
Daan de Jong

Monte Carlo Tree Search with
contextual bandits

Bachelor thesis

June 24, 2025

Thesis supervisors: dr. D. van der Hoeven
dr. J.N. van Rijn

Leiden University
Mathematical Institute (MI)

Leiden Institute of Advanced Computer Science (LIACS)

https://www.universiteitleiden.nl/en/science/mathematics
www.liacs.leidenuniv.nl

Abstract

Monte Carlo tree search (MCTS) has become the dominant framework in ar-
tificial intelligence for game-playing. Popular variants of MCTS, like UCT
(which uses the UCB1 bandit), use multi-armed bandits to improve the
selection of sub-trees that are explored. However, UCB1 relies on the as-
sumption that the arms are stochastic, an assumption that is not met in
bandit-based tree search. In this thesis, we aim to find an algorithm that im-
proves upon UCB1. This new algorithm, contextual bandits applied to tree
search (CBT), utilises contextual bandit theory to address these limitations.
By treating the strategies of subsequent players as context, CBT uses con-
textual information to improve move selection. For a maximum tree depth
of two, we give a theoretical analysis proving the CBT has a pseudo-regret

of O
(√

T ln(T)
)

and run experiments to determine real-world practical-

ity. Empirical evaluations on a stylised game and Tic-tac-toe demonstrate
that although CBT does seem to confidently identify the best move sooner
than UCB1, UCB1 is still superior at finding the minimax value and recom-
mending the best move. These results suggest that incorporating contextual
bandit into MCTS may provide a promising direction for future research in
tree search algorithms, notably by looking at tree search with more levels
than two. But for now, they are not an improvement over UCB1.

Contents

1 Introduction 1
1.1 Playing games . 1
1.2 Goal . 2
1.3 Thesis overview . 3

2 Theory 3
2.1 Minimax Algorithm . 3

2.1.1 Monte Carlo tree search . 4
2.2 Alphago . 5
2.3 Multi-armed Bandits . 5

2.3.1 Regret . 6
2.3.2 UCB1 . 7
2.3.3 SquareCB . 7

2.4 Online linear regression . 8
2.4.1 Online ridge regression . 9

3 Definitions 10
3.1 Problem setting . 11
3.2 Bandits and minimax . 12
3.3 The CBT algorithm . 14

4 Analysis 15
4.1 Analysis of the first player . 16

4.1.1 The regression oracle . 21
4.2 Analysis of the second player . 23

5 Experiments 25
5.1 Methods . 27

5.1.1 Minimal game . 27
5.1.2 Tic-tac-toe . 27
5.1.3 Hyperparameters CBT . 28
5.1.4 Algorithms for comparison 28

6 Results 30
6.1 Minimal game . 30

6.1.1 Higher K . 32
6.2 Effect of hyperparameters . 33
6.3 Tic-tac-toe . 38

7 Conclusion 40
7.1 Suggestions for future work . 41

References 44

A Proofs 45
A.1 Analysis of the first player . 45
A.2 Analysis of the second player . 47

1 INTRODUCTION 1

1 Introduction

At first glance, devoting time and energy to making computer programs play board
games seems meaningless. One might argue that it is better to use those resources
to solve real-world problems that are more relevant. However, the development
of computers that can outperform humans at playing board games has been a
topic of research since scientists began studying computer science and artificial
intelligence (Toosi et al., 2021). For example, the development of a chess-playing
computer received decades of attention by some of the biggest names in the history
of computer science, like Charles Babbage, Alan Turing, and John von Neumann
(Silver et al., 2018). So much so that it has even been called the Drosophila
(also known as the fruit fly) of artificial intelligence research (Ensmenger, 2012).
This research culminated in the development of IBM’s Deep Blue chess computer,
which defeated then-reigning world champion Garry Kasparov in 1997 and became
the first computer to do so (Campbell et al., 2002). Over the past few years, AI
algorithms have become increasingly sophisticated, and AI solutions have become
an integral part of daily life for many. It is hard to imagine that this progress
would have happened without the research, breakthroughs, and technologies that
came from studying the trivial problems like how to play a board game.

To continue in the tradition of scientists teaching computers how to play games,
for this thesis, I will propose a new algorithm, CBT, based on (contextual) multi-
armed bandit theory and try to improve upon existing game-playing algorithms.
But first, we have to talk about the way these algorithms work.

1.1 Playing games

The way computers play games is similar to how people play games. The course of
a game can be represented by a tree, where the vertices are possible game states,
with the root the beginning state of the game, and where the edges are possible
moves. Figure 1 gives an example of a part of the game tree of the game of Tic-
tac-toe (this example also takes into account the symmetries of the game). Both
humans and computers decide what move to play by searching this tree for end
states where they win (i.e., imagining what moves the opponent could pick and so
forth).

The problem is that with more complicated games, the game tree becomes
too big to be searched completely, even for the most high-performance computers.
The development of game-playing algorithms, therefore, focuses on finding efficient
ways to search only a subset of the tree to find the best move. One of these
algorithms is Monte Carlo tree search (Coulom, 2006), which uses multi-armed
bandits to search the tree. In its most popular form, MCTS uses UCB1 bandits.
However, there are two problems with this. UCB1 does not make use of all available

1 INTRODUCTION 2

Figure 1: Example of part of the game tree of the game Tic-tac-toe (taking into
account the symmetries of the game).1

information and has a theoretical drawback when it comes to tree search. We will
talk more about these problems in Section 2.1.1 and Section 3.

1.2 Goal
To address the issues mentioned above, in this thesis, we present a new algorithm:
contextual bandits applied to tree search (CBT). This algorithm applies squareCB,
a contextual bandit algorithm introduced by Foster and Rakhlin (2020), to replace
UCB1 in Monte Carlo tree search. The motivation for this is the fact that contex-
tual bandits utilise extra information when choosing a subtree to further explore,
and the fact that squareCB does not need to assume that the outcome of each de-
cision is stochastic (which is not the case in MCTS). Both contextual bandits and
squareCB will be further elaborated upon in Section 2.3.3. The research question
is:

“Can we improve upon Monte Carlo tree search with UCB1 and make
a more efficient tree search algorithm by applying contextual bandits in
a two-player zero-sum game?”

This can be broken into two further goals. The primary goal is to find an algo-
rithm that is more effective at selecting the optimal move in a game. The second,
less important one is finding an algorithm with stronger theoretical guarantees.
However, these two goals are not unrelated, as a stronger theoretical foundation
for the algorithm should lead to more robust performance in practice.

1Figure from https://commons.wikimedia.org/w/index.php?title=File:Tic-tac-toe-game-
tree.svg

https://commons.wikimedia.org/w/index.php?title=File:Tic-tac-toe-game-tree.svg
https://commons.wikimedia.org/w/index.php?title=File:Tic-tac-toe-game-tree.svg

2 THEORY 3

1.3 Thesis overview

The structure of the thesis is as follows. Section 2 discusses related work and
gives an overview of the theory necessary to achieve the research goal; Section 3
defines the mathematical framework for our analysis and presents the algorithm
that we will study in this thesis; Section 4 contains the mathematical analysis
of the algorithm; Then in Section 5 the experimental analysis and accompanying
methods are explained; The results of these experiments are then presented in
Section 6; Finally in Section 7.1 presents the findings of the thesis and makes
recommendations for future work. At the end of this report is also Appendix A
with proofs for various lemmas.

