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Abstract

This report evaluates four different regression surrogates - polynomial regression, least-angle
regression, Lasso regression and Lassolars regression - on both a Walsh and multilinear
basis. These models were applied on pseudo-Boolean functions provided by IOHprofiler,
where the performance of a model’s approximation was measured by mean absolute error.
After comparing the approximation results, this report found that the Walsh basis always
outperforms the multilinear basis. The surrogates were optimized on both the Walsh and
multilinear basis, using Hamming-ball efficient hill-climber optimization. After a review of the
results, this report concluded that the Lasso and LassoLars Walsh surrogates were the overall
best performing models of those tested.
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1 Introduction

Psuedo-Boolean Optimization (PBO) problems represented in polynomial form have a wide
range of implications from economics to manufacturing | |. These problems are mappings
from a discrete input domain of binary input vectors, B € {0,1}", to outputs from the set of real
numbers, R. Binary values can be mapped to Boolean values such that T'rue — 1 represents the
presence of a variable and False — 0 represents the absence. This property is what gives it the
name pseudo-Boolean. They form a representation of the absence or presence of multiple variables,
where each variable’s presence or absence influences the variables they interact with, leading to
complex behaviors that vary by interaction.

An exhaustively search of all inputs in PBO problems is computationally expensive, as they
suffer from the curse of dimensionality. A PBO problem composed of 25 variables that is limited
to two variable interactions has a total of 326 learnable coefficients, one for each possible variable
interaction | ]. Without limiting the number of variable interactions, the same problem would
have coefficients 2%° = 33, 554, 432. This makes learning the most influential variable interactions
crucial for approximating such optimization problems when computation time is limited.

Current State-Of-The-Art (SOTA) models for approximating pseudo-Boolean functions for
optimization are Gaussian process regression based on Kriging’s approach, the radial basis function
network, and the Bayesian approach | |. All of these models use the surrogate modeling
framework to learn the function behavior for approximation. They do so by sampling training data
with known outputs and fitting the model to the data.

Recent research has emerged on the use of Walsh functions as a basis in surrogate models to
decompose pseudo-Boolean functions with promising results | |. The reason for the emergence
of this research is that using Walsh functions to calculate factors, such as fitness values, the fitness
distribution, and the best fitness, for a given Hamming distance, has a relatively fast computation
time | ]. This makes it more efficient for optimization compared to other techniques. The
Walsh decomposition can also be used to find crossover points and subproblems, both of which
are important when approximating combinatorial domains seen in pseudo-Boolean functions.
Additionally, the Walsh decomposition naturally forms an orthogonal basis that corresponds to
each set of variables interaction, defined by a maximum order. Walsh coefficients are also sparse,
meaning that there are only a few significant nonzero coefficients, which makes them well suited for
modeling pseudo-Boolean functions, as they are also sparse.

Since the other SOTA models use the surrogate modeling framework, by integrating Walsh
functions, they can be compared with standard SOTA models as a baseline. Since the current
research on Walsh surrogate models has been limited, this report aims to expand on how the Walsh
functions can be used for better approximations and which method works best in the context
of pseudo-Boolean functions. This will be done by evaluating the accuracy of various regression
surrogate models, described later, with a multilinear basis compared to a Walsh basis. The goal
of this is to determine which regression surrogate works best with the Walsh basis and how the
accuracy of the model is affected by the basis used. From there, the models will be optimized and
their results compared.



1.1 Thesis overview

This report is a bachelor’s thesis done under the supervision of Dr. Thomas Béck and Dr.
Furong Ye at the Leiden Institute for Advanced Computer Science. It investigates the performance
of various regression models on both the Walsh basis and the multilinear basis for approximating
and optimizing pseudo-Boolean functions. The code used in this report is linked in the Appendix.

Section 2 will go further into the formal definitions of pseudo-Boolean and Walsh functions
in addition to other relevant terminology and equations. Section 3 will review the relevant work
on current SOTA models for PBO. The surrogate models used will be explored and explained in
Section 4. Section 5 will describe the optimizer that is used on all the models. Section 6 will explain
the experimental setup and design for testing the models. Section 7 will review the results of the
experiments. The final Section 8, will conclude the report with an overview of what was done, the
limitations, and possible future work.

2 Definitions

2.1 Pseudo-Boolean Optimization

Pseudo-Boolean optimization is the mapping of a discrete search space to real numbers. As
such, a pseudo-Boolean function is of the form:

FiB" SR (1)

Where B is the set of binary values {0, 1}, R is the set of real numbers, and n is the dimensionality
of problem | ]. The goal of pseudo-Boolean optimization is to find the binary input vector that
maximizes or minimizes a given pseudo-Boolean function f.

Pseudo-Boolean functions can be represented as a polynomial function with a multilinear basis
by the following equation:

f(l‘l,...,l'n) = ZCSHI’J' (2)

SCV  jes

Where © = (21, ..., z,) € B™ forms the binary vector, V' = {1,2,...,n} is the set of variable indices,
S is a subset of indices of V', and cg is the coefficient corresponding to the interaction of the
variables indexed in S. For a function smaller than n, it is possible to evaluate every combination
of binary values. However, as more variables are introduced, the scale of pseudo-Boolean functions
grows exponentially, as the number of possible combinations is 2" where n is the degree of the
function. Each combination has a corresponding coefficient that needs to be approximated. This
quickly becomes computationally expensive as more function evaluations are needed.

2.2 Surrogate Modeling

Due to the high complexity in the amount of variable interactions in pseudo-Boolean functions,
it is computationally very expensive to optimize these problems using the function itself. Rather, a
surrogate model can be used to evaluate potential solutions in a much more inexpensive manner



[ ]. They work by learning from sampled data points of the function to make accurate pre-
dictions with less computation time. In the case of PBO, the surrogate learns from binary input
data and corresponding outputs to find the most significant variable interactions. The model keeps
the variable interactions that are deemed significant, while the less significant interactions can
be discarded | |. Since the amount of variable interactions is limited when approximating
pseudo-Boolean functions, the extraction of significant limited variable interactions to recreate the
original expensive function proves accurate and requires fewer function evaluations.

Common models for learning these functions are regression models, radial basis function net-
works, support vector machines, and Kriging’s Gaussian process | |. These models, specifically
regression models, Gaussian process models, and the radial basis function network, are considered
state of the art as surrogate models for pseudo-Boolean functions | .

Once the surrogate model has been built and trained, it can be used for optimization. Since
the surrogate model requires significantly fewer function evaluations, optimization occurs much
more quickly and cheaper than the original evaluation function. For these reasons, surrogate models
in pseudo-Boolean functions have great potential to improve the efficiency of optimization at a low
cost.

2.3 Walsh Functions

Walsh functions were created by and named after Joseph Leonard Walsh | ]. A Walsh
function is an orthonormal basis of a continuous or discontinuous function that can be used to
decompose functions containing real or complex numbers. A Walsh function ¢; for any integer
represented in binary [, is defined for any binary string x = (x4, 23, ..., z,) with n variables by:

pi(x) = (—1)Zm e (3)

Where [; and z; represent the i-th bit in the binary vectors [ and z. In other words, a Walsh
function with binary input x is a vector of values {—1,1} where each column corresponds to a
subset of variable interactions .

