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Abstract

This study examines how AI methods can be used to analyze variations in Checkers board configurations. An
experimental setup is successfully developed, enabling exhaustive testing across multiple board setups using a
range of AI agents. The outcomes of these experiments are captured and visualized through tables and graphs.
These visualizations provide meaningful insights into the underlying game mechanics and agent performance
across different scenarios.

A key finding is the validation of a hypothesis in which deliberate asymmetries in the initial board configuration
result in observable imbalances in gameplay outcomes. Furthermore, in cases where the advantageous position
is not immediately apparent, the experiments still produce consistent performance advantages for one player.

These findings highlight the potential of using AI-based methods as a tool in the process of developing and
testing video games, especially in the early stages of development.
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1 Introduction

Video game development is a complex process spanning across a variety of areas of expertise, such as design, art,
programming and testing. Before a great game can hit the shelves, multiple iterations of designing, implementing
and testing will have had to have happened. One specific aspect of this game development process is testing.
Testing is done to ensure the concept is fun to play, gameplay is smooth and bugs are identified in time.
Traditionally, testing is only done by human players, often as part of the development team, sometimes as part
of a program for interested gamers outside of the team. It is an expensive and time-consuming process.

In recent time, artificial intelligence (AI) has become more and more integrated in almost every field, also in
the field of game production [1][2]. AI methods can aid developers in some aspects of game testing, reducing
cost and time in the overall game development process.

In particular, classic AI methods allow developers to simulate and play hundreds of games in a short time,
something that would take human players much longer. Specifically, using a Monte Carlo approach will be a
suitable solution in the early stages of game development, as that method does not necessarily require knowledge
of the game’s inner workings. This type of AI play-testing is a strong tool for developers to use in combination
with regular human play-testing.

The game of Checkers is a well-known board game, and therefore also widely researched [3]. When introducing
changes to the game rules or the board setup, that research might no longer be accurate.
This thesis aims to contribute to the field of game development by finding out how AI methods used in testing
perform when introduced to changes to the game of Checkers.

Specifically, this research seeks to find the answer to the following research questions:

1. To what extent can AI-vs-AI gameplay outcomes reveal game mechanics or attributes across
different board configurations?

2. How can intentional modifications to board configurations create new and interesting gameplay
scenarios, while preserving game balance?

3. Which gameplay metrics are most useful for assessing balance in different board configurations?

To answer the research questions, we do an empirical analysis of novel initial board configurations and let a
variety of AI methods play on them to judge their fairness [4]. The thesis uses the board game Checkers as a
starting point, making implementing and modifying an easy part of the research. This allows for the creation
of unique game states and variations of the base game, which are then tested using certain AI methods, like
Monte Carlo Tree Search [5]. These AI methods are described in Section 4.2.
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2 Related Work

The use of artificial intelligence in the field of game development has gained traction in recent years. This
section discusses related work for the topic of this thesis, with a focus on the use of AI in game testing and the
use of AI methods in Checkers.

The use of AI in Checkers has been studied in Gill [6]. In this study, AI has been used to intelligently
determine optimal parameters in a board state evaluation function. In their approach, AI agents are evaluated
using evolutionary strategies, which simulate matches between bots and iteratively improve their evaluation
functions. This study shows the effectiveness of automated parameter tuning using AI, creating a system that
is capable of intelligently playing checkers by using the optimized evaluation function.

Another relevant study is Goodman et al. [7], where AI agents are used to test successive design iterations of a
newly designed analogue board game. In this study, the AI agents play through iterations of the game to help
the designer in identifying issues and evaluating balance. Notably, the authors emphasize that the goal is not to
fully automate game balancing, but to provide actionable insights to the designer, who remains in control of the
design process. The study successfully demonstrates how AI testing can complement traditional human-based
play-testing.

This thesis draws inspiration from both studies. Similar to Gill, AI methods are used to evaluate performance in
the game of Checkers, but instead of optimizing evaluation functions, this research focuses on how well different
AI models perform in modified versions of the game.

Similar to Goodman et al., AI is also used as a support tool for developers, giving insights in game mechanics
as they change because of changes in the game.

The distinction between this thesis and previous work lies in the experimental focus. While Goodman et al.
study the use of AI in the design of a new game, this research expands on the well-known rules of Checkers and
studies the effect of controlled variations on the base game.

The TAG framework [8] is used to carry out the experiments. It provides an environment for testing AI methods
in custom games, making it well-suited for the research done in this thesis. See Section 3.1 for a more detailed
explanation of the framework and the incorporation of it in this thesis.
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3 Background

To fully understand the context of this thesis, this section introduces the tools and concepts used in the research.
This includes an overview of the TabletopGames (TAG) framework and the base game of Checkers.

3.1 Tabletop Games framework

TAG: A Tabletop Games Framework [8] is a Java-based framework designed for research in game AI in modern
tabletop games 1. It offers an environment where developers can implement custom games, AI players and
analytical metrics or use existing components to carry out experiments.

TAG includes readily available AI methods such as Monte Carlo Tree Search (MCTS) and simple heuristics, making
it a powerful tool for researchers. Developers can configure custom agents and test setups using the framework’s
configuration options, which are well documented.

An important component of TAG is the RunGames program, which allows for extensive testing of AI agents. It
can be configured to run many games automatically while collecting various game metrics, such as win/loss
ratio, game duration and more. For this thesis, a custom metrics class called CheckersMetrics is used to gather
information specific to the Checkers game. The specifics of metrics used in this thesis are explained further in
Section 4.3.1.

3.2 Checkers

The game of Checkers is a well-known turn-based strategy game played between two players on an 8×8 board.
Each player begins with twelve regular pieces and attempts to win by following a fixed set of rules. A player
wins by either removing all pieces of the opponent from the board, or by making the opponent unable to move.

King pieces can be obtained by moving a regular piece onto the top row of the board. King pieces can move in
all directions and are able to skip over any number of squares, in contrast to regular Man pieces. Figure 1b in
the next section shows the standard 8×8 Checkers layout.

Checkers is well-suited for this research for several reasons. First, the rules are simple and deterministic, making
it easy to simulate and analyze. Second, the board game allows for lots of freedom in modifying attributes,
such as board size, movement rules, and piece count or positions. Variations like these are used in this thesis
to study AI agent performance, and to answer the research questions presented in Section 1.

By implementing Checkers within the TAG framework, this research creates a controlled environment for eval-
uating AI-based testing methods. It enables researchers to observe AI agent behavior in classic Checkers
configurations, as well as modified configurations.

1See https://gaigresearch.github.io/projects/TAG

6

https://gaigresearch.github.io/projects/TAG


4 Methods

The implementation for this project is developed in Java, using the TAG framework. The game of Checkers is
implemented following the official rules of Checkers according to the World Checkers Draughts Federation [9].
Board configurations are specified in external files, enabling modification of the initial setup by editing the file
content.
The AI methods used in this thesis are pre-existing components in the TAG framework, so implementation of
these components is not necessary.
Graph and plot generation is performed in Python using the Matplotlib library [10], along with the SciencePlots
style package [11], to ensure clear visualizations.

4.1 Board configurations

To investigate the behavior of AI methods, experiments were carried out on different board setups. The aim
for these setups is to firstly learn how to correctly implement and test AI methods, and secondly to understand
the effects of changing the playing field on AI gameplay outcomes.

Research Question 1. To what extent can AI-vs-AI gameplay outcomes reveal game mechanics
or attributes across different board configurations?

