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1 Abstract

Sports data science is increasingly applied to tactical analysis in elite sports, yet field hockey
remains underrepresented in this domain. This thesis contributes to closing that gap by focusing on
one of the sport’s most decisive moments: the penalty corner. Using video footage from the Dutch
national field hockey team, this study combines computer vision and subgroup discovery to extract
and analyze player movements, formations, and ball trajectories during these set plays.

Through a multi-stage pipeline of field detection, player tracking using YOLO and Deep SORT,
and ball tracking via motion-based filtering and trajectory prediction, structured positional data
was obtained from static top-down camera recordings. Tactical features were then derived at both
the individual and team level across key moments in the penalty corner. These include attacker
compactness, defender dispersion, line-stopper positioning, and flyer angles. The resulting dataset
was analyzed using SubDisc, a subgroup discovery tool, to extract interpretable tactical rules
correlated with successful or failed penalty corner outcomes.

The analysis revealed that dynamic defensive play, particularly proactive flyer runs in a slightly
diagonal line and compact late-stage formations, was most associated with penalty corner success.
On the attacking side, structured movement towards the goal, fast ball injection delivered just
right of the central axis of the circle, and coordinated compact movement were key to scoring.
Field element detection achieved near perfect accuracy, whereas ball tracking still leaves room for
improvement, potentially through future deep learning approaches. Although the detection and
tracking pipelines occasionally faced challenges such as occlusion and player misidentification, the
overall methodology provides a reasonable automated and interpretable framework for tactical
analysis in field hockey. This research provides a foundation for future applications of data science
in hockey, both to support coaching decisions and to guide the development of smarter, video-based
training tools.
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2 Introduction

2.1 Background

Hockey is a sport characterized by a wide range of tactical perspectives and strategies. Although
these approaches may vary, they all share the same goal: to win the game by scoring more goals than
the opponent. Understanding and analyzing such tactical decisions can offer valuable insight into
both offensive and defensive game strategies. As noted by Garganta [Gar09], identifying patterns
in team behavior can support coaches in making more informed evidence-based decisions during
matches.

Despite its growing popularity, field hockey still lacks the data, knowledge, and financial resources
commonly found in other professional sports. As a result, the sport has seen relatively little progress
in terms of data-driven tactical and behavioral analysis. Hence, this study addresses this gap by
focusing on one of the most impactful moments in the game, namely the penalty corner.

The penalty corner is a strategic scoring opportunity, accounting for approximately 34% of all goals
scored by the Dutch national team during their last 248 matches [dH24]. This illustrates the impact
a well-executed penalty corner can have on professional hockey matches. Investigating the different
approaches in a penalty corner could help identify certain patterns. By optimizing these patterns,
the penalty corner execution could be significantly enhanced to increase scoring success.

For professional football, for instance, studies have demonstrated that winning football teams
generate more scoring chances than their opponent [Hea19]. This suggests that optimizing the
penalty corner could improve the performance and success of the Dutch hockey team.

This research investigates how various tactical approaches during a penalty corner influence the
likelihood of scoring. Using match footage provided by the Royal Dutch Hockey Federation (KNHB),
this study applies computer vision and machine learning to extract and engineer features from
video data. These features include both attacking strategies and the defensive responses of the
opposing team. By modeling interactions during a penalty corner, this study aims valuate the
success of various tactical approaches. The goal is to determine which strategies are most effective
for both attacking and defending teams.

2.2 Research Scope

This study focuses on analyzing penalty corners executed by the Dutch national field hockey team,
using video footage provided by the KNHB. The scope is limited to corners captured from a
top-down static camera angle, allowing for precise tracking of player and ball movements. The
analysis includes both attacking and defensive strategies, considering initial formations, player roles
and movements, ball trajectory and much more information.

Only penalty corners with a clear outcome are included in the dataset. Cases involving defensive
fouls that lead to a re-take or ambiguous results have been excluded to maintain clarity and improve
model reliability. The flowchart 1 below shows the possible outcomes of the penalty corner based
on the rules of [(FI23]. This flowchart also demonstrates which outcomes are included and which
cases are excluded to maintain a binary and robust target.
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Figure 1: Flowchart showing all possible outcomes of a penalty corner and which cases are excluded
for this research

2.3 Research goals

The primary goal of this research is to determine which approach leads to the most successful penalty
corner outcomes, for both attacking and defending teams. This will be achieved by developing
a machine learning model trained on features extracted from video data. In collaboration with
the KNHB (Dutch Hockey Federation), a research question has been thought out. The research
question that this paper will try to answer is:

“What is the most effective approach to maximize scoring, the aim of the attacking
team, and minimize goals conceded, the objective of the defending team, during a
penalty corner in field hockey?”

This question can be subdivided into sub-questions such as, “Which individual player features have
the most impact when trying to optimize the penalty corner?”, ”What is the most effective offensive
and defensive team behavior during the penalty corner?” and ”What are the worst offensive and
defensive actions during the penalty corner?”.

The answers to these sub-questions will be compared with existing insights from hockey strategy
literature to identify patterns and provide practical recommendations for coaches. Ultimately, these
insights will help structure the research and contribute to identifying the most effective penalty
corner strategies.
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2.4 Structure

This thesis is built up in multiple sections, starting with Chapter 2 that reviews related work in
the areas of sports analytics, computer vision, and machine learning. The focus will be on prior
research related to background subtraction, player and ball tracking. In Chapter 3, we introduce
the dataset provided by the KNHB and describe how the data was collected by different computer
vision techniques. This section explains how the raw video material was transformed into structured
input suitable for analysis. Chapter 4 outlines the design of the machine learning pipeline, including
data preprocessing, feature engineering, and the classification approach. In Chapter 5, we present
the experimental setup, evaluation metrics, and results, followed by a discussion of the model’s
performance in collecting data and identifying effective strategies for both attacking and defending
teams. Finally, Chapter 6 summarizes the main findings, discusses the practical implications for
coaches and analysts, and suggests directions for future research in tactical decision-making and
data-driven hockey optimization.

4



3 Related Work

3.1 Background subtraction

Background subtraction plays a crucial role in segmenting moving objects from static backgrounds,
enabling accurate object detection and tracking in dynamic environments [TKBM99]. There have
been many developments in different kind of approaches to subtract the foreground scenes from the
background. A basic background subtraction approach operates on the assumption that motion
occurs when the color or intensity of a pixel changes significantly over time [BJE+09]. While
individual pixel changes are used as indicators of movement, further processing is typically required
to group these pixels together to detect objects. However, since individual pixel changes do not
necessarily correspond to complete objects, additional processing, such as optical flow and connected
component analysis, is required to group related pixels into coherent object-level segments. This
can be summarized in the following equation [SHJ15]:

Xt(s) =

{
1 if d(Is,t, Bs) > τ,

0 otherwise.
(1)

Here, Xt represents the movement label at time t (also referred to as the motion mask), d denotes
the distance between Is,t, the video frame at time t for pixel s, and Bs, the background model
at pixel s; τ is a predefined threshold. The primary distinction among background subtraction
(BS) methods lies in how the background B is modeled and the specific distance metric d that is
used. The following paragraphs present an overview of various BS techniques and their respective
approaches.

By comparing the ‘non-moving’ pixels with the pixels ‘in-motion’, one can filter out the irrelevant
background model against the foreground objects of interest to primarily focus on these. Unfor-
tunately, a video often contains noise which complicates the method of using a global threshold.
Therefore, various methods have been developed to improve the robustness of background sub-
traction under changing lighting conditions, object occlusions, and noise. A couple of the most
well-known algorithms have been evaluated by Sobral and Vacavant [SV13]. They concluded that
their best methods were quite time and memory consuming and therefore suggested that Gaussian
Mixture Model scored relatively well with some others. Furthermore, they argued that background
subtraction is mainly for static background, which the videos of this research contain and thus
benefit from.

Higham et al. [Hig16] conducted a comparative analysis of background subtraction algorithms
and applied Particle Swarm Optimization (PSO) to determine the optimal algorithm for video
processing in EuroHockey 2015. Their study evaluated multiple background subtraction techniques,
including frame differencing, Gaussian Mixture Models (GMM), Dominant Color subtraction and
statistical background models. Their research indicated that the Temporal Median and the Gaussian
Mixture Model outperformed the other models, especially a combination with Frame Difference
is recommended. Ahmed et al. [AAAJ21] on the other hand, he demonstrated the effectiveness
of integrating Deep Learning-based object detection with traditional background subtraction
techniques.
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In summary, background subtraction remains a fundamental component of sports video analysis,
with ongoing advancements in adaptive modeling, optimization techniques, and deep learning
integration. Therefore, different approaches have been applied in this paper to investigate which
models delivered the best result based on the different kind of relevant foreground

3.2 Player detection and tracking

Traditional Methods for Player Detection
Player detection is a fundamental task in sports analytics and computer vision, enabling automated
tracking, event recognition, and performance analysis. The primary challenge in player detection
lies in occlusions, varying poses, lighting changes, and motion blur, all of which can affect the
robustness of detection algorithms. Various approaches have been developed over time, ranging from
traditional image processing techniques to modern deep learning-based object detection frameworks.

Early approaches to player detection relied on background subtraction, color segmentation, and
edge detection to separate players from the field. For instance, Darrel et al. [DGHW00] proposed a
multi-modal approach integrating skin detection, face detection, and disparity maps from stereo
vision to identify and track individuals. While effective in controlled settings, their method struggled
with lighting variations due to its reliance on a predefined color model.

McKenna et al. [McK00] introduced a multi-level detection system, where players were detected
using chromaticity based segmentation and gradient information.They demonstrated that color
histograms and silhouette extraction could effectively differentiate people from the background, even
in complex environments. Another notable contribution came from Harville [Har04] who developed
a plan-view mapping system to detect multiple people using height maps and occupancy grids.
While effective for surveillance applications, these methods often struggled with false positives
when detecting non-human objects with similar dimensions.

Another commonly used approach in early research is Histogram of Oriented Gradients (HOG)
combined with Support Vector Machines (SVM). Introduced by Dalal and Triggs [DT05], this
approach demonstrated its effectiveness in pedestrian detection. Mun õz Salinas et al. [MSAGS06]
further improved detection by incorporating stereo vision and background modeling, showing that
depth information significantly enhanced accuracy. Although HOG+SVM was a foundational step
in object detection, it was later surpassed by deep learning methods such as YOLO (You Only
Look Once) and Faster R-CNN, which provided faster and more robust detection under real-world
conditions. This shift was essential for applications requiring real-time tracking, such as player
detection in sports analytics.