Each subset of variable interactions is retrieved from the full set of possible interactions. The
set of interactions is limited by the maximum order variable k, where the full set of variable
interactions has k£ = n. For each interaction, —1 is raised to the i-th bit-dot product of /; and z;.
Each binary input = and interaction [ produces one value, —1 or +1. To find the Walsh basis for a
single input z, each interaction [ must be evaluated with the input x as seen in equation 3. The
resulting basis for input z is a vector composed of {—1,1} where each column corresponds to an
interaction defined by I.

Consider, for example, a sampled input = = [0, 1, 0] for n = 3. The input sampled z states that
in this sample x; = 0, 9 = 1 and x5 = 0, where each x; is a variable. To find the equivalent Walsh
function when [ = [0, 0, 0]:

00,00/([0,1,0]) = (~1)Zi= bz = (—1)OOHODHOD — (4)

Thus, the Walsh function for these values is 1. In this case, [ is representative of the empty
interaction set for when = = [0, 1,0]. The complete Walsh basis for this  can be found for each
possible interaction [ by repeating this process. The results for this are given in the table below:



1 [0,0,0] [ 0,0,1] [ [0,1,0] [ [0,1,1] [ [1,0,0] [ [1,0,1] [ [1,1,0] | [L,1,1]
x=[0,1,0] | 1 1 1 1 1 1 1 1

This table is the Walsh basis vector for a singular feature z, where each column is a different
set of variables that interact, also known as a subfunction | |. When creating a Walsh basis
for pseudo-Boolean functions, the aim is to learn the corresponding Walsh coefficients for each
interaction [ that minimizes an error metric.

When considering multiple inputs beyond just x, a full matrix is produced in which each row
corresponds to the Walsh basis of an input  and each column corresponds to a subset of variable
interactions [. The full Walsh matrix with no limit on variable interactions would be 2" rows by 2"
columns | ]. Although there are many ways to generate Walsh functions, this report uses the
Hadamard matrix. Since the Walsh matrix is a variation of the Hadamard matrix, a Hadamard
matrix of degree n can be reordered to produce the corresponding Walsh matrix of the same degree.
This process is explained in more detail in Section 2.6.

2.4 Walsh Basis

Walsh functions are relevant in PBO as they can be used to preform the Walsh decomposition
of the functions | |. The Walsh decomposition is used to approximate functions with reduced
computation time. Pseudo-Boolean functions can be represented with a Walsh basis rather than a
multilinear basis, defined by equation 2. A pseudo-Boolean function, f, with a Walsh basis, f , is
defined by | |:

flz) =) di ¢ (5)

Where [ is a binary vector that represents a subset of variable interactions from the set of 2"
possible interactions and @; the corresponding learned coefficient for interaction [. Equation 5
generates the full Walsh basis for all variable interactions. This requires many function evaluations to
approximate, making it necessary to limit the number of interactions. The equation can be rewritten
to limit the number of variable interactions such that for every binary = € {0,1}"| ]:

file) = Y aa (6)

I where o(p;)<k

Where o is the number of binary values equal to 1 in [, known as the order of [. The variable k is
maximum number of variable interactions allowed. This means that the order of [, o(l), must be
less than or equal to k. Thus, the Walsh function with the max order k£ = 2 can be represented as:

n
Fa@)=ap+ ) (1" + > ay(—1)"F (7)
i=1 i<jeN

Each term « is a coefficient for a Walsh function. The term «g is a constant where the variable
interaction subset empty. The constant is equivalent to the average fitness function value of f

[ J

The coefficient for the interaction subset [, w;, can be found using the discrete Walsh-Hadamard
transformation. This will be explored in Section 2.6. Combining the resulting transform coefficients

4



with the Walsh basis produces the pseudo-Boolean function generated by the equation 6. This
process is known as the Walsh decomposition or Walsh transform of pseudo-Boolean functions.

2.5 Hadamard Matrix

As mentioned previously, the Walsh basis matrix is a type of discrete Hadamard matrix of
the same degree that has been reordered to sequency ordering [ . A Hadamard matrix is
composed of values {—1,+1} with orthogonal rows. A Hadamard matrix, when multiplied by its
transpose, results in the identity matrix of the same degree. Thus, a Hadamard matrix can be used
to find the corresponding Walsh matrix of the same degree. A Hadamard matrix of degree n can be
generated through the recursive relationship [ |:

Hy = [1] (8)
Hy = E —11] (9)
A (10

The rows of the resulting Hadamard matrix, when arranged in sequency order, are the Walsh
functions [ |. The reordering of the Hadamard matrix to sequency order is the main step in
the discrete Walsh-Hadamard transform.

2.6 Discrete Walsh-Hadamard Transformation

The Discrete Walsh-Hadamard Transformation (DWHT) is the Walsh decomposition of pseudo-
Boolean functions used to calculate the Walsh coeflicients | ]

The transform requires the Hadamard matrix generated by the recursive relationship in
equation 10. The rows are then arranged in sequency ordering. The sequency of a row is the
number of sign changes in the row halved. Sequency ordering is obtained by first converting the
row numbering to it’s binary value, starting at row 0. Then convert the row’s binary value into
Gray code and reverse the result. In the final step, the values are converted back to decimal form
[ |. In the case of Hy, where n = 2, the transformation occurs as follows:

1 1 1

-1 1 -1
1 -1 -1 (11)

-1 -1 1

H, =

—_ = = =

Row o 1 2 3
Binary 00 01 10 11
Gray Code 00 01 11 10
Reverse 00 10 11 01
Decimal 0o 2 3 1



The end decimal value is the new order of the rows:

1 1 1 1 row 0
1 1 -1 —1| row?2
1 -1 -1 1 row 3
1 -1 1 —-1] rowl

H, = (12)

Each row of the reordered matrix, Hy, is a Walsh function of degree 2. However, the transformation
is not necessarily complete. In addition to arranging the Hadamard matrix in sequency order, it
needs to be normalized to find the Walsh coefficients. Normalization is often done by multiplying

the sequency-ordered Hadamard matrix by — | ]:

1
WQn = 2—n[H2n] (13)
Where Hj» is in sequency order already. The final matrix Ws. is known as the DWHT transform
matrix. Continuing with the example above with n = 2, the DWHT transform matrix of H, is:

1 1 1 1
it 1 -1 -1
1 -1 -1 1
1 -1 1 -1

Wy =

=1 (14)

To find all the coefficients using the DWHT transform matrix, all outputs of the function
must be known and stored in a vector F | |:

£(0,0,...,0,0)
£(0,0,...,0,1)
~ | f(0,0,...,1,0)
Flan e wan) = 15000, 1 1) (15)
L f(1,1,..,1,1) ]
The complete equation to get the set of Walsh coefficients, «, is defined as follows |
[ oy ] [£(0,0,...,0,0)]
af} f(0,0,...,O, 1)
S ) :iHn' £(0,0,...,1,0) 16
“ Qu1,2} on " 1 £(0,0,...,1,1) (16)
_04{17.“7"}_ _f(la 17 Sy 17 1)_

Equation 16 requires all outputs to be known to find the set of all interaction coefficients a.

This is not useful for approximation; however, the interaction coefficients can be learned through

training a surrogate model on a subset of interactions. These approximate coefficients, &, are used
with the Walsh basis to generate predictions | ).

