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Abstract

Diffusion-based planning has emerged as a promising approach for offline reinforcement
learning, with theoretical advantages in trajectory stitching and long-horizon planning that
should address fundamental challenges in learning from static datasets. However, a disconnect
has emerged between the theoretical promise of these methods and their empirical performance
on standard benchmarks. This thesis investigates if, when, and why diffusion planning provides
value over simpler alternatives in offline reinforcement learning.

We conduct a comparative empirical evaluation of Diffuser, a representative diffusion
planning method, against Recursive Skip-Step Planning (RSP) and Implicit Q-Learning (IQL)
on AntMaze and Hopper environments from the D4RL benchmark. Our reproduction of
Diffuser achieves 4-14x improvements over published results on navigation tasks, yet still
underperforms alternatives significantly (27-28% vs 73-80% normalized returns on AntMaze).
Conversely, Diffuser demonstrates competitive performance on continuous control tasks (70-
107% on Hopper), suggesting domain-specific strengths in behavioral imitation rather than
genuine planning challenges.

The computational overhead of diffusion planning presents substantial practical limitations,
requiring 8 hours for training and 1.8 seconds for inference compared to 3-8 minutes for
training and sub-millisecond latency for alternatives. This efficiency gap, combined with mixed
empirical results, raises questions about the practical viability of current diffusion planning
implementations.

Drawing on recent theoretical work by Clark and Shkurti, we examine how architectural
limitations in current diffusion planning implementations may explain this empirical-theoretical
disconnect. Clark and Shkurti identify that the standard Diffuser architecture violate locality
and positional equivariance requirements necessary for effective trajectory composition, po-
tentially causing models to resort to memorization rather than genuine planning. We note
that effective trajectory stitching appears to require multi-scale temporal reasoning, achieved
explicitly by hierarchical methods like RSP and implicitly by diffusion models through their
coarse-to-fine denoising process.

We conclude that while diffusion planning possesses theoretical advantages for complex
compositional tasks, the substantial computational overhead is as-of-yet unjustified by per-
formance gains, and simpler alternatives often achieve superior or comparable results with
dramatically reduced complexity. However, future advances fixing Diffuser’s architectural
constraints may unlock the potential of diffusion-based approaches for offline reinforcement
learning.
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1 Introduction

Learning to control complex systems from existing data has become increasingly useful across
domains where active exploration is impractical or dangerous. The ability to extract effective
policies from historical datasets offers a path to deployment without the risks and costs associated
with trial-and-error learning in real environments. This paradigm, known as offline reinforcement
learning, presents unique challenges that distinguish it from traditional online learning approaches

[ ) J

The fundamental difficulty in offline reinforcement learning lies in the distribution shift between
demonstrated behaviors and the policies we wish to learn | |. When an agent attempts
actions significantly different from those in the training data, it may encounter states or situations
never observed during training, leading to unpredictable and potentially catastrophic failures. This
challenge is compounded by the need for trajectory stitching, the ability to combine segments
from different demonstrated trajectories to synthesize novel, improved behaviors that were never
explicitly shown in the dataset | , , |. Additionally, many real-world tasks
require long-horizon planning, where early decisions significantly influence outcomes hundreds of
steps into the future, making it difficult to learn effective policies from suboptimal or incomplete
demonstrations | , ]

Recent advances in generative modeling, particularly denoising diffusion probabilistic models
[ |, have greatly impacted fields ranging from computer vision to natural language process-
ing | , , |. These models excel at capturing complex, multimodal data
distributions and generating high-quality samples through an iterative refinement process.

1.1 Planning with Diffusion

The Theoretical Promise Diffusion planning approaches like Diffuser | | represent an
innovative solution to many of the challenges that plague offline reinforcement learning. Unlike
traditional methods that make myopic, single-step decisions, diffusion planners optimize entire
trajectories simultaneously, potentially maintaining coherence across extended time horizons without
the compounding errors that affect autoregressive approaches. The iterative denoising process
that defines diffusion models seems naturally suited to the gradual refinement of rough trajectory
sketches into detailed, executable plans.

Perhaps more appealingly, diffusion planning offers a theoretical framework for trajectory stitching
[ |. The iterative denoising process, which enforces local temporal consistency at each step,
could in theory allow the model to combine familiar trajectory segments from the training data in
novel ways | |. This capability would enable agents to discover paths between states that
were never directly connected in the original demonstrations.

The Empirical Reality Despite these theoretical attractions, a disconnect has emerged between
the promise of diffusion planning and its empirical performance. Initial applications to challenging
offline reinforcement learning benchmarks such as D4RL AntMaze | ] have yielded mixed
results | , ]. This inconsistency is particularly striking given that diffusion planning
should excel precisely on the tasks where it has struggled, environments requiring trajectory
stitching and long-horizon reasoning.



The computational overhead of diffusion planning presents another practical concern | ].
Where traditional methods can generate actions in milliseconds, diffusion planners require iterative
denoising processes that can take seconds per decision. This latency renders the approach impractical
for real-time applications and raises questions about whether the theoretical benefits justify the
computational costs. Alternative methods like Recursive Skip-Step Planning (RSP) | ],
which achieve comparable or superior performance with orders of magnitude less computation,
challenges the necessity of complex diffusion frameworks.

The Central Paradox This disconnect between theoretical promise and empirical reality presents
a paradox in the field of offline reinforcement learning. Why does diffusion planning, which
seems ideally suited to address the core challenges of offline learning, sometimes
underperform simpler alternatives? What factors determine when diffusion planning
succeeds or fails? Furthermore, what does this tell us about the relative value of complex generative
modeling approaches versus more straightforward methods in sequential decision-making?

As researchers increasingly turn to offline reinforcement learning for real-world applications, un-
derstanding when sophisticated planning methods provide genuine value versus when simpler
approaches suffice becomes crucial. The computational and implementation complexity of diffusion
planning means that its adoption should be justified by clear performance advantages.

1.2 Research Objectives

This thesis seeks to understand what’s the point of diffusion planning in offline reinforcement
learning: if, when, and why it provides value over simpler alternatives. This work takes an exploratory
and investigative approach, combining empirical evaluation and literature synthesis to develop a
nuanced understanding of diffusion planning’s role in the offline reinforcement learning. Specifically,
our investigation centers on several key questions:

1. How does diffusion planner perform against established baseline and simpler alternative, on
tasks that should favor their theoretical advantages?

2. Is the computational overhead of iterative denoising justified by performance gains?

3. What insights from recent literature explain the conditions under which diffusion planning
works in practice?

1.3 Methodological Approach

To address these questions, we employ a methodology that combines empirical evaluation with
literature analysis. The empirical component focuses on reproducing Diffuser | | as the
diffusion-based approach, and comparing its performance against representative alternatives from
different offline reinforcement learning paradigms. This includes Recursive Skip-Step Planning
(RSP) | | as a hierarchical behavioral cloning method, and Implicit Q-Learning (IQL)
[ | as a temporal difference method.

The evaluation uses the AntMaze and Hopper environments from the D4RL benchmark | ].
Rather than attempting comprehensive coverage of all possible scenarios and environments, the



investigation focuses on understanding the mechanisms underlying observed performance differences
and identifying the factors that enable or hinder diffusion planning effectiveness.

The theoretical component draws on recent advances in understanding diffusion models’ composi-
tional capabilities, examining requirements that may be necessary for effective trajectory stitching.
This analysis is primarily supported by recent findings from the broader literature on what makes
diffusion planning work in practice.

1.4 Thesis Structure

The remainder of this thesis is organized as follows. Chapter 2 provides background on offline
reinforcement learning paradigms and the fundamentals of diffusion planning, establishing the
theoretical foundation for the subsequent investigation. Chapter 3 details the methodology and
experimental design, explaining the rationale for the chosen approaches and evaluation framework.
Chapter 4 presents the empirical results and performance analysis, documenting the observed
performance disparities and computational trade-offs. Chapter 5 discusses theoretical explanations
for these findings and their implications for the field, drawing connections between empirical
observations and recent theoretical insights. Finally, Chapter 6 concludes with a synthesis of
findings and directions for future work.



2 Background

2.1 Offline Reinforcement Learning

Offline reinforcement learning (RL), also known as batch RL, addresses the practical limitations of
active environment interaction during training. Unlike traditional online RL, offline RL limits agents
to learning from a predetermined collection of historical experiences, preventing any additional data
acquisition through environmental exploration | , ]. This paradigm is particularly
relevant in real-world applications where active data collection is costly, dangerous, or impractical,
such as in robotics, healthcare, or autonomous driving.

2.1.1 The Offline RL Problem Setting

Offline RL builds upon the standard Markov Decision Process (MDP) framework, characterized
by states S, actions A, transition probabilities T, rewards R, and discount factor v [ |. The
learning goal, which is the same as online RL, is to find a policy 7 that optimizes expected
cumulative discounted rewards | ]-

J(7) = Eq [Z vtr<st,at>] (1)

What separates offline from online RL is the nature of available data. Rather than actively
interacting with the environment, offline agents must work exclusively with a pre-collected dataset
D = {(s{,ai,si ,,7})}~, generated through the actions of previous behavior policies m,. The agent
must perform policy optimization using only this fixed data, without the ability to sample new
trajectories from the environment.

The fundamental challenge in offline RL stems from the distribution shift between the learned
policy 7 and the behavior policy 7, | , , |. When the learned policy attempts
actions significantly different from those in the dataset, it may encounter states or state-action pairs
not observed in the training data, leading to potentially catastrophic failures during deployment.
This distribution shift manifests in several critical ways: the learned policy might exploit errors in
value function approximation, encounter unknown states where dynamics models fail, or generate
actions far from the training distribution | .

