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Abstract

Humans are quicker to process a word (like “cat”) if they have previously seen a word
that is related (like “dog”). This decrease in reaction time compared to unrelated
words is known as semantic priming. Strongly related words result in stronger
semantic priming effects, whereas weakly related words result in weaker semantic
priming effects. The current thesis explored whether modern Large Language Models
(LLMs) can predict semantic priming in human lexical processing. Using the already
existing English subset of the Semantic Priming Across Many Languages (SPAML)
dataset of Buchanan et al., the similarity scores were generated with OpenAI’s gpt-
4o-mini model and its embeddings with text-embedding-3-small [BCC+25]. These
LLM scores assessed word pair relatedness based on either common association (e.g.,
doctor-nurse) or shared semantic features (e.g., deer-pony). To assess predictive
power, three multiple regression models were used to take multicollinearity into
account, including one model combining all six predictors, and two separate models
with both three similar predictors (Difference Score and Only Related Score). These
models revealed that LLM-derived predictors explained a significant portion of the
human priming effect. However, a large amount of variance remained unexplained,
suggesting that while LLMs can mimic certain human linguistic behaviors, their
current representation of word meaning does not fully align with the complex
cognitive processes underlying semantic priming. It may also be that the information
reflecting this alignment is present, but has not been fully captured by our current
predictive measures.
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1 Introduction

1.1 Semantic Priming

A fundamental characteristic of understanding human language is the influence of the
prior context on subsequent word processing. This is evident when exposure to one word
unconsciously prepares us to process a related word more efficiently. The psychological
finding, where the meaning of one stimulus influences the processing of another, is
known as semantic priming. It is the decrease in reaction time for target words that
are semantically related to a previously presented stimulus (i.e., cue), compared to an
unrelated stimulus [CGA+23]. People would react faster to the word “cat” if it is presented
shortly after the related word “dog” compared to an unrelated word, for example “bus”.
The semantic priming effect says something about semantic memory or the structure of
people’s mental lexicon, which can be seen as the dictionary of the human brain. Related
concepts have a stronger or closer connection with each other in our mental lexicon,
whereas unrelated concepts have weaker connections.

To understand the nature of these semantic relationships that give rise to priming,
researchers also focus on human performance in psycholinguistic tasks with computational
approaches. The paper of Mandera et al. discussed two types of distributional semantic
models (DSMs), known as count and predict models [MKB17]. These models are based on
the idea that words with similar meaning are used in a similar context. Count models, such
as Latent Semantic Analysis (LSA), build word representations based on counting word
co-occurrences in text, whereas prediction models, such as Word2Vec, use neural networks
to predict words in a given context, learning vector representations (embeddings) that
encode semantic meaning [MKB17]. The way these semantic relationships are encoded and
expressed can vary significantly across languages, influenced by differences in script, sylla-
bles, morphology, semantics, and broader cultural contexts [BCC+25]. The (associative)
link between words is often shaped by cultural norms or daily experiences. For instance,
words that seem closely related in the Dutch language and culture, such as “cheese” and
“snack” might share a strong association, because cheese is commonly consumed as a snack
or appetizer in the Netherlands. However, this particular association may not be as obvious
in other languages or cultures where cheese is not a typical snack. Such cross-linguistic
variations highlight the complexity of studying semantic representation.

1.1.1 Activation Theory

The activation theory of semantic processing proposed by Quillian (1968) is an influential
theory of how semantic priming developed [CL75]. His model conceptualized semantic
memory as an interconnected network of nodes, where each node represents a concept or
word. The activation spreading from two or more concepts continued until an intersection
was found. The intersection is the point where different concepts in the semantic network
converge, providing the basis for establishing a relationship between two or more concepts.
The interconnected nodes are linked by associative pathways, where the strength of these
pathways reflects the degree of relatedness between the concepts. A mechanism named
“attention mechanism” allowed a model to dynamically weigh the importance of different
words when processing information or generating an output. The weights are expressed in
the length of the pathways between two or more nodes in a network. The shorter a line, the
greater the relatedness. A node can have multiple connections, enabling them to be both a
cue and a target concept. When a cue (e.g., “red”) is encountered, its corresponding node

1



Figure 1: A schematic representation of concept relatedness in a stereotypical fragment of
human memory adapted from [CL75]. A shorter line represents greater relatedness.

in the semantic network becomes activated. This activation can spread to other connected
nodes using the associative pathways. Nodes representing closely related concepts (e.g.,
“color”, “fire”, “cherries”) receive more activation than unrelated concepts. For example in
Figure 1, the line from red-cherries is shorter and therefore, stronger than red-fire, because
fire can also be other colors.

If the presented target word (e.g., “cherries”) corresponds to a node that has already
received some pre-activation from the cue, its processing threshold is reached more quickly.
This means that there is less additional input or processing time needed to identify the
target. The resulting shorter reaction time for related words forms the priming effect.
Stronger associations lead to more activation spread and thus stronger priming.

1.2 Large Language Models (LLMs)

The recent introduction of Large Language Models (LLMs) is a game changer in the
field of artificial intelligence (AI). LLMs are generative mathematical models of the
statistical distribution of tokens of human-generated text. Such models are trained on
large text datasets, enabling them to learn and understand complex patterns in human
languages [Sha24].

Modern LLMs can be seen as sophisticated evolutions of the earlier mentioned predict
models in distributional semantics discussed by Mandera et al. [MKB17]. A key com-
ponent in many modern LLMs is already discussed in subsection 1.1.1: the attention
mechanism [CL75]. By weighing the importance of different words in the input when
processing information, an LLM is able to capture long-range dependencies and more
context-sensitive meanings generating the best possible response. LLMs are capable of
learning linguistic aspects, such as grammar, showing noticeable abilities in capturing
semantic relationships. This is done by the core engine of LLMs, also known as the neural
networks or artificial neural networks (ANNs). The foundational concept of ANNs took
inspiration from the structure and function of biological neural networks in the human
brain. Early models, such as the McCulloch-Pitts neuron (Shown in Figure 2), provided a
formal representation of an artificial neuron [MP43]. Their research questioned how the
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human brain could produce complex patterns through connected brain cells, or neurons.
One of their main findings was the comparison of neurons with a binary threshold to
Boolean logic (logical operations e.g., True, False, AND, OR). The McCulloch-Pitts neuron
consisted of interconnected processing units (analogous to neurons) that transformed
inputs through weighted connections (analogous to synapses) and activation functions,
which determined whether a unit was activated. McCulloch and Pitts (1968) demonstrated
the theoretical power of such networks, showing that they could compute any computable
function and implement fundamental logical operations like AND, OR, and NOT through
simple configurations [RN16].

Figure 2: The McCulloch-Pitts neuron representing an artificial neuron.

LLMs try to imitate the human brain by using the three different types of layers,
called the input layer, the hidden layers and the output layer (shown in Figure 3). The
input layer receives information and data, which are numerical representations of words
called vectors. Note that tokens are the linguistic units, while vectors are the mathematical
representations of these units. Each token is integrated into a vector in the LLM processing
pipeline. Next, the hidden layers perform the core computations. They capture complex
patterns by adjusting their internal weights during the training process based on the errors
on the training data. LLMs have a lot of hidden layers making them deep neural networks.
This ensures that they generate the desired final output in the last output layer.

Many LLMs are trained to predict the next word in a sequence given the preceding
context. Through this process, LLMs learn statistical patterns, grammatical structures,
and representations of word meaning and their relationships (as shown with the attention
mechanism). Words are internally represented as high-dimensional vectors, or embeddings,
where words with similar meanings or used in similar contexts are closer to each other

Figure 3: The three layers in Artificial Neural Networks (ANN) [But22].
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in the vector space. To determine the degree of semantic relatedness between words as
represented by their vectors, the cosine similarity is often calculated, which is a metric
measures of the cosine angle between the two vectors. Vectors that are closer together
(have a smaller angle) will have a higher cosine similarity, suggesting a stronger semantic
relationship.

1.3 Related Work

As mentioned before, semantic priming is the decrease in reaction time for a target word
that is semantically related to a previously presented stimulus word, compared to an
unrelated stimulus word. The nature of what exactly makes a semantically related pair has
been a central topic of investigation in psycholinguistics. In a meta-analysis of 26 studies,
Lucas demonstrated that automatic semantic priming can indeed occur even without
pre-existing word associations [Luc00]. It means that priming is not solely dependent on
how frequently words co-occur or how readily one word brings another to mind (strong
associations, e.g., doctor-nurse). Instead, purely meaning-based connections, such as those
based on shared semantic features (e.g., deer-pony), category membership, or functional
relationships, are sufficient to prepare target word processing. This finding challenged
models that viewed associative links as the primary or sole driver of automatic priming.
The meta-analysis showed that even when controlling for association values, ensuring
that semantically related pairs (e.g., deer-pony) had little or no associative strength,
a significant priming effect remained. For example, Lucas highlights the early work of
Fischler (1977), who specifically constructed cue-target pairs that were semantically
related, but had low word association values. The effects of semantic priming in Fischler’s
study were substantial (d = 0.79), but smaller than for pairs that were both semantically
and associatively related (d = 1.17) [Luc00]. This is highly relevant for the current thesis,
as it shows the importance of being able to capture the relationships purely semantic
(without association) to accurately predict human priming behavior.

