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Abstract

In computer networks, packets function as structured containers for transmitting information. Packet
parsers validate these packets in devices like packet switches and firewalls. P4 is a domain-specific
programming language that can specify such parsers in software-defined networks. As with any
software system, bugs may be present, or improvements are to be made. These subsequent mod-
ifications may introduce discrepancies relative to the intended specification. To address this, we
introduce Octopus, a tool for the practical equivalence checking of packet parsers written in P4.
Here, practical signifies a runtime suitable for execution on a typical, modern personal computer. The
tool additionally produces a certificate that enables manual verification of the result’s correctness.
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1. Introduction

The Internet can be considered the largest engineered system by humankind [1, Ch. 1]. By 2023, over
two-thirds of the global population was expected to have Internet access, with networked devices
projected to exceed three times the global population [2]. Predictions indicate this trend will persist
[2]. As the Internet continues to grow more interconnected and diverse, it remains a key focus of active
research.
Like any other extensive system, the Internet relies on many subcomponents for its functioning.

One of these subareas, including its ongoing research, concerns packet parsers. In a packet-switched
network, such as the Internet, hosts (i.e. devices) communicate by sending packets through a network of
communication links and packet switches. A packet is a structured container of information comprising
two components: a header and a payload [1, Ch. 1]. The packet switch is responsible for forwarding
packets to their destinations, indicated in the header field(s).
As an example, consider the illustration of a UDP packet with its header and payload components in

Figure 1. It depicts how a UDP packet’s header consists of four fields, including a destination (port).
The data field represents the payload of a UDP packet. Due to the layered organisation of protocols [1,
Sec. 1.5], i.e. the Internet’s protocol stack, an example of a payload in a UDP packet could very well be
another packet.

Figure 1: An illustration of the structured information as contained by a UDP packet. The top four blocks
represent the fields comprising the packet’s header. The bottom block represents the packet’s
payload.

A packet switch receives a packet as a stream of bits on its incoming link(s). It then has to decide
whether the packet is valid, and, if so, to which outgoing link(s) to forward it. To make this decision, the
stream of bits must be parsed into the packet’s components and respective field(s). This is performed by
the packet switch’s packet parser.
Packet parsers are not limited to use in packet switches; they are also essential in another class of

devices known as middleboxes. These devices operate on the data path between source and destination
hosts and perform functions beyond standard packet forwarding [1, Sec. 4.5]. A subcategory of middle-
boxes performs security services. For instance, consider a firewall, which may block traffic based on
specific values of header fields. Similarly, an intrusion detection system (IDS) could inspect header fields
and payload content, possibly up to a particular layer or “depth”. By their very nature, these devices
also depend heavily on packet parsing.
Given the central role of packet parsers in both enabling communication and enforcing security, it

is critical that they behave according to their functional specifications. Nonetheless, implementation
bugs do still occur, and these can lead to incorrect behaviour or security vulnerabilities. Searching
for the keyword “packet” in the CVE database [3], a widely used reference for publicly disclosed
cybersecurity issues, returns various results. Consider CVE-2020-1350, a vulnerability where, due to
an integer overflow in a function responsible for parsing DNS response types, remote code execution
(RCE) became possible in a wide range of Windows Server editions. Another example is Ripple20
(CVE-2020-11896–CVE-2020-11914), a set of vulnerabilities discovered in the IP stack implementation
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found in a lot of embedded systems. The consequences ranged from RCE to denial of service (DoS) in a
variety of devices, including medical applications. Both examples underline the importance of applying
formal methods to ensure software correctness [4].
P4 is a domain-specific programming language used to define packet processors, including the

behaviour of their packet parsers. As with any software system, P4 programs are susceptible to bugs.
They may also undergo modifications over time. These changes can introduce unintended deviations
from the intended specification.
To address this problem of unintended deviations, we present Octopus, a tool developed for prac-

tical equivalence checking of packet parsers written in P4. The tool aims to verify, within reasonable
computational bounds, whether two P4 parsers are behaviourally equivalent. This is relevant as it
allows one to compare different revisions of the same parser, representing the possible subsequent
modifications. In addition, Octopus generates certificates that facilitate verification of the correctness of
its findings. As an example, suppose that a version of a P4 packet parser is deemed correct concerning the
intended specification. Now, a programmer has rewritten (parts of) the code in an attempt to improve
its performance. Octopus can be used to check whether the two implementations are behaviourally
equivalent, i.e. no bugs or other deviations from the specification were introduced.

1.1. Thesis Overview

This thesis investigates the problem of practical equivalence checking for packet parsers defined in P4.
The primary question we aim to answer is: given an intentional modification to a parser, is its behaviour
modulo this deliberate change preserved, i.e. equivalent? Beyond constructing a tool for equivalence
checking, our goal is to provide guarantees on the correctness of the results produced by this tool. We
will attempt to do so by generating certificates alongside the equivalence checks that back the tool’s
findings.
We begin by presenting the necessary background, including relevant foundational and theoretical

concepts, as well as a review of related work, to position our contribution within the existing research
landscape. Building on this foundation, we present our methodology for achieving practical equiva-
lence checking. We then describe the design and architecture of the tool, along with its usage and
supported syntax. Finally, we evaluate the performance of the tool in comparison with related work,
draw conclusions from our findings, and outline directions for future research.

2. Background and Related Work

Software-Defined Networking Within the Internet’s protocol stack, the network layer is responsible
for enabling communication between hosts; at this layer, packets are transferred from a sending to a
receiving host. To achieve this, the network layer can be viewed as consisting of two interacting parts:
the data plane and the control plane. Within what is considered the data plane, it is determined whether
and how to forward a packet from an incoming to an outgoing link. Forwarding decisions are made
using a forwarding table, which maps one or more packet header fields to an output link. These decisions
are local to each router. In contrast, the control plane embodies network-wide logic that coordinates
these local actions to establish end-to-end delivery paths.

Software-defined networking (SDN) is an emergent paradigm within the field of computer networking.
Its main promise is better manageability [5]. In a traditional computer network, the control and data
planes are vertically integrated, monolithically on each device, and configurable through an interface,
often a vendor-specific CLI or GUI. See Figure 2a for an illustration. On the other hand, in SDN, the
control and data planes are separated. A logically centralised controller implements the control plane.
The devices in the data plane, such as routers and switches, become simple forwarding devices. This is
also where SDN finds its name. Namely, the control plane, which forms the heart of the network, is
defined by a software-based controller. In practice, this is often achieved through a distributed control
system to maximise performance, scalability, and reliability [6], [7]. See Figure 2b for an illustration.
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OPENFLOW and P4 Recall that forwarding tables are used in the data plane of a traditional network.
In SDN, the software-based controller enables a more universal paradigm called generalised forwarding
[1, Sec. 4.4]. This approach employs match-plus-action tables, which enable more expressive packet
matching across multiple fields, protocols, and layers, and which support advanced actions such as load
balancing and firewalling.
In practice, the OpenFlow protocol [8] pioneered the match-plus-action table abstraction. It remains

a widely used protocol for defining communication between the controller and the data plane [5]. The
protocol is used between an SDN controller and SDN-enabled devices; essentially, the tables defined
by OpenFlow act as an API through which the behaviour of a packet switch can be programmed.
While expressive, this model offers only limited programmability. For example, OpenFlow specifies
a fixed set of protocols, restricting extensibility. One could envision a more expressive model that
incorporates constructs familiar from general-purpose programming languages, such as variables,
conditional logic, and functions. To this end, a domain-specific programming language for programming
protocol-independent packet processors (P4) [9] was introduced. P4 enables the specification of packet
parsing, processing, and forwarding logic in supported devices, without relying on fixed rules, such as
those imposed by OpenFlow.

(a) A network where the control and data planes are
vertically integrated [1, Ch. 4].

(b) A network where the control and data planes are
separated [1, Ch. 4].

Figure 2: A comparison of two network types. In (a), a network is depicted in which the control and
data planes are vertically integrated, i.e. monolithically on each device. On the other hand,
(b) shows a network where the control and data planes are separated. It is an example of a
software-defined network.

Verification and Formal Semantics of P4 As conceptualised in Section 1, software may deviate
from its intended specification, potentially leading to security vulnerabilities or other issues. Programs
written in P4 are, by definition, also vulnerable to these problems. Formal methods were proposed as
one means to mitigate such risks. Applying formal methods to P4 is particularly promising due to the
language’s expressiveness and the inherent complexity of networked systems, which can allow subtle
bugs to go unnoticed and/or untested by developers [4].
To assist developers in verifying the functional correctness of their P4 programs, several push-button

verifiers have been developed. These tools, given an annotated P4 program, are capable of checking
user-specified properties with minimal manual intervention. Examples include p4v [10], ASSERT-P4
[11], and Aquila [12]. Each allows the specification of functional properties through a manner of
annotation. The annotated programs are then translated into intermediate representations (IRs), such
as guarded command language (GCL) [13] and C, and verified using formal techniques: verification
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condition generation in the cases of p4v and Aquila, and symbolic execution in the case of ASSERT-P4.
Another approach to checking the correctness of a P4 program is employed by Vera [14]. It operates

fully automatically and can detect a wide range of practical bugs. However, it is limited to analysing
concrete table snapshots and does not reason over the whole space of possible table entries.
A separate class of tools focuses on verifying the correctness of the translation to concrete network

configurations. This area of research is often referred to as toolstack verification. These tools have goals
different to those of Octopus, which is concerned with parser equivalence rather than end-to-end
translation correctness. An example is p4pktgen [15], which uses symbolic execution to generate test
packets along with their expected processing outcomes. These packets are then put into a software
switch (bmv2 [16]), and it is observed whether the actual behaviour aligns with the predictions.
Each of the previous tools relies on ad hoc models of semantics, or utilises an existing implementation,

such as P4C1, the reference compiler of P4. Effort has been made to provide formal semantics for P4, for
example, in P4K [17], which specifies these in the K framework [18]. The downside of P4K is that it
uses the P414 language specification, which has a significantly different syntax and semantics compared
to the modern P416 [19]. A more recent development is Petr4 [20], which defines formal semantics for
a subset of P416. Major contributors to the P4 language (specification) have worked on this research.
The goal is to extend this approach to the full language and to write a verified compiler for P4. By
ensuring correctness upstream in the compiler, the tools that rely on it can also be considered more
trustworthy, as a consequence.

Leapfrog From the discussed tools, Octopus is most similar to the functional verifiers. However, as
mentioned, we are interested in the relational property of behavioural equivalence between two parsers.
All the tools we have seen so far work on a single program instead. In our direction, only a single work
has conducted research for P4, namely Leapfrog [21]. As a result, it is the most relevant.
Leapfrog, implemented in Rocq, a proof assistant, is a behavioural equivalence checker of P4 packet

parsers. The tool accepts a custom syntax representing a subset of P4 functionality. The semantics of
this syntax enable a written program to be modelled as a deterministic finite automaton (DFA). Then, by
writing packet parsers in this syntax, equivalence checking becomes a matter of proving the equivalence
of two DFAs. By formulating equivalence as a (backwards) bisimulation [22] between these underlying
DFAs, and using Rocq together with an SMT solver (see Section 8) for formal verification, equivalence
can be formally proven. While this approach is effective, it requires a substantial amount of time and
computational resources. For example, the implementation of a real-world parser required more than
500 GB of memory and had a runtime of nearly a day, until a timeout occurred due to the machine
running out of memory. This is the result of generating a proof object on the fly, which also contains
a lot of redundant information. What if such a proof is not constructed, but the equivalence is merely
checked? This could significantly improve the algorithm’s runtime, possibly allowing it to run on regular
PC equipment instead of requiring high-memory servers.

3. Research Question

The principal research question (PRQ) addressed in this thesis is as follows.