The Walsh coefficients, in addition to being used to represent pseudo-Boolean functions on

a Walsh basis, also demonstrate the strength of the interactions. A larger coefficient means that

the corresponding interaction has a stronger effect than an interaction with a smaller coefficient



[ |. The coefficients are therefore representative of the contribution a subset of variable
interactions has on the fitness output. This is very useful for approximation as it is known what
interactions are the most important to the function and which can be disregarded.

3 Related Work

In recent years, Walsh functions have emerged in pseudo-Boolean optimization models. Specifi-
cally, in surrogate models that approximate the pseudo-Boolean functions for optimization. This
section will go over these recent models and how they performed.

Florian Leprétre and coauthors investigated the use of Walsh functions in a surrogate-assisted
optimization framework | ]. They termed their model the Walsh Surrogate-assisted Opti-
mization algorithm (WSaO). Leprétre and co-authors compared their Walsh surrogate-assisted
optimization algorithm (WSaQO) with other SOTA techniques, including Bayesian optimization of
combinatorial structures (BOCS) and Gaussian process regression (GPR). They found that WSaO
worked best in the highest dimension tested, n=100.

Additional work by Sébastien Verel and collegues found that Walsh decomposition as a surro-
gate model had a similar accuracy to the Kriging approach when variable interactions were k=0
[ |. However, at k=1 and k=2, the Walsh surrogate was able to reach zero mean absolute
error in fewer function evaluations. While they found the kriging approach had better accuracy on
linear models (k=0) and required fewer evaluations, the Walsh surrogate converged faster.

Kevin Swingler also introduced a model for pseudo-Boolean optimization using Walsh func-
tions to decompose pseudo-Boolean functions | |. He introduces mixed-order hyper networks
(MOHNS) that utilize Walsh decompositions alongside a hypergraph representation and linear
parameter estimation to estimate the fitness. MOHNS use the Walsh decomposition to find rela-
tionships between the variables and uses that information to sample fitness evaluations. Swingler
concludes that MOHNSs require significantly fewer fitness evaluations compared to the possible
evaluations, thus building an accurate model with less sampling.

As mentioned in Leprétre’s paper, another SOTA technique for approximating these functions is
BOCS. A pseudo-Boolean function has a combinatorial domain, as each evaluation is a combination
of binary values assigned to the function variables. Previous Bayesian models were poorly suited
for pseudo-Boolean optimization because they suffered greatly from the curse of dimensionality
[ ]. Ricardo Baptista and Matthias Poloczek introduce a BOCS algorithm that is able
to deal with the high dimensionality of pseudo-Boolean functions | ]. Their BOCS algorithm
utilizes a statistical model with sparse Bayesian linear regression and a version of Thompson
sampling as an acquisition function. They test both semidefinite program (SDP) and simulated
annealing (SA) as optimizers for the acquisition function. They concluded that their BOCS model
outperforms other SOTA techniques of machine learning and combinatorial optimization.

Other common SOTA techniques include Kriging’s approach, also known as Gaussian process
regression (GPR), and radial basis function network (RBFN). Martin Zaefferer and co-authors
tested GPR and RBFN as surrogate models with efficient global optimization (EGO) | ].
They found that the EGO to be the best optimization method and Hamming distance to be the
most suited distance measure. The EGO with GPR outperformed the EGO with RBFN, however,
both EGO algorithms outperformed the other models tested.



4 Regression Models

Regression models are a type of supervised learning that aims to predict outputs from input data
composed of one or more independent variables | ]. When there is only one linear interactions,
meaning each varible does not interact with other variables, a simple regression model is used for
learning. This is equivalent to having £ = 1 variable interactions in the case of pseudo-Boolean
functions.

The regressions models this report tests are least angle regression, Lasso regression and Lasso-
LARS regression. Each of these models will be tested on different sizes of training data and as a
baseline, each Walsh basis regression model will be compared to it’s multilinear counterpart. The
aim of this is to see which regression works best for the Walsh basis and whether it outperforms
the standard implementation.

4.1 Simple Linear Regression

A simple regression is equivalent to linear regression where the model attempts to approximate
a linear function:

y=P0o+ Pz +e (17)

Where g is the predicted output at an input x. The input x is the independent variable, 3; is the
coefficient of input z and [ is the intercept. The € is known as the noise term or the estimated
error of each prediction. This can also be rewritten with a mean and variance function | ]:

m(z) = fo + bz (18)
var(x) = o* (19)
The variance represents the amount of error between the expected output of the mean function

m(x;) and the true output y;, so while the variance ® > 0, for each x; there is a corresponding
error term ¢; such that:

yi = m(x;) + € (20)

In order to learn the best parameters for prediction, linear regression uses ordinary least squares
[ |. Ordinary least squares works by trying to find estimators 5y and 3; that minimizes the
loss function | ):

n

RSS(Bo, 1) = Z[yz — (Bo + Brx) (21)

i=1
Where RSS(By, 81) is the residual sum of squares (RSS) of (5y, 81). The residuals reflect the
vertical error between the predicted g; and true y;. These estimators can be found by:

. SXY SD, SYy \'?
0= gxx = wgp, = (SXX) (22)
Bo=7— b7 (23)



Where 7 is the sample average of  and 7 is the sample average of y. Additionally, SX X is the
sum of squares of xs, SYY is the sum of squares of ys and SXY is the sum of cross products:

SXX =) (-7 =) (11— T)xy (24)
SYY = Z(Z/l —7)* = Z(yz — Py (25)
SXY =D (2 —T)(y—7) =Y _(r— Ty (26)

Finally, SD, and SD, are the sample standard deviation of the ys and xs respectively. The r, is
the sample correlation with s,, as the sample covariance:

_ SXY

Sey = (27)
Sy
oy = ——2 28
" = $D,SD, (28)
4.2 Polynomial Features

When there is more than one independent variable, multiple regression is used | . A
multiple regression model with k independent variables and n observations can be written | ]:

Y1 =Bo + Brxn + ... + By + €
Y2 = Bo + Brxar + ... + Brak + € (29)

Yn = Po+ Brxn1 + ... + Bk + €
Yi = Po + b1z + Pomio + ... + Brik + €, for i=1,2,...n (30)

This equation can be simplified by rewriting the terms as vectors:

Y =Xp+e¢ (31)

Where Y is the output vector, X is the inputs vector, § is the vector of learnable parameters and
€ the vector of error terms. As opposed to simple linear regression, where only the intercept and
slope, 8 = {fo, 41}, are learned, multiple regression learns multiple coefficients 8 = {5, 1, ---, Bk}
corresponding to different k variable interactions. However, both simple and multiple regression
have error terms € corresponding to an input and it’s expected output.