Furthermore, she investigated “associative boost” where word pairs that are both
semantically and associatively related (e.g., doctor-nurse) tend to cause stronger prim-
ing effects than pairs that are only semantically related (e.g., deer-pony). Her analysis
confirmed the existence of associative boost. It suggests that although purely semantic
relationships are sufficient to cause priming, adding an associative link between words
significantly enhances the effect (on average doubling the effect size). This distinction is
crucial for understanding the mechanisms underlying semantic priming and for interpreting
data from priming experiments. For LLMs, the question of whether they treat internally
associated words differently from semantically related words has arisen.

To answer the above question about LLMs, robust, large-scale datasets on human
priming are needed. One such comprehensive dataset has been provided by a recent
research about semantic priming conducted by Buchanan et al. (2025) “Measuring the
Semantic Priming Effect Across Many Languages” (SPAML) [BCC+25]. They conducted
a study across 19 different languages collecting data from 25.163 adult participants (18+).
It involved a continuous lexical decision task (LDT) in which adult participants had to
indicate as quickly as possible whether a certain letter string forms an existing word or a
non-existing word (nonword). Some of the consecutively presented stimuli were critical
word pairs, where the first one of the sequence is called the cue and the second is called
the target.

This experiment consisted of approximately 800 trials with the combination word-word,
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word-nonword, nonword-word and nonword-nonword. The interval between the cue and
target words was approximately 500 ms. In addition to existing words and nonwords,
there was also a distinction between target words that were preceded by semantically
related or unrelated cue words. It is important to note that these underlying pairings
were not evident to the participants, as they were presented with a continuous stream
of individual letter strings, making a lexical decision for each one. All word pairs are
eventually categorized into related, unrelated or nonword.

The latter research will form the basis for the current thesis for several reasons. Firstly,
the dataset is large and utilizes 1.000 unique target words. Previous studies had too few
observations to reliably predict the priming effect. The study by Buchanan et al. provides
a robust and reliable estimate of the priming effect using a large dataset, which minimizes
noise and enables more stable calculations of the dependent variable for our predictive
models [BCC+25]. Secondly, the SPAML project was specifically designed to measure
item-level semantic priming effects, which is essential for the current thesis. Item-level
semantic priming means that the priming effect is examined, measured, and analyzed
for each individual cue-target pair rather than an average priming effect across all word
pairs [HPL+24]. For example, consider the pairs cat-dog and nurse-doctor. An analysis
focusing on the average effect would combine the priming scores of both pairs to report
a single mean priming effect. In contrast, an item-level analysis would treat each pair
individually, retaining separate priming scores for cat-dog and nurse-doctor. Item-level
semantic priming allows researchers to investigate why some pairs produce stronger
priming than others by correlating these individual priming scores with item-specific
properties. In addition, the explicit clear categorization, where each target is paired with
both a designated related cue and a designated unrelated cue, is suitable for testing the
predictive power of LLMs. The LLM assessment of these predefined related and unrelated
pairs can directly correlate with observed human priming magnitudes for those same
targets.

1.4 Large Language Models predicting human processing

The introduction of LLMs was not only interesting in the field of AI, but also in hu-
man cognition, especially in language processing. As Niu et al. mentioned, LLMs have
become a point of interest for cognitive scientists seeking to unravel the mysteries of
human cognition [NLB+24]. This interest stems from the remarkable capabilities LLMs
demonstrate in mimicking human-like performance on various cognitive tasks, including
aspects of language understanding, reasoning, and even sensory judgments. Niu et al.
highlighted that the relationship is bidirectional: cognitive science provides foundational
knowledge that shapes the design and improvement of LLMs, while the capabilities of
these models offer new perspectives that challenge and reshape our current understanding
of human cognition [NLB+24]. This raises the question: What kind of human behavior
can be explained and/or predicted by LLMs?

Earlier research has demonstrated that computational models, including earlier forms
of distributional semantics and more recent LLMs, can predict human similarity judgments
with accuracy. For instance, a study by De Deyne showed that vector space models can
capture the structure of human free association norms [DD24]. Similarly, other work by
Gerz et al. has highlighted the ability of LLM-derived embeddings to align with human
ratings of word similarity or relatedness [GVH+16]. These studies raise a further, critical
question: To what extent can such models also predict more subtle effects/behavioral
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measures, in particular semantic priming?
It is also important to acknowledge the differences in how LLMs and humans acquire

language. Humans typically learn language with far less explicit textual data than LLMs
are trained on, and human language is deeply embedded in a multimodal environment.
We have access to different types of input with our senses, such as visual, auditory and
social interaction, which are (for now) absent in standard LLMs. It is noteworthy that
standard LLMs are evolving towards multimodel LLMs, which can process information
from various modalities as humans can with their senses, such as noise, images and videos.
However, the interaction of advanced multimodal systems still differ significantly from
human learning. For many standard LLM applications, and particularly for the text-based
similarity judgments used in this research, the input remains unimodal. Furthermore,
the statistical patterns that an LLM extracts are language-specific. An LLM that is
trained primarily in the English language will develop representations that reflect English
linguistic and cultural patterns. The English patterns may differ significantly from the
patterns that an LLM would learn, for example, in Dutch. This highlights the importance
of taking into account the training data and the linguistic context when interpreting
LLM-derived measures.

However, when considering the question of what kind of human behavior LLMs
can explain or predict, the nature of the prompt we humans provide becomes a critical
determinant. Similarity in word relationship can be judged in different ways, such as
rhyme, number of common letters or context. The distinction between association-based
and feature-based similarity, previously detailed in Section 1.3, is important for the current
approach to capture relationship strength. For clarity, association-based means that a
word pair is related if they co-occur in similar situations or derive their meaning from
the context of the situation or sentence. Examples are cold-hot, spider-web or needle-
haystack. Relatedness in terms of feature-based is defined by shared semantic features,
such as deer-pony, cat-dog or guitar-violin. Both types of relationships can lead to priming,
however their results might differ depending on the specific task parameters. The difference
between association-based and feature-based are especially important when working with
LLMs. For instance, word embeddings capture a blend of associative and feature-based
information due to their training on co-occurrence statistics [DD24]. In contrast, asking
a specific question to an LLM allows for a more targeted assessment of similarity. For
example, the words “cat” and “table” are nothing alike and will have a low chance of being
used in the same context. However, we can still expect that cat-table would have a higher
similarity score when using a feature-based prompt compared to an association-based
prompt. This is because they both have four legs and, therefore have a shared semantic
feature.

Given the previous considerations, the current thesis provides several key expectations.
Firstly, it is expected that LLM-derived similarity measures obtained through direct
prompting, will offer significant predictive power for human semantic priming effects.
This can potentially surpass the general similarity captured by embeddings. Secondly, we
hypothesize that our LLM predictors designed to capture association-based relatedness
might show a stronger overall relationship with the observed priming data compared to
the purely feature-based predictors. The reasoning comes from the paper of Lucas in
which associative links provide a significant boost in human priming strength over purely
semantic links [Luc00]. Therefore, if our LLM successfully captures this cognitive disparity
between the two semantic relationships, we expect its association-based scores to be a
more powerful predictor of the priming effect. Furthermore, given that the experimental
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priming effect is defined as the difference in reaction times (RT) between related and
unrelated words, we hypothesize that LLM-derived predictors calculated as the difference
score will be more accurate than predictors based solely on the similarity of the related
pair [CGA+23]. In addition, we take some statistical issues into account when combining
all the different predictors together in one analysis, which is also known as multicollinearity.
It may lead to challenges in disentangling their unique contributions and could potentially
influence the results for some predictors.

Therefore, this paper will try to answer the research question: “To what extent can
similarity predictions derived from Large Language Models explain semantic priming
effects in human lexical processing?”

1.5 Thesis overview

The current thesis contains an experiment using multiple predictors derived from an
LLM to explain semantic priming effects in human lexical processing. Section 2 details
the methodology that is divided into multiple different subsections, which contains a
description of the experimental dataset, including the priming effect, by Buchanan et
al. [BCC+25]. In addition, it gives a conceptual overview of how the LLM-based predictors
were generated with different prompts and an in-depth explanation of the data processing
steps in RStudio. The calculations needed to create the final set of predictors used
in this study will also be presented. Following, Section 3 presents the results of the
statistical analyses, which includes the correlation analyses and the results of three distinct
multiple linear regression analyses to address potential multicollinearity and better isolate
conceptual contributions. Afterwards, Section 4 will be the general discussion section. The
results of the experiment is interpreted, any limitations are discussed and recommendations
for future research is given. Finally, the thesis ends with a conclusion in Section 5 about
the results of the experiment to answer the main research question.

