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Abstract

Transformer models have shown strong performance on Time Series Classification (TSC) tasks,
yet remain difficult to interpret. While most explainability methods focus on input-output
attribution, they offer limited insight into the internal mechanisms that drive predictions. This
thesis investigates whether mechanistic interpretability (MI) techniques, originally developed
for NLP models, can be adequately adapted to transformer-based time series models. We apply
a suite of MI methods to a Time Series Transformer (T'ST) model trained on the JapaneseVowels
dataset, including activation patching, attention saliency, and sparse autoencoders. These
techniques enable us to probe the causal roles of individual attention heads, specific timesteps,
and learned latent features in the model’s decision-making. By constructing causal graphs from
patching results, we trace how information flows from input to output, revealing interpretable
internal circuits. Additionally, we show that sparse codes learned from internal activations
are not only class-discriminative but could themselves be patched, suggesting a path toward
manipulating high-level concepts within the model. While not aiming for full interpretability,
it demonstrates the technical viability and promise of applying MI to TSC, and lays the
groundwork for more scalable and generalizable interpretability pipelines in future work.
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1 Introduction

Deep learning has become a cornerstone for efficient and reliable solutions in many fields, ranging
from computer vision to natural language processing [BCE*23], and more recently, in time series
classification (TSC). Various models, such as convolutional neural networks and transformers, offer
good performance, but often work as black boxes, giving no insight into their decision-making. The
lack of ability to look inside the models raises valid concerns about trust, accountability, and safety
[JQC*25]. This is becoming increasingly more of a problem as more and more models are deployed
in real-world settings like healthcare every day.

The field of Explainable Artificial Intelligence (XAI) is focused on addressing these concerns
by making model outputs more interpretable and understandable to humans. While XAI has made
great progress in image and text domains, time series data remains comparatively unexplored
despite its central role in many applications [GYS24, RPF*21].

Moreover, many current XAl techniques, namely SHAP and LIME, are model-agnostic, meaning
they can explain predictions regardless of the model’s internal structure. However, these explanations
are only surface-level [CEST24]; they only highlight which features are important, not why or how
a model reaches a decision. Therefore, a shift to internal mechanics of deep neural networks is key
for inner interpretability [RHCHM23].

Mechanistic Interpretability is an approach that tries to gain insights into the internal workings
of deep learning models by reverse engineering the network’s inner computations at an increasing
level of granularity. It has recently gained momentum in the study of transformer-based language
models [ENOT21, FSBCj24, TCM*24].

1.1 Challenge and Goal

Researchers have made advancements in analyzing transformers by identifying the roles of specific
layers, attention heads, and neurons, revealing how they relate to tasks such as factual recall
[MBAB23]. However, this type of analysis is extremely time-consuming, requiring extensive manual
effort, careful experimentation, and technical expertise [BG24].

At the same time, transformer-based models are being increasingly applied to Time Series
Classification (TSC) due to their ability to capture long-range dependencies and contextual patterns
[WZZ+23]. However, unlike natural language tasks, time series data does not have a clear token-
based structure or semantic meaning, which makes reasoning about how the information flows
through the model or what specific components are responsible for key decisions difficult.

As a result, this leads to the central point of this thesis: Can mechanistic interpretability
techniques used in NLP be adapted to transformer-based models operating on time
series data? Specifically, the research focuses on investigating and evaluating how the methods
transfer to Time Series Transformer (TST) models on the TSC task. This thesis will employ certain
techniques that intervene in a TST model’s computation and observe how specific components
contribute to its predictions.

Importantly, the objective is not to provide a full interpretation of a trained model or to draw
definitive conclusions about its internal logic. Rather, the emphasis is on exploring whether these
interpretability methods can be meaningfully adapted to the time series domain, and to what extent
they offer insights. By testing technical viability, it lays the groundwork for future work that may
use such methods for actual model analysis and domain-specific explanations.



1.2 Thesis Overview

This thesis is structured to guide the reader through the motivation, theoretical background,
methodological adaptation, and evaluation of mechanistic interpretability techniques in the context
of time series transformers.

Section 2 introduces key terminology and formal definitions that will be used throughout the
thesis; Section 3 provides an overview of related work, covering developments in time series classifi-
cation, transformer architectures, and research in explainable Al and mechanistic interpretability;
Section 4 describes the setup, including the dataset used, the model architecture, and its training;
Section 5 details the interpretability techniques adapted from NLP; Section 7 presents the results
of applying the methods to a trained TST model and evaluates the extent to which the adapted
techniques produce a meaningful insight; Section 8 offers a discussion of the findings, limitations,
and broader implications for future research; Lastly, Section 9 concludes the thesis.

This thesis is part of the Bachelor of Data Science and Artificial Intelligence program at Leiden
Institute of Advanced Computer Science (LIACS), Leiden University, under the supervision of Niki
van Stein (LIACS) and Kitharidis Sofoklis (LIACS).



2 Definitions

Explainable Artificial Intelligence (XAI) A field of Al that aims to make the behavior and
decisions of machine learning models more interpretable and understandable to
humans.

Mechanistic Interpretability (MI) An approach within XAI focused on reverse-engineering
the internal components of a neural network to understand how they lead to
specific outputs. MI treats components such as layers, neurons, or attention heads
as causal units and explores their roles using observational and interventional
tools.

Transformer A neural network architecture based on self-attention mechanisms that enables
modeling long-range dependencies. Initially developed for NLP, it has been
adapted for various domains, including time series.

Time Series Classification (TSC) A supervised learning task where each input is a sequence
of data points ordered in time, and the goal is to predict a class label for the
entire sequence.

Time Series Transformer (TST) A specialized form of the Transformer architecture adapted
for TSC tasks. It captures temporal patterns and interdependencies in multivariate
time series data.

Activation Patching An interventional MI technique where activations from one example are
copied into another example at specific locations in the model to observe how
output changes, thereby revealing causal roles of components.

Attention Saliency An observational MI technique that analyzes the attention weights in a
Transformer model to identify which input elements a specific attention head
focuses on. It highlights potential areas of influence but does not establish
causality.

Sparse Autoencoder (SAE) A neural network trained to reconstruct its input under a sparsity
constraint on the latent space. In MI, SAEs are used to disentangle internal
representations and potentially identify semantically meaningful features.

Causal Graph A directed graph that represents the flow of causal influence within a model,
often built from patching results to visualize which components contribute to
specific predictions.

Clean Instance An input instance for which the model makes a correct and confident prediction.

Corrupt Instance An input instance for which the model makes an incorrect or low-confidence
prediction.

Denoising vs. Noising Two patching strategies: denoising involves patching clean activations
into corrupt examples to test sufficiency, while noising involves patching corrupt
activations into clean examples to test necessity.



3 Background & Related Work

To frame our contribution, this section surveys the evolution of TSC, the adaptation of Transformer
architectures to temporal data, state-of-the-art explainability and mechanistic interpretability
techniques, and their parallels in neuroscience. By covering these topics, we show the main
challenges that drive our effort to adapt interpretability techniques for TSTs.

3.1 Time Series Classification

TSC refers to the task of labeling an entire temporal sequence. A time series can be univariate (only
one variable, e.g., stock price of Apple (AAPL) over days) or multivariate (multiple variables, e.g.,
accelerometer readings (X, Y, Z axes) per second) and is structured as a sequence of observations
sampled at equally spaced intervals. TSC plays a crucial role in various domains, some of the more
notable ones are healthcare (e.g., ECG signal analysis) and finance (e.g., stock trend prediction)

Historically, non-deep learning methods like k-Nearest Neighbors and feature-based classifiers
were most prominent in the field. Methods such as Catch22 [LSK*19] and ROCKET [DPW20]
match or even outperform deep architectures such as ResNet [ZJPT21] at a fraction of computational
cost. However, they often depend on handcrafted features, as well as the availability of labeled
data, which is scarce, as labeling data often requires much time, expertise, and infrastructure.

Conversely, unlabeled data is abundant, prompting significant demand for methods that can
deliver high accuracy with limited labeled data or by effectively utilizing the available unlabeled
data [ZJPT21].

3.2 Transformers for Time Series

Originally proposed for natural language processing (NLP) tasks, transformers have rapidly found
applications across diverse domains due to their superior capability in modeling long-range de-
pendencies via self-attention mechanisms [WZZ"23]. This capability is particularly beneficial for
time series, where relevant patterns may appear across non-adjacent time points, requiring effective
modeling of temporal dependencies.

