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Abstract

Background ASML[ASM25] is the largest supplier in the semiconductor industry as of
2023 and the sole provider globally of extreme ultraviolet lithography (EUVL) photolithog-
raphy machines, which are essential for manufacturing the most advanced chips. However,
with every new machine configuration, performance analysis becomes increasingly com-
plex and requires significant engineers’ effort. These lithography machines operate at the
nanometer scale, where even the slightest variations in performance—potentially arising
from normal operational factors—require detailed analysis to determine whether they
signify genuine performance issues or anomalies.

Aim This study focuses on developing a utility to distinguish between genuine
performance degradation and anomalies caused by outliers. The utility aims to streamline
the analysis of lithography machine performance by comparing its operation in two
states: a pre-state, representing its baseline configuration, and a post-state, reflecting its
performance following software updates.

Method The utility integrates PyNomaly for probabilistic outlier detection and the
Isolation Forest machine learning classifier for robust classification of anomalous data
points. These methods collectively identify deviations that may impact performance
trends. Additionally, the report discusses the implementation of test cases using Python's
unittest package to ensure the reliability and robustness of the tool.

Results The results demonstrate that an optimal model combining PyNomaly and
Isolation Forest effectively detects outliers at the first-level processes. Furthermore, a
median deviation-based approach is proposed for analyzing anomalies in second-level
processes. The methodology also incorporates test cases to validate the accuracy and
reliability of the unsupervised anomaly detection models.

Conclusion This approach not only identifies anomalous data but also provides
detailed insights into the performance of lithography machines at the second-level
processes. The utility thus aids in reducing the time and effort engineers spend on
performance evaluation, enabling a more efficient analysis workflow.



1 Introduction

In the modern era of advanced manufacturing and process automation, understanding and
identifying anomalies in operational data has become a critical challenge.The semiconductor
industry, particularly in the context of ASML's EUV lithography machines, encounters various
anomalies that impact performance, yield, and reliability. These anomalies can arise due to
issues such as Power fluctuations, Outlier durations in process steps etc. These anomalies
can be caused due to environmental factors such as pressure, machine temperature, particle
deposition on wafers etc.

ASML, a leading player in this domain, is at the forefront of developing advanced photolithog-
raphy machines capable of operating at the nanometer scale. In this modern era of advanced
manufacturing and process automation, understanding and identifying anomalies in operational
data has become a critical challenge. This study focuses on ASML's EUV lithography machines,
which are crucial for advanced semiconductor fabrication. Specifically, the work examines
anomalous durations in machine processes that can indicate potential failures, inefficiencies,
or deviations in the system. The problems at hand is that with growing number of machine
configurations, analysis will become increasingly challenging, and thus by developing an anomaly
detection utility tailored to ASML's lithography processes, this study aims to improve fault
identification, reduce machine downtime, and enhance overall production efficiency. Anomalies,
or outliers, represent data points that significantly deviate from the norm, often signaling
potential issues or rare events that require further investigation. Analyzing such outliers is
vital in industries that rely on precision and consistency, such as semiconductor manufacturing,
where minor deviations in process durations can lead to significant disruptions or inefficiencies.
The deviations in performance could be caused due to factors such as software updates, environ-
mental conditions, and hardware wear. Identifying whether deviations in machine performance
stem from genuine operational issues or anomalous data points is critical to ensuring consistent
manufacturing quality.



1.1 Problem Statement

a oe o
% PRE B us
; e )
= = [ ] I 1= | H %
. ) gy |y
| L [ 2l
 ——— —— — co— [ — =
S [=——] — o 0 === =
—= 1 a — ar a :;
= =] Ll 0o p e =

] [ =

Il
LDDEI P OS T EIE:I’::Il:l :EDDD[
6000 m\-—-l |<—
I
= = . L 13 [

+ W

T T g

January 21, 2025 Page 26

Figure 1: Processes in chip manufacturing inside Lithography machine

In complex industrial environments, identifying and managing outliers in process duration
data remain a persistent challenge. Traditional methods often fail to adapt to the evolving
patterns in data, leading to excessive false positives or overlooked anomalies. Performance
evaluation becomes even more challenging when dealing with datasets from low-level processes,
which often contain many data points, making manual analysis impractical. Engineers require
automated tools to effectively distinguish outliers from meaningful performance variations,
minimizing manual effort while maintaining accuracy. Moreover, the hierarchical nature of
lithography processes introduces additional complexity, as data must be analyzed at both high
and low levels, with nuanced relationships between these levels needing to be understood.

This study focuses on duration data, particularly non-stationary duration data, where the
duration values change with time. These changes are typically affected due to factors such as
software patches and environmental factors. Duration data is often continuous and unbounded,
with extreme values being natural in some contexts but anomalous in others. Given the nature of
this data, probabilistic methods that assign an anomaly score to each data point are particularly
suitable.

The study addresses these challenges by developing a robust anomaly detection utility. The tool
focuses on non-stationary duration data from lithography machines and leverages unsupervised
machine learning models to identify outliers. The proposed approach combines probabilistic
anomaly detection techniques with scalable machine learning algorithms for efficient and
interpretable performance analysis.

1.2 Scope of the Study

This study focuses on evaluating lithography machine performance through a combination of
probabilistic anomaly detection and machine learning classifiers. The dataset includes process



durations recorded in pre- and post-run states, divided into hierarchical levels to facilitate
granular analysis. Key contributions of this study include:

A utility combining PyNomaly and Isolation Forest for robust outlier detection. Pre-check
and preprocessing pipelines to ensure data consistency and integrity. Testing methodologies
validate the proposed solution’s performance and reliability, including input space partitioning
and random testing. This work ultimately aims to streamline the workflow of ASML engineers
by providing a reliable tool for identifying and analyzing anomalous performance trends in
lithography machines.

