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Abstract

Tetris (1985) is a game where 4-tiled tetrominos are placed in a 2-dimensional 10
by 20 playing field, with the goal of covering entire rows and clearing these rows to earn
points. We approach the game with a new gamestate-reachability problem, where we
attempt to reach a predetermined gamestate by the placements of tetrominos, start-
ing with an empty board. An attempt to automate the search for a solution to this
problem is done using Monte Carlo Tree Search (MCTS), where the reward function
is implemented using a Convolutional Neural Network (CNN). The CNN shows a very
stable trend regarding the train-test split on the generated dataset, but MCTS displayed
seemingly random moves instead of our desired sequence leading to a final state. Im-
provements such as fixing the CNN scoring predictions, or even removing MCTS and
using Reinforcement Learning (RL) instead might potentially fix the currently broken
implementation.

1 Introduction

1.1 Tetris versions

Tetris is not one specific game, as there exist many different versions of the game. In fact, it
is the video game with the world record number of ports [15]. The original game was made
by Alexey Pajitnov and came out in 1985 [14], where the game was relatively bare-bones with
only one visible piece in the queue, a simplified rotation system, and no existing hold system.
One of the more revolutionary version releases of Tetris came with the release of Tetris DS in
2006 [17], which upgraded the Original Rotation System from the original Tetris to the Super
Rotation System (SRS) [18], introduced the hold system where one piece could be saved or
swapped for later use, and a longer visible queue of 6. SRS and its alternative version SRS+,
which in addition to SRS allows 180-degree spins, are used in currently active competitive
Tetris clones, namely Tetr.io and jstris [13, 7].

1.2 Used version

To simplify the transition between different game states, the Tetris environment used is based
mainly on the original rotation system, where wall kicks are not allowed. We also do not allow
tetromino placements where an overhang is filled.
To further simplify the problem, the algorithm will be able to choose its tetrominos. This
means that the implementation of a hold system and visible queue would be redundant.

1.3 Gamestate-reachability: a new approach

The original Tetris games are high score based, where the objective is to fill in as many rows as
possible. There are already existing projects that have functioning AI playing Tetris [10, 16].
However, the approach usually revolves around obtaining the highest score possible by clearing
as many lines as possible whilst preventing a game over by keeping the board and tetromino
placements as low as possible.
As an alternative approach, we introduce a new objective in which we want to reach a specified
game state. The problem is defined as follows:
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Definition 1.1 (Gamestate-reachability problem). Given a partially filled Tetris board,
what is the sequence of tetromino placements that is required to reach that board when
starting with an empty board, whilst adhering to the rules of Tetris?

1.3.1 Intuitive solution

This problem can be solved easily if only the number of filled cells in the matrix is checked,
and not the positions. Because every tetromino adds 4 tiles to the board and clearing a line
by filling a row removes 10 lines, the matrix cannot transition between even number of tiles
and odd number of tiles. It can only remain even if the previous state had an even number of
filled tiles. This is also the case with states that have an odd number of filled tiles. However,
since Tetris is usually played with an empty state at the start, reaching a specified game state
with an odd number of tiles would require a modified odd-number-filled starting state.

1.3.2 Manually finding the sequence

Although finding a possible tetromino placement sequence seems very heuristic-dependent,
there is actually a simple method to discover one of many possible sequences. We do this with
the following strategy:

1. Start at the final state

2. Move backwards one step

• Choose one of the following:

(a) Remove a tetromino from the playing field

(b) Add a line to any row on the playing field

3. Repeat the above step until the board is empty

The tetromino removal and line addition should aim for the following heuristics, but are not
always limited by these:

• Remove tetrominos with higher tiles before lower ones

• Removal of tetrominos should not result in floating tiles

– Prevent difficult situations.

• Remove pieces only if they have completely empty columns above the tetromino.

– This emulates the tetromino placement in reverse.

• Only add lines if no tetromino removal is possible.