2 Methodology

The experimental data for this study was obtained from the original research by Buchanan
et al. [BCC+25]. While they collected data across 19 different languages, the current
thesis focuses exclusively on the English dataset derived from SPAML. The English subset
consists of 1.000 unique English target words and for each of these target words the
SPAML project also included 1.000 unique English cue words. The data for the English
subset was derived from the analysis of 5.964 adult participants. It is important to note
that a specific word from a set could serve as a cue in one pair and as a target in another,
allowing for a varied set of linguistic stimuli. An important aspect of the current research
is the pairing strategy with both a semantically related and unrelated cue for each target
word. A related cue had a meaningful connection to the target, whereas a unrelated cue
word was chosen to be a control condition without any connection to the target. This is
how the in total 2.000 cue-target pairs were formed and labeled as related or unrelated
pairs to perform the lexical decision task for the English SPAML project. The initially
selection and matching of these related and unrelated cues to targets was performed using
word embeddings. Specifically, the cosine similarity between word embeddings was used.
Cosine similarity measures the cosine of the angle θ between two word vectors, A and B,
in the vector space. A cosine similarity value closer to 1 indicates a smaller angle and thus
higher similarity, while a value closer to 0 indicates greater dissimilarity. A value closer to
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-1 would indicate opposite meanings (this is less common for standard word embeddings).
The formula looks as follows:

similarity(A,B) = cos(θ) =
A ·B

∥A∥∥B∥
=

∑n
i=1 AiBi√∑n

i=1 A
2
i

√∑n
i=1 B

2
i

In the formula, the dot product of vectors A ·B is calculated as
∑n

i=1AiBi, where Ai

and Bi are the i-th components of vectors A and B. ∥A∥ (and similarly ∥B∥) denotes

the Euclidean norm or magnitude (length) of vector A, calculated as
√∑n

i=1 A
2
i . This was

used to identify comparable items across the various languages studied by Buchanan et
al. [BCC+25].

Buchanan et al. utilized the embedding-based similarity approach not only for con-
structing the English stimuli, but also as a method to identify and create comparable
stimulus items across the diverse languages included in their broader cross-linguistic
study [BCC+25]. For their stimulus selection and initial similarity calculations, they
relied on pre-trained fastText word embeddings, which are mainly derived from the Open-
Subtitles corpus via the subs2vec project (by Paridon and Thompson (2021) as cited
by Buchanan et al.). This ensured a degree of consistency in the relational strength of
related pairs across different linguistic contexts. It is important to note that while the
SPAML stimuli were selected based on similarity scores from these fastText embeddings,
the current thesis uses embeddings for constructing its own cosine similarity predictors
generated by OpenAI’s text-embedding-3-small model [Ope25]. The focus of this thesis is
therefore on evaluating the predictive power of text-embedding-3-small based similarities
(and prompted gpt-4o-mini judgments) for the human priming effects observed with the
SPAML stimuli. The current thesis will only use the English data where 1.000 related and
1.000 unrelated unique pairs form the basis for deriving the experimental priming effect.

2.1 Data Processing

As mentioned, the data for the thesis comes from the study by Buchanan et al. and
was provided as a CSV file named en SPAML.csv [BCC+25]. For the data processing
and analyses in this study, R version 4.3.3 was used using RStudio. The entire analysis
process is divided into multiple R scripts, which can be executed in the correct order
using a master script, Master.R, to provide a structured and reproducible approach. The
complete R code utilized for this research is available through the link in the Appendix or
click here.

The first script CodeSPAML.R initiates the data handling process. Firstly, it reads
the CSV file named “en SPAML.csv”, which contains the experimental data from Buchanan
et al. [BCC+25]. The contents are saved into a data frame called en SPAML. Then it
reads another CSV file named “en words.csv”, which contains information about the word
pairs, including their type as discussed in Section 1.3 (related, unrelated, nonword) and
a pre-calculated cosine similarity score between the cue and target words of each pair.
These two data frames, en SPAML and the data from “en words.csv” serve as essential
inputs for the next script API.R.

2.2 Prompting Methodology

The subsequent script, API.R, is responsible for generating the new LLM-derived similarity
scores used as predictors. As mentioned in Section 2, the original SPAML study utilized
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fastText-based similarities for stimulus construction. However, the current thesis will
be calculating the cosine similarity scores again. A key reason for this decision was to
ensure consistency across the LLM-derived measures, as our second type of predictor
also utilizes an OpenAI model (see below). By employing an embedding model from the
same provider as the generative model used for prompted judgments, we aim for a more
reliable comparison. To enable RStudio to interact with OpenAI’s services, an API key was
configured within the R environment. API.R generates two runs for two primary types
of predictors to investigate the relationship between LLM-derived semantic similarity and
human priming effects:

1. Cosine Similarity from Embeddings: The generated predictor is based on word
embeddings generated by OpenAI’s text-embedding-3-small model. The similar-
ity between word pairs is then calculated using the cosine similarity formula, as
previously detailed.

2. LLM Similarity Scores via Prompting: For this predictor, similarity ratings were
obtained directly from an LLM using OpenAI’s API with the gpt-4o-mini model.

To ensure that only relevant word pairs were processed for the LLM-based judgments,
the CodeSPAML.R script is sourced at the beginning of API.R. This step filters out
nonword pairs from the en SPAML data, as the focus of this investigation is exclusively
on existing words, categorized as either related or unrelated pairs. Two distinct prompt
types were utilized inspired by the paper of De Deyne, one focusing on association-based
relatedness and the other on feature-based relatedness [DD24]:

• Association-Based Prompt: “In this study we want to investigate the degree to
which English words can be considered related. We will present you with two words:
‘, cue word, ’ and ‘, target word, ’. Words are related if they co-occur in similar
situations and derive their meaning from the context in which the word occurs. Your
task is to rate the relatedness of a word pair based on how often these two words
are used together in everyday language. Use a numerical rating from 0 – 1 with
3 decimals. A rating of 0 means the pair has no possible relation/association in
everyday language. A rating of 1 means that the pair has the highest possible degree
of relation/association. Evaluate relatedness solely in regard to the co-occurrence
patterns and not on meaning of a word. For example, the word pair cold - hot
should have a high relatedness of 0.887, since they co-occur in similar situations.
However, frog - square should have a low relatedness of 0.112, since they are not
used in similar situations. Only return a numeric value, nothing else.”

• Feature-Based Prompt: “In this study we want to investigate the degree to which
English words can be considered related. We will present you with two words: ‘,
cue word, ’ and ‘, target word, ’. Words must have shared semantic features of words
to be considered related. The relationship is based on shared properties, attributes
and categories (e.g., ‘has four legs’, ‘is a vehicle’, ‘is edible’). Explicitly ignore word
associations and co-occurrence in language (e.g., do not rate ‘hot’ and ‘cold’ high
because they are often used in daily language). Focus solely on overlapping features.
Use a numerical rating from 0 – 1 with 3 decimals. A rating of 0 means the pair has
no possible relation in semantic features. A rating of 1 means that the pair has the
highest possible degree of relation in semantic features. For example, the word pair
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cat - dog should have a high relatedness (eg., 0.887), since their features are similar
(animal, pet, furry, has four legs). However, cat - bus should have a low relatedness
(eg., 0.112), since they share very few features. Only return a numeric value, nothing
else.”

For the prompt-based similarity, the gpt-4o-mini model was instructed to provide
a similarity score calculated for each word pair individually. The individual processing
approach was chosen to ensure that each judgment was made independently, minimizing
potential contextual carry-over effects that might arise if multiple pairs were presented
simultaneously. In constructing the input for the LLM, the specific cue and target word
for the current evaluated pair are inserted into predefined placeholders within the prompt
template, such as “, cue word, ” and “, target word, ”. It was asked to give a numerical
rating with 3 decimals for each word pair on a scale from 0 (no possible relation) to
1 (highest possible degree of relation). To enhance clarity and consistency of the API
responses, the prompts include examples and explicitly requested only a numeric value as
output.

As mentioned earlier, the R script API.R runs two times for each distinct prompt.
Each of the two distinct prompt types (association-based and feature-based) was sub-
mitted twice for every word pair, resulting in two separate similarity ratings per prompt
type. An example of the previous mentioned variability over two runs is shown in Ta-
ble 1 with both association-based and feature-based prompt for the first five pairs. The
reasoning behind the repeated measures was to capture and reduce minor variability
by averaging the two ratings for each prompt-pair combination in a later stage. These
runs are saved into separate CSV files containing the four columns “pair”, “type”, “co-
sine similarity” and “prompt similarity”. These separate files are saved under the names:
“results association1.csv”, “results association2.csv”, “results feature-based1.csv”, and “re-
sults feature-based2.csv”.