Deep Learning-Based Player Detection
Deep learning has revolutionized computer vision by enabling automatic feature extraction and
hierarchical learning for object detection and tracking. Traditional methods relied on handcrafted
features such as HOG (Histogram of Oriented Gradients), SIFT (Scale-Invariant Feature Transform),
and Haar-like features. However, these approaches struggled with lighting changes, occlusions,
and complex backgrounds [OW13]. With the rise of Convolutional Neural Networks (CNNs), deep
learning models have surpassed these traditional approaches by learning feature representations
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directly from raw images. CNNs are highly adaptable and generalizable, making them ideal for
real-time player detection in sports analytics [GLO16].

The use of deep learning for player detection has therefore been widely explored in recent years.
Ouyang and Wang [OW13] introduced a joint deep learning framework for pedestrian detection,
which optimized feature extraction, occlusion handling, and classification. This approach significantly
improved detection rates by allowing interactions between different feature components. Similarly,
Guo et al. [GLO16] reviewed how deep learning approaches such as Autoencoders, Restricted
Boltzmann Machines (RBMs), and CNNs have been applied to computer vision tasks, emphasizing
their superiority in object detection. Zhao et al. [Zha19] provided an extensive overview of deep
learning-based detection models like R-CNN, Faster R-CNN, SSD (Single Shot MultiBox Detector),
and YOLO (You Only Look Once), highlighting their improvements in accuracy and efficiency.

One of the most widely used deep learning models for real-time player detection is YOLO. Unlike
traditional region-based models that require multiple stages, YOLO performs detection in a
single forward pass, making it significantly faster. Ahmed et al. [AAAJ21] demonstrated how
YOLOv3 combined with Deep SORT tracking achieved real-time multi-player tracking in different
environments. In this setup, YOLO detects players, while SORT (Simple Online and Realtime
Tracker) ensures identity consistency across frames.

YOLO and Deep SORT
The combination of YOLO and Deep SORT has proven effective in various tracking applications.
Punn et al. [PSAR21] used YOLOv3 with Deep SORT to monitor social distancing violations,
where YOLO detected people in video streams, and Deep SORT assigned a unique ID to each
person, tracking their movement. Similarly, Meimetis et al. [MDPH23] modified Deep SORT to
track vehicles and pedestrians in real-time traffic monitoring.

In sports analytics, Buric et al. [BIKP19] showed how integrating YOLO with tracking-by-detection
methods like SORT and Deep SORT significantly improves player tracking accuracy. Their research,
which focused on handball player tracking, found that Deep SORT enhances tracking performance
by handling motion prediction and re-identifying players after occlusions.

This combination of YOLO and Deep SORT is directly applicable to this research in tracking
field hockey players during penalty execution. By using YOLO for player detection and Deep
SORT for maintaining consistent player identities, this study ensures accurate motion tracking,
player positioning assessment, and movement analysis. Even under challenging conditions, such as
rapid direction changes, occlusions, and varying backgrounds, deep learning-based tracking ensures
accurate evaluation of penalty execution and strategic play in field hockey.

Despite these advancements, no automated video-based tracking system currently exists for field
hockey penalty analysis. Hockey penalties are still analyzed manually, making the process time-
consuming, subjective, and inconsistent. This research aims to bridge that gap by applying YOLO
and Deep SORT for player tracking, enabling automated movement analysis to distinguish team
strategies during penalty execution. This system ensures accurate, unbiased tracking, provides
objective performance metrics, and offers scalability for broader sports analytics applications.
By leveraging YOLO for player detection and Deep SORT for identity tracking, this study is
able to handle rapid movements, occlusions, and varying backgrounds. This system will enhance
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performance evaluation, coaching strategies, and field hockey analysis.

3.3 Ball detection and tracking

Tracking fast-moving objects and predicting movement is crucial in sports analytics. Balls, players,
and other objects move quickly, change direction frequently, and get occluded. To track and predict
their movement, researchers have developed various methods based on speed, angle, and trajectory
analysis.

Early methods for detecting fast motion in sports relied on frame differencing, optical flow, and
trajectory based models. Yu et al. [YLXT07] introduced a trajectory based ball detection system
for soccer. Their method tracked candidate ball positions across frames, helping to eliminate
false positives. The study showed that motion consistency over time is key to distinguishing true
movement from background noise or occlusions. Similarly, Zhang et al. [ZXT10] applied stereovision
and velocity estimation to track a fast-moving table tennis ball. Their system predicted landing
and striking points based on the ball’s speed, making it useful for dynamic sports like field hockey.

For ball detection in handball, Buric et al. [BIKP19] compared YOLO and Mask R-CNN for
fast-moving object tracking. Their results showed that YOLO is faster, while Mask R-CNN provides
more precise localization. The study emphasized the importance of combining speed and acceleration
data with visual features like color and shape for better accuracy. Predicting movement is just
as important as tracking it. Chakraborty and Meher [CM13] developed a trajectory interpolation
method to estimate missing ball positions in basketball videos. Their approach helped track balls
even when they were temporarily hidden or occluded.

This research applies similar methods to field hockey penalty tracking. By using motion modeling,
speed estimation, color and size thresholds, and angle tracking, it ensures accurate and automated
analysis. This approach helps overcome the limitations of manual video review. Future improvements
could include deep learning models to further enhance trajectory prediction and shot classification.
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4 Methodology

In this chapter, we describe the methodology used to automatically analyze and classify offensive
and defensive strategies during field hockey penalty corners. The analysis is based on video data
provided by the KNHB, recorded from a static top-down camera angle as shown in Picture 2.
From these recordings, raw video material is transformed into structured data through a series of
computer vision and feature extraction techniques. Each penalty corner was manually reviewed to
determine its outcome based on the referee’s decision and the final result. The dataset originally
contained around 200 penalty corners, but some were excluded due to ambiguous outcomes. In
certain cases, defensive rule violations led to a retaken corner, making it difficult to assign a clear
result. Since model training is more effective with binary targets, these instances were omitted.
After this filtering process, the final dataset consists of 97 corners, each labeled as either a goal
(target = 1) or no goal (target = 0).

Picture 2: Top Static View of the Penalty corner

These videos are used to create a dataset that provides valuable information for Machine Learning
models to recognize patterns. The data is extracted using various visual approaches and models,
which will be discussed in this chapter. The methodology is divided into three main parts. First, we
describe the preprocessing of video data and the detection pipelines used to extract field elements,
ball movement, and individual players. This includes the implementation of various computer
vision techniques such as object detection, background subtraction, and edge detection. Second, we
outline how tactical features are derived from the detected elements, covering both player-level
and team-level metrics for offensive and defensive play. Lastly, we present the subgroup discovery
framework used to identify statistically significant patterns associated with penalty corner success
or failure. This process enables the extraction of interpretable tactical rules that support the final
recommendations. This entire process is visualized in Figure 3.
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Figure 3: Overview of the full computer vision pipeline from video input to subgroup discovery
used to analyze penalty corners

4.1 Video Preprocessing and Visual Detection

This subsection outlines the computer vision techniques used to extract raw positional and visual
data from the video recordings of penalty corners. Elements such as field lines, ball, and players
are identified and tracked frame-by-frame by using a combination of color space filtering, edge
detection, object tracking, and geometric transformations. These preprocessing steps form the
foundation of the entire analysis pipeline, enabling accurate detection of key events and formations
during the execution of a penalty corner.

4.1.1 Field element detection

Circle detection
To analyze the spatial structure of the penalty corner setup, a custom script was developed to
detect the top of the circle using a parabolic fitting method. This process begins with a color-based
segmentation technique, where white field markings are extracted using thresholding in the HSV
(Hue, Saturation, Value) color space. Unlike the RGB (Red, Green, Blue) color model, which

10



directly represents color using light intensities as discussed in the next section, HSV separates the
chromatic content (hue), the saturation (color intensity), and the brightness (value) of each pixel
[SQP02].

This separation makes HSV particularly effective for detecting white lines on the pitch, as it allows
the selection of pixels with low saturation and high brightness values, which are characteristic of
white regions [KYYW22]. Moreover, the HSV model is more robust to variations in lighting and
shadow, ensuring that slightly discolored or shaded white lines are still correctly identified as part
of the field markings. This isolates the white lines commonly found on the hockey pitch from the
background. Additionally, a background mask is applied to filter out non-relevant areas of the field,
such as the top border and the lower 30% of the frame.

Once irrelevant regions are removed, the remaining foreground is further processed through Gaussian
blurring, edge detection and morphological operations to reduce noise and enhance continuous
edges. Edge detection is performed using the Canny algorithm which was introduced by Canny in
1983 [Can86]. This algorithm finds boundaries or edges by detecting areas where the intensity of
an image changes sharply. These are often the outlines of objects, as portrayed in Figure 4. After
detecting edges, the result may contain broken or disconnected lines especially due to noise or
imperfect lighting. Morphological closing is therefore applied to ”seal” small gaps and link edge
fragments together, helping form continuous contours.

Figure 4: Edge detection performed using the Canny algorithm to find continuous edges and
boundaries

From the resulting edge image, contours are extracted and converted into a set of (x, y) points
representing line segments in the scene together with the applied top and bottom masks as depicted
in Figure 5a. These points are sorted and passed into a RANSAC (Random Sample Consensus)
regression model to fit a second-degree polynomial (quadratic curve), shown in Figure 5b. RANSAC
is selected for its robustness to outliers and partial occlusions, which are common in real-world sports
footage. Unlike conventional methods that use the full dataset and then remove outliers, RANSAC
begins by selecting the minimum number of points needed to estimate the model parameters
and then incrementally expands this set by including only consistent data points [FB81]. This
sampling-based approach makes it particularly well-suited for noisy environments [Der10]. The
resulting model estimates the parameters a, b, and c of the quadratic function y = ax2 + bx+ c,
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which defines the top arc of the penalty circle.

Figure 5: Visual pipeline for detecting the top of the circle. Figure a shows the extracted contour
points (in red) after HSV-based thresholding and masking. Figure b illustrates the RANSAC
regression fit (green curve) applied with identified inlier points (blue) to approximate the circle arc.

To improve robustness, the script fits parabolas over several frames (e.g., frames 3 to 5), and the
resulting coefficients are averaged to obtain a stable estimate of the circle’s curvature as shown
in Figure 6. In later frames, this average curve is drawn onto the video, providing a clear and
consistent reference for the top of the circle. This reference is essential for defining critical tactical
zones and for calculating player positioning and approach angles relative to the top of the circle.

Figure 6: Visual representation of the circle detection process, showing the result after edge detection,
contour extraction, and quadratic curve fitting using RANSAC.
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Baseline Detection
Following the circle detection approach, the baseline of the hockey field is identified using a similar
combination of color-based segmentation, edge detection, and post-processing techniques. As before,
the white field markings are extracted in the HSV color space, and a background mask is applied
to filter out irrelevant regions of the frame, particularly the top corners and upper border.

