated sentences, the PosRank values closely
mirror the distribution of parts of speech within the hard positives and negatives, with the notable
exception of prepositions. The relatively low PosRank for prepositions may be attributed to the
reduced quality of those sentence variations (see Section 3.4). In contrast, for LLM-generated
sentences, we lack direct information about the distribution of parts of speech. However, it is
reasonable to assume that this distribution approximates that of the underlying dataset, and this
assumption may account for the observed patterns.

For the Brittleness metric, POS-generated training leads to higher scores, just like in the PosRank
results. However, since we want to minimize Brittleness, higher values are undesirable. In fact,
POS-generated sentences lead to the highest Brittleness, particularly for prepositions and adjectives
in POS methodology—the same picture as we saw in Section 5.3.

In contrast, LLM-generated sentences result in more consistent performance across parts of
speech. This may be because LLMs produce a more even distribution of grammatically correct
sentences across parts of speech.

When we look at the effect of adding hard positives on Brittleness, we see a consistent but
small reduction in Brittleness for training with LLM-generated sentences, except for prepositions.
The values for prepositions are very close, and the small differences in the plot are likely due to
rounding. For the POS method, Brittleness also decreases in most cases, except for adjectives. This
may be because adjective changes often introduce grammar errors, as mentioned earlier. However,
more data is needed to draw strong conclusions.

Figure 14 shows that the configuration Neg=2, Pos=2 leads to the most notable deviation from
the baseline. While this setup achieves the highest performance on the T2V task—an expected
outcome given the use of auxiliary hard positives and negatives—it simultaneously shows reduced
performance on the V2T task. A similar pattern is observed in Recall@1, where the changes follow
the same direction but with a smaller magnitude.

Among all configurations, the Neg=2, Pos=2 - LLM setup yields the most balanced results.
It maintains a high T2V Mean Rank while only slightly compromising V2T performance. This
pattern is consistent with the trends observed for the PosRank and Brittleness metrics, where
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Figure 14: Recall evaluation results for the exclusion or inclusion of hard positives and LLM-
generated sentences. Avg. Recall is the average of Recall@1, Recall@5, and Recall@10. V2T and
T2V refer to vision-to-text and text-to-vision retrieval tasks, respectively.

LLM-generated augmentations result in less pronounced but more reliable improvements.
In conclusion, training with POS-generated sentences yields higher PosRank scores but also

increases Brittleness, particularly for parts of speech with limited lexical alternatives or frequent
grammatical inconsistencies. In contrast, LLM-generated sentences offer more consistent perfor-
mance across all metrics, likely due to their grammatical fluency and broader linguistic coverage.
Furthermore, increasing the number of hard positives and negatives generally enhances T2V retrieval
but tends to degrade V2T retrieval.

5.5 Effect of the Proportion of Hard Positives to Negatives

As shown in the previous experiment, including hard positives during training slightly improved
model performance. In this section, we explore how different proportions of hard positives to hard
negatives affect this improvement. We also study how performance changes when using only hard
negatives or only hard positives. This acts as an ablation study on the effect of each type of hard
example. The results are presented in Figures 15, 16, and 17.

Looking at Figure 15 and focusing on PosRank, we observe a small improvement when adding
hard positives and a larger improvement when adding hard negatives. When both are added, the
performance does not increase further and may even decrease slightly. This could be because
PosRank evaluation relies on hard negative-like examples, so training with only them leads to
overfitting for this specific task.

Interestingly, using both hard negatives and positives results in lower PosRank compared to
using hard negatives alone, but it leads to better Brittleness scores, especially for nouns and verbs.
In Figure 16, the configuration Neg=2, Pos=2 achieves the best Mean Rank for text-to-video (T2V)
retrieval but performs the worst on video-to-text (V2T) retrieval. Training with hard positives only
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Figure 15: Results for PosRank (left) and Brittleness (right) in the ablation study of including hard
negatives and hard positives in training.
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Figure 16: Recall results for the ablation study of including hard negatives and hard positives in
training. Avg. Recall is the average of Recall@1, Recall@5, and Recall@10.

achieves the second-best results for both T2V and V2T retrievals.
Therefore, if the goal is a balanced and consistent improvement, using hard positives only is

preferable. If the aim is to boost T2V performance, even at the cost of V2T performance, then
training with both hard negatives and positives is more effective. This aligns with the findings
discussed in Section 5.4.