The multiple regression model works by transforming the input data into polynomial terms
such that linear regression can be performed | ]. For example, given an input vector X, ,us
with fourth features [x1, z9, x3, 24] containing 8 observations, when transformed into polynomial
features of degree 2, meaning only two variable interactions at a time, X, is transformed into
X

poly-



[o000] [ 0 ]
0001 Ty
0010 T3

o 0011 . T3 Ty

Kinput = 10101 | = Ty Ty (32)
1010 Tl - T3
0110 T2 T3
_0111_ _ZEQ - XT3 ZE4_
T1 To T3 Ty x? 2 x3

(21 0 w3 3] — (33)

l’?l T1T2 T1°X3 T1°Tyg4 o Tz To- Ty I3-:T4

The original 4 features were transformed into 14 features which is composed of the original 4
features and 10 new interaction features. Since z? = x; when working with binary variables, the
self-interactions can be discarded, making the final polynomial features set:

[.]71 To I3 x4] — [fEl Tog X3 Ty T1°-T2 1Tz T1-Tg T+ Tz To: T4 x3-$4} (34)

Thus for each of the 8 observations in Xj,,,:, the polynomial feature set is applied to these
observations resulting in the following matrix:

Xinput — Xpoly - (35)

OO = OO OO oo
_— O =, OO0 OO0
el =]
—_R OO~ =, OF O
DO OO oo
ORr OO o oo
O OO OO O oo
__ 0 OO O OO
_ o Ok OO OO
_ O O o= O OO

1 0 00

The final X, is transformed into one row of features where linear regression models can be used.
This means multiple regression minimizes a loss function, sometimes the same as in equation 21
used in linear regression, but a parameter [ for each feature in the vector 34.

The use of scikit-learns polynomial features is in all of the base regression models. However it
is not needed for the Walsh basis regression models. Rather than use the transformed raw input
data as the features which results in a multilinear basis, the Walsh models use the Walsh basis of
the input data as features. This means that the multilinear basis models pass 35 as the x train and
the Walsh basis models pass 14 as the x train.

4.3 Least Angle Regression

One of the regression model this report tests is Least-Angle Regression (Lars), also called
forward stepwise regression. Lars is able to find the set of solutions in m steps, where m is the
number of covariates.

The Lars model is composed of the active set, A, a vector of signs, s4, and a vector of
predictions, fi, a correlation vector for each prediction, ¢(ji), the predictors vector X and the

10



response vector y.
At initialization, the Lars model sets its components as follows | ):

A=10
s; = sign(c;) for j € A (36)
=0

The vector of predictions ji contains the predicted coefficients starting at zero and is used to
calculate the vector of correlations ¢(f1) where | ]:

c(p) = X" (y — f1) (37)
Such that the correlation ¢; is proportional to z; and the current residual vector.

After initialization, the first step is to select the predictor in X that has the absolute highest
correlation with the response y. Suppose that the predictor with the highest correlation is x;,. Lars
then updates the active set with x; with A =AU {j;} | |. Furthermore, the prediction vector
fv is updated in the direction of the selected predictor z;, with the following equation | ]:

fla = fio + VST (38)

Where v is the step length such that v > 0. The step length will be the largest possible in the

direction of the predictor that can be taken until there is another predictor, say z;,, with an equal
correlation with the residual. This variable is added to the active set.

Now that the active contains more than one predictor, rather than updating the predictions
in the direction of the new predictor x;,, Lars takes into account all variables in the active set. It
does so by updating the direction using the equiangular direction vector u 4 of the active variables.
The equiangular direction refers to the direction in which all variables in the active set are equally
correlated | |. In other words, each predictor in the active set now contributes equally to the
direction change.

Let the predictors in the active set be written as | |:

XA = (...SjIj...)jeA (39)
And let:

Gu =X Xu

Aa= (G317

With 14 as vectors of 1’s of equal length of the active set. Then the equiangular vector u 4 is:

(40)

UuA :XAUJA
_ 4 (41)
wg=AnG, 1a

The equiangular vector u_4 is a unit vector that creates equal angles less than 90°with the columns
of X4 and wy is a weight vector.

Xua=Aul
oI (42)
hal* =1

11



Assume that the Lars model has the estimate ji4 and the correlations:

¢= X'y = jia) (43)
Then define the largest absolute correlation as:

N

€ = maz (|3, (44)
Now find a in order to update fi4:

a= X'uy (45)
Finally, the Lars algorithm updates the predictions:

fla+ = fia+yua (46)
Where the step length v can be computed as follows:

C—Cj O+Cj) (47)

A .4

These steps repeat until all predictors are added to the active set. In summary, Lars uses stagewise
regression to make € small steps in the coefficients in the direction of the most correlated variable
to get more accurate predictions | ).

4.4 Lasso Regression

Lasso regression is a type of ordinary least-squares regression that has been constrained
[ ]. The way Lasso is constrained is while it minimizes the residual sum of squares it limits
the sum of the absolute values of it’s regression coefficients. This makes the Lasso model a type of
linear model that uses L1 prior to regularization | |. As a result, it is highly sparse, which
works well with pseudo-Boolean functions, as some interactions have little to no influence on the
response and Lasso models allow the regression coefficients to be equal to zero | .

Lasso controls the L;-norm of its coefficient vector 8 using a penalized least squares | |:

B, = argming(y — XB)" (y — 25) + a||6]|x (48)
With ||]]y [2714]:

181l = 18] (49)

Where p is the number of predictors or features and o determines the amount of shrinkage in
the coefficient vector. When o = 0, the model is equivalent to a regular ordinary least-squares
regression since no shrinkage is applied | |]. When « is large enough, 5, can shrink to zero

[ J
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4.5 Lasso-LARS Regression

The last type of regression that this report evaluates is Lasso-Lars regression. Since LARS is
closely related to Lasso, it has been shown that LARS can make a fast implementation of Lasso
[ |. If B with o = XB is a Lasso solution, then the sign of a nonzero @ The sign s; of 5;
must agree with the sign of the current correlation ¢; = x’;(y — j1) such that:

sz’gn(ﬁj) = sign(¢j) = s; (50)
This restriction is not included in the standard LARS model.

If a LARS step has been completed, resulting in a new active set A then its estimate fi4
corresponds to a Lasso solution i = X 3. Then, just as in LARS, the vector of weights is defined:

wa = AxG4' 14 (51)

Now, define a vector d with a length equal to the number of predictors. This vector is equal to
sjwy, for j € A and zero for j ¢ A. When the LARS direction is positive, it can be seen that:

pw(y) = XB(v)

S (52)
Bi(v) = B +d;
Again for j € A. Thus, 8;(y) will have a sign change at:
= —B;/d; (53)
With the first sign change happening at:
7 = ming,o(7;) (54)

For covarite ;.

It can be said that if 7 is less than the estimated 4, then §;(y) can’t be a Lasso solution for
v > 7 as the sign restriction in equation 50 will have been violated. This is because (3;(y) has
changed sign while ¢;(y) hasn’t, hence the violation.

To summarize, the integration of Lasso into the LARS model changes the update rule seen in
equation 46. That is, if ¥ < 4, stop the current LARS step at v =% and remove the index j of
covarite x5 from the next calculation in the equiangular direction. The new update rule for the
Lasso-LARS regression is as follows:

fia, = fra+ Yia
A+ =A —}
This rule replaces the LARS update in equation 46.

(55)

5 Hamming-Ball Efficient Hill-Climber Optimization

To optimize the approximated pseudo-Boolean functions, this report uses the same efficient hill-
climber (EH) implementation used by Florian Leprétre and coauthors as it is well suited for binary
optimization specifically in the case of Walsh functions [ |. The EH algorithm used was
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introduced by Francisco Chicano and coauthors for the purpose of PBO | ].