Once masking is complete, the image is converted to grayscale and processed using the Canny edge
detector. The resulting edge map is passed through the probabilistic Hough Line Transform to
extract straight line segments which idea was originally introduced by Hough in 1962 [Hou62]. To
isolate the baseline specifically, detected lines are filtered based on orientation, favoring horizontal
vectors, and their y−position within the frame. Only those with an angle close to zero degrees, a
minimum length of 60% of the frame width, and located within the bottom 25% of the image are
retained.

Compared to the circle, the baseline is more frequently fragmented due to visual obstructions such
as defenders standing near or over the line, as well as the presence of the goal. To overcome this, a
line merging algorithm is applied that combines short, nearly parallel, and spatially close segments
into longer, continuous lines. This is based on both angular similarity and spatial proximity.

The result is a robust and interpretable baseline representation, which serves as a spatial anchor for
calculating relative player positions and distances. Figure 7 shows an example of the fitted baseline.
In this image, multiple red lines are detected due to visual gaps or player movement along the
baseline. From these segments, the algorithm calculates an average slope and extracts representative
x−, y− coordinates to reconstruct a stable geometric baseline. This estimated baseline provides a
reliable foundation for analyzing player movements and overall team strategies.

Figure 7: Example of detected baseline (red) and top of the circle (green) overlaid on the original
frame. The baseline is reconstructed by averaging the orientation and location of detected line
segments.
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4.1.2 Ball Detection Pipeline

To accurately detect the ball during a penalty corner, it is essential to first reduce visual noise and
exclude irrelevant parts of the frame. The first step focuses on removing fixed, non-relevant regions
of the video frame which contains the crowd. This is done by applying a custom mask over two
triangular areas in the top corners and a rectangular region at the top of the frame. This mask
is applied before any analysis, ensuring that distractions and false positives from static areas are
eliminated early in the process. This mask is applied for across the ball, player and team data, and
is implemented before any analysis. This ensures that distractions and false positives from static
areas with people and movements are eliminated early in the process.

After the static regions are masked, a mask is applied that focuses on detecting motion be-
tween frames. This study starts with applying a color conversion code that converts RGB images
(Red-Green-Blue frames) into a grayscale image with Grayscale conversion. This saves a lot of
computational effect and enhances motion accuracy as a RGB image is represented by:

IRGB = (FR, FG, FB) (2)

Where FR(x, y) is the intensity of the pixel (x,y) in the red channel, FG(x, y) in the green channel,
and FB(x, y) in the blue channel, while a grayscale image only has only one dimension and intensity
F (x, y) [KV10]. The Grayscale approach takes the luminance of each pixel using a weighted formula
that reflects how humans perceive brightness [Cad09]. On top of that, a histogram equalization is
implemented to enhance contrast and make small movement stand out more [ea87].

After these masks are implemented, a binary threshold is employed to isolate areas with significant
motion in between frames. This is further refined by computing optical flow to detect fast-moving
pixels, which are likely to belong to the ball. The optical flow is based on Dense Optical Flow which
calculates motion vectors for every pixel to characterize the change of structures in the image plane
[ea00]. By combining these steps, the script filters static objects and slow-moving elements out,
such as slow walking players or gradual lighting changes.

The next step is to filter the detected motion blobs to isolate only those that are likely to represent
the ball. Blobs are connected components, pixels, that are considerably denser than the surrounding
background [DMZ11]. Since many moving blobs can appear in the frame, further modification is
necessary. This is done using a combination of a visual characteristic, based on size, and motion
trajectory. The script starts with filtering out potential candidates by suggesting that the ball
blob must fall within a predefined area range of pixels. On top of that, for the initial detection, a
condition is applied requiring the ball to be located in the lower right corner of the frame.

After the initial visual filtering, motion patterns are used to further narrow down the potential ball
candidates and reduce false positives. This step is based on the assumption that, once played, the
ball moves faster and more consistently than any other object in the scene. To support this, the
script calculates the magnitude of optical flow vectors between frames to estimate the object’s speed.
Using this speed, it predicts the expected distance the ball would travel between frames. Combined
with the direction (angle) of the motion vector, the script determines the ball’s next location and
constructs its following trajectory. This filtering step, therefore, discards all the candidates that
do not follow the predicted path, either by deviating in angle or speed significantly. This parallel
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trajectory filtering ensures that only consistent ball movements are tracked across frames, improving
the reliability of the detection. Figure 8 shows the detected ball in red and the purple circles show
the predicted position in the next frame.

Figure 8: Frame showing successful ball tracking and prediction of the next position. The red
trajectory markers represent the detected ball in the current frame, while the purple circle shows
the predicted position for in the next frame. The green circles show possible candidates of the ball
that do not align with the trajectory of the ball. These circles are therefore seen as noise.

An important part of the pipeline is identifying the exact frame where the ball reaches the top of
the circle. This moment is critical for segmenting phases of play and engineering features related to
both offensive and defensive strategy. When the ball is temporarily lost due to occlusion or blur,
its trajectory is predicted using its prior motion vectors. This is visualized in Figure 9, where the
red circle marks the estimated position at the top of the circle based on previous frames. This
predicted moment is used to determine key tactical phases such as the initiation of the drag flick,
defender pressure timing, and team compactness.

4.1.3 Player detection and tracking

To analyze player movements during penalty corners, this method first detects individual players
using a deep learning object detection model YOLOv3 (You Only Look Once, version 3). This
algorithm is applied to each video frame to identify and localize players on the field. YOLOv3 is
chosen for its balance between detection speed and accuracy, making it well-suited for real-time
analysis in sports videos [JEL+22].

Once players are detected, their positions are tracked across consecutive frames using Deep SORT
(Simple Online and Realtime Tracking with a Deep Association Metric). Deep SORT builds on
the original SORT algorithm by incorporating appearance based feature embeddings and Kalman
filtering [MSAGS06]. This addition helps maintain consistent identity tracking across multiple
frames, even in frames in which players briefly overlap or get occluded.

15



Figure 9: This frame shows the predicted position of the ball in red at the moment it reaches the
top of the circle, after it was temporarily lost due to occlusions or unrecognizable shape.

This process results in a complete set of player trajectories, each linked to a unique player identifier.
After detection, the player IDs are re-assigned based on their horizontal (left-to-right) position for
both the attacking and defending team separately. This post-processing step ensures that player
identities remain consistent across different videos, allowing for reliable comparisons of individual
roles and movements. As this is a post-processing step, the IDs seen in Figure 10 are not sorted
yet, this will be done afterwards. These trajectories form the basis for further analysis of individual
and team behavior, such as positioning, movement patterns, and roles during a penalty corner.

Once players are detected and tracked, the next step is to determine which team each player belongs
to. This is done using a two-phase method that combines initial positioning and dominant color
clustering.

In the first phase, players are assigned to a team based on their initial position before the ball
enters the field, which occurs in the lower right corner of the video. Since both teams start from
well-defined positions, players can be grouped according to their relative location on the field. The
defending team consists of up to five players positioned in the goal area at the bottom center of the
frame. All other players are classified as attackers, as they are positioned closer to the shooting
circle, ready to execute the penalty corner. The referee is also identified based on their unique
positioning and excluded from both team labels.

In the second phase, the script analyzes the dominant color within each player’s bounding box,
reflecting their shirt color. Using K-Means clustering, players are grouped into two color-based
clusters, which are used to either confirm or update the initial team assignment. This approach
ensures that players are accurately classified, even if their initial position was unclear or if they
entered the frame in a later stage during the corner. The same approach is also used to identify the
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goalkeeper, which is necessary for analyzing defensive formations and anticipations. In this case,
the model only focuses on the previously identified defenders and applies K-Means clustering to
detect the color outlier within that group. Since goalkeepers are obligated to wear a distinct jersey
color, they can be reliably distinguished from their teammates using this method. The results of
this clustering process and team seperation is depicted in Figure 10.

Figure 10: This frame shows illustrates the team assignment. Players are detected and tracked using
YOLO and Deep SORT, after which they are classified as attackers or defenders based on their
initial positioning and dominant jersey color. The goalkeeper and referee are identified separately
to distinguish their separate roles.

4.2 Tactical Feature Extraction

With the key visual elements extracted, such as player positions, the ball trajectory, and field
boundaries, the next step is to convert this positional data into meaningful tactical features. These
derived variables allow us to evaluate not just where players and the ball are located, but how they
move and interact in the context of structured team strategies.

This subsection outlines how individual player metrics, such as positioning and movement variability,
as well as team-level indicators, including player distribution and formation structure, are extracted.
These features capture the strategic intention and coordination of both the attacking and defending
teams, and serve as essential input for the later analysis of penalty corner effectiveness. To distinguish
between team roles and their tactical opportunities and aim, this subsection is divided into offensive
and defensive strategic features. A complete overview of all generated features is provided in
Section 7 (Appendix).
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4.2.1 Offensive Features

Ball Features
To analyze the offensive approach of a penalty corner, it is essential to accurately track the ball and
extract relevant features. The first set of features concerns the speed of the ball, which is derived
from its movement over consecutive frames. In addition, the x and y coordinates of the moment
when the ball reaches the top of the circle are recorded, as this is the critical point where attackers
typically receive the ball and initiate a shot or pass. The results are shown in Figure 9 where the
centroid of the red circle is saved as the received top location. Finally, the model identifies which
pair of attacking players, positioned at the top of the circle, receives the ball to initiate the potential
shot or pass. The two sets of two attackers are positioned at the top to make it unclear for the
defensive team which player will receive the ball as explained by [Ass22]. This is demonstrated in
Picture 11. These features together provide a reliable basis for understanding how the play starts.

Picture 11: Showing the 2 sets of attackers of which one couple will receive the ball and initiate a
shot

Player Features
To characterize the behavior of attacking players during a penalty corner, we extract spatial features
for each attacker. Players are numbered from 1 to 8, ordered from left to right based on their average
horizontal (x-axis) position. For each player, their mean x and y coordinates are calculated, as well
as the standard deviation in both directions, to capture positional trends and movement variability.
In addition, we focus on three critical moments in the attacking sequence that typically represent
the following situations: 15 frames after ball reception (initiation of the shot), 25 frames after (shot
execution), and 35 frames after (ball release of the stick, ball going towards the goal). The x and y
coordinates of all attackers are recorded at each of these significant moments to understand their
relative positions and movements as the play develops. These features serve to assess both team
structure and potential passing options and rebound plays.