Next, we turn to the effect of different proportions, as shown in Figure 17. Training with 2
hard negatives results in a significant PosRank improvement, but also increases Brittleness. When
training with 1 hard negative and 2 hard positives, PosRank improves while Brittleness remains
relatively unchanged. Full Recall@k and Mean Rank results are reported in Appendix G.

These results support the earlier conclusion from Section 5.4 that hard positives bring more
modest improvements compared to hard negatives but also help reduce Brittleness. Notably, the
biggest performance jump happens when 2 hard negatives are used. Adding more after that brings
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Figure 17: Results for PosRank (left) and Brittleness (right) when varying the proportion of hard
positives and hard negatives during training.

only small gains (see Section 5.3). It is also possible that 2 hard positives help ”balance” 1 hard
negative in the Neg=1, Pos=2 setup, but this effect is unlikely.

5.6 Effect of the Set Size

So far, we have seen that training with LLM-generated captions leads to small but consistent
improvements. However, this might be due to the higher quality of the generated captions, rather
than the generation method itself. To better understand this, we conducted an experiment to test
how the size of the set of generated hard positives and negatives using POS methodology affects
the model’s performance. Specifically, we wanted to know if using smaller sets, containing only the
highest-quality captions (see Section 3.4), could lead to better results.

In previous experiments, the set size for POS-generated samples was 100 for negatives and 40
for positives. In contrast, LLM-generated sets had a fixed size of only 20. This difference in set size
may have influenced the results, so we tested different sizes to see how they affect performance.
The results of this experiment are shown in Figure 18.
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Figure 18: Results for PosRank (left) and Brittleness (right) evaluations showing the effect of set
size, created using POS methodology, and used to sample hard positives and negatives, on model
performance.

As we can see, reducing the set size generally leads to worse performance. PosRank consistently
decreases as the set size becomes smaller. For Brittleness, we observe more variation. The best
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(lowest) Brittleness scores are observed when the set size is 20 for most parts of speech, except for
prepositions.

The exception observed for prepositions is likely attributable to the limited availability of
high-quality substitution candidates. As discussed in Section 3.4, hard negatives for prepositions
are primarily generated from the dataset vocabulary—the least optimal strategy—while no hard
positives are created, due to the absence of synonymous prepositions in the dataset. Consequently,
the brittleness score for prepositions is largely influenced by substitutions involving other parts of
speech. Reducing the set size diminishes this influence, which may explain the observed deviation
in performance trends.

For other parts of speech, however, the worst Brittleness scores occur with the middle-sized set,
i.e., 20. One possible explanation for this trend may lie in the methodology used for generating
captions (see Section 3.4). In our current approach, we prioritize substitutions as follows: first, we
select direct synonyms or antonyms; second, we consider synonyms or antonyms of hypernyms or
hyponyms; and finally, we use a dataset-specific dictionary, in case of hard negatives.

This ordering might lead to suboptimal results, particularly when the set size is 20, which may
include only examples derived from the first and second preference levels. Including the second-tier
substitutions—those derived from hypernyms or hyponyms—might introduce confusion or noise
into the training data, thereby affecting model performance.

In contrast, smaller set sizes, such as 5, which rely mostly on direct synonyms or antonyms, or
larger set sizes that incorporate a wider variety of substitutions (especially for hard negatives),
might provide more robust training signals. However, this remains a hypothesis, and additional
data and analysis are required to validate this assumption.

The corresponding Recall@k and Mean Rank values can be found in Appendix G.