In the case of Checkers, playing field variations include variations in the size and shape of the board, and
variations in the number and positions of pieces on the board.

(a) 6×6 setup (b) 8×8 setup (c) 10×10 setup

Figure 1: Standard board layouts for Checkers on 6×6, 8×8 and 10×10 boards. The 8×8 board
corresponds to the official Checkers layout defined by the World Checkers Draughts Federation[9].
The 10×10 board is a larger variant played in different parts of the world, including the Dutch
game ”Dammen”, where each player begins with 20 pieces.

4.1.1 Symmetric setups

To establish a baseline for the experiments conducted in this study, the standard board layout for Checkers is
first implemented. This standard configuration represents the setup found in the official rules[9] and is shown
in Figure 1b. The board consists of an 8-by-8 grid with alternating dark and light squares, beginning with a
dark square in the lower-left corner. Each player is assigned 12 pieces of their respective color. These pieces are
arranged on the dark squares in the first three rows closest to the player, leaving the two center rows unoccupied.
Additional board configurations of varying sizes are created, trying to keep close to the principles of official
Checkers rules. For example, a 6-by-6 board shown in Figure 1a includes 6 pieces per player, while a 10-by-10
board shown in Figure 1c includes 20 pieces per player. In all variants, at least two central rows are kept empty.

Three additional variations of the standard Checkers layout are examined in this study. Two of these configu-
rations deviate from the conventional square board format and instead utilize rectangular dimensions. Despite
this change in shape, the initial game conditions remain symmetrical, as both players are presented with iden-
tical board states. The 6-by-8 and 8-by-6 rectangular configurations are illustrated in Figures 2a and 2b. The
third configuration deviates from the conventional board setup by introducing King pieces at the start of the
game. As mentioned in Section 3.2, King pieces are stronger variations of regular pieces on the Checkers board.
Figure 2c shows that symmetry is maintained by assigning identical King placements to both players.
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(a) 6×8 setup (b) 8×6 setup (c) 8×8 setup with King rows

Figure 2: Symmetrical variations on the standard board configuration.

4.1.2 Asymmetric unbalanced setups

Figure 3: Asymmetrical unbalanced board
configurations. The players have an unequal
number of pieces, with one player missing a
piece in the center row.

The next experiments involve a setup using asymmetric board
configurations. The goal of this part of the study is to investi-
gate how different initial conditions, based on unequal starting
positions for each player, influence AI agent performance and
gameplay outcomes.

In this context, asymmetry refers to scenarios where each player
begins the game in different situations, not necessarily in an
unfair manner. Asymmetry is common in many well-balanced
games. For example, in Catan, players start with differently
placed roads and settlements, and in Ticket to Ride, players re-
ceive unique route objectives through randomly drawn cards.
These games demonstrate that asymmetry can coexist with game
balance, with players having an unequal playing field, but fair
chance of winning.

In Checkers, where the objective is well-defined, it is simple to
introduce unbalanced starting conditions. For instance, reducing
the number of starting pieces for one player introduces a disad-
vantage. These deliberately unbalanced setups are used in this
part of the thesis to evaluate AI performance and potentially
infer game mechanics.
The underlying hypothesis is that visualized results will provide
insight into the extent to which such asymmetries influence game-
play outcomes and agent performance.

4.1.3 Asymmetric balanced setups

In the final part of the study, previously examined asymmetric
and unbalanced board configurations are revisited with the ob-
jective of introducing balance through secondary variations. For
instance, a player starting with fewer pieces may receive a King
piece, creating a more balanced scenario for analysis.

The objective of this section is to see how AI agent performance
metrics can be used to evaluate the results on asymmetrical
boards, and how this information can be used to create new and
interesting configurations.

Research Question 2. How can intentional modifications to board configurations create new and
interesting gameplay scenarios, while preserving game balance?
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(a) Both players have an equal number
of pieces, but spacial arrangement dif-
fers

(b) One player compensates for a miss-
ing row of pieces with a row of King
pieces

(c) Both players have an equal number
of pieces, but placement of King pieces
differ

Figure 4: Asymmetrical yet nominally balanced board configurations. Mirror configurations, used
to account for the fixed starting player (Red), are not shown here but are included in the experi-
mental evaluation.

In the first set of nominally balanced asymmetric board configurations, the total number of pieces per player is
kept constant, while their positions differ. Specifically, two pieces from the center rows are removed from each
player. For one player, the two central pieces are removed, whereas for the other player, the two outermost pieces
are excluded. This configuration is illustrated in Figure 4a. The mirror configuration, where the Red player
misses their outermost pieces and the White player misses their center pieces, is not shown here in Figure 4 but
is included in the experiments.

The second set of configurations as seen in Figure 4b introduces the use of King pieces as compensation for
unequal piece counts. In this setup, one player begins with the standard three full rows of regular pieces, while
the other player starts with one row fewer but is compensated with two King pieces substituting regular pieces
in the second row.

A third set of configurations keeps equality in both the total number of pieces and the number of King pieces
assigned to each player. Each player receives a full row of King pieces; however, asymmetry is introduced
through their placement. One player’s Kings are positioned on the back row, while the other’s occupy the
central row. As shown in Figure 4c, the King pieces are visualized with a crown.

4.2 AI agents

To allow for autonomous gameplay, this study uses several AI methods, capable of playing Checkers against
one another. These AI methods are referred to as AI player or AI agents.

4.2.1 Random player

To establish a baseline level of play with no strategic reasoning, a Random agent is used. This agent selects
available actions at random, having no understanding of game strategy. Its role in the experiments is to serve
as a reference point for more advanced agents. It represents a completely uninformed player.

4.2.2 OSLA player

To represent a player with basic strategic knowledge, a simple greedy algorithm known as the One-Step Look-
Ahead (OSLA) agent is implemented. This agent simulates each available action in a copy game state, and
evaluates the resulting state using a heuristic function. The action resulting in the highest heuristic value is
then executed in the original game state. The custom heuristics function used is described in Section 4.2.4.

The OSLA algorithm is called ”greedy”, because it selects the action that appears best in the immediate moment,
without considering longer-term consequences. While this can lead to suboptimal decisions over the course of a
game, this AI method is computationally efficient and can be quite effective when paired with a strong heuristic
function.
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4.2.3 MCTS player

To simulate a more advanced level of play, the Monte Carlo Tree Search (MCTS) method is used. Unlike OSLA,
MCTS considers future game states by constructing a tree of game states and performing simulations (rollouts)
from leaf nodes to terminal states. Based on the outcome of these simulations, values are backpropogated
through the tree in order to select an action in the current state.

In this thesis, the standard implementation of MCTS provided by the TAG framework is used, with heuristic
guidance as described in the following section. The internal mechanics of the MCTS algorithm are not covered
in detail here. For explanations and variations, see Browne et al. [5].

Heuristic Weight distribution

Number of pieces 0.5

Capture actions 0.3

Available actions 0.2

Table 1: Weight distrubution of heuristic evaluation

4.2.4 Heuristic function

A key component of greedy AI methods is the heuristic evaluation function, which serves as a guideline or rule
of thumb for decision-making. The heuristic function evaluates the current game state and computes a value
that reflects how favorable the position is for the current player. This value is then used by the algorithm to
determine which action to take.

In order for the OSLA player to operate effectively, and for the MCTS player to perform well, a heuristic function
must be implemented. Implementing such a function requires an understanding of the specific game being
played. In the case of Checkers, general strategies are already well-established [3]. All implemented strategies
within the heuristic function must be appropriately weighted to ensure optimal performance, which introduces
a balancing problem that must be addressed.