Before we introduce the theory, we first make a general remark. What has
become clear when researching literature is that mathematicians and computer
scientists (at least in this area of research) engage with the same (or very similar)
problems, but they approach these problems in completely different ways that
do not align. Mathematicians discuss theoretical or worst-case upper and lower
bounds, as well as statistical analysis. Meanwhile, computer scientists try as many
things as possible to see what works in practice.

2 Theory

As we explained in the introduction, computers play games by searching the game
tree. Several algorithms can be used for this, two of which, the minimax algorithm
and Monte Carlo tree search, we will introduce in this section. Then, in the rest
of this section, we will introduce the rest of the theory that is necessary before we
can introduce and analyse our new algorithm.

2.1 Minimax Algorithm

In a zero-sum two-player game, nodes in the game tree have a ‘game theoretical
value’. Nodes that have no children are called terminal nodes and represent states
in which the game has ended. They have values that show how desirable this
end-state is for the player. For example, in a points-based game, this could be the
number of points the player has, or with a simple win/lose game, it could be 1 if
the player wins and −1 if their opponent wins. The goal of playing is to reach
a terminal node with the highest value. The goal of the opponent is to reach a
terminal node with the lowest value.

For non-terminal nodes, the value is recursively defined: If some node repre-
sents a state where the player has to make a move, the value of that node is equal
to the highest value of any of its children, i.e., the value corresponding to the max-

2 THEORY 4

+∞10 5 -10 7 5 -5-7-∞

10 5 -10 -7

10 -10

-∞

-7

-7-10

5

5

-70 (max)

1 (min)

2 (max)

3 (min)

4 (max)

Figure 2: Example of a tree with the minimax values.2

imising move. If a node represents an opponent’s turn, then their value is that of
the child node with the smallest value (Knuth & Moore, 1975).

This gives rise to an algorithm for playing games: the minimax algorithm. The
values for the nodes in the tree that correspond with each of the possible actions
a player can take are calculated by minimising or maximising the values from the
leaves up. The algorithm finally chooses the move with the highest value in the
top level of the tree (Knuth & Moore, 1975). An example of such a calculated
tree for a random game can be seen in Figure 2. Here right move, with value −7,
turned out the be the optimal one for the beginning player.

For the rest of this thesis, we will call the value of a node the ‘minimax value’.

2.1.1 Monte Carlo tree search

The minimax algorithms and the improved alpha-beta-pruning have been used
since the 1960s (Knuth & Moore, 1975) and work well for games that are small
enough so that the entire tree can be calculated, but even with improvements
calculating the minimax value becomes impractical for larger game with large
branching factors like Chess or Go where calculating the entire tree would simply
take too much time (van den Herik et al., 2002). As a solution to this, researchers
introduced random play-outs3 and took the average outcome of those random
games to be the ‘value’ of the move (Munos, 2014). Building on this, instead
of uniformly sampling a move to play in the play outs, bandits were used to
increasingly exploit the more promising subtrees (Bubeck & Cesa-Bianchi, 2012).
This resulted in Monte Carlo tree search (MCTS) algorithms (Coquelin & Munos,
2007; Munos, 2014).

2Figure from https://commons.wikimedia.org/w/index.php?title=File:Minimax.svg
3A random rollout is defined as simulation of the game from the current state to a terminal

state, by continuously choosing uniformly from all available moves.

https://commons.wikimedia.org/w/index.php?title=File:Minimax.svg

2 THEORY 5

Combined with an iterative deepening that expands the tree with every iter-
ation, the general MCTS algorithm emerged as it is used today (Chaslot et al.,
2008). This MCTS consists of four stages that are repeated a certain number of
times, or until time runs out. The four stages are pictured in Figure 3. The first
is selection, a multi-armed bandit is used at every node to select the best move,
until a leaf of the tree or a terminal state is reached (the game is finished). The
second stage has the tree expand with one node. The third is a random rollout
up to a terminal state. Finally, in the fourth and last stage, the result of that
random rollout is used to update all visited nodes with information used by the
multi-armed bandit algorithm.

The most famous and widespread of these MCTS algorithms is Upper Confi-
dence bound applied to Tree search (UCT) by Kocsis and Szepesvári (2006). In
this variant, the multi-bandit algorithm upper confidence bound 1 by Auer et al.
(2002) (see also Section 2.3.2) is used in the selection stage to select the branch
to further explore for every node of the tree. However, the use of UCB1 has a
theoretical drawback, i.e. that UCB1 is a stochastic bandit. This means that it
is assumed that the outcome of each arm is stochastic with a stationary distribu-
tion and mean. In MCTS, the outcome of the random rollouts is stochastic, but
the bandits that choose the moves in the next levels of the tree search are not.
Their strategy changes with every iteration of the MCTS algorithm. Therefore,
the stochastic assumption of UCB1 does not hold for the selection stage in MCTS.

2.2 Alphago

More recent developments are the variants of MCTS combined with neural net-
works: ‘AlphaGo’ and its successors (Silver et al., 2016, 2017, 2018). These were
the first algorithms ever to beat the world’s best players of the game of Go.

2.3 Multi-armed Bandits

The multi-armed bandit problem is a mathematical framework for making sequen-
tial decisions under uncertainty (Bubeck & Cesa-Bianchi, 2012), usually for T
rounds. In each round t ∈ [T], the decision maker, or learner, has to choose an
action at out of K possible actions and based on that choice it receives a reward
(or loss) Xt ∈ R. The learner does not observe what the reward would have been
if it had chosen a different action. The available actions are also called ‘arms’
that can be ‘pulled’, like the levers on a slot machine, hence the name multi-
armed bandits (Lattimore & Szepesvári, 2020, Chapter 1). Although there are
many different variations of this concept, an essential part of multi-armed bandit

4(Świechowski et al., 2023)

2 THEORY 6

Figure 3: Overview of the Monte Carlo tree search (MCTS) algorithm cycle.4

problems is always the trade-off between exploration and exploitation. Here, ex-
ploration means trying different arms to find ones that give higher rewards, and
exploitation means repeatedly pulling arms that had good results in previous tries
to maximise rewards (or minimise losses).

The goal in a multi-armed bandit problem is usually to find a strategy for
selecting arms that maximises the (expected) total reward. But it can also be to
find the best arm in the least amount of rounds, or for some fixed-confidence, this
is called best arm identification (Garivier & Kaufmann, 2016).

A further distinction can be made in the way the rewards are determined. The
main variations are stochastic and adversarial multi-armed bandits. Stochastic
means that each arm has a stochastic reward with a fixed mean and distribution
that are both unknown to the learner. In adversarial bandits, the reward function
is not fixed and can be different for each arm at each time step. In the last case, it
may even be set at the beginning of each time step based on the previous strategy
of the learner by an adversary, hence the name adversarial bandits (Bubeck &
Cesa-Bianchi, 2012; Lattimore & Szepesvári, 2020).

2.3.1 Regret

When we look at multi-armed bandits that maximise rewards, we want to compare
the performance of different strategies. For this, we use regret, which is the differ-
ence between the cumulative rewards of one strategy and the cumulative rewards
of always playing an optimal strategy for T rounds. The precise definition depends
on the way the multi-armed bandit problem is defined, and different authors also

2 THEORY 7

use different definitions.