Another particularly important challenge in offline RL is trajectory stitching — the ability to
compose segments of demonstrated trajectories to solve new tasks or achieve better performance
than individual demonstrations | , , ]. This compositional challenge appears
frequently, where complex tasks often require combining simpler behaviors in novel ways. The
difficulty of trajectory stitching stems from several issues in offline RL: distribution shift at
trajectory intersection points, the challenge of identifying compatible trajectory segments, and error
accumulation when combining multiple trajectory segments. How different algorithmic approaches
handle this stitching problem becomes a key differentiator in their practical utility and directly
relates to the core research question of this thesis.

Long horizon planning presents another challenge that offline RL shares with its online counterpart
[ |. In both settings, agents must learn to make decisions that balance immediate rewards
against long-term consequences, often requiring credit assignment across hundreds or thousands of
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time steps. The challenge becomes particularly acute when optimal policies require initial actions
that appear suboptimal in isolation but enable superior long-term outcomes. In offline RL, this
challenge is compounded by the inability to explore alternative long-term strategies | | —if
the behavior policy m, was short-sighted or followed suboptimal long-term strategies, the agent
must somehow learn to extend beyond these limitations using only the available data. Additionally,
errors in value estimation tend to compound over longer horizons, making it difficult to distinguish
between genuinely good long-term strategies and those that appear promising due to optimistic
value function errors accumulated over time | , ].

The offline nature changes how algorithms must approach policy optimization and value function
estimation. While online RL algorithms can actively explore to reduce uncertainty and gather
corrective data, offline RL must work within the constraints of the available dataset. This limitation
has led to the development of specialized algorithms designed specifically for the offline setting,
which can be broadly categorized into three paradigms.

2.1.2 Temporal Difference Approaches in Offline RL

Temporal difference-based (TD) methods in offline RL build upon the principles of the Bellman
equation | , |. These approaches learn value functions through temporal difference updates
and derive improved policies through optimization of these learned value functions. The basic
temporal difference update takes the form:

Q(s,a) + r+ 7 max Q(s',d) (2)

However, the offline setting introduces critical challenges for TD methods. The most significant
issue is extrapolation error, where standard Q-learning tends to overestimate values for out-of-
distribution actions due to the absence of corrective interactions | , ]. This problem
is compounded by bootstrapping error | |, where value estimates can accumulate and amplify
errors through recursive updates, which is problematic with limited data coverage.

Another fundamental limitation of TD methods, particularly acute in offline RL, is their weakness
in long horizon planning | |. TD methods learn through local, single-step bootstrapping
updates that propagate value information backwards one step at a time | ]. This learning
process struggles with tasks requiring extended sequences of coordinated actions, as the error
accumulation inherent in bootstrapping means that small estimation errors in individual Q-values
can compound exponentially over long sequences, making it nearly impossible to reliably distinguish
between genuinely superior long-term strategies and those that appear attractive due to accumulated
optimistic bias | |. In the offline setting, this weakness is amplified: if the behavior policy 7,
exhibited poor long-term planning or the dataset lacks sufficient coverage of optimal long-horizon
trajectories, TD methods have no mechanism to “bridge” these gaps in demonstrated behavior.
The single-step nature of TD updates makes it difficult to establish connections between distant
states and rewards, especially when intermediate steps in optimal long-horizon strategies are poorly
represented in the training data | .

To address these challenges, modern TD-based methods incorporate explicit constraints and
regularization techniques. Conservative Q-Learning (CQL) introduces a penalty term that pushes
down Q-values for out-of-distribution actions while maintaining accurate estimates for in-distribution



data | |. This conservative approach helps prevent the policy from exploiting erroneously
optimistic value estimates. Another approach is Implicit Q-Learning (IQL), which learns conservative
value functions through quantile regression, avoiding explicit policy optimization and thus reducing
the impact of overestimation bias | ].

2.1.3 Behavioral Cloning Approaches in Offline RL

Behavioral cloning (BC) approaches reframe offline RL as an imitation problem, bypassing many
challenges associated with value function learning and bootstrapping. In its simplest form, BC
treats offline RL as supervised learning from expert demonstrations | |. BC directly learns a
mapping from states to actions by minimizing a maximum likelihood loss:

Loc(m) = Egoayen [~ log m(als) 3)

While conceptually simple and stable in training, BC suffers from compounding errors and distribu-
tion shift, as small deviations from the expert policy can lead to visiting states not seen during
training | , ].

Outcome-conditioned behavior cloning (OCBC) extends the BC framework by conditioning the
policy on both the state and the target outcome, which could be return (the expected cumulative
reward) or goals | , , ]. Instead of simply imitating actions, OCBC learns
to generate actions that achieve specified target outcomes G:

Locpe(m) = Ea0)~p [—log m(als, G)] (4)

The intuition is that by conditioning on the desired outcome, the policy can learn to discriminate
between high-quality and low-quality actions in the dataset, potentially exceeding the performance
of the behavior policy while maintaining stability benefits of supervised learning.

The main advantage BC approaches has over TD-based methods is its relative simplicity [ ,

|. Direct supervision eliminates the need for complex value function approximation, leading
to more stable training dynamics. The supervised learning framework is also well-understood and
often more computationally efficient than TD-based methods.

Despite these advantages, BC methods face a significant limitation in trajectory stitching capabilities
[ ]. Since BC methods learn to imitate demonstrated behaviors directly, they can struggle
to compose novel combinations of trajectory segments that were never explicitly demonstrated
together. To illustrate this limitation concretely, Brandfonbrener et al. | | demonstrated this
limitation through a simple illustrative example (Figure 1). Consider an MDP where the optimal
policy requires taking action a; in state sy, followed by action ag in state s, to obtain the reward.
However, the dataset contains only two types of trajectories: one starting from state sy that takes
suboptimal action a; at sy (red), and another starting from s; that takes optimal action ag at sq
(blue). While the data contains all the necessary components to construct an optimal policy from
S0, BC methods, even when conditioned on outcome, fail to stitch these segments together. The
fundamental issue is that no trajectory in the dataset demonstrates the complete optimal sequence
starting from s, so when conditioning on the optimal outcome, the policy becomes undefined. This
example highlights how BC approaches are constrained by the specific trajectory combinations
present in the training data, unlike value-based methods that can identify and combine optimal
sub-behaviors even when they were never demonstrated together in complete sequences.
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Figure 1: A toy example where BC approaches will fail to
stitch. Source: Brandfonbrener et al. | ]

2.1.4 Model-Based Approaches in Offline RL

Model-based approaches represent a third paradigm that is orthogonal to the TD versus BC
distinction | ]. These methods learn explicit models of environment dynamics, which then serve
as proxies for the true environment and can be used with various planning algorithms such as model
predictive control (MPC) | ]. Model-based methods can potentially be more sample efficient,
as they can learn transition dynamics even from suboptimal trajectories | ]. In principle,
model-based approaches should be well-suited for trajectory stitching, as planning algorithms can
compose novel sequences of actions using the learned dynamics model | , ].

However, the offline setting introduces similar challenges for model-based approaches. The issue
remains distribution shift | |: when the learned model is used for planning, it may encounter
state-action pairs far from those in the training data, leading to compounding errors in multi-step
predictions. This is particularly problematic because powerful trajectory optimizers tend to exploit
inaccuracies in the learned dynamics model, finding adversarial trajectories that appear promising
under the model but fail in reality | ]. The choice between model-based and model-free
approaches in offline RL thus involves trade-offs between sample efficiency and robustness to
distribution shift.

2.2 Fundamentals of Diffusion Planning
2.2.1 Denoising Diffusion Probabilistic Models

Denoising diffusion probabilistic models (DDPMs) represent a class of generative models that has

achieved state-of-the-art results across various domains [ ], including image generation
[ |, audio synthesis | ], and natural language processing | |. Introduced by
Sohl-Dickstein et al. | ] and later refined by Ho et al. | |, diffusion models learn

to generate data by reversing a gradual noising process that systematically corrupts data into
Gaussian noise.



The key insight of diffusion models is to decompose the complex problem of data generation into a
series of simpler denoising steps. The process operates in two phases: a forward diffusion process
that systematically corrupts data and a backward denoising process that learns to reverse this
corruption.

Forward Process During the forward process, data points are gradually corrupted with Gaussian
noise according to a variance schedule 5y, ...,y € (0,1). Given a data point z, from the data
distribution, the forward process produces a sequence of random variables x1, ..., zr by:

a(wilzia) = N (s /T= B, A1) (5)

A crucial property of this forward process is that it can be expressed in closed form for any timestep
t using the reparameterization trick. By defining a; = 1 — §; and a; = HZ:1 a, we can directly
sample x; from xg:

q(xi|zo) = N (24; Vo, (1 — ax)I) (6)

This allows efficient sampling during training without iterating through all intermediate steps. As ¢
increases, &y approaches zero, meaning that after sufficient steps (typically 7' = 1000 or more), the
data x7 becomes virtually indistinguishable from pure Gaussian noise.

Backward Process The model learns to reverse the forward diffusion through a backward
process. Unlike the forward process, which has a known analytical form, the true backward process
q(z¢—1|z¢) is intractable for complex data distributions. Therefore, a neural network py is trained to
approximate this reverse process:

po(zi—1|xe) = N (@e1; po(ze, 1), So(we, 1)) (7)

In practice, the covariance ¥ is often set to a fixed schedule 0?1, and the neural network focuses
on predicting the mean pg(xy,t). Ho et al. showed that instead of directly predicting the mean, it is
more effective to train the network to predict the noise € that was added at each step, leading to
the training objective:

L(0) = Ercaq [lle — eo(ae,1)]7] (8)

where x; = \/ayxg + /1 — aue is the noisy version of zy at timestep ¢, and €, is the neural network
that predicts the added noise.

During generation, the model starts with pure Gaussian noise 7 ~ N(0, ) and iteratively applies
the learned denoising steps. At each timestep ¢, the model predicts the noise € = €y(xy,t) and
computes the denoised sample:

_ ! B, .
= G (o) .

where z ~ N(0, I) is additional stochastic noise added for sample diversity.