– This prevents excessive line addition, which would unnecessarily lengthen the se-
quence.

• Remove the most tetrominos possible before a line addition is required.

– Attempt to clear out the currently existing tiles as much as possible.
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Figure 1: Reverse tetromino sequence example for the ”HI” final state executing either
piece removal or line addition

In Figure 1 we can see an example sequence that solves the gamestate-reachability problem on
a 2D-matrix spelling out the word ”HI”. Note that the given example is only one of infinitely
many sequences that would result in the same outcome. This can be explained with simple
pattern-solving examples.
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Figure 2: Two examples of methods how patterns can be filled in with tetrominos

As Figure 2 shows, certain patterns can be solved in many different ways. As these patterns
become larger, the number of possible solutions increases in complexity. This means that for
the given example sequence in Figure 1 certain patterns could be replaced with the ones given
in Figure 2 and it would make no difference in the final outcome.

1.4 Using MCTS to solve the gamestate-reachability problem

There are many different frameworks for approaching the automatization of finding a valid
solution to this problem. Some of the more prominent frameworks are as follows:

• Reinforcement Learning [8]

– Deep Q-Learning [20, 12]

– Policy-based RL [1]

• Monte Carlo Tree Search [2]

• Manual heuristical methods

There already exist different Reinforcement Learning approaches to Tetris [16, 10], though
these both optimize in the regular high-score-based game. Reinforcement Learning has the
potential to solve the gamestate-reachability problem, but the choice was made to work with
MCTS, as at first glance the problem seems very solvable because of the example in Figure ??.
And with MCTS, the parameter interpretability is better compared to Reinforcement Learning,
where hyper parameter tuning is mostly a trial-and-error process in its experimental setup.
For the scope of this paper, we are more interested in the process of automating the sequence
finding, so we disregard the manual heuristical methods. However, it is still an interesting
problem for the mathematical and pattern recognition fields.
The research questions this paper will address are defined as follows:
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RQ1. How can an MCTS framework be set up for the gamestate-reachability problem?

RQ2. How can the gamestate-reachability problem be solved using an MCTS framework?

2 Background information

2.1 Complex problems

As paraphrased by Funke: ”Complex problem solving (CPS) emerged in the last 30 years
in Europe as a new part of the psychology of thinking and problem solving,” and complex
cognition is required to do complex problem solving [4]. Creating complex problems allows for
new AI challenges to arise and create new insights with the solutions AI can provide. This is not
exclusive to Tetris, though Tetris has its benefits when used for complex problems. Tetris has
approaches on being solved by AI [16, 10]. The gamestate-reachability problem is a complex
approach to the base game of Tetris allowing for different insights into how the game can be
played.

2.1.1 Tetris as a framework

The game can be very engaging as the entry level for beginners is very manageable, yet the
game can be played in many ways, allowing for advanced players to think of strategies that
allow for efficient and consistent board management to obtain the most points.
Another advantage is that, as can be seen from Figure 2, there are many solutions to a single
problem, which makes the solution more approachable for our MCTS searching algorithm.

2.2 Monte Carlo Tree Search

Figure 3: Monte Carlo Tree Search algorithm diagram [5]
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MCTS is a widely known binary search tree algorithm [2] used in games to find a winning
state by chance during random playouts. To summarize, the MCTS algorithm used in this
project is divided into four main steps: selection, expansion, simulation, and backpropagation
(see Figure 3).
The selection process is done using the UCT calculation [2], which determines which node
should be expanded next. The calculation is as follows:

