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Abstract

Handwritten mathematical expression recognition (HMER) is a subfield of optical char-
acter recognition (OCR) that has much potential for easier interaction with mathematical
applications especially in educational settings. This thesis focuses on making a cost-effective,
real-time capable HMER model by reducing the computational cost of a TrOCR-based model
while maintaining a similar prediction accuracy. Several methods are explored: a latex-specific
tokenizer is introduced, a tree-based inference approach is tested and finally the model is
distilled. The models are mainly trained and tested on the MathWriting [GFM24] dataset.
The final model achieves an accuracy of 0.79% and requires only around 34 GFLOPs per
prediction. For some training runs the ALICE GPU cluster of Universiteit Leiden was used.
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Demo

A demo of the model can be found at https://lk-bachelorproject.fly.dev/ The username
and password is bachelorproject, demo HMER. After the submission of this thesis, this demo will
be maintained on a best-effort basis. The used model might not reflect the final model of this thesis.

https://lk-bachelorproject.fly.dev/
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1 Introduction

Handwritten mathematical expression recognition (HMER) is a specialization of optical character
recognition (OCR). HMER could allow for easier interaction with digital math applications,
especially in educational settings. However, except for Photomath[Pho], HMER is not widely used
as a way to input mathematical expressions in applications. This might be due to the fact that
HMER is a much more difficult task than traditional OCR. The main reason for this is that no large
high-quality datasets exist that fully represent all of the various types of mathematical expressions.
This variety arises from the fact that mathematical expressions are used in many fields, such as
linear algebra, calculus, physics discrete math, logic et cetera. HMER can also not easily make use
of recent advances in OCR methods, since mathematical expressions do not have a linear order like
normal text and instead require a tree-representation.

In this thesis I will focus on improving the computational cost of running HMER inferences
with a TrOCR-based model in the setting of digital handwritten mathematical expressions input
with the goal of making an HMER model that is suitable for use in a “math expression input field”
for computer applications. The main priorities for a such a model are a very low computational
cost, high accuracy and low bias towards commonly used mathematical expressions. Having a low
bias is important mostly for educational applications, where students might be asked to remember
and write out some formula. In this scenario, a unclear and slightly wrong variant of a well known
formula, should not be “autocorrected” to the correct version since this could be abused by students
for cheating.

The research question of this thesis is the following: How can the computational efficiency of a
model for handwritten mathematical expression recognition be improved without compromising
accuracy?

2 Related Work

The OCR task has been extensively researched for several decades. This has lead to a wide availability
of OCR models that can be used for real-time OCR even on devices with limited computational
capabilities such as phones. Examples are STRIDE [MPA+21], Context-Free TextSpotter [YTD+21]
and PP-OCRv3 [LLG+22]. In contrast to this, the HMER task has been researched significantly less.
This might be due to the HMER task being inherently more difficult: Unlike general OCR where
the characters usually follow a simple left-to-right order, HMER has the additional complexity of
having to model the relationship between characters based on their position relative to each other
[And67]. HMER has also likely been researched less because its applications are not as broad as
OCR in general.

Previous approaches in the HMER field can be categorized into end-to-end models and multi-
step pipelines that usually first detect characters and then use some heuristics or another model
to infer a latex expression from the detected characters. An example of a multi-step approach
is the method proposed by Le and Nakagawa [LN16]. Most end-to-end models use an encoder-
decoder model similar to the non-HMER TrOCR model that is used as a basis for the models
in this thesis. The “Bidirectionally trained transformer” (BTTR)[ZGY+21] expands on the usual
left-to-right decoding approach by adding a right-to-left variant of the expression, which is decoded
simultaneously in order to improve prediction robustness. PosFormer[GLSY24] has a much more
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conventional encoder-decoder approach, but it adds positional information during the training
phase in order to achieve better model performance. This extra information is omitted during the
inference phase.

