
Opleiding Informatica

Interactive Signaling and Response System

Volodymyr Kalinin

Supervisors:
Mike Preuss; Evert van Nieuwenburg

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)
www.liacs.leidenuniv.nl 30.06.2025

https://www.liacs.leidenuniv.nl

Abstract

This thesis investigates how the CrazyRL framework can enable implicit communication
and coordination among multiple Crazyflie nano-quadrotor drones through movement sig-
nals. Drone policies are trained to signal actions (e.g., hover, land, move) through their
trajectories and to respond to observed signals by other drones. We explore two controller
variants: a neural phase-classifier that identifies the leader’s current motion pattern, and a
deterministic finite-state machine (FSM) whose control law is driven by the classifier’s out-
put. We then demonstrate the system in high-speed CrazyRL simulations and validate key
components on Crazyflie 2.1 drones through scripted hardware tests, confirming the via-
bility of our motion-based signaling approach in both virtual and physical setups. We also
provide example logs and visualization scripts to analyze follower behavior. We conclude
by highlighting CrazyRL’s contribution to the rapid development of our classifier-driven
signaling and response system, while also reflecting on practical development challenges
such as code integration and iterative design changes during implementation.

Acknowledgements

I would like to thank Dr. M. Preuss for his clear guidance in our occasional meetings and
for the steady encouragement that carried me through the tougher stretches of this work.
I am also grateful to my parents, whose regular check-ins and practical advice kept the
project on schedule. Lastly, I appreciate the circle of friends whose curiosity and spirited
conversations sparked the very idea for this project and kept me energised all the way to
the final page.

Contents

1 Introduction 1

2 Related Work 1

3 CrazyRL Framework 2
3.1 Backends: Numpy vs JAX . 2
3.2 Functional Environment Structure . 2
3.3 Training Pipeline . 2
3.4 Deployment Pipeline . 3
3.5 Policy Model Architecture . 3

4 CFLib Integration 4
4.1 High-Level Commander . 4
4.2 Synchronization and Coordination . 4
4.3 Estimation Reset and Initialization . 5
4.4 Emergency Stop Protocol . 5
4.5 Multithreaded Execution . 5

5 Methodology 6
5.1 Training Setup . 6
5.2 Environment Configuration and Behavior Labeling 7
5.3 Hardware Deployment Setup . 7
5.4 Policy Deployment on Drones . 7
5.5 Behavior Phase Classification Pipeline . 8
5.6 Finite-State Control Integration . 9

6 Experiments and Results 9
6.1 Evaluation Episodes . 10
6.2 Behavior Recognition Performance . 10
6.3 Action Patterns and Interpretability . 11
6.4 FSM Controller Performance . 11
6.5 Discussion . 12

7 Quantitative Evaluation Metrics 13
7.1 Behavior Classification Accuracy . 13
7.2 Trajectory Following Error (RMSE) . 13
7.3 Control Smoothness . 14
7.4 Evaluation Results . 14

8 Development Challenges 14

9 Future Work 15
9.1 Extending the Signaling Mechanism . 15
9.2 Bi-Directional and Multi-Agent Communication 15
9.3 Improving Sim-to-Real Transfer and Robustness 15
9.4 Scalability Through Advanced Learning Architectures 16

10 Conclusion 16

1 Introduction

Modern robotics research increasingly focuses on teams of drones working cooperatively. The
Crazyflie nano-quadrotor platform has become a popular testbed for swarm and multi-agent
control research due to its open-source flight stack and accessible hardware. In this context,
Reinforcement Learning (RL) offers a way to learn complex behaviors and coordination strate-
gies through simulation. This thesis explores an interactive signaling and response system for
Crazyflie swarms, where one agent implicitly signals its intent and another learns to interpret
and respond. We leverage the CrazyRL library to simulate multi-agent environments and train
policies, and then deploy them on real Crazyflie hardware via cflib. The contributions include
technical implementation details of CrazyRL (both JAX and Numpy backends), integration
with Crazyflie control, a behavior recognition experiment (Escort-Follower scenario), and an
evaluation of results. The remainder of this thesis is structured as follows: Section 2 shows
related experiments and work, Section 3 details the CrazyRL framework and our models, Sec-
tion 4 describes the Crazyflie integration, Section 5 describes the methodology behind the drone
interaction, Section 6 presents experiments and results, Section 7 shows quantitative metrics,
Section 8 describes the challenges behind he work, Section 9 discusses future possible contin-
uations of this work, and Section 10 concludes with discussion. The goal of this thesis is to
develop and validate a reinforcement learning approach that enables a follower drone to reli-
ably recognize the leader’s behavior (hovering, moving, or landing) and respond appropriately
in real time, and, therefore, enable interactive drone communication.

2 Related Work

Multi-agent reinforcement learning (MARL) for aerial swarms has gained increasing attention
in recent years. For example, Javeed and López Jiménez [JJ23] demonstrated reinforcement
learning–based control of Crazyflie 2.X nano-quadrotors, emphasizing sim-to-real transfer chal-
lenges. Pesce and Montana [PM23] explored connectivity-driven communication in MARL,
enabling coordinated multi-robot navigation. Egorov et al. [EGK17] likewise showed how deep
RL enables cooperative control among agents—highlighting RL’s promise for UAV coordina-
tion.

Our work also relates to research on implicit and emergent communication in multi-agent
systems. Hüttenrauch et al. [HŠN17] proposed local communication protocols that foster im-
plicit coordination through proximity and motion. Groenewald et al. [GSM+24] examined how
machine learning enhances coordination and communication in robotic multi-agent systems.