Chicano and coauthors define the r-ball neighborhood as a set of solutions for binary strings
of size n with a Hamming distance of r or less from the current solution. Hamming distance is
the difference between two binary strings where for each bit they have in common, one is added

to the distance. As such, the Hamming Ball score for an input z for a pseudo-Boolean function
f:B" = Ris | ]:

Su(x) = [z ©v) = f(2) (56)

For v,z € B" where v is the move or bitflip, and S,(x) is the respective score. The @ is the
exclusive OR bitwise operation. All possible scores for altered strings f(x @ v) where |v] < r are
stored in a vector that is updated as the new moves are tested. By storing the scores in this vector,
it makes it possible to find improving moves that are in a ball, or reside, in the radius r from the
current solution. This continues until either no improvements can be made or the preset budget
has run out.

Chicano and coauthors give the following pseudo-code for their Hamming-Ball EH | |:

Algorithm 1 Hamming-Ball Efficient Hill-Climber

best < None
while budget not spent do
x < Choose random solution
S < Compute the scores of x with regards to v with equation 56
while S, > 0 for some v € M" do
t < Choose an improving move from vector S
Update the score vector S with x and t
T—axDt
end while
if best = None or f(z) > f(best) then
best < x
end if
end while

The first while loop in line 2 ensures that the algorithm does not exceed the predefined budget.
The while loop in line 5 ensures that there are still improving scores.

While this algorithm was shown to perform well on Walsh surrogates when tested by Florian
Leprétre and coauthors, they used both EH and Bayesian optimization for their sparse linear
regression surrogate using a mutlilinear basis with varying results of which performed better
depending on the problem | |. This report will use the Hamming-ball EH for all regression
models. While the optimizer should perform well for the Walsh surrogates, it is worth noting that it
may be suboptimal for the multilinear surrogates, especially considering the Bayesian optimization
is a SOTA optimizer for pseudo-Boolean functions. This is addressed further in the section 8.
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6 Experiments

6.1 Benchmark

The models” benchmarks are problem sets provided by IOHprofiler’s experimentation problems
for PBO | |. This report will test both the NK-landscapes problem and the OneMax with
w-model epitasis problem, generated by IOHprofiler.

6.1.1 NK-Landscapes Problem

An NK-landscape (NKL) function is a mapping of function states to a fitness measure | ].
In other words, it evaluates the fitness of a set of inputs that form the representation of the state
of the function. The function has n components g where n is the amount of variables and g is the
set of components such that g = (g1, g2, .., g ). Each component g¢; can be in a variety of states
that depend on the fitness of the other components with which it interacts. Each component has &
components it interacts with; this is known as the max order of the function. When k£ = 0, each
component is considered independently without interactions, at k£ = 1, each component interacts
with one other component, making the function linear, and at k = 2, the function is quadratic, a
polynomial of degree 2. The degree of the polynomial representation of the function increases with
k and the higher k£ means more coefficients to estimate. As a result, fitness is found by adding the
fitness contribution of each component and getting the average | ]. The equation for fitness
can be seen below | ]:

1 n
= - G\ Lgy Lggy Ligy woey Lg 57
f(z) n;9($ Tiys Tigs ooes i) (57)

The NKL functions make for a very fitting set of problems to evaluate the models, as they very
clearly demonstrate how variable interactions influence the landscape of the fitness function | .
This makes them more closely aligned to some real world problems relative to other problem types

[ J

6.1.2 OneMax with W-Model Epitasis

The OneMax with w-model epitasis expands on the baseline OneMax model given by IOHpro-
filer’'s PBO set | |. The standard OneMax problem has a smooth landscape making it very
easy to approximate. It can be represented by the equation [ |:

{0,1} = [0...n],x — ixz (58)

The w-model introduces new alterations to the existing OneMax baseline, creating new functions
and features. The IOH w-model has 4 different transformations, but this report will focus on the
epistasis transformation. The epistasis transformation works by dividing an input x into blocks of
size v. Then a permutation e, is applied to each of these blocks, with e, defined as such:

ey - {0,1}" — {0,1}" (59)
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The permutation e, is chosen so that two neighboring blocks with a Hamming distance of 1 are
altered so that they have a Hamming distance of v — 1. Each of the new substring blocks is mapped
to another string such that:

(y(i—l)v+17 ey yw) = ev(x(i—l)v—i-h ey IEz‘u) (60)

The resulting landscape is much more rugged than the baseline OneMax problem. This problem
is well suited for testing the surrogate models as it’s ruggedness makes optimization more difficult,
as with each bitflip, there is a large change.

6.2 Models

All of the implemented models will use the Scikit-Learn framework | ]. The models
that will be tested are linear regression with polynomial features, Lasso regression, least angle
regression (Lars) and Lasso-Lars regression. The implementation of these models aims to expand
on current research on Walsh-based surrogate models for approximating pseudo-Boolean functions.
Since much of the current research focuses on one Walsh-based model compared with other SOTA
models, this paper expands this by testing multiple regression types to see which performs best in
terms of mean absolute error when using a Walsh basis.

The first evaluation of regression surrogate models will compare the use of a Walsh basis
instead of the standard basis. The equation for the Walsh basis of all interactions is defined by
equation 5 and the equation for the Walsh basis with a limit on variable interactions is given
by equation 6. This report uses the second equation 6 as the goal of surrogate modeling is to
approximate the model, not to learn all the coefficients. The multilinear basis is typical in surrogate
modeling techniques and is given by equation 2.

6.3 Experimental Setup

Each model will be tested on multiple instances of NKL problems, with each problem tested
5 times and averaged over those repetitions. The models will be tested on various dimensions,
n = {10,25,50,100}, and various interactions, k¥ = {1,2,3}. The models performance will be
measured by their mean absolute error (MAE) and averaged for each training size interval. The
goal of this is to demonstrate how much training data is required for the models to reach zero or
small enough MAE. Models that require less training data are considered more efficient than those
that require more, assuming they reach the same MAE score.

The Lasso regression model will use an alpha of 1 x 107°, the same used in Leprétre and
coauthors Walsh surrogate-assisted optimization | |. Lasso-Lars will use the same alpha
value. All other models will use the default arguments given by Scikit-Learn | ].

Once the approximation has concluded, each model will be optimized with the efficient hill-
climber, introduced in the section 5. The models will attempt to maximize multiple instances
of NKL and OneMax problems using the dimensions and interactions set above. Each problem
instance at a given n and k will be tested five times in order to obtain the confidence interval, set
to 95%.
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7 Results

The results have been divided into two main sections, one for approximation and one for
optimization. In the approximation section, each graph includes the average mean absolute error
(MAE) with a confidence interval of 95% on the y-axis and the size of the training set on the
x-axis. The results have also been divided into sections based on the value of n. Some graphs have
a secondary version if the original graph is too difficult to visualize. These sections will cover both

benchmarks and all regression models.