2.3.2 UCB1

The UCB1 (upper confidence bound) algorithm for the stochastic multi-armed
bandit problem was first introduced by Auer et al. (2002), who proved that the

use of UCB1 guarantees a worst case pseudo-regret in the order O
(√

TK ln(T)
)
,

for T repeated plays and K possible arms (Auer et al., 2002; Luo, 2017b). It
estimates the mean outcome of each arm, including the confidence bounds, and
selects the arm with the highest confidence bound. This means it is as optimistic
as possible about the means of each arm, before choosing the arm with the highest
estimated mean. Because of this optimism, it is not only good in the worst case,
but it is also efficient in many real-world cases.
UCB1 is a maximising algorithm; there is also an opposite variant, sometimes
called lower confidence bound (LCB1), that works the same except that it min-
imises the lower bound instead of maximising the upper bound. Since it is funda-
mentally the same algorithm, we will call both variants UCB1 in this thesis. The
simplicity and efficiency are the reasons it is widely used in practice and used in
the UCT algorithm mentioned in Section 2.1.1.

Algorithm 1 Upper confidence bound 1 (Auer et al., 2002)

Require: Observe K > 1 the number of arms.
1: Play each arm i ∈ [K] once and initialise x̄i as the mean of all observed gains

of arm i.
2: Set ni = 1 the number of times arm i has been played.
3: for n=1,2,...,T do

4: Calculate for each arm i ∈ [K], Ai = x̄i +
√

2 lnn
ni

.

5: Play the arm j that maximises this value: j = argmaxi Ai.
6: Observe the result xn and update the mean of outcomes x̄j of playing arm

j accordingly.
7: Increment nj by one.
8: end for

2.3.3 SquareCB

A variant of the multi-armed bandits is contextual bandits. The difference being
that in a contextual bandit, the outcome depends not only on the choice of arm,
but also on a variable, called the ‘context’, the shape of this variables depends on
the exact model, that is observed by the algorithm and known before the algorithm
chooses an arm. Furthermore, in the contextual bandits that we will consider, the

2 THEORY 8

losses or rewards are not stochastic any more. That means they are not drawn
from fixed distributions, but instead the distributions depend on the context and
can vary for different time steps t.

A possible way to approach a contextual bandit problem is by using an oracle.
An oracle is a procedure to predict the outcome of a move given a certain context
(Agarwal et al., 2014). The outcome is then used to choose the move according to
some policy. Such an oracle is essentially a supervised learning problem, which is
thoroughly studied.

One recent contribution to the study of contextual bandit is a paper by Foster
and Rakhlin (2020), where they introduce the (adversarial) algorithm squareCB.
This algorithm is a reduction of a contextual bandit problem to an online squared
loss regression problem. Their main result is Theorem 1, presented below:

Theorem 1. Supposing some assumptions (which can be found in the paper (Foster
& Rakhlin, 2020)), for any δ > 0 and with hyperparameters µ = K and γ =√

KT/(Rsq(T) + log(2δ−1)), the regret of squareCB is bounded, with probability
1− δ by

4
√
KT ·Rsq(T) + 8

√
KT log(2δ−1)

Where Rsq(T) is a known regret bound of the online square regression algorithm
used as an oracle.

This means that we can use an online regression algorithm that is known to be
efficient and apply it to get an efficient contextual bandit algorithm with regret
bound guarantees.

In this thesis, we will modify squareCB for our scenario, which means that
our main analytical result, Theorem 3, is very similar to the theorem of Foster
and Rakhlin (2020). To do this, we will also need a regression oracle. Thus,
it is necessary to also talk about online regression, or in our case, online linear
regression.

2.4 Online linear regression

Online linear regression is an online variant of linear regression. In ordinary re-
gression, we observe all data immediately and can then estimate the regression
parameters from the data and use those to make predictions. Online regression
observes the data points one by one and updates the coefficients sequentially, using
them to predict the new data point. The procedure is as follows, for online linear
regression with n independent variables (Schapire, 2018):

• Initialize the regression coefficients θ1 ∈ Rn.

• Repeat for t = 1, ..., T :

2 THEORY 9

– Observe xt ∈ Rn.

– Predict the outcome ŷt = ⟨θt, xt⟩.
– Observe the real outcome yt ∈ R.
– Update the coefficients θt accordingly.

Here ⟨θt, xt⟩ = θ⊤t xt means the dot product, or inner product of the vectors θt
and xt.

The goal is to minimise the total ‘loss’ according to some loss function ℓt(θt),
for example, a square loss function ℓt(θt) = (yt − ⟨θ⊤t , xt⟩)2.

We measure the performance of online regression by looking at the regret:

Definition 1. For an online linear regression with loss function ℓt, n the amount
of independent variables and the regression coefficients θt at time t, the regret is
defined as:

Regret(T) =
T∑
t=1

ℓt(θt)− min
θ∈Rn

T∑
t=1

ℓt(θ)

2.4.1 Online ridge regression

One of the algorithms to perform online linear regression is online ridge regression,
a generalisation of the ordinary least squares method (Arce & Salinas, 2012). The
explicit formula for the regression coefficients θ in ridge regression is shown in
Equation 1 as described by Vovk (2001), which is equivalent to Least Squares
when α = 0.

θ =

(
T∑
t=1

ytxt

)⊤(
αI +

T∑
t=1

xtx
⊤
t

)−1

(1)

This can be transformed into an online algorithm (i.e. an algorithm that updates
the regression coordinates after each observation) by defining the following two
variables:

A
def
= αI +

T∑
t=1

xtx
⊤
t

b
def
=

T∑
t=1

ytxt

The weights vector is then equal to θ = b⊤A−1. In the online version of the algo-
rithm, the variables A and b are updated sequentially with each new observation.
The complete online ridge regression is then as shown in Algorithm 2:

3 DEFINITIONS 10

Algorithm 2 Online ridge regression (Arce & Salinas, 2012; Vovk, 2001)

Require: A hyperparameter α.
1: Set A← αI and b← 0.
2: for t = 1, 2, ... do
3: Observe xt.
4: Predict the outcome ŷt ← b⊤A−1xt.
5: Observe real outcome yt.
6: Update A← A+ xtx

⊤
t .

7: Update b← b+ ytxt.
8: end for

Computationally, the most expensive part of this algorithm is the matrix inver-
sion on line 4. This part can be sped up by using the Sherman-Morrison formula
as found in Cesa-Bianchi and Lugosi (2006, Chapter 11), which removes the need
for a matrix inversion. The formula is shown in equation 2 below. This equation
replaces the update rule on line 4 of Algorithm 2.

A−1
t = A−1

t −
(
A−1

t−1xt

) (
A−1

t−1xt

)⊤
1 + x⊤

t A
−1
t−1xt

(2)

When playing this algorithm, Cesa-Bianchi and Lugosi (2006, Chapter 11)
show that the regret compared to using any vector of weights u is bounded:

Theorem 2 (Cesa-Bianchi and Lugosi, 2006). For some sequence of (xt, yt) ∈
Rd × R, for any u ∈ Rd and T ≥ 1, and the loss function defined as square loss
ℓ(u) = 1

2
(uxt − yt)

2, the regret of playing ridge regression is bounded by:

T∑
t=1

ℓt(θt)−
T∑
t=1

ℓt(u) ≤
1

2
∥u∥2 + d ln

(
1 +

T

d
· max
t=1,...,T

∥xt∥2
)
· max
t=1,...,T

ℓt(θt−1)

Where || · || denotes the Euclidean norm.