2 Literature Review

Automatic anomaly detection has become critical today, where the sheer volume of data
generated across industries makes manual tagging of outliers infeasible. Traditional supervised
classification models require labeled datasets often unavailable in real-world scenarios. Moreover,
these models rely on prior assumptions about the data, such as the distribution of classes,
which may not hold for many complex datasets. In contrast, unsupervised learning methods
are well-suited for anomaly detection as they do not require labeled data. These methods
identify patterns, structures, and deviations directly from the data. By relying on intrinsic data
properties, such as density, distance, or clustering tendencies, unsupervised methods isolate
statistical outliers and predict that they are anomalies. The adaptability and scalability of
unsupervised methods make them particularly useful in dynamic environments where data
evolves.

Several unsupervised methods have been developed for anomaly detection. Clustering-based
methods, such as K-means [LZS™10] and DBSCAN, are widely used in weather pattern tracking
and fraud detection because they can group similar data points and flag instances that fall
outside these clusters as anomalies. Clustering methods, although intuitive, may struggle
with datasets containing overlapping clusters or varying densities. Statistical methods like the
Z-test or Grubbs' test effectively detect univariate anomalies by identifying points that deviate
significantly from the mean. However, they are less suitable for multivariate or high-dimensional
data. Similarly, proximity-based techniques like k-nearest neighbors (k-NN) [TAP14] anomaly
detection calculates the density around each point to flag low-density regions as potential
outliers. These methods are computationally expensive for large datasets. Popular machine
learning algorithms are One Class SVM [LHTXO03|, which uses a max-margin approach to
separate normal data from anomalies, and Isolation Forest [LTZ08], which isolates anomalies
through random partitioning. Autoencoders [ZP17], which reduce data dimensionality, are also
effective, as they struggle to reconstruct outliers, making anomalies easier to identify. These
algorithms are widely used in industrial anomaly detection, such as for predictive maintenance
in manufacturing, While powerful and internet protocol network intrusion detection [SFAA23]
are some of the applications. These methods often require careful parameter tuning and
assumptions about data distribution to achieve optimal results.

Several previous works have also explored various approaches to anomaly detection in unlabeled
duration data. For example, [BGCML21] provides a comprehensive overview of anomaly detec-
tion methods for duration data, emphasizing the importance of extracting outlier information



as useful data rather than simply cleaning the dataset. Another work [BMOQ7] focuses on the
problem of detecting unusual values or outliers from time series data where the underlying
process is challenging to model. The authors propose two method variations that use the
median from a neighborhood of a data point and a threshold value to compare the difference
between the median and the observed data value. Both methods are computationally efficient
and suitable for data streams such as sensor data on a machine.

In this thesis, we have chosen PyNomaly (LoOP) and Isolation Forest due to their ability to
handle non-stationary duration data. PyNomaly provides probabilistic anomaly scores, making
it well-suited for interpretability, while Isolation Forest efficiently isolates anomalies in large
datasets without requiring explicit density estimation. We aim to improve the detection of
anomalies in non-stationary duration data, ensuring both accuracy and interpretability. Our
method implementation is validated through testing to provide a robust tool for ASML engineers
when checking lithography machine performance data.

In the table below [I] we describe the different methods used in our study.

Method Strengths Weaknesses

One-Class SVM Good  for  high- | Computationally ex-
dimensional data pensive

Isolation Forest Scalable, efficient Struggles with over-

lapping clusters

LOF Adapts to density | Sensitive to parame-
variations ter tuning

PyNomaly Provides probabilistic | Assumes  indepen-
anomaly scores dence of data points

Table 1: Methods used in our study

3 Dataset

In this section, we discuss the sources of the datasets used in our study and the modifications
performed to prepare the data for input into the models. We provide a detailed overview of the
processing steps undertaken to transform the raw data into a usable format and the features
obtained after cleaning. These steps are fundamental to our study, ensuring that the dataset is
highly quality and the relevant features are optimized for machine learning modeling. Class
imbalance was not a major concern in this dataset, as the proportion of anomalies was sufficient
for effective model training and evaluation without requiring resampling techniques.

3.1 Data Source

The data used in this study was provided by the Productivity Department at ASML, one of
the world’s leading manufacturers of chip-making equipment. ASML designs and manufactures
lithography machines, which are essential components in the chip manufacturing process.

10



The dataset comprises pre- and post-run durations of various processes involved in printing
patterns on wafers. The data is further divided into two levels. A high-level process represents
a major operational step, while low-level processes correspond to the sub-steps that contribute
to it. For example, in a lithography machine, a high-level process might be 'wafer exposure,’
while the low-level processes include "alignment check,’ 'light exposure,” and 'cooling phase.’
We can consider a high-level process to be the engine of a car, and the lower-level processes
are the individual parts inside the engine that together make up the engine.

The data for both levels includes a wide range of attributes, such as information on different
batches and wafers for which these processes are performed. Additionally, the data records
durations for both software and hardware processes. The diversity and size of the dataset
make it well-suited for studying anomalies, as identifying outliers can provide valuable insights
while analyzing the performance of lithography machines and help improve their operational
efficiency.

3.2 Data Features

The dataset is structured into two levels, each with distinct features:

3.2.1 High-Level Processes Data

The data has the following attributes.

e ID: A unique identifier for each high-level process.

Name: A descriptive name for the process, designed to be reader-friendly.

Batch: The name of the batch for which the wafers are being processed.

Wafer : The specific wafer that is being processed within the batch.

Duration: The time taken to complete the high-level process.

3.2.2 Low-Level Processes Data

The data has the following attributes.

e ID: A unique identifier for each low-level process.

Batch: The name of the batch for which the wafers are being processed.

Wafer: The specific wafer being processed within the batch.

Process_Namel: The initial segment of the process name.

Process_Name2: The middle segment of the process name.
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e Process_Name3: The final segment of the process name.

The segmentation of process names into three parts (Process_Namel, Process_Name2, Pro-
cess_Name3) reflects the hierarchical or compositional nature of the low-level processes. It
helps organize and analyze the data more effectively.