7.1

7.1.1 Results for n=10

Approximation Results
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Figure 1: Mean absolute error over training sizes on the NK-landscapes problem, for n=10 and k=1

with confidence interval (95%).
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Figure 2: Mean absolute error over training sizes on the NK-landscapes problem, for n=10 and k=1
with confidence interval (95%). These graphs are the same as those in Figure 1 except both basis

start the Lars model at the second sample interval.
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Figure 3: Mean absolute error over training sizes on the OneMax with w-model epistasis problem,
for n=10 and k=1 with confidence interval (95%).
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Figure 4: Mean absolute error over training sizes on the OneMax with w-model epistasis problem,
for n=10 and k=1 with confidence interval (95%). These graphs are the same as those in Figure 3
except the Walsh basis starts the Lars model at the second sample interval.
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Figure 5: Mean absolute error over training sizes on the NK-landscapes problem, for n=10 and k=2
with confidence interval (95%).
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Figure 6: Mean absolute error over training sizes on the NK-landscapes problem, for n=10 and
k=2 with confidence interval (95%). These graphs are the same as those in Figure 5 with the Lars

model excluded in the multilinear basis graph and the Lars model starting from the fourth sample
interval in the Walsh basis.
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Figure 7: Mean absolute error over training sizes on the OneMax with w-model epistasis problem,
for n=10 and k=2 with confidence interval (95%).
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Figure 8: Mean absolute error over training sizes on the OneMax with w-model epistasis problem,

for n=10 and k=2 with confidence interval (95%). These graphs are the same as those in Figure 7
with the Lars model excluded.

7.1.2 Results for n=25
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Figure 9: Mean absolute error over training sizes on the NK-landscapes problem, for n=25 and k=1
with confidence interval (95%).
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Figure 10: Mean absolute error over training sizes on the NK-landscapes problem, for n=25 and
k=1 with confidence interval (95%). These graphs are the same as those in Figure 9 except the
Lars model starts from the second training interval.
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Figure 11: Mean absolute error over training sizes on the OneMax with w-model epistasis problem,

for n=25 and k=1 with confidence interval (95%).
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Figure 12: Mean absolute error over training sizes on the OneMax with w-model epistasis problem,
for n=25 and k=1 with confidence interval (95%). These graphs are the same as those in Figure 11
except both basis start the Lars model from the second sample interval.
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Figure 13: Mean absolute error over training sizes on the NK-landscapes problem, for n=25 and

k=2 with confidence interval (95%).
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Figure 14: Mean absolute error over training sizes on the NK-landscapes problem, for n=25 and

k=2 with confidence interval (95%). These graphs are the same as those in Figure 13 except they
exclude the Lars model.
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Figure 15: Mean absolute error over training sizes on the OneMax with w-model epistasis problem,
for n=25 and k=2 with confidence interval (95%).
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Figure 16: Mean absolute error over training sizes on the OneMax with w-model epistasis problem,

for n=25 and k=2 with confidence interval (95%). These graphs are the same as those in figure 15
except they exclude the Lars model.

7.1.3 Results for n=50
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Figure 17: Mean absolute error over training sizes on the NK-landscapes problem, for n=>50 and
k=1 with confidence interval (95%).
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Figure 18: Mean absolute error over training sizes on the NK-landscapes problem, for n=>50 and
k=1 with confidence interval (95%). These graphs are the same as those in Figure 17 except the
both basis start the Lars model at the second sample interval.
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Figure 19: Mean absolute error over training sizes on the OneMax with w-model epistasis problem,
for n=50 and k=1 with confidence interval (95%).
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Figure 20: Mean absolute error over training sizes on the OneMax with w-model epistasis problem,
for n=50 and k=1 with confidence interval (95%). These graphs are the same as those in Figure 19
but starting the Lars model at the second sample interval.
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Figure 21: Mean absolute error over training sizes on the NK-landscapes problem, for n=>50 and
k=2 with confidence interval (95%).
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Figure 22: Mean absolute error over training sizes on the NK-landscapes problem, for n=>50 and
k=2 with confidence interval (95%). These graphs are the same as those in Figure 21 except the

multilinear basis excludes the Lars model and the Walsh basis starts the Lars model from the sixth
sample interval.
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Figure 23: Mean absolute error over training sizes on the OneMax with w-model epistasis problem,
for n=>50 and k=2 with confidence interval (95%).
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Figure 24: Mean absolute error over training sizes on the OneMax with w-model epistasis problem,
for n=50 and k=2 with confidence interval (95%). These graphs are the same as those in Figure 23
except both basis start the Lars model from the sixth sample interval.

7.1.4 Results for n=100
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Figure 25: Mean absolute error over training sizes on the NK-landscapes problem, for n=100 and
k=1 with confidence interval (95%).
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Figure 26: Mean absolute error over training sizes on the NK-landscapes problem, for n=100 and
k=1 with confidence interval (95%). These graphs are the same as those in Figure 25 but in the
Lars model starts the the third sample interval for the multilinear basis and the second sample
interval for the Walsh basis.
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Figure 27: Mean absolute error over training sizes on the OneMax with w-model epistasis problem,
for n=100 and k=1 with confidence interval (95%).
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Figure 28: Mean absolute error over training sizes on the OneMax with w-model epistasis problem,

for n=100 and k=1 with confidence interval (95%). These graphs are the same as those in Figure 27
but the Lars model starts at the second sample interval.
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Figure 29: Mean absolute error over training sizes on the NK-landscapes problem, for n=100 and
k=2 with confidence interval (95%).
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Figure 30: Mean absolute error over training sizes on the NK-landscapes problem, for n=100 and
k=2 with confidence interval (95%). These graphs are the same as those in Figure 29 except the

multilinear basis excludes the Lars model and the Walsh basis starts the Lars model at the third
sample interval.
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Figure 31: Mean absolute error over training sizes on the OneMax with w-model epistasis problem,
for n=100 and k=2 with confidence interval (95%).

32



Average MAE over Training Sizes

Number of Training Samples

(a) Multilinear Basis Models

Average MAE over Training Sizes

Multilinear Basis Walsh Basis
OneMax with W-Model Epistasis Problem (n=100, k=2) OneMax with W-Model Epistasis Problem (n=100, k=2)
2004 ~* Polynomial Regression —e— Polynomial Regression e
—e— Lasso Regression H 20.0 4 —e— Lasso Regression
—e— Least Angle Regression —e— Least Angle Regression
17.5 4 ®
Lassolars Regression e 17.5 4 Lassolars Regression
15.0 1
" W 15.0 4 /
< <
= = 4
L 1251 L 125 /
o o
g g J
Z 10.0 4 £ 10.0 4 L Va
l/.
7.5 1 7.5
L] .,.’ ‘_._,__._.-.—"’.
. s, e 504 e o—p—g—e—"
R R ———— U ST S
= e e Rt TS [—— S
T T T T T T 25+ T T T T T T
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

Number of Training Samples

(b) Walsh Basis Models

Figure 32: Mean absolute error over training sizes on the OneMax with w-model epistasis problem,
for n=50 and k=2 with confidence interval (95%). These graphs are the same as those in Figure 31
except the multilinear models starts the Lars model from the second sample interval and removes
the final sample interval from the polynomial model, and the Walsh basis starts the Lars model
from the second sample interval.

7.2 Optimization

making it difficult to view the other results.