Team features
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Beyond individual player metrics, we also extract features that describe the collective positioning
and movement of the attacking team. At each of the three critical moments, 15, 25, and 35 frames
after ball is received at the top, we compute a bounding box around all attackers to capture the
area in which the attackers are distributed. The distribution has been further defined by taking the
standard deviation of the movement of the attackers. We also calculate the change in distribution
compared to the initial configuration, providing insights into how the team structure adapts as the
play progresses. In addition, we compute the mean Euclidean distance between each attacker and
the team’s center (mean position), as well as the difference in these distances between the initial
moment and the later frames. These features reflect the team’s compactness or expansion during
the penalty corner execution and help identify structured attacking formation and positioning
versus improvised or disorganized attacks.

4.2.2 Defensive Features

Player Features
Similar to the offensive side, we extract spatial features for the defending players during the penalty
corner. For each player we compute the mean and standard deviation of their x and y coordinates.
Additionally, the x and y positions of defenders are recorded at the same three critical moments, 15,
25, and 35 frames after ball reception. This parallel structure enables direct comparison between
the attacking and defending sides in terms of movement dynamics and formation discipline.

Team Features
To evaluate the defensive organization, we apply the same set of team-level features used for the
attackers: bounding box, spreadingness, mean distances to the team center, and changes in these
metrics across the three critical moments (15, 25, and 35 frames after ball reception). These features
capture how the defensive unit expands, shifts, or holds its structure in response to the developing
play.

In addition, we introduce a key feature unique to the defensive team, which is the initial formation
before the ball enters the frame. Based on professional field hockey tactics, we identify one of four
common defensive starting formations. This initial positioning is critical, as it lays the groundwork
for how defenders move and organize themselves in the following frames. It strongly influences the
team’s structure and coordination at the three key moments of the penalty corner. These three
moments, along with the defensive approach taken during each and the initial formation beforehand,
are central to how coaches assess and develop effective defensive strategies.

Then, after determining the initial formation, at each critical moment, we further assess whether line
stops are present. These are defenders positioned to the left, right, or both sides of the goalkeeper
to block potential shots aimed at the corners of the goal. Lastly, we evaluate defender pressure
by measuring how far defenders ran out from the goal area to pressure the shooter or intercept
passes. Again, the number of players, the distance and distribution is a key element in the tactics
of successfully defending a corner. All these features offer insight into the team’s tactical response
and adaptability under pressure of the scoring opportunity of the opponent.
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4.3 Subgroup Discovery Analysis

To analyze the relationship between tactical player behavior and penalty corner success, this
study applies Subgroup Discovery (SD) using the SubDisc tool [KGvDP21]. Unlike traditional
machine learning models that focus on predictive accuracy, SD is designed to uncover interpretable
subgroups—patterns within the data that are statistically associated with a desired target outcome.

Each discovered subgroup is defined by a logical rule (e.g., mean position y attacker 4 ≤ 113.4)
and is evaluated based on how well it separates successful from unsuccessful penalty corners.
Depending on the team role, the target class changes: for defending teams, success is defined as
target = 0 (no goal scored), whereas for attacking teams, success corresponds to target = 1

(goal scored). This role-dependent framing allows the SD process to identify strategic patterns that
are effective in both offensive and defensive contexts.

To evaluate the quality of each discovered subgroup, the Cortana Quality measure is used. Cortana
Quality is based on the Weighted Relative Accuracy (WRAcc) metric, a widely accepted measure
in subgroup discovery introduced by Lavrač et al.(1999) [lav99]. WRAcc captures the trade-off
between subgroup relevance and coverage and is defined as:

WRAcc(R) = p(Cond) · (p(Class | Cond)− p(Class))

Here, p(Cond) represents the relative frequency, or coverage, of the subgroup condition within the
entire dataset, indicating how often the condition is met. p(Class | Cond) denotes the proportion of
the target class (e.g., goal scored or not) within the subgroup, reflecting the local class distribution.
Meanwhile, p(Class) represents the overall class probability in the entire dataset. The term p(Class |
Cond) − p(Class) thus measures the contrast between the subgroup and the global distribution.
WRAcc, and by extension Cortana Quality, favors subgroups that not only occur frequently (high
coverage) but also display a meaningful deviation from the dataset average which (high contrast).
This ensures that discovered patterns are both statistically significant and representative enough to
generalize well in practical settings such as coaching strategy or match preparation.

Cortana Quality builds on the WRAcc measure by scaling its values to fall within the interval
[−1, 1], making it easier to compare subgroups across different datasets or experiments. A higher
Cortana Quality score means the subgroup is both relatively large (it applies to many corners) and
highly specific (the outcome in that group is very different from the average).

In addition, WRAcc has a useful geometric interpretation: it is proportional to the perpendicular
distance from the diagonal line in ROC space (Lavrač et al., 2004) [LKFT04]. This means that
subgroups with high WRAcc tend to have better true positive rates and fewer false positives,
making them more effective at distinguishing successful from unsuccessful corner strategies. For
this reason, Cortana Quality is particularly well suited for discovering tactical rules that coaches
can trust and apply, such as formations or movements that consistently correlate with scoring
or preventing goals. It offers both interpretability and performance, aligning perfectly with the
needs of sports analytics, where clarity and real-world relevance are just as important as statistical
accuracy.

In addition to defining the quality function (Cortana Quality), the subgroup discovery process
also relies on a set of configurable parameters that guide the search through the space of possible
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subgroups. One key parameter is the minimum coverage threshold, which determines the smallest
proportion of examples a subgroup must cover to be considered valid. In this study, we set a
minimum coverage of 10% to ensure that discovered subgroups were both statistically robust and
practically relevant. A maximum coverage of 90% was applied to avoid trivially large subgroups
that mirror the overall dataset distribution.

The beam search strategy was applied with a search width of 100, which determines how many
of the top-performing subgroup candidates are retained and expanded at each level of the search
tree to find the most promising candidates [MVC20]. SubDisc supports various search strategies
to guide this process. Depth-first explores subgroups along a single path to its full depth before
backtracking, which can yield deep but narrow coverage [Kor85]. Best-first evaluates all current
candidates and always expands the globally highest-scoring subgroup next, potentially missing
diverse or early promising alternatives. ROC-beam prioritizes candidates that maximize the area
under the ROC curve early in the search. In contrast, beam search limits the number of candidates
per level while still exploring broadly across different directions in the search space.

Beam search is selected because it strikes a good balance between efficiency and diversity. With
a search width of 100, the algorithm can retain and consider many promising subgroups at each
iteration, enabling a wide exploration of tactical patterns. This is especially valuable in our case,
where the dataset contains a high number of features derived from movement and positioning.
Beam search helps avoid being overly biased by the first few rules while still keeping the process
computationally manageable. It also increases the likelihood of finding multiple, distinct tactical
insights rather than just one optimal rule set.

For numeric attributes, the numeric strategy was set to best, which dynamically determines the
most informative way to split continuous variables at each depth. This setting evaluates all possible
split points for a numeric variable within a candidate subgroup and selects only the single best-
performing split to expand. This approach avoids arbitrary binning while maintaining computational
tractability. Other strategies supported by SubDisc include numeric bins and best-bins, which
generate bins at equal-width intervals within the current subgroup’s value range . The difference in
these two approaches lay whether all splits (bins) or only the best one (best bins) is retained. These
strategies help ensure that meaningful subgroup patterns are discovered even in high-dimensional,
continuous-feature spaces.

By setting these parameters and applying this technique to features, the subgroup discovery
framework enables the identification of statistically significant patterns that reflect successful
offensive and defensive strategies. These subgroups are then visualized through ROC curves and
form the basis of tactical insights presented in the next section.
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5 Results & Experimental Evaluation

The results of this study are presented in this section. As described in Section 3, a wide range
of features were extracted from video data to capture player behavior, team strategy, and ball
movement during penalty corners. Afterwards, these features were analyzed using subgroup discovery
techniques to identify patterns associated with successful and unsuccessful outcomes. In this chapter,
we present the most impactful single and combined feature conditions discovered for each team.
These results are then compared to known field hockey strategies to assess their tactical validity
and to provide evidence-based recommendations for both defending and attacking penalty corner
setups.

5.1 Computer Vision Results

Circle Detection
This detection method was manually tested on multiple frames and consistently produced a stable
and accurate representation of the circle. While the masks limit the region of interest, they do not
bias the model, but instead improve precision by reducing irrelevant noise. This was a necessity
given the fast-moving, visually complex scenes in penalty corner sequences. Because of this, no
precise detection accuracy percentage is provided, but visual inspection shows successful fits in
approximately 96% of the videos. Since this detection serves as a foundation for all subsequent
tactical feature extraction, it plays a critical role in determining the reliability of the results. If the
circle is not accurately detected, it can lead to misaligned reference points, which may distort the
extracted features and ultimately affect the outcome of the analysis.

Baseline Detection
To evaluate the accuracy of the baseline detection, the videos were also manually reviewed. While
the algorithm is able to detect the correct horizontal structure in all cases except one, due to rain,
very minor inconsistencies can occur when defenders or the goalkeeper obstruct the line. These
occlusions may lead to very small deviations in the y coordinates of baseline estimate and its slope,
which in turn could impact downstream features, such as player distance to the goal. However, since
this study used the average of all detected baselines, as shown in Figure 7, minor deviations are
accounted for. As a result, they do not affect the extracted features, making the baseline detection
method robust.

Ball Detection and Tracking
The accuracy of this detection step is crucial because it anchors time-based tactical features. If
the moment of reception at the top of the circle is wrongly detected, it can shift all subsequent
measurements (e.g., player distances, angles, or movement velocities), leading to unreliable feature
values. Although no exact percentage of accuracy is computed here, manual inspection indicates
that the pipeline correctly identifies or predicts the ball position in around 90% of all cases. The
remaining 10% of cases, in which the ball is lost or incorrectly detected due to noise, can significantly
distort the measurement of engineered features. As a result, improving the precision of ball detection
in these instances would substantially enhance the overall reliability of the analysis.

Player Detection and Tracking
The identification of players using YOLO was generally very successful. Even players positioned
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unusually, such as crouched defenders or those partially occluded, were reliably detected in most
frames. The Deep SORT tracking algorithm also performed well overall, maintaining consistent
player IDs across frames. However, in some cases, particularly during heavy occlusion or when a
player briefly left and re-entered the frame, the tracker incorrectly assigned a new ID to the same
individual. This type of identity switch can affect the reliability of engineered features, such as
the player’s mean position, movement variability, or their role in tactical formations at critical
moments. While exact accuracy cannot be quantified, we estimate that approximately 10–15% of
player tracks were affected by such mismatches.