(PRQ) What is the impact of not constructing a proof in parallel when checking the behavioural
equivalence of P4 packet parsers?

In our context, impact has two equally valid and practical interpretations, leading to the formulation of
two sub-questions (RQ1, RQ2) in support of the PRQ.

(RQ1) What effect does avoiding proof construction have on the runtime of P4 packet parser be-
havioural equivalence checking?

1https://github.com/p4lang/p4c
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(RQ2) To what degree can an implementation that does not construct a proof produce a certificate
that allows an external program to verify its correctness?

4. Methodology

To investigate a Leapfrog implementation that does not construct a proof in parallel, we must reimple-
ment their approach. This should be done in a general-purpose programming language that does not
construct a proof object like Rocq builds during computation. A lot of work with P4 has been done in
C++. For example, the reference compiler of P4 programs, P4C, is written in C++. However, instead, we
will use Python. The reason for this is twofold:

• Python is widely used and well-supported, with readily available packages on PyPI for the SMT
solvers required in our work, such as Z3 [23] and cvc5 [24], as well as a library package that
serves as an abstraction over using different solvers (see Section 8). In contrast, the C++ ecosystem
lacks a unified source for all required solvers. For instance, vcpkg does not provide a package for
cvc5 at the time of writing.

• We do not expect a significant performance loss from using Python instead of C++. A substantial
portion of the runtime will be spent within external SMT solvers, which are implemented as
efficient C or C++ libraries and accessed via Python bindings. As such, the performance-critical
components remain largely unaffected by the choice of host language.

Besides using a different programming language, it is also worth noting that, while our goal is to
reimplement the approach proposed by Leapfrog, our approach to bisimulation differs in a key aspect.
Rather than using a backwards bisimulation strategy as in the original work, we adopt a forward
bisimulation approach. Further details are provided in Section 7.
We need to ensure that we obtain results that can be compared to those obtained by Leapfrog. As

a result, our evaluation methodology consists of two separate experiment runs. In the first run, we
execute the benchmarks of Leapfrog in an identical manner as its authors did. Then, after we have
written our implementation, we run the same benchmarks with our tool. We perform this task on the
same machine under the same conditions, using the same utilities. Ultimately, we obtain findings that
can be compared. We will use the outcome of the testing methodology to make a statement about the
runtime of our implementation, answering RQ1.
The correctness of our implementation of Leapfrog will not be proved. Additionally, our algorithm

does not construct a proof that verifies the correctness of its findings. Thus, without modifying the
algorithm, one is limited to trusting the implementation and its results. A solution would be to extend
the algorithm and have it generate a certificate alongside its decision on equality (RQ2). This certificate
could consist of an encoding of a bisimulation when it deems two parser programs to be equivalent,
and a counterexample trace otherwise.
Such a certificate can then be used by an external program to verify the correctness of the certificate’s

accompanying result without having to fully rerun the analysis. A limitation of this solution is that it
cannot guarantee that our implementation produces a correct result for every input. However, we do not
consider this an issue, as the individual statements regarding the equivalence of parsers can be verified.
This is what is essential for practical applications.
After addressing both sub-questions, we can formulate an answer to the main research question (PRQ)

of this work. In doing so, we assign equal weight to the outcomes of both sub-questions. This reflects the
view that, for our tool to be practical, it must be both easy to run and capable of producing verifiable
results that can be trusted.
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5. Overview

In this and the upcoming sections, we will look at our implementation of Octopus. It is available
as an open-source project under the MIT license and can be found on GitHub2. The README file in
the repository provides a more detailed overview of how to use the tool in practice. To aid practical
usage, a Docker image has also been pushed to Docker Hub3. It is ready-to-use, comes with two SMT
solvers installed (Z3 and cvc5), and includes the benchmarks that are part of our testing methodology,
facilitating easy verification of our findings.
We divide the description of the tool into three components, each corresponding to a distinct stage in

the processing pipeline. These are examined in the following order:

1. The frontend (Section 6), which is responsible for obtaining the intermediate representation (IR)
of a parser block with its associated types from a P4 program. Afterwards, it parses this IR into a
custom object.

2. The midend (Section 7), consisting of a DFA implementation, which serves as an abstraction over
the custom object produced by the frontend.

3. The backend (Section 7, Section 8), ultimately responsible for performing bisimulation, either
on top of the DFA abstraction (naive bisimulation, Section 7) or directly over the parser block
representations built by the frontend (symbolic bisimulation, Section 8).

6. Frontend

Octopus is to be provided with two file paths: either to P4 programs, or to their IR in JSON format,
as generated by P4C, the P4 reference compiler. If provided IR JSONs, it attempts to parse these into
Python objects directly. When supplied two P4 programs, two calls are made to the p4c-graphs
command-line tool. This CLI application is a backend of P4C which outputs the IR in JSON format that
can then be parsed into a Python object on success.
Once Python objects for both P4 programs are obtained, they are parsed into ParserProgram objects.

These represent solely the parser block within a P4 program with its types annotated. This conversion is
performed by a hand-rolled parser, implemented as a class hierarchy. An illustration of the full pipeline
from P4 program to ParserProgram can be seen in Figure 3.

P4 Program p4c-graphs IR JSON ParserProgram object

Figure 3: The preprocessing pipeline as used by Octopus. It is run twice, once for each input. Note that
entry to the pipeline can occur at either “P4 Program”, or “IR JSON”. Once two ParserProgram
objects are obtained, we can move on to checking for their equivalence.

P4C has support for the full P4 language, including both P414, as well as P416 [19], the most recent
revision of the P4 language. This is not the case for Octopus, which supports only a subset of P416.
It should be noted, though, that P4C can be used to translate P414 into P416. So, as long as the P416
syntax to which the P414 source is translated is supported, Octopus could accept such programs as
well. Whether a language feature is included or excluded from Octopus’s subset comes down to three
criteria:

1. Is the feature relevant for the parser block in a P4 program? If not, then it is irrelevant to Octopus
and thus ignored.

2https://github.com/jortvanleenen/Octopus
3hub.docker.com/repository/docker/jortvanleenen/octopus
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2. Is the feature translatable into a DFA-centric approach? If not, then it falls outside the scope of
this research. An example of this includes varbit, a variable-length bitstring type. Its behaviour
resembles that of a stack-like data structure, which may require modelling with a pushdown
automaton (PDA) rather than a DFA. As a result, features like varbit are excluded from this work.

3. Is the feature essential to the implementation? Certain features of P4 serve primarily as syntactic
conveniences. For example, the enum type can be represented equivalently using fixed-size bit-
vectors within the context of a packet parser. Due to time constraints, such non-essential features
have been omitted from this work.

Based on the criteria above, we define a formal grammar that captures the syntax accepted by
Octopus; see Listing 3. This grammar is written to closely mirror the formal grammar specified in
[19], ensuring comparability. Our grammar, and thus accepted syntax, fully covers the syntax and
semantics supported by Leapfrog, making it at least equally expressive. In addition, it extends upon
their language by introducing two extra operators: bit-vector AND and bit-vector shift-right. These
extensions demonstrate the ease with which Octopus’s language subset can be expanded, owing to its
modular and hierarchically structured implementation. Further details are provided in Section 9.3.
Features that fall under the categories described by points 2 and 3, namely those that are either non-

translatable into a DFA-centric approach or non-essential to the implementation, will trigger a warning
from Octopus at runtime. The tool will attempt to recover gracefully, but will raise an exception if
recovery fails. This behaviour contrasts with that for features falling under point 1. By default, Octopus
will quietly ignore them, as some of which are considered essential for the compilability of the P4
program. Such features are safe to ignore as they are not relevant to the semantics of parser blocks.
This distinction reflects the broader observation that parser blocks represent only one component of a
complete P4 program.
To support this separation of concerns between the syntax required for the actual parser analysis and

the syntax just required for program compilation, we define a minimal template, as shown in Listing 4.
This template serves as a lightweight framework within which arbitrary parser blocks can be embedded.
It was used for all benchmarks in this work, demonstrating its general applicability. On a similar note,
the formal grammar defined earlier (Listing 3) deliberately excludes language constructs unrelated to
parser semantics.
More informally, we restrict the P416 language according to the following conventions:

• Octopus expects headers to consist solely of fixed-width bit-vectors. These headers must eventually
be grouped into a struct that represents the parsed packet upon completion of the parser.

• A parser block must take exactly two parameters: one variable of type packet_in, representing
the input stream, and one out-directed variable of the aforementioned struct type.

• Within a parser block, local variables and instantiations are disallowed. Only assignment statements
are permitted, possibly using a method call to extract bits from the stream. Each parser state must
include at least one extraction; states consisting solely of transitions are not allowed. We also
disallow nested blocks and direct application.

• Slice expressions are not permitted on the left-hand side of assignments (i.e. as lvalues).
• Set types are not supported. Consequently, the mask and range operators are disallowed in select
expressions. List expressions, used as syntactic shorthand, are also excluded because they are not
essential to our implementation.

• Only a limited subset of operators is supported: slicing, concatenation, bit-vector shift-right, and
bit-vector AND.

We adhere to the semantics of P4 as defined in [19], and formalised in [20]. As such, we do not
redefine it here.
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7. Naive Bisimulation

As illustrated in Figure 3, we obtain two ParserProgram objects representing the two parser blocks
with their associated types. This section illustrates how one can transition from this implementation to
a DFA, which is defined as follows [25]. It is a 5-tuple (𝑄, Σ, 𝛿, 𝑞0, 𝐹), where:

1. 𝑄 is a finite set called the states,

2. Σ is a finite set called the alphabet,

3. 𝛿 : 𝑄 × Σ→ 𝑄 is the transition function,

4. 𝑞0 ∈ 𝑄 is the initial state,

5. 𝐹 ⊆ 𝑄, is the set of accepting states.

A DFA works as follows. We begin in an initial state and process an input string symbol by symbol from
a fixed alphabet. At each step, the current state and the input symbol determine a unique transition to the
next state. The machine continues until all input symbols are consumed. If it halts in an accepting state,
the input is accepted; otherwise, due to the absence of a valid transition or ending in a non-accepting
state, it is rejected.
We will directly base our translation from ParserProgram to DFA on P4A as defined in [21]. As a

result, most of the formulas that we will describe are (near-)equivalent. However, we will not specify the
full semantics as they do. These are already defined for P4 in, e.g., [20] as indicated before. Instead, we
will state the essential formulas and notations required to understand the eventual naive bisimulation
algorithm and its implementation.
Every packet parser works on an input stream of bits. More formally, when we consider a packet

parser as a state machine, its alphabet can be regarded as the set of symbols for which it needs to
determine whether to accept or reject, so Σ = {0, 1} for all P4 packet parsers.
A P4 packet parser always has a finite number of states per the language definition, which we will

consider 𝑄, and a finite set of associated types, which we will consider as a set of header names 𝐻 for
simplicity’s sake.
Each header ℎ ∈ 𝐻 has an associated size 𝑠𝑧(ℎ) ∈ ℕ+. When we write |𝑏𝑣| for the length of

𝑏𝑣 ∈ {0, 1}∗, we can define 𝑆 as the set of finite functions: 𝑠 : 𝐻 → {0, 1}∗, where |𝑠(ℎ) | = 𝑠𝑧(ℎ).
In P4, each state 𝑞 ∈ 𝑄 can be considered to consist of two components: an operation block (𝑜𝑝(𝑞))

and a transition block (𝑡𝑧(𝑞)). The operation block is responsible for reading in new bits and updating
the store 𝑆, the structured representation of what has been read. The transition block is responsible for
determining to which state to transition next. An operation block will buffer, ensuring that it will only
execute once the total number of bits it will read is available on the input stream/buffer. To know how
many bits it will read, we need to consider the summation of all 𝑠𝑧(ℎ) for which a extract(ℎ) method
call exists in 𝑜𝑝(𝑞). Note that 𝑠𝑧(ℎ) is known for all ℎ because we have parsed the associated types with
each parser block in a ParserProgram object.
A P4 packet parser, represented as a state machine, can be seen in Figure 4. A state named “start”

always represents the initial state. It transitions to other states based on what has been read and what
is currently in the buffer. A packet parser terminates once the buffer is empty and a terminal state has
been reached. In P4, each packet parser has two such states, namely “reject” and “accept”.
As in [21], we can now consider a configuration, which represents the state of the DFA representation

of a ParserProgram. A configuration is a triple:

⟨𝑞, 𝑠, 𝑤⟩ ∈ (𝑄 ∪ {accept, reject}) × 𝑆 × {0, 1}∗.