3.3 Data Processing

The machine data undergoes several preprocessing steps to convert the raw machine data into a
format that is suitable for modeling. These steps ensure data consistency, eliminate errors, and
enhance model performance. The process consists of two main stages: pre-check and processing.

The process consists of two main stages: pre-check and processing.

3.3.1 Pre-Check

The pre-check phase ensures that the raw data is consistent and complete before proceeding
to further processing. The steps, shown here in Figure reffig:Precheck, include:

e Shape of the Dataframe: Ensuring that the pre-run and post-run data frames have
matching attributes is crucial for consistency. If discrepancies exist, they may indicate
data corruption or incorrect logging, requiring manual correction.

e Number of Unique Processes: Ensuring that the processes in the pre-run data match
those in the post-run data.

¢ Value of Unique Processes: Comparing the string values of process names to confirm
consistency between pre- and post-run data and to identify and eliminate duplicates.

INPUT PRE-CHECK

High_Level_pre.csv

. Pre-Check 2: Pre-Check 3:
High_Level post.csv Pre-Check 1:

Perform Initial
Shape of the Number of Value of

Data
Preprocessing

Low_Level_pre.csv Data Frame Unique Unique

Processes
Low_Level_post.csv Processes

Figure 2: Data Pre-Check Pipeline

3.3.2 Processing

The processing phase involves cleaning and transforming the data to prepare it for machine
learning. The pipeline is illustrated in Figure [3|and includes the following steps:
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e Mapping Data: Converting data values to the appropriate data types required by the
model.

¢ Handling Nan Values: Nan stands for Not A Number and is one of the common ways
to represent the missing value in the data. It is a special floating-point value and cannot
be converted to any other type than float. Nan value is one of the major problems in Data
Analysis. It is very essential to deal with Nan values in order to get the desired results.
Removing or imputing missing values to prevent errors and improve model accuracy.
For this study, rows with Nan values were removed to maintain data integrity for the
non-critical fields, and for the critical fields, we replaced the Nan value with the average
for the remaining wafers.

¢ Rounding off small values: Values below a predefined threshold were rounded to zero
to prevent overfitting. This threshold was determined based on the domain knowledge of
ASML engineers.

¢ Removing Numerical Prefixes: Serial numbers attached to batch IDs were removed,
as they do not contribute to the analysis and could introduce noise.

These preprocessing steps ensure that the dataset is clean, consistent, and optimized for
anomaly detection in our machine-learning model.

Missing data and inconsistent formatting required significant preprocessing efforts. Additionally,
the hierarchical nature of the data necessitated careful feature engineering to ensure compatibility
with the machine learning model. Future work could explore alternative preprocessing techniques,
such as automated feature selection or advanced imputation methods, to improve the use of

the dataset.

Data Processing

INPUT /

Pre-Checked
High_Level_pre.csv

High_Level_post.csv

Low_Level_pre.csv

Low_Level_post.csv

Pre-
Processing
Step 1:
Map Columns
of DataFrame
to proper Data
Type

Pre-Processing Step 2:

Round off
extremely
Drop Nan small
Values duration
values to
Zero

Remove
numerical
values from
batches

N

Proceed with
Setting up
DataFrame for

Delta Calculation

4 Methods

Figure 3: Data Processing Pipeline

In this section, we describe the various techniques explored for identifying outliers in the
duration data. The methods combine statistical and machine learning approaches, each offering
unique strategies for detecting anomalies.
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We begin with histogram-based methods, which provide a visual and statistical approach to
identifying deviations based on data distribution. The Inter Quartile Range (IQR) method is
another statistical technique that detects outliers by examining the spread of the data.

Among the machine learning methods, the Local Outlier Factor (LOF) identifies anomalies
by comparing the local density of data points. A One-Class Support Vector Machine (SVM)
employs a boundary-based approach to classifying outliers in a feature space. The Isolation
Forest Classifier uses a tree-based ensemble method to isolate and detect anomalous points
effectively.

Finally, PyNomaly applies a probabilistic approach to anomaly detection, offering insights into
how likely each data point is to be an outlier. Each method was evaluated for its effectiveness
in detecting outliers in the lithography machine performance data.

In the following subsections, we provide a detailed explanation of each method, including their
features and how they were applied in this study.

4.1 Histogram Method

Histogram-Based Outlier Scoring (HBOS) is a statistical anomaly detection method that
evaluates outliers by constructing univariate histograms for each feature of the dataset. Unlike
many algorithms, HBOS assumes feature independence, which makes it computationally efficient
and scalable for large datasets with high-dimensional features. This efficiency is particularly
advantageous in scenarios where a large volume of data needs to be analyzed, such as network
security or industrial systems.[GD12] This data is usually high dimensional where feature
independence can be assumed, making it computationally efficient for large-scale anomaly
detection.

For numerical features, HBOS employs two techniques for constructing histograms: static bin
width and dynamic bin width. Static binning divides the range of values into equal intervals,
while dynamic binning adjusts the bin width based on the data distribution. Dynamic binning
is particularly effective when the dataset contains gaps or exhibits long-tail distributions, as it
adapts to the data’s inherent structure. The number of bins, k, is typically set to the square
root of the number of instances, IV, to balance granularity and computational cost.

To compute the HBOS score, the algorithm normalizes the histograms so that the maximum
bin height equals 1.0, ensuring equal weighting across features. The score, for instance, is
calculated as the sum of the logarithmic inverses of the density estimates for each feature, as
follows:[PB19]

HBOS(p) = Z log (hist(p;))

where d is the number of features, p is a data point, and hist(p;) is the normalized histogram
height of of the ith feature.

HBOS offers several advantages, including its fast computation time, the absence of a training
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phase, and the ability to assign a continuous outlier score to each instance. These properties
make it a practical and effective choice for anomaly detection tasks, particularly in applications
involving high data volume or time-sensitive analysis.

