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Nomenclature

argmax Operator that returns the index of the maximum value

∆A Absolute accuracy drop: ∆A = Aclean − Aadv

∆RA Relative accuracy drop: ∆RA = Aclean−Aadv

Aclean

δx ∈ RT Adversarial perturbation, same length as x

xadv Adversarial counterpart of x: xadv = x+ δx and xadv, δx ∈ RT

x ∈ RT Clean time-series sample of length T

z Latent representation or feature vector

ε ∈ R Perturbation budget: upper bound on the ℓp-norm of any allowed perturbation, i.e., ∥δ∥p ≤
εmax

Aadv Classification accuracy on the adversarial (perturbed) test set

Aclean Classification accuracy on the clean test set

f(x) Feature extractor or encoder mapping input x to z

fsurrogate Surrogate model: the model used to craft adversarial examples in transfer-based attacks

ftarget Target model: the model under attack in transfer-based adversarial scenarios

h : Rd → [0, K − 1] Classifier mapping from d-dimensional feature space to class labels

hk(z) Classifier output for class k given feature vector z

X ∈ R[N,T ] Dataset with N samples and length T

y′ ∈ [0, K − 1] Class label of xadv, K is the total number of classes

y ∈ [0, K − 1] Ground-truth class label of x, where K is the total number of classes
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Abstract

Time-series classification plays a crucial role in healthcare, finance, and industrial control. Adversarial
perturbations in time-series classification pose significant risks to model reliability. Despite recent
advances in unsupervised representation learning methods for time-series data, their robustness
to adversarial attacks remains underexplored. This study evaluates three state-of-the-art self-
supervised learning models, namely Series2Vec, “Time-Series to Vector” (TS2Vec), and Time-Series
Representation Learning via Temporal and Contextual Contrasting (TS-TCC), across five attack
scenarios including gradient-based (Fast Gradient-Sign Method (FGSM), Basic Iterative Method
(BIM), Projected Gradient Descent (PGD)), and architecture-agnostic (Differential Evolution (DE)
and Transfer Projected Gradient Descent (T-PGD)) attacks. On 128 univariate UCR datasets,
results show that TS2Vec is most robust with a degradation of only 8% at most thanks to the
hierarchical temporal-level contrasting. In contrast, Series2Vec demonstrated vulnerability especially
to universal attacks, while TS-TCC demonstrated moderate robustness. Overall, the results reveal
significant differences in the adversarial robustness of unsupervised representation learning models,
emphasizing the need for future research into more resilient model architectures.



Chapter 1

Introduction

Time-series data are sequences of samples ordered by time, where each observation corresponds
to a specific time point. The rise of large-scale sensing technologies such as satellites has led to
time-series becoming the backbone of modern decision making in domains including healthcare,
finance, and industrial control [Baratchi et al., 2022]. In such safety-critical environments, a
single misclassification can lead to a cascade of costly production downtime, erroneous medical
interventions and major losses in financial resources [Ismail Fawaz et al., 2019]. While Deep
Neural Networks (DNNs) trained in a fully supervised manner demonstrate promising results for
classification [Karim et al., 2018], DNNs can only achieve high accuracies when ample labelled
data is available. Annotating large amounts of time series data is expensive and often infeasible in
real-world settings, which poses a challenge for large-scale application of DNNs. In recent years,
the field of unsupervised representation learning has demonstrated that useful features can be
learned without labels; in particular self-supervised learning (SSL) methods in vision and speech
domains have demonstrated strong performance [Baevski et al., 2020, Chen et al., 2020]. Generally,
unsupervised representation learning realizes a mapping from raw sequences to feature vectors
without using any class labels, while SSL is viewed as a specialised subset of utilising pretext
tasks that automatically extract meaningful representations from the data itself. Furthermore,
unsupervised representation learning models can achieve better results when transferring across
different domains and capture data invariances more accurately [Eldele et al., 2021, Yue et al.,
2022].

Recently, these ideas migrated to time-series and SSL models like TS2Vec have topped existing
benchmarks, while utilising 95% fewer labels than are required for DNNs [Chen et al., 2020].
Thanks to these recent breakthroughs, SSL is the current state-of-the-art approach for time-series
classification by outperforming fully supervised DNNs across most datasets and tasks [Foumani et al.,
2024]. Additionally, recent studies have revealed that small, human-imperceptible perturbations
significantly reduce the accuracy of classical DNNs [Fawaz et al., 2019]. For example, a simple
attack called Fast Gradient-Sign Method (FGSM), that perturbs a time-series in the direction of the
gradient of the loss with respect to the input, can reduce the classification accuracy from 96% to 4%
on electrocardiogram (ECG), presenting severe shortcomings of classical DNNs. These perturbations
are called adversarial attacks. In real-world applications, robustness to such adversarial attacks
constitutes a prerequisite to trusting time-series classification models in high-stakes, risk-laden
environments. While substantial progress in natural-language processing and computer-vision
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domains has been achieved, the time-series classification domain lacks research depth on adversarial
attacks. Although it has been shown that SSL models achieve high classification accuracies under
sterile data conditions, the adversarial robustness in SSL models for time-series classification has
not yet been comprehensively studied. Moreover, the evaluation of multiple models on architectural
robustnes—using matched hyperparameters on identical adversarial attack protocols—has been
partly investigated for DNNs by Li et al. [2024], but not on SSL models. In fact, such a systematic
comparison of robustness in unsupervised representation learning models, and especially SSL models,
is still absent. Hence, this study addresses this literature gap by examining the alleged inherent
robustness of state-of-the-art SSL models [Eldele et al., 2024].

Robustness to adversarial attacks is a critical requirement for deploying time-series SSL models in
safety-sensitive domains. Recent advances have significantly improved classification performance,
but little is known about how robust these models are when exposed to adversarial perturbations.
In particular, no systematic benchmark currently exists that assesses the adversarial robustness
of pre-trained encoders. Hence, this thesis provides the first systematic benchmark of adversarial
robustness for state-of-the-art SSL models in time-series classification. The thesis evaluates three
state-of-the-art SSL models, which represent their respective subclasses of SSL methods within the
unsupervised representation learning taxonomy provided by Meng et al. [2023] and as shown in
Figure 2.1. The models are representing temporal-level and instance-level contrastive and predictive
methods. The models representing the subclasses are TS2Vec, Series2Vec, and TS-TCC. The 128
UCR datasets serve as a comparable benchmark for evaluating the robustness of the models based
on the classification accuracy under adversarial attacks. A unified attack-generation pipeline across
models ensures a fair and consistent basis for comparison. A novel architecture-agnostic attack type
named Differential Evolution (DE) is introduced that addresses the gap in the literature for full
black-box adversarial attacks. DE optimizes adversarial perturbations beyond the attack-vector
of gradient loss offering a complementary and less biased perspective on model robustness. DE,
transfer attacks and three classical gradient-based attack types are utilised for broad evaluation.
Accordingly, the study examines which intrinsic properties of SSL model families result in greater
adversarial robustness. The following research questions motivate the study:

• How robust are state-of-the-art unsupervised representation learning models for
time-series classification against adversarial attacks, as measured by their impact
on classification accuracy?

• Which SSL model architectures are especially prone to certain types of adversarial
attacks, and what characteristics explain their robustness or vulnerability?

• How do the embedding spaces of Series2Vec, TS2Vec, and TS-TCC influence the
transferability and robustness of adversarial examples across models?

The thesis delivers the following contributions:

• Adversarial Robustness Benchmarking Pipeline and Novel Attack Space Taxonomy
— Developed a systematic, unbiased, and reproducible experimental pipeline publicly available
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for evaluating the robustness of SSL models (Series2Vec, TS2Vec, TS-TCC) across diverse
adversarial attack scenarios (FGSM, BIM, PGD, DE and T-PGD) on the UCR datasets.