All the surrogate models will now undergo optimization, using the Hamming-ball efficient
hill-climber. For most of the graphs, there is a second version excluding Lars as it skews the graph,

7.2.1 Results for n=10
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Figure 33: Best found fitness over training sizes on the NK-landscapes problem using the Hamming-
ball efficient hill-climber optimization, for n=10 and k=1 with confidence interval (95%).
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Figure 34: Best found fitness over training sizes on the NK-landscapes problem using the Hamming-
ball efficient hill-climber optimization, for n=10 and k=1 with confidence interval (95%). These
graphs are the same as Figure 33 excluding the Lars model.
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Figure 35: Best found fitness over training sizes on the OneMax with w-model epistasis problem
using the Hamming-ball efficient hill-climber optimization, for n=10 and k=1 with confidence
interval (95%).
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Figure 36: Best found fitness over training sizes on the NK-landscapes problem using the Hamming-
ball efficient hill-climber optimization, for n=10 and k=2 with confidence interval (95%).
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Figure 37: Best found fitness over training sizes on the NK-landscapes problem using the Hamming-
ball efficient hill-climber optimization, for n=10 and k=2 with confidence interval (95%). These
graphs are the same as Figure 36 excluding the Lars model.
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Figure 38: Best found fitness over training sizes on the OneMax with w-model epistasis problem
using the Hamming-ball efficient hill-climber optimization, for n=10 and k=2 with confidence

interval (95%).
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Figure 39: Best found fitness over training sizes on the OneMax with w-model epistasis problem
using the Hamming-ball efficient hill-climber optimization, for n=10 and k=2 with confidence
interval (95%). These graphs are the same as Figure 38 excluding the Lars model.
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7.2.2

Results for n=25
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Figure 40: Best found fitness over training sizes on the NK-landscapes problem using the Hamming-
ball efficient hill-climber optimization, for n=25 and k=1 with confidence interval (95%).

Hamming-Ball Efficient Hill Climber Optimization
Multilinear Basis
NK-Landscapes Problem (n=25, k=1)

Hamming-Ball Efficient Hill Climber Optimization
Walsh Basis
NK-Landscapes Problem (n=25, k=1)

0.4 0.00 §
0.3 | _0.05 4
0.2 4
—0.10 +
2 01 —e— Polynomial Regression v
g —e— Lasso Regression g —0.15 4
E ol Lassolars Regression i£
-0.20
—01+ 1/
—0.2 1 -0.25 4
—0.3 1 -0.30

—e— Polynomial Regression
—e— Lasso Regression
LassoLars Regression

T T T T T T
150 200 250 300 350 400

Number of Training Samples

T
50 100

(a) Multilinear Basis Models

o4

T T T T T T
150 200 250 300 350 400

Number of Training Samples

(b) Walsh Basis Models

T
50 100

Figure 41: Best found fitness over training sizes on the NK-landscapes problem using the Hamming-
ball efficient hill-climber optimization, for n=25 and k=1 with confidence interval (95%). These
graphs are the same as Figure 40 excluding the Lars model.
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Figure 42: Best found fitness over training sizes on the OneMax with w-model epistasis problem
using the Hamming-ball efficient hill-climber optimization, for n=25 and k=1 with confidence
interval (95%).
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Figure 43: Best found fitness over training sizes on the OneMax with w-model epistasis problem
using the Hamming-ball efficient hill-climber optimization, for n=25 and k=1 with confidence
interval (95%). These graphs are the same as Figure 42 excluding the Lars model.
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Figure 44: Best found fitness over training sizes on the NK-landscapes problem using the Hamming-
ball efficient hill-climber optimization, for n=25 and k=2 with confidence interval (95%).
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Figure 45: Best found fitness over training sizes on the NK-landscapes problem using the Hamming-
ball efficient hill-climber optimization, for n=25 and k=2 with confidence interval (95%). These
graphs are the same as Figure 44 excluding the Lars model.
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Figure 46: Best found fitness over training sizes on the OneMax with w-model epistasis problem
using the Hamming-ball efficient hill-climber optimization, for n=25 and k=2 with confidence
interval (95%).

Hamming-Ball Efficient Hill Climber Optimization Hamming-Ball Efficient Hill Climber Optimization
Multilinear Basis Walsh Basis
OneMax with W-Model Epistasis Problem (n=25, k=2) OneMax with W-Model Epistasis Problem (n=25, k=2)
160
400 A
——
140 - je—e—e—t—o—¢
300 4 120 4
" —e— Polynomial Regression "
§ s—s—s—s—o—o—o—9¢ —e— Lasso Regression § 100 4
T Lassolars Regression T
200 A
80 =
60
100 4 —e— Polynomial Regression
P = = 20 4 —e— Lasso Regression
LassoLars Regression
tll 160 260 360 460 560 660 760 BCIiD tl) 160 260 30‘0 460 50‘0 660 70‘0 860
Number of Training Samples Number of Training Samples
(a) Multilinear Basis Models (b) Walsh Basis Models

Figure 47: Best found fitness over training sizes on the OneMax with w-model epistasis problem
using the Hamming-ball efficient hill-climber optimization, for n=25 and k=2 with confidence
interval (95%). These graphs are the same as Figure 46 excluding the Lars model.
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7.2.3 Results for n=50
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Figure 48: Best found fitness over training sizes on the NK-landscapes problem using the Hamming-
ball efficient hill-climber optimization, for n=50 and k=1 with confidence interval (95%).
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Figure 49: Best found fitness over training sizes on the NK-landscapes problem using the Hamming-
ball efficient hill-climber optimization, for n=50 and k=1 with confidence interval (95%). These
graphs are the same as Figure 48 excluding the Lars model.
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Figure 50: Best found fitness over training sizes on the OneMax with w-model epistasis problem
using the Hamming-ball efficient hill-climber optimization, for n=50 and k=1 with confidence
interval (95%).
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Figure 51: Best found fitness over training sizes on the OneMax with w-model epistasis problem
using the Hamming-ball efficient hill-climber optimization, for n=50 and k=1 with confidence
interval (95%). These graphs are the same as Figure 50 excluding the Lars model.
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Figure 52: Best found fitness over training sizes on the NK-landscapes problem using the Hamming-
ball efficient hill-climber optimization, for n=50 and k=2 with confidence interval (95%).
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Figure 53: Best found fitness over training sizes on the NK-landscapes problem using the Hamming-
ball efficient hill-climber optimization, for n=50 and k=2 with confidence interval (95%). These
graphs are the same as Figure 52 excluding the Lars model.
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Figure 54: Best found fitness over training sizes on the OneMax with w-model epistasis problem
using the Hamming-ball efficient hill-climber optimization, for n=50 and k=2 with confidence
interval (95%).
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Figure 55: Best found fitness over training sizes on the OneMax with w-model epistasis problem
using the Hamming-ball efficient hill-climber optimization, for n=50 and k=2 with confidence
interval (95%). These graphs are the same as Figure 54 excluding the Lars model.
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7.2.

4 Results for n=100
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Figure 56: Best found fitness over training sizes on the NK-landscapes problem using the Hamming-
ball efficient hill-climber optimization, for n=100 and k=1 with confidence interval (95%).
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Figure 57: Best found fitness over training sizes on the NK-landscapes problem using the Hamming-
ball efficient hill-climber optimization, for n=100 and k=1 with confidence interval (95%). These
graphs are the same as Figure 56 excluding the Lars model.
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Figure 58: Best found fitness over training sizes on the OneMax with w-model epistasis problem
using the Hamming-ball efficient hill-climber optimization, for n=100 and k=1 with confidence
interval (95%).
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Figure 59: Best found fitness over training sizes on the OneMax with w-model epistasis problem
using the Hamming-ball efficient hill-climber optimization, for n=100 and k=1 with confidence
interval (95%). These graphs are the same as Figure 58 excluding the Lars model.
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Figure 60: Best found fitness over training sizes on the NK-landscapes problem using the Hamming-
ball efficient hill-climber optimization, for n=100 and k=2 with confidence interval (95%).