In this project, three heuristics were used to estimate the heuristic value of a given game state. These heuristics
were selected based on the researcher’s intuitive assessment of their relevance to gameplay and were found to
be sufficient for the objectives of this thesis. The selection involved a brief process of trial-and-error, during
which the greedy algorithm was manually examined over the course of ten games against a Random agent. The
algorithm’s decision-making was analyzed on a step-by-step basis, ultimately finding a weight distribution for
the heuristics that effectively guided the agent’s actions.

The first heuristic is based on the number of pieces on the board. Specifically, it considers the ratio between
the number of pieces belonging to the current player and those of the opponent. A higher ratio results in a
higher heuristic value. Individual heuristic values are clamped between −1.0 and 1.0 before calculating the final
heuristic value, which is done by averaging the three values following the weight distribution shown in Table 1.

The second heuristic evaluates the presence of potential capture actions. If the player can execute a capture
action in the next turn, the state receives a score of +1.0. Conversely, if the opponent can execute a capture
action in their next turn, the state is penalized with a score of −1.0. In cases where both players have captures
available, the player’s own captures are weighted at +0.2, while opponent’s captures remain at −1.0. This is
because it is the opponent’s turn in the evaluated state and they will have the first oppertunity to execute their
action.

The third heuristic is based on the number of actions available to the player, referred to as action size. A larger
action size indicates a greater freedom and control over the progression of the game. More available actions
than the opponent result in a higher heuristic value, at +0.1 per extra move, and vice versa.

In the field of hyperparameter optimization, various automated techniques have been developed to determine
optimal parameter values for heuristic evaluation functions [12]. An example of such an approach is provided
by Gill et al.[6], who focus specifically on the game of Checkers. In their paper, they present a novel approach
to computer-based checkers play by employing a coevolutionary structure, specifically designed to intelligently
determine the optimal parameters in a board state evaluation function. The result of the study included a
weight distribution for the heuristic function, with high values for piece count and king pieces, as well as nine
other heuristics specific for piece positions.

These results correspond to the heuristics used in this thesis, thereby affirming their validity.
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4.3 Data collection and visualization

To facilitate testing AI methods on the Checkers variants, TAG includes a helpful program that is used to run
games and collect data effectively.

4.3.1 Tournaments and game metrics

The RunGames program provides a framework for automated tournament-style testing of AI agents. In this
research, it is utilized to perform exhaustive testing across all agents pairings and Checkers board configurations.
The provided GameMetrics class is used to record data during experiments.

Research Question 3. Which gameplay metrics are most useful for assessing balance in different
board configurations?

In addition to the general metrics collection system provided by the TAG framework, this thesis introduces
custom game-specific metrics tailored to the game of Checkers. The data collected during each experiment is
divided into two categories: per-turn metrics and per-game metrics, as shown in Table 2. Per-turn metrics
record the specific action taken in each turn, the number of pieces remaining on the board, and the number of
legal moves available to each player. Per-game metrics track the outcome of each game (win, loss, or draw) and
the total number of turns taken to reach that outcome.

Category Metric

Per turn Action type (move / capture)

Number of pieces

Number of available actions

Per game Win/draw/loss outcome

Total game duration

Table 2: Overview of game metrics collected during experiments. Per-turn metrics are recorded
for each turn, while per-game metrics summarize the overall outcome.

Figure 5: Example of a per-turn piece-count plot, showing the evo-
lution of the board state over time. This type of graph is used to
visualize the progression of individual games.

4.3.2 Graphs generation

Data collected during the experiments is
used to generate various graphs and plots.
To start, results from 200 games played
between two AI agents in a specific board
configuration are analyzed. The primary
metrics visualized include the percentage
of games won, lost or drawn by each agent
and the average game duration. This is
done for every combination of agents and
board configurations, and these summary
statistics provide a quick comparison of
agent performance within each setup.

To examine the progress of individual
games, a second type of plot is generated.
In these graphs, the x-axis represents the
number of turns, while the y-axis indicates
the number of remaining pieces for each

player. A drop in a player’s line corresponds to a capture action by the opponent.

To visualize aggregated performance across multiple games, the x-axis is normalized to represent the percentage
of game completion rather than absolute turn counts. Since game lengths vary, this normalization allows data
from games of different durations to be aligned and averaged. A confidence interval is included in these graphs
to indicate the variability of the data.
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5 Results

The experiments in this thesis were conducted by evaluating each board layout described in Section 4.1 across all
player combinations defined in Section 4.2. For every board configuration, each of the nine AI player matchups
were executed 200 times, resulting in 1800 games per configuration.

Game metrics were collected using the procedure described in Section 4.3. During execution, a dedicated CSV
file was generated for each board configuration, recording per-turn data for all matches played. These files
served as the data source for the plots and tables presented in this thesis.

In total, 16 board configurations were examined, resulting in a total of 28.800 games played. All relevant board
configurations, visualizations and tables can be found in Appendices A and B.

It should be noted that the relatively low sample sizes in the results introduce a greater margin of error,
sometimes preventing definitive conclusions to be made. This limitation is recurrent throughout this thesis. Al-
though a large number of games were played, subdividing 200 games per matchup into three outcome categories
occasionally resulted in small counts. Further discussion on this issue is provided in Section 6.1.

5.1 Symmetrical board setups

The experiments began with the standard 8×8 Checkers configuration, as shown in Figure 1b of Section 4.1.
This setup served as a baseline for evaluating AI performance on variations of the Checkers board game. In this
configuration, the MCTS and OSLA agents were put up against the Random agent to provide an initial comparison.
Figure 6 displays the outcomes of these two matchups: MCTS versus Random, and OSLA versus Random. In these
plots, and in all subsequent plots in this thesis, the Random agent is represented in green, MCTS in red, and OSLA

in blue. The trajectory of the green line, moving almost linearly from the upper left to the lower right, indicates
a steady reduction in the number of pieces controlled by the Random agent throughout the game. Conversely,
the MCTS and OSLA agents maintained a relative stable number of remaining pieces, displaying their dominance
in the matchup.
These visualizations suggest that both MCTS and OSLA consistently outperform the Random agent.

Figure 6: Performance comparison on the standard 8×8 board configuration. Plots show
MCTS vs Random and OSLA vs Random.

Self-play on the standard board configuration produces important results regarding the evaluation of balance.
These are the matchups where both players are controlled by the same AI agent. MCTS versus MCTS, OSLA versus
OSLA and Random versus Random. An important conclusion can be made, namely that self-play produces even
results for both players, showing balance in fairness for the standard configurations. Figure 7 displays MCTS and
OSLA results, showing even outcomes.

In addition to the graphical visualizations, the outcomes of each agent matchup are also summarized in a table
format. Table 3 presents the win, loss and draw distributions for all pairwise combinations of the three AI agents
across the three standard Checkers board configurations. These distributions provide an overview of perfomance
dynamics between agent pair, which allows for direct comparison of outcomes across different matchups.