To place our work within broader MARL perspectives, Nguyen et al. [NNN18] offer a com-
prehensive survey of deep RL for multi-agent systems, addressing challenges like coordination,
non-stationarity, and partial observability. Our approach diverges by integrating on-the-fly
behavior classification directly into learned policies—pushing the frontier in UAV swarm coor-
dination, complementing recent surveys that organize UAV swarm intelligence into hierarchical
layers (decision-making, control, and application) and outline emerging trends for autonomous
aerial systems [ZRW20].

1

3 CrazyRL Framework

CrazyRL is a lightweight multi-agent reinforcement learning library designed for Crazyflie
drones. It supports both a Python/Numpy backend (compatible with the PettingZoo par-
allel API) and a JAX-based backend for GPU acceleration. Key features include simulation
environments such as Circle, Surround, and Escort, implemented in both backends, along with
JAX implementations of multi-agent RL algorithms like MAPPO and MASAC. The framework
also provides utilities for interfacing with Crazyflie hardware, facilitating seamless transitions
between simulation and real-world deployment. The simulation environments are highly opti-
mized for speed, which is crucial for training efficiency, but this comes at the cost of omitting
certain physical effects such as motor inertia and aerodynamic drag. As noted by Javeed and
López Jiménez [JJ23], this level of abstraction enables rapid policy learning while requiring
additional tuning when transferring to hardware.

3.1 Backends: Numpy vs JAX

CrazyRL provides two parallel backends with distinct characteristics. The Python/Numpy
version uses the standard PettingZoo parallel API and maintains mutable state internally. For
instance, calling env.step(actions) advances the simulation in-place. This backend runs on
CPU and integrates easily with common RL libraries like PyTorch or TensorFlow. It also allows
direct switching to real flight by setting render mode="real".

On the other hand, the JAX version adopts a stateless, functional interface. It defines func-
tions such as reset() and step(state, actions) that return new environment states without
modifying internal state. This design promotes pure functions, making the environment com-
patible with JAX transformations such as jax.jit compilation and jax.vmap vectorization.
The result is the ability to simulate many agents or episodes in parallel on GPU/TPU, signifi-
cantly speeding up data collection and learning.

3.2 Functional Environment Structure

In the JAX backend, environments are implemented as collections of pure functions. Taking
the EscortFollowerBehavior environment as an example, two key functions are provided. The
reset(rng) function initializes the simulation, returning the initial state and observations. The
step(state, actions) function computes the next state, observations, rewards, and a done
flag based on the current state and actions, all without side effects.

This contrasts with the Numpy version, where the state is part of the environment object
itself. The functional API enables techniques such as batching and compilation. For exam-
ple, one can define a batched step function using jax.vmap(env.step, in axes=(0, 0)) to
simulate multiple states in parallel. Structurally, the JAX environments resemble PettingZoo
environments translated into a functional form, with clearly defined agent IDs, observation
shapes, and reward specifications.

3.3 Training Pipeline

The training pipeline in CrazyRL follows standard procedures for on-policy multi-agent re-
inforcement learning, adapted to the specific backend in use. The process begins with envi-
ronment and policy setup. An instance of the multi-agent environment is created, such as
EscortFollowerBehavior, with specified agent IDs and starting positions. A policy network

2

is defined for each agent, or a shared one is used. In the JAX backend, network parameters
and optimizer states are initialized explicitly.

Next comes data collection. The policy is applied to generate trajectories. On CPU, this
involves a loop calling env.step until an episode ends. In JAX, rollouts are typically unrolled
using loops or jax.lax.scan. During this phase, information such as states, actions, rewards,
and log-probabilities is stored.

Once enough experience is collected, the data is used to compute policy gradients. For
algorithms like MAPPO, this step involves estimating advantages and applying gradients to
maximize a clipped PPO objective. JAX implementations use jax.jit to compile the update
step for increased efficiency.

These steps are repeated for many training iterations until the policy converges. Empirical
results show that both CPU and GPU versions of MAPPO in CrazyRL achieve similar sample
efficiency, but the GPU-based JAX version is much faster in terms of wall-clock time. After
training, the learned policy parameters—typically the weights of the neural network—are saved
to disk for later use or deployment.

3.4 Deployment Pipeline

After training, a policy can be deployed either in simulation or on real drones. For simulation
deployment, the saved model parameters are loaded and the policy is executed in the same
CrazyRL environment, using either the Numpy or JAX backend. Setting render mode="human"

enables graphical visualization, which helps verify policy behavior before testing on hardware.
For real-world deployment, CrazyRL integrates with cflib, the Crazyflie Python API. In

the Numpy backend, switching to render mode="real" allows direct use of the cflib interface.
In JAX, deployment requires a wrapper that uses the policy’s output to compute actions, which
are then transmitted to drones via the Crazyflie High-Level Commander. Meanwhile, onboard
sensors provide state feedback that forms the observation used in the next timestep.

This real-time control loop—reading the drone state, computing an action, and sending a
command—is executed continuously during the mission. Safety mechanisms such as synchro-
nization and emergency stops (explained in Section 4) are critical during this phase. The design
of CrazyRL ensures that the transition from simulation to real-world deployment is relatively
seamless, requiring minimal changes to the code. However, because the simulation abstracts
many physical factors, deployment often necessitates manual tuning, such as adjusting velocity
scales to compensate for real-world dynamics.

3.5 Policy Model Architecture

The policies used in this project are based on a two-layer multilayer perceptron (MLP). Each
hidden layer contains 256 neurons and uses tanh activation functions. This architecture follows
the examples provided in the CrazyRL codebase, where such MLPs have proven sufficient for
controlling drone agents.

For action generation, the network outputs two vectors representing the parameters of a
Gaussian distribution: the mean and the log-standard deviation for each action dimension.
The raw means are left linear; bounding is achieved later by clipping the sampled actions to
[−1, 1] m s−1. This formulation is commonly used in continuous control settings to provide
smooth, stochastic actions.