Recent literature highlights several advantages of applying transformers to time series clas-
sification and forecasting tasks, such as robustness in capturing complex temporal patterns and
parallel computation benefits [ZJP*21, WZZ"23]. Additionally, transformers have demonstrated
notable performance improvements over traditional architectures like Convolutional Neural Net-
works (CNNs) and Recurrent Neural Networks (RNNs) [ZJP*21], indicating their potential as a
leading approach in TSC.

However, applying transformers to time series requires adaptations to bridge the gap between
language data and temporal signals. Due to this, unsurprisingly, transformers in time series also
trail behind their NLP counterparts in terms of interpretability, as adaptations have to be made
there too.

3.3 Explainable AI and Mechanistic Interpretability

Traditional explainability in deep learning has focused on attribution methods like SHAP [LL17]
and LIME [RSG16], which assign importance scores to input features. These approaches work



on the input-output level, offering a limited view into the internal structure of deep networks. In
time series, such methods fail to capture the temporal interactions and reasoning embedded in
transformer models.

Mechanistic Interpretability (MI) aims to understand deep neural networks from the “inside-
out”. This paradigm sees the model’s computation graph as a causal graph, where individual layers,
neurons, or attention heads are treated as potential causal units, whose roles can be probed and
analyzed. MI techniques can broadly be put into two categories [BG24].

First, observational methods analyze the internal behavior of a model without altering its
computational flow. They can reveal statistical associations; however, they do not imply causation.
Attention Saliency is one of the most used techniques in transformers. It inspects self-attention
weights to infer which input positions or features the model focuses on [CKLM19]|. However, saliency
does not necessarily indicate causal influence as attention weights may not correlate with importance
[SS19]. Sparse Autoencoders are used to extract interpretable latent features from hidden activations.
They compress and reconstruct internal representations, allowing for disentangling and interpreting
subspaces within a network [CER*23].

Second, interventional methods actively modify the model’s internal computations to test
hypotheses about causal mechanisms. One such technique is activation patching, which involves
copying activations from a “clean” example and injecting them into a “corrupt” example at
specific points in the model. This patch can cause the model’s output to change and suggest causal
influence on the original decision. This technique expands into causal tracing where by formalizing
interventions and comparing runs with and without specific patches, one can distinguish between
components that are necessary (i.e., patching corrupt — clean corrects behavior (AND logic) and
sufficient (i.e., patching clean — corrupt introduces error (OR logic) for a specific computation
[HN24]. Furthermore, this can be extended into path tracing, e.g., tracing how a signal flows from a
specific input through multiple layers, allowing one to identify which paths are critical for a specific
behavior [WVCT22].

Recently, MI has proven successful in revealing circuits for factual recall and other computations
in large language models like GPT-2 [MBAB23, WVCT*22], and even large-scale attribution-graph
analyses of models such as Claude 3.5 [LGAT25]. Meanwhile, in the vision domain, mechanistic
approaches are emerging to open the black box of Vision Transformers (ViTs). Fine-tuning ViTs
on distorted images reveals that robustness can emerge through causal changes in attention heads
and MLPs, with specific components becoming necessary to correct corrupted inputs [Bah25].
Additionally, the Prisma framework [JSH*25] introduces a unified open-source toolkit for probing
internal ViT circuits via activation patching, sparse autoencoders, and neuron-level interventions,
scaling MI workflows.

3.4 Mechanistic Interpretability Gaps in Time Series

A range of studies have attempted to bring interpretability to TSC models [[VST24], but there
are limited studies on transformer-based models. Moreover, most rely on black-box attribution
methods, which produce input feature importance scores but do not reveal how internal components
of the model contribute to the final prediction.

A potential reason for this gap can be attributed to fundamental differences in data structure.
For one, time series lack tokenized semantic meaning, making it harder to create clean/corrupt
contrast pairs. Furthermore, temporal locality is different from syntactic structure in text, com-



plicating reasoning about causal dependencies between attention heads or MLP layers. Another
factor could be that many time series datasets are small and have limited scope for pertaining and
large-scale interpretability studies.

While the field of MI encompasses a wide range of methods, this thesis examines the adaptation
of activation patching and attention saliency to TST, as these methods have proven to be successful.
Sparse Autoencoders will be briefly introduced and discussed as an auxiliary method to the above-
mentioned methods. Nevertheless, the primary goal is to asses whether these techniques can provide
meaningful insights into how TST models operate and possibly enrich the interpretability toolkit
for time series.

3.5 Connection to Neuroscience

The reverse engineering approach of MI draws inspiration from a multitude of interdisciplinary
fields, such as physics and systems biology, as well as neuroscience [BG24]. Moreover, the shift from
previous interpretability methods to mechanistic interpretability can be compared to the change
from behaviorism to cognitive neuroscience in psychology [BG24]. Interestingly, for our chosen
MI methods, it is possible to draw some parallels from neuroscience. For example, transcranial
magnetic stimulation (TMS) is a brain stimulation technique used in clinical settings to modulate
neural activity. It uses magnetic pulses to induce an electric current in specific parts of the brain.
These pulses can either excite or inhibit neural activity, or simply put, cause or disable neuron
activations.

By inactivating or exciting a specific targeted brain area, scientists can observe behavioral
effects and create causal mappings, establishing causal roles of brain regions in cognition (e.g.,
which part is involved in language, attention, motor function, etc.) [RRAG11|][HGTH23]. TMS has
also been shown to help patients with depression [TPT*25] and migraines [LP10] among other
diseases. Activation patching in transformers can intervene in a similar sense to map parts of the
transformer network to certain effects, as well as give an opportunity to fix the model’s errors, akin
to alleviating a disease in a patient.

Another comparison can be made with electroencephalography (EEG), which records the
electrical activity of the brain and can also be used for brain mapping and therapeutic contexts
[MWG™24]. As an example, EEG has been used by researchers to determine a normative brain
map, which they then used to identify abnormal activity in epileptic patients [JOCT23]. In a similar
sense, we can see the internal workings of a transformer in normal and abnormal situations using
various observational MI techniques.

Lastly, attention saliency refers to understanding which part of an input a transformer model is
attending to. In our case, it would be specific timesteps. Here we can look at magnetoencephalography
(MEG), which tracks brain activity in very high temporal resolution (milliseconds) by measuring
magnetic fields from active neurons [Grol9]. For example, researchers used MEG to track a
listener’s attentional focus in real-time in the cocktail party problem [APSB15]. And just like with
interpretability in AI, the goal of the scientist is to decode specific information from brain signals
instead of simply describing them [Grol9].



4 Setup

This section outlines the architecture of our transformer-based classifier, the characteristics of the
JapaneseVowels dataset, and our training procedure. All code implementation for this setup (along
with pretrained models), methodology, experiments, as well as results are publicly available on

GitHub [Kal25].

4.1 Model Architecture

Our classifier fy processes each input

X c ]RTXC

where T is the length of the time series and C' is the number of channels. Our model first applies
three 1D-convolutions of shape
d d d d
C— -, - = -, — —d
4 4 2 2
and kernel size 5, 3, 3 respectively, where d is the model’s hidden dimension, each followed by
batch normalization and ReLU, to extract local features. Then we add positional embeddings

Pec RTXd

to the convolved output and pass the resulting sequence into L = 3 transformer encoder layers.
Each layer uses multi-head self-attention with H = 8 heads, followed by a two-layer feed-forward
block, residual connections, dropout, and layer-normalization in standard transformer fashion
[WZZ123]. After the final encoder, we max-pool over the time axis to get a single d—vector, and
feed that through a linear classification layer R? — RX followed by softmax to produce our K class
probabilities.

The transformer’s decoder portion of the original architecture is omitted. Decoders’ typical
job is to generate, whether it be the next word in a sequence in NLP, or forecasting in time series.
However, it is unsuitable for classification, which has a fixed-length, non-autoregressive output
[ZJP*21]. This comes with an added benefit of only using about half of the model parameters,
reducing computational costs.

4.2 Dataset

To analyze the feasibility of MI techniques on TST, we need a suitable dataset to work with. The
choice was made to work with JapaneseVowels [KTS99], summarized in Table 1 from UAE Time
Series Classification Archive [BDL*18]. In this dataset, each instance is a 12-dimensional timeseries
obtained by applying a 12th-order linear prediction analysis to raw recordings of nine male speakers
each uttering the Japanese vowels “a” and “e”, visualized in Figure 1. The task is to classify the
identity of the speaker (labelled 1, ..., 9). The training set contains 30 utterances per person; the
test set ranges from 24 to 88 utterances per person, with each utterance length varying between 7
and 29 frames.!

IThe version provided by the AEON package, which we utilized in our code, standardizes all sequences to a fixed
length of 25 time steps through truncation or padding to ensure uniform input shape.


https://github.com/mathiisk/TSTpatching

Dataset Train | Test | Series Length | # Classes | Dimensionality | Type
JapaneseVowels | 270 370 25 9 12 Audio

Table 1: Summary of the JapaneseVowels dataset.