UCT (node) =
winsnode
visitsnode

+ c

√
ln visitsnode.parent

visitsnode

The arbitrary choice was made to set c as
√
2 for this project. As for the priority of selection,

experiments were done on both the regular UCT calculation and a combination of UCT and
breadth-first selection, where every move from the root must be selected first before being
able to select the children of those moves.
The expansion process simply selects a random move from the selected node, a node is created
representing that move, the created node becomes connected to the selected node as a child,
and the selected node becomes connected as the parent of the created node.
The simulation process takes the state of the expanded node as the starting point and starts
to repeatedly do random moves until either the game state is an ending state or the maximum
number of possible moves from the root up to that state has been done. Once it has reached
either condition, the score of that state is saved, the state is reset to the expanded node,
and the process is repeated until a certain number of simulations have been done. After all
simulations are finished, all the saved scores are summed up and divided by the number of
simulations. This value will be saved as the final score of the node.
The purpose of the model training in the previous step is to determine the score at the end of
each simulation. Instead of using a win/lose scoring system, we use a linear scaling method,
as explained in Section 3. To distinguish the final state from other states, we alter the scoring
system by dividing the score by 100 when it is not a final state. With this changes, a score of
100 represents the final state, 0.99 represents a state 1 move away from the final state, 0.98
represents a state 2 moves away, etc. Because the max moves for these experiments is set to
20, the score will never exceed 20 when a final state has not been found, so it can easily be
distinguished from scores that are 100 or above.
Finally, the backpropagation process takes the score of the current node, and adds this score to
the score of every parent up until the root of the whole tree. Also, for every node it encounters
in this process, it adds one to the number of visits of those nodes. Essentially, an expanded
node always has its visits set to 1, the number of visits in the root is the number of simulations
done, and for every node, the number of visits entails the number of leaves that node subtree
has including itself and its children.

2.3 Convolutional Neural Network

The general idea behind a Convolutional Neural Network (CNN) [9] is that it takes an n-
dimensional input and outputs either one or multiple values. When looking at Figure 4, there
is an input layer on the left, multiple hidden layers in the middle, and an output layer on the
right. Every layer contains nodes, which take a certain number of inputs and can output a
singular value to nodes in the next layer. To not go into too much depth, the output depends
on its weights, biases, and activation functions. The nodes of the CNN layers are initialized
with random values. The CNN can be trained by inputting training samples in the input layer,
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comparing the output layer values with the actual ground truth values of the sample, and
adjusting the weights in each node in the CNN layers.

Figure 4: Diagram of CNN layers and FC layers, from [9]

In this project, we use a binary 2D matrix as input, and thus Figure 5 gives a better idea of the
actual implementation. Our CNN implementation converges into one singular value as output,
but it still roughly summarizes the functionality.

Figure 5: Procedure of a 2D CNN, from [9]

3 Approach

In this section, we discuss the framework of the project, outlining specific key design choices
and the reasoning behind them.

3.1 Tetris environment

To optimize the time efficiency for this project, we use an existing Tetris framework, namely
the Tetris-AI repository by Nuno-faria [3]. The Tetris-AI repository has a working DQN model
that can achieve a theoretically infinite score with the method it plays the game. Because the
gamestate-reachability problem results in board evaluations different from those of conventional
Tetris based on high scores, the DQN will unfortunately be discarded. We do use the framework
from the game, as it follows the rules of the game and states and actions can be accessed
easily.
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3.2 MCTS vs Reinforcement Learning

In Section1.4, we discussed different approach methods, where the manual heuristics were
disregarded. As for the choice between Reinforcement Learning (RL) and Monte Carlo Tree
Search (MCTS), there are advantages and disadvantages to both. RL has the highest potential
of learning the objective with high consistency, while MCTS is much simpler in its framework
and has less complexity in the learning process. However, the main drawback of using RL over
MCTS is the interpretability of the parameters. MCTS has parameters that have much more
clarity over their respective functions. RL on the other hand, which has many parameters that
have no direct feedback on the performance of the model, is much harder to fine-tune to the
task and would require much more investment through the process of hyperparameter tuning
and learning curves.

