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Abstract 

This thesis investigates how appearance-constrained robots can express joy, sadness, anger, and fear 
through combinations of light, sound, and movement. The study involved analyzing existing video 
data to select effective behavior parameters, implementing and optimizing these behaviors on an mBot 
robot, and conducting an online user study to test emotional recognition and perceived intensity. 
 
    Results showed that three out of four target emotions were recognized significantly above chance, 
especially anger, which was clearly recognized even without sound. Sound contributed positively by 
improving recognition of fear and anger and increasing perceived intensity for joy and anger. 
Participants also tended to group emotions into general categories like positive and negative, 
suggesting that robots can convey emotional tone even when specific labels are less clear. 
 
    Future work should focus on improving sound design, testing with larger and more diverse 
participant samples, using a larger surface area to reduce unintended behavior, and applying the 
method to other appearance-constrained robots to assess generalizability.  
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1 Introduction 
Robots are becoming more and more important in our society [7]. From lawn mowing to complex 
industrial operations. As technology advances, robots are expected to take on even more significant 
roles in various sectors, including healthcare, education, and public services [2]. As robots become 
more common, it’s increasingly important that people can understand and interact with them in an 
intuitive way. Effective human-robot interaction (HRI) is therefore a key research area, particularly as 
it relates to the interpretability of robot behavior.  
 

Interpretability in this context refers to the degree to which humans can understand a robot's 
intentions, actions, and internal states. Making robots more interpretable leads to more natural and 
fluid interactions, increasing user trust, cooperation, and acceptance [35]. One powerful way to 
improve interpretability is through emotional expression. Emotions make it easier for humans and 
other species to communicate and it helps us understand what others' feelings and intentions are [12]. 
In robots, affective signals such as light, sound, and movement can serve as effective substitutes for 
human-like expressions [1, 4]. 

 
Humans naturally communicate emotions through facial expressions, vocal tones, and body 

language [14]. These ways of expressing emotion are a very important part of how we interact with 
others. It helps us share complex feelings quickly and clearly. However, many robots, especially those 
designed for functional tasks, do not have anthropomorphic features such as faces or limbs. Designing 
robots with full humanoid features is expensive and not always necessary. These 
appearance-constrained robots, often used in fields like logistics, cleaning, or education, don't have 
the physical features needed to express emotions in human-like ways. 
 

This challenge creates an opportunity for further research: how can non-humanoid robots express 
emotions clearly and understandably? Prior research has shown that non-verbal modalities such as 
light, movement, and sound can successfully influence perceived emotion in robotic systems [25]. 
Studies have explored each modality individually, or sometimes in pairs. Researchers found that faster 
motion correlates with high arousal, red or blue light conveys certain affective states, and sound 
patterns can suggest happiness, sadness, or fear [12, 27, 30, 37]. 
 

Yet despite these insights, most studies are descriptive or correlative in nature and focus on one or 
two modalities. Recent work by Fernando Vargas [12], which will be discussed more thoroughly later 
on, made a substantial contribution to this field. Vargas identified correlations between parameters 
using a large dataset, which he collected through a user study. However, his findings remained 
correlational, and no attempt was made to optimize these parameters for clearer or more consistent 
emotional expression. 

1.1 Research Objective and Scope 
The goal of this research is to find and evaluate optimized combinations of light, sound, and 
movement that help non-humanoid robots express emotions more clearly. This should make robots 
more emotionally understandable, socially intuitive, and better suited for natural interaction with 
people. 
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    This thesis builds on the work of Vargas [12], who explored how different behavioral parameters 
relate to perceived emotions using a large video dataset. While his research focused on identifying 
correlations, the aim here is to go a step further by creating and testing optimized expressions for 
specific emotions. 
 
    The project initially planned to include all six of Ekman’s basic emotions (joy, sadness, anger, fear, 
surprise, and disgust) [15] . However, early testing showed that surprise and disgust were often hard to 
express or distinguish clearly. This finding is supported by the work of Jack et al. [22], who 
demonstrated that the recognition of certain emotions, especially disgust and surprise, varies 
significantly across cultures and is less consistent than for other emotions. Because of this, the scope 
was narrowed to four emotions that participants consistently recognized better: joy, sadness, anger, 
and fear. 
 
    The research consists of three main stages. First, Vargas’ dataset will be analyzed to identify the 
most promising video examples for each emotion. Second, an appearance-constrained robot will be 
programmed with optimized settings based on this analysis. Third, a user study will be conducted in 
which participants are divided into two groups: one views robot behaviors with sound, and the other 
without sound. This between-subjects setup allows for direct evaluation of the added effect of sound 
on emotional recognition and intensity. 
 
    The ultimate goal of this research is to contribute to the development of robots that are emotionally 
intelligible, socially intuitive, and better suited for natural interaction with humans, particularly when 
traditional expressive features are unavailable. 
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2 Background and Related Work 
This chapter provides the necessary background and theoretical concepts needed for this thesis. It is 
divided into five sections: affective computing, emotion theories, appearance-constrained robot 
design, expression modalities, and the use of multiple modalities together. 

2.1 Foundations of Affective Computing 

The way people interact with robots becomes increasingly important as they move from industrial 
settings into everyday life. In environments like schools and hospitals, robots are no longer just tools 
but social actors that share physical and emotional space with humans. To make these interactions 
smoother and more intuitive, robots must not only behave functionally but also communicate their 
intentions and internal states in ways that people can easily interpret [17, 18, 36]. 
 
    Affective computing, introduced by Rosalind Picard [31], is the field that studies how machines can 
recognize, simulate, and respond to human emotions. Although early related works in human-robot 
interaction mainly focused on how humans express emotions through facial cues and gestures [20, 33, 
34], more recent research has begun to explore other modalities such as movement [1,11, 16, 23], light 
[24, 39], sound [4, 40], and their combinations [36, 37]. For instance, Song and Yamada [36] 
demonstrated how variations in vibration, color, and sound pitch can communicate emotions like joy 
or sadness in minimalist robots. 
 
    In human-robot interaction, emotional cues help to increase interpretability and predictability. It 
allows people to form accurate mental models of what a robot is doing and why [17]. This becomes 
more important when users are unfamiliar with the robot’s technology and must rely on its behavior to 
understand the robot’s intentions. Studies show that affective behavior in robots can boost user 
engagement, cooperation, and trust. Without such cues, interactions can be confusing, inefficient, or 
even uncomfortable [18]. 
 
    Historically, the clearest example of affective expression on robots have come from humanoid 
robots, which have faces, bodies, and gestures that are similar to humans [26]. These designs take 
advantage of the fact that people better recognize anthropomorphic traits. However, many functional 
robots lack those traits. 
 
    Designing emotional behavior through these modalities is not straightforward. Facial expressions 
are relatively universal. For example, a smile is widely understood to indicate happiness, while 
downward-turned lip corners suggest sadness [15]. These signals are rooted in human biology and 
have been studied extensively. In contrast, the emotional meaning of light patterns, sound effects, or 
movement patterns are less standardized. A pulsating blue light might suggest calm to one person but 
sadness to another. The interpretation of such signals is often context-dependent and shaped by prior 
experiences and expectations [17, 21]. 
 
    Importantly, robots do not need to mimic human emotions exactly. Instead, the goal is to create 
emotionally intelligible behaviors that make the robot’s intentions more transparent and relatable. As 
Law et al. [26] argue, non-humanoid robots offer a unique opportunity to investigate how humans 
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assign emotional meaning based on cues like movement style or lighting, without relying on facial 
mimicry. 

