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Abstract

Vision-language models (VLMs) represent a significant leap in the integration of multi-
modal learning in artificial intelligence, as they are designed to process and relate both visual
and textual information. In this work, we investigate whether state-of-the-art multimodal Al
models (Molmo and LLaMA3.2) exhibit human-like cross-modal associations. Specifically,
this research addresses the research question of whether these models exhibit tendencies
that align with a Bouba-Kiki effect, which is a well-known bias in human intuition and
perception. This thesis tests both models robustly by using both probability-based matching
tasks, probing model preferences, and employing a methods from the interpretability liter-
ature to analyse visual attention patterns. The results show that there is inconsistent, weak
evidence in support of the Bouba-Kiki effect within these models, thereby enabling the
conclusion that these models do not exhibit human-like cross-modal associations. All in all,
this research aims to contribute to a deeper understanding of Al cognition and multimodal
training, with implications for both model interpretability and human-Al interaction.
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1 Introduction

Large Language Models (LLMs) and Vision-and-Language Models (VLMs) have seen rapid
advancements in recent years, leading to widespread adoption across industries, research fields,
and everyday software applications like ChatGPT. Beyond their intended capabilities, these mod-
els occasionally exhibit unexpected and often unpredictable properties, referred to as emergent
abilities [Wei et al., 2022]. These abilities, which arise as a byproduct of large-scale training,
include advanced reasoning, zero-shot learning, and potential cognitive-like behaviors.

While some of these emergent abilities appear to be learnable from exposure to large-scale,
human-generated text and image data, other cognitive traits depend more heavily on real-world,
embodied experience. One such class of traits involves cross-modal associations, which are
the tendency to link sensory modalities such as sound or vision in a structured way. These
associations, which are deeply ingrained in human perception and cognition, raise the question
of whether purely data-driven models can internalize such mappings without ever experiencing
the world in a sensory, physical manner. This makes them a highly compelling test case for
investigating the cognitive alignment of VLMs.

Cross-modal associations are particularly relevant to the study of human perception and
Al alignment. A well-known example of this is the Bouba-Kiki effect, where humans tend to
associate certain phonetic sounds with specific visual shapes, such as the word “bouba” with
rounded shapes and “kiki” with jagged ones [Ramachandran and Hubbard, 2001} Kohler, 1929,
Kohler, 1947]. A simple example of this effect and its corresponding sound-shape alignment
to each word are shown in figure [I] These kinds of universally shared associations play an
important role in the way how humans process and learn languages and likely partially dictate
the way how communication systems are shaped [Fort et al., 2018]].

Figure 1: The Bouba-Kiki effect. Which image corresponds to Bouba and which image
corresponds to Kiki? Images from Kohler (1929, 1947)

Previous research has resulted in a diverse set of outcomes, both positive (e.g., [Marklova et al., 2025])
and negative (e.g., [Verhoef et al., 2024]| [Loakman et al., 2024 [Alper and Averbuch-Elor, 2023])
in supporting the idea that VLMs are capable of understanding human-like associations between
cross-modalities.

This thesis extends prior work by investigating whether newer multimodal Al models - Molmo
and LLaMA3.2, both released in Fall 2024 and representing state-of-the-art multimodal models
- exhibit human-like cross-modal associations. Specifically, this research addresses the research
question of whether LLaMA3.2 and Molmo exhibit Bouba-Kiki tendencies in a manner similar
to human intuition and perception. Besides this, this research aims to validate how these models
perform in probability-based matching tasks and how their focus regions are visualized and
whether they fall in line with Bouba-Kiki associative expectations.
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To answer these questions, this study will conduct 3 controlled experiments:

* Cross-modal probability analysis to determine how strongly models associate words with
shapes.

* Image-to-text matching to evaluate model predictions and confidence levels for Bouba-
and Kiki-pseudowords on both soft and sharp images.

* Attention pattern analysis using Segment Anything Model V2 (SAM2) to visualize
focus regions in image-text tasks.

By systematically evaluating these models, this research aims to contribute to a deeper
understanding of Al cognition and multimodal learning, with implications for both model
interpretability and human-Al interaction.

1.1 Motivation

Given the importance of human cognitive biases and preferences like the Bouba-Kiki effect in

shaping the way we communnicate, it is crucial to increase the understanding of cross-modal
associations in Al to advance human-machine interaction and model interpretability. Hence, the
Bouba-Kiki effect, a well-established phenomenon in human perception [Ramachandran and Hubbard, 2001,
Kohler, 1929], has been explored in VLMs such as CLIP [Verhoef et al., 2024]]. Although prior

studies did not show strong evidence for the Bouba-Kiki effect in VLMs, CLIP and GPT-40

showed partial alignment with human preferences, therefore suggesting that further research

on the topic using cutting-edge VLMs could prove something stronger. However, BLIP2 and

VILT did not show clear evidence of this effect, indicating the results to be inconsistent and
inconclusive.

This research serves to fill this gap by systematically analyzing whether new, innovative mod-
els exhibit emergent cross-modal abilities, particularly in word-shape associations. In addition,
by employing attention-based analytics, this research hopes to provide further insights into how
these models process visual and linguistic information.

1.2 Contributions

This research will extend previous work by creating new and extending on previously conducted
experiments.

* Investigating whether Molmo and LLLaMA3.2 exhibit human-like cross-modal associa-
tions, specifically the Bouba-Kiki effect.

* Analyzing their attention patterns to determine whether the models exhibit visual focus
on shape-relevant regions, similar to humans.

* Providing a comprehensive evaluation framework that can be applied to future multimodal
research.



1.3 New Developments

Unlike previous research on VLMs ([Verhoef et al., 2024]), where CLIP, GPT-40, BLIP2, and
ViLT were the main topics in combination with cross-modal association testing, the main focus
of this research will be to extend research to cutting-edge VLMs: Molmo and LLaMA3.2.

According to the developers, Molmo is a vision-language model that is part of a new gen-
eration of VLMs where openness remains central to the development and maintenance of the
methodology. To address this, a new dataset called PixMo has been introduced [Deitke et al., 2024].
It includes highly detailed captions for pre-training, a free-form image Q&A dataset for fine-
tuning, and an innovative 2D pointing dataset, all collected without external VLMs. As openness
remains central to this methodology, research collaboration becomes more attractive, allowing
a broader community to benefit from their knowledge and findings and advancing multimodal
Al research.

In summer 2024, the Meta LLaMA team released its new herd of foundational LLaMA
models, the LLaMA 3 herd. By publicly releasing these models, Al and LLM research has been
greatly sped up, as these models include both pretrained and post-trained variants, thereby only
necessitating downstream specification if used in public environments or settings. By keeping
three factors central during the development process, including data, scale, and complexity, the
Meta LLaMA team has managed to support the foundation of Al and LLM research through
increasing the availability of knowledge on ‘understanding key factors in foundational model
development and contributing to a more informed debate about the future of foundational
models for public use’ [Grattafiori et al., 2024]. In this research, LLaMA3.2 will be explored
and evaluated for its potential emergent capability of cross-modal association. The reason for
opting for LLaMA3.2 over other variants is because LLaMA3.2 was the first model in the
LLaMA herd that enabled the processing of text and images [Meta, 2024]], which in turn enables
the training and evaluation of cross-modal associations.



2 Background

Cross-modal associations can be understood as the way humans integrate information from
multiple sensory modalities. Although some associations are commonly understood to be taught
or learned, many others appear to be universal and biologically rooted within the nature of our
species. In 1974, Lawrence E. Marks discovered that there was something that led to subjects
associating auditory and visual brightness, albeit he could not understand what it was that led
these subjects to do so [Marks, 1974]. Although this research is quite dated, this is still relevant
for this newer age of research in cross-modal associations. Al models, specifically VLMs, aim to
bridge the previously unseen gap between vision and language. Hence, researching cross-modal
associations in VLMs will potentially increase the knowledge supply to advance the field of Al
and VLMs in regards to whether these models are capable of mimicking human-like cognition
or proving that they only rely on statistical shortcuts.

As coined by Kohler in 1929, the Bouba-Kiki effect (originally known as 'maluma’ and
‘takete’ instead) is a suitable example to illustrate the connection subjects drew between
spoken words and the shapes they would assign to them [Kohler, 1929]. This connection
is included in figure [} To support this connection, Ramachadran & Hubbard confirmed
in 2001 that most people associate “bouba” with rounded shapes and “kiki” with jagged
shapes [Ramachandran and Hubbard, 2001]]. This effect has been observed across languages
and cultures; Maurer et al. (2006) showed that both English-speaking children and Swabhili-
speaking children made similar associations despite differences in language and environment
[Maurer et al., 20006]].

This leads to the question of “if VLMs like CLIP, Molmo, and LLaMA3.2 are trained to
align text and images, do they acquire human-like cross-modal associations?”. There are several
potential conclusions to this question. First, if a model exhibits the Bouba-Kiki effect, then it
suggests that Al can learn abstract multimodal relationships. Second, if it does not exhibit the
Bouba-Kiki effect, then it implies that Al relies on mechanisms different from humans to process
cross-modal data. These two outcomes also have potential for broader implications, such as:

* Can Al models flexibly deal with the dynamic nature of human language in which
new meanings continually emerge that are often rooted in abstract patterns, embodied
metaphors or cross-modal preferences?

* Does cross-modal learning in Al improve or advance human-computer interaction and
mutual understanding?