Hamming-Ball Efficient Hill Climber Optimization Hamming-Ball Efficient Hill Climber Optimization
Multilinear Basis Walsh Basis
NK-Landscapes Problem (n=100, k=2) NK-Landscapes Problem (n=100, k=2)
—— _-l—-.—-—l—l—l'_‘.—'.-.—._. |
—0.28 1 e o —0.30 1 /
Z
"
—

—0.301 e 032 &
2 -0.32 +—*% P
o L —0.34 A
5 =]
= —0.34 =

—-0.36 —0.36 4

—e— Polynomial Regression —e— Polynomial Regression
—0.38 1 " .
—e— Lasso Regression —0.38 —e— Lasso Regression
LassoLars Regression LassoLars Regression
—0.40 +— T T T T T T T T T T T
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Number of Training Samples Number of Training Samples
(a) Multilinear Basis Models (b) Walsh Basis Models

Figure 61: Best found fitness over training sizes on the NK-landscapes problem using the Hamming-
ball efficient hill-climber optimization, for n=100 and k=2 with confidence interval (95%). These
graphs are the same as Figure 60 excluding the Lars model.
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Figure 62: Best found fitness over training sizes on the OneMax with w-model epistasis problem
using the Hamming-ball efficient hill-climber optimization, for n=100 and k=2 with confidence
interval (95%).
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Figure 63: Best found fitness over training sizes on the OneMax with w-model epistasis problem
using the Hamming-ball efficient hill-climber optimization, for n=100 and k=2 with confidence
interval (95%). These graphs are the same as Figure 62 excluding the Lars model.

7.3 Results Discussion

Overall, the best performing models in the approximation sections were the Lasso and LassoLars
models with the Walsh basis. Throughout the results, the Walsh basis consistently had lower MAE
scores than the multilinear basis, regardless of which regression surrogate and the benchmark. When
comparing the benchmarks, it is clear that the OneMax w-model epistasis causes some confusion
with the models, as unlike the NKL benchmark, the lines do not always maintain a general decrease
in MAE as the sample size increases. This is likely due to the addition of new training data that,
due to the transform, skew the results of the models, causing spikes as seen in Figure 16. When
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these irregularities occur, the LassolLars model seems to be the most resistant, as it shows the
smallest spike, if any, compared to the other models. The Lasso model is the second most resistant
to these errors, but still shows a significant increase in the MAE score. This type of behavior is not
demonstrated in the NKL benchmark. It can be concluded from these results that the best suited
model for the NKL benchmark is the Lasso model with the Walsh basis and the best suited model
for the OneMax benchmark is the LassoLars model with the Walsh basis.

An interesting trend is that the Lars model struggles to maintain consistent MAE values, often
showing spikes with large error that are at a much larger scale than the other models. This is likely
due to the Lars model failing to converge on the smaller training sizes. As such, many of the graphs
have the Lars model starting at a larger training size or removed entirely so that the results of the
other models can be viewed clearly. Despite struggling to converge on the smaller training sizes, the
Lars model is able to achieve MAE scores similar to the other models at the larger training sizes.
The Lars model also performs better with & = 1 compared to £ = 2. These trends can be seen in
both benchmarks and in both basis, with little difference between. Interestingly, the polynomial
regression model generally performs similarly to the other models, despite lack of sparsity. The
polynomial surrogate does tend to have slightly higher MAE values but stays within range of the
Lasso and LassoLars models compared to the Lars model, which does not.

As seen in the approximation results, the Lars model also struggles with optimization, often
seemingly getting much higher fitness values than the other models, but with a larger error interval.
It is likely that the Lars model appears to optimize better due to the larger MAE scores skewing the
fitness results. As such, despite the high fitness values, the Lars model is the worst performing model.
Since there is only one optimization type used, the optimization results are not necessarily indicative
of which model optimizes the best. Rather, the optimization results demonstrate the error interval
of the fitness values the models find and the amount of error between the models. For example, in
Figure 56, the Lars model for both bases has a large error interval, and in the corresponding figure
without Lars, Figure 57, the polynomial surrogate also shows a large error interval. This means
that they are reaching inconsistent results, leading to a higher standard deviation. The difference
between the best fitness reached for the models is the result of a combination of the models’ error
and their best fitness found during optimization. The difference between the basis is inconsistent
depending on which optimization graphs are considered; on some occasions, all the multilinear
basis surrogates reach higher fitness scores, and others the Walsh basis surrogates do. Again, this
is more indicative of the error between the models rather than the actual performance between
basis. However, based on the approximation results, it is safe to say the Walsh basis reaches more
accurate fitness values than the multilinear basis as the Walsh surrogates tend to have lower MAE.

8 Conclusions and Further Research

The first Walsh-based surrogate was proposed by Sébastien Verel and coauthors, using the Lars
surrogate | |. The next proposed use of the Walsh surrogate was made by Florian Leprétre
and coauthors, using the Lasso surrogate [ |. Both articles demonstrated that the Walsh
surrogate has the potential to outperform other SOTA models in PBO. This report evaluated both
surrogates along with a polynomial and LassoLars surrogate to measure which performed best
with the Walsh basis. From the results, Leprétre and colleagues proposed Lasso surrogate was one
of the best performing model, along with the LassoLars surrogate used in this report. The Lars
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surrogate, proposed by Verel and colleagues, was the weakest performing. This can be due to a
variety of reasons, such as how using the Scikit-Learn default arguments for Lars may have led to
worse convergence. However, Verel and coauthors did not propose alternative parameters to use
with the Lars model.

In the future, exploring other parameters with the Lars model would be a good indicator
if it’s poor performance in this report is a result of the arguments used or the surrogate itself.
Furthermore, comparing various optimization techniques with the different Walsh surrogates would
be a good indicator of which optimization method works the best. After finding the best Walsh
surrogate optimizer by comparing their performances, the next step would be to use the best
performing optimized Walsh surrogate to compare with SOTA models such as the Gaussian process
and Bayesian optimization of combinatorial structure. These next steps will be crucial in furthering
the research for the use of Walsh surrogates’ in PBO.

This report concludes that there is a clear improvement in the performance of the Walsh
basis compared to the multilinear basis in terms of MAE. From the review of the results, the
Lasso and LassoLars surrogates are the best performing with the Walsh basis for approximating
pseudo-Boolean functions. Between Lasso and LassoLars, the performance difference appears to
depend on the benchmark used rather than the values of n and k. Based on the performance of
LassoLars on the OneMax with w-model epistasis, one conclusion that can be drawn is that the
LassoLars model is less susceptible to outliers in the data compared to the Lasso model. However,
when viewing the results from the NKL benchmark, the Lasso model performs better, indicated that
the Lasso surrogate may be better suited for modeling functions that are built from subfunctions,
rather than modeling a function by reducing it to subfunctions.

Overall, this report reinforces the potential of Walsh surrogate models, in particular the Lasso
and LassolLars surrogates, as competitive models for PBO, and provides a foundation for further
research on the use of the Walsh basis in surrogate models.
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Appendix — Github Code

The code used in this report can be found at the following Github repository:
https://github.com/ellakennon /Thesis-Ella-Kennon.git
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