2.2 Emotion Theories for Robotic Expression 
Designing emotionally expressive robots requires a clear understanding of what emotions are and how 
they can be modeled in artificial systems. Psychological emotion theories offer this foundation and 
help guide which emotions to express, how to simulate them, and how to evaluate user perception. 
Emotion theories are typically divided into two major categories: categorical and dimensional models. 

2.2.1 Categorical Theories of Emotion 

Categorical emotion theories suggest that emotions are distinct, biologically driven states that people 
can universally recognize and clearly distinguish from one another [15]. According to this 
perspective, emotional experiences are hardwired into the human brain and expressed through 
consistent patterns of behavior. One of the most influential figures in this field is Paul Ekman, who 
identified six basic emotions: joy, sadness, anger, fear, disgust, and surprise. Each of these emotions is 
associated with unique physiological responses, especially facial expressions [15].  Ekman’s model 
builds on Darwin’s hypothesis that emotions serve an evolutionary purpose and that their expressions, 
especially through the face, are universally shared across cultures [13]. 
 
    In addition to Ekman’s theory, other categorical models have expanded the framework of basic 
emotions. For instance, Plutchik’s emotion wheel organizes eight primary emotions, which are 
organized into four opposing pairs: joy vs. sadness, trust vs. disgust, fear vs. anger, and surprise vs. 
anticipation. For instance, fear (avoidance) and anger (confrontation) are considered opposites 
because they often trigger contrasting responses to threats [28]. 
 
    Another approach, Parrott’s hierarchical model, categorizes over 100 emotions into a tree-like 
structure. At the top are six primary emotions, love, surprise, joy, sadness, anger, and fear, which 
branch into more specific secondary emotions and tertiary emotions. While Plutchik’s and Parrott’s 
models offer more detail, Ekman’s six basic emotions remain the most widely used in affective 
computing and human-robot interaction [28]. 
 
    In the field of human-robot interaction, using categorical models has practical advantages. Bretan et 
al. [9] found that predefined emotion sets make it easier to design and test emotion-specific robot 
behaviors in user studies. Similarly, Löffler et al. [27] highlights that categorical models work 
particularly well for applications in situations where emotions need to be recognized quickly and 
easily, such as in interactive or therapeutic scenarios. 
 
    Categorical emotions are mostly used, but this approach also faces some challenges. Ekman’s 
theory is based on facial expressions and vocal cues, which appearance-constrained robots often don't 
have. As a result, applying his framework to robots that rely on abstract modalities like light, sound, 
or movement is not always straightforward. Additionally, research across different cultures has raised 
doubts about how universal these expressions really are. For example, Jack et al. [22] suggest that 
people from different cultures understand emotions in different ways. Their studies showed that 
recognition of certain emotions, particularly disgust and surprise, varied significantly across cultures, 
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while joy, sadness, anger, and fear were more consistently interpreted. These findings challenge the 
idea that all six of Ekman’s basic emotions are universally recognized. 

2.2.2 Dimensional Theories of Emotion 

Instead of seeing emotions as separate categories, dimensional theories describe them as points in a 
continuous space. A well-known example is Russell’s Circumplex Model of Affect, which organizes 
emotions along two dimensions: valence and arousal [32]. This model helps explain why some 
emotions seem similar or overlap. For example, surprise and fear are both high arousal, but are 
different in valence [9]. 
 
    Dimensional approaches are especially useful in HRI for appearance-constrained robots. In those 
cases, cues like light or motion don’t clearly point to specific emotions but can still give a general 
emotional impression [12]. For instance, Song and Yamada [36] found that people judged a robot’s 
behavior based on how energetic or pleasant it seemed, rather than using clear emotion labels. It 
supports the use of valence–arousal as a useful way to understand emotion perception. 
 
    A related model is the PAD model (Pleasure, Arousal, Dominance), which adds a third factor: 
dominance. It refers to the degree of control a person feels [28]. Although commonly used in 
simulation studies, dominance is harder to express in simple robot behaviors [12]. 
 
    Despite their strengths dimensional models have, they don’t offer clear rules for designing behavior 
connected to specific emotion names, which can make them less useful in settings like therapy.  

2.3 Appearance-Constrained Robot Design 
In human-robot interaction, a robot’s physical appearance fundamentally influences how it can 
express emotion. As mentioned earlier, appearance-constrained robots lack anthropomorphic features. 
Bethel and Murphy describe these robots as being designed for function, not for expressing emotions 
[6]. Common examples of appearance-constrained robots are Woody and mBot (Figure 2.1). 
 
    To clarify the boundary between humanoid and non-humanoid robots, Epley et al. [44] introduced 
the concept of morphological similarity, which refers to how closely a robot’s observable features 
resemble a human. Robots with high morphological similarity lead people to expect more human-like 
behavior. However, if these expectations aren’t met the interaction can feel unnatural. This effect is 
known as the “uncanny valley”, a concept in robotics and animation that describes discomfort or 
unease when something looks or acts almost human, but not quite [29]. 
 
    Building on the idea of morphological similarity, Ferrari et al. [41] offers a classification system 
that divides robots into three morphological categories: Minimal similarity (e.g., Roomba and mBot), 
Moderate similarity (e.g., Nao and Pepper), and High similarity (e.g., Geminoid DK and Sophia) 
(Figure 2.1). 
 
    Using this framework, it becomes clear that appearance-constrained robots fall into the minimal 
similarity category. In such cases, when traditional signals are missing, affective recognition and 
expression become more context-dependent [19]. 
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a) Woody [21] b) mBot c) Nao [45] d) Pepper [46] e) Geminoid 
DK [47] 

f) Sophia [48] 

Figure 2.1: Examples of robots with minimal similarity (a, b), moderate similarity (c, d) and high 
similarity (e, f). 

2.4 Expression Modalities in Appearance-Constrained Robots 

Appearance-constrained robots use movement, light, and sound as their main ways to express 
emotion. Each of these modalities are able to convey emotional meaning. However, how well they 
work depends on the situation, how the signals are tuned, and whether they are used together. This 
thesis follows the approach of Vargas [12], who studied these three modalities in detail using the same 
type of robot. As such, the explanations in this section are based on his analysis and highlight the 
main ideas from his work.  

2.4.1 Movement 

Even without complex mechanics, robot motion can be a rich source of emotional expression. 
Research shows that speed and acceleration are linked to arousal, while direction, smoothness, and 
shape of the trajectory influence valence [12]. For instance, smooth, rounded, upward movements are 
commonly associated with joy, while slow, downward, or contracting motions convey sadness or fear 
[27]. 
 
    Emotional movements in robots often take inspiration from patterns observed in nature. For 
instance, fast and upward movements are usually linked to joy, while slow, heavy, or inward 
movements suggest sadness. These patterns reflect things we see in the natural world, like a healthy 
plant growing upward or a wilting plant curling down. Additionally, how stable a robot’s movement 
appears also matters. Smooth, predictable movement is generally seen as more positive, whereas 
unstable movement is linked to negative emotions [12]. 
 
    Lastly, animation techniques like exaggeration and anticipation can make even simple robots feel 
more expressive. In short, movement is one of the most effective ways to express emotion [12]. 

2.4.2 Light 

Light is a simple but effective way for robots to express emotion, especially when they don’t have 
faces or bodies. Features like color, brightness, and blinking speed can influence emotional 
interpretation. For example, warm colors like red and orange often feel urgent or intense, while cool 
colors like blue and green are seen as calm and positive [12]. 