The AI agents were pitted against one another and the resulting outcomes were captured in plots. Figure 8
illustrates the matchup between MCTS and OSLA on the standard 8×8 board configuration. Once again, MCTS is
represented by the red line, and OSLA by the blue line. During the first 60% of the game, both agents maintained
comparable piece counts. However, after this point, MCTS maintained a higher average piece count, resulting in
most wins for MCTS in this matchup.
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Figure 7: Performance comparison on the standard 8×8 board configuration. Plots show self-play
results of MCTS and OSLA.

second MCTS OSLA Random

first 6×6 8×8 10×10 6×6 8×8 10×10 6×6 8×8 10×10

MCTS

win 53 74 65 181 130 93 200 200 200

loss 59 70 68 1 34 70 0 0 0

draw 88 56 67 18 36 37 0 0 0

OSLA

win 1 15 74 46 85 88 193 200 200

loss 180 169 87 134 86 68 7 0 0

draw 19 16 39 20 29 44 0 0 0

Random

win 0 0 0 4 0 0 95 103 97

loss 200 200 200 196 200 199 105 97 103

draw 0 0 0 0 0 1 0 0 0

Table 3: Game outcomes of standard 6×6, 8×8 and 10×10 board configurations

The results for this specific matchup are summarized in Table 5, highlighted with thick borders. Tables 4, 5
and 6 present statistics for all games played on standard Checkers configurations of sizes 6×6, 8×8 and 10×10.
These include game outcomes, average game duration and average remaining piece counts. Several observations
can be made from this data.

Firstly, across all board configurations, the Random agent was consistently defeated by both the MCTS and OSLA

agents, losing nearly every game. This outcome aligns with expectations, as the Random agent lacks any strategic
decision-making capabilites.

Another notable observation is that games ending in a draw tend to have significantly longer durations. This
can be attributed to the nature of Checkers, where a draw may be forced if both players avoid capture actions.
When both agents play defensively, the number of captures decreases, often triggering the draw condition after
40 consecutive moves without a capture.

Additionally, the distribution of wins, losses and draws between MCTS and OSLA varies across the board con-
figurations. On the 6×6 board, MCTS achieved a higher number of wins against OSLA compared to the 8×8
and 10×10 configurations. Game durations also differed across board sizes. Matches on the 6×6 board ended
significantly faster than those on the 10×10 board.
This is expected, as larger boards contain more pieces, which increases the time required to capture or immobilize
all opponent pieces to reach the end conditions.

Further analysis focuses on the experiments conducted on the 6×6 board configuration, the smallest among
those tested in this study. In this setup, each player begins with only six pieces, which is half the amount used
in the standard 8×8 board and substantially fewer than the 20 pieces per player on the 10×10 board.

This reduced number of pieces results in several notable patterns. Most obviously, the average number of moves
per game is significantly lower compared to the larger board configurations. More interestingly, the results
displayed in Table 4 reveal that the second player got more wins than the first player when OSLA played against
itself. In other words, being the starting player appears to reduce the chance of winning on the 6×6 board, but
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Figure 8: MCTS vs OSLA on a standard 8×8 board.

Standard 6×6

second MCTS OSLA Random

first games duration pieces games duration pieces games duration pieces

MCTS

win 53 31.38 2.6 181 28.81 2.98 200 20.7 3.9

loss 59 37.34 2.73 1 25.0 4.0 0 – –

draw 88 74.22 3.28 18 70.22 3.72 0 – –

OSLA

win 1 69.0 2.0 46 30.96 4.7 193 23.36 4.42

loss 180 27.6 3.09 134 24.92 4.95 7 22.71 3.57

draw 19 74.53 3.68 20 72.75 5.0 0 – –

Random

win 0 – – 4 21.75 4.5 95 27.14 2.85

loss 200 19.73 4.25 196 23.16 4.52 105 24.5 3.27

draw 0 – – 0 – – 0 – –

Table 4: Summary statistics for games played on a 6×6 board setup.

only in case of OSLA self-play. This asymmetry in outcomes is not observed in different agents self-play results,
suggesting that the heuristic evaluation function used by OSLA may contribute to this effect.

In addition to the standard square boards, two rectangular symmetrical configurations were also tested: the
6×8 and 8×6 boards. For these experiments, focus is placed on games in which each AI agent played against
itself. Table 7 presents the game outcomes for these self-play matches. In this table, a win corresponds to the
first starting player defeating the second, while a loss indicates the second player winning over the first.

Across all three compact symmetrical configurations, a substantial part of matches resulted in a draw. When a
game did not end in a draw, outcomes generally favored the second player. The only exception to this occurred
in games played by the Random agent on the 6×8 board, where the first player won more than the second. The
largest disparity is seen in the OSLA self-play results on the 6×6 board, where the second player won 134 games
compared to just 46 wins by the first player.
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Standard 8×8

second MCTS OSLA Random

first games duration pieces games duration pieces games duration pieces

MCTS

win 74 68.15 4.26 130 70.17 4.39 200 43.07 7.76

loss 70 65.96 4.33 34 59.03 7.76 0 – –

draw 56 134.18 3.46 36 113.64 5.73 0 – –

OSLA

win 15 64.33 6.47 85 54.88 9.41 200 42.08 8.72

loss 169 61.8 5.4 86 54.42 9.43 0 – –

draw 16 127.25 4.5 29 107.9 10.03 0 – –

Random

win 0 – – 0 – – 103 54.54 4.81

loss 200 43.69 7.61 200 42.98 8.7 97 53.02 5.26

draw 0 – – 0 – – 0 – –

Table 5: Summary statistics for games played on an 8×8 board setup. Results from the matchup
shown in Figure 8 are highlighted.

Standard 10×10

second MCTS OSLA Random

first games duration pieces games duration pieces games duration pieces

MCTS

win 65 124.94 5.57 93 134.0 4.61 200 85.45 10.73

loss 68 121.13 6.0 70 97.29 10.96 0 – –

draw 67 192.42 3.88 37 179.0 6.0 0 – –

OSLA

win 74 94.54 11.12 88 100.23 13.78 200 74.98 13.38

loss 87 134.55 4.49 68 107.09 12.66 0 – –

draw 39 172.82 6.54 44 147.73 16.95 0 – –

Random

win 0 – – 0 – – 97 99.64 7.24

loss 200 85.61 10.88 199 74.25 13.6 103 96.95 7.78

draw 0 – – 1 125 12 0 – –

Table 6: Summary statistics for games played on a 10×10 board setup.

Small board configurations

AI agent 6×6 (6 pieces) 8×6 (8 pieces) 6×8 (9 pieces)

self-play games duration pieces games duration pieces games duration pieces

MCTS

win 53 31.38 2.6 61 43.84 3.21 69 55.99 3.43

loss 59 37.34 2.73 70 46.59 3.56 73 52.53 3.6

draw 88 74.22 3.28 69 96.58 3.54 58 98.95 3.64

OSLA

win 46 30.96 4.7 57 37.88 6.47 64 36.31 7.8

loss 134 24.92 4.95 110 34.59 6.86 93 37.45 7.59

draw 20 72.75 5.0 33 86.45 6.42 43 94.0 6.67

Random

win 95 27.14 2.85 86 34.37 3.77 111 41.73 3.79

loss 105 24.5 3.27 114 32.75 3.94 89 39.42 4.51

draw 0 – – 0 – – 0 – –

Table 7: Summary statistics for games played on small board configurations, showing AI agents
self-play.
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Figure 9: Average remaining piece count per player across normalized game progress on a 6×6
board. Each subfigure corresponds to a different agent pairing, as labeled.
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5.2 Asymmetrical unbalanced board setups

This section presents the results from experiments conducted on asymmetrical board configurations with de-
liberate imbalance. These unbalanced setups, as described in Section 4.1.2, were designed to give one player a
clear disadvantage, for instance by reducing their starting piece count. Figure 10 illustrates matchups between
MCTS and OSLA on one such asymmetrical board configuration, specifically the second variant shown in Figure 3.
The only asymmetry in this setup is that the first player begins with 11 pieces, while the second player starts
with 12.