It can be interpreted as being in a state in 𝑄, with the contents of a store defined by 𝑆, and with 𝑤 in
the buffer. We define 𝐶 as the finite set of configurations, and 𝐹 as the set of accepting configurations.
Building up the buffer can be defined as a bit-by-bit operation, representing our transition function
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Figure 4: An illustration [19] of a parser defined in P4. Its initial state is always called “start” and is
part of the definition of the parser block. It always has precisely two terminal states, “accept”,
an accepting state, and “reject”, a rejecting state. These are implicit, namely, they are not part
of the specification as supplied by the programmer.

𝛿, where we append the buffer by bit 𝑏 if |𝑤𝑏| < 𝑠𝑧(𝑜𝑝(𝑞)), and else we execute the operation block
𝑜𝑝(𝑞) and transition according to the transition block 𝑡𝑧(𝑞).
As in P4, any further input on the buffer when the parser is in a terminal configuration will always

result in a transition to ⟨reject, 𝑠, 𝜀⟩.
Finally, as DFA representation, we can consider the triple: ⟨𝐶, 𝛿, 𝐹⟩. Note how the alphabet and the

initial state are implicit. That is okay, as these are equivalent for every P4 packet parser.

7.1. Bisimulation

To determine whether two packet parsers are behaviourally equivalent, we construct a bisimulation.
Given its central role in this thesis, we illustrate the concept using an accessible analogy inspired by
[22].
Consider two vending machines. Each has a payment terminal, a button to request hot chocolate,

a button to request coffee, and a dispensing slot. By interacting with the machine, e.g., by pressing
buttons and observing the output, we can assess its behaviour. Most importantly, we are not concerned
with the machine’s internal mechanisms, physical design, or implementation details. What matters is
how it behaves from an external perspective: what inputs it accepts and what outputs it produces in
response to those inputs.
This mirrors our treatment of packet parsers. Their internal structure is irrelevant for our purposes.

Instead, we focus on their observable behaviour, specifically, whether they accept or reject the same input.
If two parsers respond identically to all possible inputs, we consider them behaviourally equivalent.
Formally, a bisimulation [22] is defined as being a relation 𝑅 ⊆ 𝑄0 × 𝑄1 for which holds:
1. 𝑞0 ∈ 𝐹0 ⇐⇒ 𝑞1 ∈ 𝐹1

2. ∀𝑏∈{0,1} 𝛿0(𝑞0, 𝑏) 𝑅 𝛿1(𝑞1, 𝑏)

We have seen that we can model each parser as a DFA defined by the tuple ⟨𝐶, 𝛿, 𝐹⟩. Here, the set of
states 𝐶 corresponds to the set 𝑄 as used in the formal definition of bisimulation. Thus, we can check for
bisimularity of ParserProgram objects by representing them as DFAs. In practice, each ParserProgram
is passed to a DFA class, which defines DFA operations like those specified above over the semantics of
P4. The resulting automata can then be checked for bisimilarity. An overview of this architecture is
provided in Figure 5.
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ParserProgram 1

DFA 1 (𝑃1)

ParserProgram 2

DFA 2 (𝑃2)

Naive Bisimulation

Figure 5: An overview of how naive bisimulation is implemented.

Using pseudocode, we will now describe the operation of the transition block, a component we have
so far only briefly touched upon. See Listing 1.
The transition block begins by evaluating the expression used in the select statement. It then iterates

over each specified keyset in the order they appear. For each keyset, its value is evaluated and compared
against the evaluated key. If the key matches the current keyset, we transition to the respective state. If
no match is found, a runtime error is triggered. In our implementation, we model this behaviour by
treating it as an implicit transition to the reject state. If a transition block is not explicitly defined for a
state, the behaviour defaults to an implicit transition reject.

Listing 1: Pseudocode [19] for the transition block of an arbitrary state in a P4 parser block.
key = eva l ( e ) ;
f o r ( i n t i =0; i < n ; i++) {

keyse t = eva l ( ks [ i ] ) ;
i f ( keyse t . con ta ins ( key )) re turn s [ i ] ;

}
v e r i f y ( f a l s e , e r ro r . NoMatch ) ;
Due to the state space explosion associated with naive bisimulation, we will not be investigating

this approach further. However, it was very helpful to verify the correctness of our parsing logic, as its
straightforward translation allowed for easy debugging. To get an idea of the performance that can be
expected when using naive bisimulation, it was made available as an option for Octopus. Additionally,
on the author’s computer, 16 bits took around 7 seconds to run, where each bit scales this number by a
factor of two. It is clear to see why naive bisimulation is practically impossible for parsers with say more
than 24 bits.

8. Symbolic Bisimulation

Just as with naive bisimulation, we also perform a translation for symbolic bisimulation. Instead of using
DFAs on top of the parsers, we work with formulas. See Figure 6 for an illustration.

ParserProgram 1 ParserProgram 2

Symbolic Bisimulation

Figure 6: An overview of how symbolic bisimulation is implemented.

The formulas we consider are referred to as template-guarded. They are five-tuples: (𝑞<, 𝑞>, 𝑛<, 𝑛>, 𝜑).
The first two elements indicate in which state the left and right parsers are. The third and fourth elements
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indicate the length of the buffers in both the left and right parsers. Finally, 𝜑 represents the current
knowledge. It can be considered a statement of what the group of states we symbolically consider has
in common.
Key to symbolic bisimulation are the functions for the strongest postcondition (SP) for operations,

and symbolic transition (ST) for symbolically representing the transition block of a state.
To understand the strongest postcondition, consider: {𝑝} 𝑆 {𝑞}. Here, 𝑝 represents a precondition,

which are assertions that we assume to hold before the execution of program 𝑆. 𝑞 represents the
postcondition, which are assertions that hold after 𝑆 assuming 𝑝. It is referred to as a Hoare-triple. This
𝑞 can vary in ‘specificity’, where the official term for this is strength. The more ‘specific’ 𝑞 is, the stronger
it is considered. Consider that 𝑝 stands for 𝐶𝑜𝑤(𝑥) and that 𝑆 is a no-operation (NOP); in other words,
it does not modify the precondition. A valid postcondition 𝑞 could be 𝐴𝑛𝑖𝑚𝑎𝑙(𝑥), as this is implied by
𝐶𝑜𝑤(𝑥). However, the strongest postcondition would be 𝐶𝑜𝑤(𝑥). Another way to look at this is from
the perspective of the Liskov Substitution Principle in object-oriented programming. 𝐶𝑜𝑤 can be placed
at positions where 𝐴𝑛𝑖𝑚𝑎𝑙 is used, but not the other way around (𝐶𝑜𝑤 ⊂ 𝑎𝑛𝑖𝑚𝑎𝑙, but 𝐴𝑛𝑖𝑚𝑎𝑙 ⊄ 𝐶𝑜𝑤).
Similarly to the above illustration for programs 𝑆, we can define the strongest postcondition for

operations that can occur within the operation block of the packer parser. See Figure 7.

SP(𝜑, prog)

SP≶{𝜑, extract(ℎ𝑑𝑟)} := ∃𝑦𝑖 ∈ {0, 1}sz(ℎ𝑑𝑟. 𝑓 𝑖𝑒𝑙𝑑𝑖 ) 𝜑

[
𝑦𝑖

st≶ .ℎ𝑑𝑟. 𝑓 𝑖𝑒𝑙𝑑𝑖
,
st≶ .ℎ𝑑𝑟. 𝑓 𝑖𝑒𝑙𝑑𝑖 ++buf≶

buf≶
]

SP≶ (𝜑, hdr.𝑥 = 𝑒) := ∃𝑦 ∈ {0, 1}sz(𝑥 ) 𝜑
[ 𝑦

st≶ .𝑥
]
∧ st≶ .𝑥 = 𝑒

SP≶ (𝜑, prog1; prog2) := SP≶ (SP≶ (𝜑, prog1), prog2)

Figure 7: The strongest postcondition of components of the operation block, mathematically defined.

Remember from Section 7 that a pair was in the bisimulation if it agreed on acceptance, and all the
reachable pairs from it were in the bisimulation as well. In symbolic bisimulation, we do not explicitly
represent pairs of states. Instead, we represent groups of equivalent states using template-guarded
formulas. In order to answer questions about these formulas, such as two transitions, left and right, are
satisfiable, i.e. doable based on our current knowledge 𝜑, we need to ask questions to SMT solvers. In our
implementation, we work with a library that abstracts away the individual APIs of SMT solvers. Instead,
it defines a general interface through which we can interact with supported solvers. The package is
called PySMT. For an overview, see Figure 8.
The symbolic transition function will translate transition blocks into their symbolic equivalent. See

Algorithm 1 for pseudocode.

9. Evaluation

Having defined and implemented a tool for checking the equivalence of packet parsers written in P4,
we now evaluate the impact of our approach. Specifically, we compare its runtime performance against
that of Leapfrog and demonstrate the generation of a certificate in the presence of a counterexample.
Together, these evaluations allow us to assess the practical applicability of Octopus.
To enable a direct comparison, we adopt the same benchmark set used in Leapfrog’s evaluation. As

Leapfrog does not accept P4 syntax, we converted their benchmarks to P4. Each converted benchmark
can be found in Appendix C. An overview of the benchmarks and their associated properties is presented
in Table 1. Following the methodology outlined in [21], we distinguish between two classes of case
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Figure 8: A graphical representation [26] of how PySMT is structured.

studies: utility and applicability. Because detailed definitions for all benchmarks are available in [21],
we provide only summaries in the following sections for completeness.
As described in Section 4, we reran the Leapfrog benchmarks on a high-memory machine at

Leiden University. With assistance from Dr. Tobias Kappé, we resolved several dependency issues
and successfully executed the benchmarks. All series of experiments were conducted on Latinum, a
server within the REL Compute lab at the LIACS Research and Education Laboratory (REL). This
machine was selected based on the findings reported in [21], which demonstrated the necessity of
a high-memory environment, an essential requirement met by Latinum. Namely, it is equipped with
∼ 1.5 TB of system memory. All experiments were executed using the respective Docker containers
provided by each tool. these were run on an Intel Xeon E5-2630v3. The results can be found in Table 2.
All the Octopus benchmark results displayed are averages over four runs, where the first run is ignored
to avoid cold start skewing the results.

9.1. Utility

The utility class of case studies consists of problems that are designed to evaluate the usefulness of
equivalence checking in the networking domain.

State Rearrangement Compilers maymerge or split parser states to optimise for hardware constraints.
In this case study, we compare two versions of a parser. In one version, fields are extracted in separate
states. In the alternate version, we extract both a field and a common prefix simultaneously, thereby
merging two states into one. After which, the first field is checked to determine whether additional
parsing is needed. This represents a typical example of state merging. Octopus is used to show that the
variants accept the same packets, i.e. they are behaviourally equivalent.