    However, emotional interpretation of color is not universal and can be context-dependent. Studies 
show that people may associate the same color with different emotions depending on its use or 
cultural background [36]. Moreover, Löffler et al. [27] found that light alone was less effective than 
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motion or sound at conveying emotion in isolation. However, when combined with motion, emotion 
recognition accuracy significantly improved. 

2.4.3 Sound 

Sound, particularly non-linguistic utterances like tones or beeps, can carry emotional meaning. Rising 
tones are often associated with tension or anger, while falling tones suggest sadness or resignation 
[36]. Other parameters, such as tone slope, duration, and repetition, also shape how emotions are 
perceived. 

    However, sound alone can be misinterpreted. Jeong et al. [42] found that participants often 
confused affective tones with system alerts or functional robot cues. Despite this, sound has specific 
strengths: it appears to enhance recognition of sadness, possibly due to its association with lower 
energy and downward pitch patterns. In contrast, sound did not improve recognition for joy and it 
even reduced confidence for fear classification [27]. 

2.5 Multimodal Emotional Expression in Robots 

While modalities like movement, light, and sound can communicate affective cues individually, 
research shows that emotional clarity improves when they are combined. 
 
    Early work by Bethel & Murphy [6] identified motion, posture, orientation, color, and sound as 
effective modalities for non-humanoid robots. They found that motion and sound worked especially 
well at close range, while visual elements like color contributed to emotional tone. 
 
    Building on this, Song & Yamada [36] systematically tested color, sound, and vibration on a simple 
robot. They showed that single modalities often failed to clearly convey emotions. However, when 
modalities were combined it significantly improved recognition for anger and sadness. Happiness was 
notably harder to express. Their follow-up study  Song & Yamada  [37] confirmed that adding motion 
to light-based expressions reduced misclassification. 
 
    Löffler et al. [27] used an appearance-constrained robot to compare unimodal and multimodal 
designs. They found that the combination of color and motion was most effective in conveying joy. 
Sound alone was most effective for expressing sadness, while motion was the dominant cue for fear. 
The study also showed that when multiple modalities convey the same emotional message, both 
recognition accuracy and user confidence increase. 
 
    Ghafurian et al. [18] found that MiRo, a zoomorphic robot without a face, could express 11 
emotions using posture, movement, and light. Recognition was significantly above chance for most 
expressions. Tsiourti et al. [43] warned that inconsistent cues (e.g., sad gestures with a happy voice) 
confuse users and lower trust, highlighting the importance of alignment across modalities. 
 
    Vargas [12] found that behavioral parameters, especially motion speed, strongly influence perceived 
arousal in appearance-constrained robots. While there were also statistically significant effects for 
valence, dominance, and some categorical emotions, these were much weaker. His models showed 
that although emotional perception can be predicted from parameters, only arousal was consistently 
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expressed with high reliability. The study suggests that appearance-constrained robots are effective at 
signaling intensity, but struggle to clearly convey specific emotions like joy or sadness. 

 

12 



3 Research Question 
This chapter introduces the motivation behind the study by discussing a research gap. It then presents 
the main research question, followed by three sub-questions and their related hypotheses. 

3.1 Research Gap 
Although prior work has explored emotion expression through non-verbal modalities in robots, most 
studies have remained descriptive or correlational, especially for appearance-constrained robots. 
Research by Vargas [12] and others (e.g., Song & Yamada, Löffler et al.) [27, 36, 37] confirm that 
these modalities affect how emotions are perceived, but only a few have gone further by 
systematically selecting and fine-tuning the underlying parameters. 

3.2 Main Research Question and Sub-Questions 
This thesis addresses the following main research question: 

MRQ: How can combinations of light, sound, and movement be optimized in 
appearance-constrained robots to accurately and consistently communicate the emotions 
of joy, sadness, anger, and fear to human observers? 

To answer this overarching question, the following sub-questions are investigated: 

SQ1: Can the target emotions (joy, sadness, anger, and fear) be selected by users at rates 
significantly above chance when expressed through optimized robot behaviors? 

SQ2: Does the addition of sound improve participants’ ability to select the robot’s emotional 
expressions, compared to expressions using only light and movement? 

SQ3: Does the presence of sound lead to higher perceived emotional intensity on the target 
emotion, compared to the no-sound condition?  

3.3 Hypotheses 
To evaluate the effectiveness of the robot’s emotional expressions, three main hypotheses are defined, 
each corresponding directly to one of the sub-questions introduced in Section 3.2. These hypotheses 
target recognition accuracy and intensity as perceived by users in both sound and no-sound 
conditions. Recognition (H1 and H2) corresponds to the forced-choice emotion selection, while 
intensity (H3) is based on Likert-scale ratings. Each main hypothesis is further supported by detailed 
micro-hypotheses, which are presented in Appendix A. 

H1: Optimized combinations of light, sound, and movement enable participants to recognize 
the target emotions (joy, sadness, anger, and fear) at rates significantly above chance 
level (1 out of 12 = 8.3%). 

H2: Participants in the sound condition show significantly higher recognition accuracy than 
those in the no-sound condition for the target emotions (joy, sadness, anger, and fear). 

H3: Participants in the sound condition rate the emotional intensity of the robot behaviors 
significantly higher than participants in the no-sound condition for the target emotions 
(joy, sadness, anger, and fear). 
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4 Method 
All code used for data analysis, visualization, and robot behavior control is publicly available at 
[https://github.com/Maurits319/Maurits-Koppers---Bachelor-Thesis-2025]. The repository also 
contains a PDF version of the full survey used in the user study. 

4.1 Overview 
This study combines data analysis, robot programming, and a user experiment to investigate how 
non-humanoid robots can express emotions through light, sound, and movement. The process began 
with the selection of promising robot behaviors based on an existing video dataset. These data were 
then analyzed to determine key parameter values. The identified parameters were implemented and 
further refined with an mBot robot through an optimization session. A between-subjects user study 
was then conducted via an online survey to evaluate how well participants could recognize the 
intended emotions in videos of the optimized behaviors. The collected quantitative and qualitative 
survey data were analyzed to evaluate the study’s hypotheses and to interpret the findings. 

4.2 Robot and Behavior Architecture 

This study used the mBot as the robot for implementing and testing expressive emotional behaviors 
(image b in Figure 2.1). It is a low-cost educational robot developed by Makeblock. The mBot 
includes two DC motors, RGB LEDs, a buzzer, and several onboard sensors, and is programmable 
through the Arduino IDE via its mCore control board. 

    To ensure the robot had an appearance-constrained design, two visual features that typically give 
the mBot a face-like appearance were removed. The ultrasonic sensor, which is often seen as eyes, 
was not needed for navigation and was therefore removed. Additionally, a red and a blue LED that 
always stay on when the robot is activated, were covered with white duct tape to avoid unintended 
visual cues. This helped ensure that only the RGB LEDs used for affective expression were visible. 

    To maintain consistency with Vargas’ thesis [12], I used the same codebase to control the mBots. 
The robot’s expressive behavior was defined using three base behaviors, each corresponding to a 
different modality of affective expression: Wander (movement), Blink (light), and Beep (sound). Each 
base behavior includes several parameters (see Table 4.1), but only the three most influential ones per 
behavior are examined in this thesis, as well as in Vargas’ original study.  
 

Modality Parameter Description 

Wander 
(Movement) 

wander_speed Base speed of the robot while wandering (in % of motor 
power). 

 wander_roundness Controls how rounded or sharp the turns are. 

 wander_cycle_rate Frequency of switching between moving forward and turning 
(in cycles per second, or Hz). 