The dominant color-based approach also performed well. The goalkeeper was accurately classified in
the majority of cases, with only 9 misidentifications out of the 97 analyzed penalty corners. Moreover,
assigning players to a team based on uniform color, without prior knowledge of the initial formation,
successfully identified several team members correctly. The use of a threshold-based method, where
players are labeled as “unknown team” when classification confidence is low, contributed to the
robustness of the approach by avoiding incorrect assignments. Overall, this method enables a
reasonably accurate team labeling process, which is essential for analyzing team strategies, spacing,
and individual roles during penalty corner execution.

5.2 Most Successful Defending Feature Outcomes

We start by focusing on the defending team. In a defensive context, a penalty corner is considered
successful when the opposing team does not score a goal, so target = 0. The following section
presents the top 5 single and combined feature subgroups that are strongly associated with successful
defensive outcomes. In this section, only features that reflect actions performed by the defenders
themselves are used. The aim of this study is to identify the most successful defensive strategies,
thus focusing only on these defensive features rather than reactive responses to the offense.

5.2.1 Single feature results

The results in Table 1 present the top five single-feature subgroups most strongly associated with
a non-scoring penalty corner. The first feature, T1 angle prev highest, reflects the movement
angle of the flyer, the highest out-running defender, at critical moment T1. This is a very common
strategy as it will pressure the attackers to play the ball fast [HC nd]. Moment T1 occurs shortly
after the ball is received at the top of the circle. This angle is calculated using the defender’s
initial formation when the ball enters the frame (the start of the corner) and current position. All
possible angle values are visualized from the red dot in Picture 12. An angle of −81◦, for instance,
corresponds to movement approximately 1 pixel upward and 0.15 pixels to the right (see Picture 12).
A threshold of ≥ −81◦ implies that optimal flyer movement should not follow a straight vertical
line (which would be −90◦), but instead follow a diagonal trajectory to the right. This aligns with
common defensive practice, where the flyer starts on the left or center-left side of the goal and
runs slightly diagonally right toward the ball receiver to pressure the shooter. This has also been
evaluated by Sportplan Hockey [Spo24]. Such positioning allows the flyer’s forehand to align with
the shooter’s forehand, increasing the likelihood of intercepting a drag flick or blocking the shot line.
This implies a flyer starting position on the left of the goal; however, the data on initial formations
is not robust enough to make a definite statement about this.
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The second, third, and fourth features highlight the spatial and movement behavior of the defender
identified as defender 2, the second defender from the right. While this player can either serve as a
flyer or a line stopper depending on the team’s formation, Picture 13 illustrates how defender 2 can
be located to the left of the goalkeeper. This is one of the two roles that defender 2 can perform during
the corner; the other role is serving as the flyer. The condition mean position y defender 2 ≤ 375
indicates that this player should not remain deep near the baseline (y ≈ 400), which is typical for
a line stopper. Similarly, mean movement 35 defender 2 ≥ 98 at T3 (35 frames after reception)
suggests significant movement, unfitting with the relatively static line stopper role. Combined with
the condition mean std dev x defender 2 ≥ 13.3, which indicates greater horizontal variation, the
data supports the recommendation that defender 2 should act as a dynamic flyer, rather than
a static line stopper. The data, therefore, suggests that defender 2 should actively run out to
challenge the ball, rather than remain fixed near the goal line.

The fifth condition focuses on T2 angle prev middle, referring to the movement angle of the
middle-most outrunning defender at T2, the moment the shot is initiated. A threshold of ≥ −95.3◦

again implies an out-running vertical movement, possibly with a slight curve. This aligns with
typical tactics where the middle defender is also running out to help the flyer with pressuring the
ball from the sides as demonstrated by nfhca (national field hockey coaches association) [Ass22]. In
this way, the defenders reduce direct shooting opportunities by supporting the left and right side of
the flyer. Therefore, the middle outrunner is either the left most player, running slightly rightwards
to the top, or represents the most right defender and is expected to run toward the top of the circle
in a straight line or slightly leftwards. The most right and left defenders cover the sides of the flyer
by standing in a line from the shooter toward the goal, beyond the reach of the goalkeeper, as
depicted in Picture 14. Based on these features, we cannot determine whether the data prefers the
right or left player to serve as the middle outrunner. We can only conclude that the middle runner
should still move upwards at critical moment T3 and not shift too far to the right.

Picture 12: Illustrating all possible movement angles that players can take, calculated from the
point of intersection.

24



Coverage Quality Target Share Positives Condition

45 0.3710 0.8889 40 T1 angle prev highest ≥ −81.38

45 0.3185 0.8666 39 mean position y defender 2 ≤ 375.47

36 0.2968 0.8888 32 mean movement 35 defender 2 ≥ 98.06

58 0.2914 0.8276 48 mean std dev x defender 2≥ 13.32

42 0.2762 0.8571 36 T2 angle prev middle ≥ −95.25

Table 1: Top five single-feature subgroups associated with successful defensive corners (Target = 0)

Picture 13: Showing the ball in yellow and the flyer in red and his movement when the ball has just
arrived at the top of the corner. Picture a shows the initial formation, followed by a flyer run out in
picture b and the angle between these movements represent T1 angle prev highest. In this case,
the angle will be slightly larger than −81.38◦

Picture 14: The yellow circles in picture a represent the positioning of their feet in a following
frame b. It illustrates a situation in which the possible angle the middle out runners make satisfy
the condition of this subgroup discovery as being the most right or most left player

To interpret the values in Table 1, it is important to understand what each metric represents. The
coverage column shows the number of corners that match a specific single-feature condition. For
instance, the top condition (T1 angle prev highest ≥ -81.38) is present in 45 out of the 97
corners. Of those 45 corners, 40 were successfully defended, which corresponds to a target share of
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88.9%. This is considerably higher than the overall success rate (baseline) of 73.2%, suggesting that
this condition is associated with a higher-than-average chance of defensive success.

The Cortana Quality score is a normalized metric ranging from −1 to 1. A score greater than
0 indicates that the subgroup contains a higher proportion of the target class (e.g., successfully
defended corners) than the overall dataset, whereas a score below 0 suggests that the subgroup
performs worse than the baseline and thus worse than random selection. This quality score accounts
for both the size of the subgroup (coverage) and its consistency (target share), while also comparing
it to the overall class distribution. Higher CQ scores reflect patterns that are not only more
concentrated in positive outcomes but also more distinctive relative to the dataset as a whole.
Therefore, a high CQ value such as 0.3710 suggests that the identified subgroup is both statistically
meaningful and tactically relevant.

Although the earlier results highlight the top 5 single subgroups based on Cortana Quality, the
combinations shown in Figure 15 (ROC curve) represent those that most effectively discriminate
between positive and negative outcomes across the full dataset. These are selected to maximize
the area under the ROC curve (AUC = 0.738) for the target value of 0, which reflects a successful
defensive penalty corner. As a result, the ROC-based rule set includes a different combination of
features, such as T2 percentage uitloop middle and Mean Distance Defender Difference T1,
that score lower in individual quality but work well together. This difference arises because subgroup
quality is locally optimized, whereas the ROC curve captures global classification performance.
T2 percentage uitloop middle therefore asks the middle defender to not run further than 67.8%
of the circle, probably to ensure rebound control and to support the flyer. Mean Distance Defender

Difference T1 refers to the total average difference of the defending team in comparison to their
initial formation. Therefore, this suggests that the defending team should play dynamically and
actively run outwards, away from the goal, with multiple defenders.

5.2.2 Multiple feature results

In addition to single-feature subgroups, several combined conditions emerged as strong indi-
cators of effective defensive penalty corner execution, as shown in Table 2. These combina-
tions reflect even more nuanced tactical decisions. The first combination includes the conditions
mean position y defender 2 ≤ 375.47 and mean position x defender 3 ≥ 414.39. The lower
y-position of defender 2 again suggests that this player should actively run out, avoiding deep
positioning near the baseline. In contrast, defender 3, often positioned slightly wider, should not
drift too far left but instead remain more central or right, with an x-position above 414.

If defender 3 acts as a line stopper, this helps ensure that they protect the goal area effectively,
avoiding positioning too far right where they would be covering shots that would otherwise miss
the goal. If defender 3 instead acts as a flyer, a higher x-axis position ensures that the left side of
the goal is protected, while still applying pressure to the shooter near the center of the pitch. On a
standard 1100-pixel wide frame, moving below x = 414 would place the player closer to the left
side of the goal and further from the center, potentially leaving a critical area more exposed to a
direct shot.

The second subgroup is defined by two conditions, the horizontal variability of defender 1 must
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Figure 15: Showing the ROC with area under the curve of 0.738 for Target = 0. This fig-
ure shows the curve of the most successful defensive approach with the following conditions:
T2 percentage uitloop middle ≤ 0.679, T1 angle prev highest ≥ −81.384, Mean Distance

Defender Difference T1 ≥ 58.891

be at least 10.38, and the Bounding Box Area Defenders T3 of all defenders at frame T3 must
not exceed 51336. Here, defender 1, who is often assigned to the lower middle out-running role
[Ass22], should demonstrate a degree of horizontal variability in their movement, as illustrated
in Picture 14 with the yellow circle on the left. This implies that the defender should not run in
a straight line, but rather attempt to minimize the shooting area by forming a triangular shape
with the flyer and the other out-runner. This setup is highlighted by the orange lines showing the
flyer’s reach and the corresponding zones where the out-runners must provide coverage. The blue
lines depict their defensive reach with their sticks. A compact bounding box at T3 (the frame at
which the shot is executed) indicates that defenders should avoid spreading too widely. Instead,
they should form a tight unit, effectively reducing shooting lanes and blocking tip-in or rebound
opportunities. This positioning is especially effective for intercepting direct shots and neutralizing
unpredictable ball deflections or redirections by the attacking team.

The third combination revisits the condition T1 angle prev highest ≥ −81.38 for the flyer and
combines it with mean std dev x defender 3 ≤ 30.64. As discussed earlier, a flyer angle greater
than −81◦ indicates a diagonal rather than straight vertical movement, improving pressure on the
shooter by aligning the flyer’s forehand with the anticipated shot trajectory, as depicted with the
blue line in Picture 14.

The inclusion of defender 3’s horizontal variability further refines this subgroup. When defender 3

serves as a line stopper beside the goalkeeper, they should make only minimal lateral adjustments
to fine-tune their positioning relative to the shot angle and the goalkeeper’s coverage. If defender 3

instead acts as a flyer, their trajectory should remain direct and efficient, following the shortest path
to the top of the circle and avoiding unnecessary lateral deviations that could delay interception.

27



Both interpretations emphasize the importance of role clarity and disciplined movement for effective
penalty corner defense.