6 Conclusion and Future Work

In this work, we studied how adding hard positive examples affects video-text retrieval performance.
We also explored different ways to generate hard positive and negative sentences. Our main findings
are the following: first, adding hard positives leads to more consistent improvements than adding
hard negatives when used separately. Second, generation methods based on large language models
perform better than rule-based methods for both hard positives and negatives. Third, in text-to-
video retrieval tasks, using both hard positives and negatives gives the best performance, although
it slightly reduces the performance in video-to-text retrieval.

We also found that adding more than two hard negatives does not improve the results. Moreover,
for the POS-based generation method, reducing the pool size of generated sentences available for
sampling lowers the performance.

Another contribution of our work is that we replicated the results of the study by Chen et al. [1]
and expanded it by introducing the Brittleness metric to enable more thorough analysis.

This study has several limitations. First, we evaluated only a single model on a single dataset.
Given the variability in dataset characteristics—such as sentence complexity and length—as well as
differences in model architectures, further experiments are necessary to assess the generalizability
of our findings.

Second, we did not explore all possible combinations of hard positive/negative counts and set
sizes. Future work could address this limitation through techniques like Bayesian optimization to
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systematically explore the hyperparameter space. Additionally, the method used to generate hard
positives and negatives deserves further investigation. The quality of these generated sentences
may significantly affect the PosRank and Brittleness metrics. Exploring alternative generation tech-
niques—such as using larger language models or varying the POS-based generation strategy—could
yield improvements. Defining a metric to evaluate the quality of generated sentences would further
help contextualize and compare their impact on performance.

Another open question is why augmentation using POS-generated sentences consistently led
to the highest Brittleness scores, particularly for prepositions and adjectives. Investigating this
phenomenon could offer valuable insights into the interaction between augmentation strategies and
linguistic categories. Furthermore, training on sentences augmented with only one part of speech
may help isolate effects caused by statistical mediation and clarify the influence of specific linguistic
features.

Combining different generation methods for hard positives and negatives—for example, generating
hard negatives using POS-based techniques and hard positives via LLM paraphrasing—also presents
a promising direction. Improvements can be made to the training methodology as well. Building on
the work by Chen et al. [1], we could incorporate fine-grained supervision by introducing distinct
tokens for hard negatives and positives, whether textual or visual. Modifications to the loss function
are another potential enhancement. While this work uses Formula 5, which considers only the
distance between text and video embeddings, alternative formulations—such as the one proposed
by Doveh et al. [38]—could incorporate the distance between generated hard positives and all other
sentences in the batch.

Lastly, exploring hierarchical training structures, as proposed by Alper and Averbuch-Elor [34],
may yield further performance gains and should be investigated for their impact on PosRank and
Brittleness scores.

Acknowledgments: This work was performed using the ALICE compute resources provided by
Leiden University.
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Appendix

A Definitions

Notation D - dataset with videos and captions for each video; Dtrain, Dval, Dtest refer to the
train, validation, and test subsets respectively
V - set of videos in Dtrain, Dval, or Dtest

T - set of captions in Dtrain, Dval, or Dtest

Ti - set of captions for video vi; Ti ∈ T
tj - one of the captions for video vi; tj ∈ Ti

Nij - set of hard negative captions for tj; |Nij| = n
Pij - set of hard positive captions for tj; |Pij| = m
P = {noun, verb, adverb, adjective, preposition} - set of parts of speech we use to make changes to
the sentences
p - some part of the speech; p ∈ P

Abbreviations POS - part of speech

B Dataset Sentences Statistics

Here is the detailed information about the sentence properties in the collected VATEX dataset
subset. A visual representation is presented in Figure 19.