Raw TS for instance 33, True Label is 2 Raw TS for instance 44, True Label is 2
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Figure 1: Sample visualizations of multivariate time series instances from the JapanseVowels dataset,
showing 12-channel signal over 25 time steps.

The choice of this dataset is substantiated by the fact that it is multivariate, yet low-dimensional,
allowing TST to exercise its ability to learn inter-channel dependencies via self-attention while still
being able to follow along by humans. Furthermore, its short sequences enable rapid processing,
which in turn allows for efficient testing of downstream interpretability techniques. Lastly, prior work
highlighted high accuracy despite the small training size [ZJP*21], making it an ideal benchmark
to highlight TST’s strengths and investigate its inner workings.

4.3 Training Setup

Our defined TST model is trained on the JapaneseVowels dataset. Each time-series sample X €
R*>*12 and its one-hot label y € {1,...,9} are batched in batch sizes of 4. The classifier fy is
trained over 100 epochs with cross-entropy loss. For optimization, the Rectified Adam (RAdam)
optimizer with a learning rate of 10~ and weight decay of 10~ is used.

This setup, with small batch size, intensive weight decay, and RAdam, gives stable convergence
on the low-sample, multivariate dataset and is easily reproducible.



5 Methodology

The methodological pipeline employed in this thesis mirrors that of identifying and editing factual
associations in transformer-based NLP models [MBAB23]. A clear, generalized version involves
selectively replacing internal activations from a source instance, which correctly performs a specific
task, into a target instance, which does not. Or the other way around. This action is referred to as
Activation Patching (or simply patching).

The instance selection plays a large role and is very important in the case of NLP, where
an instance is a specific prompt. Additionally, it is worth experimenting across different levels of
granularity. That is, patching can be done for a certain layer, or a certain component of a layer, e.g.,
attention head, or even at the level of individual neurons. Moreover, there are different techniques,
but the two main ones are Denoising and Noising. In denoising, activations are captured from a
clean source and patched into a corrupt target. This observes which activations are sufficient to
restore intended behavior. Noising, on the other hand, captures activations from a corrupt source
and patches them into a clean target. In this case, we observe which activations are necessary to
maintain the intended behavior. It is crucial to point out that the two are not symmetric mirrors
of each other, and each approach has its use in different circumstances [HN24].

These core concepts of activation patching will now be adapted to the time series domain,
specifically to our previously defined TST model for a classification task.

5.1 Instance Selection & Definition of Evaluation Metric

To effectively apply activation patching to a TST model, the first important step is to select
source and target instances. We define clean instances as the instances from the test set, where the
model predicts the correct class of that instance with a very high confidence (above 95%). Corrupt
instances are the instances from the test set where the model misclassifies (the confidence for the
correct class is below 50%). This selection of instances ensures a contrast between them, while
maintaining meaningful similarities. Specifically, both clean and corrupt instances originate from
the same class, ensuring their differences primarily reflect model recognition rather than inherent
class-level variance.

For our primary metric of evaluating the impact of a patch, we choose the change in class
prediction probability - AP. This is computed by first obtaining the baseline probability P;(ysye)
where i is the target instance and 1, is the true class label, through a standard forward pass
of the model without any interventions, extracting logits, and subsequently applying a softmax
to determine class probabilities. Then, after applying a patch, we compute the new portability
P, oioneaYirue). Thus, the full metric is expressed as:

AP = PtargeLpatched(?Jtrue) - Ptarget (ytrue)

A positive AP shows an improvement in classification confidence, which can suggest a causal
contribution of the patched component to correct classification.

5.2 Activation Patching Pipeline

The technique involves a procedure facilitated by PyTorch forward hooks, and we focus on the
Denoising approach. The clean instance undergoes a forward pass, during which hooks are registered



on targeted model components. These hooks capture and cache activations at precise internal
model locations, providing the clean baseline activations for subsequent patching. For the corrupt
instances’ forward pass, the cached activations from the clean instance are selectively injected into
the corresponding model components, and the patched output logits are recalculated:

logitspatenea = fo(corrupt instance — clean activations)

Followed by the new probability computation for the true class:

Ppatched (ytrue) = Softmax(logitspatched>[ytrue]

Then the causal effect of the patching can be quantified by the above-defined metric of AP.

These patches were targeted at various granularity levels, namely, individual whole layers,
followed by specific individual attention heads, finished off by position-specific (time steps) heads
activations. The results of the patches can be of AND, where multiple components need to be
patched simultaneously, or OR. logic, where individual internal activation patches can sufficiently
restore accuracy. A similar targeting can be done to MLP layers, i.e., the intermediate feed-forward
layers.

Furthermore, we define a critical patch as a patch in the lowest granularity level - particular
head, layer, and position - where the resulting change AP exceeds a set threshold in favor of the
correct class. To systematically identify critical patches, we perform an exhaustive sweep across all
combinations of layers, attention heads, and positions. For each configuration, the above-defined
pipeline is followed, and AP is stored. All patches exceeding the set threshold are considered to be
part of the critical patches set. This set is then used to build causal graphs to highlight specific
attention head influence on the model output probabilities. These results, causal graphs, and other
visualizations are provided in Section 7.

5.3 Attention Saliency

To accompany the activation patching, we employ attention saliency as an observational tool to
clarify which timesteps of the instance the model is attending to with each attention head. For
this, the self-attention layers are intercepted during a forward pass, and the raw attention weights
A € RTXTXT where H is the number of attention heads and T is the sequence length, are captured.

To compute the timestep-level saliency for a given head, we extract A" € RT*T and average
over the query axis:

1

T
h h
St():T: z(t)

=1

This gives us the salience score St(h) for each timestep ¢, representing how much (on average)
the model attends to that timestep across all queries in head h. Here we note that attention saliency
does not imply causality, yet it is useful for highlighting timesteps and guiding hypotheses for
causal experiments.

10



6 Sparse Autoencoders

As our patching experiments progress from full layers to individual attention heads and timesteps,
a natural next step would be to investigate individual neurons in our TST encoder blocks. However,
attempting to patch neurons in this layer directly poses several practical and conceptual challenges.
Along with self-attention, each transformer encoder block consists of MLP blocks, which consist
of two linear transformations with an activation and dropout layer in between. Each MLP block
outputs a high-dimensional activation, producing thousands of neuron activations to potentially
patch.

First, patching every neuron activation across instances is prohibitively expensive. For a single
instance pair and encoder block in our TST, one must sweep across 3,000 positions. Second, and
more importantly, neurons in these MLP layers are entangled [BG24]. Each unit is participating in
a multitude of overlapping computations without a clear semantic boundary. There is no inherent
ordering, modularity, or interpretability in the raw activation space (see Figure 2).

Sparse Autoencoders (SAEs) are introduced as an auxiliary method for analyzing and under-
standing internal representations in TST models. SAEs are neural networks trained on the internal
activations of a specific layer within a transformer model. They are trained to reconstruct their
inputs with enforced sparsity constraints on their hidden layer. This sparsity promotes the models’
ability to discover a compact set of latent features, with the ultimate goal being the disentanglement
of neurons, which can then reveal meaningful concepts in the data. These learned concepts can
then be interpreted, visualized, and even patched into the forward passes of the main classifier to
their causal influence.
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Figure 2: Raw activation values of final linear layer in first encoder block of a single test instance.

6.1 Training and Utilization of SAE

To train an SAE, we extract internal activations from our trained TST model, specifically from the
final linear layer at the end of our first transformer encoder block. These activations represent the

11



internal computations of the TST model for an input timeseries. The SAE treats these activations
as input data, and this is fundamentally different from training on raw time series; instead, the
SAE learns a representation of the internal states of the transformer itself.

The SAE consists of an encoder network that maps high-dimensional activation vectors to
a low-dimensional sparse code, and a decoder network that reconstructs the original activation
from the sparse code. It is trained using mean squared reconstruction loss with an added sparsity
regularization term:

Loaw = llz =25+ A ||
J

where x is the original activation, & is the reconstruction, z; are components of the sparse
code, and A is the sparsity strength, and the L; regularization encourages most entries in z to be
zero, pushing the network to represent inputs using only a few active latent features at a time.
The introduced sparsity has the benefit of finding a low-dimensional basis over internal activations.
Furthermore, it allows for the disentanglement of neurons as each sparse neuron tends to encode a
distinct motif [CER'23], which in turn allows for easier interpretability.