2.1 TrOCR

In order to answer the research question, a model that has not yet been optimized for computational
efficiency with decent accuracy is required. The previously mentioned HMER models are not a good
starting point since they have already been optimized for computational efficiency. Therefore, the
non-HMER TrOCR [LLC+23] model has been chosen as the base model for this thesis. The TrOCR
model is a powerful vision encoder-decoder model with a focus on making use of well-pretrained
encoder and decoder models. One advantage of this model is that it is an end-to-end model, meaning
that only minimal pre- and postprocessing is required for an inference and retraining it for the
HMER task does not require any additional logic. Additionally, apart from not being a HMER
model, its single line OCR task is similar to the goal of this thesis, as it is also focused on single-line
HMER. Lastly, it has a variant that is finetuned for handwritten lines of text. This makes it an
ideal starting point for this thesis.

Figure 1: An overview of the TrOCR architecture[LLC+23]

As seen in Figure 1 the inference is made up of several steps: First, the picture is split up
into image patches that are flattened and embedded using a patch embedding and a position
embedding[LLC+23]. These patches are then passed as tokens to the transformer vision encoder,
which encodes the information of the input picture in a fixed-size latent space. The decoder uses
the encoder outputs to auto-regressively predict the expression in the picture until it predicts the
end-of-sentence token. The last step is to use the tokenizer to detokenize the predicted tokens into
a string.
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The reason for the strong performance of the TrOCR model lies in the several training
stages[LLC+23]: In the first pretraining stage, the model is trained on 684 million synthetic
image and label pairs. In the second pretraining stage the model is trained on a different, smaller
synthetic dataset. The final training stage is the finetuning stage, where the model is trained on a
human-labeled dataset that is specific either to handwritten or printed text.

It is important to note that the different variations of the TrOCR models (base, small) differ
in more aspects than just number of layers: They use different base-models for encoder, decoder
and tokenizers.

The base model requires around one second of computation time on a modern multicore
processor, which makes realtime text-input on lower end processors found in typical phones
infeasible. In this thesis, most attention is put on trying to improve the computational requirements
of the decoder.

3 Methods

3.1 Problem definition

The single-line HMER task that this thesis addresses can be described as follows: The input is
an image I ∈ RH×W×3 of some mathematical expression with arbitrary dimensions H and W
with white background and black text. The expression should be roughly centered in the image
and it should be legible without too much difficulty. In the digital HMER context, the input
image I can also be represented as a set of line-traces instead of raw pixel values. The output
should be the math-mode latex-representation of the shown expression, excluding the dollar-sign
math-environment delimiters that are used in latex.

3.2 TrOCR preprocessing

Since the TrOCR model requires that the input image has some fixed, square dimensions, the image
first needs to be preprocessed. This is done by the TrOCR processor, which stretches the image to
the expected size. Additionally, the color of the image is normalized.

During training, the labels also have to be preprocessed by using the models tokenizer. The
tokenizer takes a the string of some label as the input and outputs a one-hot encoded array
L ∈ RN×|V | where N is the number of tokens that are required to encode the string and |V | is size
of the vocabulary of the tokenizer. |V | matches the amount of output that the decoder has at each
decoding step. To allow for batched training, the tokenized arrays are padded with a predefined
padding token at the end so that they have matching dimensions and can be represented as a single
tokenized label tensor.

3.3 Rendering

The final picture that is given as an input to the model should also be invariant to the resolution of
the screen that the user was writing on (scale invariance) and it should also always be positioned
in the center of the input image.

Digital HME are usually not represented as the image that the user saw when writing the
expression to the screen. Instead, digital HME are usually represented as 2D-point traces, so they
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first need to be rendered to an image before they can be given to the Vision-Encoder. It is important
that the traces are rendered the same way during training as during inference to minimize the
domain-gap between the training and the target domains. Using the original picture that was shown
to the user is inpractical because every device and application might render the expression in a
slightly different resolution and style and trace-data is a much more compact representation. In
order to achieve the required centering and scale invariance, the trace points are first centered
around their mean and then scaled by the reciprocal of the variance of the distances of all points to
the center. This normalizes the point positions without distorting the width and height dimensions.