In the case that ℓt(u), and ∥u∥ are bounded by some constant and maxt∈[T] ∥xt∥2 ≤
X is bounded too, the regret bound for the algorithm is: O

(
d ln

(
1 + TX2

d

))
.

3 Definitions

The essence of Monte Carlo tree search is bandits playing a game against each
other for a certain number of repetitions. Combined with random rollouts. Later
(in Section 3.2), we will show that this leads to the outcome of the repeated games

3 DEFINITIONS 11

to converge to the minimax value and the strategy of the bandits to approach an
optimal strategy. We achieve this with a proof based on Luo (2017a).

The goal of this thesis is to develop a better algorithm for zero-sum, two-player
games. In MCTS, the bandits choose their strategy based on the outcome of pre-
vious repetitions. Therefore, when the bandit for the first level in the tree decides
the strategy for the first move, it already knows the strategy for the bandits that
pick the second move. We can use this information to improve the performance
of the bandit by choosing its strategy based on the (known) strategy of the next
player. We will use this in the algorithm that is presented later in this section.
For simplicity, this algorithm will only look at two-ply games first (so that both
players only make one move before the game ends).

Before we show the algorithm, we first need to define some notation.

3.1 Problem setting

Before we can introduce our algorithm, we must first define the problem setting.
We consider a zero-sum game between two players that is repeated for T times,

where players take turns to play a move. One repetition consists of the following
events:

1. The first player observes what strategy the second player will play. A strategy
is a probability vector that assigns some probability to each of the possible
moves. The second player has a strategy for each of the possible moves the
first player can choose. All these strategies are defined by the symbol pit
for some time t and some move by the first player i. What the first player
observes is therefore a vector of vectors pt = (pit)i∈[K].

2. Player 1 chooses a strategy wt for round t, and a move is sampled from this
distribution. This sampled move, denoted by it, is then played.

3. A move is sampled for the second player’s turn, called ht. It is sampled from
the distribution pitt that was already known in step 1. Note here that the
action space (the set of moves available to the second player) depends on the
move chosen by player 1. The action space is denoted by Hi for some first
player move i, and therefore it is not generally true that Hi = Hj for two
different i, j ∈ [K].

4. Then, both players observe the outcome of the game called Xt(it, ht) ∈ [0, 1]
which is stochastic and sampled from some distribution with mean µ(it, ht),
so that for given it, ht the expected outcome of the game is: E [Xt(it, ht) | it, ht] =
µ(it, ht).

3 DEFINITIONS 12

5. Lastly, if this has been repeated for fewer than T times, the whole process
starts over again, beginning with step 1.

The goal of the first player is to choose the strategy w that maximises the
expected outcome. Since we are looking at zero-sum games, the first player their
reward is the second player their loss, so the second player their objective is to
choose a strategy p that minimises the expected outcome.

3.2 Bandits and minimax

Next, we will show, using a modified analysis of Luo (2017a), that when both
bandits’ regret is bounded and sub-linear over time, the outcome of the scenario
introduced in the previous section will converge to the minimax value. For this,
we first introduce some notation. When bandits choose their respective strategies
wt and pt from which their moves it and ht will be sample, the expected outcome
of the game is E[Xt(it, ht)] =

∑
i∈[K] w

i
t ·
∑

h∈Hi p
i,h
t ·µ(i, h) (where the expectation

is also the expectation over the randomness of it and ht). Instead of this we will

abuse the notation a little, and write µ(wt, pt)
def
=
∑

i∈[K] w
i
t ·
∑

h∈Hi p
i,h
t · µ(i, h)

with wt being a vector and pt being a vector of vectors. For readability we also
introduce the notation W = ∆K and P = ∆|H1| × ... × ∆|HK | for the sets of all
possible values of wt and pt respectively.

Definition 2. The minimax value is defined as shown in Equation 3 below. It is
the expected outcome of the game when player 1 chooses a strategy to minimise
the outcome and player 2 chooses a strategy that maximises the outcome of the
game:

min
w∈W

max
p∈P

µ(w, p) (3)

Next, we need to define the regret of both bandits. We use the pseudo-regret
in our analysis.

Definition 3. The pseudo-regret of player one is the difference between the ex-
pected outcomes of the chosen strategies wt for t = 1, 2, ..., T and the expected
outcome of playing the optimal strategy every time. We call the pseudo-regret for
player one:

R̄player 1(T) = E

[
T∑
t=1

µ(wt, pt)

]
− min

w∈W
E

[
T∑
t=1

µ(w, pt)

]
(4)

Inversely, the loss for the first player is the gain for the second player, so the
goal of the second player is to maximise the outcome. The pseudo-regret for the
second player is therefore:

3 DEFINITIONS 13

Definition 4. The pseudo-regret of player one is the difference between the ex-
pected outcomes of the chosen strategies pt for t = 1, 2, ..., T and the expected
outcome of playing the optimal strategy every time. We call the pseudo-regret
R̄player 2(T):

R̄player 2(T) = max
p∈P

E

[
T∑
t=1

µ(wt, p)−
T∑
t=1

µ(wt, pt)

]
(5)

Suppose both players play with algorithms that have pseudo-regret R̄player 1(T)
and R̄player 2(T). The difference between the average expected outcome and the
minimax value can then be bounded:

min
w∈W

max
p∈P

µ(w, p) = min
w∈W

max
p∈P

1

T

T∑
t=1

E [µ(w, p)]

≤ max
p∈P

1

T

T∑
t=1

E [µ(wt, p)]

=
1

T

T∑
t=1

E [µ(wt, pt)]

+
1

T
max
p∈P

T∑
t=1

(E [µ(wt, p)]− E [µ(wt, pt)])

=
1

T

T∑
t=1

E [µ(wt, pt)] +
1

T
max
p∈P

E

[
T∑
t=1

(µ(wt, p)− µ(wt, pt))

]

=E

[
1

T

T∑
t=1

µ(wt, pt)

]
+

1

T
R̄player 2(T)

So we get the inequality:

min
w∈W

max
p∈P

µ(w, p)− E

[
1

T

T∑
t=1

µ(wt, pt)

]
≤ R̄player 2(T)

T
(6)

Similarly, for the first player, we can do:

min
w∈W

max
p∈P

µ(w, p) = min
w∈W

max
p∈P

1

T

T∑
t=1

E [µ(w, p)]

≥ min
w∈W

1

T

T∑
t=1

E [µ(w, pt)]

3 DEFINITIONS 14

=
1

T

T∑
t=1

E [µ(wt, pt)] + min
w∈W

1

T

T∑
t=1

E [µ(w, pt)− µ(wt, pt)]

=
1

T

T∑
t=1

E [µ(wt, pt)] +
1

T
min
w∈W

E

[
T∑
t=1

(µ(w, pt)− µ(wt, pt))

]

= E

[
1

T

T∑
t=1

µ(wt, pt)

]
− 1

T
R̄player 1(T)

Which we can rearrange to:

−R̄player 1(T)

T
≤ min

w∈W
max
p∈P

µ(w, p)− E

[
1

T

T∑
t=1

µ(wt, pt)

]

Combining the previous inequality with Equation 6, we get:

−R̄player 1(T)

T
≤ min

w∈W
max
p∈P

µ(w, p)− E

[
1

T

T∑
t=1

µ(wt, pt)

]
≤ R̄player 2(T)

T
(7)

From Equation 7 we can see that, if the regret from both players goes down
sub-linearly over time, the denominators grow quicker than the numerators and
therefore the fractions R̄player 1(T)/T and R̄player 2(T)/T get closer to zero and the

expected average result E
[
1
T

∑T
t=1 µ(wt, pt)

]
of the strategies that the algorithm

plays get closer to the minimax strategy over time as well.
Using bandits with known bounds on the regret means we also have a bound on

convergence to the minimax solution. Therefore, finding bandit algorithms with
tighter regret bounds will also enable our tree search to converge more quickly.