Cosine Similarity Association-Based Feature-Based

Pair Run 1 Run 2 Run 1 Run 2 Run 1 Run 2

paradise-father 0.253* 0.253* 0.200 0.200 0.100 0.100
spring-autumn 0.463* 0.464* 0.742 0.822 0.800 0.800
fidelity-devotion 0.559* 0.559* 0.872 0.874 0.850 0.850
bridge-tunnel 0.450* 0.450* 0.764 0.786 0.552 0.600
excellent-band 0.238* 0.238* 0.125 0.245 0.143 0.112

Table 1: Variability of LLM-derived similarity scores across two runs for selected word
pairs, showing cosine similarity, association-based and feature-based.

*Note: While the cosine similarity scores between repeated runs were generally almost
identical, minor variations could be observed at a high level of decimal precision.

Unlike the prompt-based similarity scores, the cosine similarity derived from word
embeddings (text-embedding-3-small) is based on a standard calculation that is inde-
pendent of the specific prompt type used. Therefore, the cosine similarity value for any
given word pair remains constant, regardless of whether the pair is evaluated using an
association-based or a feature-based prompt. Although all four originally generated CSV
files contained the cosine similarity column, we consider it redundant in the feature-based
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files. It will be identical to that in the association-based files for the same word pairs.
As a result, for subsequent analyses involving individual feature-based predictors, this
particular cosine similarity column from the feature-based runs will be ignored. Their
identical scatter plots can be seen in Appendix Figure 9 for more clarity and as proof.

2.3 Averaging Results and Correlation Calculation

As mentioned, for each condition (association-based and feature-based), the two result
files were combined. From the combined data, the average “prompt similarity” and
average “cosine similarity” were calculated for each unique word pair and type. Note
that the cosine similarity column in the feature-based files will be ignored (explained
in Section 2.2). The averaged results were then saved into two new CSV files: “aver-
age results association.csv” and “average results feature-based.csv”. These files contain
the same four columns as earlier before the merging. Finally, after averaging the data the
Pearson correlation coefficients were calculated between the “mean cosine similarity” and
the “mean prompt similarity” for all pairs, only related pairs, and only unrelated pairs. In
addition, the correlation between run 1 and 2 for both prompts are also calculated to ensure
reliability. This was done separately for the association-based and feature-based conditions
in the R scripts AssociationCorrelation.R and FeatureBasedCorrelation.R.

2.4 Predictor Variables

After establishing the averaged similarity scores for both association-based and feature-
based prompts, the next step involves transforming these into a set of distinct predictor vari-
ables derived from the LLM. This was done in the Priming.R script creating two new CSV
files named “predictors priming association.csv” and “predictors priming feature based.csv”.
For each target word in the dataset we generated predictors that reflect two main types
of information:

1. Only Related: The related predictors quantify the similarity score only between
the target word and its semantically related cue, either through embeddings or
prompted LLM responses. It represents the most direct and intuitive test of the
hypothesis that a stronger semantic link leads to a stronger priming effect. By
including the simple measurement of the Only Related score, we can really prove
that the Difference Score approach offers superior predictive power (as expected).
Unrelated word pairs are ignored for this specific predictor, representing the direct
semantic proximity captured by embeddings.

2. DifferenceScores: The difference predictors aim to more closely mirror the experi-
mental calculation of the priming effect itself. For each target word, we calculated
the difference between the LLM’s similarity rating for its related cue-target pair and
its unrelated cue-target pair.

DifferenceScore = related− unrelated

For example, if we have the target word “dog”, which is paired with the related cue
“cat” and the unrelated cue “table”, the difference score would be calculated as:

DifferenceScore = Similarity(dog, cat) − Similarity(dog, table)
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A larger positive difference score indicates that the LLM perceives a much stronger
relationship for the related pair compared to the unrelated control. This contrastive
approach was chosen because it mirrors the calculation of the priming effect itself,
which is also defined as the difference (in reaction times) between a related and an
unrelated condition (further discussed in Section 2.5). By constructing the predictor
this way, we hypothesize that it more accurately captures the variance in the model.

In total, there are six distinct predictors, which are divided into two embedding-based
cosine similarity predictors derived from text-embedding-3-small and four prompt-based
similarity predictors derived from gpt-4o-mini (two for association-based and two for
feature-based). This results in the following six key predictor variables that were prepared
for the multiple regression analysis. Prefixes “A.” denote association-based, and “Fb.”
denote feature-based:

1. RelatedCos: Cosine similarity for the related word pairs.

2. DifferenceCos: Difference score using cosine similarity for word pairs.

3. A.RelatedPrompt: Prompt-based similarity (association-based) for the related pair.

4. A.DifferencePrompt: Difference score using prompt-based similarity (association-
based).

5. Fb.RelatedPrompt: Prompt-based similarity (feature-based) for the related pair.

6. Fb.DifferencePrompt: Difference score using prompt-based similarity (feature-based).

These six predictors were then merged into a single CSV file “PrimingPredictors.csv”
by R script Predictors.R.

2.5 Priming Effect

The dependent variable for the current thesis is the observed semantic priming effect,
derived from the reaction time (RT) data collected by Buchanan et al. only for the
English word pairs [BCC+25]. To account for individual differences in overall response
speed and to normalize the distribution of reaction times (RTs), the raw RTs were
Z-transformed [BCC+25]. This transformation was performed for each participant individ-
ually. For each unique target word, the mean Z-transformed RT (zRT) was then calculated
separately for the two conditions related and unrelated:

1. zRTMean related: the mean zRT when the target word was preceded by its semanti-
cally related cue.

2. zRTMean unrelated: the mean zRT when the same target word was preceded by its
semantically unrelated cue.

The final item-level priming effect for each target word was then computed as the
difference between these two mean zRTs:

zRT Priming Effect = zRTMean unrelated - zRTMean related

A positive value for zRT Priming Effect indicates that the average responses to target
words were faster when they were preceded by a related cue compared to an unrelated cue.
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The zRT Priming Effect score, calculated per target word, serves as the primary outcome
variable that the LLM predictors aim to explain. This observed priming effect was merged
with the LLM-derived predictors for each target word into a final dataset, as detailed
in Section 2.4 in the “PrimingPredictors.csv” file, which forms the direct input for the
multiple regression analyses detailed in the subsequent sections.

2.6 Multiple Regression Analysis

To assess the predictive power of the LLM-derived scores, a series of Multiple Regression
Analyses (MRA) were performed using the R script MRA.R on the “PrimingPredic-
tors.csv” dataset. The dependent variable for all analyses is the zRT Priming Effect.

The primary analysis involved a single multiple linear regression model specified to
predict the zRT Priming Effect using all six predictors simultaneously named in section 2.4.
The general form of this regression equation is:

Y = β0 + β1X1 + β2X2 + . . . + β6X6 + ϵ

Here Y is the zRT Priming Effect, X1, . . . , X6 are the six predictor variables listed
above, β0 is the intercept, β1, . . . , β6 are the regression coefficients for each predictor, and
ϵ is the error term. This was implemented using a standard RStudio function called lm(),
which is used to fit linear models to data frames in the R Language [R C23]. The formula
is constructed as follows:

zRT_Priming_Effect ~ RelatedCos + DifferenceCos +

A.RelatedPrompt + A.DifferencePrompt +

Fb.RelatedPrompt + Fb.DifferencePrompt

The output of the multiple regression analysis, including the estimated coefficients (β)
for each predictor, their standard errors (Std. Error), t-values, and corresponding p-values,
is also presented in a new CSV file named “multiple regression table.csv”. Additionally, the
overall model fit statistics, such as R-squared (R2), Multiple R-squared, and the F-statistic
for the model were obtained to assess the proportion of variance in the zRT Priming Effect
explained by the set of predictors [R C23].

Given the overlap between predictors (e.g., between a Difference Score and its corre-
sponding Only Related score), we fitted two additional regression models to avoid issues
with multicollinearity. Multicollinearity can increase standard errors and make it difficult
to distinguish the unique contributions of individual predictors in a combined model. This
topic will be discussed in more detail in Section 3.4.1. The first additional model included
only the three Difference Score predictors, while the second included only the three Only
Related Score predictors. By grouping similar predictor types, it became possible to more
clearly assess the unique contribution of each predictor group to the priming effect, without
the influence of the other group.

3 Results

This section presents the results of the statistical analysis conducted to investigate the
relationship between the similarity measures derived from the LLM and the semantic
priming effects (zRT Priming Effect). First, the results of the correlation analyses between
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the cosine similarity and prompt similarity for both prompts are detailed. Additionally,
the descriptive statistics for the primary outcome variable and the generated predictors
will be presented. The next subsection will show the results of the correlation analyses
between the LLM predictors and the priming effect, followed by the outcomes of the three
multiple linear regression analyses.

3.1 Internal Correlations of LLM-Derived Measures

The consistency between the two data collection runs for prompt-based similarity, and
the relationship between averaged prompt similarity and averaged cosine similarity, were
examined for both the association-based and feature-based prompt conditions (note that
the cosine similarity for both distinct prompts is identical). This was done in the earlier
mentioned R scripts AssociationCorrelation.R and FeatureBasedCorrelation.R.