Additionally, the network includes a secondary head for behavior classification. This head
outputs a set of logits corresponding to behavior classes, such as “maintain formation” or

3

“reacquire formation.” During training, these logits are passed through a softmax layer and
optimized using cross-entropy loss against ground-truth labels. This auxiliary task enables the
agent to recognize its behavior role based on the current observation.

The joint optimization of the PPO objective and the classification loss allows the agent
to both act and identify behavior simultaneously. The two-headed structure is a standard
architecture in multitask reinforcement learning and worked well for our use case. Similar
architectures have been applied in prior Crazyflie reinforcement learning research; for example,
Javeed and López Jiménez [JJ23] reported that such multitask designs strike a practical balance
between complexity and expressiveness, enabling efficient control while incorporating auxiliary
prediction tasks.

4 CFLib Integration

To execute trained policies on real drones, we use the Crazyflie Python library (cflib). This
library offers high-level abstractions for communicating with Crazyflie drones over a radio link.
The most important component for our deployment is the High-Level Commander (HLC),
which allows us to send intuitive commands like “take off,” “fly to this point,” or “land.” This
eliminates the need to generate low-level control signals, greatly simplifying the deployment
process.

4.1 High-Level Commander

The High-Level Commander is a firmware module inside each Crazyflie that interprets high-
level commands and converts them into trajectories. For example, when the takeoff command
with a target height is issued, the drone internally generates a smooth 7th-order polynomial
trajectory to reach that altitude. Similarly, the go to command guides the drone to a specified
point in space, and the land command initiates a smooth descent.

In our implementation, each Crazyflie is assigned a HighLevelCommander object, which
receives updated target positions or velocities during each control cycle. The controller loop
runs at around 10Hz, although this can be adjusted. The abstraction provided by the HLC
simplifies our system design, allowing us to focus on higher-level policy decisions rather than
trajectory generation.

By offloading trajectory planning to the firmware, the HLC also improves robustness and
timing consistency, as the onboard controller runs in real-time. This is especially important
when multiple drones are flying simultaneously.

4.2 Synchronization and Coordination

When flying more than one drone, coordination becomes essential to avoid collisions and ensure
consistent execution of the mission. We employed Python threading to run each drone’s control
loop in parallel. Each thread handles one drone and communicates with its corresponding
Crazyradio USB dongle.

To synchronize actions like takeoff, flight execution, and landing, we use Python Barrier

objects. All threads wait at the barrier before proceeding to the next phase. For example, all
threads call barrier.wait() before executing the takeoff command, ensuring that all drones
launch simultaneously. This mechanism guarantees tight coordination across drones without
requiring complex communication between them.

4

Additionally, we use timestamp-based logging to verify timing consistency. This is crucial
when evaluating the real-world behavior of the swarm or debugging issues like delays or jitter
in command execution.

4.3 Estimation Reset and Initialization

Before takeoff, Crazyflie drones rely on their onboard position estimation, which uses a Kalman
filter that fuses sensor data. However, this estimator may drift or be misaligned at startup. To
improve control precision, a reset command is sent to the estimator after arming the drone and
before flight begins. This is done using the parameter interface:

cf.param.set_value("stabilizer.resetEstimation", "1")

This command reinitializes the Kalman filter, anchoring the current position as the new
origin. It significantly reduces early-stage instability and improves tracking performance during
the flight. Without this reset, the follower drone may exhibit incorrect localization, which
undermines the behavior recognition task.

4.4 Emergency Stop Protocol

To ensure basic safety during testing, the system includes fallback mechanisms that trigger safe
landings when the program ends, either normally or due to a thread exception. Each drone’s
control loop is wrapped in a try/finally block that guarantees a landing command is issued
before the program exits. Specifically, the HighLevelCommander is instructed to descend to zero
height, and a COMMAND STOP is sent via the low-level Commander interface to halt all motion.

This behavior ensures that, even if the follower drone exits unexpectedly, it attempts a con-
trolled landing and stops sending velocity commands. Additionally, the use of Python context
managers (with SyncCrazyflie(...)) ensures that Crazyradio links are closed cleanly and
communication is terminated safely.

While this is not a fully centralized emergency stop protocol—such as one triggered by
a keyboard interrupt or shared kill switch—the current approach provides a minimal level of
safety during testing. Future improvements could include registering signal handlers (e.g., for
SIGINT) to trigger coordinated shutdown across all threads and log remaining state before
exiting.

4.5 Multithreaded Execution

Because the Crazyflie radio link has limited bandwidth and is prone to interference, we assign
the same USB Crazyradio dongle for each drone and create a separate thread to handle each.
This separation prevents bottlenecks and ensures timely communication.

The Crazyflie library internally uses background threads to manage packet transmission
and acknowledgment. Our control logic runs in higher-level threads, and uses synchronized
queues to exchange state and action data. This modular design enables each drone to operate
independently but in parallel with others.

Threading also supports fault isolation: if one drone crashes or disconnects, others can con-
tinue their tasks unaffected. We included exception handling in each thread to catch connection
errors, log them, and safely terminate the mission. Overall, this multithreaded structure proved
robust and effective in our multi-agent deployment.

5

5 Methodology

This section details the methodology used to train and deploy the interactive signaling and
response system. The approach encompasses the simulation training setup, environment con-
figuration and behavior labeling scheme, as well as the hardware deployment of the learned
policy on real micro-quadcopters.