3.3 The CBT algorithm

At the beginning of this section, we address a setting where the first bandit has
access to the strategy that the second bandit will play, and may use this to improve
its own strategy. To take advantage of this insight, we can use a contextual bandit
instead of a normal multi-armed bandit, and provide the strategy of the next player
as context. For this, we introduce a new algorithm: Contextual Bandit applied to
Tree search (CBT), which is an adaptation of the squareCB algorithm by Foster
and Rakhlin (2020) introduced in Section 2.3.3.

Now that we know the exact setting, it becomes possible to define the algorithm
itself, which is done in Algorithm 3.

4 ANALYSIS 15

Algorithm 3 Contextual Bandits applied to Tree search

Require: An exploration hyperparameter ν > 0, a learning rate γ > 0, and a
regression oracle with weights µ̂t = (µ̂i

t)i∈[K] at time t and an online regression
algorithm to update the weights after each round.

1: for t ∈ [T] do
2: Observe pt the strategy of the next player at time t.
3: Predict the outcome πt,i ← ⟨pit, µ̂i

t⟩ of each arm, using the regression oracle.
4: Find the best arm jt ← argmini∈[K] πt,i.

5: For i ̸= jt let w
i
t =

1
ν+γ(πt,i−πt,jt)

, for arm jt let w
jt
t = 1−

∑
i ̸=jt

wi
t.

6: Play by strategy wt and sample a move it ∼ wt to play at time t.
7: Observe the move by the next player ht ∼ pitt and observe outcome

Xt(it, ht).
8: Update the regression weights for each of the K regressions with the ob-

served outcome, according to the update rule of the online regression algorithm
provided in the line at the beginning of this algorithm.

9: end for

The algorithm has two hyperparameters that we can tune, the first ν controlling
the exploration; setting it to a higher value means the assigned weights are closer
together and therefore all arms are played more evenly. Second is the learning rate
γ; setting this higher means that the weights will be farther apart, giving higher
probability to the most promising arms.

Notice that the algorithm is almost the same as squareCB by Foster and
Rakhlin (2020). The difference being that Algorithm 3 does K regressions at
the same time, instead of one. Since it has one coefficient for every possible pair
of moves, and the independent variable that corresponds with each of those co-
efficients is the probability of the second player making that move, each of these
coefficients µ̂it,ht

t is essentially the estimated mean of the outcome of playing moves
i and h at time t. Therefore, as t increases, for each i ∈ [K], h ∈ Hi the estimation
µ̂i,h
t will approach the real mean µ(i, h).

4 Analysis

We begin with a theoretical analysis of the performance of the algorithm by stating
and proving bounds for the pseudo-regret of both players, as defined in the previous
section.

4 ANALYSIS 16

4.1 Analysis of the first player

The first thing we are interested in is how well the first player plays in our scenario
outlined in Section 3.1 and playing according to our algorithm, CBT. In this
subsection, we state the guarantee on the upper bound of the pseudo-regret for
player 1 and prove it using an adaptation of the proof of Foster and Rakhlin (2020).
The guarantee can be found in the following Theorem:

Theorem 3 (First player). Given a standard square loss, real-valued online linear
regression model with pseudo-regret bound R̄regression(T), K possible moves and T

rounds, set ν = K and γ =
√

2KT/R̄regression(T). The pseudo-regret for player 1
by playing Algorithm 3 is bounded by:

R̄player 1(T) ≤
5

4

√
2KT · R̄regression(T) (8)

Notice that this bound is, for a large part, dependent on the regret guarantee
for whichever regression is used. However, it does not depend on the strategy of
the second player at all. Furthermore, it grows with the square root of both the
number of actions

√
K and the square root of time

√
T .

Before we go on to prove Theorem 3, we will state here some lemmas that are
used and for which the proofs can be found in Appendix A. Beginning with a basic
inequality found in Lemma 1, which we be used throughout the proof.

Lemma 1. For any three real numbers a, b, c ∈ R, we have:

ca− ba2 ≤ c2

4b

We closely follow the proof from Foster and Rakhlin (2020); therefore, we need
a version of their Lemma 2, here broken down into two lemmas. The first breaks
down the expectations of all random variables and restates them as a function of
their probability distribution.

Lemma 2. With the pseudo-regret defined as in Definition 4 and all variables
defined as in Section 3.1, the following equality holds:

R̄player 1(T) = E

 T∑
t=1

∑
i∈[K]

wi
t

(〈
pit, µ

i
〉
−
〈
pi

∗

t , µ
i∗
〉)

The final lemma restates the pseudo-regret of the online linear regression to a
form that we can use:

4 ANALYSIS 17

Lemma 3. With all variables defined as before, the following equality is true:

E

 T∑
t=1

∑
i∈[K]

wi
t

(
⟨pit, µ̂i

t⟩ − ⟨pit, µi⟩
)2

= E

[
T∑
t=1

(
⟨pitt , µ̂it

t ⟩ −Xt(it, ht)
)2 − T∑

t=1

(
⟨pitt , µit⟩ −Xt(it, ht)

)2]

We also assume that there exists some upper bound R̄reg(T) on the regression
regret. As said before in Section 2.4, online linear regression is a well-studied
problem, and there are many algorithms with known regret guarantees. Here we
simply assume that this guarantee exists, without assuming anything about the
algorithm that is chosen. This approach allows us to pick any regression algorithm
later on and makes the result from Theorem 3 agnostic to the choice of regression
algorithm. This regret bound is formalised in the following equation:

E

[
T∑
t=1

(
⟨pitt , µ̂it

t ⟩ −Xt(it, ht)
)2 − T∑

t=1

(
⟨pitt , µit⟩ −Xt(it, ht)

)2] ≤ R̄reg(T) (9)

We are now ready to prove Theorem 3.