To assess the reliability of the similarity scores generated by the LLM, Pearson
correlations were calculated between the outcomes of the first and second run for each
measure. For the prompt-based similarity scores, the correlation between Run 1 and Run
2 was very high for the association-based prompt (r = .99). A similarly high correlation
was found for the feature-based prompt (r = .99). The embedding-based cosine similarity
scores also demonstrated consistency across the two runs, with a correlation of r = .99.
These high correlations between runs indicate a strong consistency in the LLM’s responses
across repeated evaluations with the same prompt. The findings show the reliability of the
measures for further analysis after averaging. The almost perfect correlation for cosine
similarity confirms its near-deterministic nature when derived from the same embeddings.

The overall correlation between the averaged mean cosine similarity and the averaged
mean prompt similarity for association-based measures was r = .85. When considering
only related pairs, the correlation was r = .28, and for unrelated pairs, it was r = .31.

The overall correlation between the averaged mean cosine similarity and the averaged
mean prompt similarity for feature-based measures was r = .82. For related pairs, this
correlation was r = .20, and for unrelated pairs, it was r = .25. For more clarity, the
Pearson correlation coefficients (r) that are discussed above are presented in Table 2.

Correlation Type Association-Based Feature-Based

Correlations based on Mean Scores
Overall .85 .82
Only Related Pairs .28 .20
Only Unrelated Pairs .31 .25

Correlations between Runs
prompt similarity .99 .98
cosine similarity .99 .99

Table 2: Pearson Correlations (r) between Cosine Similarity and Prompt Similarity
Measures.

3.2 Descriptive Statistics

The experimental semantic priming effect (zRT Priming Effect) was calculated as the
difference between mean Z-transformed reaction times to unrelated and related targets.
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This showed a mean of 0.12 (SD = 0.15, min = -0.66, max = 0.94) across the 1.000 unique
target words in the data. The descriptive statistics for the six predictors are presented in
the Table 3.

Predictor Observations Mean SD Min Max

RelatedCos 1000 0.54 0.11 0.16 0.90
DifferenceCos 1000 0.29 0.13 -0.16 0.70
A.RelatedPrompt 1000 0.79 0.13 0.05 1.00
A.DifferencePrompt 1000 0.65 0.16 -0.11 0.95
Fb.RelatedPrompt 1000 0.74 0.21 0.00 1.00
Fb.DifferencePrompt 1000 0.66 0.21 -0.16 1.00

Table 3: Descriptive Statistics for LLM-Derived Predictor Variables

As shown in Table 3, the mean score for RelatedCos was 0.54 (SD = 0.11), with scores
for related pairs ranging from 0.16 to 0.90. The corresponding DifferenceCos (M = 0.29,
SD = 0.13) suggests that related pairs generally had a higher cosine similarity than their
unrelated counterparts for the same target, as expected.

For the prompt-based predictors derived from the LLM, the Only Related scores
(A.RelatedPrompt: M = 0.79, SD = 0.13 and Fb.RelatedPrompt: M = 0.74, SD = 0.21)
were generally high, suggesting that the gpt-4o-mini model, when prompted, tended to
rate the “related pairs” as indeed quite related. These results align with the experimental
design. The standard deviations, particularly for Fb.RelatedPrompt (SD = 0.21), indicated
a reasonable degree of variability in these ratings, implying that the LLM perceived varying
strengths of relatedness across different related pairs. The Fb.RelatedPrompt showed
a slightly lower mean, but a larger standard deviation compared to A.RelatedPrompt.
This suggests that the feature-based prompt might have led to more diverse or more
strict ratings. The feature-based prompt explicitly instructed the model to focus solely
on overlapping features and to explicitly ignore word associations and co-occurrence,
whereas the association-based prompt allowed for ratings based on broader contextual co-
occurrence. Overall, the results showed that there is agreement between the experimental
definition of relatedness and the assessment of the LLM.

The Difference Score predictors (A.DifferencePrompt: M = 0.65, SD = 0.19 and
Fb.DifferencePrompt: M = 0.66, SD = 0.21) also had positive means, indicating that
the LLM rated the related cue as more similar to the target than the unrelated cue.
An important finding from Table 3 is that the minimum values for all Difference Score
predictors were negative (DifferenceCos: Min = -0.16, A.DifferencePrompt: Min = -0.11
and Fb.DifferencePrompt: Min = -0.16). A negative difference score means that the LLM
rated the unrelated pair as more similar to the target than its designated related cue.
These occurrences highlight the potential differences between the relatedness computed by
the LLM and the assumed relatedness in the experimental data. It can also be explained
by the noise in the similarity measures.

3.3 Correlation Analyses for all six Predictors

To examine the relationships between the LLM-derived predictors and the zRT Priming Effect,
the Pearson correlation coefficients (r) were calculated. These correlations are visualized in
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the six individual scatter plots for each predictor. Starting with the two cosine predictors
in Figure 4 below:

Figure 4: Two scatter plots showing the relationship between the zRT Priming Effect
and two cosine similarity-based predictors. The plots visually demonstrate that the
DifferenceCos measure has a notably stronger positive correlation with the priming effect.
Each point represents a word pair, and the red line indicates the linear regression fit.

The DifferenceCos predictor, representing the difference in embedding-based cosine
similarity between related and unrelated cue-target pairings, showed a positive relationship
with the zRT Priming Effect. The regression line indicated that a larger difference in
cosine similarity tends to be associated with a stronger priming effect. For the Related-
Cos predictor, which reflects the direct cosine similarity of only the related cue-target
pair, the correlation with the priming effect was quite lower compared to the previous
predictor showing a weaker relationship. Comparing these two embedding-based measures,
the DifferenceCos predictor exhibited a somewhat stronger linear relationship with the
experimental priming effect than the RelatedCos predictor.

Now we continue with the two association-based predictors in Figure 5. The predictor
A.DifferencePrompt demonstrated a comparable Pearson correlation to DifferenceCos. The
corresponding scatter plot visually confirms this positive association. The A.RelatedPrompt
predictor showed a weaker correlation with the priming effect, showing a less clearly
positive trend. Within the association-based measures, similar to the cosine predictors,
the difference score (A.DifferencePrompt) showed a stronger correlation with priming
compared to its counterparts based solely on the related pair (A.RelatedPrompt).
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Figure 5: Two scatter plots showing the relationship between the zRT Priming Effect and
two association-based predictors. The plots clearly illustrate that the A.DifferencePrompt
is a stronger predictor of the priming effect. Each point represents a word pair, and the
red line indicates the linear regression fit.

Lastly, the two feature-based predictors in Figure 6 show with both scatter plots a low
Pearson correlation. Again, the Fb.DifferencePrompt predictor showed a stronger positive
relation compared to Fb.RelatedPrompt. However, they both have a very weak positive
trend. The Fb.RelatedPrompt predictor showed the weakest correlation of all predictors,
confirming a nearly straight line.

Figure 6: Two scatter plots showing the relationship between the zRT Priming Effect and
two feature-based predictors. Both plots demonstrate that the feature-based judgments
have a straight line, showing almost no ability to predict priming effect. Each point
represents a word pair, and the red line indicates the linear regression fit.

In summary, these correlations suggest that all LLM-derived measures show a positive
linear relationship with human semantic priming. The Difference Score calculation tends
to have a slightly stronger correlations than the Only Related scores across both cosine
and prompt-based measures. Furthermore, predictors based on cosine similarity and
association-based judgments appear to capture more variance in the priming effect than
those based on feature-based judgments.
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3.4 Multiple Linear Regression Analysis

To assess the combined predictive power of all six LLM-derived predictors and their
contributions to explaining the zRT Priming Effect, a multiple linear regression model was
fitted. The model included all six predictors: RelatedCos, DifferenceCos, A.RelatedPrompt,
A.DifferencePrompt, Fb.RelatedPrompt, and Fb.DifferencePrompt. The results of this
regression analysis are summarized in Table 4:

Predictor Estimate Std. Error t value Pr(> |t|)

(Intercept) 0.11 0.04 2.70 0.00699 **
RelatedCos -0.19 0.09 -2.18 0.02987 *
DifferenceCos 0.32 0.08 4.04 5.70e-05 ***
A.RelatedPrompt -0.18 0.10 -1.75 0.08107 .
A.DifferencePrompt 0.34 0.08 4.17 3.31e-05 ***
Fb.RelatedPrompt 0.09 0.11 0.79 0.43283
Fb.DifferencePrompt -0.19 0.11 -1.73 0.08390 .

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.15 on 993 degrees of freedom

Multiple R-squared: 0.06926, Adjusted R-squared: 0.06363
F-statistic: 12.31 on 6 and 993 df, p-value: 2.098e-13

Table 4: Multiple Linear Regression Results Predicting zRT Priming Effect.