Variable-Length Formats Many network protocols contain fields whose lengths are not fixed but are
instead encoded within the packet itself. In this case study, we examine two scenarios: one in which up
to two such fields may appear, and another with up to three. The permissible lengths for each field range
from 0 to 6 bytes. We use Octopus to check for equivalence in both cases. Notably, this case study goes
beyond what was demonstrated in Leapfrog. Due to performance limitations, Leapfrog was unable to
verify equivalence when three variable-length fields were involved. In contrast, the improved runtime
performance of Octopus on the two-field case encouraged us to attempt the three-field variant as well,
which we eventually successfully verified.

Header Initialisation A common mistake when implementing packet parsers is failing to initialise a
header field along all execution paths. This may lead to accessing uninitialised data in certain branches.
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Algorithm 1: Conversion of a transition block to symbolic transitions.
Input :cases ((expr, . . . )→ state), selectors ((expr, . . . ))
Output :symbolic_transitions {(𝜑→ state), . . . }

1 if #selectors = 0 then
2 return {(⊤, cases[DontCare()])}
3 fi
4 symbolic_transitions← ∅
5 seen← ∅
6 foreach (for_exprs, state) ∈ cases do
7 formula← ⊤
8 for 𝑖← 0 to #for_exprs do
9 if for_exprs[i] is not an instance of DontCare then

10 expression← deepcopy(for_exprs[i])
11 expression.to_formula()
12 selector← deepcopy(selectors[i])
13 selector.to_formula()
14 formula← formula ∧ (expression = selector)
15 fi
16 od
17 appended_formula← formula
18 foreach 𝜑 ∈ seen do
19 appended_formula← appended_formula ∧¬𝜑
20 end
21 seen← seen ∪{formula}
22 symbolic_transitions← symbolic_transitions ∪{(appended_formula, state)}
23 end
24 return symbolic_transitions

To evaluate whether Octopus can detect such issues, we constructed two versions of a parser. In the first
version, a header field is initialised in one state, but not for all possible paths. Using equivalence checking,
Octopus can confirm that the program’s behaviour does not depend on the uninitialised version of
the field. This result is reported in Table 2. In the second version, the initialisation is removed entirely,
so even for the execution flow that depends on the field. In this case, Octopus raises an exception,
correctly identifying the access to an uninitialised header. This demonstrates the tool’s applicability to
both scenarios.

Speculative Extraction Another performance optimisation that compilers tend to make is to spec-
ulatively extract bits from the buffer in an attempt to effectively vectorise this operation. We have
implemented two parsers: one employing speculative extraction and one that does not. We again use
Octopus to show their behavioural equivalence.

External Filtering and Relational Verification A parser may be strict or lenient. A strict parser
explicitly checks for values, whereas a lenient parser may test for one value 𝑥 and, if the test fails, silently
assume the alternative 𝑦. This is useful for tolerating malformed packets. We consider two parsers, one
“sloppy” (lenient) and one strict.
Leapfrog can express external filters. These initial relations constrain the final stores and are capable

of verifying richer relational properties (e.g., if both parsers accept, their stores must agree on a certain
field). Octopus, by contrast, currently only supports behavioural equivalence checking of the parser
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Table 1: The benchmark set [21] as used for evaluation. In Octopus, the benchmarks are
recognisable by their Name, whereas in Leapfrog they can be recognised by their
File. States represents the total number of states in both parser programs. Branched
indicates the considered number of bits in all transition select statements. Total
reflects the number of bits over all variables. An explicit state space would contain 2T
states. An optimal verification algorithm would need to represent 2B states [21].

Name Filea States Branched (b) Total (b)

Ut
ili
ty

State rearrangement IPFilterb 5 8 136
Variable-length form. 2 IPOptions2 30 64 632
Variable-length form. 3 IPOptions3 45 80 672
Header initialisation SelfComparison 10 10 320
Speculative extraction MPLSVectorized 5 2 160
Relational verification SloppyStrictStores 6 64 1056
External filtering SloppyStrictFilter 6 64 1056

Ap
pl
ica

bi
lit

y Edge EdgeSelf 28 52 3184
Service provider ServiceproviderSelf 22 50 2536
Datacenter DataCenterSelf 30 242 2944
Enterprise EnterpriseSelf 22 176 2144
Translation validation EdgeTrans 30 56 3148

a The full filenames are: <name-in-table>Proof.v, except SloppyStrictStores/Filter.
b The GitHub repository of Leapfrog denotes EthernetProof.v as the benchmark file of
“state rearrangement”, this is incorrect.

blocks themselves; it does not support external filters. We therefore use the sloppy–strict pair solely as a
sanity check. As is clear from their definition, these parsers are not equivalent. Comparing them using
Octopus indeed results in a counterexample trace; see Listing 2 for a truncated example. It clearly
shows how, from both start states, a contradiction can be achieved. These traces have also been proven
very helpful during the debugging of Octopus.
Listing 2: A truncated counterexample trace obtained by checking the sloppy-strict parser pair from the

external filtering and relational verification case studies.
−−− Counterexample −−−
Step 0:
L e f t s t a t e : s t a r t , Right s t a t e : s t a r t
Bu f f e r l eng ths : l e f t =0, r i g h t=0

Step 1:
L e f t s t a t e : parse_ipv4 , Right s t a t e : r e j e c t
Bu f f e r l eng ths : l e f t =0, r i g h t=0

Step 2:
L e f t s t a t e : accept , Right s t a t e : r e j e c t
Bu f f e r l eng ths : l e f t =0, r i g h t=128

9.2. Applicability

Under the applicability class, we consider real-world parsers. This helps us estimate the performance
and thus practical applicability of Octopus. To this end, we use the parser-gen framework [27]. As in
Leapfrog, we examine four representative parsers:
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• edge: modelling an edge router,

• service provider: modelling a core router,

• datacenter: modelling a top-of-rack switch, and

• enterprise: modelling a router for a typical campus or mid-sized enterprise.

As in Leapfrog, we omit the big-union parser, as it serves primarily to estimate hardware resource
requirements and is not representative of practical, real-world parser configurations [21].
We based our implementations of these parsers on the representations written by the authors of

Leapfrog. We did have to modify the enterprise parser with respect to the one found in Leapfrog’s
GitHub repository4. Namely, an indexing error occurred because the size of the IPv4 header was
incorrectly specified. We were able to adjust this to the correct value by looking at the original code at
the parser-gen repository5, where the size was correctly defined (as 4 × 4 × 8 = 128).
We used Octopus to perform a self-equivalence check for each parser, verifying that each is equivalent

to itself. This serves both as a sanity check and as a means of assessing the tool’s real-world performance.
Additionally, the parser-gen framework includes a compiler that produces a hardware-optimised
version of a parser. In [21], this was used to compile the edge benchmark. We replicate this experiment
(translation validation) by using Octopus to check the plain and compiled versions of the edge parser
in P4 for behavioural equivalence.

Leapfrog Octopus (Z3, cvc5)
Name Runtime (m) Memory (GiB) Runtime (m) Memory (GiB)
State rearrangement 1.13 1.07 0.08 0.04
Variable-length form. 2 3825.70 391.91 1.91 0.33
Variable-length form. 3 – – 46.22 4.36
Header initialisation 21.56 13.48 0.01 0.04
Speculative extraction 5.45 3.26 0.01 0.04
Relational verification 1.59 1.65 – –
External filtering 2.37 2.03 – –
Edge 730.12 243.35 0.19 0.08
Service provider 7167.03 823.70 0.08 0.05
Datacenter 1975.92 382.17 4.66 0.76
Enterprise 817.12 66.35 2.77 0.39
Translation validation 1035.38 349.15 0.38 0.12

Table 2: Runtime and memory usage for each case study under both Leapfrog and Octopus. Runtime,
given in minutes, refers to the total wall-clock time required for the complete execution of
the equivalence checking process. Memory usage, reported in GiB, indicates the peak resident
memory consumed during this process.

9.3. Extendability

As discussed in Section 6, we extended the syntax as supported by Octopus to include bit-vector AND
and bit-vector shift-right operations. This demonstrated the ease with which the accepted language
subset can be expanded. To also show how to validate the correctness of these additions easily, we
introduced a small benchmark titled extended syntax. It builds on the plain parser from the speculative

4https://github.com/verified-network-toolchain/leapfrog/blob/main/lib/Benchmarks/Enterprise.v
5https://github.com/grg/parser-gen/blob/master/examples/headers-enterprise.txt
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extraction case study, but redefines the alternate version. Rather than performing speculative extraction,
it modifies the select statement.
Specifically, the original version extracts the 9th bit using a slice: field[8:8], while the alternate

version uses the extended syntax: field » 8 & 0x1. Using Octopus, we confirmed that both parsers
are behaviourally equivalent.

9.4. Octopus Variants

In addition to comparing Octopus against Leapfrog, we also conducted benchmarking across different
configurations of Octopus itself. Specifically, we evaluated two different solver configurations: one
using only Z3, and the other using only cvc5. The results are summarised in Table 3.
As expected, memory usage remained largely consistent across both configurations. This is reasonable,

as both solvers should result in Octopus examining the same formulas in its work queue, and, ultimately,
in generating a certificate with equivalent content, albeit possibly in a different order. The more notable
difference lies in runtime: across all benchmarks, the configuration using cvc5 consistently achieved
faster execution. A Wilcoxon signed-rank test, applied to the paired average runtimes with a significance
threshold of 𝑝 = 0.05, confirmed that this performance difference is statistically significant. In other
words, we can state with high confidence that cvc5 outperforms Z3 for our benchmark suite. It is also
noteworthy that both configurations outperform the parallel solver portfolio, probably due to some
overhead in parser creation and calling. Nonetheless, given the relatively small number of benchmarks,
we retain a parallel solver configuration as the default Octopus portfolio to fence against instances that
do not follow this trend.
We also evaluated the impact of disabling the leaps optimisation in Octopus. As shown in Table 3,

disabling leaps results in a significant increase in both runtime and memory consumption, even for the
smallest benchmarks. This increase can be attributed to the larger state space that must be explored
without making leaps, resulting in higher computational overhead and memory requirements. These
results underline the importance of leaps in ensuring the practical scalability of Octopus as we have
observed.

Octopus (Z3) Octopus (cvc5) Octopus (no leaps)
Name Run (m) Mem (GiB) Run (m) Mem (GiB) Run (m) Mem (GiB)
State rearrangement 0.01 0.05 0.01 0.04 0.35 0.24
Variable-length form. 2 2.11 0.33 1.84 0.31 – –
Variable-length form. 3 42.45 4.36 40.58 4.34 – –
Header initialisation 0.02 0.05 0.01 0.04 5.64 3.13
Speculative extraction 0.02 0.05 0.01 0.04 0.48 0.30
Relational verification – – – – – –
External filtering – – – – – –
Edge 0.31 0.09 0.17 0.07 – –
Service provider 0.14 0.07 0.08 0.05 149.18 49.68
Datacenter 5.68 0.77 4.16 0.74 – –
Enterprise 3.29 0.39 2.54 0.37 – –
Translation validation 0.54 0.13 0.35 0.11 – –

Table 3: A tabular overview of the performance of different Octopus configurations. Note that “runtime”
and “memory” have been abbreviated to “run” and “mem” respectively. The first column group
details the performance of Octopus using only the Z3 SMT solver in its solver portfolio.
Likewise, the configuration depicted in the second column group employs just the cvc5 solver.
The final configuration in the third, right-most column group uses the default solver portfolio,
but without leaps enabled.
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10. Conclusion

It has been demonstrated that we were able to implement forward bisimulation and symbolic execution
with the goal of equivalence checking of P4 packet parsers, inspired by Leapfrog. We have done so in a
manner that accepts a subset of the P4 syntax and accurately follows its semantics. Furthermore, due
to the modular structure of the codebase, it has been shown to be easily extendable to accept a larger
subset of P416.
We successfully replicated all findings reported by Leapfrog, with the exception of those that rely

on external filtering, which is not supported by Octopus. Conversely, Octopus was able to verify the
variable-length format benchmark with up to three fields, whereas Leapfrog was limited to two.
By not constructing a proof object on the fly during computation, we have achieved a more practical

runtime performance. Each of the equivalence checks over parser blocks that we have considered could
have been executed on a modern PC. We therefore conclude that Octopus exhibits practical runtime
performance, thereby answering RQ1.
Additionally, we have shown that our method of generating certificates is helpful and sufficient

for practical usage in both positive and negative cases of behavioural equivalence. Especially the
counterexample trace has already proven helpful, both during debugging, as mentioned before, but also
during the conversion of Leapfrog benchmarks to P4, as it allowed us to pinpoint issues that would
have been hard to spot otherwise. We therefore consider Octopus sufficiently capable of producing
certificates suitable for practical and trusted use, thereby addressing RQ2.
In conclusion, obtaining favourable outcomes for both RQ1 and RQ2, we have described and imple-

mented a tool that can be used for the practical equivalence checking of P4 packet parsers, answering
PRQ.