• Novel Attack Space Taxonomy — Proposed a structured, three-dimensional taxonomy
(with the axis: adversarial knowledge, perturbation scope, attack goal) to classify and analyse
adversarial attacks enabling consistent classification for novel gray-box, semi-targeted, and
group-level attacks.

• Novel Differential Evolution Attack — Designed and implemented a universal black-box
adversarial attack based on DE tailored explicitly for time-series classification revealing
vulnerabilities overlooked by gradient-based methods and broadening the scope of black-box
attacks available in literature.

• Comparative Robustness Analysis of SSL Models — Provided comparative insights into
embedding transferability and robustness among SSL architectures, showcasing the inherent
robustness and susceptibility of TS2Vec and Series2Vec respectively. Indicating superiority of
temporal-level contrastive over instance-level methods, while all models transfer embedding
vulnerabilities symmetrically

Giving an overview on the structure of the thesis, this chapter introduces the topic, motivation and
objective; Chapter 2 discusses related work, which forms the foundation of the thesis; Chapter 3
details the experimental design, including datasets, attack types, attack parameters, and models.
Chapter 4 describes the experimental setup; Chapter 5 presents empirical results and visualizations,
while discussing bottlenecks of the experimental setup; Chapter 6 summarizes the findings and
outlines directions for future research.
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Chapter 2

Related Work

The idea of adversarial examples on time-series was formulated by Goodfellow et al. [2015] first,
who showed that models using gradient-based optimization can be vulnerable to small, carefully
crafted perturbations in the input data that are imperceptible to humans but cause the model to
misclassify with high confidence. This phenomenon, known as adversarial vulnerability, exposed
a fundamental weakness in DNNs and spurred a growing field of research into both generating
and defending against such adversarial examples. Moreover, the first gradient-based attack called
FGSM was proposed by Goodfellow et al. [2015], which leverages knowledge of model weights. The
FGSM generates adversarial examples by adding a small perturbation to the input in the direction
of the gradient of the loss, effectively maximizing the model’s prediction error. While FGSM lacks
attack strength, it is still utilised as an effective baseline with low computational cost.

Fawaz et al. [2019] built on Goodfellow et al. [2015] findings and adapted them to the time-series
classification domain and showed that a single–step FGSM can significantly reduce accuracy on UCR
datasets. Additionally, they showed that adversarial attacks transfer and hence can generalize across
models. Siddiqui et al. [2020] extended FGSM to PGD and the BIM, but the study was restricted
to three classical architectures and was conducted exclusively under white-box settings. It laid the
foundation for showing that BIM and PGD are strong attacking methods that are relevant, while
being more computationally expensive due to the iterative design. Two surveys have been essential
for drawing a comprehensive picture of the SSL landscape. Eldele et al. [2024] developed a novel
taxonomy for label-efficient time series representation learning and Zhang et al. [2024] explicitly
highlighted self-supervised learning for time series adversarial robustness as an open frontier that
currently lacks research depth. Lastly, Zhang et al. [2024] remarked that adversarial attacks during
the pre-training phase have not yet been explored. Eldele et al. specifically highlighted augmentation
and contrastive learning as powerhouses for robustness. Hence, these two papers provide direct
justification to investigate the properties of SSL models with respect to adversarial robustness.
While Zhang et al. [2024] and Eldele et al. [2024] provided a fine-grained taxonomy, Meng et al.
[2023] gave a broader overview on the SSL landscape as shown in Figure 2.1. This taxonomy serves
as a cornerstone for exploring differences in robustness across current SSL architectures and allows
for comparing such SSL categories in a structured manner. There are three major SSL methods:
contrastive, adversarial, and predictive as described by Meng et al. [2023] as in the following . While
this thesis investigates contrastive methods at the instance- and temporal-level, and predictive
methods, all of the SSL methods are shown in Figure 2.1 for completeness. All SSL models differ in
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their pretext task that guides each model towards creating meaningful representations of time-series.
When applying contrastive methods, such representations get crafted through embeddings by self-
discrimination. Typically, samples are augmented to discern similarities and discover contextualized
underlying factors of variation for feature extraction. Such augmented views are contrasted to match
samples as positive or negative pairs with respect to similarity. Contrasting can be performed on three
different levels: prototype-, temporal-, and instance-level. Prototype-level methods target the implicit
semantics shared by samples within the cluster. Capturing scale-invariant representations at each
individual timestamp, known as temporal-level contrasting, aims to understand time-dependency.
Instance-level methods contrast augmentations of samples individually treating different samples
as negative pairs. Adversarial methods generate synthetic samples and train a generator and a
discriminator in a min-max player fashion to improve the model’s ability to distinguish between
samples. Predictive methods, as the name suggests, predict masked slices to gain future missing or
contextual information.

Unsupervised Representation Learning

Self-Supervised Learning

Contrastive

Prototype Temporal Instance

Adversarial Predictive

Figure 2.1: Hierarchical decomposition of unsupervised representation learning into SSL and its
methods as proposed by Meng et al. [2023] for time-series models.

Talking about existing limitations of existing benchmarks, while Trirat et al. [2023] and Zhang
et al. [2024] provided useful overviews on time-series taxonomies and the SSL model landscape,
direct comparisons of models on the same datasets are not summarized in one paper, but mostly
scattered across the papers proposing novel models [Eldele et al., 2021, Foumani et al., 2024, Guen
and Thome, 2023, Malhotra et al., 2016, Yue et al., 2022]. Li et al. [2024] included an adversarial
robustness comparison on classification including TS2Vec and four DNNs until here and still
overlooks cross-comparing adversarial robustness in self-supervised learners. Current adversarial
robustness evaluation protocols vary in perturbation budgets, defined as ε with respect to the

ℓp norm used. Generally, ℓp-norm is defined for a sample time-series x as ∥x∥p =
(∑T

t=1 |xt|p
)1/p

where (1 ≤ p <∞). Based on that definition, the perturbation vector δx is bounded by ∥δx∥∞ =
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maxt=1,...,T ∥δx,t∥ ≤ ε. For example, studies use ε = 0.1 [Fawaz et al., 2019] vs. 0.05 ≤ ε ≤ 0.3
[Siddiqui et al., 2020] and ℓ∞ vs. ℓ2 norm respectively. Likewise, robustness metrics vary between
accuracy drop and attack-success rate (ASR). For comparing different models on robustness,
accuracy drop is the preferred choice to infer total impact and overall robustness. While models
(e.g., TS2Vec) have been explored [Li et al., 2024] across different adversarial attacks and results
are consistent per paper, different models can be hardly compared due to the inconsistency of
parameter and attack choice in the literature. This study leverages the full 128-dataset UCR archive
with unified budgets, providing a standardized benchmark and the first cross-taxonomy robustness
comparison on SSL models. Most studies [Fawaz et al., 2019, Karim et al., 2021, Pialla et al.,
2025] focus on untargeted, individual, white-box attacks, while the rest of the attack taxonomy
space is underexplored, especially black-box attacks. Fawaz et al. [2019] explored transferability
across DNNs investigating that adversarial examples can be transferred across architectures. In fact,
transfer attacks among SSL time-series classification models have not yet been explored, despite
offering direct insights into robustness comparisons between models. Furthermore, representation
transferability across unsupervised representation learning encoders is unmeasured. Unlike prior
work, this study offers the first systematic comparison of adversarial robustness in SSL architectures.
This study benchmarks three SSL encoders the UCR datasets, fixing a single perturbation budget
(ℓ∞, ε = 0.1) to guarantee parameter parity. Each model is set to matching hyperparameters i.e.
embedding dimension, batch-size and attacked by five methods that span the white-, gray-, and
black-box spectrum. Robustness is measured via accuracy-drop metrics (∆A, ∆RA). Friedman
followed by Nemenyi tests rank both models and attacks, thus yielding a statistically rigorous,
cross-taxonomy robustness benchmark for SSL time-series models.
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Chapter 3

Methods

Let x ∈ RT denote a univariate time-series sample of length T with class label y ∈ [0, K − 1],
where K is the number of classes. A SSL encoder f : RT → Rd maps x to a latent representation
z = f(x), optimized by an intermediate loss LSSL on unlabeled data. For downstream classification,
a classifier h : Rd → [0, K − 1] predicts

y = argmax hk(f(x)).