3.3 MCTS CNN reward function

When initialising MCTS, it is provided with a specified desired final game state. Whilst running
MCTS, it is continuously given game states in which the actual testing is taking place. These
game states are then scored based on the number of moves the current game state is away
from the desired final game state.
Even though manually calculating the mathematical formula has many benefits once it is suc-
cessful, the scope of this paper lies more within the training of models rather than mathematical
derivations, and therefore a CNN was trained and used for this project.
Besides the CNN, we also train a linear regressor, random forest model, and a k-nearest-
neighbor model. These are used for comparison to see the main benefits of one superior model
compared to the other models.

4 Method

We divide the experiment into subtasks:

1. CNN model training

(a) Sample generation

(b) Training CNN + performance comparison

2. MCTS experimentation

4.1 Preparation step

Before we can run the experiments, we must first determine a final state which we want to
generate a tetromino placement sequence toward. We run the experiments with three different
final states:

1. A final state which spells out the word ”HI” (Figure 6a)

2. A final state with only one t-piece (Figure 6b)

3. A final state with one t-piece and one l-piece (Figure 6c)
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The main challenge will be state spelling out ”HI”. The other two states are to benchmark
the performance on a smaller scale. In the case the main experiment fails, we can check if the
smaller experiments are successful or if they also fail.

(a) Final state which
draws the word ”HI”

(b) Final state with a
single t-piece

(c) Final state with a
t-piece and an l-piece

Figure 6: Final states which the experiments are run with

4.2 CNN model training

4.2.1 Sample generation

The purpose of the CNN model in MCTS is to calculate the reward of any current state based
on the predetermined final state. The training of this model requires task-specific samples for
our task.
These can simply be generated with the following method:

1. Initialize at the final state

2. Do n backwards moves from the final state, where n = random(1, . . . , 20), and back-
wards moves as described in Step 2 of Section 1.3.2

3. Save the current state as a sample with label ”sample {m} score {n}.png”, where m
is to index every sample

4. Repeat until satisfied with the number of samples generated

To prevent the state from adding a line for every possible move, we define a probability for
adding a line. We generate a dataset with a 20% chance and a dataset with a 40% chance of
adding a line for performance comparison.
Before training the models, we experiment with a third dataset, where we introduce the sample
generation from the starting state instead of the final state. These are generated as follows:

1. Initialize at the starting state

2. Do p forwards moves from the starting state, where p = random(1, . . . , 20), and for-
wards moves being the regular moves in Tetris.
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3. Save the current state as a sample with label ”sample {m} score {q}.png”, where m is
to index every sample, and q = l − p, with l being an arbitrary large number. For this
experiment, l = 100

When running the sample generation for the third dataset, there is a 50% chance to either
generate using the first backwards method, and a 50% chance to generate forward samples
with the second method.
Before using the three datasets for the model training experiments, we check the uniformity
of each dataset and add duplicate data entries in the cases of skewed datasets.

4.2.2 Model training

We run two model training experiments. The first experiment is the performance of different
models on dataset A. We run the first model training on a linear regressor, a random forest
regressor (RF), a k-nearest neighbor regressor (KNN), and a convolutional neural network
(CNN).
The second experiment is training separate CNN models on each of the three generated
datasets and comparing the performance between the three models.
We compare the performance of the models by displaying the results of a 1-fold cross-validation
test in a box-plotted graph, where the train-test split is set to 75%-25%. The graph includes
a straight line indicating the ground truth. The x-axis displays the truth score of the input
game state, and the y-axis shows the predicted value of those game states. The main objective
behind this test is to get a grasp of the general performance of each model without tuning
the models. The performance could be improved through hyperparameter tuning, but for this
project, this is less of importance, as can be concluded from the upcoming sections.