The combined-feature subgroups presented in Table 2 are particularly noteworthy due to their very
high target shares, ranging from 90.9% to 97.2%, meaning that nearly all corners within these
subgroups were successfully defended. Although the coverage of each rule lies between 34 and 44
corners, the high Cortana Quality scores, all above 0.40, demonstrate strong discriminative power.
These scores indicate that the identified patterns are not only significantly better than the baseline
success rate of 73.2%, but also statistically robust and tactically meaningful. The results reinforce
the importance of both individual defender positioning and collective team compactness at critical
moments during the penalty corner. Coaches should therefore use these combinations of insights
to train players on specific movement coordination that consistently lead to successful defensive
outcomes.

Coverage Quality Target Share Positives Conditions

36 0.4544 0.9722 35 mean position y defender 2 ≤ 375.47 ∧
mean position x defender 3 ≥ 414.39

34 0.4263 0.9705 33 mean std dev x defender 1 ≥ 10.37 ∧
Bounding Box Area Defenders T3 ≤
51336.0

44 0.4095 0.9090 40 T1 angle prev highest ≥ -81.38 ∧
mean std dev x defender 3 ≤ 30.64

Table 2: Top three combined-feature subgroups associated with successful defensive corners (Target
= 0)

Again, this ROC-curve represents some different features than discussed before, as seen in Figure 16.
T1 speed highest and T1 angle top highest are a mainly significant combination, as both fea-
tures have not been explained before. The first feature, T1 speed highest, indicates that the flyer
should run with a speed faster than 107 pixels at the moment the ball is received at the top. As
the baseline’s mean y is around 425 and the top circle y is 135, the flyer should have run with a
speed of approximately 5.3 m/s. The feature T1 angle top highest explains the angle the flyer is
making with the recipient location of the ball and the anticipated shot direction. Since this angle is
now measured from the top, the degree scale is different: 90◦ is a straight line toward the top, while
0◦ points directly to the right of the top. An angle larger than 48◦ suggests that the flyer should
probably run slightly rightward while keeping the angle smaller than a diagonal line (45◦).

For the best subgroups with a depth of three, the area under the curve increased slightly to 0.775
for Target = 0. However, this modest improvement, combined with the absence of notably new or
impactful features, led us to exclude these results.
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Figure 16: Showing the ROC with area under the curve of 0.758 for Target = 0. This fig-
ure shows the curve of the most successful defensive approach with the following conditions:
Mean movement 35 defender 2 ≥ 98.061 ∧ Mean std dev y defender 2 ≤ 103.664,
Mean position y defender 2 ≤ 375.474 ∧ Mean position x defender 3 ≥ 414.393,
T1 speed highest ≥ 107.927 ∧ T1 angle top highest ≥ 48.593.

5.3 Worse Defending Feature Outcomes

5.3.1 Single feature results

The following subgroups represent the 3 least successful defensive outcomes, where the target equals
1, indicating that the opponent scored. These results are based exclusively on defensive features.
The first subgroup from Table 3, mean position y defender 2 ≥ 376.12, was already discussed in
the previous section and once again highlights the importance of not allowing defender 2 to remain
too close to the baseline (around 380). This supports the notion that defender 2 should act as a
flyer, actively running out to apply pressure. The second and third subgroups involve the standard
deviation of the x-position for defenders 2 and 1, respectively. Both have low variability thresholds,
suggesting that limited horizontal movement is associated with unsuccessful defensive outcomes.
This aligns with expectations in high-level hockey, where defenders must remain adaptable and
mobile, adjusting their positioning laterally to respond to ball movement, attacker placement, and
potential rebounds. Therefore, a higher horizontal variability reflects more responsive and effective
defensive behavior.

The subgroups in Table 3 highlight defensive configurations associated with a higher success rate
than the dataset’s baseline of 26.8%. Each of these conditions results in a target share below 44%,
indicating that the majority of corners meeting these criteria led to a goal. The Cortana Quality
scores range from 0.2876 to 0.3466, which, while a little lower than scores for subgroups from
previous subsection, still reflect meaningful deviations from the baseline.

The ROC curve with an AUC of 0.728, shown in Figure 17, also emphasizes the importance of
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Coverage Quality Target Share Positives Condition

50 0.3466 0.4000 20 mean position y defender 2 ≥ 376.11

37 0.3196 0.4324 16 mean std dev x defender 2 ≤ 12.95

43 0.2876 0.3953 17 mean std dev x defender 1 ≤ 10.26

Table 3: Worst-performing single-feature subgroups associated with unsuccessful defensive outcomes
(Target = 1)

individual defender positioning and horizontal variability. Notably, the feature Mean Distance

Defender Difference T1 once again suggests that a greater level of dispersion among defenders
contributes to more successful defensive outcomes.

Figure 17: Showing the ROC with area under the curve of 0.728 for Target = 1.
This figure shows the curve of the worse defensive approach with the following condi-
tions: Mean Distance Defender Difference T1 ≤ 57.590, Mean std dev x defender 2 ≤ 12.954,
Mean position y defender 2 ≥ 376.115, Mean std dev y defender 3 ≤ 95.494

5.3.2 Multiple feature results

The combined subgroups at depth 2 do not show much new information and similar features as in
subgroup at depth 1. Subgroups at depth 3, however, reinforce the value of having fast defenders
who can run out effectively toward the top of the circle, creating defensive spread and disrupting
attacking plays. As the corresponding table did not yield many additional significant patterns, we
focus instead on the ROC curve with a clean trajectory and an AUC of 0.865, as shown in Figure 19.
This curve represents the best-performing rule set among all the compared depth-3 subgroups.

Notably, this is the first instance where the line stopper’s position is included as a predictive factor
for defensive success. Specifically, the left line stopper’s x-position at T3 is expressed as a percentage
relative to the horizontal axis, with the ball reception lo The rule indicates that the line stopper
should not be positioned more than 23the left of the ball reception point. A position further to the
left could place the defender outside the goal frame, unable to block any shot, as illustrated by the
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red line in Figure 18. Furthermore, if positioned too far left, the line stopper may be unable to
cover the vulnerable zone just outside the reach of the goalkeeper’s left side, his reach is indicated
by the light blue line in Picture 3. This vulnerability is particularly critical because, unlike the
right side, where the goalkeeper’s stick can offer protection, the left side relies heavily on proper
line stopper coverage.

Picture 18: Illustrating the correct positioning of the left line stopper with a green line adjusted to
current ball location. The light blue line demonstrates the reach of the keeper and therefore the
required support of the line stopper in the left corner.
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Figure 19: ROC curve with an area under the curve of 0.863 for Target = 1. This fig-
ure shows the curve of the worst defensive approach, based on the following conditions:
Mean position y defender 2 ≤ 376.115 ∧ Curr Spreadiness Defender T1 ≤ 40.214 ∧
Mean position x defender 3 ≥ 435.745
Mean std dev x defender 1 ≤ 10.261 ∧ Mean position y defender 3 ≥ 358.548 ∧
Mean std dev x defender 3 ≥ 2.687
Defender Lijnstop T3 Left ≤ -0.229 ∧ Mean std dev y defender 3 ≤ 88.011 ∧
Mean std dev x defender 3 ≥ 2.687
Mean std dev x defender 3 ≥ 2.687 ∧ Mean position y defender 2 ≤ 374.378 ∧
Spreadiness Defender Difference T1 ≤ 1.447

5.4 Most Successful Attacking Feature Outcomes

Following the analysis of defensive strategies, this section focuses on the attacking side of penalty
corners, where the objective is to maximize the likelihood of scoring (Target = 1). Out of 97
analyzed corners, 26 resulted in a goal, corresponding to a baseline success rate of 26.8%. As in the
defensive evaluation, player positions, movements, and tactical elements were extracted from video
data and analyzed using subgroup discovery methods. This chapter presents the most influential
single and combined attacking feature conditions associated with scoring outcomes. These results
are interpreted in the context of known offensive strategies in field hockey, aiming to identify which
tactical patterns contribute most to effective penalty corner execution.

5.4.1 Single feature outcomes

The analysis of the top single-feature subgroups is illustrated in Table 4. The successful attack-
ing penalty corners reveal several key positioning and movement patterns. First, the feature
mean position y attacker 4 ≤ 113.42 suggests that attacker 4, often the first pair stopper who
receives the ball often and therefore, he should remain positioned high near the top of the circle to
receive the ball as the mean top Y is Y = 135.38. This aligns with the view of nfhca (national field
hockey coaches association) [Ass22]. This illustrates that the player should stay outside the circle.
This positioning likely supports scenarios such as rebound control or counters, where the player
must be prepared to react quickly to a deflected ball.

32



Second, the feature mean movement 15 attacker 3 ≤ 56.01 indicates that attacker 3, typically
the shooter of the second couple koppel, should remain relatively stable in the early moments of the
play for rebound and for faking or actually receiving the ball. Additional support comes from the
complementary condition mean movement 15 attacker 3 ≥ 5.83, which shows that the attacker
should not be entirely static but make only minor, controlled adjustments to maintain formation
and adjust it position for an accurate reception.

The feature Angle to Top of Corner ≥ 176.38 emphasizes the importance of the approach angle
between the location of the reception of the ball and the top of the circle. This calculation is the
angle between baseline vector (pink) which is always from left to right and the vector between the
coordinates of reception region and the top circle (green). The angle between these two vectors
captures how directly the ball approaches the top of the circle relative to the baseline. Such a high
angle implies a location nearly horizontal leftwards from the top as depicted in Picture 20. This
supports that the top left of the corner and often the first couple has the most scoring opportunities
as shown in [Edu20] and that a clean and accurate pass from an inserter located on the baseline is
required.

Finally, the condition Corner X ≥ 503.0 confirms that the ball should be passed near the central
region of the circle (mean X = 505) and at least more rightwards than x-coordinate 503. This
location enables optimal shooting opportunities with shooting chances towards both left and right
regions.
When focusing on the performance, Table 4 presents the five most predictive single-feature subgroups
associated with successful attacking penalty corners (Target = 1). While the Cortana Quality scores
range from 0.2546 to 0.3185, and the target shares lie between 33.8% and 38.5%, these values still
represent a notable improvement over the baseline scoring rate of 26.8%. Importantly, the coverage
values are relatively high, each subgroup applies to over 50 corners, highlighting their practical
relevance while having a lower target share (consistency). Collectively, these findings reinforce the
importance of spatial positioning and precision in ball delivery to maximize offensive effectiveness.