Blink (Light) blink_temperature Target temperature of the lights during the blink behavior, 
controlling the color. 
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 blink_slope Determines how the brightness of the lights changes over 
time. 

 blink_cycle_rate Rate at which the blink cycles occur (in Hz). 

Beep (Sound) beep_pitch Base pitch (frequency) of the beep sound in Hz. 

 beep_slope Determines how the pitch of the beep sound changes over 
time. 

 beep_cycle_rate Rate at which the beep cycles occur (in Hz). 

Table 4.1: An overview of the parameters used to control the robot’s emotional expressions across 
three modalities: movement (Wander), light (Blink), and sound (Beep). 

    Each base behavior followed a cyclical pattern: wander alternated between forward and turning 
segments, blink alternated between lights-on and lights-off periods, and beep alternated between 
sound and silence. The parameter values used for each emotion were initially derived through data 
analysis (see Section 4.3), and later refined during an in-person optimization session (see Section 4.4). 

4.3 Initial Data Analysis 
To identify promising robot behaviors for emotional expression, this study used a dataset created by 
Vargas (2024) [12], which includes 512 videos of an mBot robot displaying different combinations of 
movement, light, and sound. Each video was rated by human participants on multiple emotional 
dimensions, resulting in a rich dataset of perceived emotion scores. 
 
Two main metrics were used to select promising videos: intensity and purity. 

●​ Intensity: Measures how strongly a specific emotion was perceived in a video, based on 
ratings from 0–5. For each video, all participant ratings for the target emotion were added 
together and then divided by the number of participants who rated the video. This gives the 
average perceived intensity of the target emotion per video. 

●​ Purity: Measures how dominant one emotion was over all others. For each video, purity was 
calculated by dividing the participant’s rating for the target emotion by the sum of all their 
emotion ratings for that video. These ratios were then averaged across all participants to 
obtain a single purity value for each video. 

 
    For each of Ekman’s six basic emotions (joy, sadness, anger, fear, disgust, and surprise), the top 20 
videos were selected twice: once based on highest average intensity and once based on highest 
average purity. From these subsets, the four most promising videos per emotion were selected by 
comparing the two lists of 20 videos (based on intensity and purity) and choosing the ones that ranked 
highly in both. This reduced the dataset to 24 high-quality examples (4 per emotion, 6 emotions). 
 
    This selection process formed the first optimization step of the study. From the original dataset of 
512 videos, a subset of 24 videos was created that best represented each of the six basic emotions. 
These selected videos were considered strong candidates for each emotion and formed the foundation 
for further implementation and testing. To identify consistent behavioral features, the four selected 
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videos per emotion, along with their corresponding parameter values, were analyzed to find recurring 
patterns in light, movement, and sound settings. It is important to note that at this stage, no decisions 
were made yet to exclude the emotions of disgust and surprise from further analysis. 

4.4 Implementation and Refinement of Emotional Behaviors 
After selecting the 24 most promising videos from Vargas’ dataset and analyzing them for patterns, 
the next step was to implement and optimize emotional behaviors on an mBot. The goal of this phase 
was to optimize the behavior parameter values through manual adjustments and human feedback in 
order to improve the clarity and accuracy of the emotional expressions. 

4.4.1 Physical Setup 

The robot was assembled using the same appearance-constrained configuration described in Section 
4.2. To ensure consistency during video creation, a simple filming area was used: a white cardboard 
surface of approximately 1×1 meter, bordered with black tape to keep the robot within frame (see 
Figure 4.1). A line sensor ensured the robot stayed within this boundary during each take.  

 

Figure 4.1: Filming setup with mBot on a 1×1 meter white cardboard surface. The 
black tape marks the boundary used to keep the robot within the camera frame. A 

top-mounted camera and ensured consistent positioning and behavior during 
recording. 

 

4.4.2 Optimization Procedure 

For each of the four target emotions (joy, sadness, anger, and fear), the initial parameter 
implementation was based on the values identified during the data analysis phase. For each emotion, 
several slightly different parameter configurations were manually created by adjusting the light, 
movement, and sound settings. Each configuration was recorded as a separate video, and a reference 
table was maintained to track the corresponding parameter values. 
 
    These implementations were reviewed together with two other individuals, who provided feedback. 
Based on this input, another round of refinement was conducted, producing four new variations per 
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emotion. This iterative process was repeated until smaller and smaller ranges were found for each 
parameter, aiming to optimize the emotional expressions. 
 
    Once these parameter ranges were determined, four videos were recorded for each emotion. Due to 
stochastic elements in the behavior code, each video differed slightly in aspects such as the robot’s 
starting position and movement pattern. The random elements were intentionally implemented to 
make the robot’s behavior look natural, instead of fully preprogrammed. As a result, some videos 
appeared more expressive or visually appealing than others. Therefore, four recordings were made for 
each emotion, which allowed for a comparison between videos to identify the most expressive one. 
 
    All four videos per emotion were then edited to synchronize movement, light, and sound, which 
will be explained in the next section. After this editing step, the best video for each emotion was 
selected as the final version for use in the user study. 

4.4.3 Synchronizing Sound and Motion 

The Wander (movement) and Blink (light) base behaviors were initially recorded separately from the 
Beep (sound) behavior. This was done to reduce the background noise caused by the robot’s motors, 
allowing participants to focus more clearly on the sound itself. Each initial video consisted of 20 
seconds of movement and light, and 20 seconds of sound. A Python script was used to combine these 
segments, aligning all three modalities into a single 20-second video. 

4.5 User Study Design 
To evaluate whether the optimized robot behaviors effectively conveyed the intended emotions, an 
online user study was conducted using Qualtrics (full survey available here). The survey included an 
opening statement that provided participants with important information about their rights and the task 
description.  
 
    Immediately following the introduction, participants were asked to complete an informed consent 
form. This form contained a series of yes/no questions confirming that they had read the study 
information, understood their rights, and voluntarily agreed to participate. The form also clarified that 
all responses would remain anonymous and that no personal or identifiable data would be collected. 
 
    The study followed a between-subjects design, with participants randomly assigned to one of two 
conditions using Qualtrics’ randomizer function to ensure even distribution. Group A (n = 20) viewed 
videos that included synchronized sound, light, and movement. Group B (n = 27) viewed the same 
videos but without the sound component. This design enabled the evaluation of Hypothesis 2 and 3. 
 
    Each participant viewed four videos, one for each of the target emotions (joy, sadness, anger, and 
fear). After watching each video, participants answered three types of questions: a Likert-scale rating 
of 12 emotions, a forced-choice question asking them to select the best-matching emotion, and an 
open-ended text box to describe their interpretation.  

4.6 User Study Data Analysis 
The data collected through the online survey included both quantitative and qualitative components. 
The quantitative analysis focused on recognition accuracy and perceived emotional intensity, based on 
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participants’ responses to Likert-scale and forced-choice questions. The qualitative analysis included 
participants’ open-ended text responses, which were summarized using a Large Language Model 
(LLM) to identify recurring patterns in their answers. 

4.6.1 Data Preparation 

A total of 73 responses were collected through the Qualtrics platform using a between-subjects 
design. After excluding incomplete submissions, 47 valid responses remained: 20 from participants in 
the sound condition and 27 in the no-sound condition. Only these complete cases were included in the 
analyses. 