4.2 Interquartile Range Method

The Interquartile Range (IQR) method is a statistical technique used for detecting anomalies
by measuring the variability of data [Wik24a]. It divides the dataset into four equal parts
using quartiles, which are specific points that split the data when arranged in ascending order.
The first quartile (Q1) represents the 25th percentile of the data, below which 25% of the
observations lie, while the third quartile (Q3) represents the 75th percentile, below which 75%
of the observations lie. The interquartile range is defined as the difference between these two
quartiles and measures the spread of the middle 50% of the data:

IQR = Q3 — Q1

Using the IQR, outliers are identified as data points that fall outside a specified range defined
by the lower and upper bounds. These bounds are calculated as follows[WWLT14]:

Lower Bound = Q1 — k- IQR
Upper Bound = Q3 + £ - IQR

Here, k is a constant that determines the sensitivity of the detection. A typical value for k is 1.5,
although it can be adjusted based on the requirements of the analysis or the characteristics of
the dataset. Any data point lying below the lower bound or above the upper bound is classified
as an outlier.

The IQR method is widely appreciated for its robustness to extreme values. It does not depend
on the mean or standard deviation, both of which can be influenced by outliers. Additionally, it
is simple to implement and interpret, making it an effective tool for exploratory data analysis.

However, the method has some limitations. It assumes that the data is symmetrically distributed
and may not perform well with skewed or multimodal datasets. In such cases, the computed
bounds might fail to capture all anomalies or misclassify normal points as outliers.

In summary, the IQR method provides a straightforward and robust approach to anomaly
detection by leveraging the distribution of data. Its simplicity and resistance to the influence of
extreme values make it an essential technique for identifying potential outliers in various datasets.
IQR assumes a symmetric distribution, which may lead to misclassification of anomalies in
skewed datasets.
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4.3 Local Outlier Factor

The Local Outlier Factor (LOF) is an anomaly detection technique that identifies outliers
based on their local density relative to their neighbors. Unlike global methods, LOF focuses on
the local neighborhood of data points, making it effective for datasets where anomalies are
more evident in certain regions than others. The LOF depends on the a priori given number of
neighbors, making it difficult to balance sensitivity and specificity in anomaly detection.

The LOF algorithm assigns an outlier score to each data point by comparing its local density
with the densities of its neighbors. A data point with a significantly lower local density than its
neighbors is considered an outlier. The algorithm involves the following steps|]AASM20]:

1. Compute the k-distance: For a given point p, the k-distance is the distance to its k-th
nearest neighbor. This parameter k determines the size of the local neighborhood and must be
chosen carefully based on the dataset’s characteristics.

2. Define the neighborhood: The k-distance neighborhood of p includes all points within the
k-distance of p.

3. Calculate the local reachability distance: The local reachability distance of p with respect to
a neighbor ¢ is defined as:

reachability_dist, (p, ¢) = max{k-distance(q), distance(p, q) }

This metric prevents the distance to very close neighbors from being too small, which could
distort the density computation.

4. Determine the local density: The local density of p is the inverse of the average reachability
distance of p to all its neighbors:

1
Ird(p) = e N, () reachability_dist (p,q)
|Nk (D)l

Here, Ny (p) represents the set of k-distance neighbors of p [Wik24c].

5. Compute the Local Outlier Factor: Finally, the LOF score for p is calculated as the ratio of
the average local density of its neighbors to its own local density:

. quNk(p) Irdy. ()
LORL) = TR, (o) - e ()

A higher LOF score indicates that p is an outlier relative to its neighbors [Wik24d].

The LOF method has several advantages. It is highly adaptable to data with varying density
regions and does not assume any specific data distribution. It is particularly effective in cases
where the global density approach might fail, such as datasets with clusters of different
densities[BKNSQ0].

However, LOF also has limitations. The method's performance depends on the choice of
k, which must balance capturing local structures without introducing noise. Additionally,
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LOF can be computationally expensive for large datasets, as it requires calculating pairwise
distances[APB18].

In conclusion, the Local Outlier Factor is a robust and flexible anomaly detection technique that
identifies outliers by comparing local densities. Its ability to adapt to local data characteristics
makes it a powerful tool for analyzing complex datasets with non-uniform distributions.

4.4 One-Class SVM

The One-Class Support Vector Machine (One-Class SVM) is a machine learning algorithm used
for anomaly detection. It identifies outliers by learning the boundary that separates normal data
points from anomalies. This method is particularly effective in scenarios where the dataset
consists mostly of normal data with only a few anomalous instances.

One-class SVM is built on the principles of Support Vector Machines (SVMs), which are
primarily used for classification and regression tasks. In the case of One-Class SVM, the
algorithm learns a decision function f(z) that distinguishes the regions in the feature space
where most of the data points lie (normal instances) from the regions where few or no points
exist (outliers)[HS13].

The One-Class SVM algorithm works as follows:

1. Kernel function: A kernel function K (z,y) computes the inner product between the image
of two data points z,y under a (nonlinear) feature map, which makes it easier to separate the
normal instances from outliers.

Commonly used kernels include the Radial Basis Function (RBF) kernel [SWST99]

K(z,y) = exp (—[lz — y|I*)
where 7 is a hyperparameter that controls the smoothness of the decision boundary.

2. Optimization objective: The algorithm attempts to maximize the margin between the origin
(representing anomalies) and a hyperplane that encloses most of the normal data points. The
optimization problem can be formulated as [SEKO05]:

w,&,p

1 1 &
. 2
mmg”wH + m;& —p

subject to:

Here:

e w represents the weights of the hyperplane,
o ¢(x;) is the feature map,

e p is the offset of the hyperplane,
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e &, are slack variables allowing for some misclassification and

e v is a parameter that controls the trade-off between maximizing the margin and the
fraction of anomalies allowed.