4.3 MCTS experimentation

The pseudocode of the MCTS implementation can be found in Algorithm 1. The used algo-
rithms 2 to 4 can be found in Appendix 9.1

4.3.1 Validation

To validate the MCTS implementation, the algorithm was applied to Tic-Tac-Toe. Because
the game has a small gamestate space, it is feasible to manually check the validity. Various
existing MCTS Tic-Tac-Toe implementations [19, 6] show a breadth-first approach to the
selection process. This brought up the idea of experimenting with different selection processes.
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Figure 7: Monte Carlo Tree Search project overview

Algorithm 1 MCTS Tetris implementation

procedure MCTS Tetris
n← 0
max steps← 20
mcts iterations← 10000
root← Node
current node← root
while game not ended and n < max steps do

▷ Run MCTS until final state reached or no tetromino placements possible
i← 0
while i < mcts iterations do

selected node← select(current node)
▷ See Algorithm 2

if selected node exists then
if selected node has next states then

expanded node, value← expand and simulate(selected node)
▷ See Algorithm 3

backpropagate(expanded node, value) ▷ See Algorithm 4
else

Return root
end if

end if
i← i+ 1

end while
best move← Node from current node.children with the highest wins/visit
score
current node← best move ▷ Repeat MCTS with a new ”root”
n← n+ 1

end while
end procedure
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5 Experiments & Results

All hardware and software specifications can be found in Appendix sections 9.2 and 9.3. The
source code is available on Github1

5.1 Sample generation

The three datasets that we generated for training are the following: A. Backwards generated
samples (20% chance), B. Backwards generated samples (40% chance), and C. Forwards +
backwards generated samples (20% chance). To check if the datasets are skewed, we generate
a histogram, where the x-axis displays the score of the samples and the y-axis displays the
sample count of that score.
As for dataset C, because the scores range from 0-40 and 65-99, we split the data projection
into two histograms to increase clarity.
With the distribution fix in the case of skewed data, we duplicate data up to a margin of 90%
of the largest count of a single score in the dataset.

5.1.1 Results

(a) Histogram of dataset A
(backwards samples, 20% line chance)

(b) Histogram of dataset B
(backwards samples, 40% line chance)

Figure 8: Histograms of the sample generation of datasets A & B

Datasets A and B display a very even distribution in Figures 8a and 8b. However, dataset C
ended up very skewed towards the lower values, as can be seen in Figures 17a and 17b, so the
distribution of dataset C is fixed with the method explained earlier.

1https://github.com/davidlinye/TetrisAI
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(a) Histogram of dataset C backwards
(forwards + backwards samples,

20% line chance)

(b) Histogram of dataset C forwards
(forwards + backwards samples,

40% line chance)

Figure 9: Histograms of the sample generation of dataset C

(a) Histogram of dataset C backwards
(forwards + backwards samples,

20% line chance)

(b) Histogram of dataset C forwards
(forwards + backwards samples,

40% line chance)

Figure 10: Histograms of the sample generation with fixed distribution of dataset C

5.2 Model training

5.2.1 Different models experiment

The first experiment is the training and performance comparison of the four different models
trained on dataset A.
The boxplots displayed in Figures figs. 11 to 14 show on the x-axis the true value of a game
state, and on the y-axis is the value of the game state predicted by the model. The red
regression line is the ground truth, as the predicted value matches the truth values on that
line, and the boxplot should show values as close to the regression line as possible.
Because the problem is not linear, the linear regressor is expected to break as can be seen in
Figure 11, and thus, we disregard this model immediately.
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Figure 11: Boxplot linear regressor trained on dataset A (20% line chance
backwards generated samples) run with 1-fold cross-validation 75%-25% train-test

split

Figure 12: Boxplot k-nearest neighbor model trained on dataset A (20% line
chance backwards generated samples) run with 1-fold cross-validation 75%-25%

train-test split
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Figure 13: Boxplot random forest model trained on dataset A (20% line chance
backwards generated samples) run with 1-fold cross-validation 75%-25% train-test

split

Figure 14: Boxplot convolutional neural network trained on dataset A (20% line
chance backwards generated samples) run with 1-fold cross-validation 75%-25%

train-test split
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As for the other three models, they all follow a linear increase in value predictions as the
truth score increases. The random forest model and CNN show a clear difference in accuracy
compared to the KNN, as the KNN starts with consistent predictions around the truth score,
but then as the truth score of the game states increases quickly spreads out the predicted
values over a large range.
In contrast, the random forest model and CNN both display a consistent trend over the entire
graph. Noticeable is that the CNN is much denser around the regression line compared to
the random forest model. Even though the random forest model is utilized more as a control
group, it seems to handle the problem surprisingly well. Though, the CNN clearly performs
much better, even though the CNN has not been altered and was left on default parameters
given by the scikit-learn documentation [11].