(a) MCTS vs OSLA (b) OSLA vs MCTS

Figure 10: Matchups between MCTS and OSLA on an asymmetrical, unbalanced board configuration.
(a) MCTS starts; (b) OSLA starts.

Figure 10a displays results from games in which MCTS begins first. Despite starting with a piece disadvantage,
MCTS managed to overtake OSLA as the game progresses and won a majority of the matches. In contrast,
Figure 10b shows MCTS starting second and achieving an even higher win count. These outcomes are quantified
in Table 8, where MCTS wins 138 games as first player and 190 as the second player out of 200 games per
matchup.

These finding clearly reflect the asymmetry of the initial configuration, and the performance difference between
the agents. MCTS performed better than OSLA , being able to overcome the one-piece deficit. This performance
difference was also evident in matchups against the Random agent, where both MCTS and OSLA consistently won
despite starting with fewer pieces.

An additional observation is that MCTS produced a higher number of draws compared to OSLA when playing
against itself. This pattern is consistent across board configurations.

These results affirm the designed imbalance of the test configurations. The ability of MCTS to outperform OSLA

under disadvantageous conditions invites further experimentation. In particular, identifying the threshold at
which such asymmetries lead to balanced probabilities is a promising direction. The next section addresses this
line of investigation by evaluating nominally balanced yet asymmetrical configurations.

Asymmetrical unbalanced

second MCTS OSLA

first games duration pieces games duration pieces

MCTS

win 36 68.72 4.19 138 68.15 4.43

loss 121 60.99 5.38 29 57.34 8.14

draw 43 129.44 3.84 33 112.36 6.27

OSLA

win 2 67.5 5.5 58 51.84 9.72

loss 190 58.48 5.78 117 49.85 9.96

draw 8 125.75 4.75 25 107.16 8.16

Table 8: Summary statistics for MCTS vs. OSLA on an asymmetrical, unbalanced board setup.
Random player matchups are omitted.
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5.3 Asymmetrical balanced board setups

In the final phase of the experimental analysis, asymmetrical board configurations are examined that have been
intentionally designed to be more balanced. Here, ”balanced” is to be interpreted loosely, as it is not evident
before testing whether the configurations are truly balanced. Rather, the term indicates that an effort was
made to counteract the asymmetry by introducing compensatory elements. The goal is not to achieve perfect
balance, but rather to explore whether the experimental results can reflect the balance present in new board
configurations, where any advantage might not be immediately obvious.

First variation: piece positioning

Figure 11: First variation of an asymmetric,
nominally balanced setup.

The first variation investigates whether the initial positions of
an equal number of pieces affects gameplay outcomes. Figure 11
display such a setup, where both players begin with ten pieces.
The asymmetry in this configuration arises from the spacial dis-
tribution. One player’s pieces are placed in the central columns
of the board, while the other player’s pieces occupy the outer
columns.

This configuration is intended to evaluate whether a centrally
concentrated or edge-oriented piece distribution is more advan-
tageous, or if the starting positions give similar results.

The figures below present the experimental results. Figure 12
shows the matchup between MCTS and OSLA. In Figure 12a, MCTS
plays first with centrally aligned pieces, while in Figure 12b, OSLA
takes the first move with the central arrangement. Figure 13 dis-
plays self-play results, where MCTS and OSLA play against them-
selves.

Several observations were drawn from these results. First, MCTS
consistently outperformed OSLA regardless of the side from which
it started. This outcome was expected, given that MCTS was the
stronger of the two agents and the board configuration was designed to be balanced. The consistency of MCTS’s
performance suggested that the initial piece positioning had a limited influence on the outcome when there was
a significant difference between the players.

In contrast, the self-play matchups revealed subtle effects of piece positioning. When MCTS played against itself,
performance remained nearly identical regardless of which player started. However, in OSLA self-play matchups,
a more noticable difference is present between the first and second starting players. This suggests that OSLA
was more sensitive to initial board asymmetries or to first-move advantages.

(a) MCTS vs OSLA (b) OSLA vs MCTS

Figure 12: Matchups between MCTS and OSLA on the asymmetrical board configuration shown in
Figure 11. (a) MCTS starts; (b) OSLA starts.

It seemed that the starting OSLA player won more often than the second OSLA player. When examining the
board configuration, the first player – shown with red pieces – started with the two center pieces missing. One
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(a) MCTS vs MCTS (b) OSLA vs OSLA

Figure 13: Self-play results of MCTS and OSLA on the asymmetrical configuration shown in Figure 11.

possible conclusion from this result is that beginning with pieces closer to the edge of the board, rather than
the center, may provide a slight early-game advantage.

Of course, it must be acknowledged that OSLA is a greedy algorithm and does not necessarily reflect the behavior
of human players or more advanced strategies. It is possible that the observed advantage in the OSLA versus
OSLA matchup is party a result of the agent’s greedy nature. The absence of such effects in MCTS matchups
further undermines the validity of any advantage attributed to piece positioning.

Asymmetrical balanced setup 1

second MCTS OSLA

first games duration pieces games duration pieces

MCTS

win 71 64.97 3.96 169 61.7 4.4

loss 77 67.78 3.86 11 55.27 7.04

draw 52 125.17 4.02 20 111.85 5.7

OSLA

win 4 53.0 6.25 85 50.92 8.58

loss 180 61.47 4.63 70 54.47 8.11

draw 16 115.12 4.38 45 107.38 7.64

Table 9: Summary statistics for MCTS vs. OSLA on the asymmetrical, nominally balanced board
setup, shown in Figure 11. Random player matchups are omitted.

As shown in Table 9, the results indicated that in the self-played games of MCTS, the first and second player were
evenly matched. A slight difference in performance of MCTS was observed in matchups against the OSLA agent,
when comparing the starting player configurations. Specifically, with OSLA as the starting player, MCTS won 180
games and drew 16, leaving 4 wins for OSLA , which started with missing center pieces. This is indicated by the
red pieces in the board image. Conversely, when MCTS was the starting player, it won 169 games and drew 20,
with OSLA winning 11. These findings suggest that starting with missing pieces in the center of the board may
be less advantageous than starting as second player while possessing center pieces but missing edge pieces.
Regarding the OSLA self-play matchup, 85 wins were recorded for the starting player, compared to 70 wins for
the second player, with 45 draws. This implies that only OSLA appeared to experience an advantage when
starting with the red pieces.

However, as mentioned in the introduction of Section 5, the low sample size might skew the results. Therefore,
the above-mentioned conclusion cannot be stated with certainty.
To address potential asymmetry related to the starting player, the experiment was repeated using a mirrored
board configuration. The results generally exhibited similar ratios. However, the limited number of games
contributed to some variance in the data.

19



Asymmetrical balanced setup 1 – mirror

second MCTS OSLA

first games duration pieces games duration pieces

MCTS

win 76 61.67 4.21 175 57.79 4.86

loss 82 63.04 4.33 6 63.17 6.5

draw 42 123.67 3.67 19 104.26 6.32

OSLA

win 12 49.17 7.42 63 59.78 7.38

loss 172 61.1 4.76 89 53.19 7.9

draw 16 122.12 4.56 48 109.6 8.19

Table 10: Summary statistics for the mirror version of the asymmetrical configuration shown in
Figure 11. See Figure 21 in Appendix A for the exact setup.