Adversarial attacks in time-series classification involve deliberately applying small perturbations (ε)
to an input time series x ∈ RT to generate a similar but subtly altered version xadv = x+ δx where
xadv, δx ∈ RT [Li et al., 2024] . The intention of the attack is to change the predicted label of the
model. This process is formally described by the following:

argmax f(x) ̸= argmax f(x+ δx), s.t. ∥δx∥ ≪ ∥x∥. (3.1)

A successful adversarial attack, where ε controls the magnitude of the attack, occurs when the
predicted label on the perturbed input differs from the original true label.

y = argmax hk(fk(x)) and y′ = argmax hk(fk(x+ δx))

Trivially, it is required that:
y ̸= y′ while ∥δx∥p ≤ ε

where p =∞ in this study.

3.1 Adversarial Attacks

Rathore et al. [2020] defined an adversarial attack taxonomy among three dimensions being
adversary knowledge, perturbation scope, and attack goal. The following bulleted list describes the
two extremes of each dimension.

• Adversary Knowledge:

– White-box attacks assume the adversary has full access to the architecture and weights
of the model, enabling exploitation of model gradients.
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– Black-box attacks operate without access to the internal model parameters and instead
rely solely on observing the model’s outputs in response to input queries.

• Attack Goal:

– Targeted attacks aim to mislead the model into predicting a specific label y′ chosen
by the adversary.

– Untargeted attacks are satisfied with any incorrect label as long as it is not the true
label.

• Perturbation Scope:

– Individual attacks generate a unique perturbation δx for each input x.

– Universal attacks learn a single perturbation δU that can be applied to any input to
cause misclassification across multiple samples.

Figure 3.1 shows the attack taxonomy space1 with the three dimensions and corresponding extremes
on the axes. This novel attack space taxonomy can be built on for future work and allows for clear
classification of novel attacks. Moreover, the taxonomy provides a foundation for easily classifying
gray-box attacks, where the adversary has partial access to the model internals. Gray-box attacks
like T-PGD can be defined according to the amount of knowledge access along all three continuous
dimensions. Similarly, semi-targeted, and group-level attacks can be categorized using the taxonomy.
Semi-targeted attack types neither aim to push the model towards a single class label nor to
any erroneous class label, but towards a certain cluster of class labels to misclassify. Group-level
attacks sit between universal and individual attacks, where a certain group or batch is attacked per
perturbation vector.
To yield attack results that map directly to the risk factor in the industry, it is effective to explore
untargeted attacks as a comparative baseline because in critical domains any misclassification is
harmful. The reduced attack taxonomy space is visualized in Figure 3.2. The attack space relevant
to the study is marked with a blue-red sub-cube. As the relevant attack taxonomy space can be
represented along two dimensions by collapsing the goal axis, resulting in the attack space being
projected onto the fully untargeted plane marked red in Figure 3.2. All the attacks applied in the
paper inhabit this plane as visualized in Figure 3.3.
In the following, all construction pipelines of attacks are detailed. New variables are listed with
a description once, while being omitted thereafter for clarity. Note that ε, which is set to 0.1 by
default throughout the experiments, is the attack radius that determines the magnitude of the
adversarial perturbations. The ℓ∞ norm of a time–series is defined as ∥x∥∞ = maxt|xt| and is used
for the attack to evaluate on the worst case scenario. Also note that an additional query set is
always split from the UCR train set, while maintaining separate train and test sets. The query set
serves two purposes: it provides data for training the DE and the surrogate model in T-PGD; and
it simulates an adversarial setting where the attacker has access to a separate pool of unlabelled
samples from the same data domain, but not to the target model’s train/test data.

1The latex code for recycling the attack taxonomy space can be found at: tsc ar
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Knowledge

Goa
l

S
cope

Black-box
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Untargeted

Universal

Individual

Figure 3.1: The figure shows the adversarial attack taxonomy space. The dashed cube shows the
entire attack space along the three dimensions: Adversarial knowledge (x-axis), and perturbation
scope (y-axis), and attack goal (z-axis). For clarity all axis names are written cursive. The labels at
the ends of the axis show the different extremes of the dimensions.

3.1.1 Individual White-Box Attack

The FGSM method as applied by Fawaz et al. [2019] is the simplest method allowing for com-
putationally cheap attacks by leveraging the model loss and weight access. It provides a useful
baseline for white-box attacks that perturb each sample individually as shown in Algorithm 1.
The [mind, maxd] values represent the highest and lowest values of the test set. Note that the
CLAMP-function clips values to the range [mind, maxd], such that values below mind are set to
mind, and values above maxd are set to maxd.

Algorithm 1 Fast Gradient Sign Method (FGSM)

Input: clean sample x, true label y, model f(·; θ), loss J(θ, x, y), ε
Output: adversarial sample xadv

1: g ← ∇xJ(θ, x, y)
2: δ ← ε · sign(g)
3: xadv ← CLAMP(x+ δ, mind, maxd)
4: return xadv

BIM as described by Fawaz et al. [2019] and detailed in Algorithm 2, also known as Iterative
FGSM, extends FGSM by applying multiple small-step perturbations instead of a single large step.
At each iteration, BIM computes the gradient of the loss with respect to the input and updates
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Figure 3.2: Extending Figure 3.1 with the blue and red cube showing the attack space that is
investigated in the study. Note that the light blue cube is just a slice of the full attack space as it
is constructed by splitting the cube in half on the goal-axis.
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FGSM, BIM, PGD

DE

T-PGD

Figure 3.3: A 2-D projection of the untargeted attack taxonomy as marked red in Figure 3.2.
The perturbation goal dimension as shown in Figure 3.2 has been collapsed and omitted to show
the attack space relevant to this study only. The subcategories as represented by the squares are
enumerated for referencing purposes.
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the adversarial example by a small step α in the direction of the sign of the gradient. The total
perturbation does not exceed the specified budget ε as the updated adversarial example is projected
back onto the ℓ∞-ball of radius ε centered at the original input x (with the PROJECT-function).
After each update, the result is also clamped to the valid data range (e.g., [0, 1] for normalized
inputs) to ensure that the adversarial sample remains a valid time series.

Algorithm 2 Basic Iterative Method (BIM)

Input: x, y, θ, J, ε, α (step size), T (iterations)
Output: xadv

1: xadv ← x
2: for t = 1 to T do
3: g ← ∇xadv

J(θ, xadv, y)
4: xadv ← xadv + α · sign(g)
5: xadv ← PROJECT(xadv, center = x, radius = ε)
6: xadv ← CLAMP(x+ δ, mind, maxd)
7: end for
8: return xadv

Ultimately, the PGD method as shown in Algorithm 3 utilised by Siddiqui et al. [2020] also
iteratively adjusts the attack in accordance with the model weights and extends BIM by randomly
perturbing the input within the allowed ϵ-ball before iterating (with the UNIFORM-function) to
maximize the per-sample misclassification.