3. Decision function: Once the model is trained, the decision function is given by [SWST99]:

N

fla) =Y ik (i) = p

i=1

where «; are the support vector coefficients. A point z is considered normal if f(x) > 0 and
anomalous if f(x) < 0.

Key Features and Advantages: - Unsupervised Learning: One-Class SVM does not require
labeled data for training, making it suitable for anomaly detection in real-world scenarios where
labels are often unavailable. - Flexible Kernel Selection: The choice of kernel allows the method
to capture complex patterns and adapt to various data distributions[CQS13]. - Scalability:
Efficient optimization techniques enable One-Class SVM to handle moderately large datasets.

One-class SVM has several limitations. Its performance is highly sensitive to the choice of
hyperparameters such asv and ~y, which often require careful tuning to achieve optimal results.
Additionally, the method can be computationally expensive for very large datasets due to the
need for pairwise kernel computations. Furthermore, One-Class SVM assumes that anomalies
are rare, making it less effective when the fraction of anomalies in the dataset is not small.

In summary, One-Class SVM is a powerful anomaly detection technique that uses SVM principles
to separate normal instances from anomalies in the feature space. Its flexibility and adaptability
make it a widely used method for unsupervised anomaly detection.

4.5 Isolation Forest

Isolation Forest is an anomaly detection algorithm that isolates anomalies instead of profiling
normal data points. It is based on the idea that anomalies are "few and different” compared to
normal instances, making them easier to isolate. This method is particularly efficient for large
datasets due to its linear time complexity[LTZ08].

The Isolation Forest algorithm partitions the data by constructing a set of random decision
trees called isolation trees. This isolation is achieved by recursively splitting data points along
random feature values. Because anomalies are rare and distinct, they are more likely to be
isolated earlier in the process, resulting in shorter path lengths in the tree structure. The
Isolation Forest is selected due to its linear time complexity and robustness to high-dimensional
data, making it more efficient than traditional decision trees for anomaly detection.

Algorithm Steps: 1. Random Subsampling: A subset of the data is randomly selected to
construct each isolation tree. This subsampling reduces the computational cost and improves
efficiency [LTZ12]. 2. Tree Construction: - For each tree, the dataset is recursively partitioned
by randomly selecting a feature and a split value within the feature range. - The splitting

18



continues until all points are isolated (i.e., belong to their own partition) or the tree reaches a
predefined height. 3. Anomaly Scoring: - The path length of a point x in an isolation tree is
defined as the number of splits required to isolate the point. The anomaly score is computed
based on the average path length across all trees. Shorter path lengths correspond to higher
anomaly scores, as anomalies are easier to isolate.

The anomaly score for a point z is given by [Wik24b]:

E(h(x))
s(x,n)=2""<m
where: - E(h(z)) is the average path length of = across all trees, - ¢(n) is the average path
length of unsuccessful searches in a Binary Search Tree of n points, approximated as [LTZ08]:
2(n—1
c(n)=2H(n—1) - M,
n
with H (i) being the i-th harmonic number (H (i) = In(7) + -, where =y is the Euler-Mascheroni
constant).

A score close to 1 indicates a high likelihood of the point being an anomaly, while a score close
to 0 suggests the point is normal.

Key Features and Advantages: - Unsupervised Learning: Isolation Forest does not require labeled
data, making it suitable for a wide range of anomaly detection tasks. - Linear Time Complexity:
The algorithm has a linear computational complexity, O(n - log(n)), where n is the number of
data points. - Scalability: It can handle large datasets efficiently due to its random subsampling
and simplicity. - Robustness: Isolation Forest performs well on datasets with high-dimensional
and heterogeneous data.

Isolation Forest has certain limitations. Its performance can vary across runs due to the inherent
randomness in tree construction unless a random seed is fixed to ensure consistent results.
Additionally, the method requires careful tuning of hyperparameters, such as the number of
trees and the subsample size, to achieve optimal performance. Furthermore, Isolation Forest
assumes that anomalies are sparse and distinctly separated from the normal data, which may
limit its effectiveness in datasets where this assumption does not hold.

In summary, Isolation Forest is a powerful and efficient algorithm for anomaly detection. By
leveraging the concept of isolation rather than density or distance, it offers a fast and scalable
solution for identifying anomalies in large and complex datasets. Its simplicity and robustness
make it one of the most widely used anomaly detection techniques in practice.

4.6 Pynomaly

Pynomaly is a probabilistic anomaly detection method designed to identify outliers in numerical
sequences. It leverages the statistical properties of data to calculate the likelihood of each
point being an anomaly. This method is particularly useful when working with time series or
sequential data, as it takes into account the underlying distribution and patterns within the
data. PyNomaly provides probabilistic anomaly scores, making it useful for interpretability and
ranking outliers based on confidence levels.
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Methodology: Pynomaly is based on a statistical model that assumes a parametric or non-
parametric distribution of the data. It calculates an anomaly probability score for each data point
using likelihood-based techniques. The primary steps of the algorithm are as follows[Con18]:

1. Data modelling: - Pynomaly estimates the probability density function (PDF) of the data.
This can be achieved using parametric methods such as Gaussian distribution fitting or non-
parametric approaches like kernel density estimation (KDE). - The PDF describes the likelihood
of observing a specific value in the dataset.

2. Anomaly Scoring: - For each data point x, the probability of observing x is calculated using
the estimated PDF, denoted as P(z). - To identify anomalies, Pynomaly assigns a score to
each data point based on its probability. Points with very low probabilities are more likely to be
anomalies. - The anomaly score is inversely proportional to the probability:

Anomaly Score = —log(P(x)),

where higher scores indicate a greater likelihood of being an anomaly.

3. Thresholding: - A user-defined threshold is applied to the anomaly scores to classify points
as anomalies or normal. The threshold determines the sensitivity of detection, with lower
thresholds identifying more anomalies.