Examining the overall statistical significance of the multiple linear regression model,
the F-statistic serves as a key indicator. The analysis showed a F-statistic value of 12.31,
which represents the ratio of the variance explained by the model to the unexplained
variance (error). A higher F-value generally suggests a better model fit. Looking at both
degrees of freedom, the first degree of freedom (6) is the number of predictors in the
model. The second degree of freedom (993) is the number of observations minus the
number of estimated parameters (number of observations - number of predictors - 1 for the
intercept). The p-value associated with this F-statistic is extremely small (p = 2.098e-13).
Therefore, we reject the null hypothesis that all regression coefficients (excluding the
intercept) are equal to zero. This indicates that the overall regression model is statistically
significant, (F (6, 993) = 12.31, p < .001), which suggests that the set of six LLM-derived
predictors, when considered together, collectively explains a portion of the variance in the
zRT Priming Effect.

Multiple R-squared (R2 = 0.06926 ≈ 7.0%) is a crucial measure of the explanatory
power of the model. It means that about 7.0% of the total variation in the zRT Priming Effect
between the different target words can be explained or predicted by the combination of
the six predictors. Additionally, it also means that there is still 93% of the variance in
the priming effect that is not explained by the current set of predictors. The Adjusted
R-squared is an adjusted version of R2 that takes into account the number of predictors in
the model. R2 will always remain the same or increase if there are more predictors added.
The Adjusted R² (6.4%) is slightly lower than the Multiple R2 (7.0%), indicating that
not many unnecessary predictors were added.

Looking at the contributions of the individual predictors within the multiple regression
model, several patterns emerge (see Table 4). The A.DifferencePrompt score, reflecting
the associative difference between related and unrelated pairs, is a statistically significant
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positive predictor of the zRT Priming Effect (β = 0.34, SE = 0.08, t(993) = 4.17, p <
.001). This indicates that a larger perceived associative difference by the LLM is uniquely
associated with a stronger priming effect, even when controlling for other predictors.
Similarly, the DifferenceCos predictor, based on the difference in embedding cosine
similarity, also emerged as a significant positive predictor (β = 0.32, SE = 0.08, t(993) =
4.04, p < .001). This suggests that a greater difference in cosine similarity between related
and unrelated pairs also uniquely predicts a larger priming effect.

Interestingly, the RelatedCos predictor showed a significant negative relationship with
the priming effect (β = −0.19, SE = 0.09, t(993) = −2.18, p = .030). It implies that,
when controlling for the other variables in the model, a higher cosine similarity for only
the related pair is associated with a weaker priming effect. This finding could indicate
complex interactions or suppressor effects, possibly due to a strong linear relationship
with the DifferenceCos measure. This is also known as multicollinearity, which will be
further discussed in Section 3.4.1.

Two other prompt-based predictors showed trends towards statistical significance.
The A.RelatedPrompt had a negative coefficient that approached significance levels
(β = −0.18, SE = 0.10, t(993) = −1.75, p = .081). This negative estimate implies that,
when controlling for all other predictors in the model, for every 1.0 unit increase in the
A.RelatedPrompt score, the zRT Priming Effect is expected to decrease by 0.175 units.
This suggests that a higher perceived associative relatedness of the cue-target pair alone
might be associated with a weaker priming effect, which is possibly due to multicollinearity
issues that will be discussed in Section 3.4.1. Similarly, the Fb.DifferencePrompt predictor
also showed a trend towards significance with a negative coefficient (β = −0.19, SE =
0.11, t(993) = −1.73, p = .084), indicating that a larger feature-based difference perceived
by the LLM might be associated with a weaker priming effect. This finding for a difference
score, especially a feature-based one, could be influenced by the complex interplay of
predictors within the model.

The Fb.RelatedPrompt predictor (β = 0.09, SE = 0.11, t(993) = 0.79, p = .433) was
not found to be statistically significant in the primary multiple regression model, since
p > .05. It means that once we already accounted for the effects of the other five predictors,
Fb.RelatedPrompt did not provide any additional, unique information to help explain the
differences in zRT Priming Effect.

An examination of the model’s residuals provided insights into the model’s fit (see
Figure 7). The residuals ranged from a minimum of -0.75 to a maximum of 0.77, with
a median of -0.01, which is very close to zero. The first quartile (1Q) was -0.09 and the
third quartile (3Q) was 0.08. Overall, the distribution suggested that the residuals were
approximately symmetrically distributed around zero.

3.4.1 Multicollinearity

Multicollinearity arises when there is a strong linear relationship between two or more
explanatory variables in a regression model. This phenomenon is generally considered
unfavorable in regression analyses as it can lead to less precise or unstable estimates of
the individual regression coefficients. When predictors are highly correlated, they provide
redundant information, making it difficult for the model to disentangle their unique
contributions to the explained variance in the dependent variable [Pau06].

In the primary multiple regression analysis, the simultaneous inclusion of both
Only Related scores and Difference Scores (for both cosine similarity and prompt-
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Figure 7: Histogram of the residuals from the multiple linear regression all six predictors
model predicting the zRT Priming Effect. The data follows a roughly normal bell-shaped
distribution and is centered at zero, showing a well-fitted linear regression model.

based similarity) raises consideration of multicollinearity. The Difference Scores are
mathematically constructed using its corresponding Only Related score (formula: Differ-
enceScore = RelatedScore - UnrelatedScore). The Only Related predictors (RelatedCos,
A.RelatedPrompt and Fb.RelatedPrompt) and the Difference Score predictors (Differ-
enceCos, A.DifferencePrompt and Fb.DifferencePrompt) are very similar, because the
Difference Score depends directly on what the Only Related predictors do. If the scores of
the Only Related predictors are high, the predictors of the Difference Score will generally
also be high.

A notable finding in the primary multiple regression analysis was the statistically
significant negative coefficient for RelatedCos (β = −0.19), despite its positive correla-
tion with the zRT Priming Effect. A higher direct cosine similarity of the related pair
associated with a weaker priming effect can potentially be explained by the presence of
multicollinearity. In a multiple regression model, the unique contribution of each predictor
is assessed. The DifferenceCos predictor, which exhibits a strong positive and significant
effect (β = 0.32), represents the contrast in cosine similarity between the related and
unrelated conditions. This measure appears to effectively capture the positive prediction
arising from the cosine similarity contrasts.

The DifferenceCos predictor captures the primary positive relationship with the
priming effect. Once the model accounts for this dominant predictor, it then assesses
the remaining contribution of RelatedCos. This is where a suppressor effect, a statistical
byproduct of multicollinearity, becomes evident [Bec12]. A high RelatedCos score that is
not accompanied by a correspondingly high DifferenceCos score is quite unusual (because
DifferenceCos = RelatedCos - UnrelatedCos). This scenario can only occur when the
similarity of the unrelated control pair (UnrelatedCos) is also unusually high. Since high
similarity to an unrelated word is associated with a weaker priming effect, the unique
information that RelatedCos adds becomes negatively correlated with priming. Therefore,
the negative coefficient highlights that DifferenceCos is the more comprehensive and
dominant predictor of the similarity contrast relevant to priming. It does not necessarily
imply that higher RelatedCos in isolation hinders priming.
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3.4.2 Two Separate Multiple Linear Regression Analyses

To more clearly demonstrate the predictive utility of the different types of LLM-derived
measures and to explore the multicollinearity concerns highlighted in the combined six-
predictor model, two separate multiple linear regression models were fitted. As shown in
Table 5, the first model included only the three Difference Score predictors (DifferenceCos,
A.DifferencePrompt and Fb.DifferencePrompt). The second model, detailed in Table 6,
included only the three Only Related score predictors (RelatedCos, A.RelatedPrompt and
Fb.RelatedPrompt). Both models aimed to predict the zRT Priming Effect.

Predictor Estimate Std. Error t value Pr(> |t|)

(Intercept) -0.01 0.02 -0.27 0.791
DifferenceCos 0.16 0.04 4.17 3.29e-05 ***
A.DifferencePrompt 0.26 0.05 5.58 3.04e-08 ***
Fb.DifferencePrompt -0.13 0.03 -3.93 8.99e-05 ***

Residual standard error: 0.1471 on 996 degrees of freedom
Multiple R-squared: 0.05872, Adjusted R-squared: 0.05588

F-statistic: 20.71 on 3 and 996 DF, p-value: 5.069e-13
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Table 5: Separate Multiple Linear Regression Results for Difference Score Predictors
Predicting zRT Priming Effect.

The regression model containing only the three Difference Score predictors was
statistically significant overall (F (3, 996) = 20.71, p < .001)(Table 5). The model explained
approximately 5.6% of the variance in the zRT Priming Effect (Adjusted R2 = 0.06). Both
A.DifferencePrompt (β = 0.26, p < .001) and DifferenceCos (β = 0.16, p < .001) remained
highly significant positive predictors. This confirms that the contrast in both prompt-
based associative relatedness and embedding-based cosine similarity uniquely contribute
to predicting the priming effect. Fb.DifferencePrompt also emerged as a statistically
significant predictor in this model, but with a negative coefficient (β = −0.13, p < .001)
implying that a larger feature-based difference is associated with a weaker priming effect
when only difference scores are in the model.