Algorithm 3 Projected Gradient Descent (PGD)

Input: x, y, θ, J, ε, α, T
Output: xadv

1: xadv ← x+UNIFORM(−ε,+ε)
2: xadv ← CLAMP(xadv, data min, data max)
3: for t = 1 to T do
4: g ← ∇xadv

J(θ, xadv, y)
5: xadv ← xadv + α · sign(g)
6: xadv ← PROJECT(xadv, center = x, radius = ε)
7: xadv ← CLAMP(x+ δ, mind, maxd)
8: end for
9: return xadv
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3.1.2 Universal Black-Box Attack

Effective universal white-box attacks were introduced by Rathore et al. [2020]. However, no universal
black-box attacks utilising natural computing and in specific Differential Evolution (DE) have been
proposed yet. Hence, to broaden the robustness comparison, this study newly introduces this attack
type. The attack does not have access to the test or train set of the target model, but leverages a
small query set, which is from the same domain, disjoint from the data seen by the target model.
In this study this is handled by splitting a 15% portion of the original UCR train set for each
dataset. A DE universal black-box attack consists of leveraging an original DE implementation
by writing a custom fitness function that tries to minimize the average label classification match
between the original queries and the perturbed queries. Note that DE is chosen as it performs well
on global, gradient-free, continuous problem space [Storn and Price, 1997]. Moreover, time-series
inherit meaningful subsequences essential for robust classification, which offers attack surface to
meaningfully perturb such subsequences by cross-over, selection and mutation. Algorithm 5 details
how the DE with the ”best1bin” method works. First, a population of random vectors are created
with the length bounds of the time-series in the query set. These vectors represent candidate
solutions to produce δopt, which will be added to the test set of the target model to universally
perturb the time-series with the same adversarial vector. Then for multiple generations mutation,
crossover, and selection are performed to create a parent and child sample, and after each generation
the best candidate vector is updated. Mutation adds a weighted difference of two other samples
in the population to the parent sample, then the crossover rate determines the probability with
which each value of index j is passed on to the child sample. Selection determines whether the child
sample will replace the parent sample based on their corresponding fitness. Algorithm 4 predicts
the original labels of the query batch by querying the target model in l. 2. and defines the bounds in
respect to the shape and values of the query samples. Algorithm 4 leverages a fitness function that
is passed to the selection process in the DE. This fitness function smooths the δflat to camouflage
the attack and to minimize high frequency noise, clips it to the valid bounds and predicts the class
labels of all samples perturbed with δflat. The metric that the function is minimizing for is the
average label mismatch between all clean and perturbed queries. After deploying Algorithm 5, the
input is smoothed and clipped once again before universally adding the adversarial vector δflat to
the test set to ensure validity of each test sample.
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Algorithm 4 DE Black-Box Attack

Input: test set X, query set Xquery, model
→ predict fn, data range, attack bound ε,
popsize, max iter, smoothing parameter σ
Output: Xadv, δopt

1: Xeval ← X
2: predsorig ← predict fn(Xquery)
3: shape← shape(Xquery)[1 :]
4: D ←

∏
(shape)

5: bounds← [(−ε, ε)]D
6: function FITNESS(δflat)
7: δ ← SMOOTH(δflat.reshape(shape), σ)
8: δ ← CLIP(δ, −ε, ε)
9: Xadv ← CLIP(Xquery + δ, data range)
10: preds← predict fn(Xadv)
11: return MEAN(preds == predsorig)
12: end function
13: result← DIFFERENTIAL EVOLUTION(

FITNESS,
bounds,
popsize = popsize,
maxiter = max iter,
mutation = m,
recombination = r,
maxiter = max iter)

14: δopt ← SMOOTH(result.x.reshape(shape), σ)
15: Xadv ← CLIP(Xeval + δopt, data range)
16: return Xadv, δopt

Algorithm 5 Differential Evolution (best1bin)

Input: Fitness f : RD → R, Search domain
[l, u]D, Population SizeNP , Mutation Factor
F , Crossover Rate CR, generations G
Output: solution vector xbest

1: Initialize: {x0
i }

NP
i=1 ∼ U([l, u]D), f 0

i = f(x0
i ),

x0
best = argmini f

0
i

2: for t = 1, . . . , G do
3: for i = 1, . . . , NP do

Mutation
4: Pick distinct r1, r2 ̸= i
5: v = xt−1

best + F · (x t−1
r1
− x t−1

r2
)

6: Clip v ∈ [l, u]D

Crossover
7: Choose jrand ∈ {1, . . . , D}

8: uj =

{
vj if randj ≤ CR or j = jrand

x t−1
i,j otherwise

Selection
9: if f(u) < f(x t−1

i ) then
10: xt

i = u, f t
i = f(u)

11: else
12: xt

i = x t−1
i , f t

i = f t−1
i

13: end if
14: end for
15: Update best: xt

best = argmini f
t
i

16: end for
17: return xG

best
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3.1.3 Individual Gray-box attack

To create a transfer attack similar to Fawaz et al. [2019] and Karim et al. [2021], a surrogate model
θs is employed that acts as a proxy for the true (target) model. The surrogate model is trained
from scratch on a dedicated query set, which is a dataset partitioned to be disjoint from both
the train and test splits of the target model analogous to Section 3.1.2. This guarantees that the
surrogate model is not exposed to any data used by the target model, thus maintaining the limited
adversarial knowledge, while imitating representations of the target model. While Zhang et al.
[2020] explored FGSM, and Fawaz et al. [2019] investigated FGSM and BIM transfer attacks, this
study leverages a Transfer Projected Gradient Descent (T-PGD), which is novel in the literature.
The purpose of this surrogate model is to merely supply the gradients for the PGD attack on the
test set of the target model. While the adversarial has no access to the model internals or the
train set, the test set of the target model is accessed identical to the original PGD attack as in
Section 3.1.1. So, when taxonomized precisely, the T-PGD it is not a full black-box attack, but
a gray-box attack as shown by Figure 3.3. Note that the surrogate model and target model are
trained the same way, where the only difference is they are being trained on the query set and
train set, respectively. The full T-PGD attack as shown in Algorithm 6 is crafted almost identical
to Algorithm 3, but the gradients for the T-PGD are derived from the surrogate model (θs) as
indicated in l. 4.

Algorithm 6 Transfer Projected Gradient Descent (TPGD)

Input: x, y, surrogate model θs, J , ε, α, T
Output: xadv

1: xadv ← x+UNIFORM(−ε,+ε)
2: xadv ← CLAMP(x+ δ, mind, maxd)
3: for t = 1 to T do
4: g ← ∇xadv

J(θs, xadv, y) → surrogate gradient
5: xadv ← xadv + α · sign(g)
6: xadv ← PROJECT(xadv, center = x, radius = ε)
7: xadv ← CLAMP(x+ δ, mind, maxd)
8: end for
9: return xadv → for target model

3.2 Self-Supervised Learning models

All models are implemented as presented in the original published papers that introduced the models.
The model data pipeline has been adapted for each model such that the train-test splits from the
original UCR archive can be used directly for classification. Note that the models correspond to the
SSL classes in Figure 2.1. The architectural choices of SSL models, such as augmentation strategy,
loss function design, directly influence their susceptibility to adversarial perturbations. The learned
representation space and the transferability of adversarial gradients are affected by such choices.
In the following, architectural components are detailed of the models, highlighting design factors
relevant for adversarial robustness analysis.
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1. Series2Vec [Foumani et al., 2024] learns representations by directly predicting the similarity
between pairs of time series in both temporal and spectral domains, unlike most existing
contrastive approaches that rely on hand-crafted data augmentations. It uses time-series-
specific similarity measures as self-supervised targets, such as Soft-DTW for the temporal
domain and Euclidean distance for the frequency domain, instead of an InfoNCE loss. While
training, the model encodes each time series into both temporal and frequency domain
representation to enhance similarity preservation among similar samples. The loss directs the
learned representations towards respecting the true similarities among time series, without
inducing augmentation noise. So, the model belongs to the instance-level contrastive methods
in Figure 2.1.