Once trained, the SAE is applied to any test instance to extract these sparse activations. Thus,
for a given SAE neuron and timestep, we find the top-k instances across the test set where its
activation is the highest. We then inspect the corresponding raw time series inputs, check for their
predicted and true class labels, and form potential hypothesis: “Neuron n consistently activates at
timestep ¢ when there is a peak for channel ¢”

To confirm a hypothesis, causal patching experiments could be entirely feasible. One could
identify a high-activation SAE neuron, manually set that neuron to a high value in a target
instance’s sparse code z, decode the modified code into the transformer’s original activation space,
and patch this back into the model’s MLP output. In the scope of this thesis, this was not done;
however, such studies have been conducted on NLP tasks [CER*23].
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7 Experiments & Results

This section walks through our experiments on a trained TST for one instance pair. Starting
from model validation and instance selection, we gradually zoom in, from full layers to heads to
individual timesteps, in order to identify where decisions emerge. For robustness, the entire analysis
is conducted on a multitude of instance pairs across various datasets, and results can be found on
GitHub [Kal25]. Additionally, an instance pair that boasts similar findings to the ones showcased
below is included in Appendix A.

7.1 Baseline Performance and Instance Selection

Before applying any interpretability techniques, it is essential to confirm that our trained TST
model achieves strong and consistent classification performance, allowing us to ensure that it has
learned meaningful representations rather than guessing or memorizing noise, and that possible
explanations derived from MI on this model reflect something insightful.

After training our TST model on the JapaneseVowels dataset as described in Section 4, the
classifier achieves a test accuracy of 97.57%. The high accuracy shows that the model generalizes
well to unseen examples despite the short time series and relatively small number of training
samples per class. We visualize the predictions in a confusion matrix shown in Figure 3. Each row
corresponds to the true class label, and each column to the predicted label. We see that only some
classes have a few misclassification cases.

When it comes to interpretability, this is a highly desirable property; if the model were
underperforming, it would lead to uncertainty whether causal patches or other analyses were
reflecting the true signal or simply the model’s inability to generalize and classify. In our case, the
strong performance allows us to confidently say that the internal components are contributing to
real and meaningful decisions. Moreover, the minor misclassification cases point us to edge cases,
which we use for testing of intervention via activation patching.

Confusion Matrix on JapaneseVowels Test Set
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Figure 3: Confusion matrix of the trained TST on the JapaneseVowels test set.

13


https://github.com/mathiisk/TSTpatching

Based on the above-mentioned and a deeper look at the few misclassified instances, for our
activation patching experiments, we select the following instances depicted in Table 2. The pair is
ideal for denoising-style activation patching as both belong to the same true class, and the internal
activations are aligned in semantic space. The chosen instances’ raw time series are visualized in
Figure 1.

Instance ID | Type | True Class | Predicted Class | True Class Confidence
33 Clean 2 2 100.00%
44 Corrupt 2 3 10.72%

Table 2: Overview of selected instance pair for activation patching experiments

7.2 Layer-Level Causal Influence via Activation Patching

To begin our causal tracing of the model’s internal decision-making, we start at the coarsest level
of granularity; entire layers. Specifically, we patch attention heads in a given encoder layer of the
corrupt instance with those from the clean instance. This allows us to see the overall influence of
an entire layer’s attention block on the model’s output.

This forms the first step in a progressively more fine-grained investigation. We can identify if
any layer is critical for the model’s performance and decisions, or causes errors. The results are
visualized in Figure 4. Each bar represents the change in the model’s predicted probability for the
true class after replacing all heads in one layer.

AP(True) by Layer (All Attention Heads Patched)

Layer

T
0.0 0.2 0.4 0.6 0.8

AP(True Label)

Figure 4: Layer-level activation patching results. Each bar represents the change in true class
confidence (AP) when all attention heads in a given layer are patched from a clean instance.

Significant change in classification confidence (AP) suggests that the whole layers encodes
important class-relevant computations. These high values across all three layers imply that the
model’s representation is distributed - each layer has meaningful contributions to the final decision.
Nevertheless, a gradual decrease in AP is noticeable. This motivates us to perform subsequent
experiments, in which we will narrow down to specific components within these layers that are
most influential.
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7.3 Head-Level Causal Influence via Activation Patching

We increase the granularity of our interventions by inspecting the influence of individual attention
heads. Thus, instead of patching all heads in a layer simultaneously, we patch one head at a time.

The results of this sweep are shown in Figure 5. Each cell in the heatmap corresponds to a
single attention head at a specific layer and represents the probability change for the true class
after patching only that head.

AP(True) by Layer & Head
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Figure 5: Heatmap showing head-level activation patching results. Each cell (Layer index, Head
index) represents the probability change for the true class (AP) after patching a single attention
head.

Several interesting points emerge. Namely, Layer 0 2 now exhibits clear dominance in terms
of head-level influence. Moreover, within Layer 0, patching heads 0, 4, 5, 6, and 7 individually is
sufficient to restore correct classification of the corrupt instance (consider baseline confidence of
10.57%, thus in case of H6 patch, the model confidence becomes 10.57 4+ 68 = 78.57%).

On the other hand, layers 1 and 2 exhibit significantly lower influence. The influence across
heads is also more evenly distributed, suggesting that they refine rather than drive the core decision-
making of the model in this case. Lastly, although not clearly visible, layer 2 heads do show slightly
less causal influence than layer 1, supporting the gradual decrease in layer influence showcased in
Figure 4.

These findings demonstrate that causal influence is not uniform across all heads; rather, it is
concentrated in a few key components. With this in mind, an even finer level of detail investigation
is warranted.

7.4 Head x Position-Level Causal Inluence via Activation Patching

Now we can investigate the behavior of the attention heads by examining timestep-specific
contributions. That is, we patch the output of a specific head at a position (timestep) and see how
these most granular patches affect the model’s predictions. This can answer a potential question:
which parts of the input does this head attend to causally?

2Layer and head numbers are zero-indexed, so "Layer 0” refers to the first encoder layer.
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Figure 6 showcases the effect for the most influential head determined in the previous step -
Head 6 in Layer 0, visualizing the change in predicted probability for the true class after patching
each position independently.

[0.05
0.00

Figure 6: Heatmap showing position-level activation patching results on Head 6 in Layer 0. Each
cell represents the probability change for the true class (AP) after patching that specific timestep
in the chosen head.

Head 6 in Layer 0 - Patch Effect across Time Steps

LO H6
opP

Position (Timestep)

From the plot, we notice that about half of the positions contribute very little to the clas-
sification, with AP values less than 0.01, and 5 more positions barely exceeding this threshold.
Moreover, certain positions, namely 6 and 8, yield a negative AP value. Conversely, some specific
positions show a more notable influence. Timesteps 1, 16, 21, and 23 all exceed 0.05 AP value.
This result can potentially highlight not only which heads matter, but when they matter.

Here, we importantly note, the cumulative AP value of all position patches is

T—1
> AP ~ 043,

t=0

whereas patching the full head gives a larger AP = 0.68. This discrepancy raises the point that
the influence of the head is not simply additive across timesteps. Rather, it reflects the presence
of nonlinear interactions and contextual dependencies (the transformer architecture integrates
information across positions via self-attention, residual connections, and layer normalization). As
such, patching multiple positions together may have synergetic or (as later shown) interfering
effects. This and other implications will be discussed in more detail in Section 8 and the following
subsection.

7.5 Attention Saliency

To accompany the intervention technique observations, we can compare them with results from
observational methods such as attention salience. It captures which input timesteps are attended
to by a specific head, averaged across all queries in the sequence.

In Figure 7 we visualize the raw input timeseries for both the clean and corrupt instance,
overlaid with saliency scores from Head 6 in Layer 0.
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Figure 7: Attention saliency scores from Head 6 in Layer 0 overlaid on the raw input time series for
the clean and corrupt instances

From the figure, we can draw some insights. For instance, we see that saliency is not distributed
evenly across the sequence; rather, certain timesteps receive noticeably more attention. However,
the notion that attention saliency would align with results observed in the patching experiments
must be discarded. Attention saliency does not imply causality. This has been noted in prior work,
particularly in the context of NLP, where attention distributions may act as routing mechanisms
rather than attribution signals.

Nevertheless, attention saliency can be used as a useful diagnostic interpretability tool, helping
identify candidate positions for more detailed causal intervention. In our case, the salient plots offer
a plausible explanation for the head’s behavior. The head appears to focus on a small number of
timesteps in the same way that only a small number of timesteps have causal influence via patching.
More discussion on this method will be done in Section 8.

7.6 Accumulating Top-k Critical Patches

To evaluate how influential components interact when combined, we conduct a controlled multi-
patching experiment. Starting from the most influential (Layer, Head, Position) triplets, which
were identified via individual AP scores, we sequentially apply patches from the clean instance into
the corrupt instance.