3.4 Training

The model training process follows the same conventional image-to-text as the final training stage
used by TrOCR. In each iteration, the input images are rendered, stretched and normalized to
fit the input size of the encoder. The labels are tokenized, one hot encoded and padded, so that
all labels of the batch have the same length. The image is passed to the network and the decoder
predicts logits for all output token positions simultaneously. Since the model sequentially predicts
tokens during inference, an attention mask that prevents tokens from attending to future tokens is
used in the training process. After the model computes the logits, token probabilities are calculated
using softmax and the cross-entropy loss between the tokenized labels and the predicted token
probabilities is computed. Finally, the loss-gradient is calculated and the models weights are updated
using the AdamW optimizer [LH19]. The hyperparameters that are used are specified in Appendix
8. The training implementation of this thesis is based on the implementation of Romeo Sommerfeld
[Rom] which itself uses the Huggingface Transformers library[hug] and the PyTorch library [PyT].

3.5 Data Augmentation

Data augmentation is used to decrease overfitting. Specifically either random rotation of up to 15
degrees, random gaussian blur or randomly zooming out by up to 30 percent is applied.

3.6 Custom tokenizer

The tokenizer of the TrOCR model was originally trained for English text, which results in a
vocabulary that contains many tokens that are complete or parts of English words. These tokens
are not useful in the context of HMER, as mathematical expressions rarely contain English words.
On top of this, most of these English word tokens do not occur in the training datasets, which
means that the model would not use them even if an expression with an English word was given to
it.

The main drawback of having a large vocabulary is that the projection layers of the decoder
model have unnecessarily many parameters, which increases the RAM footprint of the model
significantly, especially during training.

To address this, the first method in this thesis is to change the tokenizer vocabulary to be a
better fit for the HMER task. The MathWriting Dataset [GFM24] contains a complete list of all
tokens that make up its labels, which will be used as the vocabulary for the new custom tokenizer
Math Tokenizer 1 (MT1). These tokens include such as upper- and lowercase letters from the Latin
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alphabet, LaTeX symbols for Greek letters like π and LaTeX macros like \frac. The full tokenizer
vocabulary derived from the MathWriting Dataset is listed in Appendix 8

One drawback of using the MathWriting tokens as the vocabulary is that they do not include
tokens for common mathematical functions like sin and log. As a result, the tokenized representation
of many expressions will be longer, requiring more computation time for decoding. This could easily
be resolved by adding character sequences that are common in mathematical expressions as tokens.

Using LaTeX tokens also has the advantage that LaTeX macros such as

\sqrt

can be represented as a single token instead of having to be split up into

\ sq rt

This has two effects: The decoding time of latex macros is reduced, since fewer autoregressive
prediction steps are required for them. Secondly, the decoder model does not have to learn which
token combination refers to which LaTeX macro. However, it is likely that this effect only becomes
apparent when the decoder model does not have extra capacity to learn such patterns, which seems
to only be the case for the distilled version of the decoder.

Figure 2: Tokenization comparison of original trocr-small tokenizer vs Custom tokenizer MT1

In Figure 2 some examples of tokenized expressions are shown. It shows how the token
boundaries are better aligned with the LaTeX tokens, but it also shows the disadvantage of using
this LaTeX-based tokenizer: some expressions require more tokens overall.

In order to address this, two more tokenizers will be tested: The MT1 tokenizer will be
extended by adding tokens for common mathematical functions such as “sin” and “cos”. The
resulting tokenizer is called MT4 in the experiments. Lastly, another tokenizer MT5 will be extended
with common syntactical combinations such as a double closing and opening bracket. Additionally,
tokens that are always followed by an opening bracket will be modified to contain the opening
bracket themselves. With these tokenizer variants it can be measured if there is a tradeoff between
speed and token information density.
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3.7 Decoder Distillation

Figure 3: Illustration of the decoder distillation process

A widely used technique of making models smaller and more computationally efficient to run is
knowledge distillation. In knowledge distillation, a smaller “student” model is created and trained
to mimic the outputs of the original “teacher” model. There are several different ways of defining
the distillation loss function, such as defining a loss that makes the students internal transformer
layers output similar values as the corresponding transformer layers in the teacher. Another way
of increasing the similarity between the student and teacher models is to add similarity based
loss between the embedding layers of the student and teacher model. However, in this thesis a
simpler distillation loss is used, that only trains the student model based on the similarity of
its outputs and the teacher models outputs. For this, the Kullback–Leibler divergence between
softmax-temperature-scaled output probabilities of the student and teacher models are calculated.
This distillation method allows the student model to have a completely different internal architecture
than the teacher model. This method has first been introduced by Hinton et al[HVD15]. The student
models are initialized using the teacher models’ encoder and a randomly initialized decoder with a
reduced number of transformer layers. During distillation, the only parameters that are trained are
the students’ decoder parameters in order to improve training and convergence speed. This process
is illustrated in Figure 3.