4.6.2 Tools Used 

Data analysis was primarily conducted in Python, which was used for data cleaning, visualization, and 
the execution of statistical tests. Additionally, SPSS was used to perform a MANOVA (Multivariate 
Analysis of Variance)  on the emotional intensity ratings. 

4.6.3 Recognition Accuracy Analysis 

Recognition accuracy data was collected using participants’ answers to the forced-choice question, in 
which participants selected the one emotion label that best matched the video they had just seen. To 
evaluate whether the robot’s emotional expressions were successfully recognized, two types of 
statistical analyses were conducted: 

●​ Binomial tests were used to determine whether the recognition accuracy for each target 
emotion was significantly above chance level (8.3%, or 1 out of 12 options), corresponding to 
Hypotheses 1. 

●​ Proportion z-tests were used to compare the recognition accuracy between the sound and 
no-sound conditions, corresponding to Hypotheses 2. 

4.6.4 Emotional Intensity Analysis 

Participants also rated each of the 12 emotions on a 5-point Likert scale after watching each video. 
The rating for the target emotion in each video was used to evaluate perceived intensity. Two types of 
analyses were conducted: 

●​ Independent-samples t-tests were used to compare the perceived intensity of each target 
emotion between the sound and no-sound conditions, corresponding to Hypotheses 3. 

●​ A MANOVA was conducted to explore general patterns in intensity ratings, testing the main 
effects of Emotion and Condition and their interaction. 

4.6.5 Qualitative Analysis Using a Large Language Model 

In addition to the closed-ended questions, participants provided open-ended descriptions of the robot’s 
emotional behavior after each video. These responses were grouped by target emotion and split by 
condition. A Large Language Model (GPT-4o by OpenAI) was then used to generate short summaries 
of the participant responses. The resulting summaries highlight common patterns in how participants 
perceived the robot’s behavior and emotional expression, which complements the quantitative 
findings. 
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5 Results 

5.1 Overview 
This section presents the results of the study, which was designed to evaluate how participants 
perceived the emotional expressions of a robot. The results are structured around the hypotheses 
defined earlier and are divided into two main parts: the forced-choice recognition task and the 
perceived emotional intensity ratings. For each part, relevant figures and tables are presented 
alongside appropriate statistical analyses. The final parameter values used for the optimized robot 
behaviors are provided in Appendix B. 

5.2 Forced-Choice Recognition Accuracy 
In the forced-choice recognition task, participants viewed four video clips and selected which of 
twelve emotion labels best described the robot’s behavior for each video. Each clip corresponded to a 
target emotion (joy, fear, anger, or sadness). The recognition accuracy was then computed based on 
whether participants selected the correct target emotion. 

5.2.1 Response Distribution Plots 

The plots in Figure 5.1 display the distribution of responses for each condition in the forced-choice 
recognition task.  
 
 

  

a) Plot for Joy: accuracy = 20.0% (4/20) for 
sound, 14.8% (4/27) for no sound 

b) Plot for Fear: accuracy = 25.0% (5/20) for 
sound, 7.4% (2/27) for no sound 
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c) Plot for Anger: accuracy = 50.0% (10/20) for 
sound, 25.9% (7/27) for no sound 

d) Plot for Sadness: accuracy = 25.0% (5/20) for 
sound, 18.5% (5/27) for no sound 

Figure 5.1: Forced-choice recognition plots for the four target emotions (joy, fear, anger, and 
sadness), comparing participant selections between the sound and no-sound conditions. Each plot 

displays the number of votes per emotion category and the corresponding accuracy rate for the 
intended (ground truth) emotion. 

5.2.2 Accuracy Against Chance (Hypothesis 1) 

To determine whether participants recognized the intended emotion above chance level (8.3%), 
binomial tests were conducted for each target emotion in both the sound and no-sound conditions. The 
results are shown in Table 5.1. 
 

Emotion Condition Accuracy Correct / Total p-value Significance 

Joy Sound 20.0% 4 / 20 0.080 Not Significant 

 No Sound 14.8% 4 / 27 0.184 Not Significant 

Fear Sound 25.0% 5 / 20 0.022 Significant 

 No Sound 7.4% 2 / 27 0.670 Not Significant 

Anger Sound 50.0% 10 / 20 < 0.0001 Significant 

 No Sound 25.9% 7 / 27 0.0056 Significant 

Sadness Sound 25.0% 5 / 20 0.022 Significant 

 No Sound 18.5% 5 / 27 0.069 Not Significant 

 
Table 5.1: Results of binomial significance tests for forced-choice emotion recognition accuracy. 

For each target emotion, the number of correct responses, overall accuracy, and corresponding 
p-values are reported separately for the sound and no-sound conditions. It is also indicated whether 
values are statistically significant (p < 0.05), meaning that recognition performance is significantly 

above the chance level of 1 out of 12 options (8.3%). 
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5.2.3 Condition-Based Accuracy Comparison (Hypothesis 2) 

In addition to testing against chance, Hypothesis 2 examines whether recognition accuracy is 
significantly higher in the sound condition compared to the no-sound condition. Proportion z-tests 
were conducted for each emotion, and the results are shown in Table 5.2. 

Emotion Sound Accuracy No-Sound Accuracy p-value Significance 

Joy 20.0% 14.8% 0.3200 Not Significant 

Fear 25.0% 7.4% 0.0470 Significant 

Anger 50.0% 25.9% 0.0447 Significant 

Sadness 25.0% 18.5% 0.2957 Not Significant 

 
Table 5.2: Results of z-tests for condition-based differences in recognition accuracy. For each target 
emotion, recognition accuracy is shown separately for the sound and no-sound conditions. The table 
includes p-values from z-tests comparing the proportions and indicates whether the differences are 

statistically significant (p < 0.05). 

5.3 Emotion Intensity Ratings 
In addition to the forced-choice task, participants also rated the intensity of all twelve emotion 
categories for each video on a 5-point Likert scale. These ratings were used to analyze whether the 
presence of sound influenced the perceived emotional intensity of the robot’s behavior. 

5.3.1 Error Bar Plots of Intensity Ratings 

The plots below show the average intensity ratings for each emotion option, across the four target 
emotions. Error bars indicate the standard deviation across participants. There are 8 plots in total: four 
for the sound condition shown in Figure 5.2 and four for the no-sound condition shown in Figure 5.3. 

  

a) Plot for Joy b) Plot for Fear 

  

c) Plot for Anger d) Plot for Sadness 
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Figure 5.2: Error bar plots showing mean emotional intensity ratings (Likert 0–4) per emotion label, 
for the four target emotions (joy, fear, anger, and sadness) in the sound condition. Each dot represents 

the average rating across participants for a specific emotion label, with error bars indicating ±1 
standard deviation. 

 

  

a) Plot for Joy b) Plot for Fear 

  

c) Plot for Anger d) Plot for Sadness 
Figure 5.3: Error bar plots showing mean emotional intensity ratings (Likert 0–4) per emotion label, 

for the four target emotions (joy, fear, anger, and sadness) in the no sound condition. Each dot 
represents the average rating across participants for a specific emotion label, with error bars indicating 

±1 standard deviation. 
 
5.3.2 Condition-Based Intensity Comparison (Hypothesis 3) 

To statistically evaluate Hypothesis 3, independent-samples t-tests were performed. A total of four 
tests were conducted, one for each target emotion. These tests compared the mean intensity ratings 
between the sound and no-sound conditions. Table 5.3 shows the results, indicating whether the 
differences were statistically significant. 