Total sentences analyzed: 295,430
Mean words per sentence: 14.25
Median words per sentence: 13.00
Minimum words in a sentence: 8
Maximum words in a sentence: 69
Quartiles:

– Q1 (25%): 12.00

– Q2 (50%): 13.00

– Q3 (75%): 16.00

Example of shortest sentence: “two men on stage and performing a show.”
Example of longest sentence: “A girl in a swimsuit jumps off of a cliff into a body of water,
another girl stands above on the cliff, a person sits on a jet ski and various people sit and stand
in boats on the water, two girls laugh in a boat, and then a man with a microphone talks to a girl
while a large group of people stand in boats in the background.”
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Figure 19: The distribution of sentence length in the collected VATEX subset

35



C Prompts Used for Generation

Hard positives:

Generate [number of sentences] different paraphrases of the following sentence that
retain the same meaning but use different wording. Only output the paraphrases, one
per line, without any additional text.

Sentence: [caption]

Hard Negatives:

I will give you a sentence. Generate [number of sentences] hard negative sentences for
it. A hard negative sentence is very similar in wording and structure to the original,
but the meaning is different or opposite. Start by changing keywords to antonyms or
contrasting terms, or modifying the actions to contradict the original meaning. Keep
the sentences fluent and grammatically correct.

Example:
Input: A man is hiking.
Output:
A woman is hiking.
A female is hiking.
A man is sitting.
A man is lying.
...

Now generate hard negatives for this sentence:

[caption]

D Statistics of Sentences Generated With POS-methodology
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Figure 20: Distributions of generated hard negative (top) and hard positive (bottom) sentences for
the max set sizes of 100 and 40, respectively. For hard negatives, the number of generated sentences
per caption ranges from 73 to 100. For hard positives, the range is from 11 to 40.
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Figure 21: Distributions of generated hard negative (top) and hard positive (bottom) sentences for
the max set sizes of 20 and 20, respectively. For hard negatives, the number of generated sentences
per caption ranges from 7 to 20. For hard positives, the range is from 11 to 20.
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Figure 22: Distributions of generated hard negative (top) and hard positive (bottom) sentences for
the max set sizes of 20 and 20, respectively. For hard negatives, the number of generated sentences
per caption ranges from 1 to 5. For hard positives, the range is from 4 to 5.
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E Complete Table of Example Generated Sentences

Table 4: Examples of Hard Positive and Negative Sentence Generation

Method Generated Sentence Set Size
Original: A couple of people roping a calf in a ring and riding horses.

POS
Hard Negative

A couple of people roping a calf in a shanty and riding horses. 100
A couple of dead roping a calf in a ring and riding horses. 20
A couple of people roping a calf in a open chain and riding horses. 5

POS
Hard Positive

A couple of citizenry roping a calf in a ring and riding horses. 40
A duo of people roping a calf in a ring and riding horses. 20
A twain of people roping a calf in a ring and riding horses. 5

LLM
Hard Negative

A party of individuals are attempting to herd an animal using only
their legs.

–

LLM
Hard Positive

Two folks encircling a bull with ropes as they gallop their mounts. –

Original: A man operates a power tool and then lays it down on the cement.

POS
Hard Negative

A man pruned a power tool and then lays it down on the cement. 100
A female operates a power tool and then lays it down on the cement. 20
A civilian operates a power tool and then lays it down on the cement. 5

POS
Hard Positive

A man operates a power tool and then pose it down on the cement. 40
A gentleman’s gentleman operates a power tool and then lays it
down on the cement.

20

A human race operates a power tool and then lays it down on the
cement.

5

LLM
Hard Negative

A expert electrician activates a soldering iron and then lies on the
rocky slope.

–

LLM
Hard Positive

An individual manages a power device before putting it down on
concrete.

–

Original: A young girls is sitting in a high chair, and she begins to shake her body and then her head.

POS
Hard Negative

A young girls differ sitting in a high chair, and she begins to shake
her body and then her head.

100

A young male is sitting in a high chair, and she begins to shake her
body and then her head.

20

A young son is sitting in a high chair, and she begins to shake her
body and then her head.

5

POS
Hard Positive

A young girls is sitting in a high chair, and she begins to shake her
body and then her mind.

40

A young girls is sitting in a high chairwoman, and she begins to
shake her body and then her head.