Predictor Estimate Std. Error t value Pr(> |t|)

(Intercept) -0.01 0.03 -0.22 0.82940
RelatedCos 0.11 0.04 2.44 0.01505 *
A.RelatedPrompt 0.17 0.06 2.77 0.00567 **
Fb.RelatedPrompt -0.08 0.04 -2.26 0.02430 *

Residual standard error: 0.1504 on 996 degrees of freedom
Multiple R-squared: 0.01694, Adjusted R-squared: 0.01398

F-statistic: 5.72 on 3 and 996 DF, p-value: 0.0006989
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Table 6: Separate Multiple Linear Regression Results for Only Related Score Predictors
Predicting zRT Priming Effect.
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The second separate regression model containing only the three Only Related score
predictors was also statistically significant overall (F (3, 996) = 5.72, p < .001). However,
it explained a considerably smaller portion of the variance in the zRT Priming Effect
(Adjusted R2 = 0.01398 ≈ 1.4%). The individual coefficients of RelatedCos was now
a statistically significant positive predictor (β = 0.11, p = .015), while in the analysis
with all six predictors it was negative. A.RelatedPrompt also became a statistically
significant positive predictor (β = 0.17, p = .006). In contrast, Fb.RelatedPrompt showed
a statistically significant negative coefficient (β = −0.08, p = .024), indicating that higher
direct feature-based similarity is associated with a weaker priming effect when considered
alongside other direct relatedness measures.

An inspection of the residuals for both models was conducted to assess the assumption
of normally distributed errors in the multiple regression analysis. The residuals for the
Difference model (Min = -0.73, 1Q = -0.10, Median = -0.01, 3Q = 0.08, Max = 0.77) were
approximately symmetrically distributed around zero. The distribution of the numerical
data of the residuals is visually represented in the left histogram in Figure 8. The residuals
for the Only Related model (Min = -0.74, 1Q = -0.10, Median = -0.01, 3Q = 0.08,
Max = 0.79) were also reasonably symmetrically distributed. This distribution is also
demonstrated in the right histogram in Figure 8. Both indicated that the residuals were
approximately bell-shaped and centered close to zero. However, the residual distribution
for the Difference Score predictors model appeared slightly more peaked around the mean
compared to that of the Only Related predictors model. Despite a few outliers in both tails,
the overall shape provides reasonable support for the assumption of normally distributed
errors for this model.

Figure 8: Histograms of the residuals for two separate multiple linear regression models
predicting the zRT Priming Effect. On the left the residual distribution for the model with
Difference Score predictors and on the right the residual distribution for the model with
Only Related score predictors. Both distributions are centered close to zero (indicated by
the dashed red mean line) and show a bell shape.

These separate analyses provided crucial insights when compared to the initial model
that included all six predictors (Adjusted R2 = 6.4%, F (6, 993) = 12.31, p < .001).

First, the combined model of six predictors explained the most variance (Adjusted
R2 = 6.4%). The model with only Difference Score predictors explained a substantial
portion of this (Adjusted R2 = 5.6%), while the model with only Only Related predictors
explained considerably less (Adjusted R2 = 1.4%). This suggests that the separate
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Difference Score analysis captures more of the predictive information relevant to priming
than the Only Related scores alone.

Another notable effect of fitting separate models is seen in the coefficients for Related-
Cos and A.RelatedPrompt. In the combined model, both RelatedCos and A.RelatedPrompt
had a significant negative coefficient. However, when included in the Only Related scores
model (Table 6), both RelatedCos and A.RelatedPrompt became significant positive pre-
dictors, aligning with theoretical expectations and their positive correlations with priming.
This strongly supports the expectation in Section 3.4 that their negative coefficients in
the combined model were indeed statistical byproducts of multicollinearity, primarily due
to their shared variance with the more dominant DifferenceCos and A.DifferencePrompt
predictors.

A third notable difference was present in the feature-based predictors. Fb.DifferencePrompt
was significantly negative in the Difference Score model, and Fb.RelatedPrompt was sig-
nificantly negative in the Only Related model. In the combined six predictor model,
when controlling for other similarity metrics, Fb.DifferencePrompt also trended negative,
while Fb.RelatedPrompt was non-significant. The consistent negative association for
feature-based measures, even when isolated with similar predictors, suggests that the way
gpt-4o-mini judge feature-based similarity does not align positively with priming in this
dataset.

In summary, conducting separate regression analyses confirms the superior predictive
utility of Difference Score measures, particularly A.DifferencePrompt and Difference-
Cos. It also clarifies that the counterintuitive negative coefficients for RelatedCos and
A.RelatedPrompt in the combined model were likely due to multicollinearity. The consis-
tent negative coefficients from the feature-based predictors across all model specifications
suggests a potential misalignment between the LLM’s feature-based judgments and the
priming in the dataset.

4 Discussion

This research aimed to investigate to what extent similarity predictions derived from Large
Language Models (LLMs) can explain semantic priming effects in human lexical processing.
The primary measure of human semantic priming was the zRT Priming Effect, derived
from the English subset of the Semantic Priming Across Many Languages (SPAML)
dataset by Buchanan et al. [BCC+25]. The analytical approach involved generating six
distinct predictor variables based on cosine similarity from OpenAI’s text-embedding-
3-small embeddings and API prompt-based similarity from gpt-4o-mini [Ope25]. These
predictors were designed to capture both association-based and feature-based relatedness,
distributed as either Only Related scores (direct similarity of the related cue-target pair)
or Difference Scores (the contrast in similarity between a target’s related and unrelated
cues).

4.1 Summary and Interpretation

The primary multiple linear regression analysis, combining all six LLM-derived predictors,
revealed that the overall model was statistically significant (F (6, 993) = 12.31, p < .001).
This main finding indicates that the set of LLM-derived predictors can account for
a meaningful portion of the variance in the semantic priming effect. Specifically, the
model explained approximately 7.0% of the variance in the zRT Priming Effect (Adjusted
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R2 = 0.064). While these LLM scores only explained a small fraction of human priming,
the model’s overall significance supports the hypothesis that computational measures from
LLMs capture aspects of semantic relatedness relevant to human lexical processing. This
aligns with the work of Niu et al. suggesting that LLMs encode human-like knowledge
about word relationships [NLB+24].

The analysis highlighted the dominant role of difference scores as predictors. The
associative difference score of direct prompting, A.DifferencePrompt, emerged as the most
robust unique predictor (β = 0.34, p < .001). Similarly, the DifferenceCos score, based
on cosine similarity, made a strong unique positive contribution (β = 0.32, p < .001).
This suggests that a predictor performs better when measuring the difference between
a related and an unrelated pair, than to simply ask how related two words are. The
superiority of the Difference Score predictors is further confirmed by our separate analysis
(see Section 3.4.2), where the model with only the three Difference Score predictors
accounted for the vast majority (Adjusted R2 = 5.6%) of the variance explained by the
full model. The strength of the associative measure aligns well with theories like The
Spreading Activation Theory [CL75].

Interestingly, the direct relatedness predictors exhibited more complex effects. The
RelatedCos predictor showed a significant negative coefficient (β = −0.19, p = .030),
and the prompt-based A.RelatedPrompt showed a similar negative trend (p = .081). As
discussed in Section 3.4.1, these negative relationships are likely statistical byproducts
of multicollinearity, acting as suppressor variables. This is confirmed by the separate
regression analysis, where the same predictors became significant positive predictors once
the influence of the Difference Score variables was removed.

Finally, the feature-based predictors were the least effective in the models. The
Fb.DifferencePrompt score showed only a weak negative trend (p = .084), while the
Fb.RelatedPrompt score was clearly not significant (p = .433). This indicates that
judgments based on semantic features, as prompted to gpt-4o-mini, added little unique
predictive value for the associative priming effect in this dataset.

4.2 Comparison of Predictor Types

4.2.1 Difference Scores vs. Only Related Scores

The findings show that the Difference Scores are more powerful and interpretable predictors
of priming than Only Related scores. It was most evident in the separate regression analyses.
The model containing only the three Difference Scores explained a substantial portion of
the variance in priming (Adjusted R2 = 5.6%), whereas the model with the Only Related
scores explained very little in comparison (Adjusted R2 = 1.4%). This demonstrates
that the predictive information relevant to priming is more effectively captured by these
contrastive measures.

The same pattern was also evident in the initial model combining all six predictors.
Both A.DifferencePrompt and DifferenceCos were significant positive predictors, and their
correlations with the zRT Priming Effect were generally higher than their Only Related
counterparts (e.g., r = .17 for A.DifferencePrompt vs. r = .08 for A.RelatedPrompt).

The Difference Score methodology closely mimics the experimental design of priming
research as mentioned in Section 2.4. By subtracting the score of an unrelated control pair,
the method helps to control for baseline effects the LLM might have toward the target
word itself, isolating the unique contribution of the cue word. This results in a cleaner and
more direct measure of the semantic contrast that appears to drive the priming effect.
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4.2.2 Cosine Similarity vs. Prompt-based Similarity

Another notable outcome was that the judgments from the generative model gpt-4o-
mini did not necessarily outperform the embedding model text-embedding-3-small or
vice versa. This was most evident in the performance of DifferenceCos (β = 0.32) and
A.DifferencePrompt (β = 0.34) with almost identical effect sizes. The near-identical
performance of these predictors demonstrates that a well-applied difference score on static
embeddings is just as powerful as a prompted judgment.