Guided Sampling While unconditional diffusion models can generate high-quality samples, many
applications require conditional generation where the output should satisfy certain constraints or
follow specific guidance. Classifier guidance, introduced by Dhariwal and Nichol, uses the gradients
of a pre-trained classifier to guide the reverse diffusion process toward samples that satisfy desired
conditions [ .

The key insight is that the score function (gradient of the log probability) can be decomposed into
unconditional and conditional components. During the reverse sampling process, the predicted
noise is modified by incorporating gradients from a classifier p,(y|z;) trained on noisy data points:

€9(:z;t, t, y) = 69(%’ t) —wy1—aVay logp¢(y|xt) (10)

where y represents the desired condition, w is a guidance weight controlling the strength of
conditioning, and V,, logps(y|z:) is the gradient of the log-probability with respect to the noisy
input. The classifier must be trained on noisy data points at various noise levels to provide
meaningful gradients throughout the diffusion process.

2.2.2 Diffusion Models as Trajectory Optimizers

Recent work has demonstrated that diffusion models can be effectively adapted for trajectory
optimization and planning. Diffuser, introduced by Janner et al. | |, presents a framework
that integrates trajectory optimization with generative modeling. The key insight is to make
planning and sampling nearly identical, eliminating the need for separate planning algorithms that
often exploit imperfections in learned dynamics models, producing plans that resemble adversarial
examples rather than realistic, high-return trajectories.

Control as Inference Framework Diffuser builds upon the control-as-inference framework
[ |, which translates reinforcement learning into a probabilistic inference problem. In this
perspective, optimal behavior corresponds to performing inference over trajectories, where optimality
is represented as a binary random variable O, associated with each timestep, with p(OQ, = 1) =
exp(r(s¢, ar)). The reinforcement learning objective becomes sampling trajectories 7 from the
posterior distribution:

T
p(7[Orr) o< p(T Hp Oy, ar) (11)
t=1

Here, p(7) serves as a trajectory prior representing realistic behavior (e.g., obeying dynamics), and
the optimality terms bias sampling toward high-return trajectories. This transforms reinforcement
learning from a sequential decision-making problem into a conditional sampling problem over
trajectories that are both feasible and high-reward.

Diffuser implements the control-as-inference framework by learning the trajectory prior py(r)
through the diffusion process, then using guided sampling to condition on desired outcomes. During
training, Diffuser learns to generate entire trajectories from noisy versions using the standard
denoising diffusion objective:

L(0) =E; o [He — € (Ti,i) HQ] (12)



where the model learns to reconstruct clean trajectories from noisy inputs by predicting the added
noise € at each diffusion timestep 7. Then, during inference, we samples from perturbed distributions:

Po(7) o< po(T)h(7) (13)

where h(7) serves as a guidance function that biases sampling toward desirable outcomes, such
as reaching a goal or maximizing reward. This formulation allows the same trained model to be
reused across multiple tasks by simply changing h(7).

2.2.3 Claimed Features and Advantages of Diffuser

The original Diffuser framework | | proposes several key advantages over traditional planning
approaches:
Long-horizon Planning and Anti-Causal Reasoning Janner et al. | | claim that one

of Diffuser’s advantages lies in its ability to perform long-horizon planning without suffering from
compounding errors that affect traditional single-step dynamics models. The authors claim that
unlike autoregressive approaches that predict states sequentially and accumulate errors over time,
Diffuser generates entire trajectories simultaneously. This enables the model to maintain coherent
long-term plans even in sparse reward environments where conventional methods typically fail. They
demonstrate this capability in maze navigation tasks, showing that Diffuser can generate feasible
trajectories spanning hundreds of timesteps to reach distant goal locations.

Additionally, the authors contend that traditional autoregressive planning methods are inherently
causal, predicting future states based solely on past information, whereas effective planning often
requires anti-causal reasoning where current decisions depend on future objectives | ]. In
essence, the planner can consider the future states when determining the very first action, a capability
that eludes step-by-step sequential models. They propose that Diffuser’s non-autoregressive nature
enables goal-conditioned inference, where intermediate states are determined by both initial
conditions and terminal goals — a capability they suggest is particularly valuable for goal-reaching
tasks and constraint satisfaction problems.

Temporal Compositionality (Trajectory Stitching) Another advantage claimed by Janner
et al. | ] is Diffuser’s ability to exhibit temporal compositionality or trajectory stitching:
the capacity to combine familiar trajectory segments in novel ways to generate out-of-distribution
behaviors. The authors hypothesize that this stems from the iterative denoising process, which
enforces global coherence through local consistency, potentially enabling Diffuser to “stitch” together
in-distribution segments into previously unseen behavioral patterns. This property, if validated,
would address one of the fundamental challenges in offline RL: learning to compose demonstrated
behaviors in ways not explicitly shown in the training data.

Task Adaptability and Robustness The Diffuser framework proposes to separate the learned
trajectory prior py(7) from task-specific objectives, potentially enabling flexibility during test time
[ |. The authors suggest that their framework allows for planning across multiple tasks using
the same trained model by modifying the guidance function h(7) during inference. They claim
that a single trained model can be adapted to different reward functions, goal configurations, or
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constraint satisfaction problems without requiring retraining, which would offer significant practical
advantages in multi-task scenarios if empirically validated.

Flexible Planning Horizons Unlike traditional neural network architectures where the planning
horizon is typically fixed by architectural choices, Janner et al. [ | propose that Diffuser’s
planning horizon is determined solely by the dimensionality of the input noise that initializes the
denoising process. This design choice theoretically enables dynamic adjustment of planning horizons
at inference time, allowing the same model to generate both short-term reactive behaviors and
long-term strategic plans as needed.

2.3 Related Work
2.3.1 Recent Work

Several works have built upon the foundational diffusion planning framework introduced by Janner
et al. | ]. Decision Diffuser | |, developed near-concurrently with Diffuser, frames
sequential decision-making as conditional generative modeling. Unlike Diffuser, which uses classifier-
guided sampling to guide trajectory generation, Decision Diffuser employs classifier-free guidance
to sample high-likelihood trajectories conditioned on returns, constraints, or skills. Additionally,
Decision Diffuser diffuses only over states, and uses an inverse dynamics model to extract actions.
This approach improves performance over diffusing both states and actions, particularly for tasks
with high-frequency action | ].

One major development has been the exploration of hierarchical approaches that decompose complex
planning problems into multi-level decision structures. Methods such as Hierarchical Diffusion for
Offline Decision Making (HDMI) | ], Hierarchical Diffuser (HD) | |, and DiffuserLite
[ ], have demonstrated that incorporating temporal hierarchy can substantially improve
performance on long-horizon tasks. These approaches employ a multi-stage process where high-level
planners generate abstract waypoints or subgoals, which are then refined by low-level planners to
produce detailed action sequences. This hierarchical decomposition not only improves inference
latency [ ], but also enables better generalization across different task complexities and
planning horizons | ]

A particularly influential contribution to the field has been the systematic empirical investigation
conducted by Lu et al. in their work on Diffusion Veteran (DV) | |, which represents a
comprehensive analysis of diffusion planning design choices to date. Through training and evaluating
over 6,000 diffusion models across various architectural and algorithmic configurations, this work
identified several counterintuitive findings that challenge conventional practices in diffusion planning.
Key insights include the superiority of Transformer architectures over U-Net backbones for sequential
planning tasks, the effectiveness of jump-step planning strategies that skip intermediate timesteps,
and the finding that unconditional sampling with selection can outperform guided sampling methods
when datasets contain sufficient high-quality demonstrations.

2.3.2 Diffusion Policy

While diffusion planners generate entire trajectory sequences to guide decision-making, diffusion
policies represent an alternative approach where diffusion models directly parameterize the policy
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function itself | |. In this paradigm, the diffusion model learns to generate actions conditioned
on the current state, effectively replacing traditional policy representations such as Gaussian
policies in RL frameworks. Diffusion policies address the fundamental limitation of conventional
unimodal policy parameterizations, which struggle to capture the multimodal action distributions
often present in complex behavioral datasets | |. This is particularly relevant in offline
reinforcement learning settings where the dataset may contain diverse behavioral strategies that
cannot be adequately represented by simple Gaussian distributions.

The key distinction from diffusion planning lies in the target of generation: while planners optimize
entire trajectory sequences, diffusion policies focus solely on action generation given the current
state. Representative works such as Diffusion-QL | ] integrate diffusion policies with Q-
learning frameworks, demonstrating superior performance on datasets collected by multimodal
behavior policies where traditional distance-based policy regularization approaches fail. Other
significant contributions include Implicit Diffusion Q-Learning (IDQL) [ |, which merges
implicit Q-learning | ] with diffusion policies within an actor-critic architecture. Additionally,
Diffusion Actor-Critic (DAC) | | formulates policy iteration as a diffusion noise regression
task, allowing for the direct parameterization of target policies as diffusion models, which is
particularly advantageous for handling out-of-distribution actions in offline settings.

While diffusion policies offer enhanced expressiveness for policy learning, they fundamentally differ
from the trajectory-level optimization approach employed by diffusion planners, making them
orthogonal methodologies in the broader landscape of diffusion-based reinforcement learning.

2.3.3 Diffusion-Based Data Augmentation

A central challenge in offline RL is the limited presence of optimal trajectories in static datasets,
which hinders the ability of agents to learn transitions to high-reward regions | |. Diffusion
models have been leveraged for data augmentation in offline RL to address this issue. SynthER
(Synthetic Experience Replay) | | utilizes diffusion models to generate synthetic experiences,
effectively upsampling the agent’s collected data. This method has proven effective in both offline and
online RL settings, particularly in improving sample efficiency and policy performance by providing
additional, high-quality training data. Similarly, DiffStitch [ | introduces a diffusion-based
data augmentation pipeline that generates stitching transitions between trajectories, connecting
low-reward and high-reward segments to form globally optimal trajectories. This approach has

demonstrated substantial enhancements in the performance of various offline RL methods, including
TD-based methods like IQL.