11. Future Work

While Octopus demonstrates practical runtime performance, there remains potential for further opti-
misation. Currently, the implementation is fully synchronous and does not leverage multiprogramming.
Although we utilise some asynchronous features of PySMT, such as portfolio solving with solvers running
in parallel, the validity and satisfiability queries are invoked synchronously from within our codebase. A
promising direction for future improvement would be to parallelise the processing of the work queue
maintained during symbolic bisimulation. Given that all pure formula objects should be unique copies,
this could be a straightforward modification.
While we have experimented with the Z3 and cvc5 SMT solvers, PySMT supports a wider range of

solvers. Built-in support exists, for example, for Boolector 3.0 [28], MathSAT 5 [29], and Yices
2.2 [30], all of which support the bit-vector SMT theory. PySMT also supports any SMT solver that is
SMT-LIB 2 compliant. It could be interesting to explore a different or more extensive combination of
SMT solvers for the portfolio that symbolic bisimulation uses. This is especially interesting for solvers
for which we do not have directly comparable results available, such as cvc5, which performed well in
SMT-COMP 2024. Another strong contender in SMT-COMP 2024 was Bitwuzla [31], which is SMT-LIB
2 compliant and won most subcategories in the QF_Bitvec (Single Query Track) of SMT-COMP 2024.
We chose to support a subset of the P416 language specification, as shown in Listing 3, which matches

the supported syntax by Leapfrog. As we have shown, this subset can be easily expanded due to the
structure of the Octopus codebase. In further work, one could expand this subset to support other
language constructs. For example, one could allow the use of slices in lvalues, which currently have to
be emulated by concatenating slices on the right-hand side of the assignment operator. Another example
could be implementing more operators, allowing for more expressive expressions to be made.
Finally, as mentioned, we were unable to perform the external filtering and relational verification

benchmarks as required for the proper comparison of the sloppy and strict P4 programs. The codebase
of Octopus could be expanded to support this behaviour, rather than, for example, at the moment
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having to parse the certificate and possibly performing external filtering there, before returning true or
false for equivalence.
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A. Supported P4 Grammar

Listing 3: The P4 grammar as accepted by Octopus. It represents the subset of the P4 language that
is both valid under P4C, as well as parseable by Octopus for the purpose of equivalence
checking. Grammar rules required by P4C for full program compilation but irrelevant to
parser block definitions are omitted. For further details, see Section 6. The grammar is
deliberately written to closely follow the YACC/Bison style used in the official P416 language
specification [19], which may lead to some verbose rules. For simplicity, lexical tokens with a
fixed string representation, such as HEADER, are written as string literals (in violet). Lexical
constructs without a fixed string representation appear in full capitals (in blue). Both should
be understood as lexer-level constructs handling related syntactical details.

1 /** PROGRAM **/
2
3 p4program
4 : typeDeclarations parserDeclaration
5 ;
6
7 /** TYPES **/
8
9 typeDeclarations

10 : typeDeclaration
11 | typeDeclarations typeDeclaration
12 ;
13
14 typeDeclaration
15 : headerTypeDeclaration
16 | structTypeDeclaration
17 ;
18
19 headerTypeDeclaration
20 : "header" TYPE "{" typeFieldList "}"
21 ;
22
23 structTypeDeclaration
24 : "struct" TYPE "{" typeFieldList "}"
25 ;
26
27 typeFieldList
28 : typeField
29 | typeFieldList typeField
30 ;
31
32 typeField
33 : typeRef IDENTIFIER ";"
34 ;
35
36 typeRef
37 : baseType
38 | typeName
39 ;
40
41 baseType
42 : "bit" "<" INTEGER ">"
43 ;
44
45 typeName
46 : prefixedType
47 ;
48
49 prefixedType

22



50 : TYPE
51 | "." TYPE
52 ;
53
54 /** PARSER **/
55
56 parserDeclaration
57 : "parser" IDENTIFIER "(" parameterList ")" "{" parserStates "}"
58 ;
59
60 parameterList
61 : parameter "," parameter
62 ;
63
64 parameter
65 : direction typeName IDENTIFIER
66 ;
67
68 direction
69 : /* empty */
70 | "in"
71 | "out"
72 | "inout"
73 ;
74
75 parserStates
76 : parserState
77 | parserStates parserState
78 ;
79
80 parserState
81 : "state" STATE "{" parserStatements transitionStatement "}"
82 ;
83
84 /** PARSER STATEMENTS **/
85
86 parserStatements
87 : parserStatement
88 | parserStatements parserStatement
89 ;
90
91 parserStatement
92 : assignmentOrMethodCallStatement
93 ;
94
95 assignmentOrMethodCallStatement
96 : lvalue "(" expression ")" ";"
97 | lvalue "=" expression ";"
98 ;
99

100 lvalue
101 : prefixedNonTypeName
102 | lvalue "." member
103
104 prefixedNonTypeName
105 : nonTypeName
106 | "." nonTypeName
107 ;
108
109 nonTypeName
110 : IDENTIFIER
111 ;
112
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113 member
114 : IDENTIFIER
115 ;
116
117 /** TRANSITION STATEMENTS **/
118
119 transitionStatement
120 : "transition" stateExpression
121 ;
122
123 stateExpression
124 : STATE ";"
125 | selectExpression
126 ;
127
128 selectExpression
129 : "select" "(" expressionList ")" "{" selectCaseList "}"
130 ;
131
132 expressionList
133 : expression
134 | expressionList "," expression
135 ;
136
137 selectCaseList
138 : selectCase
139 | selectCaseList selectCase
140 ;
141
142 selectCase
143 : keysetExpression ":" STATE ";"
144 ;
145
146 keysetExpression
147 : simpleKeysetExpression
148 | "(" simpleKeysetExpression "," simpleExpressionList ")"
149 ;
150
151 simpleExpressionList
152 : simpleKeysetExpression
153 | simpleExpressionList "," simpleKeysetExpression
154 ;
155
156 simpleKeysetExpression
157 : expression
158 | "default"
159 | "_"
160 ;
161
162 /** EXPRESSIONS **/
163
164 expression
165 : INTEGER
166 | lvalue
167 | expression "[" INTEGER ":" INTEGER "]"
168 | expression "++" expression
169 | expression ">>" expression
170 | expression "&" expression
171 | "(" expression ")"
172 ;
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B. OCTOPUS P4 Template

Listing 4: This template defines the minimal structure required for a P4 program to be parseable by
Octopus. It imports the standard library, declares a parser block, and instantiates a basic
architecture. While all these components are necessary for the program to be compilable, only
the parser block and its associated type definitions are relevant to the equivalence checking
process. Consequently, all other elements have been abstracted into this template to isolate
the parts of interest.

1 #include <core.p4>
2
3 // header and struct definitions (TO FILL IN)
4
5 parser Parser(packet_in pkt , out headers_t hdr) {
6
7 // parser states (TO FILL IN)
8
9 }

10
11 parser Parser_t(packet_in pkt , out headers_t hdr);
12 package Package(Parser_t p);
13
14 Package(Parser ()) main;

C. Benchmarks in P4

This section lists the P4 programs on which Octopus was evaluated. They are directly based on the
benchmarks of [21], but have been converted to P4 for use with Octopus. All programs use the template
as defined in Listing 4; however, the headers and footers have been omitted for increased readability.

C.1. State Rearrangement

Listing 5: Parser block with combined states
1 header ip_t { bit <64> data; }
2 header data_t { bit <32> data; }
3
4 struct headers_t {
5 ip_t ip;
6 data_t pref;
7 data_t suff;
8 }
9

10 parser Parser(packet_in pkt , out headers_t hdr) {
11 state start {
12 pkt.extract(hdr.ip);
13 pkt.extract(hdr.pref);
14 transition select(hdr.ip.data [23:20]) {
15 0: parse_suff;
16 1: accept;
17 }
18 }
19
20 state parse_suff {
21 pkt.extract(hdr.suff);
22 transition accept;
23 }
24 }
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Listing 6: Parser block with separate states
1 header ip_t { bit <64> data; }
2 header udp_t { bit <32> data; }
3 header tcp_t { bit <64> data; }
4
5 struct headers_t {
6 ip_t ip;
7 udp_t udp;
8 tcp_t tcp;
9 }

10
11 parser Parser(packet_in pkt , out headers_t hdr) {
12 state start {
13 pkt.extract(hdr.ip);
14 transition select(hdr.ip.data [23:20]) {
15 0: parse_tcp;
16 1: parse_udp;
17 }
18 }
19
20 state parse_udp {
21 pkt.extract(hdr.udp);
22 transition accept;
23 }
24
25 state parse_tcp {
26 pkt.extract(hdr.tcp);
27 transition accept;
28 }
29 }

C.2. Variable-Length Formatting

Listing 7: The IPOptions parser block. For variable-length formatting 3, we consider the parser block as
given. For variable-length formatting 2, we consider state parse_1 as the start state instead.
Both these versions have been shown in a single listing due to their equivalence otherwise.

1 header scratch8_t { bit <8> data; }
2 header scratch16_t { bit <16> data; }
3 header scratch24_t { bit <24> data; }
4 header scratch32_t { bit <32> data; }
5 header scratch40_t { bit <40> data; }
6
7 header t0_t { bit <8> data; }
8 header l0_t { bit <8> data; }
9 header v0_t { bit <48> data; }

10
11 header t1_t { bit <8> data; }
12 header l1_t { bit <8> data; }
13 header v1_t { bit <48> data; }
14
15 header t2_t { bit <8> data; }
16 header l2_t { bit <8> data; }
17 header v2_t { bit <48> data; }
18
19 struct headers_t {
20 t0_t t0;
21 l0_t l0;
22 v0_t v0;
23 t1_t t1;
24 l1_t l1;
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25 v1_t v1;
26 t2_t t2;
27 l2_t l2;
28 v2_t v2;
29
30 scratch8_t scratch8;
31 scratch16_t scratch16;
32 scratch24_t scratch24;
33 scratch32_t scratch32;
34 scratch40_t scratch40;
35 }
36
37 parser Parser(packet_in pkt , out headers_t hdr) {
38 state start {
39 pkt.extract(hdr.t0);
40 pkt.extract(hdr.l0);
41 transition select(hdr.t0.data , hdr.l0.data) {
42 (0, 0): accept;
43 (1, 0): accept;
44 (_, 1): parse_01;
45 (_, 2): parse_02;
46 (_, 3): parse_03;
47 (_, 4): parse_04;
48 (_, 5): parse_05;
49 (_, 6): parse_06;
50 default: reject;
51 }
52 }
53
54 state parse_01 {
55 pkt.extract(hdr.scratch8);
56 hdr.v0.data = hdr.scratch8.data ++ hdr.v0.data [47:8];
57 transition parse_1;
58 }
59
60 state parse_02 {
61 pkt.extract(hdr.scratch16);
62 hdr.v0.data = hdr.scratch16.data ++ hdr.v0.data [47:16];
63 transition parse_1;
64 }
65
66 state parse_03 {
67 pkt.extract(hdr.scratch24);
68 hdr.v0.data = hdr.scratch24.data ++ hdr.v0.data [47:24];
69 transition parse_1;
70 }
71
72 state parse_04 {
73 pkt.extract(hdr.scratch32);
74 hdr.v0.data = hdr.scratch32.data ++ hdr.v0.data [47:32];
75 transition parse_1;
76 }
77
78 state parse_05 {
79 pkt.extract(hdr.scratch40);
80 hdr.v0.data = hdr.scratch40.data ++ hdr.v0.data [47:40];
81 transition parse_1;
82 }
83
84 state parse_06 {
85 pkt.extract(hdr.v0);
86 transition parse_1;
87 }
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88
89 state parse_1 {
90 pkt.extract(hdr.t1);
91 pkt.extract(hdr.l1);
92 transition select(hdr.t1.data , hdr.l1.data) {
93 (0, 0): accept;
94 (1, 0): accept;
95 (_, 1): parse_11;
96 (_, 2): parse_12;
97 (_, 3): parse_13;
98 (_, 4): parse_14;
99 (_, 5): parse_15;