2.1 The Bouba-Kiki Effect in Human Cognition

The Bouba-Kiki effect highlights a robust cross-modal association between auditory and vi-
sual perception. This connection is often explained by phonetic properties: rounded sounds
like /b/, /m/, and /o/ involve smooth articulation, whereas sharp sounds like /k/, /t/, and /i/
have abrupt, stop-like articulation [Nielsen and Rendall, 2012]]. Researchers suggest that this
psychological link is universal and prelinguistic, as it even appears in infants and non-verbal
individuals [Maurer et al., 2006]. Furthermore, sound symbolism may support early language
acquisition by strengthening connections between auditory and visual stimuli [Imai et al., 2008,
Cwiek et al., 2022].

The Bouba-Kiki effect, introduced informally by Kohler in 1929 [Kohler, 1929]], was the
effect that suggested an auditory and visual connection as a robust cross-modal association. The



experiment from this study was simple. As previously described: participants would connect
a spoken word with a picture of a shape. The results fell in line with the expectations; most
people associated “bouba” with rounded shapes and “kiki” with jagged shapes. Today, this
effect is still understood to be universal and automatic by human nature, while also being
consistent across cultures, languages, and writing systems [Ramachandran and Hubbard, 2001,
Cwiek et al., 2022]. The idea that humans match rounded sounds (e.g., /b/, /m/, /o/) with curved
shapes is due to smooth articulation, whereas sharp sounds (e.g., /k/, /t/, /i/) match jagged shapes
due to abrupt, stop-like articulation. Various studies show that these phonetic properties influence
perception in languages [Nielsen and Rendall, 2012, Maurer et al., 2006]. This psychological
connection is believed to be prelinguistic and universal considering that infants and non-verbal
individuals exhibit the same effect [Maurer et al., 2006|]. Additionally, some researchers argue
that sound symbolism plays an important role in early language development [Imai et al., 2008],
ultimately suggesting that stimulating the connection between auditory and visual impulses
improves learning capabilities.

From a neurological perspective, the superior temporal sulcus is involved in integrating visual
and auditory stimuli. The research proposed by Ramachandran and Hubbard suggests that cross-
activation between the auditory and visual cortices explains why people naturally link sounds
with shapes [Ramachandran and Hubbard, 2001]]. In addition, further evidence in favor of this
observation has been gathered by fMRI studies showing that the fusiform gyrus, which is the
part of the brain responsible for shape processing, and the auditory cortex are both activated in
Bouba-Kiki matching tasks [Peiffer-Smadja and Cohen, 2019].

Research on early language development shows that infants as young as four months old
exhibit a Bouba-Kiki-like preference [Ozturk et al., 2013]], suggesting that this phenomenon is
preverbal rather than learned. Considering that this effect is observed across diverse languages
and cultures [Maurer et al., 2006], the ability to connect sound and shape has likely been one
of the consequences of evolution. For example, the ability to connect sound and shape may
have helped prehistoric humans process threats, as sharp sounds indicate danger and soft sounds
indicate friendly interaction. This aligns with theories on sound symbolism in early language
evolution [Perlman et al., 2015]. Alternatively, it may also be due to common associations in
our experiences with the physical world [Fort and Schwartz, 2022]].

All in all, the Bouba-Kiki effect has broad implications on language and communication.
It relates to language evolution, marketing and branding, speech therapy, and autism research.
Therefore, it is beneficial to consider the Bouba-Kiki effect in vision-language models.

2.2 Cross-Modal Associations in AI & VLMs

Previous research has explored whether VLMs exhibit similar associations, with models such as
CLIP showing inconsistent alignment with human perception [Verhoef et al., 2024]]. Similarly,
a recent study by Loakman et al. (2024) conducted controlled shape symbolism experiments
using various VLMs and LLMs, including GPT-4 and LLaVA, and found that while some models
could approximate human-like shape-sound associations, especially with additional task context,
overall agreement with human judgments remained low and highly variable across models and
conditions [Loakman et al., 2024]]. Even more recent, Marklova et al. (2025) took a different
approach by testing whether GPT-4 could generate pseudowords that carry iconic relationships
between sound and meaning. They found that not only could LLMs produce pseudowords
whose meanings could be guessed above chance by human participants, but also that the models
themselves (GPT-4 and Claude3.5 Sonnet) outperformed humans in matching these words to



their intended meanings. This suggests that, in some cases, LLMs are capable of learning
and applying non-arbitrary, cognitively grounded sound-meaning associations, despite a lack
of pretraining or fine-tuning for the task at hand [Marklova et al., 2025]]. However, given the
conflicting results in prior work, more research is necessary to make any definitive statements.

Other early attempts in recreating the Bouba-Kiki effect in artificial intelligence with multi-
modal reasoning resulted in diverse outcomes. Alper and Averbuch-Elor (2023) hypothesized that
sound symbolism is reflected in VLLMs such as CLIP and Stable Diffusion ([Alper and Averbuch-Elor, 2023])).
By employing zero-shot learning and probing, they investigated whether the innate ability and
knowledge to draw multimodal connections was present in these models. From their research,
they concluded that there is strong evidence to support this hypothesis.

Although this research suggests that VLMs do in fact have the ability to draw this connection,
other research suggests that the evidence is too limited to confirm this conclusion. For example,
Verhoef et al. (2024) experimented using a similar hypothesis to investigate whether the Bouba-
Kiki effect was present in models CLIP, BLIP2, ViLT, and GPT-4o0 [Verhoef et al., 2024]].
Ultimately, Verhoef et al. concluded that the evidence was too limited to draw any concrete
statements or conclusions in favor of the existence of the Bouba-Kiki effect in VLMs.

2.3 VLMs and Their Capabilities

Vision-language models represent a significant leap in the integration of multimodal learning
in artificial intelligence, as they are designed to process and relate both visual and textual
information. As a consequence of the ability to analyse and generate content across modalities,
these models have emerged as a promising venture to advance artificial intelligence and its
capabilities. VLMs are typically trained on large amounts of paired data that link images and
corresponding textual descriptions, enabling the learning of mappings between visual features
and semantic contents. VLMs often rely on transformer architectures that process both text and
images together. The most notable feature of transformer architectures is their ability to learn
relationships and context from sequential data [Islam et al., 2023|]. There are various methods
to pre-train models that use the transformer architecture. Key approaches include:

* Contrastive learning (e.g., CLIP): Method that maximizes similarity between matching
image-text pairs while minimizing mismatches [Radford et al., 2021];

* Masked language modeling (MLM): Method that predicts missing words in captions
[Devlin et al., 2019];

* Image-text fusion models (e.g., BLIP2): Method that combines vision and text through
early or late fusion layers [Li et al., 2023]].

In addition to recognizing and generating visual-text mappings, VLMs also exhibit zero-shot
learning, allowing them to classify novel images without explicit training. Moreover, they enable
image-text retrieval, where text queries can locate relevant images in a dataset. For example,
CLIP is able to recognize a description of ’a golden retriever playing outside” when given the
image of a dog, even without fine-tuning on that example. In addition to zero- and few-shot
learning capabilities, VLMs are also capable of common-sense reasoning and visual question
answering (VQA). More specifically, advanced VLMs such as Flamingo and LLaVA are capable
of answering questions about images, thus suggesting that they possess the ability to comprehend
spatial relations.
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Despite their impressive capabilities, VLMs still face significant challenges. One such
challenge is bias in training data; since VLMs learn from internet-scale data, they inherit
human-like biases, such as stereotypes and cultural misconceptions, thereby amplifying soci-
etal biases, including stereotypes related to gender, race, and culture [Bolukbasi et al., 2016,
Bender et al., 2021]]. Another challenge is spatial reasoning discrepancies. Many VLMs strug-
gle with complex relationships that humans deem trivial, such as figuring out which object is in
front of the other, or vice versa [[Yatskar et al., 2016]. Lastly, the computational costs of training
VLMs require massive GPU clusters and thousands of hours, thereby making these models very
expensive and consequently inaccessible to smaller research teams [Strubell et al., 2020]].

2.4 Attention Mechanisms & Model Explainability

Attention mechanisms are crucial in transformers and VLMs. The attention mechanism is defined
as a method that helps models focus on the most relevant parts of input data. More specifically,
attention mechanisms can be divided into three different types:

» Self-Attention: Models dynamically weigh different parts of input sequences.
* Cross-Attention: In multimodal models, text attends to image features and vice versa.

» Early vs. Late Fusion in VLMs: Some models combine modalities early, while others
process them separately before merging outputs.

The transformer model is the first model to have been made exclusively using self-attention.
Currently, self-attention has been successfully used in a variety of tasks, including “reading
comprehension, abstractive summarization, textual entailment, and learning task-independent
sentence representations”, as confirmed by Vaswani et al. [Vaswani et al., 2017].

Attention mechanisms enable models like Molmo and LLaMA3.2 to selectively focus on
important image and text features. However, despite their strength, attention does not always
provide interpretable or human-like explanations. This issue is further highlighted by the work
of Jain and Wallace (2019), who researched the explainability of attention mechanisms during
decision-making processes [Jain and Wallace, 2019]. Since VLMs often act as black boxes, their
decision-making is hard to interpret. Therefore, exploring the inner workings of the attention
mechanism is crucial to ensure that models align with human perception. To investigate this,
a variety of tools are usable, such as SAM2 and Grad-CAM. Both are techniques that helps
visualize where VLMs “look™, although their decision-making process remains partially opaque
[Selvaraju et al., 2017]].