2.4 Challenges of Diffusion Planning
2.4.1 Trajectory Stitching: Theory and Practice

A desired capability required for effective offline reinforcement learning is trajectory stitching: the
ability to combine segments from different trajectories to synthesize novel, improved behaviors
not explicitly present in the dataset | , |. This capability is crucial when dealing with
suboptimal datasets where individual trajectories may be incomplete or suboptimal, but their
composition could yield superior policies.
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Theory for Stitching in Diffuser According to Janner et al. | |, Diffuser can perform
trajectory stitching through its architectural design that enforces only local temporal consistency
during each denoising step, rather than global trajectory coherence. Diffuser uses temporal convolu-
tions with limited receptive fields, meaning each prediction can only “see” nearby timesteps in both
past and future directions during a single denoising iteration. This constraint forces the model to
generate trajectories by iteratively refining local consistency, where each denoising step ensures
small trajectory segments are physically plausible based on their immediate temporal neighbors.
Through the composition of many such local refinements across the full denoising process, global
trajectory coherence emerges naturally. This mechanism enables trajectory stitching because the
model can connect familiar subsequences from training data at their points of intersection, even
when the complete trajectory was never observed during training.

®

(a) Trajectory Data (b) Generated Plan

Figure 2: Janner et al. demonstrated that Diffuser can stitch together straight-
line trajectories and generate V-shaped paths. Source: Janner et al. | ]

Janner et al. | | provide some empirical evidence of trajectory stitching, where Diffuser,
trained on straight-line trajectories, generates a V-shaped trajectory by combining two straight-line
segments at their intersection (Fig. 1).

Diffusion Stitching in Practice Despite the theory, empirical evaluations reveal challenges in
translating these capabilities to practical performance. Recent studies by Dong et al. | ]
report that Diffuser achieve limited success on D4RL AntMaze environments, which are specifically
designed to evaluate trajectory stitching capabilities through maze navigation tasks requiring
composition of demonstrated path segments. The AntMaze benchmark is particularly relevant for
evaluating stitching because optimal solutions often require combining partial trajectories that
individually appear suboptimal but collectively lead to goal achievement. These empirical results
suggest that while diffusion models possess the theoretical capacity for trajectory stitching, realizing
this potential in practice may require additional algorithmic innovations beyond the basic diffusion
framework.
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2.4.2 Long-Horizon Planning: Alternative Approaches

While diffusion planning claimed advantages in generating coherent long-horizon plans, recent work
has shown that comparable planning capabilities can be achieved through alternative approaches
that offer significant computational advantages. Wang et al. demonstrate that effective long-horizon
planning can be achieved using simple architectures through their recursive skip-step planning
(RSP) approach | |]. RSP employs a hierarchical planning strategy where a lightweight
network (a 2-layer MLP) recursively generates coarse-grained sub-goals, which are then executed
by a goal-conditioned policy. This approach circumvents the step-wise error accumulation that
affects fine-grained sequential modeling by operating at a higher level of temporal abstraction.
These findings raise important questions about the necessity of complex diffusion frameworks for
long-horizon planning tasks and highlight the value of exploring simpler, more efficient alternatives.
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3 Research Methodology

3.1 Experimental Design Overview

In this research, we employ a comparative experimental framework to evaluate diffusion-based
planning methods against alternative offline reinforcement learning approaches. The study is
designed as a two-phase investigation that establishes baseline performance through reproduction
of existing results, followed by a comparison against non-diffusion alternatives.

Phase I: Baseline Establishment In the first phase, we focus on reproducing published Diffuser
results using standardized evaluation protocols. This reproduction phase serves multiple functions:
it validates that reported performance can be achieved in our experimental environment, establishes
reliable baseline metrics for subsequent comparisons, and ensures our experimental setup aligns
with established benchmarks in the field. By demonstrating consistent reproduction of published
results, we establish confidence in our experimental infrastructure and create a foundation for
meaningful comparative analysis.

Phase II: Comparative Analysis In the second phase, we introduce two representative
alternative approaches to offline RL: Recursive Skip-Step Planning (RSP) | ] and Implicit
Q-Learning (IQL) | ]. These methods were selected to represent fundamentally different
paradigms within offline RL. RSP represents BC approaches with explicit hierarchical trajectory
modeling, offering a direct alternative to diffusion-based trajectory generation. IQL represents a
temporal difference method that learn conservative value functions, providing contrast to the BC
paradigm.

3.2 Environment and Dataset Selection
3.2.1 D4RL Benchmark

The Datasets for Deep Data-Driven Reinforcement Learning (D4RL) benchmark serves as the
evaluation framework for our study | ]. DARL has become the standard benchmark for
offline RL research, providing carefully curated datasets that enable fair and reproducible algorithm
comparison. The benchmark’s design addresses a critical challenge in offline RL evaluation: the
variability introduced when different research groups generate their own datasets using different
collection procedures, behavioral policies, and environment configurations.

D4RL’s standardization extends beyond dataset provision to include consistent evaluation protocols,
normalized scoring metrics, and reference implementations. This standardization is particularly
valuable for comparative studies, as it eliminates potential confounding factors related to data
collection methodology, evaluation procedures, or scoring normalization that could bias algorithmic
comparisons.

The benchmark encompasses multiple domains including navigation (AntMaze), continuous control
(MuJoCo locomotion), and manipulation tasks, with datasets ranging from random exploration to
expert demonstrations. This diversity enables evaluation across different offline learning scenarios,
from challenging distribution shift settings to more favorable cases with high-quality demonstration
data.
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3.2.2 AntMaze Environment Specification

The AntMaze environment from the D4RL benchmark | ] combines continuous control with
sparse reward navigation, creating a challenging testbed for long-horizon planning algorithms. The
environment features a simulated quadruped ant agent navigating through maze-like structures to
reach goal locations. The ant agent operates in an 8-dimensional continuous action space controlling
joint torques, with observations including proprioceptive information (joint positions and velocities)
and environmental coordinates.

Unlike simpler 2D navigation tasks, the ant agent must coordinate multiple joints through continuous
torque control while navigating complex maze structures. The environment implements a sparse
binary reward structure (0 or 1) that activates only upon successful goal achievement, eliminating
intermediate reward signals that could guide simpler learning approaches. This sparse reward design
requires agents to plan coherent action sequences spanning 100-200 timesteps without intermediate
feedback. In our study, we focus on two AntMaze variants:

e AntMaze Medium-Play: Features trajectories generated from hand-picked initial positions
to specific target locations, creating a controlled experimental setting with predetermined
waypoints. Trajectories in this dataset achieves over 80% success rate, with failures primarily
occurring when the ant agent becomes physically unstable. This dataset tests whether
algorithms can reproduce demonstrated successful behaviors.

e AntMaze Medium-Diverse: Presents random goal locations throughout the maze, requiring
navigation to diverse target positions from varied starting locations. This dataset challenges
algorithms’ capacity for trajectory stitching and generalization, as agents must learn to reach
arbitrary goal locations rather than following memorized paths.

(a) AntMaze Medium Diverse (b) AntMaze Medium Play

Figure 3: Trajectories in the AntMaze Medium dataset. Source: Fu et al. | ]
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Both datasets utilize goal-reaching policies trained with SAC following waypoint-based naviga-
tion strategies, ensuring trajectories demonstrate feasible solutions while maintaining sufficient
complexity for meaningful evaluation.

3.2.3 Hopper Environment Specification

The Hopper environment from the D4RL benchmark [FIXN720] presents a continuous control
challenge where a simulated one-legged hopping robot must maintain forward locomotion while
preserving balance and stability. The hopper agent operates in a 3-dimensional continuous action
space controlling hip, thigh, and foot joint torques, with an 11-dimensional observation space
encompassing joint angles, angular velocities, and center-of-mass information.

Figure 4: The Hopper robot. Source: Fu et al. ['KXN " 20)]

The Hopper locomotion task requires precise coordination between torque control and dynamic
balance, as the agent must generate forward momentum through rhythmic hopping motions while
avoiding falls or backward movement. Unlike navigation tasks with explicit spatial goals, the Hopper
environment implements a dense reward structure based on forward velocity, healthy bonus terms,
and control costs, creating a multi-objective optimization problem where agents must balance speed,
stability, and energy efficiency. In our study, we focus on two Hopper variants:

e Hopper Medium: Contains trajectories collected from a partially-trained SAC policy that
achieves moderate performance levels. These trajectories exhibit a mix of successful hopping
sequences and suboptimal behaviors, including occasional stumbles and inefficient gait patterns.
The dataset provides a realistic representation of intermediate-skill demonstrations, testing
whether algorithms can extract and improve upon partially successful strategies.

e Hopper Medium-Expert: Combines trajectories from both the medium-level policy and a
highly-trained expert policy that demonstrates near-optimal hopping behavior. This mixed
dataset challenges algorithms to distinguish between and learn from demonstrations of varying
quality levels, requiring selective imitation of expert behaviors while avoiding the replication
of suboptimal patterns from medium-quality trajectories.
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Both datasets capture the fundamental challenges of dynamic locomotion control, where agents must
learn temporally-extended policies that maintain consistent forward progress through coordinated
multi-joint control strategies spanning hundreds of timesteps per episode.

3.2.4 Suitability of Environment

The AntMaze and Hopper environments provide complementary testbeds for comparing diffusion
planning against alternatives, each highlighting distinct aspects of the planning challenge:

AntMaze Environment Characteristics:

1. Long-Horizon Planning Requirements: Navigation requires coordinated action sequences
spanning 100-200 timesteps where early actions significantly influence goal reachability. The
sparse reward structure provides no intermediate feedback during these extended sequences,
testing each algorithm’s ability to maintain coherent long-term planning.