Key Features and Advantages: - Probabilistic Framework: By estimating the probability distribu-
tion, Pynomaly provides a robust way to quantify the likelihood of data points being anomalous.
- Flexibility: The method supports various types of distributions, making it adaptable to different
datasets and contexts. - Continuous Scoring: Unlike binary classification methods, Pynomaly
provides a continuous anomaly score, allowing for a more nuanced interpretation of results.

PyNomaly has several limitations that should be considered. The method assumes that data
points are drawn independently from the underlying distribution, an assumption that may not
hold true for datasets with high correlations among variables. Additionally, its accuracy in
detecting anomalies is highly sensitive to the choice of the probability distribution used to
model the data, which requires careful consideration. Finally, for large datasets, estimating the
probability density function (PDF) can be computationally expensive, especially when using
non-parametric approaches such as kernel density estimation (KDE).

Pynomaly is well-suited for detecting anomalies in time series data, sensor readings, or any
sequential datasets where probabilistic modeling can capture the inherent data characteristics.
Its probabilistic nature allows it to be combined with other methods, such as Isolation Forest
or clustering techniques, for hybrid anomaly detection approaches.

In conclusion, Pynomaly is a versatile and robust anomaly detection method that combines the
strengths of statistical modeling and probabilistic scoring. Leveraging data distributions enables
the effective detection of anomalies in various types of datasets while providing interpretable
results through continuous scoring.
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5 Experimental Design

The goal of our study is to design a system capable of detecting outliers in duration data.
Hence, we need to evaluate the categorization ability of various classification models and
understand the impact of outliers on duration data, as explored through machine learning and
statistical methods. By identifying the outliers, we can provide quantitative evidence to get
better insights into data and explore whether there are certain outliers that are common for
some particular processes.

In this section, we explain how we designed experiments to evaluate the effectiveness of our
anomaly detection methods in identifying outliers in lithography machine performance data.
The objective is to compare different methods and setups based on their accuracy, precision,
recall, and F1 score and determine the most suitable approach for real-world deployment.

In figure [4] we show the different processes that happen in the photolithography machine, and
in the figure, a particular process highlighted with a red color border is marked for having a
delta. However, on further analysis, it is concluded that this delta is caused by an anomaly and
is not an issue due to the deployed software changes. However, this analysis was done manually
by an engineer, and the goal of this study is to develop a utility that detects these anomalies
automatically using the methods proposed earlier.
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Figure 4: Gantt chart of processes. The bars represent the different processes that happen
in Lithography machine while manufactuing a chip.

5.1 Experimental Setup

The system is implemented in Python 3.11 using algorithms from sklearn [PVGT11] an an
open-source machine-learning library that provides a wide range of tools for data preprocessing
and model evaluation and PyNomaly [Conl], which performs anomaly detection using LoOP:
Local Outlier Probabilities, a local density-based outlier detection method providing an outlier
score in the range of [0,1]. The experiments were conducted on datasets provided by the ASML
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productivity team. The data is obtained from running the photolithography machine for two
scenarios, first without the software changes, which is the pre-run, and then after deploying
the software changes, which is the post-run. As stated earlier, the data consists of two-level
processes, first the high level and second the low level, and is preprocessed and cleaned before
being fed into the models.

5.2 Evaluation Metrics

In Table[2] we can see the metrics used for the evaluation of the performance of all the methods

Metric | Description

Accuracy | The proportion of correctly classified instances among
the total instances.

Precision | The ratio of correctly identified positive instances to the
total predicted positive instances.

Recall The ratio of correctly identified positive instances to the
total actual positive instances.

F1 Score | The harmonic mean of precision and recall, balancing
false positives and false negatives.

Table 2: Metrics used for Evaluation

5.3 Hyperparameter Tuning

Hyperparameter tuning is a critical step in optimizing machine learning models, as it directly
influences the model’s performance and generalizability. Selecting the right hyperparameters
can significantly improve the ability of the model to detect anomalies effectively while reducing
overfitting.

In this study, we employed the GridSearchCV method from the sklearn library to sys-
tematically explore a range of hyperparameter combinations and identify the most optimal
configuration for each model. GridSearchCV performs an exhaustive search over specified
parameter values by training and validating the model on a cross-validated subset of the data.
This ensures that the selected hyperparameters generalize well to unseen data, improving model
robustness.

The grid search process involves defining a parameter grid, where each hyperparameter is
assigned a range of possible values. The method then evaluates all combinations in the grid,
leveraging cross-validation to compute performance metrics for each configuration. Finally,
it selects the combination that maximizes the chosen evaluation metric, ensuring the best
trade-off between precision, recall, and overall accuracy. In the Table we show the optimal
values of the hyperparmaters obtained for our models and which we use to initialize our
models with before the evaluation. The performance of the models varied significantly based
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on different hyperparameter values. For instance, in Isolation Forest, increasing the number of
trees improved anomaly detection at the cost of higher computational time, while adjusting
the contamination parameter affected the sensitivity of outlier detection. In One-Class SVM,
lower values of v led to fewer anomalies being detected, whereas higher values increased false
positives. Similarly, for Local Outlier Factor, tuning the neighborhood size (k) influenced how
local density variations were captured—smaller values made the model more sensitive to minor
fluctuations, while larger values resulted in smoother decision boundaries. These variations
highlight the importance of careful hyperparameter tuning to balance detection accuracy and
computational efficiency.Appendix [8provides an overview of the hyperparameters explored for
the three different models under investigation. For some particular hyperparameters, such as
n_neighbors, the value was set to 10, as this is the number of wafers that are processed by the
photolithography machine during each run, and we obtain the duration data for each of these
10 wafers. The contamination hyperparameter is set to auto, which incorporates randomness
in the model and helps avoid overfitting.

By systematically tuning hyperparameters using GridSearchCV, we ensured that our models
achieved optimal performance across diverse datasets and anomaly detection scenarios.