5.1 Training Setup

The control policy for the responding agent was trained using a deep reinforcement learning
approach. In particular, we employed Proximal Policy Optimization (PPO) to update the pol-
icy parameters in simulation. The PPO algorithm was chosen for its stability in continuous
control tasks, using clipped policy updates and a generalized advantage estimator. Training
was implemented in JAX, a high-performance numerical computing library, which allowed JIT
compilation and parallel computation for faster training. (A Numpy-based version of the en-
vironment was also maintained for debugging and compatibility with standard libraries, but
all final training runs used the JAX implementation for efficiency.) The policy network was
a multi-head neural network that outputs both continuous control commands and a discrete
behavior classification. Specifically, the actor network produces a mean µ and standard devia-
tion σ for Gaussian control action sampling, as well as logits for a categorical distribution over
Nb = 3 behavior classes. The critic network, in parallel, estimates the value function for the
state. We used a multi-component loss function combining the PPO clip loss for control and
a cross-entropy loss for behavior classification, enabling the agent to learn both tasks concur-
rently. Key hyperparameters included a discount factor γ = 0.99, a GAE parameter λ = 0.95,
an initial learning rate on the order of 10−3 with linear decay, and a clipping threshold ϵ = 0.2
for PPO updates. The training was carried out for on the order of 105 time steps, until policy
performance converged.

During training, episodes were designed to expose the agent to varied signaling behaviors. In
each episode, the leader agent executed one of several predefined motion patterns (the “signal”),
while the follower agent (controlled by the learning algorithm) attempted to follow and interpret
this signal. We defined three distinct behavior classes for the leader: (1) hovering in place, (2)
moving forward in a straight line, and (3) landing vertically. At the start of each episode,
the environment randomly selected one of these behavior patterns for the leader to execute.
The episode would then run for a fixed duration (e.g., 150 simulation time steps) or until a
termination condition was met (such as a collision or the follower successfully maintaining a very
close formation for a certain period). The follower received observation inputs that included the
relative position of the leader (and potentially its recent trajectory history), but not the explicit
identity of the behavior—forcing it to infer the behavior through its own observation stream.
The reward structure was shaped to encourage two outcomes: maintaining proximity to the
leader and correctly identifying the leader’s behavior class. The follower received positive reward
for reducing distance to the leader (up to a threshold) and for time steps where it remained
within a certain closeness radius of the leader’s position. Classification accuracy is optimized via
a cross-entropy loss term; the scalar reward in EscortFollowerBehavior remains the negative
follower-to-leader distance, so no extra reward is injected for correct phase prediction. This
reward design, combined with the auxiliary classification loss, guided the policy to learn both
the physical tracking task and the signaling interpretation task. During real-time deployment,
the classification output is interpreted in terms of the follower’s response—whether it maintains
or reacquires formation—mapping the 3-class signal into a binary behavior indicator.

6

5.2 Environment Configuration and Behavior Labeling

We built a custom multi-agent simulation environment to model the two quadcopters (leader
and follower). The environment was implemented using JAX for training speed while following
the PettingZoo multi-agent Escort environment interface where possible. Each agent in the
environment had its own observation space and action space. The observation for the follower
agent included the positions (or relative displacement) of the leader and follower, as well as their
velocities. In practice, the state could be represented as a vector [xf , yf , zf , xl, yl, zl, ẋl, ẏl, żl, . . .]
capturing the follower’s coordinates and the leader’s motion (where subscripts f and l denote
follower and leader respectively). The follower’s action space was defined as continuous ve-
locity commands or incremental position changes in the 3D space (e.g., ∆x, ∆y, ∆z relative
movements per time step). The leader agent in the simulation did not learn a policy during
training; instead, it followed a scripted behavior chosen at random each episode (straight line
or hover concluded by a landing). The leader’s motion was parameterized so that all patterns
were feasible within the physical constraints (e.g., a fixed forward speed or circle radius). To
ensure the follower could not trivially guess the behavior from a single observation, the leader’s
initial orientation and position was randomized as well.

The environment provided a ground-truth behavior label to facilitate learning and evalu-
ation. Internally, the environment tagged each episode (or each phase of motion) with the
correct behavior class (0, 1, or 2 corresponding to the three patterns). This label was used in
two ways: (1) for computing the classification reward bonus in the reward function, and (2) for
calculating a supervised classification loss by comparing the policy’s predicted class distribution
against the true label. The supervised loss was incorporated into the total loss for training (as
described above), effectively training the classification head of the network to recognize the
leader’s behavior. During policy evaluation, the environment’s true label was also recorded to
compute metrics like classification accuracy. By the end of training, the follower’s policy not
only produced continuous control actions to follow the leader, but also an accurate prediction
of the leader’s behavior category, achieving an “interactive signaling” capability.

5.3 Hardware Deployment Setup

After validating the policy in simulation, we deployed the system on real Crazyflie 2.1 nano-
quadcopters. The hardware setup consisted of two Crazyflies acting as the leader and follower,
operating in an indoor flight space. An external positioning system was used to provide absolute
position data to the drones; specifically, a motion capture setup (the Flow Deck 2.0) fed the
Crazyflie’s onboard state estimator (Kalman filter) with global coordinates. This ensured that
each Crazyflie could estimate its own position in a shared frame, which is critical for coordinated
flight. Prior to each flight test, the Crazyflie’s estimator is reset and stable hover to calibrate the
drones is ensured. The leader drone was programmed to execute the same set of three behavior
patterns used in simulation. For example, the leader could be instructed to move forward by a
set distance, or to hover for a certain period of time, using the built-in high-level commander
interface on the Crazyflie (which allows sending waypoints or simple scripted motions). These
motions were initiated via a Python control script running on a ground station laptop, using
the Crazyflie Python API to send commands over the 2.4 GHz radio link.