2. Trajectory Stitching Challenges: The offline nature requires combining partial trajectory
segments to construct novel paths to unseen goal configurations. Success requires “stitching”
fragments of demonstrated behavior while maintaining physical plausibility, a capability that
diffusion planners claim as a key advantage. While newer benchmarks explicitly designed
to isolate trajectory stitching now exist | |, the AntMaze environment remains a
standard and widely-used benchmark in the literature for evaluating these long-horizon and
compositional planning capabilities.

3. Computational Cost Justification: The complexity of coordinating 8-DoF continuous
control with long-horizon spatial reasoning provides meaningful context for evaluating whether
diffusion planning’s computational overhead yields proportional performance benefits.

Hopper Environment Characteristics:

1. Dynamic Stability Planning: Hopper locomotion demands maintaining dynamic equilib-
rium across extended sequences where each action affects future balance constraints. Unlike
static navigation, the agent must plan actions that simultaneously achieve forward progress
while satisfying complex stability requirements throughout the entire trajectory.

2. Multi-Quality Data Integration: The medium and medium-expert datasets test algorithms’
ability to selectively learn from demonstrations of varying quality levels. This challenges
diffusion planners to generate trajectories that capture expert-level coordination while avoiding
the replication of suboptimal behaviors present in mixed-quality datasets.

3. Dense Reward Temporal Credit Assignment: The continuous reward signal tests
whether diffusion planning’s trajectory-level modeling provides advantages in environments
where success depends on optimizing cumulative performance rather than reaching discrete
goal states. This contrasts with AntMaze’s sparse rewards and evaluates planning approaches
across different reward structures.

Together, these environments span the spectrum from sparse-reward spatial navigation to dense-
reward dynamic control, providing comprehensive evaluation of diffusion planning’s claimed advan-
tages across diverse continuous control challenges.
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3.3 Algorithm Descriptions and Implementations

Table 1: Algorithm Comparison Summary

Diffuser RSP IQL
Paradigm Trajectory-level generative modeling Hierarchical behavioral cloning Temporal difference
Architecture 1D U-Net 2-layer MLPs 2-layer MLPs
Planning Horizon 64 32, 1 level recursion 1, with value propagation
Key Advantage Global trajectory coherence Computational Efficiency Proven foundation

3.3.1 Diffuser

Our Diffuser implementation utilizes CleanDiffuser, a modularized library designed specifically
for diffusion models in decision-making tasks | |. CleanDiffuser provides a framework that
separates diffusion models, network architectures, and guided sampling methods into reusable
components, enabling straightforward reproduction while maintaining consistency with original
implementations.

Key advantages of CleanDiffuser include access to tuned hyperparameters and built-in handling of
diffusion-specific mechanisms such as trajectory inpainting and guided sampling. This standardized
implementation ensures our Diffuser baseline directly corresponds to published results. The only
deviation is that we increased the batch size from 64 to 512 to better utilize GPU memory and
parallelism on our hardware setup.

3.3.2 Recursive Skip-Step Planning (RSP)

RSP represents a hierarchical behavioral cloning approach that challenges the necessity of complex
models for effective offline RL | ]. Instead of fine-grained sequential modeling, RSP employs
recursive skip-step planning that predicts coarse-grained future sub-goals, using exponentially fewer
planning steps than traditional approaches.

The core idea of RSP is its recursive skip-step planning scheme, which bypasses the fine-grained
sequential modeling approach typically used by traditional planners. Instead of predicting immediate
next states step-by-step, RSP recursively plans coarse-grained future sub-goals based on current
state and target information. This approach uses exponentially fewer planning steps than traditional
fine-grained sequence modeling methods, effectively circumventing the long-horizon compounding
error accumulation that typically necessitates large, expressive models.

RSP augmenting the offline dataset with multi-horizon sub-goal information. For each transition,
RSP creates skip-step horizons at exponentially decreasing intervals (e.g., t + 32, t + 16, t + 8 for
3-level recursion). The algorithm then trains separate dynamics models to predict sub-goals at each
hierarchy level, conditioned on current state and higher-level predictions. The recursive conditioning
stabilizes predictions by leveraging longer-horizon context, while the hierarchical structure enables
effective long-horizon planning without the computational overhead of iterative denoising processes.
Our RSP implementation uses the authors’ official JAX-based codebase with pre-configured settings
optimized for D4RL evaluation, ensuring consistency with published results.
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3.3.3 Implicit Q-Learning (IQL)

IQL is a TD approach that addresses overestimation bias through expectile regression rather than
standard Q-learning | ]. Instead of directly learning Q-values and extracting policies, IQL
learns state value functions using expectile regression, providing natural avoidance of overestimation
on out-of-distribution actions.

The algorithm employs a three-step process: (1) learning value functions through expectile regression
with pessimism parameter 7, (2) learning Q-functions using the learned values as targets, and (3)
extracting policies through advantage-weighted regression. This procedure creates stable training
that performs well across diverse offline datasets.

Unlike trajectory-level approaches, IQL’s value learning enables trajectory stitching through local
Bellman optimality rather than global trajectory modeling. The algorithm can identify high-value
states from one trajectory and high-value actions from another, effectively combining optimal
components from suboptimal demonstrations.

Our IQL implementation utilizes JAX-CORL | |, a JAX implementation that provides signifi-
cant computational speedups while maintaining algorithmic fidelity.

3.4 Performance Metrics and Computational Cost

Normalized Score Evaluation The primary performance metric employs D4RL’s standardized
normalized score, which transforms raw episode returns into a scale where 0 represents random
policy performance and 100 represents expert policy performance:

algorithm score — random score

normalized score = 100 X (14)

expert score — random score

This normalization enables meaningful comparison across different environments by accounting
for inherent difficulty and reward scale variations. Each trained model’s performance is assessed
over 100 evaluation episodes to account for stochastic variation in policy execution. To account for
training variability, we train each algorithm multiple times with different random seeds: Diffuser
is trained 2 times (due to the prohibitive training cost per run), while RSP and IQL are trained
8 times each. Final reported performance represents the mean across these independent training
runs, where each run is itself averaged over 100 evaluation episodes.

Computational Cost Analysis Beyond task performance, we evaluate computational efficiency
through two key metrics:

e Training Time: Wall-clock time required for complete algorithm training, including data
loading, forward/backward passes, and optimization steps, excluding one-time setup costs
such as environment initialization.

e Inference Latency: Time required to generate action decisions during policy execution. For
diffusion methods, this includes the complete iterative denoising process; for other methods,
it captures policy evaluation or value function query time.
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Hardware Specifications FExperiments are conducted on NVIDIA A100 GPUs across different
platforms. Diffuser training is performed on Vast.ai A100 instances, while IQL and RSP experiments
are conducted on Google Colab A100 instances. While the GPU architecture is consistent, differences
in system drivers, CPU performance, or memory bandwidth between platforms could introduce
minor variations in wall-clock time measurements.
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4 Experimental Results

Table 2: Normalized returns, training time, and inference latency across different
algorithms on AntMaze and Hopper tasks. Original results are from published literature, while
“Ours” indicates our reproduction experiments. Our results show mean performance over 2 seeds
for Diffuser, and 8 seeds for RSP and IQL. Our results show mean performance over 2 seeds for
Diffuser and 8 seeds for RSP and IQL. The lower seed count for Diffuser is due to its significant
computational cost (8 hours per run), which limited the feasibility of more extensive runs and
highlights the method’s practical efficiency challenges.

Environment Dataset Diffuser | | Diffuser (Ours) RSP [ ] RSP (Ours) IQL [ ] IQL (Ours)
AntM: Medium-Play 6.7 27.2 914 73.3 71.2 78.3
e Medium-Diverse 2.0 28.5 92.7 75.0 70.0 79.8
? Hopper Medium 89.5 70.8 63.4 61.6 66.3 57.8
I Medium-Expert 107.2 107.1 109.6 109.8 91.5 58.3
Diffuser RSP IQL
Training Time 8 hours 3 minutes 8 minutes

Inference Latency 1.8 seconds <0.001 seconds <0.001 seconds

Our experimental evaluation across AntMaze and Hopper environments reveals substantial perfor-
mance disparities between diffusion-based planning and traditional offline reinforcement learning
approaches. However, reproduction discrepancies across multiple algorithm-environment combina-
tions complicate direct comparison with published results and highlight the sensitivity of these
methods to implementation details.

4.1 Performance Analysis
4.1.1 AntMaze: Navigation and Long-Horizon Planning

Our Diffuser results demonstrates fundamental limitations in sparse reward navigation tasks, despite
reproduction improvements. Our implementation achieves normalized returns of 27.2 and 28.5 for
Medium-Play and Medium-Diverse respectively, representing 4-14x improvements over published
results (6.7 and 2.0) | ]. Since both our reproduction and the published results use the
same CleanDiffuser repository, these discrepancies likely arise from differences in both random seed
variance and the use of a larger batch size. A larger batch size, like the one we used (512), may
contribute to more stable gradient estimates during training. This is particularly crucial for complex
generative models like Diffuser, as it allows the model to learn a more accurate representation of
the underlying trajectory data distribution, even if it does not solve the fundamental architectural
flaws for planning. Nevertheless, Diffuser’s performance remains below competing methods. Even
with these reproduction improvements, the consistent underperformance across all variants seems
to indicate structural limitations in handling long-horizon credit assignment and goal-conditioned
planning in navigation domains.

RSP exhibits strong performance (73.3 and 75.0) but underperforms published baselines (91.4
and 92.7) by approximately 18-19%. This reproduction gap may stem from subtle implementation
variations not captured in the original methodology. Despite this underperformance relative to
published results, RSP maintains clear superiority over Diffuser on both Antmaze tasks.
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IQL consistently outperforms other methods across both AntMaze variants, achieving 78.3 and 79.8
returns, representing modest improvements over published baselines (71.2 and 70.0). Our implemen-
tation uses the CORL-JAX repository | | rather than the author’s original version | ],
while maintaining identical hyperparameters from the literature. The improved performance may
reflect optimizations in the CORL-JAX implementation, such as improved gradient estimation.