2.5 LLaMA3.2: A General-Purpose VLM

LLaMA3.2 (2024) bridges the gap between large-scale language models (LLMs) and VLMs
by integrating visual perception with text-based reasoning. Unlike Molmo, which is optimized
for image-text retrieval, LLaMA3.2 is designed for multimodal conversational Al and vision-
language inference tasks, making it suitable for Al assistants [Meta, 2024]].

Developed by Meta, LLaMA3.2 is an upgraded multimodal LLM, extending the capabilities of
LLaMA3.1 by adding visual input processing, thereby positioning itself alongside similar models
such as GPT-40 and Geminil.5. Previous studies have explored the multimodal capabilities of
GPT-40 [Verhoef et al., 2024]], and similar investigations into the performance of LLaMA3.2
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on cross-modal tasks will provide valuable insights into its potential to advance cross-modal
associative research.

2.6 Molmo: A Specialized VLM

Molmo (2024) represents an important shift towards open-access VLMs. By allowing researchers
to explore cross-modal learning without the restriction of proprietary models, Molmo has the
potential to greatly advance VLM research. Developed by Ai2, Molmo is an open-source VLM
designed as an alternative to proprietary systems [Deitke et al., 2024]].

Trained on the massive multimodal dataset called PixMo, it excels in image-text retrieval,
captioning, and reasoning tasks. PixMo has been a driving force in the development of Molmo
as it contains data collected from human annotators using speech-based descriptions. Since the
Bouba-Kiki effect is often explained on the basis of speech sounds and articulatory constraints,
it makes Molmo an excellent candidate for the investigation of this effect. Molmo has been
developed using contrastive learning, similar to CLIP. Moreover, it supports fine-tuning for
domain-specific applications. Despite its similarities to CLIP, Molmo’s architecture and weights
are fully available online, making it an ideal candidate for potential further exploration of its
inner workings.
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3 Methodology

3.1 Method Overview

This section describes the methodology used to investigate cross-modal associations in vision-
language models LLaMA3.2 and Molmo. The goal is to determine whether these models exhibit
the Bouba-Kiki effect by evaluating their performance across 3 distinct experimental setups:

1. Cross-Modal Probability Analysis — Tests how strongly models associate certain words
with certain images.

2. Image-to-Text Matching — Evaluates the confidence level that is assigned to Bouba- and
Kiki-pseudowords based on certain images.

3. Attention Pattern Analysis — Uses Segment Anything Model V2 (SAM2) to visualize
how models focus on image regions.

Each experiment is designed to probe a different aspect of how VLMs process and associate
images with text, providing insight into their alignment with human cognitive biases.

3.2 Data and Models

The dataset used in this study consists of images representing both curved and jagged shapes,
sourced from prior research on the Bouba-Kiki effect [[Verhoef et al., 2024] and augmented
with synthetic shapes generated by using simple geometric transformations. The accompanying
word set includes sonorant-rounded and plosive non-rounded Bouba-Kiki pseudowords, sourced
by previous research from Nielsen and Rendall, [Nielsen and Rendall, 2012] and previously
experimented with by Verhoef et al. [Verhoef et al., 2024]. Both of these sets can be found in
appendix C[9.3]and A ??, respectively.

The evaluated models are Molmo and LLaMA3.2, two state-of-the-art VLMs. These models
are chosen because of their capability to process both textual and visual inputs with a shared
embedding space, as well as their ability to perform visual question answering. Before experimen-
tation, all input data undergo preprocessing, including resizing images to a consistent dimension,
normalizing pixel values, and tokenizing inputs using the respective model’s tokenizer. Further-
more, in order to enhance the reproducibility of this research, we recommend using variants
meta-llama/LLaMA-3.2-11B-Vision-Instruct E] and allenai/Molmo-7B-D-0924 El

3.3 Prompt Engineering

Prompts play a crucial role in shaping the outputs of vision-language models. Since these
models rely on textual input to generate or interpret visual content, the way a question or
instruction is phrased can significantly impact the response. A well-structured prompt can
guide a model toward more accurate or meaningful outputs, whereas vague or poorly designed
prompts may lead to inconsistent or misleading results. More specifically, for Molmo and
LLaMA3.2, it became increasingly meaningful to generate prompts that both models accepted.

'https://huggingface.co/meta-1lama/Llama-3.2-11B-Vision-Instruct
2https ://huggingface.co/allenai/Molmo-7B-D-0924
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Therefore, understanding the sensitivity of VLMs to prompt phrasing is essential, particularly
when analyzing cross-modal associations such as those observed in the Bouba-Kiki effect.

Although the quality of the prompts themselves does not necessarily increase the learning
ability of the models [Webson and Pavlick, 2022]], minor differences in prompt wording can lead
to substantial differences in model behavior. For example, a VLM tasked with identifying the
relationship between a rounded shape and a given word may respond differently depending on
whether a prompt is neutral or leading. As an example:

29

1. Neutral prompt: "Describe the relationship between this shape and the word ’Bouba’.

2. Leading prompt: "Does this rounded shape resemble the word ’Bouba’ more than *Kiki’?”

The first prompt is open-ended, thus allowing for a wider range of output, whereas the second
prompt forcefully limits the model to reply in binary terms. Such variations can introduce bias
into model evaluations, making it necessary to generate both normalized and specific prompts
for the same purpose, thus implying that for this research, the prompts will follow two standard
formulas specific to LLaMA3.2 and Molmo.

After experimenting it became apparent that LLaMA3.2 requires a very specific leading
prompt to be evaluated accordingly, whereas Molmo had the capability to handle a variation
of both neutral and leading prompts for these experiments. Hence, this study exclusively used
leading prompts for both models to enhance the reliability and robustness of the framework and
its outputs. Table[T| highlights the importance of prompts during the first experiment.

Prompt Type Model Example Prompt Effectiveness

Leading LLaMA3.2 Does this image represent the ab- Inconsistent
stract word ’{text_prompt}’?

Leading LLaMA3.2 Does this rounded shape resemble Inconsistent
the word Bouba’ more than *Kiki’?

Reinforced Molmo You are a classifier that responds Inconsistent

with yes or no. Does this word
*{text_prompt}’ fit the image?

Leading LLaMA3.2 If you had to describe the follow- Semi-Consistent, Not Ideal
ing image with the abstract word
*{text_prompt}’, would you say it
fits? Reply with only yes or no.

Neutral LLaMA3.2 and Molmo | On a scale from 0 to 100, | Highly-Consistent, Contextually Ideal
how well does the abstract word
>{text_prompt}’ describe the fol-
lowing image? 0 means the word
and image have no connection and
100 means the word perfectly fits
the image. Answer only with a sin-
gle number between 0 and 100. Do
not include any other words.

Table 1: Effectiveness of Different Prompt Types in Eliciting Expected Bouba-Kiki Responses
During Experiment 1. ‘{text_prompt}’ corresponds to the Python text variable from the list of
Bouba-Kiki pseudowords.

The results in the table highlight that LLaMA3.2 requires delicate prompting, significantly
tweaking the existing example prompt that was provided by Meta, whereas Molmo functions in
a more simplistic manner, where only slight tweaking of the example prompt provided in the
documentation on Hugging Face E] was already sufficient.

3https://huggingface.co/allenai/Molmo-7B-D-0924
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3.4 Experimental Setup

For the experiments, a variety of different settings have been experimented with and evaluated.
The model outputs were generated using a balanced sampling configuration, included in table
which has been optimized to control variability. This specific configuration helps ensure that
the model responses remain grounded and interpretable, while still allowing for some creative
freedom. This is crucial for capturing subtle congruency effects in cross-modal associations.
After comparing the preliminary model outputs, it became apparent that the balanced setting
would be contextually ideal for this research, as it was appropriate for both models and could
therefore be used as a middle ground. The temperature value of 0.7 introduced slight randomness
within model generation, and although it was able to keep the focus of the task relatively well,
a few invalid, non-numeric outputs occurred in the first experiment. By enabling the sampling
mode, the models were allowed to express variability, which was kept on for all experiments to
increase the reliability of the outputs. Nucleus sampling (top_p) was set to 0.9 to restrict token
choices to the smallest groups of top-scoring tokens whose total probability was at least 90%,
which ensured that the outputs were contextually relevant and applicable to both models. Lastly
the top_k was set to 40 to narrow down the set of possible tokens to the 40 most-likely options,
which prevents uncommon or off-topic words from being sampled during the experiments.

For reproducibility, generalizability, and increased reliability, the balanced setting has been
repeated for all experiments. Moreover, all results for experiment 1 and 2 have been averaged
over 10 iterations to increase reliability.

The data used for experiments 1, 2, and 3 consisted of 34 images containing an equal number
of both curved and jagged shapes, whereas the dataset of the 3rd experiment consisted of 18
concatenated images, of which the curved and jagged shape are put alongside each other.

Mode Temperature | do_sample | Top-p | Top-k | Description

Deterministic 0.6 True 0.85 40 Lower diversity; more focused and
stable responses

Balanced 0.7 True 0.9 40 Moderate diversity; balance be-
tween focus and variety

Creative 0.8 True 0.95 50 | Higher diversity; encourages ex-
ploratory responses

Table 2: Sampling configurations used for probing LLaMA3.2 & Molmo responses.