2. TS2Vec[Yue et al., 2022] is a contrastive method on the temporal-level (Figure 2.1) and has
shown to achieve state-of-the-art accuracy on the UCR datasets. TS2Vec fosters contextual
consistency by creating representations of the same timestamp from different augmented
views with masking and cropping. The training objective combines a hierarchical temporal
contrastive loss and an instance-wise contrastive loss that distinguishes different series at each
timestamp with a temporal CNN using residual blocks. TS2Vec has been the first SSL model
to showcase successful integration of a hierarchical temporal loss. Its projection head, which
is a simple multi-layer-perceptron (MLP), maps each time step embedding into a contrastive
space via InfoNCE losses applied across temporal hierarchies.

3. TS-TCC [Eldele et al., 2022] combines two SSL classes, namely, temporal-level contrastive
and predictive models. It is predictive because one of its core pretext tasks is forecasting
future latent representations and training the model to predict and distinguish the next K
steps of a weakly augmented series from other negative steps in the batch, enforcing temporal
continuity. Additionally, it is contrastive because it applies an InfoNCE-style loss on paired
context vectors (cwt , c

s
t), minimizing distance of corresponding time-step embeddings across

weak (cwt ) and strong (cst) augmentations, while maximizing distance of all other contexts,
corresponding to the temporal-level contrastive methods. This is implemented with the shared
1D-CNN encoder with dual heads for contrastive and predictive learning. Overall, TS-TCC is
a hybrid model that both predicts future latent features and contrasts context embeddings
across views, and is therefore classified under both predictive and contrastive methods.

3.3 Evaluation Metrics

Following Yue et al. [2022], accuracy was used to assess the classification results for each model
performance on the different UCR datasets. Model robustness to adversarial attacks is measured by
the difference between the classification accuracy of the clean and perturbed test set. A significant
drop in the accuracy of the perturbed test set compared to the clean test set is considered a
successful attack, indicating a lack of model robustness.

• Aclean denote the classification accuracy on the clean test set,

• Aadv denote the classification accuracy on the adversarially perturbed test set,
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• ∆A and ∆RA represents the robustness degradation termed accuracy drop and relative
accuracy drop, where:

∆A = Aclean − Aadv (3.2)

∆RA =
Aclean − Aadv

Aclean

(3.3)

In addition to reporting accuracies, attack results are visualized by t-SNE plots that show the
clean and perturbed time-series as data instances in a graph. Moreover, t-SNE allows visualization
of perturbation strength of the time-series by computing high-dimensional representation that is
mapped to the low-dimensional counterpart based on a distance-based probability that one instance
is the neighbour of another instance. Moreover, to define the property of transferability, one can
utilise ∆A and ∆RA.
Let fA and fB be two encoders trained on the same task but using different architectures or learning
strategies. Let A be an adversarial attack algorithm that generates adversarial examples xadv

based on a surrogate model fsurrogate = fs. Define the relative accuracy drop (∆RA) from clean to
adversarial inputs as:

∆RA(ft | fs) =
Aclean(ft,xclean)− Aadv(ft,xadv)

Aclean(ft,xclean)
(3.4)

where:

• ftarget = ft is the target model,

• xadv = A(fs) is adversarial samples generated using fs on A

• Aclean(f,x) denotes the classification accuracy of model f on input x.

Thus, symmetric transferability holds between fA and fB under attack A if:

∆RA(fA | fB) ≈ ∆RA(fB | fA) (3.5)

Meaning both models suffer a comparable relative accuracy degradation when attacked using
adversarial examples generated from the other. This definition can be equivalently stated using the
absolute accuracy drop (∆A) and omitting the ”R”-subscript.
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Chapter 4

Experiment

The aim of the thesis is to provide a fair evaluation of multiple attack types as proposed in
Section 3.1 across TS2Vec, TS-TCC, and Series2Vec. In particular, the study aims to answer the
following questions:

Research Questions

• How robust are state-of-the-art unsupervised representation learning models for
time-series classification against adversarial attacks, as measured by their impact
on classification accuracy?

• Which SSL model architectures are especially prone to certain types of adversarial
attacks, and what characteristics explain their robustness or vulnerability?

• How do the embedding spaces of Series2Vec, TS2Vec, and TS-TCC influence the
transferability and robustness of adversarial examples across models?

The UCR dataset provided by Dau et al. [2018] serves as the baseline for all evaluations because it
consists of 128 datasets from different domains extracted from a multitude of real-world examples.
Moreover, the original UCR test and train sets are z-normalized and nan-values are substituted
with zeros following Yue et al. [2022] to allow reproducibility.
The experiment pipeline, including the adversarial perturbations, is visualized; each model was
initially trained and evaluated on clean data using the original UCR train-test splits to establish
a baseline accuracy (Aclean) as represented in blue in Figure 4.1. Subsequently, each model was
subjected to each adversarial attack, which crafts a perturbed test set, specifically FGSM, BIM,
PGD (white-box individual attacks), DE (black-box universal attack), and T-PGD (gray-box
individual attack) as shown in red in Figure 4.1. For the T-PGD, each model also acted as a
surrogate model to generate adversarial perturbations applied to the other models, providing insight
into model transferability and cross-model robustness.
For each attack scenario, adversarial perturbations were constrained by predefined attack budgets
using ℓ∞-norm to comprehensively evaluate model vulnerability. Generally, the attack magnitude
ϵ was set to 0.1 throughout experiments. The robustness metrics ∆A and ∆RA as defined in
Section 3.3 were computed individually for each combination of model, attack method, and dataset.
Note that each attack-model-dataset tuple was run once for the same seed.
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Finally, the same Friedman test and Nemenyi post hoc tests were used to enable fair statistical
comparisons. These tests were used twice: once to compare all models across attack types and the
second time to compare attack types per model. Statistical significance of accuracy differences was
established at a p-value < 0.05 for all statistical tests throughout the study. The first Friedman
test was applied to each model, where the resulting accuracies of the attacks (including the clean
accuracies) were ranked from 1 to 8 for each of the 128 datasets and shown in a Critical Difference
(CD) diagram. From these rankings, the Friedman test calculated whether there are statistically
significant differences in model performance across the different attack scenarios. The second
type of Friedman test was applied for all attack and model pairs across all 128 datasets on the
relative accuracy drops (∆RA). As the three models had different average accuracies, the results
could only be evaluated in a statistically sound way by comparing the accuracy drop relative
to the clean accuracy. The significant differences were also visualized with a Critical Difference
(CD) graph. This ensures statistically sound evidence on robustness ranking among SSL models
under adversarial conditions. Reproducibility is fostered by documenting experimental parameters,
including hyperparameter configurations, attack parameters, statistical analysis and experiment
scripts. All code, and experimental details are publicly accessible in the provided GitHub repository:
tsc ar1.

UCR Train Set

UCR Test Set

UCR Query Set

Model + Pretext Task
Training

Apply
Adversarial Attack

WB
(White-box)

TPGD
(Transfer)

DE
(Black-box)

model-specific Encoder SVM Classifier

Aadv

Aclean

X

pre-trained

select

access

access

access

Xadv

Xadv

Xadv

Figure 4.1: Experimental pipeline showing the different adversarial attack creation methods (in-
dividual white-box , DE, and transfer attacks). The UCR query set is used for T-PGD and DE
attacks. Each set of adversarial samples per attack are processed independently by the trained
encoder and Support-Vector-Machine (SVM) classifier to yield the specific Aadv. Also, Aclean is
evaluated on the unperturbed test set X. Note that the red dotted arrows indicate adversarial
access.