100 (_, 6): parse_16;
101 default: reject;
102 }
103 }
104
105 state parse_11 {
106 pkt.extract(hdr.scratch8);
107 hdr.v1.data = hdr.scratch8.data ++ hdr.v1.data [47:8];
108 transition parse_2;
109 }
110
111 state parse_12 {
112 pkt.extract(hdr.scratch16);
113 hdr.v1.data = hdr.scratch16.data ++ hdr.v1.data [47:16];
114 transition parse_2;
115 }
116
117 state parse_13 {
118 pkt.extract(hdr.scratch24);
119 hdr.v1.data = hdr.scratch24.data ++ hdr.v1.data [47:24];
120 transition parse_2;
121 }
122
123 state parse_14 {
124 pkt.extract(hdr.scratch32);
125 hdr.v1.data = hdr.scratch32.data ++ hdr.v1.data [47:32];
126 transition parse_2;
127 }
128
129 state parse_15 {
130 pkt.extract(hdr.scratch40);
131 hdr.v1.data = hdr.scratch40.data ++ hdr.v1.data [47:40];
132 transition parse_2;
133 }
134
135 state parse_16 {
136 pkt.extract(hdr.v1);
137 transition parse_2;
138 }
139
140 state parse_2 {
141 pkt.extract(hdr.t2);
142 pkt.extract(hdr.l2);
143 transition select(hdr.t2.data , hdr.l2.data) {
144 (0, 0): accept;
145 (1, 0): accept;
146 (_, 1): parse_21;
147 (_, 2): parse_22;
148 (_, 3): parse_23;
149 (_, 4): parse_24;
150 (_, 5): parse_25;
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151 (_, 6): parse_26;
152 default: reject;
153 }
154 }
155
156 state parse_21 {
157 pkt.extract(hdr.scratch8);
158 hdr.v2.data = hdr.scratch8.data ++ hdr.v2.data [47:8];
159 transition accept;
160 }
161
162 state parse_22 {
163 pkt.extract(hdr.scratch16);
164 hdr.v2.data = hdr.scratch16.data ++ hdr.v2.data [47:16];
165 transition accept;
166 }
167
168 state parse_23 {
169 pkt.extract(hdr.scratch24);
170 hdr.v2.data = hdr.scratch24.data ++ hdr.v2.data [47:24];
171 transition accept;
172 }
173
174 state parse_24 {
175 pkt.extract(hdr.scratch32);
176 hdr.v2.data = hdr.scratch32.data ++ hdr.v2.data [47:32];
177 transition accept;
178 }
179
180 state parse_25 {
181 pkt.extract(hdr.scratch40);
182 hdr.v2.data = hdr.scratch40.data ++ hdr.v2.data [47:40];
183 transition accept;
184 }
185
186 state parse_26 {
187 pkt.extract(hdr.v2);
188 transition accept;
189 }
190 }

Listing 8: The Timestamp parser block. For variable-length formatting 3, we consider the parser block as
given. For variable-length formatting 2, we consider state parse_1 as the start state instead.
Both these versions have been shown in a single listing due to their equivalence otherwise.

1 header scratch8_t { bit <8> data; }
2 header scratch16_t { bit <16> data; }
3 header scratch24_t { bit <24> data; }
4 header scratch32_t { bit <32> data; }
5 header scratch40_t { bit <40> data; }
6
7 header t0_t { bit <8> data; }
8 header l0_t { bit <8> data; }
9 header v0_t { bit <48> data; }

10
11 header t1_t { bit <8> data; }
12 header l1_t { bit <8> data; }
13 header v1_t { bit <48> data; }
14
15 header t2_t { bit <8> data; }
16 header l2_t { bit <8> data; }
17 header v2_t { bit <48> data; }
18

29



19 header pointer_t { bit <8> data; }
20 header overflow_t { bit <4> data; }
21 header flag_t { bit <4> data; }
22 header timestamp_t { bit <32> data; }
23
24 struct headers_t {
25 scratch8_t scratch8;
26 scratch16_t scratch16;
27 scratch24_t scratch24;
28 scratch32_t scratch32;
29 scratch40_t scratch40;
30
31 t0_t t0;
32 l0_t l0;
33 v0_t v0;
34 t1_t t1;
35 l1_t l1;
36 v1_t v1;
37 t2_t t2;
38 l2_t l2;
39 v2_t v2;
40
41 pointer_t pointer;
42 overflow_t overflow;
43 flag_t flag;
44 timestamp_t timestamp;
45 }
46
47 parser Parser(packet_in pkt , out headers_t hdr) {
48 state start {
49 pkt.extract(hdr.t0);
50 pkt.extract(hdr.l0);
51 transition select(hdr.t0.data , hdr.l0.data) {
52 (0x44 , 6): parse_0s;
53 (0, 0): accept;
54 (1, 0): accept;
55 (_, 1): parse_01;
56 (_, 2): parse_02;
57 (_, 3): parse_03;
58 (_, 4): parse_04;
59 (_, 5): parse_05;
60 (_, 6): parse_06;
61 default: reject;
62 }
63 }
64
65 state parse_0s {
66 pkt.extract(hdr.pointer);
67 pkt.extract(hdr.overflow);
68 pkt.extract(hdr.flag);
69 pkt.extract(hdr.timestamp);
70 transition parse_1;
71 }
72
73 state parse_01 {
74 pkt.extract(hdr.scratch8);
75 hdr.v0.data = hdr.scratch8.data ++ hdr.v0.data [47:8];
76 transition parse_1;
77 }
78
79 state parse_02 {
80 pkt.extract(hdr.scratch16);
81 hdr.v0.data = hdr.scratch16.data ++ hdr.v0.data [47:16];
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82 transition parse_1;
83 }
84
85 state parse_03 {
86 pkt.extract(hdr.scratch24);
87 hdr.v0.data = hdr.scratch24.data ++ hdr.v0.data [47:24];
88 transition parse_1;
89 }
90
91 state parse_04 {
92 pkt.extract(hdr.scratch32);
93 hdr.v0.data = hdr.scratch32.data ++ hdr.v0.data [47:32];
94 transition parse_1;
95 }
96
97 state parse_05 {
98 pkt.extract(hdr.scratch40);
99 hdr.v0.data = hdr.scratch40.data ++ hdr.v0.data [47:40];

100 transition parse_1;
101 }
102
103 state parse_06 {
104 pkt.extract(hdr.v0);
105 transition parse_1;
106 }
107
108 state parse_1 {
109 pkt.extract(hdr.t1);
110 pkt.extract(hdr.l1);
111 transition select(hdr.t1.data , hdr.l1.data) {
112 (0x44 , 6): parse_1s;
113 (0, 0): accept;
114 (1, 0): accept;
115 (_, 1): parse_11;
116 (_, 2): parse_12;
117 (_, 3): parse_13;
118 (_, 4): parse_14;
119 (_, 5): parse_15;
120 (_, 6): parse_16;
121 default: reject;
122 }
123 }
124
125 state parse_1s {
126 pkt.extract(hdr.pointer);
127 pkt.extract(hdr.overflow);
128 pkt.extract(hdr.flag);
129 pkt.extract(hdr.timestamp);
130 transition parse_2;
131 }
132
133 state parse_11 {
134 pkt.extract(hdr.scratch8);
135 hdr.v1.data = hdr.scratch8.data ++ hdr.v1.data [47:8];
136 transition parse_2;
137 }
138
139 state parse_12 {
140 pkt.extract(hdr.scratch16);
141 hdr.v1.data = hdr.scratch16.data ++ hdr.v1.data [47:16];
142 transition parse_2;
143 }
144
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145 state parse_13 {
146 pkt.extract(hdr.scratch24);
147 hdr.v1.data = hdr.scratch24.data ++ hdr.v1.data [47:24];
148 transition parse_2;
149 }
150
151 state parse_14 {
152 pkt.extract(hdr.scratch32);
153 hdr.v1.data = hdr.scratch32.data ++ hdr.v1.data [47:32];
154 transition parse_2;
155 }
156
157 state parse_15 {
158 pkt.extract(hdr.scratch40);
159 hdr.v1.data = hdr.scratch40.data ++ hdr.v1.data [47:40];
160 transition parse_2;
161 }
162
163 state parse_16 {
164 pkt.extract(hdr.v1);
165 transition parse_2;
166 }
167
168 state parse_2 {
169 pkt.extract(hdr.t2);
170 pkt.extract(hdr.l2);
171 transition select(hdr.t2.data , hdr.l2.data) {
172 (0x44 , 6): parse_2s;
173 (0, 0): accept;
174 (1, 0): accept;
175 (_, 1): parse_21;
176 (_, 2): parse_22;
177 (_, 3): parse_23;
178 (_, 4): parse_24;
179 (_, 5): parse_25;
180 (_, 6): parse_26;
181 default: reject;
182 }
183 }
184
185 state parse_2s {
186 pkt.extract(hdr.pointer);
187 pkt.extract(hdr.overflow);
188 pkt.extract(hdr.flag);
189 pkt.extract(hdr.timestamp);
190 transition accept;
191 }
192
193 state parse_21 {
194 pkt.extract(hdr.scratch8);
195 hdr.v2.data = hdr.scratch8.data ++ hdr.v2.data [47:8];
196 transition accept;
197 }
198
199 state parse_22 {
200 pkt.extract(hdr.scratch16);
201 hdr.v2.data = hdr.scratch16.data ++ hdr.v2.data [47:16];
202 transition accept;
203 }
204
205 state parse_23 {
206 pkt.extract(hdr.scratch24);
207 hdr.v2.data = hdr.scratch24.data ++ hdr.v2.data [47:24];
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208 transition accept;
209 }
210
211 state parse_24 {
212 pkt.extract(hdr.scratch32);
213 hdr.v2.data = hdr.scratch32.data ++ hdr.v2.data [47:32];
214 transition accept;
215 }
216
217 state parse_25 {
218 pkt.extract(hdr.scratch40);
219 hdr.v2.data = hdr.scratch40.data ++ hdr.v2.data [47:40];
220 transition accept;
221 }
222
223 state parse_26 {
224 pkt.extract(hdr.v2);
225 transition accept;
226 }
227 }

C.3. Header Initialisation

Listing 9: The parser block where header initialisation occurs in a single state (which is correct).
1 header eth_t { bit <112> data; }
2 header vlan_t { bit <32> data; }
3 header ip_t { bit <160> data; }
4 header udp_t { bit <64> data; }
5
6 struct headers_t {
7 eth_t eth;
8 vlan_t vlan;
9 ip_t ip;