Emotion Sound Mean Rating No-Sound Mean Rating p-value Significance 

Joy 2.30 1.15 0.0025 Significant 

Fear 1.75 1.26 0.1238 Not Significant 

Anger 2.35 1.37 0.0144 Significant 

Sadness 1.75 1.30 0.1495 Not Significant 

 

Table 5.3: Results of independent-samples t-tests for perceived emotional intensity ratings. For 
each target emotion, the mean intensity rating is shown separately for the sound and no-sound 

conditions. The table also reports the corresponding p-values and whether the difference in ratings 
between the conditions is statistically significant (p < 0.05). 
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5.4 MANOVA 
To gain deeper insight into the emotional intensity ratings, a MANOVA (Multivariate Analysis of 
Variance) was conducted. The within-subject factor was emotion (12 levels, corresponding to the full 
set of rated emotions), and the between-subject factor was condition (sound vs. no-sound). 
 
    This analysis complements the earlier hypothesis testing (binomial, z-tests, and t-tests), which 
focused on recognition accuracy and intensity ratings for specific target emotions. In contrast, the 
MANOVA examines general patterns across all emotions. 
 
    First, the results of a Wilks’ Lambda multivariate test are presented to examine the overall main 
effects and the interaction between condition and emotion. These results are shown in Table 5.4. 

Effect p-value Significance 

Condition 0.383 Not Significant 

Emotion 0.031 Significant 

Emotion × Condition 0.648 Not Significant 

 
Table 5.4: MANOVA Results (Wilks’ Lambda) for the Effects of Condition and Emotion on 

Perceived Emotional Intensity 
 

Next, univariate test results using the sphericity assumed assumption are presented to explore which 
specific emotions showed significant differences in perceived intensity. The results are shown in Table 
5.5 and Table 5.6 

Emotion p-value Significance 

Joy < 0.001 Significant 

Sadness < 0.001 Significant 

Fear < 0.001 Significant 

Anger < 0.001 Significant 

Disgust    0.004 Significant 

Surprise < 0.001 Significant 

Confusion < 0.001 Significant 

Embarrassment    0.014 Significant 

Curiosity < 0.001 Significant 

Frustration < 0.001 Significant 

Enthusiasm < 0.001 Significant 
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Relaxed < 0.001 Significant 

 

Table 5.5: This table shows the results of univariate Manova tests for each individual emotion, 
examining whether the intensity ratings significantly differ across emotions, regardless of sound 

condition. All tests are based on the “Sphericity Assumed” correction. Significant p-values indicate 
that participants rated the intensity of that emotion as significantly different from others. 

 

Emotion p-value Significance 

Joy 0.003 Significant 

Sadness 0.344 Not Significant 

Fear 0.054 Not Significant 

Anger 0.050 Significant 

Disgust 0.847 Not Significant 

Surprise 0.117 Not Significant 

Confusion 0.693 Not Significant 

Embarrassment 0.522 Not Significant 

Curiosity 0.376 Not Significant 

Frustration 0.022 Significant 

Enthusiasm 0.040 Significant 

Relaxed 0.217 Not Significant 

 
Table 5.6: This table presents the univariate Manova results for the interaction between emotion and 

sound condition. It tests whether the presence of sound had a different effect on intensity ratings 
depending on the specific emotion shown. All results use the “Sphericity Assumed” correction. 

Significant values suggest that the sound condition influenced how a particular emotion was perceived 
in terms of intensity. 

 

5.5 Open-Ended Response Summaries 
To complement the quantitative data from the forced-choice and Likert-scale questions, Table 5.7 
presents summaries of participants’ open-ended responses. These summaries were generated using a 
Large Language Model (GPT-4o by OpenAI) and are grouped by target emotion and experimental 
condition (sound vs. no-sound). The prompt used to generate these summaries was carefully designed 
to minimize bias, and is included in Appendix C. 
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Emotion Condition LLM Summary of Participant Descriptions 

Joy Sound Participants most often described the robot as enthusiastic, happy, and curious, 
frequently referencing its active movements, cheerful or high-pitched sounds, and 
colorful lights. Several also interpreted the robot as relaxed or playful, with some 
noting a childlike or exploratory energy. A few responses mentioned confusion or 
frustration, particularly when the robot appeared to repeat motions or bump into 
barriers, but the general tone was upbeat and energetic. 

Joy No 
Sound 

This version elicited a more mixed impression. Some participants perceived the 
robot as joyful, curious, or confident—citing its fast movement and bright 
lights—while others saw it as confused, frustrated, or even panicked, especially due 
to its repetitive motion patterns and apparent inability to escape the environment. 
Descriptions often reflected a robot that was energetically exploring but unsure or 
overwhelmed. 

Fear Sound Participants predominantly interpreted the robot as anxious, afraid, or in panic, with 
frequent references to its fast, erratic movements, flashing blue lights, and 
high-pitched, alarming sounds. Some also described confusion or malfunctioning 
behavior. A few respondents noted enthusiasm or excitement, but the general tone 
conveyed a sense of urgency, stress, or disorientation. 

Fear No 
Sound 

Reactions were diverse, with interpretations ranging from joyful and curious to 
confused, panicked, or stressed. Many noted the robot’s rapid, irregular movements 
and flashing lights, which led some to perceive excitement and others to describe 
fear or nervousness. Overall, the robot was often seen as energetic but lacking clear 
direction, producing a mix of positive curiosity and overwhelmed confusion. 

Anger Sound Most participants identified the robot as angry, frustrated, or annoyed, emphasizing 
its red lights, sharp movements, and intense sounds. Several also mentioned 
confusion or aimlessness, suggesting the robot was struggling to find a way out or 
was reacting to a problem. Some found the robot’s behavior aggressive or alarming, 
while others saw it as searching or defensive in tone. 

Anger No 
Sound 

Interpretations ranged from angry and frustrated to curious, relaxed, or confident. 
The red light and fast back-and-forth movements led many to identify confusion or 
goal-seeking frustration, though others saw a robot calmly and purposefully 
exploring. Emotional clarity varied widely, with some describing a chaotic or 
indecisive robot and others seeing mission-driven behavior. 

Sadness Sound The robot was commonly described as sad, confused, or lost, often based on its 
slow, cautious movement and lower-pitched or strange sounds. Some participants 
interpreted its behavior as frustrated or depressed, while a few saw it as relaxed or 
resigned. Emotional tones leaned toward low-energy states, with occasional 
comments about the robot seeming embarrassed or disoriented. 

Sadness No 
Sound 

This version also elicited strong impressions of confusion, sadness, and slowness, 
though some participants saw hints of curiosity, relaxation, or even embarrassment. 
The red lights contributed to varied interpretations—some saw anger or frustration, 
while others contrasted the color with the robot’s gentle behavior to suggest 
melancholy. Overall, the robot was often viewed as emotionally subdued or gently 
searching. 

 
Table 5.7: Presents the summaries of participants’ open-ended responses for each of the four emotion 

videos (joy, fear, anger, and sadness) under two conditions: with sound and without sound. 
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6 Discussion 
This chapter begins by discussing general patterns and observations from the results, followed by a 
detailed analysis of the three main hypotheses. The chapter concludes with suggestions for future 
research. 

6.1 General Patterns and Observations 
This subsection discusses four main topics: the distinctiveness of the emotional videos, the lack of a 
general sound effect on perceived intensity, patterns in alternative emotion selections, and the pattern 
that certain emotions tend to cluster together. 