3.8 Tree-based inference approach

The tree-based inference approach is an alternative to the usual linear decoding method used
by most text-decoder models. The motivation for a different approach is that predicting latex
expressions using this method allows for preventable syntactical latex errors, such as not providing
the correct amount of arguments to a macro or having mismatching curly-brackets. In order to
avoid these syntactical errors the decoder needs to keep track of syntactical features of the latex
expressions like number of opened curly-brackets, which argument of which latex macro it is
currently decoding, etc. Consider the case shown in Figure 4, 5: The decoder needs to be able
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to decide wether to predict the “i” that followed the first “T” or to predict the “f” that is the
subscript of the other “T”. Additionally, it needs to remember to close the curly-bracket of the
subscript and the fraction macro.

In order to decrease the potential mistakes that the decoder can make when dealing with the
syntax of the expression the following tree-based inference approach was implemented: When the
decoder predicts a latex macro that has arguments such as \frac or the start of a sub/superscript
using _ or * the decoding process is split up into one branch for every argument of the macro and
one branch for the part of the expression that follows the current macro. To indicate the current
branch to the decoder, special branch indicator tokens such as <FRAC1>, <FRAC2> are inserted. The
<AFTER> token is used to indicate the part of the expression that follows the current macro.

Note that the resulting tree representation is different from the expression trees that represent
valid mathematical expressions. The tree representation in this thesis was made to still look similar
to the latex representation and to allow for invalid mathematical expressions.

An example of the resulting tree is visualized in Figure 6. During training, each sample is
copied for every possible tree path and the loss is disabled for the branch indicator tokens, since
these are inserted using custom decoding logic during the inference phase. For the visualized the
list of tree paths is the following:

\frac<FRAC1>V_<_>i

\frac<FRAC1>V_<AFTER>

\frac<FRAC2>T_<_>i

\frac<FRAC2>T_<AFTER>

\frac<AFTER>= \frac<FRAC1>V_<_>f

\frac<AFTER>= \frac<FRAC1>V_<AFTER>

\frac<AFTER>= \frac<FRAC2>T_<_>f

\frac<AFTER>= \frac<FRAC2>T_<AFTER>

\frac<AFTER>= \frac<AFTER>

This approach might increase the importance of earlier tokens during training which could be
addressed by a loss-scaling mechanism, however this might be counteracted by the fact that earlier
tokens also have a higher importance during inference; During training, the decoder is trained
assuming that the previous tokens have been predicted correctly meaning that one early mistake
will likely cause additional errors.

Figure 4: An example of an in-progress decoding

Figure 5: Another example of an in-progress decoding, paused at the second T subscript.
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Figure 6: A visualization of the tree representation of Vi

Ti
=

Vf

Tf
. The outlines show which subtree

corresponds to which part of the expression.

\frac<FRAC2>T_<_>

\frac<AFTER>= \frac<FRAC2>T_<_>

4 Datasets

In this thesis, I have been developing the model with several datasets. Each dataset is split into a 5%
validation and a 95% training split. The validation split has been set to 5%, since inference iterations
of this model are much slower than training iterations. Ideally a larger test split percentage should
be used, however since the main dataset that the models are tested on is already quite large 5% is
likely still sufficient to draw conclusions.

4.1 Aida Calculus Math Handwriting Recognition Dataset

The Aida dataset is a dataset of 100 000 synthetic images of HME, which have the appearance of
photos of HME written on paper [Pea]. The disadvantage of this dataset is that the structure of
the expressions lacks variety, as most of the expressions in this dataset start with lim.