4.1.2 Hopper: Continuous Control Performance

The Hopper environment reveals markedly different algorithmic performance patterns and repro-
duction fidelity compared to AntMaze. Diffuser achieves competitive performance with decent
reproduction fidelity, obtaining 70.8 and 107.1 on Medium and Medium-Expert respectively (com-
pared to published 89.5 and 107.2). The near-perfect Medium-Expert reproduction (107.1 vs 107.2)
and strong absolute performance suggest that continuous control domains with smooth reward
landscapes and expert demonstrations better align with diffusion models’ trajectory modeling
capabilities.

RSP demonstrates excellent reproduction fidelity and strong performance on Hopper tasks, achieving
61.6 and 109.8 compared to published results of 63.4 and 109.6. The close alignment between our
reproduction and original results suggests robust replicability across continuous control domains.
Notably, RSP achieves the highest performance on the challenging Medium-Expert variant (109.8),
indicating particular strength in leveraging high-quality demonstration data. The method’s ability
to maintain consistent performance across both medium-quality and expert datasets demonstrates
its robustness to data quality variations in continuous control settings.

IQL shows significant underperformance on Hopper tasks, achieving only 57.8 and 58.3 returns
compared to published baselines of 66.3 and 91.5. This represents a notable degradation of 13-36%
across variants, with particularly severe impact on the Medium-Expert dataset. The performance
drop on Medium-Expert (58.3 vs 91.5) suggests potential issues with our implementation’s handling
of high-quality demonstration data or value function estimation in continuous control domains. This
reproduction failure highlights the sensitivity of value-based methods to implementation details.

4.2 Environment-Specific Insights

The contrast between AntMaze and Hopper results provides crucial insights into algorithmic strengths
and domain-specific performance characteristics. The performance reversal between environments,
where IQL excels in navigation but struggles in continuous control, while Diffuser shows the
opposite pattern. This suggests fundamental differences in how these methods handle discrete
versus continuous action spaces and sparse versus dense reward signals.

Navigation domains (AntMaze) appear to favor TD-based methods like IQL, which can effectively
handle sparse rewards through learned value functions. The discrete nature of navigation decisions
and the need for precise goal-conditioned planning align well with IQL’s temporal difference learning
approach.

Continuous control domains (Hopper) reveal diffusion models’ relative strengths in trajectory
modeling and action sequence generation. The smoother reward landscapes and continuous action
spaces provide more favorable conditions for diffusion-based planning. RSP’s strong performance
across both domains demonstrates its versatility and computational efficiency.
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4.3 Computational Efficiency Considerations

The computational cost analysis reveals Diffuser’s most prominent limitation across all experimental
conditions. The 8-hour training requirement and 1.8-second inference latency create substantial
barriers to practical deployment, regardless of domain performance. This computational burden
becomes particularly problematic in navigation tasks where rapid decision-making is essential, and
even in continuous control where the method shows relative strength.

Both RSP and IQL maintain significant computational advantages across domains, with RSP
completing training in 3 minutes and both achieving sub-millisecond inference times. These efficiency
gains enable extensive hyperparameter exploration, ablation studies, and real-time deployment across
diverse application scenarios. The computational efficiency of these simpler methods, combined
with their competitive or superior performance, raises questions about the practical viability of
diffusion-based approaches in their current form.

4.4 Reproduction Challenges and Methodological Implications

The substantial reproduction discrepancies observed across multiple algorithm-environment combina-
tions highlight critical challenges in offline reinforcement learning research. The 4-14x improvement
in Diffuser performance on AntMaze, the 18-19% degradation in RSP performance on Antmaze, and
the IQL underperformance on Hopper collectively demonstrate the field’s reproducibility challenges
[ , |. The variability in reproduction success across different algorithm-environment
pairs suggests that some methods may be more sensitive to implementation details than others,
with implications for both research methodology and practical deployment.
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5 Discussion

5.1 The Theoretical-Empirical Disconnect

The results presented in this work seem to reveal a paradox in diffusion-based planning for offline
reinforcement learning. According to Janner et al.’s claims | |, Diffuser should excel precisely
at the challenges that define successful offline RL: trajectory stitching across disparate data segments
and long-horizon planning through complex state spaces. This theoretical promise should translate
to superior performance in environments like AntMaze, where successful offline learning requires
stitching together partial trajectories to form complete paths from arbitrary starting positions
to goal locations. The sparse reward structure and long planning horizons characteristic of these
environments should favor approaches capable of global trajectory optimization over traditional
autoregressive, Markovian action selection. Diffusion models, with their established capacity to
model complex multi-modal distributions and generate coherent long-sequence outputs, appear
ideally positioned to address these fundamental challenges.

However, our empirical findings appear to contradict these theoretical expectations. Despite
achieving 4-14x improvements over originally published results, Diffuser’s performance on AntMaze
variants remains around 27-28% normalized return — suboptimal behavior that falls short of the
70-90% returns achieved by alternative methods. This performance gap persists even with improved
reproduction, suggesting potential systematic limitations.

Notably, this failure occurs precisely where diffusion planning should demonstrate its greatest
theoretical advantages, while the method achieves competitive performance in domains where
these advantages are less relevant. On Hopper tasks, Diffuser achieves 70-107% normalized returns,
matching or approaching the performance of RSP. However, continuous control tasks like Hopper
place limited demands on trajectory stitching capabilities. The motor control sequences required are
relatively short-horizon, and the dense reward structure provides continuous guidance rather than
requiring long-term credit assignment across sparse rewards. The success on Hopper demonstrates
that diffusion models can effectively learn to reproduce behavioral patterns from demonstration data,
but this capability does not translate to the more challenging planning scenarios that motivated
the approach.

This disconnect is further illuminated by comparing the stitching mechanisms of the competing
methods. IQL’s success on AntMaze can be attributed to its TD-based approach, which enables
trajectory stitching through local Bellman optimality | |. It learns to identify high-value
states and actions from disparate trajectories and combine them, effectively building an optimal
path without ever needing to model a complete trajectory globally.

This theoretical-empirical disconnect suggests that the some assumptions supporting diffusion-based
planning may not hold in practice, or that current architectural implementations fail to realize
the approach’s theoretical potential. The following section examine a possible explanation for this
paradox, drawing on recent theoretical insights and architectural considerations that may illuminate
why diffusion planning fails at its purported core competencies.

25



5.2 Theoretical Explanation for Empirical Failures

Very recent theoretical work by Clark and Shkurti provide a possible explanation for the empirical
failures observed in our reproduction experiments | ]. Based on previous work on diffusion
image generation models, Clark and Shkurti identify two critical architectural properties required
for effective trajectory composition in diffusion planning: local receptive fields and positional
equivariance:

1. Local Receptiveness: The locality requirement stipulates that during the denoising process,
each state in a trajectory should primarily attend to a constrained neighborhood of nearby
states rather than distant trajectory segments. Local receptiveness enables the model to
compose trajectory fragments by preventing inappropriate dependencies between distant states
that may belong to different sub-trajectories in the training data. Without this constraint,
the model may learn spurious correlations between states that appear together in training
trajectories but should not be causally linked during composition. Mathematically, they
define a generative trajectory model as locally receptive when for any trajectory 7 and state
positions x within it, the denoising gradient estimate of the trajectory 7 evaluated at state
position z,, is equal to the denoising gradient estimate of 7 restricted to the immediate region
Q) around x4, evaluated at xy, i.e. My[7] (x5) = My[7|Qs.](xs).

2. Positional Equivariance: The model’s denoising process should not depend on the absolute
position of states within a sequence. This property enables the model to recognize that
trajectory segments can be repositioned and recombined without losing their validity. Standard
diffusion architectures frequently incorporate use downsampling and pooling operations that
break this equivariance, constraining the model to reproduce trajectory segments only in
their original temporal positions. Mathematically, a diffusion model M;[r] is positionally
equivariant if for all position shifts U on trajectories, M[U|[7]] = U[M,[7]].

Using this theoretical framework, Clark and Shkurti | | provide an explanation why Diffuser
fail at trajectory stitching despite the approach’s conceptual promise. Janner et al.’s | ]
1D U-Net architecture’s use of downsampling operations creates both non-local attention patterns
and positional dependencies that prevent effective composition. When combined with training
procedures that do not explicitly encourage compositional behavior, these architectural limitations
result in models that resort to memorization rather than genuine trajectory synthesis. This analysis
reveals a contradiction in Diffuser’s design. While Janner et al. | | emphasize how the local
receptive fields of convolutions facilitate compositional learning, Diffuser’s 1D U-Net’s downsampling
operations violate the locality and positional equivariant requirements identified by Clark and
Shkurti | |. The global receptive fields created by these operations could enable the model to
memorize complete trajectories from the training distribution rather than learning to compose novel
paths from trajectory fragments, precisely the opposite of the intended compositional behavior.

Clark and Shkurti provide direct empirical validation of their hypothesis | |. In their work,
they implement a diffusion planner using an architecture (Eq. net) that explicitly maintains
locality and positional equivariance. Their experiments on toy datasets demonstrate that trajectory
stitching does indeed work when these architectural constraints are respected, providing concrete
evidence that the failure of current diffusion planning stems from architectural choices rather than
fundamental limitations of the generative approach.
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This theoretical framework provides a possible explanation. In AntMaze environments, where
successful performance requires genuine trajectory composition to connect arbitrary start-goal pairs,
Diffuser’s architectural limitations might prevent effective learning despite the method’s theoretical
promises. The could explain the poor performance we observed (27-28% normalized return) even
with improved reproduction.

Conversely, in Hopper tasks where trajectory composition is less critical, Diffuser is capable of
competitive performance. The continuous control domain requires reproducing learned motor
patterns rather than composing novel trajectories, aligning with what the architecture can actually
accomplish rather than what it was designed to achieve.