5.3.1 Training Time

The computation time required by the models scales significantly with the increase in data. For
training, according to the current process, we use the fit_predict methods from the models,
and due to this, the training time is significantly less.

Methods Best Hyperparameters
n_neighbors = 10
Local Outlier Factor contamination = auto

algorithm = [auto, ball _tree]
leaf_size = 30
nu = 0.01
One-Class SVM kernel = rbf
gamma = auto
n_estimators = 100

Isolation Forest max_samples = 10
contamination = auto
extent = 1
PyNomaly n_neighbors = 10

Table 3: Best Hyperparameters for the Methods
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5.4 Performance Metrics Comparison across Systems

To evaluate the efficiency and effectiveness of the outlier detection methods across different
systems, a series of experiments were conducted using the optimal hyperparameters identified
through GridSearchCV. Specifically, we tested the performance of the models outlined in previous
sections, including Local Outlier Factor, One-Class SVM, Isolation Forest, and Pynomaly. For
consistency and fairness, all models were evaluated using the same experimental setup and
datasets. The comparison metrics, including Accuracy, Precision, Recall, and F1 Score, were
carefully analyzed to assess the strengths and limitations of each system. The detailed results
of this evaluation are presented in Table [4, while visualizations summarizing the comparative
performance in the form of Confusion Matrices are provided in Figurg8]

5.4.1 Results and Discussion

Precision and Recall are chosen as primary evaluation metrics because anomaly detection often
involves imbalanced datasets, where accuracy alone can be misleading. From the table |4 we
can see that while PyNomaly achieves the highest overall F1-score, Isolation Forest exhibits
better recall, making it more suitable for applications where detecting all anomalies is critical.
Furthermore, another aspect that we focus on is avoiding overfitting of our models. This is
achieved by setting the contamination parameter of the Isolation Forest model to auto; this
ensures random splitting for each internal node of an iTree and thus reduces overfitting. Finally,
we cannot provide any baseline comparison since. Currently, the analysis is done completely in
a manual fashion, and the utility developed in our study is a first step towards the automation
of the analysis process.

H Model Accuracy Precision Recall F1 Score H
PyNomaly 0.962 0.973 0.947 0.951
One-Class SVM 0.785 0.794 0.761 0.73
Isolation Forest 0.90 0.92 0.96 0.94
Local Outlier Factor 0.87 0.93 0.912 0.924

Table 4: Performance Comparison of different models. The scores for the highest-performing
model are highlighted in Bold.
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As is clear from the results, PyNomaly Outperformed the other three models in majority of the

four metrics, hence we select PyNomaly as the final model.
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6 Testing

Following the experimental evaluation of different anomaly detection methods, verifying the
correctness of our framework ensures that our implementation performs reliably under diverse
conditions. We use software testing techniques to validate the implementation of our anomaly
detector framework. The primary focus is on assessing whether our code is correct, meaning
that it correctly finds and distinguishes between genuine anomalies and is not influenced by
normal variations in lithography machine performance. Software Testing is a critical aspect of
any system to ensure its reliability, robustness, and accuracy. It enables the identification of
flaws or unexpected behaviors in the implementation and helps validate the correctness of the
methods employed. By systematically evaluating the system under various scenarios, testing
builds confidence in the results and ensures that the system performs as intended across diverse
conditions. This section discusses the testing methodologies used in this work, starting with
input space partitioning and followed by random testing.

6.1 Input Space Partitioning

Input space partitioning was employed to ensure robust testing of the implemented methods
because it allows for systematic evaluation of the code across different scenarios, ensuring that
anomalies are detected consistently regardless of data distribution. The data was systematically
divided into distinct partitions to evaluate performance under various scenarios. The first
division involved separating the data into two subsets: one containing outliers and the other
devoid of outliers. This division allowed for precise testing of the system'’s ability to handle both
anomalous and normal data distributions[Pan99]. We also tested the code for the edge cases
wherein the input was divided into extremely large and small durations and also on anomalies
that were extremely close to normal variation, which might be harder to distinguish.

Additionally, further partitions were created based on specific lithography machines. For each
machine, two datasets were prepared—one containing outliers and the other without. This
machine-specific partitioning enabled tailored testing for each system's unique characteristics
and potential variances in data behavior [AO17].

The testing process was implemented using Python's unittest package [sf], ensuring a
structured and automated testing framework. This setup facilitated consistent validation of
the methods against the defined partitions, ensuring the correctness and reliability of the
implemented solutions.

Figure 9: Input Space Partitioning
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6.1.1 Results and Discussion

Expected results were generated based on domain experts’ knowledge of previous system logs.
These were then compared with the actual values computed by our implementation. The results
from our implementation matched the expected results.

6.2 Random Testing

Random testing was conducted as an auxiliary approach to supplement the primary testing
methodology. It serves as an additional mechanism to input space partitioning to validate
certain aspects of the system|Ham94].

The implementation of random testing focused on the calculation of outliers for processes
involving a parameter termed as delta. The random selection of test cases is done with the help
of random package, and the data used for this comes from the high-level processes since we use
their duration for delta calculation. This delta is calculated as the difference in the duration of a
process between its pre and post-stages. If the delta exceeds a predefined threshold, the process
requires further investigation. The investigation involves determining whether the observed
delta is caused by an outlier or if it signifies a genuine issue.

Given the hierarchical structure of the processes, divided into high-level and low-level categories,
the data for low-level processes can be extremely large, reaching up to 100,000 entries. To
manage this scale, random testing was employed primarily for the utility that calculates delta.
This approach allowed for periodic checks to ensure that the processes flagged for investigation
were appropriate and aligned with expectations.

The data used for random testing was the high-level process data. In total, we had data from 6
software change deployment qualifications, and each qualification had a pre and post-run, and
each run further had 2000 duration values. We performed testing for all six software change
deployment qualifications|Sen07]. Although we performed testing for all six qualifications, the
process wasn't computationally too expensive. Random testing was implemented in a more
limited scope and serves as an add-on to ensure that the flagged processes meet the criteria
for investigation.