20

Continued on next page
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Method Generated Sentence Set Size
A young female child is sitting in a high chair, and she begins to
shake her body and then her head.

5

LLM
Hard Negative

An elderly lady is sitting in a high chair, and she starts to sway her
arms before shaking her torso.

–

LLM
Hard Positive

A diminutive girl is placed on a high seat, and she commences
twirling her body and afterward arching her neck.

–

Original: A boy sings while slapping the hands of an adult while both are seated on the floor.

POS
Hard Negative

A boy sings while slapping the gig of an adult while both are seated
on the floor.

100

A boy sings while slapping the hands of an conservative while both
are seated on the floor.

20

A boy sings while slapping the hands of an woman while both are
seated on the floor.

5

POS
Hard Positive

A boy sings while slapping the script of an adult while both are
seated on the floor.

40

A boy sings while slapping the custody of an adult while both are
seated on the floor.

20

A boy sings while slapping the manpower of an adult while both
are seated on the floor.

5

LLM
Hard Negative

A young girl warbles with her hands lightly stroking another person’s
scalp while perched on the edge of a bed.

–

LLM
Hard Positive

A young man performs as he beats his palms against an elder’s
hands, all sitting together on the ground.

–

Original: a man is showing how a square knot looks like with a white string.

POS
Hard Negative

a man miss showing how a square knot looks like with a white string. 100
a black is showing how a square knot looks like with a white string. 20
a civilian is showing how a square knot looks like with a white
string.

5

POS
Hard Positive

a man is picture how a square knot looks like with a white string. 40
a humans is showing how a square knot looks like with a white
string.

20

a adult male is showing how a square knot looks like with a white
string.

5

LLM
Hard Negative

A man tries to teach others how to perform a square knot using
blue rope.

–

LLM
Hard Positive

A person clarifies the elements of a square shackle employing a soft
beige thread.

–
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F Distribution of Parts of Speech in Generated Hard Neg-

atives and Positives

noun adj verb adv prep
0

20

40

60

80

100 Hard Negatives
(Set Size 20)
Hard Positives
(Set Size 20)
Sentence Proportion
by Chen et al.

Coverage by Part of Speech

Part of Speech

C
ov

er
ag

e 
(%

)

Figure 23: Distribution of parts of speech across generated sentences. For the first two legend groups
(hard negatives and positives), the coverage value indicates the percentage of sentences in which a
specific part of speech was substituted. For the final legend group (“Sentence Proportion by Chen
et al.”), the value represents the proportion of sentences in the VATEX [41] dataset containing the
corresponding part of speech, as reported by Chen et al. [1].
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Figure 24: Distribution of parts of speech across generated sentences. For the first two legend groups
(hard negatives and positives), the coverage value indicates the percentage of sentences in which a
specific part of speech was substituted. For the final legend group (“Sentence Proportion by Chen
et al.”), the value represents the proportion of sentences in the VATEX [41] dataset containing the
corresponding part of speech, as reported by Chen et al. [1].
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G Recall@k and Mean Rank Plots
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Figure 25: Evaluation results for Recall@k and Mean Rank across different quantities of hard
negatives used during training. Avg. Recall represents the average of Recall@1, Recall@5, and
Recall@10. V2T and T2V refer to vision-to-text and text-to-vision retrieval tasks, respectively. This
figure is an addition to the Figure 12.
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Figure 26: Results for Recall evaluations or the study of the effect of a set size, we sample hard
positives or negatives from on the performance of the model. Avg. Recall represents the average
of Recall@1, Recall@5, and Recall@10. V2T and T2V refer to vision-to-text and text-to-vision
retrieval tasks, respectively. This figure is an addition to the Figure 17.
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Figure 27: Results for Recall evaluations for the study of proportions of the inclusion of hard
negatives or positives into a training process. Avg. Recall represents the average of Recall@1,
Recall@5, and Recall@10. V2T and T2V refer to vision-to-text and text-to-vision retrieval tasks,
respectively. This figure is an addition to the Figure 18.
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