Proof of Theorem 3. The proof is a close adaptation of Lemma 3 of (Foster &
Rakhlin, 2020). We start by combining the regret bound in Equation 9 with
Lemma 3. We then get

0 ≤ R̄reg(T)− E

 T∑
t=1

∑
i∈[K]

wi
t

(
⟨pit, µ̂i

t⟩ − ⟨pit, µi⟩
)2

We can then multiply this by some η ≥ 0 (for which we will choose an ap-
propriate value later), and add to this the equation from Lemma 2. This gives
us:

R̄player 1(T) ≤ E

 T∑
t=1

∑
i∈[K]

wi
t

(
⟨pit, µi⟩ − ⟨pi∗t , µi∗⟩

) (10)

+ ηR̄reg(T)− ηE

 T∑
t=1

∑
i∈[K]

wi
t

(
⟨pit, µ̂i

t⟩ − ⟨pit, µi⟩
)2

= E

 T∑
t=1

∑
i∈[K]

wi
t

(
⟨pit, µi⟩ − ⟨pi∗t , µi∗⟩ − η

(
⟨pit, µ̂i

t⟩ − ⟨pit, µi⟩
)2)

4 ANALYSIS 18

+ ηR̄reg(T)

What remains to be bound is the inside of the expectation. We do this by first
looking at any single arbitrary value for t. We start by looking at the cases when
i = i∗ and when i ̸= i∗:∑

i∈[K]

wi
t

(
(⟨pit, µi⟩ − ⟨pi∗t , µi∗t ⟩)− η(⟨pit, µ̂i

t⟩ − ⟨pit, µi⟩)2
)

(11)

= wi∗

t

(
(⟨pi∗t , µi∗⟩ − ⟨pi∗t , µi∗⟩)− η(⟨pi∗t , µ̂i∗

t ⟩ − ⟨pi
∗

t , µ
i∗⟩)2

)
+

∑
i∈[K],i ̸=i∗

wi
t

(
(⟨pit, µi⟩ − ⟨pi∗t , µi∗⟩)− η(⟨pit, µ̂i

t⟩ − ⟨pit, µi⟩)2
)

= −ηwi∗

t (⟨pi
∗

t , µ̂
i∗

t ⟩ − ⟨pi
∗

t , µ
i∗⟩)2

+
∑

i∈[K],i ̸=i∗

wi
t

(
(⟨pit, µi⟩ − ⟨pi∗t , µi∗⟩)− η(⟨pit, µ̂i

t⟩ − ⟨pit, µi⟩)2
)

= (⋆)

Where we can use Lemma 1 to reduce the inside of the sum:

⟨pit, µi⟩ − ⟨pi∗t , µi∗⟩ − η(⟨pit, µ̂i
t⟩ − ⟨pit, µi⟩)2

= ⟨pit, µ̂i
t⟩+ ⟨pit, µi⟩ − ⟨pit, µ̂i

t⟩ − ⟨pi
∗

t , µ
i∗⟩ − η(⟨pit, µ̂i

t⟩ − ⟨pit, µi⟩)2

≤ ⟨pit, µ̂i
t⟩ − ⟨pi

∗

t , µ
i∗⟩+ 1

4η
(12)

Because only the first term of line 12 is dependent on i, when we plug this back
into the main equation, we get:

(⋆) ≤ −ηwi∗

t (⟨pi
∗

t , µ̂
i∗

t ⟩ − ⟨pi
∗

t , µ
i∗⟩)2

+
∑

i∈[K],i ̸=i∗

wi
t

(
⟨pit, µ̂i

t⟩ − ⟨pi
∗

t , µ
i∗⟩+ 1

4η

)
= −ηwi∗

t (⟨pi
∗

t , µ̂
i∗

t ⟩ − ⟨pi
∗

t , µ
i∗⟩)2

+
∑

i∈[K],i ̸=i∗

wi
t

(
⟨pit, µ̂i

t⟩ − ⟨pi
∗

t , µ
i∗⟩+ ⟨pi∗t , µ̂i∗

t ⟩ − ⟨pi
∗

t , µ̂
i∗

t ⟩+
1

4η

)

=
(
1− wi∗

t

) (
⟨pi∗t , µ̂i∗

t ⟩ − ⟨pi
∗

t , µ
i∗⟩
)
− ηwi∗

t (⟨pi
∗

t , µ̂
i∗

t ⟩ − ⟨pi
∗

t , µ
i∗⟩)2 + 1− wi∗

t

4η

+
∑

i∈[K],i ̸=i∗

wi
t

(
⟨pit, µ̂i

t⟩ − ⟨pi
∗

t , µ̂
i∗

t ⟩
)

4 ANALYSIS 19

≤
(
1− wi∗

t

)2
4ηwi∗

t

+
1− wi∗

t

4η

+
∑

i∈[K],i ̸=i∗

wi
t

(
⟨pit, µ̂i

t⟩ − ⟨pi
∗

t , µ̂
i∗

t ⟩
)

(13)

We have now bounded Equation 11 by an equation that does not use µ any more.
Remember that µ is not known to the player of the algorithm. Instead, the re-
maining equation 13 only uses µ̂t, a value that is known by – and used in – the
algorithm. Furthermore, the part ⟨pit, µ̂i

t⟩ is exactly the πt,i calculated in line 3
from Algorithm 3.

In the next step we want to expand this to also include πt,jt = ⟨pjt , µ̂jt⟩, where
jt is the same as in line 4 of the algorithm, so we can use the definition of wi

t. To
that goal, let jt ∈ [K] be argmini∈[K] πt,i and define ut,i = ⟨pi, µ̂i⟩ − ⟨pjt , µ̂jt⟩ ≥ 0.
Note that ut,jt = 0; we will use this later on. We now continue with only the sum
of Equation 13 to also remove the references to i∗, which is also unknown to the
algorithm at the time of playing:∑

i∈[K],i ̸=i∗

wi
t

(
⟨pit, µ̂i

t⟩ − ⟨pi
∗

t , µ̂
i∗

t ⟩
)
=

∑
i∈[K],i ̸=i∗

wi
t

(
⟨pit, µ̂i

t⟩ − ⟨p
j
t , µ̂

j
t⟩

+ ⟨pjt , µ̂
j
t⟩ − ⟨pi

∗

t , µ̂
i∗

t ⟩
)

=
∑

i∈[K],i ̸=i∗

wi
t (ut,i − ut,i∗)

=
∑

i∈[K],i ̸=i∗

wi
tut,i −

(
1− wi∗

t

)
ut,i∗

=
∑

i∈[K],i ̸=j

wi
tut,i − ut,i∗

=
∑

i∈[K],i ̸=j

ut,i

ν + γut,i

− ut,i∗ (14)

In the last line, wi
t is simply substituted for its definition from Algorithm 3. The

fraction from line 14, can be further bounded by
ut,i

ν+γut,i
≤ ut,i

γut,i
= 1

γ
, meaning:

∑
i∈[K],i ̸=jt

ut,i

ν + γut,i

≤
∑

i∈[K],i ̸=jt

1

γ
=

K − 1

γ
(15)

Now combining Equations 13, 14 and 15 we then finally get the following regret
bound for 11:

K − 1

γ
− ut,i∗ +

(
1− wi∗

t

)2
4ηwi∗

t

+
1− wi∗

t

4η
≤ K − 1

γ
− ut,i∗ +

1

4ηwi∗
t

+
1

4η
(16)

4 ANALYSIS 20

For the last part of the proof, we look at the remaining middle two terms and
distinguish between the cases where j = i∗ and j ̸= i∗ and use the definition of w
from algorithm 3. In the first case, we get:

−ut,i∗ +
1

4ηwi∗
t

= −ut,jt +
1

4η
(
1−

∑
i ̸=jt

wi
t

)
= 0 +

1

4η
(
1−

∑
i ̸=jt

1
ν+γut,i

)
≤ 1

4η
(
1−

∑
i ̸=jt

1
ν

) = (⋆)

When we choose ν = K (as we do in Theorem 3) this becomes:

(⋆) =
1

4η
(
1−

∑
i ̸=jt

1
K

)
=

1

4η
(
1− K−1

K

)
=

1

4η 1
K

=
K

4η

In the second case, when jt ̸= i∗, and also using ν = K we get:

−ut,i∗ +
1

4ηwi∗
t

= −ut,i∗ +
ν + γut,i∗

4η

=
K

4η
+ ut,i∗

(
γ

4η
− 1

)
Now choosing η = γ

4
and putting everything together we get the final bound

for 11:
K − 1

γ
+

K

4η
+

1

4η
=

2K

γ
(17)

Plugging this into Equation 10 gives the final regret bound:

R̄player 1(T) ≤ E

[
T∑
t=1

2K

γ

]
+

γ

4
R̄reg(T) =

2KT

γ
+

γ

4
R̄reg(T)

Choosing γ =
√

2KT/R̄reg(T) gives the equation stated in the Theorem.