5.2.2 Different datasets experiment

The results of the second experiments, where the CNN is used to do a 1-fold cross-validation
on the three datasets, can be seen in Figures figs. 15 to 17.
Figures figs. 15 and 16 show a very similar result. There is almost no distinction between the
two, meaning that the line chance does not impact the actual CNN performance.
In contrast, the datapoints in Figure 17 are very sparsely divided, and there are too many
outliers to be used in an actual MCTS experiment.

Figure 15: Boxplot CNN trained on dataset A (20% line chance backwards
generated samples) run with 1-fold cross-validation 75%-25% train-test split
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Figure 16: Boxplot CNN trained on dataset B (40% line chance backwards
generated samples) run with 1-fold cross-validation 75%-25% train-test split

(a) Boxplot forwards generated samples (b) Boxplot backwards generated samples

Figure 17: Boxplots CNN trained on dataset C (20% line chance forwards + backwards
generated samples) run with 1-fold cross-validation 75%-25% train-test split

5.3 MCTS experiment

The MCTS algorithm was run with the following parameters:

10000 iterations, 50 playouts

1000 iterations, 500 playouts

Both were run with a linear scoring scale without/with distinguished win vs. loss and UCT
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selection without/with breadth-first approach.

5.3.1 Results

The algorithm saves the whole sequence of states as separate images for potential analysis,
but for the sake of the results we only show the end state.
Unfortunately, the MCTS experiment in Figure 18a resulted in an ending state which does not
resemble the spelled out ”HI”, regardless of the iterations, playouts, distinguished win/loss and
breadth-first selection. Something noticeable is that the algorithm roughly attempted to do
more moves by vaguely spreading out the pieces, but other than that, not much information
can be obtained from this figure.
This experiment actually shows the single t-piece consistently over repeated runs, as can be
seen in Figure 18b. However, this most likely has to do with the fact that for every future
state, it is compared to the final state, and then considered winning if there is a direct match,
and less with the MCTS implementation.
The experiment with two pieces as shown in Figure 18c shows that the MCTS implementation
does not work. This could have multiple reasons, which will be discussed in the next section.

(a) End state of
MCTS experiment
with ”HI” as final

state (failed)

(b) End state of
MCTS experiment
with a single t-piece
as final state (passed)

(c) End state of
MCTS experiment

with t- and l-piece as
final state (failed)

Figure 18: Results of the three MCTS experiments
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6 Discussion

The approach for generating labeled samples for the training process seemed feasible at first,
but this approach might have caused a high bias towards the states near the final state, as it
is more likely to create more duplicates of states with less reverse moves than ones that need
many more moves, especially when generating thousands of samples.
The forwards generated samples were disregarded because of the results shown in the boxplots,
but intuitively it was a bad decision to consider that doing more moves would end up with a
better score as it would be closer to the final state that way.
The performance comparison was based on a 1-fold cross-validation test with a train-test split
of 75%:25%. However, the samples used for the testing portion were very biased towards the
method of sample generation, rather than samples that were more targeted towards the actual
problem MCTS wanted to solve. This caused misleading results with the boxplots, as it seemed
to perform very well on biased samples.
The previous section showed that the model training displayed very promising boxplots with the
CNN boxplot being very stable. For this task, the model should have been sufficient enough,
as MCTS only requires that values remain relative to eachother, so if all scores were shifted by
the same factor, the algorithm would still be able to function. Of course there is much room
for improvement in the training process with hyperparameter tuning, which could make the
model predict more accurately.
As for the MCTS experiments, the general performance is not feasible yet. There are many
factors that could have caused the undesired end result. The experiment size could have
been too small, as the number of MCTS iterations or playouts might have needed to be much
higher. Another flaw could have been the scoring system, where the linear scaling system might
work for training the model, but in practice the predictions could have a bad influence on the
difference in losing/winning states. The problem could have been too complex for MCTS to be
solved, and the smaller problems were only considered at a late stage of the project. Starting off
with the smaller problems could have given more insight into which parts of MCTS functioned
properly, as the ”HI” experiments displayed no information on any disfunctional parts of MCTS.
Reinforcement learning might have solved this problem with less complexity. Regardless, we
do have many improvements that can be applied for future research. In fact, we propose a
different approach which could eliminate the bias, the bad forwards approach and the entire
training process in Section 7.