Coverage Quality Target Share Positives Condition

52 0.3185 0.3846 20 mean position y attacker 4 ≤ 113.42

65 0.2930 0.3538 23 mean movement 15 attacker 3 ≤ 56.01

58 0.2865 0.3620 21 Angle to Top of Corner ≥ 176.38

71 0.2611 0.3380 24 mean movement 15 attacker 3 ≥ 5.83

64 0.2546 0.343 22 Corner X ≥ 503.0

Table 4: Top five single-feature subgroups associated with successful offensive outcomes (Target =
1)

Figure 21 presents the ROC curve with an AUC of 0.717 for Target = 1, indicating the most
successful offensive subgroup based on combined features. The condition Ball speed ≥ 460.79
highlights the importance of a fast injection, as a quicker pass provides attackers with more
opportunity to shoot while limiting defenders’ reaction time. Defenders therefore, have less time
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Picture 20: The pink line illustrates the baseline vector, always from left to right. The green arrow
shows the direction vector of the top of the circle (red dot) and the location of the ball reception
(yellow). This illustrates that the positioning of the ball is almost in a straight line opposite of the
baseline.

to run out and move to adjust their positioning for optimal defending. The remaining conditions
involving attacker 3 and attacker 4—already discussed in earlier sections—reinforce the need
for strategic positioning and controlled movement of the first couple to optimize scoring chances
during the penalty corner.

5.4.2 Multiple feature results

The most successful depth-2 subgroups, shown in Table 5, again emphasize the importance of
controlled movement by attackers 3 and 4, the first and often main couple, while also introducing
broader team-level spatial dynamics. The condition Y Mean Attacker T1 ≤ 140.71 suggests that
the average vertical position of all attackers at the moment of reception should remain close to the
top of the circle (with the average Y top circle Y = 135 as reference). This implies that while some
attackers can begin running towards the goal, a portion of the attacking team should remain lower
around the circle. This supports strategies that promote positional ambiguity, making it harder
for defenders to anticipate who will receive the ball, and also improves opportunities for rebound
control.

Additionally, the condition Bounding Box Area Attackers T1 ≤ 71858.0 indicates that at the point
of ball reception, attackers should not be overly dispersed. A more compact formation supports
faster passing options and coordinated execution, while maintaining enough spacing to remain
unpredictable and responsive. The subgroups in Table 5 exhibit relatively high Cortana Quality

scores, all exceeding 0.42, which indicates strong subgroup performance in terms of both purity
and contrast with the overall dataset. While the individual target shares range from approximately
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Figure 21: Showing the ROC with area under the curve of 0.717 for Target = 1. This fig-
ure shows the curve of the most successful offensive approach with the following conditions:
Ball speed ≥ 460.790 Mean position y attacker 4 ≤ 113.421, Mean movement 15 attacker 3

≤ 56.008 Mean std dev y attacker 3 ≥ 1.915

40.7% to 51.5%, which may appear moderate in absolute terms, they are notably higher than the
baseline scoring rate of 26.8%. This suggests that these combinations of features substantially
increase the likelihood of scoring compared to average penalty corners, as also demonstrated by the
Cortana Quality score.

Among all subgroup depths analyzed, the depth-3 subgroups stands out with the highest area
under the curve (AUC = 0.859) for attacking success. Two features stand out with the attackers as
Bounding Box Area Attackers T1 ≤ 71850 indicates that attackers should not be overly dispersed
at the moment of ball reception, supporting compactness for coordinated action around the goal.
The condition Spreadiness Attacker Difference T1 ≥ 0.798 on the other hand, introduces a
new insight that attacking spreadiness should remain at least 79% of the original formation, ensuring
sufficient spatial coverage for reacting to rebound balls which can be played towards any direction.
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Coverage Quality Target Share Positives Condition

51 0.4377 0.4313 22 mean movement 15 attacker 3 ≥ 5.83 ∧
Y Mean Attacker T1 ≤ 140.71

51 0.4377 0.4313 22 mean movement 15 attacker 3 ≤ 56.01 ∧
mean position y attacker 4 ≤ 123.04

59 0.4301 0.4067 24 Bounding Box Area Attackers T1 ≤
71858.0 ∧ mean movement 15 attacker 3

≥ 2.83

33 0.4284 0.5151 17 mean position y attacker 4 ≤ 113.42 ∧
Y Mean Attacker T1 ≥ 123.5

41 0.4209 0.4634 19 mean position y attacker 4 ≤ 113.42 ∧
mean movement 15 attacker 3 ≤ 55.47

Table 5: Top five double-feature subgroups associated with successful offensive outcomes (Target =
1)

5.5 Worse Attacking Feature Outcomes

5.5.1 Single feature results

The analysis of the worst-performing offensive subgroups from Table 6, where Target = 0, so no
goal is scored, with baseline 73.2%, reveals patterns related to suboptimal individual attacker
movements. The condition mean position y attacker 4 ≥ 113.44 suggests that the stopper of the
first couple remains positioned too close to the goal. To improve scoring opportunities, this attacker
should stay on the top of the circle. This player is namely a potential stopper and thus increasing
the chances to stop the ball for a shot and wait behind the circle for a potential rebound as shown
in Picture 20.

Additionally, the condition mean movement 35 attacker 3 ≥ 12.04 shows that the shooter of the
second couple exhibits excessive movement at critical moment 3 (when the shot is taken). A more
stable position may be necessary to maintain accuracy and control during the set play. Finally, the
condition mean movement 35 attacker 6 ≤ 7.07 highlights insufficient movement by attacker 6,
typically the one in a straight line from the initiator. This player is expected to tip the ball or
actively participate for a rebound. This player does not receive the ball so he should run towards
the goal. The relatively low movement observed may reflect a lack of participation, potentially
reducing the chances of scoring.

Table 6 demonstrate the performance of these features. While the Cortana Quality scores are modest,
ranging from 0.2611 to 0.3044, they still indicate a meaningful deviation from the baseline success
rate of 73.2%, particularly given the high target shares between 85.4% and 92.3%. These high target
shares in this context reflect a large proportion of unsuccessful outcomes within each subgroup.
The relatively lower coverage of some subgroups, especially the third (26 corners), indicates that
these patterns are specific but impactful. The ROC curve for the worst-performing single-feature
attacking subgroups, shown in Figure 22, yields an area under the curve of 0.708. This ROC-curve
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highlights limited or excessive movement by key attackers at critical moments, which may reduce
scoring opportunities.

Coverage Quality Target Share Positives Condition

44 0.3044 0.8636 38 mean position y attacker 4 ≥ 113.43

41 0.2621 0.8536 35 mean movement 35 attacker 3 ≥ 12.04

26 0.2611 0.9230 24 mean movement 35 attacker 6 ≤ 7.07

Table 6: Worst-performing single-feature subgroups associated with unsuccessful offensive outcomes
(Target = 0)

Figure 22: ROC curve with an area under the curve of 0.708 for Target = 0. This figure shows the
curve of the worst offensive approach, based on the following conditions:
Mean position x attacker 7 ≤ 512.078, Mean std dev y attacker 3 ≤ 1.826,
Mean movement 35 attacker 6 ≤ 7.071, Mean position y attacker 4 ≥ 113.435
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5.5.2 Multiple feature results

The double-feature subgroup is shown in Table 7. These features mainly focus on the y positioning
of the players and the distance moved. The conditions Mean Distance Attacker Difference T1

≥ 9.72 and Mean Distance Attacker Difference T2 ≥ 16.50 suggest that the attacking team
must deviate a lot from their their initial position, if you want to minimize scoring opportunities.
Excessive early deviation from the starting structure must therefore be mitigated.

Additionally, the condition mean std dev y att 1 ≤ 12.87 indicates that attacker 1, the most
left-positioned player who typically runs toward the goal for tip-ins or rebounds, exhibits too little
vertical variation. A greater range of movement in the y-direction increases the chance of connecting
with a deflection or rebound near the goal, and thus this limited y-movement likely reduces scoring
potential.

Coverage Quality Target Share Positives Condition

40 0.4057 0.925 37 mean position y attacker 4 ≥ 113.45 ∧
Mean Distance Attacker Difference T1

≥ 9.71

40 0.4057 0.925 37 mean position y attacker 4 ≥ 113.43 ∧
Mean Distance Attacker Difference T2

≥ 16.49

51 0.4030 0.8823 45 mean std dev y att 1 ≤ 12.86 ∧
mean position y attacker 6 ≥ 109.34

Table 7: Worst-performing double-feature subgroups associated with unsuccessful offensive outcomes
(Target = 0)

The ROC curve of depth 2 exhibits the same individual movement and positioning features already
discussed in this Chapter. However, by combining these into a double-feature subgroup, the overall
classification performance improves considerably, with the area under the curve increasing from
0.708 to 0.767. This combination provides a more reliable signal for identifying ineffective offensive
strategies.
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5.6 Perspective on data collection

This subsection provides a reflection on the data collection and feature extraction processes used
throughout the study. It discusses the performance and challenges encountered during the detection
of field elements, player movements, and ball tracking. Each subsection highlights specific limitations,
proposed improvements, and overall evaluations of the methods used, offering insight into the
reliability and robustness of the extracted data that formed the basis for the subsequent analyses.

5.6.1 Field detection

The detection of the field elements, including the top of the circle and the baseline, was successful.
The parabolic fitting approach combined with RANSAC proved to be effective in identifying the
top arc of the circle with high accuracy. This method produced a stable and well-formed curve,
even in the presence of partial occlusions, lightning changes and noise. Similarly, the baseline
detection performed reliably by focusing on horizontal vectors in the lower portion of the frame.
The algorithm was able to handle common visual obstructions, such as defenders standing near or
over the baseline, by merging shorter, nearly parallel line segments into longer continuous lines.
Overall, the field detection process provided robust geometric references that supported the spatial
analysis of player positioning and ball movement throughout the penalty corner sequence.

5.6.2 Player movements

The detection of players was generally successful using the YOLO algorithm, especially in frames
where players were clearly visible. However, the static top-down camera angle, filmed directly from
above the goal, presented certain challenges in identifying players and their team formations. In
several cases, especially during the initial moments of the penalty corner, the defensive formation
was difficult to distinguish due to the limited visibility of body features and the compactness in
which they start. From this perspective, players were often reduced to small objects where only the
backs of their shirts were visible, making it difficult to infer their posture or orientation.

Another challenge encountered during the collection of individual player data was the tracker
occasionally losing sight of a player. In several video sequences, the tracker would temporarily lose
a player and later reassign their identity incorrectly as a new individual. Although such errors
occurred infrequently, they affected the overall consistency of the tracking process. A potential
solution to this issue could involve a more advanced tracking approach that predicts a lost player’s
next likely position. This approach would be similar to ball tracking method, as it will compare the
possible location with the location of newly detected players. If the predicted and actual positions
are within a defined proximity, the new detection can be reassigned the identity of the previously
lost player.