The Aida dataset is available on kaggle, uploaded by “Aida by Pearson”. At the time of writing,
there seems to be no papers associated with this dataset.
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(a) (b) (c)

Figure 7: Three examples of the Aida dataset

4.2 Competition on Recognition of Online Handwritten Mathematical
Expressions (CROHME)

The CROHME 2023 is the 7th competition of its series. Each competition is associated with a
dataset of digital HME, which was expanded regularly. The CROHME dataset is the most commonly
used dataset in the digital HME research, since until recently very few other datasets of digital
HME were available publicly. The CROHME datasets each have a dedicated test split.

[XMSL+23]

(a) limz→∞zs (z) (b) −b−
√
b2−4ac
2a

(c)
[
2
3

(
1 + 9

4x
) 3

2 4
9

]4
0

Figure 8: Three examples of the CROHME dataset as they are presented to the model after being
stretched by the preprocessing step.

4.3 MathWriting (MW)

The MathWriting dataset is a large and high quality dataset containing 230 000 digitally written
HME in its training split [GFM24]. However, since it has only recently been published, few research
has been based on it. It also provides a validation data test split with 16 000 samples and a test split
with 8 000 samples. Additionally, it has 396 000 synthetic samples which generated by combining
characters of real samples. It is unknown how many participants have contributed, however it is
stated that approximately 150 different device types have been used.
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(a) Vi
Ti

=
Vf

Tf (b) ÕP /OP (c)
∫

1
xdx

Figure 9: Three examples of the MathWriting dataset as they are presented to the model after
being stretched by the preprocessing step.

5 Metrics

In order to measure if and how much the described methods can improve the models computational
efficiency without compromising on accuracy several metrics are required.

5.1 Accuracy

In this thesis, the accuracy is defined as the proportion of predictions where the final latex-expression
strings are an exact match to the label given as a value between 0 and 1. There are three other
definitions that could be considered: Exact match of the tokenized label and predicted tokens, exact
match of the latex tokens or exact match of the syntax trees of the two expressions. Comparing
the tokenized expressions could lead to under-reporting of the perceived accuracy, as one string
can have multiple tokenized representations with some vocabularies. Comparing the syntax trees
to calculate accuracy would be ideal, as this would measure the quality of the end result most
precisely.

The disadvantage of the accuracy metric is that it does not distinguish between a completely
wrong prediction and a slightly wrong prediction. Due to this the Character Error Rate metric is
also employed.

5.2 Character Error Rate (CER)

A commonly used metric for OCR models is the CER metric proposed by Thennal et al. [KJGK24]
for automatic speech recognition (ASR). It is an edit-distance based metric that is defined as
follows:

CER =
S +D + I

N

Where S is the number of character substitutions, D is the number of character deletions and
I is the number of character insertions needed to modify the label into the predicted label. N is the
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amount of characters in the label. As in the MathWriting[GFM24] paper, the MathWriting tokens
are used instead of characters, since long latex macros would otherwise strongly skew the metric.

In order to make the results in this thesis comparable to other models that are tested against
the MathWriting[GFM24] dataset test split.

5.3 GFLOPs

Since the goal of this thesis is to increase the computational efficiency of this model, it is important
to have a metric that measures how high the computational requirements of the model are. One
such metric is the Giga-Floating-Operations (GFLOPs) metric, which is simply the amount of
floating-point operations needed for some inference. It is important to note that the amount of
GFLOPs needed depends on the output itself for this model, since the decoder continues predicting
more tokens until it outputs an end-of-sentence token (or the limit is reached). The tokenizer
also has an effect on this, since it determines how many tokens are needed to represent a given
expression.