5.4 Policy Deployment on Drones

To deploy the learned policy on the follower drone, the trained neural network was exported and
integrated into the ground station control loop. The policy network inference was performed

7

offboard on the laptop in real time. At each control cycle, the ground station collected the latest
state estimates of both drones. This was achieved by subscribing to the Crazyflie’s log data
(e.g., obtaining the x, y, z position estimates for each drone at each time step). The follower’s
observation vector was then constructed from these real-world state estimates, mirroring the
format of the simulation observations (for instance, computing the relative position of the
leader with respect to the follower). This observation was fed into the neural network policy to
compute the follower’s action and the predicted behavior class. The continuous action output
(which in simulation corresponded to a desired velocity or position offset) was then translated
into real drone commands. In the implementation, we mapped the network’s action output
to velocity setpoints for the follower Crazyflie. These velocity commands (in the drone’s local
coordinate frame) were sent via the Crazyflie high-level commander at each time step, causing
the follower to move according to the policy. Simultaneously, the policy’s predicted behavior
class for the leader’s motion was logged for analysis.

Several practical measures were taken to ensure safe and smooth real-world operation. We
clamped the magnitude of the velocity commands to remain within conservative limits (to
account for the Crazyflie’s thrust capabilities and to avoid aggressive maneuvers). A safety
thread was implemented to send an emergency stop command to both drones if any anomaly
was detected (by force-stopping the code for running). We also introduced slight delays between
high-level motion commands for the leader (for example, pausing briefly after completing a
forward motion or one circle) to give the follower time to adjust and stabilize. Overall, this
deployment system allowed the learned policy to control a real drone in tandem with a signaling
leader drone, effectively demonstrating the interactive signaling and response behavior outside
of the simulation environment.

5.5 Behavior Phase Classification Pipeline

To support phase-aware control, we designed a classifier to recognize the leader’s current phase
in real time. The follower must recognise the leader’s current motion phase and adapt its
response accordingly. Recognition is carried out by a dedicated classifier head that is integrated
into the same neural network that produces the follower’s velocity commands. Each forward
pass yields two outputs: a mean velocity vector with log-standard deviations and a vector of
three logits, one for each phase (hover, move, land). The predicted phase is taken as the index
of the largest logit.

Ground-truth labels are generated by the environment itself. The leader executes the
three phases in a fixed order, and the current phase index is stored in the state variable
behavior label. At every step this label is supplied to the learner and used in a cross-
entropy loss that is added to the PPO objective. The auxiliary loss forces the shared network
to learn a mapping from observations to phase, while policy and value losses guide control
behaviour. Because the label schedule is deterministic and error-free, the classifier receives a
reliable supervision signal throughout training.

During evaluation the same classifier head provides a live estimate of the leader’s phase.
The predicted label is written to the log together with the true label and the action issued at
that time step, enabling the computation of per-frame accuracy and latency statistics offline. In
the finite-state controller variant, the predicted phase is passed directly to the FSM, which then
selects the appropriate geometric rule: circling during hover, trailing at a fixed offset during
move, or performing the ascend–descend landing routine. In the pure RL variant, the policy
head consumes the shared latent features and implicitly conditions its velocity output on the
phase estimate. In both cases the classifier head provides the critical bridge between percep-

8

tion and control, ensuring that the follower’s strategy remains phase-aware without adding a
separate perception module.

5.6 Finite-State Control Integration

The high-level controller is implemented as a deterministic finite-state machine (FSM) that
receives the classified phase label and activates the corresponding flight behavior. After the
neural network predicts the current phase (hover, move, or land), the FSM transitions into
the matching state and generates the appropriate reference trajectory. Each state encodes a
specific motion plan for the follower: for example, in the hover state the controller commands
the follower to execute a circular orbit around the leader, while in the move state it commands
the follower to hold a fixed offset behind the moving leader. In this way the FSM “gates” the
behavior, activating only the control logic relevant to the current phase.

In the hover phase, the follower drone continuously circles the leader at a constant radius
and altitude offset. This orbiting motion is generated by setting lateral velocity and yaw
commands so that the follower completes a stable circular trajectory around the stationary
leader. The circling strategy keeps the leader within the follower’s field of view and maintains
spatial readiness for landing. In contrast, during the move phase the leader is in linear motion,
so the controller switches to a pursuit-like behavior. Here the follower simply maintains a fixed
relative position (a constant offset) from the leader as it travels; any deviation is corrected by
a closed-loop tracking controller. This fixed-offset formation keeping ensures that the follower
moves with the leader and avoids collisions, effectively following at a steady distance without
circling.

Once the classifier indicates the land phase, the FSM executes a two-stage descent strategy.
First, the follower aligns itself above the leader at a safe stand-off altitude, ensuring a direct
approach path. Second, the follower performs a slow vertical descent from that hover position
down to the ground. By splitting the landing into these sub-stages, the controller provides a
stable approach phase followed by a cautious touchdown. Such a staged landing is analogous
to prior UAV landing designs that separate approach and descent (for example, one stage to
approach and then hover, and a second to actually descend). The explicit FSM logic enforces
safe switching: the follower only begins the final descent once the above-target alignment is
achieved.

A finite-state controller was chosen instead of a purely learned policy in order to guarantee
predictable, interpretable behavior and enhanced robustness. The state transitions and control
actions are explicitly designed, making the system easy to analyze and debug. In particu-
lar, FSM-based control has been shown to yield more reliable behaviors under disturbances
(because each phase’s logic can be tuned and verified), and is often adopted for landing and
formation tasks to ensure safety. By hard-coding the high-level strategy in a state machine,
the system avoids unexpected policy outputs and ensures that each phase’s behavior (hover
orbiting, constant-offset tracking, and descent) is executed in a safe and predictable manner.