3.5 Cross-modal Probability Analysis

The first experiment evaluates whether vision-language models (VLMs), specifically LLaMA3.2
and Molmo, can detect congruency between abstract pseudowords and geometric shapes. The
core functionality is implemented in a class-based Python framework, titled CrossModalAnalyzer,
which automates data preparation, multimodal prompting, model inference, and statistical eval-
uation. More specifically, given an image of either a curved or jagged shape, the model is
iteratively presented with a text prompt drawn from a set of four Bouba-Kiki pseudowords,
where each prompt follows a set template:
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Prompt:

"On a scale from O to 100, how well does the abstract word ’{
TEXT_PROMPT}’ describe the following image? ® means the word
and image have no connection and 100 means the word
perfectly fits the image. Answer only with a single number
between ® and 100. Do not include any other words."

The model is expected to return only a numeric score, which is parsed from its output. This
score represents the certainty of the model’s association between the word and the given image.

Class Design and Workflow

The CrossModalAnalyzer class is initialized using a folder containing images labelled as
either “curved” or ”jagged”, respectively corresponding to “bouba/maluma” and kiki/takete”.
Once initialized, the class supports the following main steps:

1. Model Loading: The model is loaded through HuggingFace, using the processor and
model checkpoints available through the platform.

2. Image Scanning: The image folder is scanned to extract valid images and their inferred
types.

3. Dataset Preparation: All possible combinations of input images and 4 randomly sampled
pseudowords (2 bouba-like, 2 kiki-like) are constructed. Each pair is annotated with
metadata: image type, pseudoword type, and congruency.

4. Multimodal Prompting: For each image-word pair (36 images, 34*4 = 136 total itera-
tions), the model receives the prompt specified above accompanied by the image. Next,
the model returns a numeric output ranging from 0 to 100, which represents the perceived
semantic fit between the image and pseudoword. The output is then parsed and validated,
and invalid or non-numeric answers are logged as a NaN value for error-handling purposes.

5. Metric Computation: After all trials are complete, the class computes the following
metrics:

* Average congruent vs. incongruent score.

Bouba-Kiki effect strength (congruent minus incongruent average).

General bias (deviation from a 50-point neutral baseline).

Granular averages by image and pseudoword type (e.g., curved image + kiki word
and vice versa).

* Per-image score variance and standard deviation.

6. Output Export: The results, summary metrics, and per-image statistics are exported
to .CSV files for further analysis. Steps 4-6 are repeated 10 times, using the same 4
pseudowords, to increase the reliability of the results.
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The analyzer class for Molmo is set to operate in batches of four words and clears the GPU
cache between batches to manage memory efficiently due to computational restraints, something
that Molmo evidently required.

The results are aggregated over multiple runs to increase statistical reliability by reducing
randomness or variability. This goes hand-in-hand with the balanced parameter options discussed
in table

In earlier versions of the experiment, the model was asked to respond with ’yes’ or 'no’ to
assess the strength of the association. The final probability score was then calculated by applying
a softmax on the logits for yes” and 'no’, treating the result as a binary classification. However,
after revision, it became apparent that this methodology would result in unreliable or lacking
conclusions.

To create a realistic test environment and to limit the chance that the model was aware of the
prior Bouba-Kiki experiments, every image is tested using two randomly sampled Bouba and
Kiki pseudowords (4 in total). These words were: 'mohloo’, ’lahmoo’, "kuhtuh’, and ’taypay’.
Keeping the same four words has various benefits, including the reduction of linguistic variability
and allowing for a more focused assessment of congruency effects. The lists of Bouba and Kiki
pseudowords have been reused from prior research [Verhoef et al., 2024]], and can be found in
appendix A ??.

Overall, this experiment provides a scalable and interpretable pipeline to assess whether
LLaMA3.2 and Molmo exhibit cross-modal congruency in large-scale, cutting-edge VLMs.
It further enables direct comparison between human-like associative biases and the semantic
behavior of state-of-the-art VLMs. Moreover, it also enables investigation whether these patterns
emerge despite the abstract nature of the input pseudowords and provides a method of evaluation
on how a cutting-edge VLM interprets semantic fit between language and vision in a zero-shot
setting.

3.6 Image-to-Text Matching

To evaluate cross-modal congruency between visual shapes and pseudowords, we implemented
an image classification system using Meta’s LLaMA3. 2 and AllenAI’s Molmo. The classification
process aimed to assess how likely an image of a shape (either curved or jagged) would be
labelled using two pseudowords from two phonetically distinct categories: sonorant-rounded
(S-R) and plosive non-rounded (P-NR).

Two distinct pseudoword label sets were randomly sampled from larger predefined pools,
each containing 81 carefully constructed pseudowords per category. Ten unique pseudowords
were randomly sampled on every iteration to ensure a manageable prompt size and balanced
comparison for classification.

In each trial, the model is shown an image of a shape and asked to choose the most appropriate
label. This is executed twice, once with a word from a randomly sampled subset of S-R and
once with a set randomly sampled subset of P-NR pseudowords. The model output is recorded
along with the confidence score based on the token-level probabilities returned by the model-
specific decoder. Based on the returned pseudoword and accompanied confidence level, we
analyzed whether these scores reflected congruent sound-shape mappings. Model performance
is quantified using the accompanied label and confidence score.
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Class Design and Workflow

The classification was performed using the following procedure specified within the ImageTextMatcher
class. Once the authorisation of HuggingFace and GPU set-up is complete, it follows the fol-
lowing steps:

1. Model Loading: The model is loaded along with its associated processor.

2. Initialisation: For each input image, construct a chat-style prompt instructing the model
to assign a label from the given lists.

3. Classification: Each image is classified twice, once with the S-R label set and once with
the P-NR label set.

4. Output Analysis: The predicted label inside the output and the average confidence score
derived from the softmax probability of each generated token are stored.

The instruction prompt for each image is inputted twice, once for each distinct label set. The
prompt follows the structure of:

"You are given an image for which you need to assign a label.
Use one of the following labels: ’{LIST}’. Only respond with
the label."

The classifier is set to operate in batches of four images and clears the GPU cache between
batches to manage memory efficiently. Classification results are stored in a structured format
that includes image path, predicted labels, confidence scores, and image type.

Lastly, a summary analysis computes the mean confidence scores of each label set across the
curved and jagged images, which enables a quantitative comparison of the model its congruency
preferences, which specifies whether the model is more confident in using S-R labels for curved
images and P-NR labels for jagged ones, which ideally falls in line with the Bouba-Kiki effect.

After the execution of the program, it becomes possible to assess the scores for the distinct
word sets, consequently enabling validation of whether the scores of S-R words are generally
higher than the scores of P-NR words on their congruent image shape, and vice versa. If there
exists a recurring trend within this comparison that falls in line with the expected result according
to the Bouba-Kiki effect, then it implies a cross-modal connection in VLMs.

3.7 Attention Pattern Analysis

In this experiment we investigated the visual grounding and referential focus of the multimodal
language model of Molmo in a forced-choice image comprehension task. This experiment aimed
to determine whether Molmo’s predicted spatial attention corresponded more closely to the
curved or jagged side of a bipartite image, depending on the shape-sound congruency of the
prompted pseudoword.

To this end, we reused the concatenated images from previous research [Shahrasbi, 2024],
where the left and right halves featured distinct shapes: one soft and one jagged. We used the
following pseudowords across all concatenated images: mahnoo, lohmah, teepuh and kaytay as
prompts, chosen to reflect varying degrees of sound-symbolic congruency with the depicted
shapes (e.g., mahnoo is more congruent with soft shapes, whereas kaytay is more congruent
with jagged shapes.
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Please note that this experiment has been performed exclusively on Molmo due to a lack of
resources to perform this experiment on LLaMA, as LLaMA is a text-only language model, thus
resulting in a lack of native support for image inputs or visual grounding.

The concatenated images follow the structure included in figures [2]and 3]

Figure 2: Concatenated image: curved shape vs. jagged shape.

Class Design and Workflow

The pipeline involved the following steps:

1. Text and Image Input: The text and image input are jointly processed using Molmo’s
associated processor, with prompts in the form of:

"Point to the ’'{PSEUDOWORD}’ in the image."

2. Inference: The inference is run via the generate_from_batch function, and Molmo’s
response was parsed for spatial coordinate predictions using regular expressions to extract
X and Y values embedded in the SVG-style output.

3. Mappings: These predicted coordinates were then mapped back to the pixel space based
on the original image size.

To visualize and verify the semantic segmentation and attention localization:

* Weusedthe Segment Anything Model v2 (SAM2) withapre-trained sam2 hiera large
checkpoint to segment the region corresponding to the model predicted point.

* These segmented regions were overlaid on the input image, allowing us to assess whether
the attention fell predominantly on the curved or jagged side of the concatenated image
stimuli.

The input data for this experiment consists of 9 different images, of which each image has

been mirrored once, thereby resulting in a set of 18 images. The focus point of the model is
highlighted in blue, which can be seen in figure
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Figure 3: Molmo focus points using the prompt ”Point to Lohmabh in the picture”. The star and
the highlighted area in blue indicate the area that Molmo associates with the given prompt.

This experiment enabled a qualitative and semi-quantitative assessment of multimodal ref-
erential grounding by comparing segmented attention maps across different pseudowords and
shape pairings.
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4 Results

This section contains the results of experiments 1, 2, and 3: cross-modal probability analysis,
image-to-text matching, and attention pattern analysis.