6.1.1 Distinctiveness of Emotional Videos 

The MANOVA results showed a significant main effect of Emotion (Wilks’ Lambda, p = 0.031), 
meaning that participants rated the twelve emotions differently in terms of intensity. The follow-up 
univariate tests (Table 5.5) confirmed that all twelve emotion labels were significantly distinct from 
one another. This suggests that the videos clearly conveyed different emotional expressions. While 
this does not necessarily indicate how accurately the emotions were conveyed, it does show that each 
video has a unique behavioral pattern. This is a useful finding in itself, as it confirms that the robot’s 
behavior varied across the emotion categories. 

6.1.2 No General Sound Effect on Intensity Across Emotions 

Although sound was expected to influence perceived intensity, the MANOVA showed no significant 
main effect for Condition (p = 0.383) and no significant Emotion × Condition interaction (p = 0.648). 
This means that adding sound did not lead to an overall increase or decrease in perceived emotional 
intensity. Instead, the effect of sound depended on the specific emotion. Some emotions were 
influenced by sound, but not all. 

6.1.3 Patterns in Alternative Emotion Selections 

Besides the statistical analyses, an inspection of the forced-choice and Likert-scale data showed some 
interesting patterns. There was a frequent appearance of confusion as a selected emotion, particularly 
in the no-sound condition. Participants often interpreted the robot’s behavior as uncertain, especially 
for emotions like joy and fear. This suggests that sound contributes to making the robot’s behavior 
less confusing. 
 
    In addition to confusion, participants often selected curiosity and frustration, especially in the 
no-sound condition. This may be because the robot frequently bumped into the tape at the edge of the 
area, which people interpreted as exploratory behavior or as the robot getting stuck. This pattern also 
appeared in the open-ended descriptions that were summarized using a Large Language Model 
(LLM). 
 
    Another interesting finding was that in the joy condition, enthusiasm was most frequently selected 
by participants in the sound condition, while it was not even selected once in the no-sound condition. 
This indicates that the presence of sound had a strong influence on how energetic or excited the 
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robot’s behavior was perceived. Since enthusiasm and joy are closely related, it is reasonable that 
participants interpreted the expression as enthusiastic. 

6.1.4 Emotional Grouping 

The recognition and intensity results in this study show a mix of significant and non-significant 
outcomes. However, a closer look at the data visualization shows an underlying structure: emotions 
tend to cluster along positive and negative dimensions. For example, emotions such as joy, curiosity 
and enthusiasm were often selected together, while anger and frustration formed a more negative 
cluster. 
 
    This pattern suggests that even though specific emotion labels were not always accurately 
recognized, participants were often able to interpret the general emotional tone of the robot’s behavior. 
This aligns with dimensional emotion theories discussed in Section 2.2.2. In this experimental setup, 
participants may have found it easier to distinguish positive from negative emotions rather than 
making distinctions between similar emotions. 
 
    It is also important to consider the limitations of the survey design. Participants were asked to 
choose from 12 emotion labels, presented in a randomized order for each question. A different 
structure, such as a two-step approach where participants first decide between positive and negative, 
followed by selecting a more specific label might have led to higher recognition accuracy. 
Additionally, the videos lacked contextual information, which is often important for interpreting 
emotional expressions, as confirmed by Angel-Fernandez and Bonarini [1]. 

6.2 Interpreting Hypothesis 1 – Recognition Above Chance 
To evaluate whether participants could select the intended emotion above chance level (8.3%), 
binomial significance tests were conducted for each of the four target emotions (joy, fear, anger, and 
sadness) under both sound and no-sound conditions. The results provide mixed support for Hypothesis 
1. 
 
    For the anger condition, recognition was significantly above chance in both the sound (50.0%, p < 
0.0001) and no-sound (25.9%, p = 0.0056) conditions. This indicates that the robot’s expression of 
anger was clear and, based on the forced-choice responses, it was the most successfully recognized 
emotion overall. This aligns with findings from Song & Yamada [36], who showed that anger is 
particularly effectively conveyed when light, sound, and motion are combined. 
 
    Sadness was recognized significantly above chance in the sound condition (25.0%, p = 0.022), but 
not in the no-sound condition (18.5%, p = 0.069). This means that the addition of sound is crucial for 
helping participants interpret the emotion as sadness. This finding is consistent with Löffler et al. [27], 
who found that sound is particularly effective for expressing sadness. 
 
    For the fear condition, recognition was significant in the sound condition (25.0%, p = 0.022), but 
clearly not in the no-sound condition (7.4%, p = 0.670). This large difference suggests that motion and 
light alone may not be sufficient to convey fear effectively in this setup. Interestingly, this finding is in 
contrast with Löffler et al. [27], who found that sound did not improve fear classification and even 
reduced participant confidence. 
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    Finally, joy was not recognized above chance in either condition. Accuracy was relatively low in 
both the sound (20.0%, p = 0.080) and no-sound (14.8%, p = 0.184) conditions. The data suggest that 
this may be due to many participants selecting enthusiasm instead of joy in the sound condition. 
Enthusiasm is typically more goal-oriented and associated with anticipation of a future outcome, 
whereas joy is often experienced when a goal has been achieved or in a state of calmness and 
contentment [13]. This distinction suggests that reducing the robot’s movement speed might increase 
the recognition accuracy of joy. 

6.3 Interpreting Hypothesis 2 – Effect of Sound on Recognition Accuracy 
To evaluate if participants in the sound condition would recognize the intended emotion more 
accurately than participants in the no-sound condition, proportion z-tests were performed for each of 
the four target emotions. The results show partial support for this Hypothesis 2. 
 
    For both the fear and anger conditions, recognition accuracy was significantly higher in the sound 
condition. For fear, accuracy increased significantly from 7.4% to 25.0% (p = 0.0470). A similar 
pattern was observed for anger, where accuracy increased from 25.9% to 50.0% (p = 0.0447). These 
results indicate that sound plays an important role for these two emotions. 
 
    In contrast, for joy and sadness, the differences in recognition accuracy between the sound and 
no-sound conditions were not statistically significant. Joy recognition increased slightly with sound 
(from 14.8% to 20.0%, p = 0.3200), and sadness also didn’t improve much (from 18.5% to 25.0%, p = 
0.2957). As discussed earlier, many participants in the sound condition selected enthusiasm rather 
than joy. If some of those participants had instead chosen joy, the difference in recognition rates might 
have reached statistical significance. The lack of statistical significance for sadness could be due to 
the light and movement cues already being clear enough that the addition of sound added little value, 
or the sound design was ineffective and failed to improve emotional recognition. 
 
    These findings partially align with Löffler et al. [27]. In their study, sound helped participants 
recognize sadness more easily, but this effect was not found in this study. Both studies agree that 
sound did not improve recognition of joy. However, Löffler et al. found that sound actually lowered 
participants’ confidence when recognizing fear, while the current study found the opposite. 

6.4 Interpreting Hypothesis 3 - Effect of Sound on Perceived Emotional Intensity 
To evaluate whether participants in the sound condition would rate the robot’s emotional expressions 
as more intense than those in the no-sound condition, independent-samples t-tests were conducted for 
each target emotion. These tests compared the mean intensity ratings between the sound and no-sound 
conditions. The results provide partial support for Hypothesis 3. 
 