However, an alternative interpretation should be considered. Given that both models
are developed by OpenAI and likely trained on overlapping data corpora, their strong
similarity is perhaps not surprising. It is possible that text-embedding-3-small represents
a version of the same underlying semantic knowledge base present in gpt-4o-mini. From
this perspective, their similar performance reflects a shared knowledge source rather than
a convergence of two different architectural approaches, highlighting that this comparison
is limited to the OpenAI ecosystem.

In addition, both approaches also showed similar behavior regarding multicollinearity,
because their direct relatedness scores (RelatedCos and A.RelatedPrompt) changed from
negative to positive predictors in the separate analyses.

4.2.3 Feature-based vs. Association-based Predictors

The results consistently indicated stronger predictive performance for association-based
predictors compared to feature-based predictors. In the main six-predictor model, the
A.DifferencePrompt predictor was the best performing predictor, while the three feature-
based predictors were either non-significant or showed only weak, negative trends. The
disparity between the prompt-based predictors became even more clear in the separate re-
gression analyses. Both Fb.DifferencePrompt (β = −0.13, p < .001) and Fb.RelatedPrompt
(β = −0.08, p = .024) emerged as statistically significant negative predictors of priming.
Several interpretations for this disparity are possible:

First, the experimental priming effects observed in the English SPAML dataset might
be more driven by associative links between words than by pure semantic feature overlap.
This would be consistent with the “associative boost” phenomenon discussed by Lucas
where associative strength often plays a dominant role [Luc00]. If the priming effects in
the SPAML dataset are similarly dominated by this associative component, it logically
follows that our association-based LLM predictors would be more successful compared to
the feature-based predictors. In addition, it is possible that the stimuli within the SPAML
dataset, while categorized as related, might possess stronger associative links than clearly
defined feature-based links.

Second, the association-based prompt provided to gpt-4o-mini might have been more
effective in judgments that align with human priming mechanisms than the feature-based
prompt. It is possible that an LLM find it challenging to define a feature overlap in a way
that consistently reflects the cognition of humans. Feature-based relations require world
knowledge and grounded concepts (such as texture or noise), which are not necessarily
robustly present in a purely language-based model. The negative correlations of feature-
based predictors may be a symptom of this. Therefore, the concept of co-occurrence in
similar situations for association might be less challenging to capture.

Further research is needed to explore these possibilities. One approach could be to use
stimuli that are specifically designed to have a more clearly contrast between associative
relatedness and feature-based relatedness.
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4.3 Limitations

Several limitations should be considered when interpreting the findings of this research.
First of all, the prompt-based scores are closely tied to the phrasing of our prompts

and the capabilities of gpt-4o-mini. Using different prompts or switching to other larger
LLMs made by different research organizations may lead to different similarity scores and
different predictive outcomes. Designing prompts that show accurate and precise constructs
like associative strength or feature overlap remain a complex challenge. Similarly, the
cosine similarity scores are specific to the text-embedding-3-small model. Other embedding
models might produce different similarity patterns.

Second, the current study is limited by the predictors chosen and the overall model
performance. While our six predictors were theoretically motivated, other LLM-derived
features or calculation methods might offer enhanced predictive power. Crucially, while
the main six predictors model was statistically significant, it explained a relatively small
portion (approximately 7%) of the variance in the priming effect. This highlights that
human semantic priming is a complex cognitive phenomenon influenced by multiple
factors.

Furthermore, our analytical approach of fitting separate regression models to address
multicollinearity has its own limitations. While this method successfully shows the positive
underlying relationships of the Only Related predictors, it presents a simplified view
of the cognitive process. In reality, these different types of semantic relationships likely
operate simultaneously rather than in isolation. The full six-predictor model, despite its
own complexities, may therefore offer a more realistic representation of how these factors
interact.

As earlier noted, another limitation is that the findings are based on only the English
subset of the SPAML dataset. Although this dataset is large and robust, the specific
properties, such as the nature of the stimuli, participant sample, and task design, may
shape the observed effects. Therefore, the generalizability of these results to other priming
paradigms or datasets cannot be guaranteed. In addition, it is important to consider that,
although English is the native language for all participants in the research conducted
by Buchanan et al., it is not the case for the English text data on which the LLM is
trained [BCC+25]. Differences may influence the priming effects observed.

Finally, an important consideration is the disparity between the training data of LLMs
and the language experience of human participants. Although the human participants in
the SPAML English dataset were native English speakers, whose language processing is
based on the diverse input of interactive experiences through senses, the LLMs (such as gpt-
4o-mini and text-embedding-3-small) are mostly trained on vast corpora of text [BCC+25].
This internet-derived text may not perfectly reflect an individual human’s development of
language exposure or their experience of the world. Furthermore, the human language
processing integrates visual input (e.g., facial expressions, gestures, text), auditory input
(e.g., spoken language, environmental sounds), and sensorimotor interactions. In contrast,
LLMs are primarily text-based, lacking direct access to these non-linguistic contextual
cues that shape human understanding and representation of meaning. This fundamental
difference in learning environments and input could significantly influence how well their
derived similarity measures align with human cognitive phenomena.
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4.4 Future Research

The current findings, despite their limitations, open several promising avenues for future
research.

The current study was limited to only English word pairs. A crucial next step is to
assess the cross-linguistic validity of these findings by applying the same methodology to
other languages available in the SPAML datasets. It would reveal whether the superiority
of Difference Scores and the challenges with feature-based prompts are universal or
language-specific phenomena. Furthermore, future work should move beyond isolated
word pairs and investigate priming in more challenging environments, such as within full
sentences or dialogues. This would test whether LLMs can understand that the meaning
of a word is flexible and depends on the context, such as how the word “bank” means
something different in “river bank” versus “money bank” [CGA+23].

Another interesting addition to the current research would be to conduct a comparative
analysis of predictors derived from various LLM architectures, such as Google or Meta. By
testing other models from different developers, we could identify which types of models
are most effective at capturing the nuances of human semantic priming.

Future research should explore more sophisticated statistical methods to handle
multicollinearity. Techniques such as Principal Component Analysis (PCA), can be used
to combine the information from our six predictors into a new smaller set of variables
called principal components [Pau06]. The components with very low importance, as these
are considered to be mostly statistical noise, will be removed, resulting in a more stable
model.

5 Conclusion

This bachelor thesis investigated to what extent similarity predictions derived from
Large Language Models (LLMs) can explain semantic priming effects in human lexical
processing. The primary experimental measure was the zRT Priming Effect, reflecting
human reaction time differences to related versus unrelated word pairs from the English
SPAML dataset [BCC+25]. Six predictors were generated using OpenAI’s text-embedding-
3-small for cosine similarities and gpt-4o-mini for prompt-based similarities, considering
both association-based and feature-based prompts of relatedness [Ope25]. In addition,
they are calculated as either Only Related scores or Difference Scores.

Our primary multiple regression model, which combined all six predictors, successfully
explained a statistically significant portion of the variance in human semantic priming
(Adjusted R2 = 6.4%). This confirms that the information extracted from LLMs is relevant
for understanding factors that influence human lexical processing and semantic processing.
Three key conclusions can be drawn from this research:

First, the method of measurement proved more critical than the model architecture.
The most powerful predictors were consistently the Difference Scores, which mimic the
nature of priming experiments. The prompt-based A.DifferencePrompt and the embedding-
based DifferenceCos were the two strongest predictors, demonstrating almost identical
predictive power. This suggests that a well-designed, contrastive measure is just as powerful
as a prompted judgment.

Secondly, our separate regression analyses successfully clarified the role of multi-
collinearity. Predictors measuring direct relatedness (e.g., RelatedCos), showed negative
effects in the main model and became significant positive predictors when analyzed in
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isolation. This confirms their value, but also shows they become statistically redundant
when their more powerful Difference Score counterparts are present.

Third, there was a clear superiority of association-based over feature-based predictors.
The feature-based measures consistently failed to positively predict priming and even
showed significant negative relationships in separate analyses, indicating a fundamental
misalignment between the LLM’s interpretation of features and the associative processes
driving this priming task.

In conclusion, this research provides evidence that similarity predictions derived from
LLMs, especially those with associative relatedness as a difference score via prompting,
offer meaningful and powerful insights into human semantic priming. Although these
computational measures cannot fully capture the complexity of human cognition, they
serve as valuable tools for psycholinguistic research. These findings contribute to a better
understanding of how meaning might be processed in both humans and computational
models. Future work should continue to refine these methods, exploring new prompting
strategies and statistical approaches to improve computational tools for linguistic research.
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Appendix

Figure 9: Four Cosine plots for both association-based and feature-based prompts for
comparison.

Link to the code base: https://github.com/qiuvanleeuwen/Thesis-2025.git
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