For each k € {1,...,10}, we apply the top-k critical patches and observe the resulting change
in predicted probability for the true class. Table 3 summarizes the results.
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Top-k Patches | AP(True) | P(True) Final
1 0.1270 0.2342
2 0.1716 0.2788
3 0.2058 0.3131
4 0.3055 0.4128
5 0.4324 0.5396
6 0.3712 0.4784
7 0.4502 0.5575
8 0.4835 0.5908
9 0.5772 0.6844
10 0.6375 0.7448

Table 3: Results of applying top-k critical patches. Shows cumulative AP and final predicted
probability for the true class as more patches are applied.

The results show that the model’s confidence increases steadily as more top-ranked patches are
applied, but not monotonically. Notably, applying the 6th patch results in a drop in confidence
compared to the 5-patch version, despite being ranked as a top contributor when evaluated in
isolation.

This effect illustrates a key point already discussed previously: when multiple internal compo-
nents are activated simultaneously, their influence may interfere, overlap, or even cancel out due to
the model’s nonlinear architecture. Components that are helpful alone may become redundant or
conflicting when patched in tandem with others.

7.7 Building Causal Graphs from Patches

To better understand the structure of this influence, we construct a causal graph that represents
the flow of information through the model. Each patch is treated as a directed edge from a source
to a target node, with edge weights corresponding to observed changes in the true class confidence
(AP). The graph is structured into three tiers. Namely, input layer, nodes representing individual
timesteps from the input sequence (e.g., T 0, T 1, ..., T 24), followed by transformer internals,
nodes representing attention heads at specific layers (e.g., LOH6 for Head 6 in Layer 0), and ending
in output Llayer, nodes representing the model’s class logits (e.g., C 2 for Class 2).

The previous experiment showed that patching the top-5 critical (Layer, Head, Position)
combinations from a clean instance is sufficient to restore correct classification in the corrupt
instance, achieving a final confidence P(yire) = 0.5396 > 0.5. This strongly suggests that these
components encode key information responsible for the correct decision. Figure 8 visualizes the
resulting graph using the top-5 most influential patches. In this case, each edge from a time step
node to a head node corresponds to a single patch, and the edge from a head node to the class
node holds the same weight as the corresponding patch, simply signifying the influence towards
prediciting the true class.
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Figure 8: Causal graph showing top-5 most influential patches connecting input timesteps, internal
attention heads, and the final class output.

The five patches involve five different attention heads and four unique input time steps, with
Time 21 appearing twice. Most of the heads (three out of five) are located in Layer 0, while the
remaining two come from Layers 1 and 2, respectively. Table 4 lists the patches in descending order
of AP. Interestingly, the top three patches all target Head 7 in Layers 0, 1, and 2, suggesting that
the final head in each layer may play a particularly significant role in encoding the relevant decision
information for this instance.

Rank | Time Step Node | Head Node | AP
1 T 21 LOH7 0.127
2 T 21 L1H7 0.087
3 T 22 L2H7 0.081
4 T 16 LOH6 0.064
5 T 17 LOH3 0.062

Table 4: Top-5 most influential patches ranked by AP

While the top-5 graph highlights the most influential individual patches, it only captures
a small subset of the model’s internal structure. To get a broader view of the information flow,
we apply a threshold-based filtering approach. Instead of selecting a fixed number of top-ranked
patches, we include all patches whose causal effect exceeds a set AP threshold. Specifically, we
include Head — Class edges with AP > 0.1 and Timestep — Head edges with AP > 0.01, but
only if the corresponding head was influential enough to reach the class node.

Figure 9 shows the resulting graph. Unlike the sparse and targeted view in Figure 8, this
version is denser and reveals additional components that contribute moderately but were excluded
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from the top-5. The structure now includes heads that aggregate signals from multiple time steps
and shows more branching from the input layer. While less interpretable at a glance, this view
gives a more complete picture of how influence is distributed across the model.

Figure 9: Causal graph showing patches that exceed the AP threshold. Head — Class threshold is
0.1, edges Timestep — Head threshold is 0.01, and only show edges to Head nodes that met the
Head — Class threshold.

To simplify this view, we compute the node degrees for each component in the graph. Specifically,
we count how many outgoing edges each timestep node has (i.e., how many heads it connects to),
and how many incoming edges each head node receives from timesteps (i.e., how many inputs it
draws from). We exclude Head — Head edges from this analysis to focus purely on the flow from
input to internal structure.

Figure 10 shows the result. On the input side, we note that among the most influential time
steps, four of them, Time 21, 22, 23, and 24, are located at the tail end of the sequence. Interestingly,
Time 1 also ranks highly, whereas Time 0, the first timestep, does not. This suggests that early
sequence information is not uniformly important, and the model may rely more heavily on later
input for this particular prediction. On the attention head side, we observe that out of the top 10
highest degree heads, 8 belong to Layer 0. This is consistent with our earlier results showing that
patching Layer 0 heads had the highest impact on the model’s predictions (see Figure 4), at least
for our selected instances.
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Figure 10: Node degree visualization from the causal graph in Figure 9. [Left] Degree of Timestep
nodes (ezcluding Head — Class edges). [Right] Degree of Head nodes.

7.8 Provisional Results from Sparse Auto Encoders

To explore whether sparse autoencoders can yield semantically meaningful and selective features,
we trained an SAE on the internal activations of the TST model, specifically from the output
of the MLP block (1inear2) at a first encoder layer. After training, the encoder provides sparse
representations of shape (N, T, H), where H is the number of SAE neurons, T is the number of
timesteps, and N is the number of instances. These sparse codes reveal when and where each
neuron activates, allowing us to identify patterns and potential class-selective features.

Figure 11 shows an illustrative example of this analysis. The neuron of interest here is SAE
neuron 15, which shows a high activation at timestep 22 in multiple test instances. All top-activating
instances correspond to Class 8, suggesting that this neuron might encode a feature associated with
that class.
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Figure 11: [Left] Raw time series input for the top-activating instance of SAE neuron 15 at timestep
22. [Right] Corresponding SAE activations, highlighting Neuron 15 at timestep 22.

A consistent pattern is visible in the raw input: each high-activation instance exhibits a peak
in Channels 2 (green), 5 (red), and 9 (purple) and a dip in Channel 7 (blue) around Timestep 22.
This repeated signal structure could suggest that SAE neuron 15 has learned to represent this
particular pattern, which might be a class-selective temporal motif. Examples to substantiate this
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hypothesis are provided in the Appendix B, Figure 22, where we visualize the top-k activations for
this particular neuron.

Beyond analyzing isolated neuron-timestep activations, we also investigate how the sparse
activations look in our chosen clean and corrupt instances. The aim is to discover whether sparse
neurons exhibit class-selective activation patterns, which may point to their potential as meaningful,
disentangled features. Figure 12 visualizes the sparse codes for the two instances.

SAE Activations: Instance 44 — True Label: 2

SAE Activations: Instance 33 — True Label: 2
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Figure 12: Sparse autoencoder activation heatmaps for two test instances. [Left] A clean instance
correctly classified as Class 2. [Right] A corrupt instance misclassified as Class 3. Each heatmap
shows SAE neuron activations over timesteps.

In Figure 12b, we observe that neuron 41 shows strong activation across several timesteps.
We find that neuron 41 is frequently active in Class 3 instances. On the other hand, the sparse
codes seen in Figure 12a show stronger activations in neurons 85 and 78, with additional scattered
activity across other units. This activation pattern is more consistent with what we observe across
the broader set of correctly classified Class 2 instances. In Appendix B Figure 23, we provide further
visualizations showing the activation of these neurons across other Class 2 and Class 3 test samples.
Furthermore, in Appendix B, other notable SAE neurons are listed.

These observations support the idea that SAE neurons are capturing class-discriminative
features, albeit in a sparse and distributed manner. Misclassifications may occur in part when a
corrupt instance inadvertently activates features more representative of another class, which could
be further explored through targeted patching. It is important to emphasize that SAE neurons
do not correspond one-to-one with raw TST neurons. That is, SAE neuron 15 does not represent
TST’s neuron 15 in linear?2. Instead, each SAE neuron encodes a distributed feature, a specific
direction in the transformer’s latent space learned during training. Therefore, the procedure for
patching would be the following. First, encode activations from the TST into sparse code z using
the SAE encoder. Then manually boost the activation of the selected sparse neuron, e.g., z; = 5.
Followed by decoding this modified z back to Zpatchea using the SAE decoder. Replace the original
TST activation with the Tpatchea at the chosen layer and timestep. This can then determine the
causal influence of a single sparse feature on the model’s decision.
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8 Discussion

Interpretability is highlighted as a cornerstone of Al safety [BG24] in numerous high-stakes domains.
As Al models grow ever more complex and are being deployed on a scale never seen before, the
understanding of their internal decision-making processes is critical. The extension of MI to time
series classification is not merely beneficial, but rather essential.