6 Experiments and Results

We evaluated the trained policies and behavior classifier on three representative episodes. In
each episode, a leader drone moves along a straight path and the follower executes the learned
policy. Key results are summarized below.

9

6.1 Evaluation Episodes

Figure 1 shows the trajectories of the leader (solid lines) and follower (dashed lines) across
Episodes 1–3. In Episodes 1 and 2 (left and center plots), the follower closely tracks the leader
with minimal lag, maintaining formation for most of the flight. In Episode 3 (right plot), the
leader starts some distance away from the follower, and the follower temporarily deviates in
order to get in position and then proceeds with the correct behavior. These cases highlight the
policy’s ability to maintain formation under normal conditions and adapt to sudden changes,
albeit with a brief delay.

Figure 1: Flight trajectories of the leader (solid) and follower (dashed) in three evaluation
episodes. The follower successfully tracks the leader in all segments; small deviations occur
near sharp turns.

6.2 Behavior Recognition Performance

Rather than displaying a separate classification accuracy curve, performance across episodes is
summarized. The classification head of the policy network was trained to identify the leader’s
current phase (hover / move / land). Across the three evaluation episodes, the behavior pre-
dictions aligned with ground-truth labels in approximately 97% of timesteps.

Most misclassifications occurred during transitions or high-speed adjustments, especially
when the follower was forced to react to abrupt trajectory changes. For example, in Episode
3, a short sequence of misclassified steps occurred just after the leader’s start, coinciding with
spikes in the follower’s velocity commands.

10

Despite this, the classifier consistently recovered and correctly re-identified the intended be-
havior once the follower re-established formation. This robustness indicates that the auxiliary
classification task has been learned effectively and contributes to reliable behavior understand-
ing during execution.

6.3 Action Patterns and Interpretability

Figure 2 shows the follower’s action components over time for one episode. Peaks in lateral or
vertical velocity reflect rapid course corrections, often corresponding to behavior transitions.
These action traces support our interpretation of the classifier’s output: when the policy detects
that it is reacquiring formation, it issues larger corrective commands; when in stable formation,
the actions are smoother and more consistent. As we can see, the follower drone has learned to
approach the closest point to the leader at the highest speed, and then accurately follows the
leader, with rapid acceleration upon leader movement pattern change.

Figure 2: Example action component values (e.g. velocity commands) over time in an evaluation
episode. These illustrate how the follower’s control signals change, often aligning with behavior
transitions.

6.4 FSM Controller Performance

We evaluated the FSM-based controller on the leader’s scripted flight sequence. The follower’s
behavior closely matched the design in each phase, with smooth trajectories and stable tracking.
Figure 3 shows the trajectories of the leader and follower drones. The observations per phase
are:

• Hover phase: The follower executed a smooth circular orbit at the radius of 0.5 meters
around the leader, with gradual velocity changes to sustain the orbit. The deviations
from an ideal circle come from velocity changes of both leader and follower drone. The
trajectory shows the drone recognizes hover behavior and responds to it.

• Move phase: The follower trailed the leader at the fixed follow distance of 1 meter,
adjusting its heading and speed smoothly as the leader moved. The sudden change from
circular orbit to following makes the drone smoothly adjust to its correct position.

• Landing phase: The two-stage landing (ascend to apex at 0.5 meters above current posi-
tion, then descend till landing) was executed reliably; the follower reached ground level

11

without overshoot or oscillation. The small deviation from following the movement of the
leader at the end is caused by the leader stopping, making the follower orbit again. Right
after recognizing a landing pattern, the drone ascends and descends to ground.

In all phases, the commanded velocities remained moderate (below saturation) and varied
continuously, indicating smooth control effort. The FSM controller offers a clear demonstration
of the recognition classifier’s output in action. Because the controller responds deterministically
to each predicted phase, the resulting behavior of the follower provides a transparent and
intuitive visualization of the classifier’s decisions. This coupling makes it easy to interpret and
assess the classifier’s real-time accuracy based on observed drone behavior.

Figure 3: Flight trajectories of the leader (blue) and follower (orange) during the FSM-
controlled flight. The follower performs shapes showcasing recognized behaviors; small de-
viations occur near phase switches.

Figure 4 shows both drones speed. The drone speed was calculated from their difference
in position and timestamps of 0.05 seconds, not from the commands sent to the motors. The
inconsistencies of follower drones speed during circling (first 4 seconds) is caused by constant
readjustments to perform a circular trajectory. During the movement of the leader (seconds
4-6), the follower quickly readjusts to follow the leader’s trajectory, after which it slows down
until it is near the leader. During the landing of the leader (second 8), the speed of the follower
increases to ascend to the needed height, and then after some time increases again to descend.

These qualitative results suggest that the FSM-based approach achieves stable tracking and
smooth control in each behavior mode.

6.5 Discussion

The experiments demonstrate that the follower’s policy achieves both control and classification
objectives. It follows the leader reliably in varied scenarios and correctly identifies its behavioral

12

Figure 4: Velocity profiles of the leader (blue) and follower (orange) during the FSM-controlled
flight.

state in most frames. Minor misclassifications typically occur at behavioral boundaries or during
aggressive leader maneuvers, but recovery is fast. These results suggest that the two-headed
policy network generalizes well and that movement-based signaling is an effective channel for
coordination.

7 Quantitative Evaluation Metrics

To objectively evaluate the performance of the interactive signaling and response system, we
defined a set of quantitative metrics that capture the effectiveness of both the communication
and control aspects of the agents. These metrics allow for systematic comparison between simu-
lation and real-world performance, and help identify the strengths and limitations of the learned
policy. In the analysis that follows, all metrics are computed based on recorded trajectories,
behavior predictions, and episode outcomes.