10 udp_t udp;
11 }
12
13 parser Parser(packet_in pkt , out headers_t hdr) {
14 state start {
15 pkt.extract(hdr.eth);
16 transition select(hdr.eth.data [111:111]) {
17 0: default_vlan;
18 1: parse_vlan;
19 }
20 }
21
22 state default_vlan {
23 hdr.vlan.data = 0;
24 pkt.extract(hdr.ip);
25 transition parse_udp;
26 }
27
28 state parse_vlan {
29 pkt.extract(hdr.vlan);
30 transition parse_ip;
31 }
32
33 state parse_ip {
34 pkt.extract(hdr.ip);
35 transition parse_udp;
36 }
37
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38 state parse_udp {
39 pkt.extract(hdr.udp);
40 transition select(hdr.vlan.data [31:28]) {
41 0b1111: reject;
42 default: accept;
43 }
44 }
45 }

Listing 10: The parser block where header initialisation occurs nowhere (which is incorrect).
1 header eth_t { bit <112> data; }
2 header vlan_t { bit <32> data; }
3 header ip_t { bit <160> data; }
4 header udp_t { bit <64> data; }
5
6 struct headers_t {
7 eth_t eth;
8 vlan_t vlan;
9 ip_t ip;

10 udp_t udp;
11 }
12
13 parser Parser(packet_in pkt , out headers_t hdr) {
14 state start {
15 pkt.extract(hdr.eth);
16 transition select(hdr.eth.data [111:111]) {
17 0: default_vlan;
18 1: parse_vlan;
19 }
20 }
21
22 state default_vlan {
23 // BUG: vlan not initialised
24 pkt.extract(hdr.ip);
25 transition parse_udp;
26 }
27
28 state parse_vlan {
29 pkt.extract(hdr.vlan);
30 transition parse_ip;
31 }
32
33 state parse_ip {
34 pkt.extract(hdr.ip);
35 transition parse_udp;
36 }
37
38 state parse_udp {
39 pkt.extract(hdr.udp);
40 transition select(hdr.vlan.data [31:28]) {
41 0b1111: reject;
42 default: accept;
43 }
44 }
45 }

C.4. Speculative Extraction

Listing 11: The plain version of the parser block
1 header mpls_t { bit <32> label; }
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2 header udp_t { bit <64> data; }
3
4 struct headers_t {
5 mpls_t mpls;
6 udp_t udp;
7 }
8
9 parser Parser(packet_in pkt , out headers_t hdr) {

10 state start {
11 pkt.extract(hdr.mpls);
12 transition select(hdr.mpls.label [8:8]) {
13 0: start;
14 1: parse_udp;
15 }
16 }
17
18 state parse_udp {
19 pkt.extract(hdr.udp);
20 transition accept;
21 }
22 }

Listing 12: The vectorised version of the parser block
1 header udp_t { bit <64> data; }
2 header tmp_t { bit <32> field; }
3
4 struct headers_t {
5 udp_t udp;
6 tmp_t tmp;
7 tmp_t old;
8 tmp_t new;
9 }

10
11 parser Parser(packet_in pkt , out headers_t hdr) {
12 state start {
13 pkt.extract(hdr.old);
14 pkt.extract(hdr.new);
15 transition select(hdr.old.field [8:8] , hdr.new.field [8:8]) {
16 (0, 0): start;
17 (0, 1): parse_udp;
18 (1, _): cleanup;
19 }
20 }
21
22 state parse_udp {
23 pkt.extract(hdr.udp);
24 transition accept;
25 }
26
27 state cleanup {
28 pkt.extract(hdr.tmp);
29 hdr.udp.data = hdr.new.field ++ hdr.tmp.field;
30 transition accept;
31 }
32 }

C.5. Relational Verification and External Filtering

Listing 13: The sloppy version of the parser block
1 header eth_t { bit <112> data; }
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2 header ipv4_t { bit <128> data; }
3 header ipv6_t { bit <288> data; }
4
5 struct headers_t {
6 eth_t eth;
7 ipv4_t ipv4;
8 ipv6_t ipv6;
9 }

10
11 parser Parser(packet_in pkt , out headers_t hdr) {
12 state start {
13 pkt.extract(hdr.eth);
14 transition select(hdr.eth.data [15:0]) {
15 0x86dd: parse_ipv6;
16 default: parse_ipv4;
17 }
18 }
19
20 state parse_ipv4 {
21 pkt.extract(hdr.ipv4);
22 transition accept;
23 }
24
25 state parse_ipv6 {
26 pkt.extract(hdr.ipv6);
27 transition accept;
28 }
29 }

Listing 14: The strict version of the parser block
1 header eth_t { bit <112> data; }
2 header ipv4_t { bit <128> data; }
3 header ipv6_t { bit <288> data; }
4
5 struct headers_t {
6 eth_t eth;
7 ipv4_t ipv4;
8 ipv6_t ipv6;
9 }

10
11 parser Parser(packet_in pkt , out headers_t hdr) {
12 state start {
13 pkt.extract(hdr.eth);
14 transition select(hdr.eth.data [15:0]) {
15 0x86dd: parse_ipv6;
16 0x8600: parse_ipv4;
17 default: reject;
18 }
19 }
20
21 state parse_ipv4 {
22 pkt.extract(hdr.ipv4);
23 transition accept;
24 }
25
26 state parse_ipv6 {
27 pkt.extract(hdr.ipv6);
28 transition accept;
29 }
30 }

36



C.6. Edge and Translation Validation

Listing 15: The plain version of the parser block
1 header eth_t { bit <112> data; }
2 header mpls_t { bit <32> data; }
3 header eompls_t { bit <28> data; }
4 header ipver_t { bit <4> data; }
5 header ipv4_5_t { bit <152> data; }
6 header ipv4_6_t { bit <184> data; }
7 header ipv4_7_t { bit <216> data; }
8 header ipv4_8_t { bit <248> data; }
9 header ipv6_t { bit <316> data; }

10
11 struct headers_t {
12 eth_t eth0;
13 eth_t eth1;
14 mpls_t mpls0;
15 mpls_t mpls1;
16 eompls_t eompls;
17 ipver_t ipver;
18 ipv4_5_t ipv4_5;
19 ipv4_6_t ipv4_6;
20 ipv4_7_t ipv4_7;
21 ipv4_8_t ipv4_8;
22 ipv6_t ipv6;
23 }
24
25 parser Parser(packet_in pkt , out headers_t hdr) {
26 state start {
27 pkt.extract(hdr.eth0);
28 transition select(hdr.eth0.data [15:0]) {
29 0x8847: parse_mpls0;
30 0x8848: parse_mpls0;
31 0x0800: ignore_ipver4;
32 0x86dd: ignore_ipver6;
33 default: accept;
34 }
35 }
36
37 state parse_mpls0 {
38 pkt.extract(hdr.mpls0);
39 transition select(hdr.mpls0.data [8:8]) {
40 0: parse_mpls1;
41 1: parse_ipver;
42 default: reject;
43 }
44 }
45
46 state parse_mpls1 {
47 pkt.extract(hdr.mpls1);
48 transition select(hdr.mpls1.data [8:8]) {
49 1: parse_ipver;
50 default: reject;
51 }
52 }
53
54 state parse_ipver {
55 pkt.extract(hdr.ipver);
56 transition select(hdr.ipver.data) {
57 0: parse_eompls;
58 4: parse_ipv4;
59 6: parse_ipv6;
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60 default: reject;
61 }
62 }
63
64 state ignore_ipver4 {
65 pkt.extract(hdr.ipver);
66 transition parse_ipv4;
67 }
68
69 state ignore_ipver6 {
70 pkt.extract(hdr.ipver);
71 transition parse_ipv6;
72 }
73
74 state parse_eompls {
75 pkt.extract(hdr.eompls);
76 transition parse_eth1;
77 }
78
79 state parse_eth1 {
80 pkt.extract(hdr.eth1);
81 transition accept;
82 }
83
84 state parse_ipv4 {
85 pkt.extract(hdr.ipver);
86 transition select(hdr.ipver.data) {
87 5: parse_ipv4_5;
88 6: parse_ipv4_6;
89 7: parse_ipv4_7;
90 8: parse_ipv4_8;
91 default: reject;
92 }
93 }
94
95 state parse_ipv4_5 {
96 pkt.extract(hdr.ipv4_5);
97 transition accept;
98 }
99

100 state parse_ipv4_6 {
101 pkt.extract(hdr.ipv4_6);
102 transition accept;
103 }
104
105 state parse_ipv4_7 {
106 pkt.extract(hdr.ipv4_7);
107 transition accept;
108 }
109
110 state parse_ipv4_8 {
111 pkt.extract(hdr.ipv4_8);
112 transition accept;
113 }
114
115 state parse_ipv6 {
116 pkt.extract(hdr.ipv6);
117 transition accept;
118 }
119 }

Listing 16: This is the optimised version of the parser block. Together with its plain version, it is used in
the translation validation benchmark.
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1 header buf_16_t { bit <16> data; }
2 header buf_32_t { bit <32> data; }
3 header buf_64_t { bit <64> data; }
4 header buf_112_t { bit <112> data; }
5 header buf_128_t { bit <128> data; }
6 header buf_144_t { bit <144> data; }
7 header buf_176_t { bit <176> data; }
8 header buf_208_t { bit <208> data; }
9 header buf_240_t { bit <240> data; }

10 header buf_304_t { bit <304> data; }
11 header buf_320_t { bit <320> data; }
12
13 struct headers_t {
14 buf_16_t b16;
15 buf_32_t b32;
16 buf_64_t b64;
17 buf_112_t b112;
18 buf_128_t b128;
19 buf_144_t b144;
20 buf_176_t b176;
21 buf_208_t b208;
22 buf_240_t b240;
23 buf_304_t b304;
24 buf_320_t b320;
25 }
26
27 parser Parser(packet_in pkt , out headers_t hdr) {
28 state start {
29 pkt.extract(hdr.b112);
30 transition select(hdr.b112.data [15:0]) {
31 0x0800: state_3;
32 0x86dd: state_0_suff_1;
33 0x8847: state_0_suff_2;
34 0x8848: state_0_suff_3;
35 default: accept;
36 }
37 }
38
39 state state_0_suff_1 {
40 pkt.extract(hdr.b320);
41 transition accept;
42 }
43
44 state state_0_suff_2 {
45 pkt.extract(hdr.b16);
46 transition state_4;
47 }
48
49 state state_0_suff_3 {
50 pkt.extract(hdr.b16);
51 transition state_4;
52 }
53
54 state state_1 {
55 pkt.extract(hdr.b16);
56 transition state_1_suff_0;
57 }
58
59 state state_1_suff_0 {
60 pkt.extract(hdr.b128);
61 transition accept;
62 }
63
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64 state state_2 {
65 pkt.extract(hdr.b16);
66 transition state_2_suff_0;
67 }
68
69 state state_2_suff_0 {
70 pkt.extract(hdr.b304);
71 transition accept;
72 }
73
74 state state_3 {
75 pkt.extract(hdr.b16);
76 transition select(hdr.b16.data [11:8]) {
77 5: state_3_suff_0;
78 6: state_3_suff_1;
79 7: state_3_suff_2;
80 8: state_3_suff_3;
81 default: reject;
82 }
83 }
84
85 state state_3_suff_0 {
86 pkt.extract(hdr.b144);
87 transition accept;
88 }
89
90 state state_3_suff_1 {
91 pkt.extract(hdr.b176);
92 transition accept;
93 }
94
95 state state_3_suff_2 {
96 pkt.extract(hdr.b208);
97 transition accept;
98 }
99