A time series transformer model’s predictions can have substantial practical and ethical
implications. In most critical sectors, namely healthcare and finance, the understanding of the
causal influence of internal components can aid in trust-building, risk mitigation, and ethical
alignment.

The experiments have provided compelling evidence that mechanistic interpretability methods,
particularly activation patching, can be successfully adapted from NLP to time series transformer
models. There is potential for deeper interpretability in time series modeling, especially in deter-
mining the causal influence of internal transformer components. Our findings align with similar
discoveries in text [MBAB23, WVC'22] and vision [Bah25] domains, highlighting the importance
of selective component analysis within transformer architectures. This alignment not only shows
the effectiveness of the chosen methods across domains but also emphasizes the importance of a
systematic approach to interpretability.
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Figure 13: Illustration of multilevel interpretability in a Time Series Transformer

23



8.1

Traditional explainers such as SHAP and LIME operate only at the input—output level. They tell
us which timesteps or channels matter, but not which internal components create that importance.
MI tools extend this capability by testing causal necessity and sufficiency inside the network. An
overview of the qualitative comparison between traditional post-hoc and MI methods is presented

Comparison to Traditional Post-Hoc Methods

in Table 5.

Aspect SHAP / LIME Mechanistic Interpretability
Scope Model-agnostic Model-specific
Internals Needed None Activations, hooks
Target Input features Internal components
Mechanism Correlational (via perturbation) Causal (via intervention)
Causal Validity Approximate Directly tested
Robustness Partial Sensitive to entanglement
Computational Cost Low High
Scalability Linear Combinatorial
Output Saliency maps, scores Patch effects, causal graphs
Use Case Sanity checks, explainability Root cause, model editing
Tooling Mature libraries Early-stage, custom scripts
Accessibility Easy to interpret Technical, harder to communicate
Stability Stable Sensitive to design

Table 5: Compact comparison of post-hoc attribution vs. mechanistic interpretability in TSTs

One of the key distinctions is that SHAP works on any model, regardless of architecture or
internals, it requires only input—output access. In contrast, MI requires access to internal activations,
making it limited to models where hooks or modifications are possible. Furthermore, SHAP produces
easily visualizable saliency maps, whereas MI yields causal graphs or patch effects that are harder
to interpret and require custom scripts. Moreover, while post-hoc methods scale well and offer
stable outputs, MI methods are more sensitive to entangled representations and patch configuration.
Nevertheless, MI remains uniquely suited for uncovering root causes and enabling model edits -
capabilities that justify its added complexity.

In practice, a hybrid workflow could be useful: first use SHAP to shortlist influential timesteps,
then apply targeted patching to test which components respond causally. This is particularly
valuable for long real-world time series, where exhaustive patching becomes a monumental task.
On short sequences like JapaneseVowels, we can patch all positions, but SHAP can be used as a
filtering tool, which could prove essential for scaling MI to large-scale settings.

8.2 Limitations of Our Work

Despite the insights highlighted above, current MI methods require extensive manual effort, from
careful selection of instances, determination of granularity, and choosing of the most suitable
approach, to actual interpretation of the results and construction of causal graphs, pseudocode,
or any other human-interpretable conveyance method. All of these processes together demand
expertise and meticulous experimentation. Consequently, one may face substantial bottlenecks.
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In this thesis, we have developed a foundational pipeline; however, it currently addresses only
one component - attention heads. Other significant components, such as MLP layers, residual
streams, positional embeddings, or individual neuron activations, were not integrated into our
experiments. Nevertheless, each of these components could potentially hold meaningful insights into
model decisions. Therefore, expanding and refining the pipeline to be comprehensive is necessary.

Following this, the interpretation of the results in terms of determining learned features in
time series contexts raises a unique challenge. Unlike NLP, where features correlate to semantic
concepts, syntax, or specific words, time series features lack straightforward semantic definitions.
Some meaningful interpretations could involve recognizing temporal patterns, such as peaks, valleys,
periodic behaviors, transitions, domain-specific events, or anomalies. Several questions arise when
interpreting results achieved via patching. Do the potential temporal concepts uncovered correspond
to the specific instance, or the dataset, or a broader domain, or to general time series features?
This question connects to the notion of universality [CLJ23], which suggests that neural networks
trained on similar tasks provide the emergence of common representations [SMW*24] [KNLH19].
That is, rather than each model learning arbitrary features, there is an underlying universality to
the circuits that emerge in a network, which is shaped by the task and certain biases. Another
interpretation can be that, given a task, dataset, and model architecture, there may simply exist
an optimal way to solve the problem, and different models converge towards it [BG24]. Whether
temporal patterns discovered through MI in time series reflect generalizable temporal features or
remain context-specific is an open question.

Additionally, interpreting results from high-dimensional time series data can be a daunting task.
With dimensions often reaching hundreds, making sense of the “mess” raises some practical questions.
How to systematically determine which dimension is playing the key role? Can dimensionality
reduction techniques simplify interpretations without losing critical information?

Lastly, as our multi-patching experiments revealed, the interactions within a transformer
architecture are complex. Critical insights are not revealed straightforwardly; instead, interac-
tions between model components can yield unpredictable outcomes. Specifically, interactions may
sometimes enhance each other’s effects, resulting in a stronger combined influence than individual
components. Conversely, they might diminish each other’s contributions, thereby negating the
individual benefits previously observed when analyzed separately. There are also instances where
combinations of patches exhibit minimal or no effect.

One possible factor contributing to the non-additivity of ZtT:o AP, is the distribution of
attention itself. Attention saliency, as visualized in Figure 7, indicates that a few specific timesteps
receive a disproportionately large amount of attention from Head 6 in Layer 0. These positions
are therefore referenced by many query positions within the sequence, meaning that a change
at one position can affect multiple outputs. However, when positions are patched individually,
these cross-position effects are not fully captured due to the sequential and localized nature of the
intervention. In contrast, patching the entire head simultaneously preserves the structure of the
attention matrix and allows influential positions to act in concert.

This complexity is primarily driven by the inherent characteristics of transformer architectures.
The simultaneous functioning of multi-head attention, residual connections, and layer normalizations
introduces numerous interdependencies within the model. These architectural components facilitate
complex internal computations that allow transformers to effectively model intricate temporal and
contextual dependencies. However, this necessitates developing more advanced MI frameworks
capable of explicitly modeling such complexities.
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8.3 Future Directions

Regarding future improvements, broadening the scope of the patching experiments is the main one.
The patching experiments highlighted and analyzed in this thesis use a single clean-corrupt pair. A
more comprehensive analysis would involve systematically repeating these experiments across many
instance pairs and class combinations. This could help establish class-specific or instance-agnostic
causal components and determine if certain attention heads or neurons are generally responsible
for certain behaviors across the dataset.

Furthermore, the use of the JapaneseVowels dataset allowed rapid iteration and controlled
analysis. Future research should apply these MI techniques to other datasets, including higher-
dimensional, irregular, or real-world time series. Testing on different transformer variants would
also provide insight into whether the discovered causal patterns generalize across architectures.

Additionally, the building of causal graphs could be improved by more sophisticated search
strategies like evolutionary algorithms, which could be used to identify minimal, non-redundant
sets of patches that maximize impact. This aligns with emerging interest in combining MI with
optimization techniques to uncover minimal causal circuits. Mayhaps, in the search for better
causal graphs, future studies may also consider alternate or complementary metrics, as AP served
as a simple causal metric. Then, as causal graphs grow in size and complexity, interpreting and
communicating them to non-experts becomes harder. Future work may explore how to summarize,
cluster, or narrate causal pathways using explainable Al principles.

Lastly, given that patching can correct model behavior, future research might explore using
MI techniques as a post-hoc error correction mechanism. By identifying causal components of
incorrect predictions, one could devise automated procedures to patch activations during inference,
potentially increasing robustness without retraining.
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9 Conclusion

This thesis set out to answer the central question: Can mechanistic interpretability techniques
developed for NLP transformer models be meaningfully adapted to the domain of
time series classification ? Through a careful transfer and experimental evaluation of the key
methods on a trained Time Series Transformer model for the JapaneseVowels dataset, we find
strong evidence that the answer is: yes, they can.

By adapting the notion of clean and corrupt instance pairs and performing structured denoising-
style activation patching, we demonstrated that individual attention heads and even timestep-specific
components within those heads can exert a measurable and often decisive causal influence on the
model’s predictions.