7.1 Behavior Classification Accuracy

This metric measures how consistently the follower drone is able to correctly interpret the
leader’s signaling behavior. It is computed as the proportion of time steps (or episodes) in
which the predicted behavior class matches the ground-truth label assigned to the leader’s
motion. High classification accuracy indicates that the follower has successfully learned to
identify different motion patterns and associate them with their intended meanings.

7.2 Trajectory Following Error (RMSE)

To assess how well the follower maintains formation with the leader, we compute the root-
mean-square error (RMSE) between the follower’s position and a reference trajectory. This
reference can be the leader’s actual path or a target offset position relative to the leader. The
RMSE provides a scalar summary of the deviation between the desired and actual follower
paths, where lower values indicate tighter formation and better tracking performance.

13

7.3 Control Smoothness

This metric reflects how stable and consistent the follower’s control outputs are throughout
an episode. We quantify smoothness by analyzing the variance in the follower’s speed over
time. A low variance suggests that the drone is issuing consistent velocity commands, leading
to smoother and more controlled flight. In contrast, high variance may indicate oscillatory or
abrupt movements, potentially caused by noisy observations or instability in the policy.

7.4 Evaluation Results

Table 1: Quantitative evaluation metrics for the learned policy.

Metric Value
Classification accuracy 97.8%
Trajectory RMSE [m] 0.319
Control smoothness (action-var) 2.427

The results in Table 1 indicate strong overall performance of the system. The classification
accuracy of 97.8% suggests that the behavior recognition component is highly effective, correctly
identifying nearly all relevant behaviors. Likewise, the low trajectory following error (RMSE of
0.319) signifies that the drone’s actual flight path closely tracks the desired trajectory, reflecting
precise and reliable navigation. The control smoothness, quantified as a variance in action
magnitude of 2.427, implies that the control commands remain reasonably steady, avoiding large
abrupt movements and contributing to stable flight. Collectively, these metrics demonstrate
that the system is already robust enough for deployment in more complex, real-world flight
scenarios.

8 Development Challenges

Over the course of the project the implementation was rewritten several times, and most of the
effort went into resolving issues that surfaced long before the final FSM solution was in place.
The first difficulty concerned code reuse: early prototypes were built with a slightly different
observation layout and action convention, so each new experiment required labor-intensive
“plumbing” to line up tensor dimensions, coordinate frames, and scaling factors. In practice
these mismatches manifested as silent shape errors or instabilities that were only discovered
after long training runs, forcing repeated back-tracking and interface redesign.

A second source of friction was model exploration. We began with a pure end-to-end
policy whose latent state was expected to encode the leader’s behaviour implicitly; however,
empirical testing showed that the network often conflated hover and slow-move states, making
learned responses hard to interpret. Several alternatives were attempted in rapid succession—a
separate supervised classifier trained offline, a conditional imitation model, and a two-headed
PPO variant with auxiliary phase loss—each exposing new hyper-parameter sensitivities and
slowing progress as entire training pipelines had to be torn down and rebuilt.

Training stability itself proved elusive. Because rewards combined dense distance penalties
with sparse success bonuses, early networks either collapsed to trivial hovering or diverged
entirely, saturating at the action limits. Dozens of reward-shaping and normalization variants
were tried, and many promising runs were abandoned after hundreds of thousands of steps
when loss curves exploded without warning. Reproducibility was further complicated by JAX’s

14

strict handling of pseudo-random keys; forgetting to pass a fresh key through one function
could yield nondeterministic behaviour that only appeared under vectorised roll-outs.

Finally, frequent framework shifts consumed substantial calendar time. Early baselines were
written in PyTorch and later moved to JAX for speed, then select utilities were ported back
to NumPy when debugging was easier on CPU. Every migration triggered a fresh round of
inference-speed profiling, checkpoint conversion, and refactoring of logging and visualisation
scripts. Only after these hurdles were cleared did we settle on the current architecture—an
online classifier coupled to a deterministic controller—which, while simpler to reason about,
represents the end of a long iterative path rather than the starting point of the work.

9 Future Work

9.1 Extending the Signaling Mechanism

While the current implementation demonstrates that drones can interpret discrete motion pat-
terns as signals, the expressiveness of this system remains limited. Presently, the leader commu-
nicates using only three fixed behaviors. One natural extension is to broaden this repertoire with
more complex actions—such as evasive maneuvers, creative patterns, or varying tempo—that
increase the vocabulary of motion-based signals.

Beyond manually crafting new classes, an even more promising direction is to allow the
signaling protocol to emerge autonomously. Drawing from emergent communication research
in multi-agent reinforcement learning, agents could develop their own language of motion cues
tailored to the task. This would eliminate the need for predefined categories and may result in
more efficient or nuanced strategies for coordination.

9.2 Bi-Directional and Multi-Agent Communication

Currently, communication is unidirectional: the leader sends, the follower interprets. In prac-
tice, cooperative systems benefit from two-way exchanges. Allowing both agents to take turns
signaling and responding, either sequentially or simultaneously, could lead to more flexible role
assignments and richer team behavior.

This idea can also be generalized to larger swarms of drones. In multi-agent groups, agents
might adopt specialized roles, switch leadership dynamically, or propagate intent through dis-
tributed communication. For example, some drones might serve as relays or coordinators,
allowing complex behaviors to emerge from simple local rules. While scaling up introduces
coordination challenges and the risk of signal interference, it also opens the door to studying
emergent protocols for swarm intelligence.