To measure the GFLOPs, a pre-set expression is tokenized, a random input is given to the
model, but at each decoding step the logits of the model are ignored and the pre-tokenized array
of tokens is forced to be the output. The GFLOPs are measured using the PyTorch profiler API.
This way, the real-world GFLOPs of the model are calculated with the assumption that the output
is correct. However, GFLOPs do not provide a full picture of the computational requirements of
a model, since there are more aspects such as floating point precision and the RAM requirement
during inference. This process is repeated for 6 randomly chosen expressions of the MathWriting
dataset:

p(z)=\prod_{n}(z-c_{n})

argmax_{W}\prod_{v\in V}P(v)

AI_{T}=100\times\frac{d}{n}

B=\frac{200+p}{200-p}

\frac{\frac{64}{252}}{(\frac{3}{\sqrt{10}})^{476}}

\hat{\alpha},\hat{\beta}

6 Experiments

In order to measure the impact that each of the previously described methods has, hyperparameter-
tuning experiments are run for each method that introduces new hyperparameters in order to show
the true potential of each method. In each series of experiments, the configuration that performed
best in the previous set of experiments is used as the base configuration.

If not specified otherwise, the MathWriting dataset will be used to train the models.

6.1 TrOCR model variant experiments

To find out which TrOCR variant is best suited as the starting point for this task, the two TrOCR
variants “microsoft/trocr-base-handwritten” [Mica] and “microsoft/trocr-small-handwritten” [Micb]
are trained on the MathWriting dataset. The difference between the models is not only the number
of parameters, but also the model architectures of the encoder and decoder models. The base
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variant uses the BEiT vision encoder with a RoBERTa text decoder which results in it having 333
million parameters. The small variant uses the DEiT vision encoder and a UniLM text decoder
which results in 66 million parameters. In these experiments the only previously described method
that is applied is the rendering 3.3 method, in order to have a baseline that the following methods
can be compared against. The results will be shown in Table 1

6.1.1 Results and Discussion

Table 1: Model Comparison Results

Method Name MW Validation MW Validation GFLOPs (↓)
Accuracy (↑) CER (↓)

Base TrOCR Variant 0.91 2.13 553.34
Small TrOCR Variant 0.87 2.50 58.56

From Table 1 it can be seen that the smaller TrOCR variant is a good starting point, since it only
has a slightly smaller accuracy and requires almost 90% less GFLOPs than the base variant.

6.2 Dataset experiments

Another series of experiments will show how the datasets can complement each other: A model
will first be trained on only MathWriting and once with all three mentioned datasets. To measure
how the other datasets affect the models performance on the MathWriting dataset, the accuracy
metrics will only be calculated using the MathWriting dataset in these experiments. The hypothesis
is that adding more datasets could allow the model to generalize better and therefore also allow it
to perform better on the MathWriting Validation set. In these experiments the small model variant
with the original tokenizer will be used. The results will be shown in Table2.

6.2.1 Results and Discussion

Table 2: Dataset Comparison Results

Method Name MW Validation MW Validation)
Accuracy (↑) CER (↓)

MW (previously small variant) 0.87 2.50
CROHME + AIDA + MW 0.76 4.47

As Table 2 shows, did not improve the accuracy on the MathWriting Validation set, proving the
previously made hypothesis wrong. One issue that might prevent the model from being able to
generalize better is that the latex expressions are not normalized consistently between the different
datasets and follow slightly different latex conventions. This means that the model has to learn
which dataset the presented expression is from to decide what latex normalization should be
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followed. It is therefore likely that correctly normalizing all expression labels is required to allow
the model to generalize better over the three datasets.

6.3 Custom tokenizer experiments

To evaluate which tokenizer has the best speed and accuracy combination we train models with the
three previously described tokenizers MT1, MT4 and MT5 and compare them. The MT1 tokenizer
is the tokenizer that simply uses the tokens that were specified in the MathWriting dataset, the
MT4 tokenizer has some added tokens for frequently used functions and finally the MT5 tokenizer
additionally has some tokens for frequently used combinations of syntactic characters. The results
are shown in Table 3.

6.3.1 Results and discussion

Table 3: Tokenizer Comparison Results

Method Name MW Validation MW Validation GFLOPs (↓)
Accuracy (↑) CER (↓)

Previous model (original tokenizer) 0.87 2.50 58.56
SMALL + MT1 0.88 2.31 57.08
SMALL + MT4 0.88 2.33 57.08
SMALL + MT5 0.88 2.36 52.50

As shown in Table 3 the CER and especially the accuracy metric are only slightly affected by the
tokenizer choice. The differences between the GFLOP requirements are mostly as expected, with
the exception that the MT1 and MT4 tokenizers resulted in the same amount of GFLOPs. The
reason for this is that the chosen test-expressions for the GFLOPs calculation (listed in section 5.3)
do not include any occurrences of the tokens that were added to the MT4 tokenizer. This shows
that more test-expressions should have been used to make the metric more reliable.