4.1 Cross-Modal Probability Analysis

This experiment investigates whether LLaMA3.2 and Molmo exhibit cross-modal congruency
effects similar to human perceptual tendencies, such as preferring soft pseudowords for curved
shapes and sharp pseudowords for jagged ones.

4.1.1 Congruency Effects

Average Probability by Congruency Across Experiments
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Figure 4: LLaMA: Assigned probabilities for all congruent and incongruent pairings across all
iterations.

As shown in figures ] and [5] the models rarely assigned higher probabilities to congruent
pairings over incongruent pairings. In figure [} LLaMA correctly assigned notably higher prob-
abilities to congruent pairings in run 5, whereas run 3 highlights a strong contrast in which the
incorrect congruent pairings received higher probabilities. These notable iterations support the
argument that LLaMA does not consistently assign higher probabilities to congruent pairings,
and thereby is not capable of finding the correct cross-modal connections. Similarly, in figure[3]
the difference in probabilities between incongruent and congruent pairings was smaller, albeit
displaying similar behavior to LLaMA in terms of inconsistently assigning higher probabilities
to congruent pairings than to incongruent pairings. However, the discrepancies in performance,
where there is no consistent trend of the congruent pairings receiving higher probabilities, sug-
gests that the overall findings do not show reliable or stable proofs for the Bouba-Kiki effect in
both LLaMA and Molmo.

Another trend, is that Molmo assigned significantly higher probabilities overall, ranging
between < 65,73 >, as opposed to LLaMA’s < 31,44 > range. Since the average incongruent
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probabilities remained lower than the congruent probabilities, it may suggest a statistically
meaningful cross-modal correspondence, implying that Molmo is more aligned with humans in
its decision-making than LLaMA with respect to the Bouba-Kiki domain.

Average Probability by Congruency Across Experiments
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Figure 5: Molmo: assigned probabilities for all congruent and incongruent pairings across all
iterations.

4.1.2 Effect Strength

Effect Strength (Congruent - Incongruent)

75

Effect Strength

-10.0

Figure 6: LLaMA: Effect strength between congruent and incongruent pairings. Effect strength
denotes the difference between the assigned probabilities to congruent and incongruent pairings.

Figures [6] and [7] illustrate the computed effect strength, highlighting the difference between
congruent and incongruent probabilities, and signified by the formula:
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E = APcongruent - Pincongruent

Where E denotes the difference in probability between congruency and incongruency, with
positive values observed in 6 out of 10 iterations for LLaMA and 7 out of 10 iterations for
Molmo.

These values suggests that the models, specifically Molmo, exhibit slight sensitivity to shape-
sound congruency. However, for LLaMA, the mean effect strength is negative, indicating no
evidence for the Bouba-Kiki effect for this model. In contrast, Molmo has a occasional positive
difference between congruency and incongruency, suggesting that it may be able to establish
connections between congruent pairings, providing some support for the Bouba-Kiki hypothesis
in this model, regardless of some inconsistencies per run.

Effect Strength (Congruent - Incongruent)
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r w -
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Figure 7: Molmo: Effect strength between congruent and incongruent pairings. Effect strength
denotes the difference between the assigned probabilities to congruent and incongruent pairings.
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4.1.3 Curved and Jagged Comparison

Probability by Image Type and Text Type (Runs 1-5)
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Figure 8: LLaMA: Assigned probabilities per image type (curved vs. jagged) (runs 1-6).

Probability by Image Type and Text Type (Runs 6-10)
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Figure 9: LLaMA: Assigned probabilities per image type (curved vs. jagged) (runs 6-10).

Figures 8] [9] [10} and[IT)compare congruent probabilities across shape categories. Figures[8|and
[9)show that, across all iterations, both curved and jagged images elicited higher probabilities for
sonorant-rounded words than for plosive non-rounded words. This suggests that LLaMA tends
to preferably associate both curved and jagged images with bouba-like pseudowords.

In contrast, figure[I0]and [IT|reveal that, across all iterations, both curved and jagged images
elicited favor towards sonorant-rounded pseudowords, thus indicating that Molmo struggled
to establish clear associations between sharp words and jagged shapes. Overall, these results
indicate that neither LLaMA or Molmo demonstrated consistent congruency patterns, further
supporting the lack of strong evidence for the Bouba-Kiki effect.

Probability by Image Type and Text Type (Runs 1-5)
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Figure 10: Molmo: Assigned probabilities per image type (curved vs. jagged) (runs 1-6).
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Probability by Image Type and Text Type (Runs 6-10)
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Figure 11: Molmo: Assigned probabilities per image type (curved vs. jagged) (runs 6-10).

4.1.4 Congruent and Incongruent Probabilities

Average Probability with Standard Deviation (Over 10 Runs)
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Figure 12: LLaMA: Assigned scores per image type (curved vs. jagged).

The results in figure [I2] indicate that LLaMA exhibits an inconsistent pattern when assigning
higher probabilities to congruent pairings compared to incongruent ones. Additionally, there is
a clear tendency for sonorant-rounded pseudowords to receive higher scores than plosive non-
rounded ones, regardless of the accompanying image. This suggests a potential bias towards
softer-sounding words, independent of visual congruency.

In contrast, figure 3] shows that Molmo demonstrates a more balanced yet still inconsistent

pattern in scoring congruency higher than incongruency, which could warrant further investiga-
tion.
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Average Probability with Standard Deviation (Over 10 Runs)
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Figure 13: Molmo: Assigned scores per image type (curved vs. jagged).
4.1.5 Significance Analysis

Test p-value t-value Congruent Mean Incongruent Mean
Welch’s t-test  0.946  -0.067 38.002 38.141

Table 3: Statistical significance test (Welch’s t-test) results for LLaMA.

To assess statistical significance of these findings in LLaMA and Molmo, we have conducted
a Welch’s t-test. This choice was made based on the reason that the mean probabilities of
congruency and incongruency do not follow a normal distribution. The results of these tests are
included in tables Bland

From these results we can conclude that the the difference in probabilities between congruent
(38.002) and incongruent (38.141) mappings in LLaMA is statistically insignificant.

On the other hand, the results of Molmo indicate a p-value of 0.017 and higher mean
probability for congruent mappings (69.426) compared to incongruent mappings (66.989): a
small, yet significant difference. These results support the hypothesis that Molmo exhibits
sensitivity to cross-modal congruency, while LLaMA does not.

Test p-value t-value Congruent Mean Incongruent Mean
Welch’s t-test  0.017  2.385 69.426 66.989

Table 4: Statistical significance test (Welch’s t-test) results for Molmo.
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4.2 Image-to-Text Matching

This experiment aimed to assess whether LLaMA and Molmo show higher confidence levels for
Bouba- and Kiki-pseudowords on curved and jagged imagery.

4.2.1 Overall Classification Scores

Classification Scores by Condition
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Figure 14: LLaMA: Average scores per word type across all 10 iterations.

Figures |14| and |15| highlight the obtained scores for both bouba-like and kiki-like pseudowords
on curved and jagged images. The purpose of this figure is to indicate whether, on average,
sonorant-rounded words score higher on curved images than plosive non-rounded, and vice
versa.

The figures suggest that sonorant-rounded pseudowords obtain similar scores on both curved
and jagged images. Moreover, plosive non-rounded pseudowords also score similar results across
both image types. The only remarkable observation is that sonorant-rounded pseudowords obtain
higher scores than plosive non-rounded pseudowords, no matter the image type.

The results of Molmo indicate identical behavior to LLaMA, where sonorant-rounded pseu-
dowords obtain a marginally lower score higher on curved images than plosive non-rounded
pseudowords. A similar, unexpected trend can be observed between sonorant-rounded and plo-
sive non-rounded pseudowords on jagged images, thereby supporting an argument that these
results do not deliver any support in favor of the Bouba-Kiki hypothesis.
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Classification Scores by Condition
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Figure 15: Molmo: Average scores per word type across all 10 iterations.

4.2.2 Score Difference

S-R vs. P-NR Score Difference by Image Type
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Figure 16: LLaMA: S-R and P-NR score difference across curved and jagged images.

Figures[I6|and[T7|display the score differences between sonorant-rounded pseudowords paired
with curved images and plosive non-rounded pseudowords paired with jagged images. In both
models, the score differences are insignificant, suggesting that sonorant-rounded pseudowords
generally receive higher scores regardless of the accompanying image type. Ideally, we would
expect that higher scores are assigned to sonorant-rounded pseudowords with curved images, and
lower scores are assigned for plosive non-rounded pseudowords with jagged images. However,
the lack of a substantial difference in the plots suggests limited evidence for this pattern.
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S-R vs. P-NR Score Difference by Image Type
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Figure 17: Molmo: S-R and P-NR score difference across curved and jagged images.

4.2.3 Sonorant-Rounded vs. Plosive non-Rounded

Sonorant-Rounded Scores by Image Type Across Runs

0.9+

0.8

=

0.5 4 o 8

0.4+

[o}
WO NGV s W N

0.3 1

=
°

Cur‘ved Jagéed
Image Type

Figure 18: LLaMA: Average scores for Sonorant-Rounded words across all 10 iterations.

Figures |18 and (19| illustrate the differences in confidence score assigned to sonorant-rounded
words when paired with curved versus jagged images, returned by both models.

Figure [1§] shows that LLaMA assigns nearly identical confidence scores to S-R words for
both curved and jagged images, with only minor variations. Given the minimal difference,
it is difficult to conclude whether LLaMA has captured any meaningful association between
sonorant-rounded pseudowords and curved images, thereby providing no supporting evidence
in favor of the Bouba-Kiki effect.