9.3 Improving Sim-to-Real Transfer and Robustness

Despite promising results in simulation, deploying trained policies on real hardware revealed
performance drops due to discrepancies in dynamics, noise, and sensing (wind and floor recog-
nition quality impact the drones perception of its position). Addressing this sim-to-real gap
is a key priority. One approach is domain randomization—training in simulations with ran-
domized physics, noise, and disturbances to build robustness. Another is online fine-tuning:
continuously adapting the policy using real-world experience, subject to safety constraints.

Such techniques can help bridge the gap between simplified simulation environments and
complex, unpredictable real-world scenarios. The goal is to create policies that generalize well

15

and remain reliable outside of controlled test settings.

9.4 Scalability Through Advanced Learning Architectures

As the number of behaviors and agents increases, so does the complexity of learning and
control. One solution is policy distillation: training specialized models on subsets of the task
and combining their knowledge into a single unified policy. This distilled policy can generalize
across situations, while simplifying deployment.

Alternatively, hierarchical reinforcement learning could provide modularity. A high-level
policy could decide when to use specific behaviors or signaling protocols, while lower-level con-
trollers handle the details. This layered approach supports scalability and adaptation, especially
in systems with many moving parts or role configurations.

10 Conclusion

In this work we implemented an interactive signaling-response system for Crazyflie drones,
leveraging the CrazyRL framework. We detailed the CrazyRL architecture (Numpy vs JAX
backends, functional environment design, training/deployment pipelines) and our policy net-
work (2-layer MLP with Gaussian action output and behavior logits). We also integrated
CrazyRL with the Crazyflie Python library, using the High-Level Commander for drone con-
trol, and implemented synchronization, estimator reset, and emergency stop protocols for safe
multi-drone operation. In our Escort-Follower behavior recognition task, the follower achieved
around 97% classification accuracy and successfully tracked the leader in both simulation and
real-world flights.

While the final system demonstrates strong results, reaching this point involved several
non-trivial challenges. Early experiments were slowed by repeated interface mismatches and
codebase inconsistencies, often surfacing only after lengthy training runs. Several modeling
approaches were tested and abandoned before settling on the current classifier-plus-controller
design. Training stability was another key issue—many promising runs failed due to sensi-
tivity to reward shaping, randomness, or optimization dynamics. Significant effort also went
into managing framework transitions between PyTorch, JAX, and NumPy for performance,
debuggability, and deployment needs. These implementation hurdles consumed most of the
development timeline and shaped the final design.

In summary, the interactive signaling and response framework presented in this thesis opens
several promising directions for research and development. Enhancing communication, enabling
richer agent interactions, improving sim-to-real performance, and scaling the learning system
are all viable next steps. Each of these directions moves us closer to autonomous swarms that
not only navigate their environment but also understand, interpret, and cooperate with one
another in increasingly complex scenarios.

This project has laid the groundwork by building a functional end-to-end pipeline from
simulation to real-world deployment. With further refinement, these capabilities can contribute
to the development of robust, scalable, and intelligent multi-agent systems.

16

References

[EGK17] Maxim Egorov, Jayesh Gupta, and Mykel Kochenderfer. Cooperative multi-agent
control using deep reinforcement learning. In Advances in Neural Information Pro-
cessing Systems (NeurIPS), volume 30, 2017.

[GSM+24] Coenrad Adolph Groenewald, Gonesh Chandra Saha, Garima Mann, Bharat
Bhushan, Eric Howard, and Elma Sibonghanoy Groenewald. Multi-agent systems in
robotics: Coordination and communication using machine learning. International
Journal of Multi-Agent Systems, 2024. Preprint on ResearchGate.

[HŠN17] Maximilian Huettenrauch, Adrian Šošić, and Gerhard Neumann. Local commu-
nication protocols for learning complex swarm behaviors with deep reinforcement
learning. In Proceedings of the International Conference on Autonomous Agents and
Multiagent Systems (AAMAS), pages 1201–1209, 2017.

[JJ23] Muhammad Javeed and José López Jiménez. Reinforcement learning-based control
of crazyflie 2.x quadrotor. arXiv preprint arXiv:2306.03951, 2023.

[NNN18] Thanh Thi Nguyen, Ngoc Duy Nguyen, and Saeid Nahavandi. Deep reinforcement
learning for multi-agent systems: A review of challenges, solutions and applications.
arXiv preprint arXiv:1812.11794, 2018.

[PM23] Edoardo Maria Pesce and Giovanni Montana. Learning multi-agent coordination
through connectivity-driven communication. Machine Learning, 112(8):2875–2905,
2023.

[ZRW20] Yongkun Zhou, Bin Rao, and Wei Wang. Uav swarm intelligence: Recent advances
and future trends. IEEE Access, 8:183856–183878, 2020.

17

	Introduction
	Related Work
	CrazyRL Framework
	Backends: Numpy vs JAX
	Functional Environment Structure
	Training Pipeline
	Deployment Pipeline
	Policy Model Architecture

	CFLib Integration
	High-Level Commander
	Synchronization and Coordination
	Estimation Reset and Initialization
	Emergency Stop Protocol
	Multithreaded Execution

	Methodology
	Training Setup
	Environment Configuration and Behavior Labeling
	Hardware Deployment Setup
	Policy Deployment on Drones
	Behavior Phase Classification Pipeline
	Finite-State Control Integration

	Experiments and Results
	Evaluation Episodes
	Behavior Recognition Performance
	Action Patterns and Interpretability
	FSM Controller Performance
	Discussion

	Quantitative Evaluation Metrics
	Behavior Classification Accuracy
	Trajectory Following Error (RMSE)
	Control Smoothness
	Evaluation Results

	Development Challenges
	Future Work
	Extending the Signaling Mechanism
	Bi-Directional and Multi-Agent Communication
	Improving Sim-to-Real Transfer and Robustness
	Scalability Through Advanced Learning Architectures

	Conclusion