6.4 Tree-based inference approach

In the next experiment, a model is trained for the tree-based inference method and compared
to the previous model. The GFLOPs are not measured in this experiment, as it has only been
implemented for the normal sequential decoding inference.
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6.4.1 Results and discussion

Table 4: Tree-based Inference Results: This table shows the accuracy metrics of the tree based
inference experiment. The previous SMALL + MT1 run is also shown in this table to allow for
easier comparison.

Method Name MW Validation MW Validation
Accuracy (↑) CER (↓)

SMALL + MT5 (previous best) 0.88 2.36
SMALL + MT1 0.88 2.31
SMALL + MT1 + tree-based inference 0.84 3.20

The results in Table 4 show that the tree-based inference approach achieved 4 percent points lower
accuracy and 9 percent points more CER than its non-tree based counterpart. This might be due
to the training method used in the tree based approach. Unlike the training method that is used
for the non-tree based models, it puts much more weight on earlier tokens in the expression. This
might mean that the model looses the ability to correctly predict long expressions, which would
explain the decreased accuracy. A related issue might be that expressions with many branches occur
more often than expressions with few branches, which complicates the analysis of these results even
further. In conclusion, the tree-based approach might have potential, however its training process
requires more fine-tuning before it can meet or exceed the accuracy of the non-tree based models.

6.5 Decoder Distillation experiments

In order to get good distillation results, an appropriate student model size has to be found. There
are more distillation hyperparameter that can be tuned, such as learning rate and the ratio of soft
and hard loss, however these are kept constant due to time constraints. A student model will be
trained with [5, 4, 3, 2] decoder transformer layers and compared according to their MathWriting
CER and GFLOP requirements. The results will be reported in the Table 5.

6.5.1 Results and Discussion

Table 5: Distillation Results on MW Dataset

Method Name MW Validation MW Validation GFLOPs (↓)
Accuracy (↑) CER (↓)

SMALL + MT5 (previous best, teacher) 0.88 2.36 52.50
5 layers 0.82 3.33 47.90
4 layers 0.81 3.36 43.31
3 layers 0.80 3.48 38.71
2 layers 0.79 3.93 34.11
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In the results shown in Table 5 it can be seen that for each decoder-layer that is removed, the model
uses 4.6 GFLOPs less. For the distilled models it is also evident that each layer that is removed
decreases the accuracy almost exactly linearly as well. Interestingly, the CER metric does not follow
this trend: the CER gap between 5 and 4 layers is much smaller than the CER gap between 3 and 2
layers. This might show that having more decoder layers allow the model to recover from a wrongly
predicted token better than with fewer decoder layers. The most important observation that can
be made from these results is that the accuracy difference between the largest distilled model and
the teacher model seems to be notably high. Its accuracy scores are closer to the much smaller 2
decoder layer model than to the teacher model, which is an indication that the distillation process
could be improved. Apart from this, these results are quite expected: less decoder layers means
that the model has less capacity overall and can therefore not make as precise predictions. It is not
obvious which of these models can be considered to be the best, since even though the smallest
model has a much higher CER, it also requires much fewer GFLOPs.

6.6 Convergence behavior plot

Figure 10: The validation accuracy, CER and loss history of the SMALL MT4 model training

Figure 10 shows the typical accuracy and loss curve of the training runs: They very quickly an
acceptable accuracy and then continue slowly increase. It seems like the models might be able to
still improve by a few percentage points with more training, since there is a slight upwards trend
even towards the end of the training run. These plots also show that towards the end of the run
the three metrics do not behave exactly the same: the loss slightly increases, the CER seems to
converge to around 2.8 whereas the accuracy still seems to gradually improve.
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6.7 Final compilation of methods

Table 6: This table shows how each added method makes the model more accurate or less computa-
tionally expensive

Method Name MW Validation MW Validation GFLOPs (↓)
Accuracy (↑) CER (↓)

BASE 0.91 2.13 553.34
SMALL 0.87 2.50 58.56
SMALL + MT5 0.88 2.36 52.50
DISTILLED + MT5 0.79 3.93 34.11

As seen in Table 6, the final distilled model makes around twice as many errors however it uses less
than a tenth of GFLOPs. If GFLOP cost valued less, the undistilled version of the small model
using the MT5 tokenizer is the best tradeoff between accuracy and computational cost.