Causal graphs constructed from these patching experiments showed interpretable pathways
from input timesteps through specific heads to class outputs, mirroring similar circuit-tracing
approaches in NLP. Notably, we also observed nonlinear interactions and diminishing returns when
combining top-k patches, highlighting the complexity of distributed computation in TSTs.

Alongside patching, Sparse Autoencoders and attention saliency techniques provided comple-
mentary visualizations, helping highlight which timesteps may be influential and thereby guiding
hypotheses. Moreover, Sparse autoencoders, though explored more briefly, showed promise in
extracting disentangled latent features that correlate with class-discriminative patterns in the data.

While our results validate the technical viability of adapting MI tools to time series transformers,
we do not claim to have fully reverse-engineered our TST model. Instead, this thesis establishes a
proof-of-concept that opens the door to future work in richer interpretability pipelines for time series
models. This includes extending patching to residual streams and MLPs, exploring instance-agnostic
circuits, and deploying evolutionary search or optimization techniques to refine causal graphs.

In sum, the methods developed for probing the inner workings of LLMs can illuminate the
hidden logic of TSTs as well. With continued refinement, these tools hold the potential to bring not
only interpretability but also accountability and robustness to deep time series models in critical
domains.

27



References

[APSB15]

[Bah25]

[BCE*23]

[BDL+18]

[BG24]

[CER*23]

[CEST24]

[CKLM19]

[CLJ23]

[DPW20]

[ENO*21]

Sahar Akram, Alessandro Presacco, Shihab Shamma, and Behtash Babadi. Robust
decoding of selective auditory attention from meg in a competing-speaker environment
via state-space modeling. Neurolmage, 124, October 2015.

Nooshin Bahador. Mechanistic interpretability of fine-tuned vision transformers on
distorted images: Decoding attention head behavior for transparent and trustworthy
ai, 2025.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric
Horvitz, Ece Kamar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, Harsha
Nori, Hamid Palangi, Marco Tulio Ribeiro, and Yi Zhang. Sparks of artificial general
intelligence: Early experiments with gpt-4, 2023.

Anthony Bagnall, Hoang Anh Dau, Jason Lines, Michael Flynn, James Large, Aaron
Bostrom, Paul Southam, and Eamonn Keogh. The uea multivariate time series
classification archive, 2018, 2018.

Leonard Bereska and Efstratios Gavves. Mechanistic interpretability for ai safety — a
review, 2024.

Hoagy Cunningham, Aidan Ewart, Logan Riggs, Robert Huben, and Lee Sharkey.
Sparse autoencoders find highly interpretable features in language models, 2023.

Stephen Casper, Carson Ezell, Charlotte Siegmann, Noam Kolt, Taylor Lynn Curtis,
Benjamin Bucknall, Andreas Haupt, Kevin Wei, Jérémy Scheurer, Marius Hobbhahn,
Lee Sharkey, Satyapriya Krishna, Marvin Von Hagen, Silas Alberti, Alan Chan,
Qinyi Sun, Michael Gerovitch, David Bau, Max Tegmark, David Krueger, and Dylan
Hadfield-Menell. Black-box access is insufficient for rigorous ai audits. In The 2024
ACM Conference on Fairness, Accountability, and Transparency, FAccT 24, page
2254-2272. ACM, June 2024.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and Christopher D. Manning. What
does bert look at? an analysis of bert’s attention, 2019.

Lawrence Chan, Leon Lang, and Erik Jenner. Natural abstractions: Key claims,
theorems, and critiques. Al Alignment Forum post, March 2023.

Angus Dempster, Frangois Petitjean, and Geoffrey I. Webb. Rocket: exceptionally
fast and accurate time series classification using random convolutional kernels. Data
Mining and Knowledge Discovery, 34(5):1454-1495, July 2020.

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben
Mann, Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Nova DasSarma,
Dawn Drain, Deep Ganguli, Zac Hatfield-Dodds, Danny Hernandez, Andy Jones,
Jackson Kernion, Liane Lovitt, Kamal Ndousse, Dario Amodei, Tom Brown, Jack
Clark, Jared Kaplan, Sam McCandlish, and Chris Olah. A mathematical framework

28



[FSBCj24]

[Grol9]

[GYS24]

[HGTH23]

[HN24]

[1VS*24]

[JOC+23]

[1QC+25]

[JSH*25]

[Kal25]

[KNLH19]

[KTS99]

for transformer circuits. Transformer Circuits Thread, 2021. https://transformer-
circuits.pub /2021 /framework /index.html.

Javier Ferrando, Gabriele Sarti, Arianna Bisazza, and Marta R. Costa-jussa. A primer
on the inner workings of transformer-based language models, 2024.

Joachim Gross. Magnetoencephalography in cognitive neuroscience: A primer. Neuron,
104(2):189-204, 2019.

Xinyue Gu, Linxiao Yang, and Liang Sun. Explainable artificial intelligence for time
series: A systematic survey, 06 2024.

Keigo Hikita, Jose Gomez-Tames, and Akimasa Hirata. Mapping brain motor func-
tions using transcranial magnetic stimulation with a volume conductor model and
electrophysiological experiments. Brain Sciences, 13(1), 2023.

Stefan Heimersheim and Neel Nanda. How to use and interpret activation patching,
2024.

Md Khairul Islam, Tyler Valentine, Timothy Joowon Sue, Ayush Karmacharya,
Luke Neil Benham, Zhengguang Wang, Kingsley Kim, and Judy Fox. Interpreting
time series transformer models and sensitivity analysis of population age groups to
covid-19 infections, 2024.

Vytene Janiukstyte, Thomas Owen, Umair Chaudhary, Beate Diehl, Louis Lemieux,
John Duncan, Jane de Tisi, Yujiang Wang, and Peter Taylor. Normative brain
mapping using scalp eeg and potential clinical application. April 2023.

Jiaming Ji, Tianyi Qiu, Boyuan Chen, Borong Zhang, Hantao Lou, Kaile Wang,
Yawen Duan, Zhonghao He, Lukas Vierling, Donghai Hong, Jiayi Zhou, Zhaowei
Zhang, Fanzhi Zeng, Juntao Dai, Xuehai Pan, Kwan Yee Ng, Aidan O’Gara, Hua Xu,
Brian Tse, Jie Fu, Stephen McAleer, Yaodong Yang, Yizhou Wang, Song-Chun Zhu,
Yike Guo, and Wen Gao. Ai alignment: A comprehensive survey, 2025.

Sonia Joseph, Praneet Suresh, Lorenz Hufe, Edward Stevinson, Robert Graham, Yash
Vadi, Danilo Bzdok, Sebastian Lapuschkin, Lee Sharkey, and Blake Aaron Richards.
Prisma: An open source toolkit for mechanistic interpretability in vision and video,
2025.

Matiss Kalnare. Tst-mechanistic-interpretability: Causal analysis and attribu-
tion for time series transformers. https://github.com/mathiisk/TST-Mechanistic-
Interpretability, 2025. GitHub repository.

Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity
of neural network representations revisited, 2019.

Masanori Kudo, Jun Toyama, and Masashi Shimbo. Japanese Vowels [dataset]. UCI
Machine Learning Repository, 1999.

29



[LGA*25]

[LL17]

[LP10]

[LSK*+19]

[MBAB23]

IMWG+24]

[RHCHM23]

[RPF+21]

[RRAG11]

[RSG16]

[SMW24]

Jack Lindsey, Wes Gurnee, Emmanuel Ameisen, Brian Chen, Adam Pearce, Nicholas L.
Turner, Craig Citro, David Abrahams, Shan Carter, Basil Hosmer, Jonathan Marcus,
Michael Sklar, Adly Templeton, Trenton Bricken, Callum McDougall, Hoagy Cun-
ningham, Thomas Henighan, Adam Jermyn, Andy Jones, Andrew Persic, Zhenyi Qi,
T. Ben Thompson, Sam Zimmerman, Kelley Rivoire, Thomas Conerly, Chris Olah,
and Joshua Batson. On the biology of a large language model. Transformer Circuits
Thread, 2025.

Scott Lundberg and Su-In Lee. A unified approach to interpreting model predictions,
2017.

Richard B. Lipton and Starr H. Pearlman. Transcranial magnetic simulation in the
treatment of migraine. Neurotherapeutics, 7(2):204-212, 2010.

Carl H Lubba, Sarab S Sethi, Philip Knaute, Simon R Schultz, Ben D Fulcher, and
Nick S Jones. catch22: Canonical time-series characteristics, 2019.

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing
factual associations in gpt, 2023.