100 state state_3_suff_3 {
101 pkt.extract(hdr.b240);
102 transition accept;
103 }
104
105 state state_4 {
106 pkt.extract(hdr.b16);
107 transition select(hdr.b16.data [8:8]) {
108 0: state_4_skip;
109 1: state_4_trailer;
110 default: reject;
111 }
112 }
113
114 state state_4_skip {
115 pkt.extract(hdr.b32);
116 transition select(hdr.b32.data [8:8]) {
117 1: state_4_trailer;
118 default: reject;
119 }
120 }
121
122 state state_4_trailer {
123 pkt.extract(hdr.b16);
124 transition select(hdr.b16.data [15:12] , hdr.b16.data [11:8]) {
125 (0, _): state_1_suff_0;
126 (6, _): state_2_suff_0;
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127 (4, 5): state_3_suff_0;
128 (4, 6): state_3_suff_1;
129 (4, 7): state_3_suff_2;
130 (4, 8): state_3_suff_3;
131 default: reject;
132 }
133 }
134 }

C.7. Service Provider

1 header eth_t { bit <112> data; }
2 header mpls_t { bit <32> data; }
3 header ip_ver_t { bit <4> data; }
4 header ihl_t { bit <4> data; }
5 header ipv4_5_t { bit <152> data; }
6 header ipv4_6_t { bit <184> data; }
7 header ipv4_7_t { bit <216> data; }
8 header ipv4_8_t { bit <248> data; }
9 header ipv6_t { bit <316> data; }

10
11 struct headers_t {
12 eth_t eth;
13 mpls_t mpls;
14 ip_ver_t ip_ver;
15 ihl_t ihl;
16 ipv4_5_t ipv4_5;
17 ipv4_6_t ipv4_6;
18 ipv4_7_t ipv4_7;
19 ipv4_8_t ipv4_8;
20 ipv6_t ipv6;
21 }
22
23 parser Parser(packet_in pkt , out headers_t hdr) {
24 state start {
25 pkt.extract(hdr.eth);
26 transition select(hdr.eth.data [111:96]) {
27 0x8847: parse_mpls;
28 0x8848: parse_mpls;
29 0x0800: parse_ethv4;
30 0x86dd: parse_ethv6;
31 default: reject;
32 }
33 }
34
35 state parse_ethv4 {
36 pkt.extract(hdr.ip_ver);
37 transition parse_ipv4;
38 }
39
40 state parse_ethv6 {
41 pkt.extract(hdr.ip_ver);
42 transition parse_ipv6;
43 }
44
45 state parse_mpls {
46 pkt.extract(hdr.mpls);
47 transition select(hdr.mpls.data [24:24]) {
48 0: parse_mpls;
49 1: parse_ip_ver;
50 default: reject;
51 }
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52 }
53
54 state parse_ip_ver {
55 pkt.extract(hdr.ip_ver);
56 transition select(hdr.ip_ver.data) {
57 4: parse_ipv4;
58 6: parse_ipv6;
59 default: reject;
60 }
61 }
62
63 state parse_ipv4 {
64 pkt.extract(hdr.ihl);
65 transition select(hdr.ihl.data) {
66 5: parse_ipv4_5;
67 6: parse_ipv4_6;
68 7: parse_ipv4_7;
69 8: parse_ipv4_8;
70 default: reject;
71 }
72 }
73
74 state parse_ipv4_5 {
75 pkt.extract(hdr.ipv4_5);
76 transition accept;
77 }
78
79 state parse_ipv4_6 {
80 pkt.extract(hdr.ipv4_6);
81 transition accept;
82 }
83
84 state parse_ipv4_7 {
85 pkt.extract(hdr.ipv4_7);
86 transition accept;
87 }
88
89 state parse_ipv4_8 {
90 pkt.extract(hdr.ipv4_8);
91 transition accept;
92 }
93
94 state parse_ipv6 {
95 pkt.extract(hdr.ipv6);
96 transition accept;
97 }
98 }

C.8. Datacenter

1 header eth_t { bit <112> data; }
2 header vlan_t { bit <160> data; }
3 header ipv4_t { bit <160> data; }
4 header icmp_t { bit <32> data; }
5 header tcp_t { bit <160> data; }
6 header udp_t { bit <160> data; }
7 header gre_t { bit <32> data; }
8 header nvgre_t { bit <32> data; }
9 header vxlan_t { bit <64> data; }

10 header arp_t { bit <64> data; }
11 header arp_ip_t { bit <160> data; }
12
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13 struct headers_t {
14 eth_t eth0;
15 eth_t eth1;
16 vlan_t vlan0;
17 vlan_t vlan1;
18 ipv4_t ipv4;
19 icmp_t icmp;
20 tcp_t tcp;
21 udp_t udp;
22 gre_t gre0;
23 gre_t gre1;
24 gre_t gre2;
25 nvgre_t nvgre;
26 vxlan_t vxlan;
27 arp_t arp;
28 arp_ip_t arp_ip;
29 }
30
31 parser Parser(packet_in pkt , out headers_t hdr) {
32 state start {
33 pkt.extract(hdr.eth0);
34 transition select(hdr.eth0.data [15:0]) {
35 0x8100: parse_vlan0;
36 0x9100: parse_vlan0;
37 0x9200: parse_vlan0;
38 0x9300: parse_vlan0;
39 0x0800: parse_ipv4;
40 0x0806: parse_arp;
41 0x8035: parse_arp;
42 default: reject;
43 }
44 }
45
46 state parse_vlan0 {
47 pkt.extract(hdr.vlan0);
48 transition select(hdr.vlan0.data [15:0]) {
49 0x8100: parse_vlan1;
50 0x9100: parse_vlan1;
51 0x9200: parse_vlan1;
52 0x9300: parse_vlan1;
53 0x0800: parse_ipv4;
54 0x0806: parse_arp;
55 0x8035: parse_arp;
56 default: reject;
57 }
58 }
59
60 state parse_vlan1 {
61 pkt.extract(hdr.vlan1);
62 transition select(hdr.vlan1.data [15:0]) {
63 0x0800: parse_ipv4;
64 0x0806: parse_arp;
65 0x8035: parse_arp;
66 default: reject;
67 }
68 }
69
70 state parse_ipv4 {
71 pkt.extract(hdr.ipv4);
72 transition select(hdr.ipv4.data [87:80]) {
73 6: parse_tcp;
74 17: parse_udp;
75 47: parse_gre0;
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76 default: accept;
77 }
78 }
79
80 state parse_tcp {
81 pkt.extract(hdr.tcp);
82 transition accept;
83 }
84
85 state parse_udp {
86 pkt.extract(hdr.udp);
87 transition select(hdr.udp.data [143:128]) {
88 0xFFFF: parse_vxlan;
89 default: accept;
90 }
91 }
92
93 state parse_icmp {
94 pkt.extract(hdr.icmp);
95 transition accept;
96 }
97
98 state parse_gre0 {
99 pkt.extract(hdr.gre0);

100 transition select(hdr.gre0.data [29:29] , hdr.gre0.data [15:0]) {
101 (1, 0x6558): parse_nvgre;
102 (1, 0x6559): parse_gre1;
103 default: accept;
104 }
105 }
106
107 state parse_gre1 {
108 pkt.extract(hdr.gre1);
109 transition select(hdr.gre1.data [15:0]) {
110 0x16558: parse_nvgre;
111 0x16559: parse_gre2;
112 default: accept;
113 }
114 }
115
116 state parse_gre2 {
117 pkt.extract(hdr.gre2);
118 transition select(hdr.gre2.data [15:0]) {
119 0x16558: parse_nvgre;
120 0x16559: reject;
121 default: accept;
122 }
123 }
124
125 state parse_nvgre {
126 pkt.extract(hdr.nvgre);
127 transition parse_eth1;
128 }
129
130 state parse_vxlan {
131 pkt.extract(hdr.vxlan);
132 transition parse_eth1;
133 }
134
135 state parse_eth1 {
136 pkt.extract(hdr.eth1);
137 transition accept;
138 }
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139
140 state parse_arp {
141 pkt.extract(hdr.arp);
142 transition select(hdr.arp.data [47:32]) {
143 0x0800: parse_arp_ip;
144 default: accept;
145 }
146 }
147
148 state parse_arp_ip {
149 pkt.extract(hdr.arp_ip);
150 transition accept;
151 }
152 }

C.9. Enterprise

1 header eth_t { bit <112> data; }
2 header vlan_t { bit <160> data; }
3 header ipv4_t { bit <128> data; }
4 header ipv6_t { bit <64> data; }
5 header tcp_t { bit <160> data; }
6 header udp_t { bit <160> data; }
7 header icmp_t { bit <32> data; }
8 header icmp_v6_t { bit <32> data; }
9 header arp_t { bit <64> data; }

10 header arp_ip_t { bit <64> data; }
11
12 struct headers_t {
13 eth_t eth;
14 vlan_t vlan0;
15 vlan_t vlan1;
16 ipv4_t ipv4;
17 ipv6_t ipv6;
18 tcp_t tcp;
19 udp_t udp;
20 icmp_t icmp;
21 icmp_v6_t icmp_v6;
22 arp_t arp;
23 arp_ip_t arp_ip;
24 }
25
26 parser Parser(packet_in pkt , out headers_t hdr) {
27 state start {
28 pkt.extract(hdr.eth);
29 transition select(hdr.eth.data [111:96]) {
30 0x8100: parse_vlan0;
31 0x9100: parse_vlan0;
32 0x9200: parse_vlan0;
33 0x9300: parse_vlan0;
34 0x0800: parse_ipv4;
35 0x86dd: parse_ipv6;
36 0x0806: parse_arp;
37 0x8035: parse_arp;
38 default: reject;
39 }
40 }
41
42 state parse_vlan0 {
43 pkt.extract(hdr.vlan0);
44 transition select(hdr.vlan0.data [159:144]) {
45 0x8100: parse_vlan1;
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46 0x9100: parse_vlan1;
47 0x9200: parse_vlan1;
48 0x9300: parse_vlan1;
49 0x0800: parse_ipv4;
50 0x86dd: parse_ipv6;
51 0x0806: parse_arp;
52 0x8035: parse_arp;
53 default: reject;
54 }
55 }
56
57 state parse_vlan1 {
58 pkt.extract(hdr.vlan1);
59 transition select(hdr.vlan1.data [159:144]) {
60 0x0800: parse_ipv4;
61 0x86dd: parse_ipv6;
62 0x0806: parse_arp;
63 0x8035: parse_arp;
64 default: reject;
65 }
66 }
67
68 state parse_ipv4 {
69 pkt.extract(hdr.ipv4);
70 transition select(hdr.ipv4.data [79:72]) {
71 1: parse_icmp;
72 6: parse_tcp;
73 11: parse_udp;
74 default: accept;
75 }
76 }
77
78 state parse_ipv6 {
79 pkt.extract(hdr.ipv6);
80 transition select(hdr.ipv6.data [55:48]) {
81 1: parse_icmp_v6;
82 6: parse_tcp;
83 11: parse_udp;
84 default: accept;
85 }
86 }
87
88 state parse_tcp {
89 pkt.extract(hdr.tcp);
90 transition accept;
91 }
92
93 state parse_udp {
94 pkt.extract(hdr.udp);
95 transition accept;
96 }
97
98 state parse_icmp {
99 pkt.extract(hdr.icmp);

100 transition accept;
101 }
102
103 state parse_icmp_v6 {
104 pkt.extract(hdr.icmp_v6);
105 transition accept;
106 }
107
108 state parse_arp {
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109 pkt.extract(hdr.arp);
110 transition select(hdr.arp.data [31:16]) {
111 0x0800: parse_arp_ip;
112 default: accept;
113 }
114 }
115
116 state parse_arp_ip {
117 pkt.extract(hdr.arp_ip);
118 transition accept;
119 }
120 }
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