In contrast, figure [T9 indicates higher variability between confidence levels for sonorant-
rounded pseudowords on curved and jagged images. However, Molmo inconsistently assigns
higher confidence scores to sonorant-rounded pseudowords on curved images than on jagged
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ones, thereby contradicting the expected bouba-like association. As a result, this model also fails
to provide evidence for the Bouba-Kiki effect.

Sonorant-Rounded Scores by Image Type Across Runs
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Figure 19: Molmo: Average scores for Sonorant-Rounded words across all 10 iterations.

Plosive non-Rounded Scores by Image Type Across Runs
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Figure 20: LLaMA: Average scores for Plosive-non-Rounded words across all 3 iterations.

Figures[20|and 21]display the difference in accompanying confidence levels regarding plosive
non-rounded words on both curved and jagged images, returned by both models.

In figure20] the average scores for P-NR words is highly inconsistent, showing similar values
across the two image types. However, since the scores on jagged images are more balanced and
show less variability, we may speak of higher confidence in the model’s decision-making with
regards to a kiki-like association between plosive non-rounded words and jagged imagery.

In contrast, figure 21 shows significantly more variability, suggesting that Molmo has not
successfully found any kiki-like association.
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Plosive non-Rounded Scores by Image Type Across Runs
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Figure 21: Molmo: Average scores for Plosive-non-Rounded words across all 3 iterations.

4.2.4 Significance Analysis

Type Mean Curved Mean Jagged t-value p-value

S-R 0.801 0.807
P-NR 0.773 0.767

Table 5: Statistical Significance test (Welch’s t-test) results on LLaMA.

-0.559
0.782

0.579
0.434

To verify whether these findings are statistically significant, we have conducted a Welch’s t-test.
The reason for this is that in neither results the variance was equally distributed, therefore the
Welch’s t-test is a better fit than the Student’s t-test. The results in tables [5] and [6] suggest that
instead of a congruency pattern befitting the Bouba-Kiki effect, we speak of a pattern that
may solely reflect a preference based on words. The p-values are too low to signify statistical

importance.

Type Mean Curved Mean Jagged t-value p-value

S-R 0.8525 0.859
P-NR 0.855 0.869

Table 6: Statistical significance test (Welch’s t-test) results on Molmo.

31

-0.680
-1.241

0.497
0.215




4.3 Attention Pattern Analysis

In this experiment we investigated the visual grounding and referential focus of Molmo in a
forced-choice comprehension task. The 4 randomly sampled Bouba-Kiki pseudowords used in
this experiment include: “mahnoo” (bouba), “lohmah” (bouba), “teepuh” (kiki), and “’kaytay”
(kiki).

4.3.1 Congruent vs Incongruent Shapes

Congruent pairings can contextually be interpreted as an instance of the model pointing towards
the correct shape, as demonstrated in figures [22]and 23]

\/
‘N.

Figure 22: Molmo correctly identifies the curved shape by pointing to what it believes is
’lohmah”.

Figure 23: Molmo correctly identifies the curved shape by pointing to what it believes is
“mahnoo”.

In contrast, an incongruent pairing can be understood as an instance of the model pointing
towards the wrong shape, as demonstrated in figure [24] Since “teepuh” is a kiki-pseudoword,
the model should have pointed at the jagged image.

Figure 24: Molmo incorrectly identifies the jagged shape by pointing to what it believes is
“teepuh”.
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Similarly to figures 22}{24] correct instances of congruent pairings are highlighted in figures
The model consistently points towards the correct shape, including special instances such
as shapes within other shapes as included in figure [25]

#

Figure 25: Molmo correctly identifies the curved shape by pointing to what it believes is
’lohmah”.
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Figure 27: Molmo correctly identifies the jagged shape by pointing to what it believes is ”teepuh”.
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Instances of misclassification happening are highlighted in figures28H30] The shapes included
in these figures are highly abstract, therefore likely confusing the model. Nevertheless, these
instances reinforce the argument of Molmo not exhibiting the Bouba-Kiki effect.

mahnoo not identified

=l

Figure 28: Molmo incorrectly identifies the curved shape by pointing to what it believes is

”mahnoo”.
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Figure 29: Molmo incorrectly identifies the jagged shape by pointing to what it believes is

“kaytay”.

Figure 30: Molmo incorrectly identifies the jagged shape by pointing to what it believes is
“teepuh”.
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4.3.2 Congruency Evaluation

Besides the number of trials included in figures the remainder of the trials are included
in appendix B. The total results of the third experiment are included in table

The results demonstrate that Molmo was able to find more congruent pairings for curved
images (approx. 61%) than for jagged images (approx. 47%) in the context of the Bouba-Kiki
effect. Please note that special instances such as figure [31)are deemed correct although the blue
marking is outside of the shape.

s

Figure 31: Molmo correctly identifies the jagged shape by pointing to what it believes is teepuh”.

Condition Congruent Cases Total Trials
Curved Congruency 22 36
Jagged Congruency 17 36

Table 7: Number of congruent cases out of total trials for curved and jagged images.

These results suggest that there is a moderate tendency to pair curved images with sonorant-
rounded pseudowords. This aligns somewhat with the Bouba-Kiki hypothesis, but does not
deliver overwhelming proof or evidence in favor of it.

Furthermore, since the probability of jagged congruency is below 50%, it suggests that
the jagged images were less likely to be matched with plosive non-rounded pseudowords than
random guessing would predict.

These arguments suggest that there is weak evidence supporting the Bouba-Kiki effect for
curved stimuli, but not for jagged ones. The asymmetry may imply that curved stimuli elicits
stronger associations than jagged ones, or that jagged mappings are less consistent or overall
more difficult to find.

4.3.3 Statistical Significance Analysis

The results in tables [/| and [8| highlight that the frequency distribution of congruent mappings
is not significantly higher than 50%, thereby indicating a lack of statistical significance of the
findings gained from this experiment.

Congruency Proportion p-value
Curved 0.243 0.6111
Jagged 0.868 0.472

Table 8: Significance analysis binomial test results of Molmo.
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5 Summary of Results

This thesis set out to investigate whether cutting-edge vision-language models, LLaMA3.2 and
Molmo, exhibit cross-modal associations between visual shape and phonological form, more
specifically, the phenomenon famously illustrated by the Bouba-Kiki effect in human cognition.
Using LLaMA3.2 and Molmo as test models, we designed and conducted a series of zero-shot
experiments to examine model preferences for matching abstract sonorant-rounded and plosive
non-rounded pseudowords, respectively matching the idea behind “bouba” and ’kiki”, to either
curved or jagged shapes. Across three experiments, we measured semantic fit through token
probabilities, direct classification, and attention patterns.

The first experiment detailed an experimental set-up to perform cross-modal probability
analysis by prompting the models to return a score between 0 to 100 on how well an abstract
word, sampled from a list of pseudowords, matches a given image. The results of this experi-
ment indicate that both LLaMA3.2 and Molmo have inconsistent congruency patterns, thereby
providing weak support in favor of the Bouba-Kiki hypothesis within these models. Moreover,
the effect strength measured across these experiments, which denotes sensitivity to shape-sound
congruency, was found to be too minor for LLaMA, whereas the results of Molmo gave slightly
stronger albeit still relatively weak support, although notably Molmo was found to be more cer-
tain overall in its decision-making ability. After comparing the assigned probabilities to curved
and jagged images, it was discovered that neither LLaMA or Molmo had consistent congruency
patterns over all experiment runs. By analyzing the assigned probabilities per image type in
higher detail, it was found that LLaMA had an inconsistent pattern of assigning higher scores
to congruent pairings than to incongruent pairings, whereas Molmo had a similar, albeit more
balanced range of assigned probabilities, which may benefit from further investigation.

The second experiment detailed an experimental set-up to perform an image-to-text matching
task. The aim was to assess whether LLaMA or Molmo show, on average, higher token-wise
confidence levels for bouba- and kiki-pseudowords on congruent pairings of curved and jagged
images. The experiment was set up in a way that enables the model to ask, for every image, which
word from a subset of sonorant-rounded and plosive non-rounded words, matched the best with
the image. The extracted results contain both the pseudowords as well as the confidence score of
the token. The findings of this experiment show that the average scores returned by both LLaMA
and Molmo are not higher on congruent pairings than incongruent pairings. Moreover, the
detailed score differences themselves also do not indicate a substantial difference. A comparison
of the scores of sonorant-rounded and plosive non-rounded over all iterations highlight that
LLaMA assigns nearly identical confidence scores to sonorant-rounded and plosive non-rounded
words for both curved and jagged images, with minor variability. In contrast, Molmo includes
higher variability in score differences, although still lacking in a pattern that supports the
expected results aligning with the Bouba-Kiki effect.

The third experiment detailed an experimental set-up built on SAM2 to perform attention pat-
tern analysis. More specifically, an experiment to highlight whether Molmo’s ﬂ spatial attention
corresponded more closely to a curved or jagged side of a bipartite image, depending on shape-
sound congruency. The results of this experiment were congruency accuracies of approximately
61% for curved images and 47% for jagged images. These results indicate that we may speak of
a moderate tendency to pair curved images with sonorant-rounded pseudowords. All in all, the
findings do not incur strong evidence supporting the Bouba-Kiki effect for Bouba-curved and
Kiki-jagged associations.