6.8 Failure case analysis

In order to demonstrate the limitations of this model, some examples of expressions that are not
recognized correctly are listed below.

Figure 11: This expression is recognized as: a+b+c−d+e+t−h
23

As seen in Figure 11 if there is one error the rest of the expression usually also has a higher
error rate. This could be due to the decoder being trained in a way that “assumes” that the part of
the expression that was decoded so far was correct.
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Figure 12: This expression is recognized as:

1 2 2 1 4 7
4 6 2 2 58
7 8 3 36


Figure 12 shows that the model struggles with large matrices. It is interesting that the model

is able to recognize such large matrices at all, since the dataset likely hardly contains matrices of
this size.

Figure 13: This expression is recognized as:

[
1 2
3 4

]
×
[
56
7 8

]
= X

Figure 13 demonstrates that the model often misrecognizes expressions that contain several
matrices.
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Figure 14: This expression is recognized as: f(x) = 12x+ 1

As seen in Figure 14 the model does not have a concept of what it means when a part of the
expression is crossed out. In this case it recognized the crossed out part of the expression, however
more often the expression is recognized completely wrong if some part is crossed out. Making a
model that can handle these cases as a human could is challenging, since no datasets has many
examples of such cases.

Figure 15: This expression is recognized as: 12467891234567891234

Long expressions, even if they appear to be simple, can cause the model to make errors even
at the beginning of the expression.

7 Further Research

There are many ways how the speed and accuracy of this model could be improved further. Since
this thesis was mostly focused on the decoder, the encoder likely still has much potential for
improvements. Since the decoder distillation has been shown to be very effective, distilling the
encoder model will most likely also work well. Another interesting extension would be to use a
variable aspect ratio vision encoder model, as the current approach of stretching the input image
to be square might not be ideal.

Furthermore, interesting extensions to the TrOCR model such as the Decoder-only DTrOCR
[Fuj23] can also be used as base models for the HMER task, which might bring an accuracy
improvement.

One improvement that is relatively easy to implement is early stopping. At the moment much
training time is spent on runs that almost fully converged long before that maximum iteration
count was reached. This training time could be spent better; for example for more variety in the
experiments. Some models also exhibit clear signs of overfitting, which could also be addressed by
early stopping. However, it is not trivial to decide when to stop: in many runs, the validation-loss
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metric starts to increase after some time, even though the accuracy and CER validation metrics
continue to improve slightly.

Finally the model could be quantized to a lower numerical precision to reduce real-world cpu
time without changing the number of GFLOPs.

8 Conclusion

The original goal of this thesis was to decrease the computational cost of an HMER model without
compromising on prediction accuracy. In this thesis I have implemented several methods to achieve
this, including distillation, trying a tree-based inference approach and using a tokenizer that allows
the model to be much smaller. In conclusion, the original goal of decreasing the computational cost
of the model has been achieved with an acceptable decrease in prediction quality. Several answers
for the research questions can be given: The computational efficiency of HMER models can be
improved by using appropriately sized models, adjusting the tokenizers to better fit the task and
by distilling the final model.
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MT1 Vocabulary

Below is the complete vocabulary of the MT1 tokenizer sorted alphabetically. Note that the first
element is a space. This vocabulary is based on the MathWriting tokens as described in Appendix
I of [GFM24].

! & ( )

* + , - .

/ 0 1 2 3

4 5 6 7 8

9 : ; < </s>

<mask> <pad> <s> <unk> =

> ? A B C

D E F G H

I J K L M
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Training Hyperparameters

Number of iterations: 1 000 000
Learning Rate: 2.5e-5
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