Furthermore, assigning players to the correct team based solely on jersey color proved occasionally
unreliable, particularly under poor lighting conditions or when players were occluded. Despite
these limitations, the combination of YOLO for detection and a tracking algorithm for maintaining
temporal consistency performed effectively, providing an overall solid basis for analyzing player
movement and team formations.
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5.6.3 Ball movement

The detection of the ball, particularly from the inserter to the top of the arc, was generally successful.
However, tracking the ball beyond the reception point proved significantly more challenging due to
several limitations. The video quality was relatively low, creating a less sharp and clear representation
of the ball. Also, a hockey ball itself is small and fast-moving, making it difficult to detect with
traditional methods and gets easily mixed with noise of other irrelevant moving pixels and objects.
Compounding this issue is the fact that the ball’s appearance varies considerably between frames as
it will sometimes appear as a small dot, while in motion, it may blur into an elongated shape. This
inconsistent visual representation, especially when blended with the field lines or shadowed areas,
alters the ball’s color and shape. These challenges all make it difficult to isolate the ball using basic
color, shape and size thresholding techniques. As a result, tracking the ball during the shot phase
and rebound sequences was not reliably possible. Addressing this limitation would likely require
a more advanced approach, such as a deep learning-based tracking model trained specifically to
recognize the ball under a wide range of conditions, shapes, and motion blurs.

5.7 Perspective on Subgroup Discovery

The use of subgroup discovery proved highly effective in identifying the most successful defensive
and offensive approaches during penalty corners. The subgroup discovery tool, developed externally,
performed reliably and provided meaningful distinctions between different playing strategies. It
allowed for the clear identification of key features associated with successful and unsuccessful
outcomes, enabling the formulation of concrete tactical recommendations. Additionally, the tool
made it straightforward to explore more complex relationships through depth-2 and depth-3
subgroups, without significantly increasing the workload. The automatic generation of ROC curves
and visualization of results further enhanced the analysis, helping to validate findings and support
clear communication of the results. Overall, the subgroup discovery process played a critical role in
answering the research question and structuring the practical advice for optimizing penalty corner
strategies.
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6 Conclusion and further research

In this chapter, final summarized recommendations for both offensive and defensive penalty corner
strategies are presented. Based on the results of the subgroup discovery analysis, the most significant
findings are summarized into practical tactical advice. Furthermore, this chapter briefly reflects
on the extent to which the research question has been answered through the application of visual
computing and machine learning techniques. Finally, suggestions for future research directions are
discussed, identifying areas where further advancements can be made to enhance player tracking,
ball detection, and tactical analysis.

6.1 Final Recommendations Defensive Play

For the defending team, success was most strongly associated with dynamic and aggressive defender
movements. On individual level, the focus was mainly on flyer, defender 2 and 3. In particular,
the flyer (highest outrunner) should run diagonally upwards with a movement angle larger than
−81◦, applying early pressure on the shooter while aligning forehand-to-forehand to intercept shots.
Defender 2, positioned near the left of the goalkeeper, should not remain static close to the baseline
(around y ≈ 410), but must actively run outwards, ensuring a position further away from the
baseline. Furthermore, the movement of this defender at critical moment 3 should be substantial,
with enough variability in positioning, combined with sufficient horizontal movement variability.
Lastly, player 3 should avoid staying close to the baseline and showing a lack of movement. This
player should especially have a large variation in its y-coordination.

The tactic for most defenders contains horizontal flexibility, as indicated by the importance of a
greater standard deviation in their horizontal position. Additionally, defensive units should have
moved significantly by critical moment 1, while avoiding excessive dispersion at the moment of the
shot. This is important as maintaining a compact formation around the goal blocks direct shooting
lanes and prepares for rebounds. Nevertheless, the dispersion of the defenders should always be
somewhat larger compared to their initial formation. These findings highlight the importance of
fast, proactive defenders, role clarity between flyers and line stoppers, and maintaining compactness
during critical phases of the penalty corner.

6.2 Final Recommendations Offensive Play

On the offensive side, the most successful penalty corners emphasized precise player positioning and
fast ball movement. Focusing first on individual contributions, the first couple’s stopper (attacker
4) should remain high at the top of the circle (y ≤ 113) to control for rebounds and counters.
Meanwhile, the shooter of Couple 2 (attacker 3) should maintain limited but controlled movement
in the early phases to stabilize the setup. A fast ball pass by the inserter is critical, creating the
ball to reach a movement of over 460 pixels per second which is similar to approximately 21 m/s.
This helps minimizing defender reaction time‘and minimizing time to run out towards the top
of the circle to pressure the shooter. Additionally, the ball should ideally be injected toward the
central-right side of the circle (x ≥ 503), optimizing opportunities to shoot both left and right. The
highest scoring opportunities were found when the first couple executed the shot, rather than the
second couple. Therefore, the first shooter must show substantial movement at critical moment 3
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(when executing the shot), while the corresponding stopper should remain positioned close to the
top of the circle to receive and control the ball effectively.

Considering the team positioning, compactness at reception is required. This has been reflected by
a bounding box around attackers smaller than 71850 pixels2 to enhance scoring chances. Movement
towards the goal was essential, with the mean y-coordinate of attackers reaching at least 123-
124 at critical moment 1, allowing for greater presence near the goal for rebounds and tip-ins.
Additionally, the mean distance between attackers relative to their initial formation should not
become excessively large, ensuring sufficient spacing to react effectively to rebounds. These strategies
collectively indicate that offensive success hinges on controlled structures, strategic positioning,
fast ball injection, and maintaining options for rebound opportunities.

6.3 Conclusion

This study was done to answer the research question: ”What would be the most successful approach
for a penalty corner, for both the attacking and defending team?” Through the application of
visual computing, feature extraction, and subgroup discovery techniques, the analysis successfully
identified the key player and team behaviors most strongly associated with successful penalty corner
outcomes. By focusing on video footage captured from a top-down static camera angle, detailed
data on player positioning, movement patterns, and ball trajectories were obtained. The results
have provided clear tactical insights for both offensive and defensive strategies, fulfilling the primary
objective of this research.

Furthermore, the study addressed the proposed sub-questions by first identifying which individual
player movements contributed most significantly to successful outcomes. Secondly, it distinguished
between the most and least effective team behaviors for both attacking and defending situations.
These findings were compared against the limited existing literature on hockey strategies, providing
additional validation of their tactical relevance. In doing so, this research not only answered the
core research question but also generated actionable recommendations that can directly support
coaching practices. Ultimately, the integration of machine learning and visual computing proved
to be a powerful approach for enhancing tactical understanding in field hockey penalty corners.
Especially, considering the largely unexplored research area in this sport, this research represents
one of the first studies to systematically apply such methods in this context.

6.4 Further Research

While this research provided valuable insights into the tactical optimization of penalty corners,
there are several opportunities for further research. One of the primary limitations of the current
study was the relatively small dataset. Future work should incorporate a larger and more diverse
set of penalty corners, including footage from different tournaments, more teams, and playing
conditions. A broader dataset would improve the generalization of the findings and allow for deeper
analysis of variations in tactical approaches.

In terms of data collection, future studies could benefit from improving the ball tracking capabilities.
Although the initial injection phase was captured accurately, the ball was not followed after the
shot was initiated due to its small size, fast movement, and variation in appearance across frames.
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Developing a deep learning-based ball detection model, specifically trained to recognize the ball
under various motion and lighting conditions, would allow researchers to track the ball throughout
the entire penalty corner sequence. This would enable analysis of the most successful approaches of
a shot. Not only would this be beneficial to track the shot trajectory, but it would also help to
analyze rebound situations, tip-ins, and defensive clearances after the initial shot.

Additionally, more advanced tracking algorithms for players could be developed to address occasional
identity switches or tracking losses, especially under heavy occlusion near the goal. Incorporating
predictive tracking models that anticipate player movement trajectories could further enhance
tracking reliability.

Finally, future studies could explore more sophisticated subgroup discovery techniques or combine
them with other machine learning methods such as clustering or sequence modeling. This would
allow for the analysis of temporal patterns in player movements across longer sequences rather than
static snapshots, providing even deeper tactical insights into dynamic penalty corner phases.
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7 Appendix

Category Feature Names

Ball Information Ball speed, Distance to Top of Corner, Angle

to Top of Corner, Corner X, Corner Y

Couple Information First Koppel, First Koppel 1, First Koppel 2

Players & Teams Players, Defender Start Formation

Defender Line Stoppers Defender Lijnstop T1 Left/Right, T2

Left/Right, T3 Left/Right

Defender Positions (mean) X mean Defender T1/T2/T3, Y mean Defender

T1/T2/T3

Attacker Count Number of Attackers T1/T2/T3

Attacker Positions (mean) X Mean Attacker T1/T2/T3, Y Mean Attacker

T1/T2/T3

Attacker Spreadiness Curr Spreadiness Attacker T1/T2/T3,
Spreadiness Attacker Difference T1/T2/T3

Attacker Distance Metrics Mean Distance Attacker Difference T1/T2/T3

Attacker Bounding Box Area Bounding Box Area Attackers T1/T2/T3

Defender Spreadiness Curr Spreadiness Defender T1/T2/T3,
Spreadiness Defender Difference T1/T2/T3

Defender Distance Metrics Mean Distance Defender Difference T1/T2/T3

Defender Bounding Box Area Bounding Box Area Defenders T1/T2/T3

Defending Flyer and running
out Formation Peak Stats for
highest/middle/lowest out run-
ner at T1/T2/T3

% uitloop, % x from the reception of the

ball, speed, angle prev, angle top

Table 8: Overview of all the generated features for subgroup discovery
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Category Feature Names

Individual Defender Mean Posi-
tion (X/Y) for defender 1-5

mean position x/y defender (1–5)

Individual Defender Std Dev
(X/Y) for defender 1-5

mean std dev x/y defender (1–5)

Defender Movement for de-
fender 1-5

Individual mean movement 15/25/35 defender

(1–5)

New Defender Metrics (X/Y)
for new defender 1-2

mean position x/y new def,
mean std dev x/y new def,
mean movement 15/25/35 new def

Individual Attacker Mean Posi-
tion (X/Y) for attacker 1-8

mean position x/y attacker (1-8)

Individual Attacker Std Dev
(X/Y) for attacker 1-8

mean std dev x/y attacker (1-8)

Individual Attacker Movement
for attacker 1-8

mean movement 15/25/35 attacker (1-8)

New Attacker Metrics for at-
tacker 1-2

mean position x/y new att 1/2,
mean std dev x/y new att 1/2,
mean movement 15/25/35 new att 1/2

Unknown Players 1-3 mean position x/y unknown 1/3,
mean std dev x/y unknown 1/3,
mean movement 15/25/35 unknown 1/3

Label / Goal Target

Table 9: The continuation of all generated features for subgroup discovery
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