4 ANALYSIS 21

4.1.1 The regression oracle

Now that Theorem 3 has been proved, we still need some value for R̄reg(T) to get
a bound for the pseudo-regret of player 1. In order to do this, we need to choose
a regression algorithm for the oracle. For this, we choose the ridge regression
algorithm from Section 2.4.1. However, getting a value for R̄reg(T) is not as simple
as plugging in the result from Theorem 2. The first player is doing K ridge
regressions in parallel, one for each arm that it can play. The regret bound that
this gives and the proof are summarised in the theorem below:

Theorem 4. A player that is playing using the CBT algorithm, with ridge regres-
sion to estimate the coefficients µ̂, will have a pseudo-regret of at most:

R̄player 1(T) ≤ O

(
5

4
K ·

√
2TD · ln

(
1 +

T

D

))

With d being an upper bound on |Hi| ≤ D, in other words, an upper bound on the
number of moves the second player must choose from.

Proof. The main part of this proof is finding a function R̄reg(T) that bounds the
pseudo-regret of the regression, as seen in this equation:

E

[
T∑
t=1

(
⟨pitt , µ̂it

t ⟩ −Xt(it, ht)
)2 − T∑

t=1

(
⟨pitt , µit⟩ −Xt(it, ht)

)2] ≤ R̄reg(T)

Remember, there is one regression per possible move of the first player, which
estimates the outcome of playing that move based on the known strategy of the
second player.

We begin by separating the regret of the K different regressions:

E

[
T∑
t=1

(
⟨pitt , µ̂it

t ⟩ −Xt(it, ht)
)2 − T∑

t=1

(
⟨pitt , µit⟩ −Xt(it, ht)

)2]

= E

∑
i∈[K]

(∑
t:it=i

(
⟨pit, µ̂i

t⟩ −Xt(i, ht)
)2 −∑

t:it=i

(
⟨pit, µi⟩ −Xt(i, ht)

)2)
When we now look at the regret per arm i we can apply Theorem 2 directly,

by substituting θt = µ̂i
t, u = µi and xt = pit from the theorem:

∑
t:it=i

(
⟨pit, µ̂i

t⟩ −Xt(i, ht)
)2 −∑

t:it=i

(
⟨pit, µi⟩ −Xt(i, ht)

)2

4 ANALYSIS 22

≤
∥∥µi
∥∥2 + (di ln(1 + T

di
·max
t:it=i

∥∥pit∥∥2))max
t:it=i

(
⟨pit, µ̂i

t⟩ −Xt(i, ht)
)2

With ∥ · ∥ denoting the Euclidean norm.
Now µi and the loss are bounded, and because pt is a probability vector, it is

also bounded ∥pt∥ ≤ 1. Then we get:

∥∥µi
∥∥2 + (di ln(1 + T

di
·max
t:it=i

∥∥pit∥∥2))max
t:it=i

(
⟨pit, µ̂i

t⟩ −Xt(i, ht)
)2

≤ O
(
di ln

(
1 +

T

d

))
The variable di in all these equations is the number of regressors, i.e. the

number of moves the second player can make: di = |H|i. Since we have a finite
amount of i ∈ [K], there is a D such that D ≥ di for each arm i. We can use this
together with the fact that di ln(1 + T/di) is increasing in di:

E

∑
i∈[K]

(∑
t:it=i

(
⟨pit, µ̂i

t⟩ −Xt (i, ht)
)2 −∑

t:it=i

(
⟨pit, µi⟩ −Xt(i, ht)

)2)
≤ E

∑
i∈[K]

O
(
D ln

(
1 +

T

D

))
= E

[
O
(
KD ln

(
1 +

T

D

))]
= O

(
KD ln

(
1 +

T

D

))
Now we have proven that R̄reg is a bound for the regret of the regression when

using ridge regression. Plugging this into 5
4

√
2KT · R̄regression(T) immediately gives

the bound O
(

5
4
K ·

√
2TD · ln

(
1 + T

D

))
.

We now know how well the new CBT algorithm performs on average in theory.
From these results, it already becomes clear that the performance has a linear
dependence on K, suggesting that performance deteriorates quickly for games
with many possible moves. On the other hand, it has only square root dependence
on D, meaning bigger action spaces for the second player matter less.

4 ANALYSIS 23

4.2 Analysis of the second player

The analysis would not be complete without also looking at the regret of the second
player in our setting. For this, we first need to choose an algorithm for the second
player. Note that the choice of algorithm does not have any impact on our regret
guarantees for the first player since we made no assumptions in Theorem 3 on how
the second player chooses their strategy. We will go for the simple and widely used
UCB1 by Auer et al. (2002), also explained in Section 2.3.2. Using UCB1 we can
get the regret bound formulated in Theorem 5:

Theorem 5 (Regret p-player). Let D ≥ |Hi| be an upper bound for the number of
actions available to the second player in each subtree. Then the regret for player
2, after playing n rounds, is bounded by:

R̄player 2(T) ≤ 4K
√
2DT lnT +DK

(
1 +

π3

3

)
To prove the upper bound for the second player, we will use an intermediate

proof from the paper that first introduced the UCB1 algorithm (Auer et al., 2002),
which we restate here in Theorem 6.

Theorem 6 (Auer et al., 2002). For all K > 1, if policy UCB1 is run sequentially
on K machines having arbitrary loss (Auer et al. (2002) uses gains instead of
losses, but the regret is the same either way) distributions with support in [0, 1]
and expected outcomes of µ1, ..., µK, and with Tj(n) being the number of times
arm j is played. Then, in any sequence of plays, after n plays, the expectation is
bounded for each suboptimal arm:

E [Tj(n)] ≤
8 lnn

∆2
i

+ 1 +
π2

3

with ∆i
def
= µ∗ − µi and µ∗ equal to the expected/mean loss for the optimal arm.

Remark. Note that, since the optimal mean µ∗ is higher than any µi and all
µ∗, µi ∈ [0, 1], we have ∆i ∈ [0, 1].