Second variation: piece count and King pieces

Figure 14: Second variation of an asymmet-
ric, nominally balanced setup.

The next analysis examined the experimental results on a differ-
ent asymmetric board configuration. Here, King pieces were in-
troduced at the start of the game. This variation was included to
explore an unconventional scenario, as standard Checkers games
do not begin with King pieces. Such a setup presents an interest-
ing variation of typical gameplay, where conventional Checkers
strategies might be less applicable.

Figure 15 presents the performance plots of MCTS versus OSLA on
the board configuration depicted in Figure 14. In this setup, one
player starts with all 12 pieces, while the opponent starts with
only 8 pieces, including 2 King pieces.

The plots in Figure 15 clearly illustrate the imbalance present in
this board configuration. In these setups, the player who started
with fewer pieces was compensated with two King pieces. How-
ever, the experimental results showed that this compensation was
insufficient to offset the initial disadvantage.

In previous experiments involving more balanced configurations,
MCTS consistently outperformed OSLA, even when starting with
a slight disadvantage.

In contrast, the current experiment showed MCTS losing most of the matches against OSLA. When MCTS was
assigned the disadvantaged starting position, it won only 38 out of 200 games and drew 41. OSLA, starting with
a full set of twelve regular pieces, won the remaining 121 games. This outcome demonstrates an advantage for
the player starting with a higher piece count.

(a) MCTS vs OSLA (b) OSLA vs MCTS

Figure 15: Matchups between MCTS and OSLA on the asymmetrical board configuration shown in
Figure 14. (a) MCTS starts; (b) OSLA starts
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Asymmetrical balanced setup 2

second MCTS OSLA

first games duration pieces games duration pieces

MCTS

win 2 74.0 2.5 38 76.16 2.45

loss 192 45.49 7.47 121 44.4 9.31

draw 6 123.67 4.33 41 106.73 6.78

OSLA

win 0 – – 11 78.55 4.91

loss 198 45.63 7.61 170 44.52 10.38

draw 2 117.0 3.5 19 119.68 8.68

Table 11: Summary statistics for MCTS vs. OSLA on the board setup shown in Figure 14. Random

player matchups are omitted.

These findings suggest that the balancing attempt of crowning two pieces Kings was ineffective. The advantage
provided by the King pieces did not compensate for the reduced number of total pieces.

This result highlights the kind of insight developers could obtain through experimentation. Before testing, it
was unclear whether the strategic value of two King pieces could outweigh the reduced number of pieces.

Third variation: King piece position

Figure 16: Third variation of an asymmetric,
nominally balanced setup.

The final configuration, illustrated in Figure 16, introduced vari-
ation solely through the positioning of King pieces on the board.
Both players started with an equal number of pieces, including
a full row of King pieces. The asymmetry in this setup comes
from the location of the King row. One player’s King pieces were
placed in the center row, while the other player’s King pieces
were positioned on the back row. Appendix 22 provides a view
of these configurations, including a mirrored version with the
King piece positions swapped.

This setup was of particular interest due to its potential im-
plications for early-game versus late-game strategy. One player
had immediate access to their King pieces from the start of the
match, while the other needed to clear space before their King
pieces could be used in play.

To assess whether either player was in an advantageous position,
this experiment focused on self-play matchups. The outcomes of
these matchups are summarized in Table 12. The board shown
in Figure 16 is labeled ”Original”, and the mirrored version is
also present in the table.
The results of the self-play experiments on this configuration indicated that both MCTS and OSLA agents were
relatively evenly matched. A notable number of games resulted in draws for both AI agents, suggesting that
neither the first nor second player consistently dominated under this setup.

A particularly interesting observation can be made when comparing the original configuration to its mirrored
counterpart. The initial hypothesis assumed that any observed performance difference in the original configu-
ration would be reversed in the mirrored version. However, this was not the case in the experimental outcomes.
For the MCTS self-play experiments, the red player, with King pieces in the center row, recorded 68 wins and 79
losses in the original setup. In the mirrored version, where the red player had King pieces in the back row, the
outcomes shifted to 58 wins and 86 losses. In both cases, the white, second player appeared to perform better.
This stands in contrast to the standard 8×8 configuration, where no significant first-player disadvantage was
observed in MCTS self-play.

The OSLA agent produced different trends. In the original setup, the red player with the center row of King
pieces won 93 games and lost 75. In the mirrored configuration, with King pieces in the back row, the red player
won 85 games and lost 79.
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Third variation of asymmetric, nominally balanced configuration

AI agent Original Mirror

self-play games duration pieces games duration pieces

MCTS

win 68 72.01 4.35 58 69.62 4.31

loss 79 65.7 4.61 86 68.35 4.4

draw 53 122.91 3.72 56 126.18 3.88

OSLA

win 93 50.04 10.12 85 51.31 9.95

loss 75 54.0 9.37 79 54.87 9.62

draw 32 115.47 8.47 36 104.58 9.36

Random

win 112 54.12 5.15 109 55.49 4.67

loss 87 54.49 4.97 91 50.81 5.53

draw 1 110.0 2.0 0 – –

Table 12: Summary statistics for AI self-play of MCTS and OSLA on the configuration from Figure 16,
including both the original and mirror layout.

Unlike MCTS, OSLA showed a consistent advantage for the starting player in both configurations. Similarly, the
Random agent also favored the first player in both configurations.

These observations suggest the possibility that the apparent imbalances in outcomes could be due to random
variation, given the low number of games per configuration. Alternatively, they may indicate lower level inter-
actions between agent behavior and board layout that call for further investigation. In any case, the positioning
of King pieces appeared to have a smaller influence on game outcomes than the effect of the starting player in
this set of experiments.
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6 Discussion & Conclusion

6.1 Limitations

This study has several limitations. First, the MCTS agent used was used directly from the TAG framework,
without any modifications or tuning. Even though it performed better than the OSLA agent, it likely does not
represent optimal play and should not be compared to a skilled human player. That’s why conclusions drawn
from AI versus AI gameplay in this thesis do not necessarily reflect outcomes in human versus human games.
In practice, human player testing is still required. This is in line with the conclusion of the study by Goodman
et al. [7], where it’s stated that ”AI game testing cannot remove the need for human playtesting.”

The experimental evaluation consisted of simulating 200 games per player pair, per board configuration. In
total, that resulted in 28.800 games played. Although a large number of games were played, subdividing 200
games per matchup into three outcome categories occasionally resulted in small counts. The relatively low
sample sizes in the results introduce a greater margin of error, thereby preventing definitive confirmation of
hypotheses.

This research involved a limited selection of board configurations. A more thorough experiment, using more
variations and iterations, could provide even more insight. Even so, most of the configurations used in this
study were useful examples and sufficient for the aim of the thesis.

6.2 Future work

The findings in this thesis point in several directions for future research. Expanding the experiments to increase
the number of simulations and to include a wider variety of board configurations could give more insights,
possibly revealing more nuanced game mechanics or strategies. Combining features from multiple configurations
may lead to new game mechanics worth investigating.

Expanding on the visualizations is another direction for future work. While the graphs and tables in this thesis
are informative, a more advanced presentation could make experimental results easier to interpret. In the
future, a dashboard could be developed to display automated test results in a concise manner. Different kinds
of visualizations could presented, enriching the insights in various game mechanics.