4*LLaMA support for this experiment does not exist yet.
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Taken together, these 3 experiments suggest that while LLLaMA3.2 and Molmo exhibit some
degree of sensitivity to shape-sound congruency, the evidence remains limited and highly incon-
sistent. LLaMA’s behavior appears closer to random across conditions, while Molmo demon-
strates slightly more stable, though still inconclusive, preferences. Notably, both models show
a weak inclination to associate curved stimuli with sonorant-rounded pseudowords, aligning
partially with the Bouba-Kiki hypothesis. However, this tendency does not extend reliably to
jagged images or plosive-like sounds. Therefore, while vision-language models may encode
rudimentary cross-model associations by random chance, since the results highlight that the
models do not consistently exhibit cognitive-like shape-sound congruency, we do not have any
evidence in favor of the Bouba-Kiki hypothesis in these models.
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6 Discussion

The results of this thesis provide an initial yet nuanced perspective on the capacity of large
vision-language models to form cross-modal associations between visual and textual features.
Drawing inspiration from the famous Bouba-Kiki effect, this work examined whether two
advanced, cutting-edge models, LLaMA3.2 and Molmo, show similar tendencies when tasked
with associating pseudowords to either curved or jagged shapes. While some patterns emerged
that may resemble human-like congruency, especially in the case of curved shapes paired
with sonorant-rounded pseudowords, the overall findings suggest only weak and inconsistent
alignment with the expected shape-sound mappings. This invites a deeper reflection on the
nature of such associations within deep, complex neural and transformer-based models, and on
whether cognitive-like behavior can truly emerge from training objectives that do not explicitly
involve such embodied and grounded relationships.

6.1 Interpretation of Congruency Patterns

Across the 3 experiments, when present, congruency effects were subtle and often inconsistent.
In the cross-modal probability assignment task, neither LLaMA3.2 nor Molmo showed robust
alignment between curved shapes and sonorant-rounded pseudowords or jagged shapes and
plosive non-rounded pseudowords across all runs. Although Molmo produced slightly higher
probabilities for congruent pairs in some cases, the effect was small and unstable, thereby
suggesting that such associations may be partially represented but not systematically encoded.

The image-to-text matching experiment provided further nuance. While both models occa-
sionally assigned marginally higher confidence scores to congruent word-shape pairings, these
differences were not statistically strong and varied frequently across iterations. Notably, LLaMA’s
output was almost flat in terms of score differentiation, whereas Molmo demonstrated greater
variability, potentially hinting at model-specific mechanisms or the PixMo dataset influencing
confidence assignment. However, in both cases, the signal remained too insignificant to conclude
that either model has learned or discovered a robust cross-modal mapping comparable to human
intuition.

The third experiment, focusing on spatial attention using a bipartite shape template, offered a
more visually grounded perspective into word-shape associations. While a modest tendency was
found in Molmo to attend more strongly to the curved region of an image when prompted with
a congruent pseudoword, this effect did not generalize to jagged regions or across model condi-
tions. Therefore, attention spans, while visually compelling, do not provide strong corroborative
evidence for shape-sound congruency.

In summary, these results suggest that while large vision-language model may incidentally
reflect aspects of expected Bouba-Kiki alignment, particularly in curved-shape contexts, these
associations are weak, highly-prompt sensitive, and are too inconsistent to indicate genuine
internalization of the Bouba-Kiki effect.

6.2 Comparing LLaMA and Molmo

A central aim of this thesis was to compare a general-purpose vision-language model (LLaMA3.2)
with a more specialized and open model (Molmo) to investigate whether different architectures
or training objectives influence the emergence of cross-modal associations. The results across all
3 experiments suggest notable differences in behavior and interpretability between the models.
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LLaMA3.2, despite its strong general language and visual capabilities, demonstrated minimal
sensitivity to shape-sound congruency. Its responses in both the probability estimation and
classification tasks were largely inconsistent, often assigning irregular scores to congruent and
incongruent pairings, besides some exceptions. In some cases, it even displayed reversed patterns
by favoring incongruency over congruency. This lack of differentiation indicates that LLaMA’s
internal representations may not prioritize or encode subtle symbolic mappings such as the
underlying Bouba-Kiki effect. Alternatively, it could also reflect that LLaMA, optimized for
broad instruction-following and generative coherence, lacks the inductive biases necessary to
spontaneously draw connections between sound and shape.

Molmo, in contrast, produced slightly more consistent behavior. It showed marginal but
measurable differences between congruent and incongruent pairings in both score-based and
attention-based analyses. Its confidence scores fluctuated more dynamically in response to input
differences, and its attention maps revealed some alignment with visually relevant regions,
specifically for curved-soft sound-shape congruency. While not strong enough to conclude
that Molmo has learned a cognitive-like mapping, these patterns suggest a more fine-grained
perceptual sensitivity, potentially due to differences in architecture or training methods.

Ultimately, while neither model convincingly encodes robust cross-modal congruency pat-
terns, Molmo shows signs of a closer fit. This highlights the importance of model design in
studying emergent behaviors and suggests that model comparisons may offer valuable insights
into their nature and limitations regarding perceptual reasoning in artificial systems such as
VLMs. These findings highlight both the promise and the current limitations of using multi-
modal foundation models as cognitive models of perception.

6.3 Implications for Cognitive Modeling

The Bouba-Kiki effect has long been interpreted as evidence of innate or universal cross-modal
associations in human cognition by linking auditory and visual modalities in a way that appears
deeply embedded and intuitive, even in the preverbal stage of human development. One of the
motivations for this thesis was to explore whether modern, cutting-edge VLMs, trained at scale
and without explicit symbolic grounding, would naturally exhibit similar capabilities. If such
models were to show reliable congruency patterns, it could provide support for the hypothesis
that cross-modal alignment can emerge from exposure or statistical patterns within both textual
and visual data, even without prior training, thereby including them as an emergent behavior.

The experimental findings presented here, however, suggest that VLMs do not reliably encode
such associations, as of now. Both LLaMA and Molmo showed weak and inconsistent alignment
with shape-sound mappings, besides some marginal exceptions. This raises important questions
about the extent to which such models offer utilitarian benefits for the analyzing and under-
standing of human cognitive processes. While VLMs demonstrated impressive generalization
and multimodal reasoning capabilities, they lack the fundamental understanding that underpin
human-like perception and intuition.

That said, the partial effects observed, particularly by Molmo’s slight tendency to score
curved, sonorant-rounded associations higher than its incongruent counterpart, suggest that
large models may be capable of approximating cognitive intuition under certain conditions. This
opens up potential future research paths, particularly in identifying what training conditions,
architectures, or constraints would be necessary for models to internalize more human-like
multimodal correspondences. In this sense, vision-language models offer both challenges and
an opportunities. They are not yet fully functional mini-humans, but their behavior provides a
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window into the kinds of structure that might support cognitively plausible reasoning, potentially
resulting in a system that can grow to be on par with humans.

6.4 Challenges in Measuring Cross-Modal Semantics

Evaluating cross-modal semantics in foundation models presents several methodological chal-
lenges. Unlike traditional classification tasks with discrete accuracy metrics, cross-modal asso-
ciation relies on subtle, often ambiguous mappings between modalities. Contextually, it relies on
abstract pseudowords and geometric shapes. These abstract pseudowords and geometric shapes
may all carry their own, separate understandings and could create difficulty both in designing
effective prompts and in interpreting model outputs reliably.

One major challenge lies in prompt sensitivity. The results of this thesis show that even slight
changes in wording, format, or sampling parameters, may significantly influence a model’s
output. This sensitivity makes it difficult to disentangle genuine internal associations from
superficial prompt-following behavior. For instance, a model could generate different scores
for the image-pseudoword pair depending on how the prompt is phrased or how many labels
are provided as options. This complicates the task of evaluating whether the model’s behavior
reflects learned multimodal concepts or merely linguistic compliance.

Additionally, the inherently abstract nature of the Bouba-Kiki task, which relies on pseu-
dowords with no semantic referents, limits the influence of pretraining data and requires models
to generalize in a cognitively plausible way. However, large language models are often opti-
mized for pragmatic coherence rather than symbolic generalization, and may simply lack the
architectural or representational foundation to form such associations in a consistent manner.

Another limitation is interpretability. While token-level confidence scores and attention
heatmaps provide valuable information for internal model behavior, they remain indirect. A
high token probability may reflect generation fluency rather than a genuine association between
modalities. Similarly, attention maps may not directly correspond to the model’s decision-
making and its motivation. These metrics are useful but imperfect, and future methods may need
to combine behavioral probing with more advanced techniques.
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7 Limitations

While this thesis presents a framework for probing cross-modal associations in vision-language
models, several limitations constrain the generalizability and interpretability of its findings.

First, the experiments rely heavily on zero-shot prompting, which can be extremely sensitive
to phrasing, tokenization, and sampling parameters. Despite efforts to standardize prompts and
use diverse word sets, minor variations in temperature, top-p, or word order may have influenced
the model outputs in unintended ways. This makes it challenging to isolate the effects of true
semantic congruency from model-specific generation artifacts. Moreover, forcing the model to
restrict outputs to numeric values or single label types may have obstructed the models from
truly finding the connection between sound and shape, considering a scenario where the model
would consistently associate soft words with curved shapes, while in the experiment this output
was limited to a single word.

Second, the use of pseudowords, while appropriate for studying Bouba-Kiki effects, introduce
ambiguity. Unlike real-world concepts, pseudowords lack proper grounding in model pretraining
data, meaning any emergent associations are either abstract or incidental. While this makes the
task cognitively interesting, for a model that follows its architecture this may not carry any
human-like intuitive meaning, thereby making the findings limiting.