5.3 The Hierarchical Advantage

Given the empirical failures of Diffuser and the success of methods like RSP, it is worth examining
what potentially enables effective trajectory stitching for non-TD methods. Our insight is that
successful trajectory composition may require reasoning at multiple temporal scales of abstraction,
a capability that RSP achieves through explicit sub-goal planning, while diffusion planners possess
through their inherent denoising process. RSP’s design explicitly maintains its multi-scale reasoning,
while the standard Diffuser implementation inadvertently destroy their implicit hierarchy through
architectural choices that violate locality and positional equivariance.

Hierarchical approaches decompose trajectory planning into a hierarchy of decisions, where high-
level planners generate coarse “plan sketches” outlining a trajectory’s global structure, and low-level
planners produce fine-grained actions to achieve each sub-goal | , , ]. At
the highest abstraction level, these methods learn state reachability, determining whether two states
can be connected, without being constrained by the specific trajectories observed in the training
data. This abstraction enables the model to identify novel connections between states from distinct
demonstration trajectories, facilitating compositional planning that transcends memorized paths.

Hierarchical decomposition reframes trajectory stitching as a problem of abstract state reachability
rather than precise sequence matching. By operating at multiple temporal scales simultaneously,
hierarchical methods can uncover connections between trajectory segments that remain invisible
to single-scale approaches. Coarse-grained planning levels create “bridges” between disconnected
segments by learning the underlying structure of the state space, while fine-grained levels ensure
that these abstract connections translate to executable transitions.

This multi-scale abstraction enables two complementary roles that are both essential for effective
stitching:

e High-level planning learns “reachability”: At coarse temporal scales, the planner
identifies which regions of the state space are accessible from one another, without committing
to specific paths. For instance, a high-level planner might generate subgoals indicating the
navigable regions of a maze, answering “can I reach that area?” rather than “how exactly do
I get there?” This abstraction is crucial for stitching because it enables connections between
states from different demonstration trajectories, even when direct paths between them are
absent from the training data.
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e Low-level planning provides “feasibility”: At finer temporal scales, the planner executes
concrete transitions between states, ensuring that abstract connections identified at higher
levels are actually realizable. For example, a low-level policy generates precise actions to move
between subgoals, filling in the gaps between high-level subgoals with concrete, executable
steps.

@ stert(9)
@ Goal (G)
Subgoals

Figure 5: Illustration of hierarchical planning decomposition. The high-
level planner identifies abstract subgoals (yellow dots) as key waypoints through
the state space, while the low-level planner generates concrete, executable paths
(dashed line) that navigate environmental constraints to connect these subgoals.

This separation of concerns is crucial: high-level planning identifies promising ways to connect
trajectory segments, while low-level planning ensures their practical execution. Neither component
suffices alone: high-level planning without executable refinement produces unrealizable plans, while
low-level planning without global guidance remains trapped within the boundaries of demonstration
trajectories. Hierarchical methods enable robust stitching by balancing global coherence with local
precision.

Explicit Hierarchy in RSP RSP | | uses explicit hierarchical planning through its
recursive sub-goal prediction at exponentially decreasing horizons, forming a natural multi-scale
abstraction hierarchy. The method’s high-level dynamics model predicts distant future states
(e.g., 32 steps ahead), capturing coarse-grained reachability patterns such as navigating around
major obstacles in a maze environment. Subsequent hierarchical levels progressively refine these
predictions at shorter horizons, gradually increasing the precision of the planning process. Finally,
a goal-conditioned policy extracts concrete actions based on the current state and the complete
hierarchy of sub-goals, ensuring feasibility by connecting abstract plans with executable transitions.
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This explicit architecture directly addresses the core challenge of trajectory stitching: RSP’s
hierarchical structure enables it to identify connections between distant states (through high-level
reachability planning) while ensuring these connections can be realized through concrete actions
(via low-level policy execution). The recursive refinement process allows the method to bridge gaps
between demonstration trajectories by planning at an appropriate level of abstraction.

Implicit Hierarchy in Diffusion Models While Janner et al.’s | ] Diffuser struggles with
trajectory stitching in practice, the diffusion denoising process contains an implicit hierarchical
structure that should be conducive to compositional generation, if appropriately preserved through
architectural design. This insight, building on Clark and Shkurti’s theoretical framework | ],
could help explain why diffusion planning should theoretically succeed at trajectory composition,
and why current implementations fail to realize this potential.

Diffusion models generate trajectories by denoising a sample over T' timesteps, transitioning from
pure noise N(0, I) to a coherent trajectory 7 = (so, ag, ...). This denoising process exhibits a natural
coarse-to-fine hierarchy that effectively parallels explicit hierarchical planning:

e Early denoising steps (high noise, ¢ ~ T') capture global trajectory structure, determining
the coarse shape and overall direction of a trajectory. In navigation tasks, these steps might
establish whether a trajectory moves around the left or right side of a major obstacle, analogous
to high-level sub-goal planning that determines reachability between distant state regions.

e Later denoising steps (low noise, t ~ 0) refine local trajectory details, ensuring precise
state-action transitions within segments and smooth connections between waypoints. This
resembles low-level policy execution that fills in concrete actions between abstract sub-goals.

This coarse-to-fine denoising hierarchy has been extensively validated in image diffusion, where
early steps produce blurry global outlines and later steps sharpen fine-grained details | ]. Our
understanding, consistent with Clark and Shkurti’s analysis | ], is that this implicit hierarchy
could enable trajectory stitching in diffusion models, if the architecture preserves the locality and
positional equivariance properties required for compositional generation.

5.4 When Is Computational Overhead Justified?

While our analysis demonstrates limitations in the standard Diffuser implementation, this does
not entirely negate the potential value of the diffusion planners when implemented correctly. The
question then becomes: under what circumstances might the substantial computational overhead of
iterative denoising be justified compared to more efficient alternatives?

Our empirical findings, combined with broader evidence from the literature | , ],
suggest that diffusion planning’s computational costs are unjustified for most practical offline RL
scenarios as of yet. The success of simpler methods like RSP and IQL demonstrates that many offline
RL tasks can be solved effectively without the architectural complexity of diffusion models. These
approaches represent compelling alternatives that achieve comparable or superior performance while
requiring dramatically reduced computational resources — RSP completes training in 3 minutes
versus Diffuser’s 8 hours, while both RSP and IQL achieve sub-millisecond inference compared to
Diffuser’s 1.8-second latency.
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The computational efficiency gap becomes even more pronounced when considering practical
deployment constraints. Real-time robotics applications, embedded systems, and scenarios requiring
frequent replanning cannot accommodate the multi-step denoising process inherent to diffusion
planning. In these contexts, methods like RSP and IQL provide practical advantages through their
efficient inference procedures. Moreover, our results suggest that trajectory stitching, one of the
primary theoretical motivations for diffusion planning, can be achieved more reliably and efficiently
through hierarchical approaches like RSP, which directly addresses the offline RL composition
problem without requiring expensive iterative generation.

However, diffusion planning may retain value in specific scenarios that explicitly require its unique
generative capabilities. Tasks involving highly multimodal action distributions, where multiple
distinct behavioral patterns must be captured and selectively sampled during inference, could
potentially benefit from diffusion models’ ability to represent complex probability distributions.
For instance, manipulation tasks requiring the agent to choose between fundamentally different
approach strategies (e.g., reaching around versus over obstacles) might justify the computational
expense if the multimodal nature of optimal policies cannot be captured by simpler methods.

Similarly, applications requiring fine-grained trajectory generation with smooth interpolation
between different behavioral modes, such as human-robot interaction scenarios where the robot must
seamlessly blend between different social behaviors, might warrant diffusion models’ sophisticated
generative capabilities. Creative applications in robotics, where generating diverse and novel
behaviors is valued over efficiency, could also benefit from the rich representational capacity of
diffusion models.

The key insight is that diffusion planning’s value proposition depends on whether the specific
task requires capabilities that simpler methods cannot provide. Our study reveals that for some
canonical offline RL benchmarks like navigation (AntMaze) and locomotion (Hopper), these unique
capabilities are not essential, and in some cases, may even be counterproductive. The sparse reward
navigation tasks that should theoretically favor diffusion planning’s trajectory stitching abilities
are better served by direct hierarchical decomposition approaches.

The evidence from our investigation and the broader literature | | suggests practitioners
should approach diffusion planning with appropriate skepticism. The combination of empirical
failures on key benchmarks, substantial computational overhead with existing implementations, and
the demonstrated effectiveness of simpler alternatives suggests that the default choice should be
efficient methods like RSP or IQL. However, as diffusion methods mature and denoising efficiency
improves, there may be increasing opportunities for their application to genuinely long-horizon
planning problems where the computational trade-off becomes favorable.

6 Conclusion

This thesis investigated a timely question in offline reinforcement learning: what is the point of
diffusion planning, when simpler, more efficient alternatives often achieve superior performance?
Through empirical evaluation across AntMaze and Hopper environments, combined with theoretical
analysis drawing on recent advances in understanding diffusion-based planning, our work reveals some
disconnect between the theoretical promise and practical reality of diffusion planning approaches.
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6.1 Key Findings

Our investigation yields several insights for diffusion-based planning in offline RL:

Empirical Performance Gaps Despite achieving 4-14x improvements over published Diffuser
results on AntMaze tasks, our reproduction still demonstrates fundamental limitations in the domains
where diffusion planning should theoretically excel. With normalized returns of only 27-28% on
navigation tasks requiring trajectory stitching and long-horizon planning, Diffuser underperforms
both hierarchical behavioral cloning methods like RSP (73-75%) and temporal difference approaches
like IQL (78-80%), suggesting potential systematic rather than implementation-specific limitations.

Domain-Specific Performance Patterns The contrasting performance across environments
reveals important insights about algorithmic strengths. While Diffuser achieves competitive perfor-
mance on continuous control tasks like Hopper (70-107% normalized returns), it underperforms
where its theoretical advantages should be most pronounced: in sparse reward navigation requiring
trajectory composition (AntMaze). This reversal suggests that the standard diffusion planning
implementation may be better suited for behavioral imitation than genuine planning challenges.
Our findings suggest that the value of sophisticated planning approaches depends crucially on task
characteristics. Navigation tasks requiring genuine composition benefit from explicit hierarchical
decomposition, while continuous control tasks may be adequately served by behavioral imitation
capabilities that even suboptimal diffusion implementations can provide.