6.3 Conclusion

This study shows that AI-driven gameplay analysis can reveal meaningful insights into game balance and
mechanics. Variations in board configuration lead to different gameplay patterns, often attributing an advantage
to one player over the other. By using multiple AI agents with varying performance, researchers can compare
different levels of play. This is accomplished by exhaustively running hundreds of games across all agent pairings.

Several board configurations were tested, grouped into three categories: one set of symmetric configurations,
one set of deliberately unbalanced asymmetric configurations, and one set of nominally balanced asymmetric
configurations. In the last category, balance was attempted by introducing secondary variations, to counteract
initial asymmetries.

To answer the research questions presented in Section 1, AI-vs-AI gameplay outcomes reveal the balance present
in different board configurations, showing which player might have a more advantageous position from the start
of the game. New configurations can be tested in this way to analyze the balance, and figure out whether or not
the scenario might be fair for both players. Most of the metrics used to gather data in this thesis were useful
for analyzing balance. For example, game result (win/loss/draw) and piece count during gameplay showed to
be the most useful metrics. Game duration indicated how close the games were. The remaining piece count at
the end of the game did not give a clear indication on any game mechanic in particular.

To highlight one of the findings in this study: the configuration shown in Figure 14 shows an imbalance. In this
setup, the developer introduced a secondary variation to an asymmetric board, attempting to compensate the
disadvantage caused by a reduced number of pieces by assigning two King pieces to the disadvantaged player.
However, the data in Table 11 and visualization in Figure 15 showed that this compensation is not sufficient to
level the playing field.

A logical next step for a game developer would be to increase the number of King pieces and test the configuration
again to assess whether this change improved the overall balance of the asymmetric board setup.

Although this thesis did not end up producing a balanced game, these results confirm that this AI-based ap-
proach does give insights into game balance, which support developers in making more balanced game variations.
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Appendices

A Board Configurations

6×8 8×6

6×6 8×8

Figure 17: Symmetrical setups
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8×8 with kings 10×10

Figure 18: Symmetrical setups

Figure 19: Asymmetrical unbalanced setups: missing piece for red
player (variation 1 and 2)
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Figure 20: Asymmetrical unbalanced setups: missing piece for white
player (variation 3 and 4)

Figure 21: Asymmetrical balanced setups (variation 1 and 2)
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Figure 22: Asymmetrical balanced setups with kings (variation 3 - 6)
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B Tables

Symmetric 6×8

second MCTS OSLA Random

first games duration pieces games duration pieces games duration pieces

MCTS

win 69 55.99 3.43 178 46.3 4.42 200 32.16 5.92

loss 73 52.53 3.6 6 40.67 5.17 0 – –

draw 58 98.95 3.64 16 103.12 4.38 0 – –

OSLA

win 7 45.57 5.0 64 36.31 7.8 199 33.67 6.59

loss 179 43.98 4.61 93 37.45 7.59 1 35.0 4.0

draw 14 101.07 4.0 43 94.0 6.67 0 – –

Random

win 0 – – 0 – – 111 41.73 3.79

loss 200 32.13 6.09 200 32.0 6.86 89 39.42 4.51

draw 0 – – 0 – – 0 – –

Symmetric 8×6

second MCTS OSLA Random

first games duration pieces games duration pieces games duration pieces

MCTS

win 61 43.84 3.21 179 37.97 4.24 200 26.77 5.42

loss 70 46.59 3.56 3 30.0 7.33 0 – –

draw 69 96.58 3.54 18 82.78 4.78 0 – –

OSLA

win 2 74.5 5.0 57 37.88 6.47 196 28.83 5.92

loss 188 34.95 4.39 110 34.59 6.86 4 26.5 5.5

draw 10 92.9 4.1 33 86.45 6.42 0 – –

Random

win 0 – – 3 32.33 4.67 86 34.37 3.77

loss 200 26.05 5.56 197 28.28 6.04 114 32.75 3.94

draw 0 – – 0 – – 0 – –
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Symmetric 6×6