7 Future work

7.1 Sample generation methods

The current approach for generating samples could be changed as to prevent bias towards
states closer to the final state, and be more targeted towards the actual problem. Also, there
could be experiments with the different chances of adding lines, as the 20% and 40% were
arbitrary choices.

7.2 MCTS tuning

The current selection process was based on the basic MCTS UCT-calculation without changes.
The UCT-calculation for the selection could be tuned. Also, heuristics and pattern matching
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were not considered in this project, as this would have added much more complexity, but it
definitely has potential for a better functioning MCTS algorithm. Finally, the reward calculation
could be reworked, as the current implementation might not be feasible for MCTS to function
properly.

7.3 Problem scaling

The project started on the difficult ”HI” problem, and only at the end of the project were the
small problems regarded. Starting the project with a small problem could give more insight in
which parts of MCTS have certain causes to certain problems.

7.4 Other approaches

7.4.1 Playing MCTS without complex reward function

Playing MCTS without a reward function would change the entire experimental setup. The
game can then either be played forwards or even backwards. If playing forwards, the game
starts with an empty board, and the final state is considered a win. Playing backwards, the
game would start at the final state and the game is then played backwards. In both cases, any
state that is not the winning state is a losing one. This would increase the complexity by a lot,
but it would prevent any problems that the linearly scaling scoring system could have caused.
It would also save a lot of experimental effort, as the sample generation and model training
are no longer required for the MCTS experiment. This approach could even be combined with
heuristics and pattern recognition algorithms to simplify problems into subproblems. A rough
overview can be seen in Figure 19

Figure 19: A new approach to MCTS: playing backwards

7.4.2 Reinforcement Learning

We have not touched the premise of Reinforcement Learning in this project, but there is
much potential to solve the gamestate-reachability problem. A disadvantage of the MCTS
method is that the trained CNN is very task specific, and if another final state were to be
introduced, it would require the CNN to be trained on newly generated samples. Reinforcement
Learning could circumvent this process through the use of unsupervised learning, which allows
for flexibility around the provided final state and the training process as a whole.
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8 Conclusion

We introduced a new approach to Tetris, where we create a new problem based on the
reachability of a specified game state, and called it the gamestate-reachability problem. To
automatize the process of finding a tetromino placement sequence to a specified game state
we used Monte Carlo Tree Search (MCTS), with a Convolutional Neural Network (CNN) as
the reward function, to solve this problem.
RQ1: How can an MCTS framework be set up for the gamestate-reachability problem?
We generated labeled samples by doing randomized backwards moves from the final state, and
used these samples to train four different models. The linear regressor and k-nearest-neighbor
(KNN) models showed either broken or poor results. The random forest model served as a
baseline and the boxplot showed a consistent, but still slightly sparsely divided predictions.
The CNN had the most dense and consistent performance on the dataset.
RQ2: How can the gamestate-reachability problem be solved using a MCTS framework?
Regardless of the performance of the CNN, the MCTS experiment displayed undesired results,
as the generated sequences would lead to a seemingly random final state if the final state
contains patterns that cannot be solved with one tetromino placement.
The approach of MCTS can be improved by either changing certain parameters within the
experimental setup, or change the experimental setup to an approach where MCTS is played
in a way where the scoring system is disregarded to prevent potential problems it could cause.
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9 Appendix