Finally, the sample size and scope of this study were limited by computational resources. The
number of images, pseudowords, and experimental repetitions, while sufficient for explanatory
analysis, do not reach the scale required for definite statistical claims for model behavior. This
limits the strength of conclusions, particularly when effect sizes are small or vary across different
runs.

41



8 Future Work

Several directions for future research can help refine and extend the importance of the findings
of this thesis.

First, future studies could scale the size of the dataset and include more diverse image stimuli
and a broader range of pseudowords. Using carefully balanced sets of real and artificial labels
could explore whether models encode structural features or simply exploit prompt regularities.

Second, follow-up experiments could explore fine-tuning or in-context learning to see whether
models can be taught the shape-sound connection described in the Bouba-Kiki hypothesis.
Comparing zero-shot, to few-shot, to many-shot learning, could draw further attention to the
models’ capacity for internalizing symbolic mappings, if given proper guidance.

Third, further investigation into model architecture is warranted. The contrast between
LLaMA3.2 and Molmo suggests that training objectives could influence cross-modal alignment.
By increasing the scope of this research to additional cutting-edge models, it could increase
understanding of how training scale, data modality imbalances, or structural components may
affect sound-shape connections.

Fourth, as mentioned in the first experiment, in general, Molmo assigned higher probability
scores to both congruent and incongruent pairings than LLaMA, implying that it is less conser-
vative in assigning scores and thereby more confident in its decision making. By changing the
methodology and the test data, this thesis may be expanded on by researching what components
or underlying concepts determine this discrepancy between LLaMA and Molmo.

Finally, integrating human behavioral baselines, for example by comparing model outputs
with human judgments of pseudoword-shape congruency, would offer an additional benchmark
for evaluating model cognition and alignment. This may help to clarify whether models are
computationally clever or cognitively aligned.
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9 Appendices

9.1 Appendix A
Congruent Stimuli (S-R) for Curved Shapes

looloo nooloo mooloo
loolah noolah moolah
looloh nooloh mooloh
loonoo noonoo moonoo
loonah noonah moonah
loonoh noonoh moonoh
loomoo noomoo moomoo
loomah noomah moomah
loomoh noomoh moomoh
lahloo nahloo mahloo
lahlah nahlah mahlah
lahloh nahloh mahloh
lahnoo nahnoo mahnoo
lahnah nahnah mahnah
lahnoh nahnoh mahnoh
lahmoo nahmoo mahmoo
lahmah nahmah mahmah
lahmoh nahmoh mahmoh
lohloo nohloo mohloo
lohlah nohlah mohlah
lohloh nohloh mohloh
lohnoo nohnoo mohnoo
lohnah nohnah mohnah
lohnoh nohnoh mohnoh
lohmoo nohmoo mohmoo
lohmah nohmah mohmah
lohmoh nohmoh mohmoh

Congruent Stimuli (P-NR) for Jagged Shapes

teetee tuhtay taykuh
teetuh tuhkee taykay
teetay tuhkuh taypee
teekee tuhkay taypuh
teekuh tuhpee taypay
teekay tuhpuh keetee
teepee tuhpay keetuh
teepuh taytee keetay
teepay taytuh keekee
tuhtee taytay keekuh
tuhtuh taykee keekay
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keepee
keepuh
keepay
kuhtee
kuhtuh
kuhtay
kuhkee
kuhkuh
kuhkay
kuhpee
kuhpuh
kuhpay
kaytee
kaytuh
kaytay
kaykee

kaykuh
kaykay
kaypee
kaypuh
kaypay
peetee

peetuh

peetay

peekee
peekuh
peekay
peepee
peepuh
peepay
puhtee

puhtuh
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puhtay
puhkee
puhkuh
puhkay
puhpee
puhpuh
puhpay
paytee
paytuh
paytay
paykee
paykuh
paykay
paypee
paypuh
paypay



9.2 Appendix B

Bouba-pseudowords: mahnoo, lohmah
Kiki-pseudowords: teepuh, kaytay
Blue markings highlight the focus points of Molmo.

Block 1

Figure 32: * Figure 33: * Figure 34: *
’point to mahnoo” ”point to lohmah” ’point to teepuh”

Figure 36: * Figure 37: * Figure 38: *
’point to mahnoo” ’point to lohmah” ’point to teepuh”
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Figure 35: *
’point to kaytay”

Figure 39: *
“point to kaytay”



Block 2

mahnoo not identified

Figure 40: * Figure 41: * Figure 42: * Figure 43: *
’point to mahnoo” ”point to lohmah” ’point to teepuh” ’point to kaytay”

Figure 44: * Figure 45: * Figure 46: * Figure 47: *
’point to mahnoo” ”point to lohmah” ’point to teepuh” ’point to kaytay”
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Block 3

R x @x @

Figure 48: *

point to mahnoo”

R

Figure 52: *

’point to mahnoo”

Figure 49: * Figure 50: * Figure 51: *
’point to lohmah” “point to teepuh” “point to kaytay”

A CE SR

Figure 53: * Figure 54: * Figure 55: *
’point to lohmah” ’point to teepuh” ’point to kaytay”
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Block 4

mahnoo not identified

Figure 56: * Figure 57: * Figure 58: * Figure 59: *
’point to mahnoo” ’point to lohmah” ’point to teepuh” ’point to kaytay”

mahnoo not identified

Figure 60: * Figure 61: * Figure 62: * Figure 63: *
’point to mahnoo” ’point to lohmah” ’point to teepuh” ’point to kaytay”
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Block 5

mahnoo not identified teepuh not identified

Figure 64: * Figure 65: * Figure 66: * Figure 67: *
’point to mahnoo” ’point to lohmah” ’point to teepuh” ’point to kaytay”

mahnoo not identified teepuh not identified

Figure 68: * Figure 69: * Figure 70: * Figure 71: *
’point to mahnoo” ’point to lohmah” ’point to teepuh” ’point to kaytay”
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Block 6

mahnoo not identified

Figure 72: *
’point to mahnoo”

mahnoo not identified

Figure 76: *
’point to mahnoo”

%

Figure 73: *

”point to lohmah”

ol

Figure 77: *

”point to lohmah”
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Figure 74: *

’point to teepuh”
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Figure 78: *

’point to teepuh”

Figure 75: *

’point to kaytay”

Figure 79: *

’point to kaytay”



Block 7

g ) g
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Figure 80: * Figure 81: * Figure 82: * Figure 83: *
’point to mahnoo” ”point to lohmah” ’point to teepuh” ’point to kaytay”

mahnoo not identified
q
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Figure 84: * Figure 85: * Figure 86: * Figure 87: *
’point to mahnoo” ”point to lohmah” ’point to teepuh” ’point to kaytay”
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Block 8
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> WP

Figure 88: * Figure 89: * Figure 90: *
’point to mahnoo” ”point to lohmah” point to teepuh”
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Figure 92: * Figure 93: * Figure 94: *
’point to mahnoo” ’point to lohmah” ’point to teepuh”
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Figure 91: *
’point to kaytay”

Figure 95: *
’point to kaytay”



Block 9

mahnoo not identified

Figure 96: * Figure 97: * Figure 98: * Figure 99: *
’point to mahnoo” ”point to lohmah” ’point to teepuh” ’point to kaytay”

Figure 100: * Figure 101: * Figure 102: * Figure 103: *
’point to mahnoo” ”point to lohmah” ’point to teepuh” ’point to kaytay”
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9.3 Appendix C

Figure 104: * Figure 105: *
1-Kohler curved-pl.png 10-Westbury4 jagged-pS.png
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Figure 106: * Figure 107: *
11-Maurer] curved-p6.png 12-Maurer1 jagged-p6.png
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Figure 108: * Figure 109: *
13-Maurer2 curved-p7.png 14-Maurer?2 jagged-p7.png
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Figure 110: *
15-Maurer3 curved-p8.png
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Figure 111: *
16-Maurer3 jagged-p8.png
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Figure 112: * Figure 113: *
17-Maurer4 curved-p9.png 18-Maurer4 jagged-p9.png
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Figure 114: * Figure 115: *
19-curved-p10.png 2-Kohler jagged-pl.png
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Figure 116: * Figure 117: *
20-jagged-p10.png 21-curved-pl1.png
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Figure 118: * Figure 119: *
22-jagged-pl1.png 23-curved-p12.png
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Figure 120: * Figure 121: *
24-jagged-p12.png 25-curved-p13.png
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Figure 122: * Figure 123: *
26-jagged-p13.png 27-curved-pl4.png
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Figure 124: * Figure 125: *
28-jagged-pl4.png 29-curved-p15.png
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Figure 126: * Figure 127: *
3-Westbury1 curved-p2.png 30-jagged-p15.png
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Figure 128: * Figure 129: *
31-curved-pl6.png 32-jagged-p16.png
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Figure 130: * Figure 131: *
33-curved-p17.png 34-jagged-p17.png
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Figure 132: * Figure 133: *
4-Westbury1 jagged-p2.png 5-Westbury?2 curved-p3.png
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Figure 134: * Figure 135: *
6-Westbury?2 jagged-p3.png 7-Westbury3 curved-p4.png
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Figure 136: * Figure 137: *
8-Westbury3 jagged-p4.png 9-Westbury4 curved-p5.png
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