1https://github.com/JesseK18/tsc ar
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Chapter 5

Results

This chapter presents the core findings of the study and answers the main research question in
detail by analysing robustness comparisons, specific attack susceptibility, novel attack evaluations,
embedding transferability, and design implications for novel robust SSL models.
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Figure 5.1: A Critical Difference (CD) diagram visualizing the statistically significant differences
in ∆RA across all attacks and model pairs. Note that the exact numerical values can be found in
Table 1. Note that TPGD1, TPGD2, TPGD3 use TS2Vec, TS-TCC, Series2Vec as surrogate model
respectively. In the CD diagram, stronger attacks (higher ∆RA) are positioned on the right, while
weaker ones appear on the left. A low rank means that the attack has a high ∆RA and, hence,
degrades the classification accuracy strongly.
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How robust are state-of-the-art unsupervised representation learning models for time-series clas-
sification against adversarial attacks, as measured by their impact on classification accuracy? To
address this, the absolute and relative classification accuracy drops (∆A and ∆RA) were compared
under attack for each model, aggregating average accuracies per attack scenario. Statistically
significant results are shown in a Critical Difference (CD) diagram Figure 5.1 across all tested
UCR datasets. The attack scenarios per model shown in the box-plots in Figures 5.2, 5.4, and 5.6
corresponding to Series2Vec, TS2Vec, and TS-TCC, respectively, demonstrate that differences in
robustness across SSL models exist. Moreover, the critical difference graph in Figure 5.1 confirms
the significant differences across models. TS2Vec yielded the lowest ∆A and ∆RA of all three models
and consistently achieved the highest ranks as shown in Figure 5.1. Furthermore, the weakest
attacks of TS-TCC and Series2Vec, being BIM and FGSM with a ∆RA of 8-10% respectively,
resulted in similar ∆RA as the strongest attacks on TS2Vec underpinning its robustness. Generally,
the resilience of TS2Vec indicates that hierarchical temporal contrasting is superior to the other
model architectures with respect to adversarial robustness.
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Figure 5.2: A box plot visualizing the results of
Table 5.1 for Series2Vec.
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Figure 5.3: A Critical Difference (CD) diagram
visualizing statistically significant differences
in ∆A across attacks from Figure 5.2 for Se-
ries2Vec.

Table 5.1: Average absolute, relative accuracy drop and rank per adversarial attack for Series2Vec.
Note that TPGD1, TPGD2, TPGD3 use TS2Vec, TS-TCC, Series2Vec as surrogate model respec-
tively.

Rank Attack Avg. Drop Avg. R. Drop (%)

1 DE 0.216 ± 0.298 29.11
2 PGD 0.205 ± 0.189 27.74
3 BIM 0.159 ± 0.182 21.34
4 TPGD1 0.109 ± 0.154 14.85
5 TPGD2 0.107 ± 0.150 14.46
6 TPGD3 0.091 ± 0.134 12.11
7 FGSM 0.081 ± 0.140 10.82
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Figure 5.4: A box plot visualizing the results of
Table 5.2 for TS2Vec.
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Figure 5.5: A Critical Difference (CD) diagram
visualizing the statistically significant differ-
ences in ∆A across attacks from Figure 5.4 for
TS2Vec.

Table 5.2: Average absolute, relative accuracy drop and rank per adversarial attack forTS2Vec. Note
that TPGD1, TPGD2, TPGD3 use TS2Vec, TS-TCC, Series2Vec as surrogate model respectively.

Rank Attack Avg. Drop Avg. R. Drop (%)

1 TPGD2 0.061 ± 0.105 8.04
2 BIM 0.057 ± 0.106 7.43
3 FGSM 0.057 ± 0.106 7.42
4 TPGD1 0.057 ± 0.103 7.38
5 PGD 0.055 ± 0.101 7.31
6 DE 0.055 ± 0.125 6.92
7 TPGD3 0.051 ± 0.087 6.63
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Figure 5.6: A box plot visualizing the results of
Table 5.3 for TS-TCC.
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visualizing the statistically significant differences
in ∆A across attacks from Figure 5.6 for TS-
TCC.
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Table 5.3: Average absolute, relative accuracy drop and rank per adversarial attack for TS-
TCC. Note that TPGD1, TPGD2, TPGD3 use TS2Vec, TS-TCC, Series2Vec as surrogate model
respectively.

Rank Attack Avg. Drop Avg. R. Drop (%)

1 TPGD2 0.141 ± 0.156 20.65
2 PGD 0.135 ± 0.162 20.08
3 TPGD1 0.134 ± 0.165 19.87
4 TPGD3 0.112 ± 0.149 16.67
5 FGSM 0.078 ± 0.147 12.02
6 DE 0.073 ± 0.139 10.57
7 BIM 0.054 ± 0.120 8.57

Which SSL model architectures are especially prone to certain types of adversarial attacks, and what
characteristics explain their robustness or vulnerability? To yield a per attack comparison for each
model, Friedman and Nemenyi post hoc tests were conducted across datasets. Results are shown
with box-diagrams in Figures 5.2, 5.4, and 5.6 accompanied with the corresponding CD diagrams in
Figures 5.3, 5.5, and 5.7, and the numerical values can be found in Tables 3, 4, and 2. Analysing all
single CD diagrams per model one can see that the strength of the white-box attacks are as expected
and aligned with the findings of Siddiqui et al. [2020] and Pialla et al. [2025]. For all three SSL
models, the attack strength strictly follows: FGSM ≤ BIM ≤ PGD. Series2Vec experienced the
largest accuracy degradation under DE and PGD (∆RA=29% & ∆RA=27%), whereas other attacks
caused only moderate degradation. The attacks aim to maximize misclassification by targeting
instance-specific features and augmentation invariances. When applying DE, adversarial noise is
tailored to exploit instance-specific subsequence features with noise that is unknown to Series2Vec.
Moreover, Series2Vec has not learned invariances in the data via augmentation, but its features
are tightly aligned with the structure of the data as measured by meaningful distances across the
spectral and temporal domains. While Series2Vec is equally robust to TS-TCC on T-PGD attacks,
TS-TCC is more robust on BIM and DE as shown in Figure 5.1. TS-TCC also achieved similar
robustness to TS2Vec under the simplest white-box attack scenarios being BIM and FGSM, as well
as under the DE attack. Interestingly, TS2Vec is indifferent to almost all attack types except DE as
shown in the CD diagram in Figure 5.5, which yielded the lowest ∆RA. This can be understood by
the fact that the hierarchical temporal contrasting inherently processes and trains on augmented
views fostering feature-space invariances. Moreover, as there are almost no significant differences
across attack types on TS2Vec and overall ∆RA is low with 6-8%, the results consolidate the claim
of Yue et al. [2022] that TS2Vec creates universal time-series representations. Similarly to TS2Vec,
TS-TCC is most robust to DE attacks (∆RA=10%) as augmentation is used for the contrasting
pretext task. TS-TCC is more vulnerable to cross-model transfer compared to other attacks as
shown in Figure 5.6. As shown in Figure 5.1, the FGSM attack, which is the simplest attack, only
minimally perturbed the data without significant cross-model differences. This finding highlights
the overall adversarial robustness of utilising embeddings produced by SSL models. Also, looking
at the standard deviations for the ∆A across all models in Tables 5.1, 5.2, and 5.3, the standard
deviation ranged from 0.08 to 0.20, which is high. Thus, the robustness of models fluctuates across
datasets, where datasets with easily distinguishable classes do almost not drop in classification
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accuracy, while datasets that contain classes, which are difficult to distinguish and create a narrow
decision boundary, get perturbed significantly stronger. This shows that the robustness of SSL
models is strongly dependent on the dataset complexity.