6.2.1 Results and Discussion

Our testing implementation performed successfully for all six qualifications. Furthermore, during
testing we found that for one of the qualification a process was marked as OK during manual
analysis, however, while testing using our utility, the process was highlighted and flagged for
having a delta which meant that the manual analysis was completely faulty.
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6.3 Test Suite

As mentioned earlier, with the growing number of machine configurations in ASML, trying
to automate different steps of the analysis process is of key importance, but another aspect
that we need to focus on is that for every different machine configuration, the parameters
of the utility developed in our study need to be updated as well. However, since the utility
follows a hierarchical approach and there are many different steps in the utility, testing each
step after updating the parameters can become extremely time-consuming. To solve this, we
implement the Test Suite framework provided by Python’s unittest library. A test suite
is a collection of various test cases that are intended to test a behavior or set of behaviors of
a software application or system. Grouping tests into test suites helps manage, execute, and
report test results efficiently.

Effectively acting as a container for these test cases, the suite showcases precise details and
objectives for each individual test case. Each test case within a test suite checks a specific
functionality or a set of functionalities, ensuring software behaves as expected under various
conditions. The primary purpose of a test suite is to provide a structured and systematic
approach to testing, making it easier to manage, execute, and track the testing process.
Furthermore, it includes vital information regarding the system configuration necessary for the
testing process. What sets it apart is its utilization of distinct stages to denote the ongoing
test execution status—ranging from Active and In-progress to Completed [Lam25].

We included all the testing functionalities that we developed using input space partitioning and
random testing into the test suite and finally finished the testing part of the study.

6.3.1 Results and Discussion

Using the Test suite helped us gain better insight into the utility, as we were able to test the
connection between the different functionalities present in the utility, which was not possible
by testing them individually [MMH21].

7 Conclusion

The ever-growing complexity of lithography machines and the hierarchical nature of their
operational processes necessitate innovative approaches to performance evaluation. This thesis
proposed a robust framework for anomaly detection in non-stationary duration data, focusing
on distinguishing genuine performance issues from outliers. By employing advanced machine
learning techniques such as Isolation Forest, One-Class SVM, and Local Outlier Factor, alongside
the statistical capabilities of Pynomaly, the proposed system achieves high accuracy, precision,
recall, and F1 scores.

The integration of PyNomaly and Isolation Forest successfully addressed the challenges of
identifying anomalies in unlabeled datasets. By leveraging the strengths of probabilistic methods
and scalable machine learning algorithms, the utility demonstrated strong performance in
accurately detecting outliers across both high- and low-level processes. The integration of
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hyperparameter tuning, systematic testing, and input space partitioning further enhances the
robustness and reliability of the system. These methodologies ensure that the models generalize
well to diverse datasets, making them applicable to a wide range of industrial scenarios.
Additionally, random testing provides supplementary validation, ensuring the scalability and
efficiency of the anomaly detection framework.

Additionally, the preprocessing pipeline ensured data consistency and prepared the dataset
for modeling. Through steps like handling missing values, rounding insignificant values, and
mapping appropriate data types, the utility was optimized for analyzing lithography machine
performance. The hierarchical segmentation of process data provided deeper insights into
performance trends, further enhancing the interpretability of the results.

While this study laid the groundwork for an efficient and interpretable anomaly detection
framework, future research could explore several avenues for improvement. For instance,
incorporating ensemble learning models or advanced preprocessing techniques could further
enhance detection accuracy. Additionally, extending the utility to handle real-time data streams
would make it more adaptable to dynamic operational environments.

In conclusion, this study offers a reliable and scalable solution for performance evaluation in
lithography machines, reducing the time and effort required by engineers and contributing to
the broader goal of maintaining high manufacturing quality in the semiconductor industry.

By automating anomaly detection, our framework aims to reduce the time engineers spend
on manual performance analysis, allowing them to focus on optimizing machine operations.
However, deploying it in a real-time industrial setting at ASML would require addressing
computational constraints and ensuring seamless integration with existing analyzer systems.
Naturally, beyond ASML, this framework could be adapted for anomaly detection in other
semiconductor manufacturing processes.

Our work has certain limitations. The dataset used primarily represents a subset of ASML
lithography machines, which may limit generalizability. Additionally, the reliance on unsupervised
methods means that model interpretability remains a challenge. Finally, we used GridSearchCV
for hyperparameter tuning, but alternative approaches, such as Bayesian Optimization, could
be explored and compared for more efficient tuning in future work.

Other future work directions include incorporating datasets from multiple facilities to enhance
robustness or exploring more advanced preprocessing techniques, such as adaptive filtering
methods, automated features selection, or advanced imputation methods, to further refine
and improve the dataset before model training. Finally, one could investigate deep learning-
based anomaly detection methods, such as recurrent neural networks (RNNs) or variational
autoencoders (VAEs), to improve detection accuracy in highly dynamic environments.
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8 Appendix Grid Search for Optimal Hyperparame-
ters for Models

8.1 Local Outlier Factor

1. n_neighbors : [10, 5, 3]
2. contamination : [auto, 0.01, 0.05, 0.1]
3. algorithm : [auto, ball_tree, kd_tree, brute]

4. leaf size : [5,10,30,50,100]

8.2 One-Class SVM

e nu : [0.01, 0.05, 0.1, 0.5]
e kernel : [rbf, linear, poly, sigmoid]

e gamma : [auto, scale, 0.001, 0.01, 0.1]

8.3 Isolation Forest

1. n_estimators : [100, 50, 200, 500]
2. max_samples : [10, 5, 3]

3. contamination : [auto, 0.01, 0.05, 0.1]

8.4 PyNomaly

1. extent : [1,2,3]
2. n_neighbors : [10, 5, 3]
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