9.1 MCTS algorithms

Algorithm 2 Selection implementation

procedure select(root node)
current node← root node
parent← root node
iterated← True
while current node has children and iterated do ▷ Iterative while through the tree

iterated← False
best uct = uct(current node, parent.visits) ▷ parent visits required for
best node = current node ▷ calculation
for child in current node.children do

child uct = uct(child, current node.visits)
if child uct > best uct then

best uct = child uct
best node = child
iterated← True

end if
end for
parent = current node
current node = best node

end while
Return best node

end procedure
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Algorithm 3 Expansion and simulation implementation

procedure expand and simulate(parent node)
playouts← 50
tetrominos← list of all 7 tetrominos in random order
for piece in tetrominos do ▷ attempt first tetromino, if no options, try next etc.

next states← all states of piece placements that have not been done
▷ parent node can already have children

if next states not empty then
action← random state from next states
child node← board properties from action
parent node.children.append(child node)
child node.parent← parent node

procedure do playouts(child node)
total score← 0
copy node← copy(child node) ▷ deep copy to preserve child node state
n← 0
while n < playouts do

tetrominos2← list of all 7 tetrominos in random order
for piece2 in tetrominos2 do ▷ attempt first tetromino etc.

if piece2 can be placed then
add piece2 to copy node board
break out of the For-loop

end if
if piece2 has not been placed then ▷ end of game reached

score← CNN.predict score(copy node)
total score← total score+ score
n← n+ 1
copy node = copy(child node) ▷ restart with fresh copy

end if
end for

end while
if total value < 0 then ▷ round values to losing/winning

Return −1/playouts
else

Return 1/playouts
end if

end procedure

value = do playouts(child node)
Return child node, value

end if
end for

end procedure
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Algorithm 4 Backpropagation implementation

procedure backpropagate(expanded node, value)
expanded node.wins← expanded node.wins+ value
expanded node.visits← expanded node.visits+ 1
while expanded node.parent exists do ▷ Iterative while to the root

expanded node← expanded node.parent
expanded node.wins← expanded node.wins+ value
expanded node.visits← expanded node.visits+ 1

end while
end procedure

9.2 Hardware specifications

The experiments were run on an Intel i5-8600K processor and an NVIDIA GTX-1070ti.

9.3 Software specifications

The experiments were run on Windows 10 in a Powershell virtual environment with the fol-
lowing pip packages:

Listing 1: requirements.txt

contou rpy ==1.2.1
c y c l e r ==0.12.1
d e s c a r t e s ==1.1.0
desdeo−problem==1.5.0
desdeo−t o o l s ==1.8.0
d i v e r s i p y ==0.8
f o n t t o o l s ==4.51.0
hvwfg==1.0.2
j o b l i b ==1.4.2
k i w i s o l v e r ==1.4.5
l l v m l i t e ==0.39.1
ma t p l o t l i b ==3.9.0
ml−d type s ==0.2.0
numba==0.56.4
numpy==1.23.5
optp rob l ems==1.3
packag ing==24.0
pandas==1.5.3
p i l l o w ==10.3.0
p r o t obu f ==4.23.4
p yp a r s i n g ==3.1.2
python−d a t e u t i l ==2.9.0. pos t0
py tz==2024.1
s c i k i t − l e a r n ==1.5.0
s c i p y ==1.13.0
Shape l y ==1.8.5. pos t1
s i x ==1.16.0
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t e n s o r boa r d ==2.15.1
t e n s o r f l ow ==2.15.0
t e n s o r f l ow−e s t ima t o r ==2.15.0
t e n s o r f l ow− i n t e l ==2.15.0
t h r e a d p o o l c t l ==3.5.0
wrapt ==1.14.1
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