    For joy, participants rated the expression as significantly more intense (p = 0.0025) when sound 
was included (M = 2.30) compared to the no-sound condition (M = 1.15). Similarly, for anger, mean 
intensity ratings were significantly higher (p = 0.0144) in the sound condition (M = 2.35) than in the 
no-sound condition (M = 1.37). These findings suggest that sound significantly boosts the perceived 
intensity of joy and anger. 
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    In contrast, for fear, the difference in intensity ratings between the two conditions was not 
statistically significant (p = 0.1238), with mean ratings increasing from 1.26 in the no-sound condition 
to 1.75 in the sound condition. Similarly, for sadness, the difference was also not significant (p = 
0.1495), with mean ratings increasing from 1.30 in the no-sound condition to 1.75 in the sound 
condition. Although both trends suggest slightly higher perceived intensity when sound is added, the 
effects were not strong enough to reach statistical significance.  
 
    Once again, these results are  partially in contrast with Löffler et al. [27], who found that sound was 
the main driver for communicating sadness and helped participants recognize it more easily. However, 
our results indicate that the addition of sound did not significantly improve the perceived intensity of 
sadness. Interestingly, for fear, no significant difference in intensity was found, which aligns with 
Löffler et al., but this is in contrast with the earlier discussed forced-choice recognition results 
(Section 6.3), where sound did significantly improve recognition of fear.  

6.5 Suggestions for Future Research 
This study provides valuable insights into emotional expression in appearance-constrained robots, but 
there are several opportunities for future research to build upon these findings. 
 
   First, the robot operated in a limited 1×1 meter area, which often caused it to bump into the 
boundaries. As discussed earlier, participants sometimes interpreted this unintended behavior as part 
of the emotional expression. Since this was a side effect of the limited space rather than a design 
choice, future studies should consider using a larger area to minimize such distractions. 
 
    Second, the survey structure could be improved. Participants were asked to choose from twelve 
emotion labels presented in a random order, which may have made the task overly complex. A 
two-step approach by first selecting between positive or negative valence, then choosing a specific 
emotion might improve accuracy. 
 
    Third, the sound design used in this study could be completely reworked. The current audio setup 
was chosen to maintain consistency with the earlier thesis by Vargas, on which this study is based. 
However, future research could focus on optimizing sound independently while keeping movement 
and light in the same style. As discussed, sound can play a crucial role in emotional expression, and 
improving its design could add significant value. 
 
    Fourth, a larger and more diverse participant pool would improve the generalizability and statistical 
reliability of the results. Including people of different ages, cultural backgrounds, genders, and levels 
of experience with robots would make the findings more valuable. A larger and more varied sample 
also reduces the risk of bias. 
 
    Finally, future studies could explore whether these findings apply to other appearance-constrained 
robots. This would help determine whether the findings are specific to the mBot or generalizable 
across other low-morphology robots such as the Roomba. 
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7 Conclusion  
This thesis explored how combinations of light, sound, and movement can be optimized in 
appearance-constrained robots to express the emotions of joy, sadness, anger, and fear. The research 
involved several stages: analyzing existing data to select promising behavior parameters, optimizing 
these behaviors on a physical robot, and conducting a user study to evaluate how well participants 
recognized the intended emotions. 
 
    The findings show that optimization of the three modalities had a strong impact on emotional 
recognition. Three out of the four target emotions (anger, sadness, and fear) were recognized 
significantly above chance level. Anger was especially well recognized, even without sound. When 
comparing the sound and no-sound conditions, there was no general increase in perceived emotional 
intensity across all emotions. Instead, the impact of sound varied by emotion. It significantly 
improved recognition accuracy for anger and fear, and increased perceived intensity for anger and joy, 
while having little to no effect on sadness. 
 
   In conclusion, this study demonstrates that even with limited physical features, 
appearance-constrained robots can effectively communicate emotions when their behavior is carefully 
designed.  
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Appendix A – Micro Hypotheses 

ID Detailed Micro-Hypotheses for RQ1 

H1.1 There is no significant recognition of ‘joy’ above chance level when expressed 
using light, sound, and movement. 

H1.2 There is no significant recognition of ‘sadness’ above chance level when 
expressed using light, sound, and movement. 

H1.3 There is no significant recognition of ‘anger’ above chance level when expressed 
using light, sound, and movement. 

H1.4 There is no significant recognition of ‘fear’ above chance level when expressed 
using light, sound, and movement. 

H1.5 There is no significant recognition of ‘joy’ above chance level when expressed 
using only light and movement. 

H1.6 There is no significant recognition of ‘sadness’ above chance level when 
expressed using only light and movement. 

H1.7 There is no significant recognition of ‘anger’ above chance level when expressed 
using only light and movement. 

H1.8 There is no significant recognition of ‘fear’ above chance level when expressed 
using only light and movement. 

Table A.1: Detailed Micro-Hypotheses for RQ1 
 
 

ID Detailed Micro-Hypotheses for RQ2 

H2.1 Recognition accuracy for ‘joy’ is not significantly higher in the sound condition 
than in the no-sound condition. 

H2.2 Recognition accuracy for ‘sadness’ is not significantly higher in the sound 
condition than in the no-sound condition. 

H2.3 Recognition accuracy for ‘anger’ is not significantly higher in the sound 
condition than in the no-sound condition. 

H2.4 Recognition accuracy for ‘fear’ is not significantly higher in the sound condition 
than in the no-sound condition. 

Table A.2: Detailed Micro-Hypotheses for RQ2 
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ID Detailed Micro-Hypotheses for RQ3 

H3.1 The perceived intensity of ‘joy’ is not significantly higher in the sound condition 
than in the no-sound condition. 

H3.2 The perceived intensity of ‘sadness’ is not significantly higher in the sound 
condition than in the no-sound condition. 

H3.3 The perceived intensity of ‘anger’ is not significantly higher in the sound 
condition than in the no-sound condition. 

H3.4 The perceived intensity of ‘fear’ is not significantly higher in the sound condition 
than in the no-sound condition. 

Table A.3: Detailed Micro-Hypotheses for RQ3 
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Appendix B – Used mBot Parameters 

 Joy Fear Anger Sadness 

wander_speed 85 100 82 25 

wander_roundness 0.6 0.3 0.10 0.1 

wander_cycle_rate 1.6 5.5 0.55 1 

blink_temperature 0.55 0.2 0.99 0.95 

blink_slope 1 0 1 0 

blink_cycle_rate 2 4.5 1.7 1 

beep_pitch 900 750 100 350 

beep_slope 1.3 1 0 0 

beep_cycle_rate 1.4 4 0.7 0.5 

Table B.1: Optimized Robot Parameters for Emotional Expressions 
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Appendix C – Prompt for LLM Summaries 

I have collected free-text responses from a user study in which participants described what emotion 
they thought a robot was expressing in a video. The videos differed in design, and participants were 
exposed to different versions. Your task is to generate brief summaries of how participants described 
the robot’s behavior for each group of responses. 
 
Instructions: 

-​ You will receive grouped responses, each from a different version of a video (e.g., Version A 
of Video 1, then Version B of Video 1, etc.). The responses are in English. 
 

For each group: 
-​ Provide a short paragraph summarizing the most commonly mentioned emotions, perceived 

behaviors, and interpretations. 
-​ Focus on clarity, emotional language, and the general impression participants had of the 

robot’s behavior. 
-​ Do not infer or rely on any assumptions about the robot’s intended emotion or the conditions 

under which the video was shown. 
 
Label the output like this: 
Video 1 – Version A  
Summary: … 
 
Video 1 – Version B   
Summary: … 
 
(Repeat for all 4 videos) 
 
Please keep each summary concise but informative (~3–5 sentences). Let me know when you’re ready 
to begin with the first group of responses. 
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