As shown in Figure 5.81, the embeddings for the “ItalyPowerDemand” dataset —a dataset that
is easy to classify and most simple DNNs classify it correctlyFawaz et al. [2019]— formed similar
clusters across models and were very robust against adversarial perturbations from adversarial
perturbations from a PGD attack, as clusters did not change. Generally, rotations or mirroring
as in Figure 5.8 c) to d) for TS2Vec are meaningless in t-SNE plots Wattenberg et al. [2016], if
all other structures remain intact. Accuracy drops for TS2Vec, TS-TCC and Series2Vec are 0%,
7% and 17% respectively. The 2D embedding visualization does not clearly underpin this general
trend for TS2Vec being the most robust and Series2Vec being the most vulnerable model, as seen
in the t-SNE plots. When looking at the 3D plots, one can see that there are slight differences
across the models in the formed clusters. However, it is difficult to attribute the differences in the
embeddings to the corresponding accuracy drops as the labels do not show a difference in spatial
overlap. Nevertheless, the robustness order is the following: TS2Vec ≤ TS-TCC ≤ Series2Vec. One
possible explanation is that the decision boundaries learned in unison with the SVM-classifier
are not visible in the t-SNE plots; thus, it could be that the classifier is better fine-tuned for the
embeddings of TS2Vec and less optimal for the embeddings of Series2Vec.
As shown in Figure 5.91, all three models produce embeddings with similar ring-like structures in the
t-SNE plots, suggesting that their learned representation spaces share a comparable global geometry.
The “ChlorineConcentration” dataset is quite complex and easier to perturb than other datasets as
its classes are adjacent and differences among classes are more subtle. TS-TCC appeared to have a
dense and tightly clustered representation of embeddings. This indicates that its decision boundaries
are narrow and highly localized, possibly explaining its relatively lower clean accuracy (e.g., 0.56)
on the “ChlorineConcentration” dataset. However, under PGD attack the embeddings are robust
as the accuracy drops only minimally to 0.54. This leads to the assumption that TS-TCC gradients
are sharp and non-smooth demonstrated by the narrow clustering. Moreover, this sharpness may
explain why the T-PGD models were relatively effective compared to the other white-box attacks.
When using the exact same sharp gradients of the TS-TCC model for creating the white-box attack,
the gradient direction cannot be easily exploited as the steps are not effective due to getting stuck
in local minima or flat areas masking gradients [Foret et al., 2021]. However, when creating a model
that is trained on disjoint data but with the same architecture as with the T-PGD attacks, the local
minima can be escaped. This phenomenon of pseudo-robustness to iterative methods is known as
obfuscated gradients [Athalye et al., 2018]. In contrast, Series2Vec yielded a higher clean accuracy
of 0.74, but was subject to a high accuracy drop to 0.25. The embeddings remained visually similar
before and after perturbation, suggesting that the model lacks ability to adaptat or compensate
for the adversarial shift. Hence, this confirms the results from Figure 5.1 that the representation
learning of Series2Vec is shallow. TS2Vec balances clean performance and robustness as its accuracy
dropped from 0.75 to 0.43 under the PGD attack. The embeddings showed some drift, but retained
a coherent structure. This aligns with the observation that TS2Vec learns meaningful and robust
features.

1Interactive and 3D versions of the t-SNE plots are available at the following website:
https://jessek18.github.io/tsc ar docs/.
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(a) Clean - Series2Vec (Accuracy: 0.93) (b) PGD - Series2Vec (Accuracy: 0.76)

(c) Clean - TS2Vec (Accuracy: 0.95) (d) PGD - TS2Vec (Accuracy: 0.95)

(e) Clean - TS-TCC (Accuracy: 0.93) (f) PGD - TS-TCC (Accuracy: 0.86)

Figure 5.8: t-SNE embeddings of clean and PGD-perturbed test samples of the “ItalyPowerDemand”
dataset (2 classes) for Series2Vec, TS2Vec, and TS-TCC. Left column: clean test embeddings; right
column: PGD-perturbed counterparts.

Note that the T-PGD and PGD attacks were all equally strong at the ∆RA between 16-20% when
attacking TS-TCC. The surrogate models for the T-PGD were always trained on disjoint samples
that the target model was not trained on. So, the loss surface of TS-TCC predictive model part
may exhibit sharp, locally robust, but globally susceptible regions that can be exploited by models
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(a) Clean - Series2Vec (Accuracy: 0.74) (b) PGD - Series2Vec (Accuracy: 0.26)

(c) Clean - TS2Vec (Accuracy: 0.75) (d) PGD - TS2Vec (Accuracy: 0.43)

(e) Clean - TS-TCC (Accuracy: 0.56) (f) PGD - TS-TCC (Accuracy: 0.52)

Figure 5.9: t-SNE embeddings of clean and PGD-perturbed test samples of the ”ChlorineConcentra-
tion” dataset (3 classes) for Series2Vec, TS2Vec, and TS-TCC. Left column: clean test embeddings;
right column: PGD-perturbed counterparts. The same t-SNE plots with interactivity and in 3D
can be found under the following link: https://jessek18.github.io/tsc ar docs/.

trained on disjoint data. Furthermore, the surrogate model can explore alternative adversarial
loss patterns that escape local minima or gradient masking possibly embedded in the predictive
model part of TS-TCC. Generally, the strength of the transfer-based gray-box attacks underpins
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the importance of considering surrogate-based adversarial evaluations to assess the vulnerabilities
that cannot be exposed by pure individual white-box attacks. Especially, when cross-comparing
SSL model types, transfer attacks reveal differences between contrastive and predictive models.
While DE was not the strongest attack overall, it is a useful benchmark that strongly sets apart
robustness between temporal-level and instance-level contrasting based models. At the same time,
DE is a functional black-box attack which is rare in current literature and offers opportunities to
simulate the more realistic attack scenarios, where the adversarial has no knowledge about the
target model available.

How do the embedding spaces of Series2Vec, TS2Vec, and TS-TCC influence the transferability and
robustness of adversarial examples across models? TS-TCC exhibited greater susceptibility when
subjected to transfer-based attacks compared to the other attacks as shown in Figure 5.6. The
comparative analysis of T-PGD attacks demonstrated that TS2Vec is significantly more robust as
a target model than TS-TCC and Series2Vec as target models for all surrogate models including
itself as shown in Figure 5.1. However, as shown in Figures 5.3, 5.5, and 5.7, the differences in
robustness between Series2Vec, TS2Vec, and TS-TCC as surrogate models were not significant
under any transfer scenario across target models. This means that symmetric transferability holds
(∆RA(fA | fB) ≈ ∆RA(fB | fA)), as defined in Equation 3.3, where each model can be substituted
for A or B. This means that each model is equally susceptible to any surrogate model. Hence,
the representations of all models inherently create similar representation spaces for time-series
features. This indicates that, while TS2Vec consistently exhibited superior robustness to both
transfer-based and white-box adversarial attacks, Series2Vec , TS2Vec, and TS-TCC still exhibited
largely symmetric transferability. The individual relative model differences in accuracy drops for
T-PGD are worth investigating, especially that T-PGD attacks were the strongest attacks for
TS-TCC, while being weak attacks for Series2Vec and TS2Vec. As TS-TCC is a hybrid model,
inference about the different model types is not trivial. However, there could be two reasons why
TS-TCC is relatively more susceptible to T-PGD attacks. The interplay of the predictive and
temporal-contrastive loss is especially vulnerable or the loss landscape of TS-TCC, particularly in
its predictive component, may exhibit sharp gradients and localized minima as already indicated by
the t-SNE plots in Figure 5.9, making it susceptible to perturbations derived from surrogate models
trained on disjoint data. Also, as TS2Vec outperforms TS-TCC, and both use temporal contrasting,
but TS-TCC uses predictive pretext tasks in hybrid, one can derive a twofold of hypotheses, which
could both be equally true. Firstly, temporal-level, instance-level contrasting and predictive models
share the same or similar embedding spaces leading to the symmetrical transferability. Secondly,
the temporal-level part of TS-TCC drives the robustness up, while the predictive part derogates
robustness, resulting in a zero-sum such that there is no significant difference. As TS-TCC performs
worse on the T-PGD attacks compared to the other attacks, TS2Vec performs the best overall, and
as both TS-TCC (one part of the hybrid) and TS2Vec belong to the temporal-contrastive models,
it seems that the second hypothesis is favourable. So, following that logic, predictive methods seem
to be less robust in a hybrid model.