Computational Efficiency Concerns The computational overhead of diffusion planning
presents a significant practical limitation. With 8-hour training requirements and 1.8-second
inference latency compared to RSP’s 3-minute training and sub-millisecond inference, the compu-
tational costs appear to be unjustified. This efficiency gap becomes particularly problematic in
real-time applications where rapid decision-making is essential.

Architectural Limitations Clark and Shkurti’s recent theoretical work | | identified that
current Diffuser implementations violate the locality and positional equivariance, requirements
necessary for effective trajectory composition. Diffuser’s 1D U-Net architecture’s downsampling
operations create global dependencies that encourage memorization rather than genuine composi-
tional learning, potentially explaining why diffusion planning fails at its purported core competency
of trajectory stitching.

The Hierarchy Advantage We note that effective trajectory stitching may require multi-scale
temporal reasoning, a capability that both successful methods (RSP) and architecturally sound
diffusion approaches share. RSP achieves this through explicit hierarchical decomposition, while
diffusion models possess implicit coarse-to-fine hierarchy through their denoising process.

6.2 Practical Implications

For practitioners and researchers in offline reinforcement learning, our findings suggest several
important considerations:
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Default Method Selection Given the substantial computational overhead and mixed empirical
results, simpler methods like RSP or IQL should be the default choice for most offline RL applications.
The burden of proof should fall on demonstrating that diffusion planning’s unique capabilities are
actually required for the specific task at hand.

Computational Trade-offs The efficiency advantages of simpler methods — orders of magnitude
faster training and inference — enable extensive experimentation, hyperparameter exploration, and
real-time deployment that remain impractical with current diffusion approaches. These practical
considerations often outweigh theoretical sophistication in applied settings.

6.3 Addressing the Central Question

Returning to our central question — what’s the point of diffusion planning in offline rein-
forcement learning? — our study suggests a nuanced answer. While diffusion planning possesses
theoretical advantages that could be valuable for complex compositional tasks, the standard imple-
mentation fail to realize this potential possibly due to architectural limitations. The computational
overhead is as-of-yet unjustified by performance gains, and simpler alternatives often achieve
superior or comparable results with dramatically reduced complexity.

However, this should not be interpreted as a wholesale rejection of diffusion-based approaches.
Rather, our findings highlight the importance of architectural design choices and suggest that future
advances in diffusion planning must address fundamental limitations rather than simply scaling
existing methods. The theoretical framework for effective trajectory composition exists, but its
practical implementation remains an open challenge.

6.4 Limitations and Future Work

Our investigation suffers from several significant limitations that constrain the generalizability and
conclusiveness of our findings. These limitations highlight important areas for future research and
more comprehensive evaluation.

Experimental Scope Our evaluation focuses on a limited set of environments from the D4RL
benchmark, focusing on AntMaze-Medium and Hopper-Medium as our test environments. This
represents an narrow slice of the offline RL problem space and provides only some limited evidence
to support broad claims about diffusion planning’s utility across diverse domains. Even within
the navigation domain, our evaluation lacks the depth required for conclusive findings. While
AntMaze-Medium is purported to require trajectory stitching and long-horizon reasoning, this
connection is not definitively established through our experimental design. We did not conduct
controlled experiments that explicitly isolate stitching requirements from other task characteristics,
making it impossible to attribute performance differences specifically to stitching capabilities or
long-horizon reasoning.

We evaluate only the standard Diffuser implementation rather than exploring alternative archi-
tectures that might better preserve the compositional properties required for effective planning.
Investigating architectures that explicitly maintain locality and positional equivariance could yield
different conclusions about diffusion planning’s potential.

32



Moreover, we did not conduct extensive hyperparameter optimizations, which would require
computational resources beyond the scope of a bachelor thesis. Our reproduction challenges across
multiple algorithms highlight the sensitivity of offline RL methods to implementation details. Future
work should include more systematic hyperparameter exploration and sensitivity analysis to better
understand the robustness of different approaches.

The scope of our experimental evaluation reflects the practical constraints of an individual bachelor
thesis project, though future work with greater resources could provide more comprehensive
validation across multiple environments and algorithmic variants.

Limited Training Runs for Diffuser Another crucial methodological limitation stems from
computational constraints that limited Diffuser to only 2 independent training runs, compared to 8
for RSP and IQL. While each trained model is thoroughly evaluated over 100 episodes, having only
2 training seeds for Diffuser reduces our confidence in the stability of training outcomes and limits
statistical power for detecting true performance differences between algorithms.

Standard practice in RL evaluation typically requires at least independent training runs to account
for training variability [\Moe]. The high variance in offline RL training means that performance
differences we observe between 2-seed and 8-seed averages may reflect training luck rather than
algorithmic superiority.

This constraint was unfortunate, yet unavoidable, given Diffuser’s 8-hour training requirement and
the individual nature of bachelor thesis research. Training 8 Diffuser models would have required
64+ hours of compute time, beyond resource constraints. However, this asymmetry in training
samples limits our ability to make definitive comparative claims about algorithmic performance.

Benchmark Inadequacy The D4RL benchmark suite, while widely used, has known limitations
in testing the full spectrum of offline RL capabilities. Many D4RL tasks may not actually require
the sophisticated planning capabilities that diffusion models are designed to provide, making
performance comparisons potentially misleading. This reliance on older benchmark environments
represents a significant methodological limitation. The recently proposed OGBench | ],
which includes AntMaze-Stitch environments specifically designed to test trajectory stitching
capabilities, would provide more rigorous evaluation criteria for compositional planning methods.
Our failure to evaluate on these purpose-built stitching benchmarks limits our conclusions to the
environments that we have tested, and future work should evaluate on purpose-built benchmarks
like OGBench that explicitly test trajectory stitching capabilities.

Replicability and Sensitivity to Implementation Another significant limitation of this
investigation is the challenge encountered in precisely replicating the published results for the
evaluated algorithms, which highlights a broader issue of reproducibility in the field | ,

]. The experimental results revealed performance discrepancies between our implementations
and the original papers across all three methods, complicating direct comparisons.

e Diffuser: Our implementation on AntMaze tasks achieved normalized returns that were 4 to
14 times higher than the published results we aimed to reproduce. This improvement is likely
attributable to differences in hyperparameters such as batch size, which can provide more
stable gradient estimates during training.
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e RSP: In contrast, our RSP implementation underperformed the original paper’s benchmarks
on AntMaze by approximately 18-19%, which may stem from subtle implementation variations
not captured in the original methodology.

e IQL: The IQL implementation showed a notable performance degradation of 13-36% on the
Hopper tasks compared to its published baselines, with a particularly severe impact on the
Medium-Expert dataset. This suggests a high sensitivity to implementation details or the
specific code repository used.

This variability in reproduction success introduces a degree of uncertainty into our findings. While
the thesis draws conclusions based on the performance observed in our controlled experimental
setup, the instability of these baselines means that our results should be interpreted with caution.
The sensitivity of these algorithms to minor implementation details makes it difficult to definitively
claim superiority of one method over another without more extensive validation.

This issue reflects a known challenge within reinforcement learning research and has methodological
implications for the field | , ]. Future work should therefore include more systematic
hyperparameter optimization and sensitivity analyses to better understand the robustness of these
different approaches. Conducting such extensive exploration was beyond the computational resources
available for this bachelor thesis, but is essential for building a more reliable understanding of when
and why certain offline RL algorithms succeed or fail.

6.5 Final Thoughts

This thesis contributes to a more nuanced understanding of diffusion planning’s role in offline
reinforcement learning by demonstrating that theoretical complexity might not automatically
translate to practical value. The disconnect between Diffuser’s conceptual appeal and empirical
performance highlights the importance of rigorous, replicable evaluation and the need to question
assumptions about the necessity of complex methods for sequential decision-making tasks.

As the field continues to develop increasingly sophisticated approaches to offline RL, our findings
suggest that solving the fundamental challenges of the domain: trajectory stitching, long-horizon
planning, and distribution shift may not require large expressive models, echoing the opinion of
Wang et al. | |. The most valuable contributions may come not from developing more
complex generative models, but from understanding when and why simpler approaches suffice, and
identifying the specific scenarios where computational complexity is truly justified by performance
gains.

However, our findings should be interpreted within the context of current benchmark limitations and
computational constraints. Following the spirit of the “bitter lesson” in machine learning | | -
that methods leveraging computation ultimately prevail over those exploiting human knowledge — it
is plausible that as we encounter increasingly complex real-world tasks beyond current benchmark
capabilities, the sophisticated modeling capacity of diffusion planners may become essential. Tasks
requiring genuine multimodal reasoning, complex temporal dependencies, or rich compositional
behavior may eventually demand the expressiveness that current simple methods cannot provide.

Moreover, the computational overhead that currently limits diffusion planning’s practical adoption
may become less relevant as hardware capabilities continue to advance | |. The dramatic
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improvements in compute per unit cost, driven by ongoing developments in specialized Al hardware,
suggest that what appears computationally prohibitive today may become routine tomorrow . As
inference costs decrease and parallel processing capabilities expand, the 1.8-second latency that
currently renders diffusion planning impractical for real-time applications may shrink to acceptable
levels, potentially shifting the cost-benefit analysis in favor of more expressive methods.

The question of diffusion planning’s value in offline RL thus remains open, contingent on both
innovations that can bridge the gap between theoretical promise and practical performance, and
the evolution of computational resources and task complexity. Until such advances materialize,
practitioners are perhaps better served by the efficiency and reliability of simpler methods, while

researchers continue to explore the conditions under which the advantages of diffusion planning can
be realized in practice.
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