second MCTS OSLA Random

first games duration pieces games duration pieces games duration pieces

MCTS

win 53 31.38 2.6 181 28.81 2.98 200 20.7 3.9

loss 59 37.34 2.73 1 25.0 4.0 0 – –

draw 88 74.22 3.28 18 70.22 3.72 0 – –

OSLA

win 1 69.0 2.0 46 30.96 4.7 193 23.36 4.42

loss 180 27.6 3.09 134 24.92 4.95 7 22.71 3.57

draw 19 74.53 3.68 20 72.75 5.0 0 – –

Random

win 0 – – 4 21.75 4.5 95 27.14 2.85

loss 200 19.73 4.25 196 23.16 4.52 105 24.5 3.27

draw 0 – – 0 – – 0 – –

Symmetric Standard 8×8

second MCTS OSLA Random

first games duration pieces games duration pieces games duration pieces

MCTS

win 74 68.15 4.26 130 70.17 4.39 200 43.07 7.76

loss 70 65.96 4.33 34 59.03 7.76 0 – –

draw 56 134.18 3.46 36 113.64 5.73 0 – –

OSLA

win 15 64.33 6.47 85 54.88 9.41 200 42.08 8.72

loss 169 61.8 5.4 86 54.42 9.43 0 – –

draw 16 127.25 4.5 29 107.9 10.03 0 – –

Random

win 0 – – 0 – – 103 54.54 4.81

loss 200 43.69 7.61 200 42.98 8.7 97 53.02 5.26

draw 0 – – 0 – – 0 – –

Symmetric Standard 10×10

second MCTS OSLA Random

first games duration pieces games duration pieces games duration pieces

MCTS

win 65 124.94 5.57 93 134.0 4.61 200 85.45 10.73

loss 68 121.13 6.0 70 97.29 10.96 0 – –

draw 67 192.42 3.88 37 179.0 6.0 0 – –

OSLA

win 74 94.54 11.12 88 100.23 13.78 200 74.98 13.38

loss 87 134.55 4.49 68 107.09 12.66 0 – –

draw 39 172.82 6.54 44 147.73 16.95 0 – –

Random

win 0 – – 0 – – 97 99.64 7.24

loss 200 85.61 10.88 199 74.25 13.6 103 96.95 7.78

draw 0 – – 1 125 12 0 – –

30



Symmetric 8×8 with Kings

second MCTS OSLA Random

first games duration pieces games duration pieces games duration pieces

MCTS

win 62 66.73 4.66 166 61.75 5.4 200 43.51 7.53

loss 82 66.5 4.5 18 60.94 6.56 0 – –

draw 56 121.39 3.62 16 113.62 5.56 0 – –

OSLA

win 9 55.33 7.0 96 50.83 10.07 200 42.52 8.61

loss 173 63.72 5.23 71 54.21 9.39 0 – –

draw 18 116.11 5.39 33 113.58 8.79 0 – –

Random

win 0 – – 0 – – 91 52.93 5.33

loss 200 42.91 7.71 200 42.08 8.81 109 52.98 5.28

draw 0 – – 0 – – 0 – –

Asymmetric Unbalanced – variation 1

second MCTS OSLA Random

first games duration pieces games duration pieces games duration pieces

MCTS

win 60 70.45 3.77 133 65.76 4.61 200 44.24 6.84

loss 101 63.33 5.22 32 54.56 7.44 0 – –

draw 39 120.59 3.85 35 117.23 5.31 0 – –

OSLA

win 2 56.0 5.5 55 56.35 8.78 198 44.57 7.61

loss 189 60.39 5.76 121 51.1 9.86 2 46.0 10.0

draw 9 113.0 4.44 24 115.46 7.62 0 – –

Random

win 0 – – 0 – – 85 54.16 4.33

loss 200 40.62 8.08 200 39.31 9.27 115 49.13 5.83

draw 0 – – 0 – – 0 – –

Asymmetric Unbalanced – variation 2

second MCTS OSLA Random

first games duration pieces games duration pieces games duration pieces

MCTS

win 36 68.72 4.19 138 68.15 4.43 200 43.82 7.02

loss 121 60.99 5.38 29 57.34 8.14 0 – –

draw 43 129.44 3.84 33 112.36 6.27 0 – –

OSLA

win 2 67.5 5.5 58 51.84 9.72 200 44.7 7.67

loss 190 58.84 5.78 117 49.85 9.96 0 – –

draw 8 125.75 4.75 25 107.16 8.16 0 – –

Random

win 0 – – 0 – – 63 54.86 4.24

loss 200 39.8 8.53 200 39.42 9.29 137 49.95 5.82

draw 0 – – 0 – – 0 – –
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Asymmetric Unbalanced – variation 3

second MCTS OSLA Random

first games duration pieces games duration pieces games duration pieces

MCTS

win 103 62.81 4.98 181 57.82 5.98 200 40.81 8.23

loss 40 75.35 3.77 7 61.29 7.14 0 – –

draw 57 129.18 3.61 12 119.83 4.5 0 – –

OSLA

win 22 56.09 7.41 119 50.69 9.71 200 40.26 9.04

loss 155 67.85 4.08 52 60.06 8.25 0 – –

draw 23 113.48 6.65 38 109.32 8.84 0 – –

Random

win 0 – – 1 73.0 3.0 136 49.65 6.12

loss 200 44.62 6.75 199 45.78 7.58 64 54.0 4.92

draw 0 – – 0 – – 0 – –

Asymmetric Unbalanced – variation 4

second MCTS OSLA Random

first games duration pieces games duration pieces games duration pieces

MCTS

win 120 64.56 4.94 187 60.77 5.64 200 40.72 8.13

loss 45 76.51 3.73 4 58.25 6.75 0 – –

draw 35 127.94 3.69 9 106.22 5.44 0 – –

OSLA

win 23 55.26 7.26 101 53.58 9.53 200 39.17 9.21

loss 147 66.92 4.19 69 56.26 8.77 0 – –

draw 30 118.4 5.97 30 118.0 8.27 0 – –

Random

win 0 – – 1 71.0 5.0 126 48.57 6.1

loss 200 44.46 6.76 199 44.38 7.68 74 54.73 4.32

draw 0 – – 0 – – 0 – –

Asymmetric Balanced – variation 1

second MCTS OSLA Random

first games duration pieces games duration pieces games duration pieces

MCTS

win 71 64.97 3.96 169 61.7 4.4 200 39.73 7.04

loss 77 67.78 3.86 11 55.27 7.09 0 – –

draw 52 125.17 4.02 20 111.85 5.7 0 – –

OSLA

win 4 53.0 6.25 85 50.92 8.58 200 39.35 7.79

loss 180 61.47 4.63 70 54.47 8.11 0 – –

draw 16 115.12 4.38 45 107.38 7.64 0 – –

Random

win 0 – – 0 – – 112 50.55 4.63

loss 200 39.6 7.18 200 39.13 7.95 88 48.44 4.94

draw 0 – – 0 – – 0 – –
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Asymmetric Balanced – variation 2

second MCTS OSLA Random

first games duration pieces games duration pieces games duration pieces

MCTS

win 76 61.67 4.21 175 57.79 4.86 200 38.94 7.17

loss 82 63.04 4.33 6 63.17 6.5 0 – –

draw 42 123.67 3.67 19 104.26 6.32 0 – –

OSLA

win 12 49.17 7.42 63 59.78 7.38 199 39.49 7.87

loss 172 61.1 4.76 89 53.19 7.9 0 – –

draw 16 122.12 4.56 48 109.6 8.19 1 71.0 8.0

Random

win 0 – – 0 – – 102 48.79 5.18

loss 200 39.25 7.26 200 39.56 7.79 98 49.34 5.09

draw 0 – – 0 – – 0 – –

Asymmetric Balanced – variation 3

second MCTS OSLA Random

first games duration pieces games duration pieces games duration pieces

MCTS

win 2 74.0 2.5 38 76.16 2.45 198 48.48 4.63

loss 192 45.49 7.47 121 44.4 9.31 2 45.5 7.0

draw 6 123.67 4.33 41 106.73 6.78 0 – –

OSLA

win 0 – – 11 78.55 4.91 191 51.06 4.87

loss 198 45.63 7.61 170 44.52 10.38 9 45.33 7.78

draw 2 117.0 3.5 19 119.68 8.68 0 – –

Random

win 0 – – 0 – – 35 56.63 3.11

loss 200 33.08 9.61 200 31.68 10.57 165 38.85 7.95

draw 0 – – 0 – – 0 – –

Asymmetric Balanced – variation 4

second MCTS OSLA Random

first games duration pieces games duration pieces games duration pieces

MCTS

win 185 48.35 7.22 195 48.31 7.37 200 33.53 9.55

loss 5 79.4 2.2 1 56.0 6.0 0 – –

draw 10 119.0 3.7 4 159.75 3.0 0 – –

OSLA

win 130 44.62 9.15 162 45.53 10.18 200 31.89 10.35

loss 31 78.23 2.52 7 81.43 4.71 0 – –

draw 39 101.46 7.28 31 119.06 7.48 0 – –

Random

win 3 41.67 7.67 10 48.2 7.5 161 39.53 7.84

loss 197 48.97 4.54 190 50.57 4.98 39 52.36 3.64

draw 0 – – 0 – – 0 – –
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Asymmetric Balanced – variation 5

second MCTS OSLA Random

first games duration pieces games duration pieces games duration pieces

MCTS

win 68 72.01 4.35 173 63.51 5.21 200 42.2 7.93

loss 79 65.7 4.61 11 67.0 6.64 0 – –

draw 53 122.91 3.72 16 114.75 5.25 0 – –

OSLA

win 9 64.11 6.78 93 50.04 10.12 197 43.03 8.61

loss 171 62.83 5.31 75 54.0 9.37 3 47.72 6.67

draw 20 113.0 6.15 32 115.47 8.47 0 – –

Random

win 0 – – 1 46.0 5.0 112 54.12 5.15

loss 200 42.72 7.91 199 42.62 8.61 87 54.49 4.97

draw 0 – – 0 – – 1 110.0 2.0

Asymmetric Balanced – variation 6

second MCTS OSLA Random

first games duration pieces games duration pieces games duration pieces

MCTS

win 58 69.62 4.31 174 62.83 5.2 200 42.94 7.56

loss 86 68.35 4.4 11 57.0 7.55 0 – –

draw 56 126.18 3.88 15 122.6 5.3 0 – –

OSLA

win 6 55.67 7.0 85 51.31 9.95 200 42.78 8.7

loss 178 60.95 5.44 79 54.87 9.62 0 – –

draw 16 121.12 5.06 36 104.58 9.36 0 – –

Random

win 0 – – 0 – – 109 55.49 4.67

loss 200 43.09 7.82 199 42.42 8.93 91 50.81 5.53

draw 0 – – 1 107.0 7.0 0 – –
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