To answer what model architecture is inherently most robust, it is evident that temporal-level
contrastive models are most robust as TS2Vec achieved the lowest accuracy drops. The emphasis is
on the synthesis of hierarchical temporal encoding and an InfoNCE loss. The hierarchical encoding
ensures that information is not concentrated at a single temporal scale, while the InfoNCE loss
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enforces alignment only for true temporal positives and prevents attacks to target spurious or
highly variable aspects of the data. Series2Vec shows that instance-level contrasting was strictly
less robust than temporal-level contrasting. Generally, from the results of TS-TCC hybrid models
did not show stronger robustness, but might even be susceptible to a broader attack surface due
to leveraging multiple distinct pretext tasks. However, other combinations of SSL classes beyond
TS-TCC might form more robust hybrid models.
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Chapter 6

Conclusion

This study systematically evaluated the adversarial robustness of leading SSL models for clas-
sification, revealing significant differences between SSL architectures. TS2Vec demonstrated the
strongest adversarial robustness across all attack benchmarks by showing minimal relative accuracy
drops of around 8%. The robustness of TS2Vec can be attributed to the hierarchical temporal-level
contrastive architecture that augments data and thereby regularizes the embedding space against
adversarial perturbations. In contrast, Series2Vec, which is an instance-level contrasting method
that does not rely on augmentation, but encodes instance features along the temporal and spectral
dimensions, proved the most vulnerable, especially to universal attacks, with average relative
accuracy drops of 29%. TS-TCC, representing a hybrid model of temporal-level contrasting, and
predictive models, showed moderate robustness, but was more vulnerable to T-PGD, hinting at
obfuscated gradients and the vulnerable interplay with the predictive pretext objective. DE was
shown to maximally perturb Series2Vec and minimally perturb TS-TCC and TS2Vec, indicating
that it is a valuable attack alternative for comparing robustness across model types. Generally,
while more unsupervised representation learning models need to be analysed for an exhaustive
comparison, the results indicate that SSL models can symmetrically transfer embeddings, shar-
ing robust architecture characteristics. Thus, SSL models effectively distil robust, semantically
meaningful representations that are closely aligned with inherent data characteristics.

6.1 Limitations and Further Research

This study focuses exclusively on untargeted attacks instead of targeted attacks due to the
comparison and implementation complexity and to ensure baseline comparability in real-world
applications. Targeted attacks generate perturbations that foster misclassification towards a specific
class or set of classes. This is challenging to implement and interpret across different contrastive
models that may possess varying class-specific embedding spaces. Hence, a meaningful comparison
of targeted attacks exceeds the ambit of the study. Also, the study evaluates the accuracy across
all models, attacks and datasets with the same SVM-classifier, following the protocol of [Yue et al.,
2022] to maximize the comparability and the accuracy of the extracted embeddings. The observed
symmetry in transferability may be partially affected by the use of a fixed SVM classifier. Future
work could strengthen this conclusion by replicating the results across multiple alternative classifiers,
thereby measuring the impact of the embedding-classifier dependency under adversarial conditions.
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Also, the statistically significant differences in clean average accuracies on the UCR datasets across
models pose a bottleneck for comparison. While employing relative accuracy drops helps to address
this issue, it does not fully eliminate limitations on the strength of the inferences. Besides, the
query set size for black-box attacks is relatively small (0.15% of the original UCR train split),
which limits the scope and generalization of the DE and T-PGD. While, the sparse query samples
simulate real-world scenarios appropriately, the comparison fairness could be improved by utilising
query and train sets of the same sample size. The study can be extended by implementing defensive
strategies, such as training on augmented or adversarially perturbed train and test sets using, for
example, white noise, Gaussian filtering, or adversarial training with PGD attacks. Additional
attack types can be implemented to broaden the generalization of the study, such as frequency
domain attacks i.e. Fast Fourier Transformation attacks and adapted variants of TS-Fool [Wang
et al., 2024]. Also, comparing ℓ2 vs ℓinf as conducted by Siddiqui et al. [2020] norm perturbations
could yield valuable insights into difference in embedding representations, ultimately resulting in
different ∆rA. Lastly, the most promising research direction is to implement multiple SSL models
to gain a deeper understanding of inherent characteristics of the different SSL architectures. In
particular, implementing SSL prototype level contrasting, stand-alone predictive, and adversarial
SSL models will enhance the understanding of inherently robust SSL architectures.
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Appendix

Note that TPGD1, TPGD2, TPGD3 use TS2Vec, TS-TCC, Series2Vec as surrogate
model respectively.

Table 1: Friedman Test Statistics and Algorithm Ranks

Statistic Value

Friedman 1275.75
p-value 8.27× 10−189

CD 2.77

Algorithm Rank

Series2Vec: de 4.87
Series2Vec: pgd 5.06
Series2Vec: bim 7.38
TSTCC: tpgd2 7.99
TSTCC: pgd 8.51
TSTCC: tpgd1 8.63
Series2Vec: tpgd1 9.91
TSTCC: tpgd3 9.91
Series2Vec: tpgd2 10.23
Series2Vec: tpgd3 11.20
Series2Vec: fgsm 12.10
TSTCC: fgsm 12.24
TSTCC: de 12.87
TS2Vec: tpgd2 13.16
TS2Vec: pgd 13.32
TS2Vec: fgsm 13.38
TS2Vec: bim 13.43
TSTCC: bim 13.51
TS2Vec: tpgd1 13.68
TS2Vec: tpgd3 14.30
TS2Vec: de 15.32
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Table 2: CD for Series2Vec

Algorithm Average Rank

clean 1.86
fgsm 3.29
tpgd3 3.57
tpgd2 4.15
tpgd1 4.34
bim 5.42
pgd 6.61
de 6.75

Statistics = 853.38, p = 5.5e-108,

CD = 0.928

Table 3: CD for TS2Vec

Algorithm Average Rank

clean 2.39
de 3.67
tpgd3 4.51
tpgd1 4.95
bim 5.05
fgsm 5.11
pgd 5.15
tpgd2 5.17

Statistics = 956.16, p = 3.1e-127,

CD = 0.928

Table 4: CD for TS-TCC

Algorithm Average Rank

clean 2.33
bim 3.51
de 3.79
fgsm 4.27
tpgd3 4.92
pgd 5.58
tpgd1 5.75
tpgd2 5.86

Statistics = 883.78, p = 1.2e-113,

CD = 0.928

Table 5: Summary statistics (mean, median, standard deviation) of accuracy for each attack for all
models. Note that TPGD1, TPGD2, TPGD3 use TS2Vec, TS-TCC, Series2Vec as surrogate model
respectively.

Attack Series2Vec TS2Vec TSTCC
Mean Median Std Mean Median Std Mean Median Std

Clean 0.724 0.744 0.190 0.767 0.792 0.183 0.686 0.708 0.194
FGSM 0.643 0.659 0.212 0.710 0.735 0.205 0.607 0.619 0.235
BIM 0.565 0.554 0.221 0.709 0.733 0.205 0.632 0.646 0.232
PGD 0.519 0.511 0.218 0.711 0.721 0.204 0.550 0.528 0.234
DE 0.507 0.497 0.220 0.711 0.722 0.210 0.612 0.605 0.225
TPGD1 0.614 0.632 0.212 0.710 0.716 0.202 0.551 0.545 0.232
TPGD2 0.616 0.628 0.210 0.706 0.722 0.203 0.545 0.518 0.225
TPGD3 0.633 0.637 0.207 0.716 0.727 0.197 0.571 0.562 0.223
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