Faisal Mushtaq, Dominik Welke, Anne Gallagher, Yuri Pavlov, Layla Kouara, Jorge
Bosch, Jasper van den Bosch, Mahnaz Arvaneh, Amy Bland, Maximilien Chaumon,
Cornelius Borck, Xun He, Steven Luck, Maro Machizawa, Cyril Pernet, Aina Puce,
Sidney Segalowitz, Christine Rogers, Muhammad Awais, and V S-So. One hundred
years of eeg for brain and behaviour research. Nature Human Behaviour, 8, August
2024.

Tilman Rauker, Anson Ho, Stephen Casper, and Dylan Hadfield-Menell. Toward
transparent ai: A survey on interpreting the inner structures of deep neural networks,
2023.

Thomas Rojat, Raphaél Puget, David Filliat, Javier Del Ser, Rodolphe Gelin, and
Natalia Diaz-Rodriguez. Explainable artificial intelligence (xai) on timeseries data: A
survey, 2021.

José Romero, Deisy Ramirez, Linda Aglio, and Laverne Gugino. Brain mapping using
transcranial magnetic stimulation. Neurosurgery clinics of North America, 22:141-52,
vii, April 2011.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ”why should i trust you?”:
Explaining the predictions of any classifier, 2016.

[lia Sucholutsky, Lukas Muttenthaler, Adrian Weller, Andi Peng, Andreea Bobu, Been
Kim, Bradley C. Love, Christopher J. Cueva, Erin Grant, Iris Groen, Jascha Achter-
berg, Joshua B. Tenenbaum, Katherine M. Collins, Katherine L. Hermann, Kerem
Oktar, Klaus Greff, Martin N. Hebart, Nathan Cloos, Nikolaus Kriegeskorte, Nori
Jacoby, Qiuyi Zhang, Raja Marjieh, Robert Geirhos, Sherol Chen, Simon Kornblith,
Sunayana Rane, Talia Konkle, Thomas P. O’Connell, Thomas Unterthiner, Andrew K.

30



SS19]
[TCM™24]

[TPT+25]

[WVC+22]

[WZZ+23]

[ZJP+21]

Lampinen, Klaus-Robert Miiller, Mariya Toneva, and Thomas L. Griffiths. Getting
aligned on representational alignment, 2024.

Sofia Serrano and Noah A. Smith. Is attention interpretable?, 2019.

Adly Templeton, Tom Conerly, Jonathan Marcus, Jack Lindsey, Trenton Bricken,
Brian Chen, Adam Pearce, Craig Citro, Emmanuel Ameisen, Andy Jones, Hoagy
Cunningham, Nicholas L Turner, Callum McDougall, Monte MacDiarmid, C. Daniel
Freeman, Theodore R. Sumers, Edward Rees, Joshua Batson, Adam Jermyn, Shan
Carter, Chris Olah, and Tom Henighan. Scaling monosemanticity: Extracting inter-
pretable features from claude 3 sonnet. Transformer Circuits Thread, 2024.

Nicholas T. Trapp, Anthony Purgianto, Joseph J. Taylor, Manpreet K. Singh, Lind-
say M. Oberman, Brian J. Mickey, Nagy A. Youssef, Daniela Solzbacher, Benjamin
Zebley, Laura Y. Cabrera, Susan Conroy, Mario Cristancho, Jackson R. Richards,
Michael J. Flood, Tracy Barbour, Daniel M. Blumberger, Stephan F. Taylor, David
Feifel, Irving M. Reti, Shawn M. McClintock, Sarah H. Lisanby, and Mustafa M.
Husain. Consensus review and considerations on tms to treat depression: A compre-
hensive update endorsed by the national network of depression centers, the clinical
tms society, and the international federation of clinical neurophysiology. Clinical
Neurophysiology, 170:206-233, 2025.

Kevin Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Stein-
hardt. Interpretability in the wild: a circuit for indirect object identification in gpt-2
small, 2022.

Qingsong Wen, Tian Zhou, Chaoli Zhang, Weiqi Chen, Ziqing Ma, Junchi Yan, and
Liang Sun. Transformers in time series: A survey, 2023.

George Zerveas, Srideepika Jayaraman, Dhaval Patel, Anuradha Bhamidipaty, and
Carsten Eickhoff. A transformer-based framework for multivariate time series represen-
tation learning. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge
Discovery € Data Mining, KDD 21, page 2114-2124, New York, NY, USA, 2021.
Association for Computing Machinery.

31



A Additional Instance Pair Analysis

Instance ID | Type | True Class | Predicted Class | True Class Confidence
58 Clean 2 2 100.00%
31 Corrupt 2 9 11.36%

Table 6: Overview of selected instance pair for activation patching experiments

Raw TS for instance 31, True Label is 2

Raw TS for instance 58, True Label is 2

Value
o
(=]

Time Step Time Step

Figure 14: Raw time series for the two chosen instances. [Left] Clean Instance. [Right] Corrupt

Instance

AP(True) by Layer (All Attention Heads Patched)

0
o
2 074
0.0 02 04 06 08

AP(True Label)

Figure 15: Layer-level activation patching results. Each bar represents the change in true class
confidence (AP) when all attention heads in a given layer are patched from a clean instance.
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Figure 16: Heatmap showing head-level activation patching results.
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Figure 17: Heatmap showing position-level activation patching results on Head 3 in Layer 0.
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Figure 18: Attention saliency scores from Head 3 in Layer 0 overlaid on the raw input time series
for the clean and corrupt instances.

33



Top-k Patches | AP(True) | P(True) Final
1 0.2248 0.3384
2 0.4557 0.5693
3 0.6435 0.7571
4 0.7108 0.8244
5 0.7217 0.8353
6 0.7860 0.8996
7 0.8209 0.9345
8 0.8445 0.9581
9 0.8513 0.9649
10 0.0518 0.9654

Table 7: Results of applying top-k critical patches. Shows cumulative AP and final predicted
probability for the true class as more patches are applied.
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Figure 19: Causal graph showing top-5 most influential patches connecting input timesteps, internal
attention heads, and the final class output.

Rank | Time Step Node | Head Node | AP
1 T 24 LOH4 0.225
2 T 24 L1H1 0.155
3 T 23 LOH3 0.130
4 T 17 LOH3 0.081
5 T 24 LOH6 0.077

Table 8: Top-5 most influential patches ranked by AP
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Figure 20: Causal graph showing patches that exceed the AP threshold. Head — Class threshold is
0.1, edges Timestep — Head threshold is 0.01, and only show edges to Head nodes that met the

Head — Class threshold.

Figure 21: Node degree visualization from the causal graph in Figure 9. [Left] Degree of Timestep

nodes (excluding Head — Class edges).

[Right] Degree of Head nodes.
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B Additional SAE Observations

[Rank 2] Raw Time Series — Instance 307 (Label 8)
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Figure 22: Top-activating test instances for SAE neuron 15 at timestep 22. These instances all belong
to Class 8 and exhibit similar temporal patterns, suggesting neuron 15 encodes a class-discriminative
feature.
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Figure 23: Comparison of sparse activations in Class 2 vs Class 3 instances. Highlights class-selective
neurons such as neuron 85 and 78 (Class 2) and neuron 41 (Class 3).
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List of Interesting SAE Neurons

The following list summarizes selected SAE neurons trained on activations from Encoder Block 0, Linear
Layer 2 of the TST model trained on JapaneseVowels. These neurons exhibit strong, selective activation
patterns associated with specific classes and temporal features. These can be inspected by running the
SAE. ipynb notebook found in the GitHub repository.

Neuron 5, Timestep 23 — Highlights Class 9.
— Blue line on top, followed by purple, orange consistently at the bottom.

Neuron 5, Timestep 22 — Highlights Class 8.
— Green on top, followed by blue and purple (or all three close).

— Red line rises prominently.

Neuron 5, Timestep 21 — Highlights Class 7.
— Purple and blue dominate; orange is not lowest, unlike other classes.

Neuron 5, Timestep 20 — Ambiguous.
— Class 8/7: similar activation patterns.

— Class 1: Green on top, blue next—resembles Class 8; instance misclassified as Class 8.

Neuron 74, Timestep 22 — Strong activations for Class 3.

Neuron 41, various timesteps — Strong for Class 3.
— Weaker in low-confidence Class 3 cases.

— Notably active in Instance 44 (True: Class 2, Misclassified as Class 3); resembles Class 3 sparse
pattern.

Neuron 51, Timestep 24 — Strong for Class 9.

Neuron 5, Timestep 23 — Reappears strongly for Class 9.
— Back-to-back activations with Neuron 51 suggest a temporal motif.

Neurons 108 & 109, various timesteps — Selectively active for Class 7.
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