The proof for the regret of the second player works similarly to the original
UCB1 proof, by bounding the number of times each suboptimal arm is chosen.
Before we can use we must therefore restate the regret as a function of E[Tj(n)].
This is done by Lemma 4, whose proof can be found in the Appendix:

Lemma 4. The pseudo-regret for the second player is equal to:

R̄player 2(T) = E

∑
i∈[K]

∑
j∈Hi

∆i,jE[Tj(ni)|ni]



4 ANALYSIS 24

Where ni is the number of times that player 1 chooses move i, in other words
ni = |{t : it = i}| with

∑
i∈[K] ni = T , where Tj(n) is equal to the number of

times player 2 chooses arm j, given that arm j was available n times and ∆i,j =
µ(i, ji,∗)− µ(i, j) (ji,∗ here being the optimal move for the second player after the
first player has played i).

We now have all the parts to prove the regret bound for player 2.

Proof of Theorem 5. Because of Lemma 4, the only thing left to proof is:

E

∑
i∈[K]

∑
j∈Hi

∆jE[Tj(ni)|ni]

 ≤ 4K
√
2DT lnT +DK

(
1 +

π3

3

)
(18)

We do this by looking at the inside of the first expectation and assuming nothing
about the values of all the ni, i.e. we don’t assume anything about the choices
that the first player makes. We do know, however, that the total sum is equal to
the total number of games

∑
i∈[K] ni = T .

For a certain i ∈ [K] there is only a finite number of possible values for ni ≤ T
so there is some value n̂i that maximizes E[Tj(n̂i)] for some j ∈ Hi, we can use
this to bound the inside of the expectation in (18):∑

j∈Hi

∆i,jE[Tj(ni)|ni] ≤
∑
j∈Hi

∆i,j max
n̂i:n̂i≤T

E[Tj(n̂i)]

This can be further bounded by choosing a certain ∆ (which we will later specify)
and distinguishing between the cases where ∆i,j < ∆ and the cases where ∆i,j ≥ ∆.∑

j∈Hi

∆i,jE[Tj(n̂i)] =
∑

j:∆i,j<∆

∆i,jE[Tj(n̂i)] +
∑

j:∆i,j≥∆

∆i,jE[Tj(n̂i)]

≤
∑

j:∆i,j<∆

∆E[Tj(n̂i)] +
∑

j:∆i,j≥∆

∆i,j

(
8 ln n̂i

∆2
i,j

+ 1 +
π2

3

)

≤ n̂i∆+
∑

j:∆i,j≥∆

8 ln n̂i

∆i,j

+
∑

j:∆i,j≥∆

∆i,j

(
1 +

π2

3

)

≤ n̂i∆+
∑

j:∆i,j≥∆

8 ln n̂i

∆
+

∑
j:∆i,j≥∆

(
1 +

π2

3

)

≤ n̂i∆+
8|Hi| ln n̂i

∆
+ |Hi|

(
1 +

π2

3

)
≤ n̂i∆+

8D ln n̂i

∆
+D

(
1 +

π2

3

)

5 EXPERIMENTS 25

Where the first inequality uses Theorem 6, the second uses the fact that E[Tj(n̂i)] ≤
n̂i and the third inequality uses the remark made earlier that ∆i,j ∈ [0, 1].

Finally, by choosing a ∆ strategically to be equal to ∆ =
√

8D ln(n̂i)/n̂i and
using the fact that n̂t ≤ T , we get the result:

n̂i∆+
8D ln n̂i

∆
+D

(
1 +

π2

3

)
= n̂i

√
8D ln(n̂i)/n̂i +

8D ln n̂i√
8D ln(n̂i)/n̂i

+D

(
1 +

π2

3

)
= 2
√
8Dn̂i ln(n̂i) +D

(
1 +

π2

3

)
≤ 4
√
2DT ln(T) +D

(
1 +

π2

3

)
In the last step, we make use of the fact that x lnx is strictly increasing for

x ≥ 1. Finally, we can now put this back in the original equation for the regret:

R̄player 2(T) = E

∑
i∈[K]

∑
j∈Hi

∆i,jE[Tj(ni)|ni]


≤ E

∑
i∈[K]

(
4
√
2DT lnT +D

(
1 +

π2

3

))
= E

[
4K
√
2DT lnT +DK

(
1 +

π2

3

)]
= 4K

√
2DT lnT +DK

(
1 +

π2

3

)

5 Experiments

To complement the analysis of our CBT algorithm, we evaluate the new algorithm
empirically. In this section, we will describe the experiments used to test the per-
formance of the proposed CBT algorithm. First, we will give a general introduction
on how performance is evaluated. After that, we will explain the different experi-
ments. Then we will explain what the ‘control algorithm’ CBT is tested against.
Finally, we will look at hyperparameters throughout all the experiments. We also

5 EXPERIMENTS 26

introduce a possible generalisation of CBT to more than two levels, which is also
tested empirically. The theoretical guarantees of this generalised CBT, however,
remain an open problem. The implementation of all the experiments can be found
in a public repository.5

In the experiments, we measure performance in three possible ways. First, by
looking at the estimation of the minimax value by the algorithm. Second, by
looking at the estimated chance that the algorithm plays the optimal move (the
one with the highest minimax value). Finally, by looking at the move that the
algorithm recommends as the best move.

Starting with the estimation of the minimax value. The reason we are letting
bandit algorithms play against each other is to find the minimax value of the best
strategy. Because, as explained in Section 3.2, the value of Equation 19 (below)
goes to zero for higher T . We are interested in how quickly this happens. Therefore,
the first measure of success is how small this difference becomes for different values
of T .

min
w∈W

max
p∈P

µ(w, p)− 1

T

T∑
t=1

µ(wt, pt) (19)

To simplify and speed up the computation, we will use the value of 1
T

∑T
t=1

Xt(it, ht) instead of 1
T

∑T
t=1 µ(wt, pt). This is fine, since the former converges to

the latter with increasing T .
The second measure of success is how often the algorithm plays the optimal

move. The convergence to the minimax value also depends on how well the second
player’s bandit performs. Since the point of a tree search algorithm is finding the
best move, we are also interested in how quickly it finds i∗, the optimal move. We
measure this by looking at the estimated chance of the algorithm choosing the best
move, in mathematical terms:

P̂ (it = i∗) =
1

T

T∑
t=1

1 (it = i∗) (20)

The final performance measure is to look at what final choice is recommended
by the algorithm after T rounds. To do this, we first need a recommendation rule.
We look at two possibilities, the first being: Recommend the arm with the highest
visit count, i.e. recommend the arm a with:

a = argmax
i∈[K]

T∑
t=1

1(it = i) (21)

5Which can be found at https://github.com/daandj/Thesis.

https://github.com/daandj/Thesis

5 EXPERIMENTS 27

Note the similarity with the second measure of success and the second recommen-
dation rule: Recommend the arm with the lowest loss/highest gain. So in other
words, recommend choosing arm a with:

a = argmin
i∈[K]

1

|{t : it = t}|
∑
t:it=i

Xt(it, ht) (22)

These are all the performance measures we will use to evaluate CBT perfor-
mance. In the next section, we will explain all the experiments in which we will
test them. All these experiments are run 10 times, and the average outcome is
reported to make the results less random and more representative. Furthermore,
each experiment is conducted once for each of the following values for T : T = 1,
T = 10, T = 100, T = 10000 and T = 100000.

5.1 Methods

First, we need a game that we can test CBT on. In this study, we use two games.
The first is the most minimal example of a game that fits the problem setting in
Section 3.1, called the ’minimal game’. Secondly, to test the performance of CBT
in a real-life game, we use Tic-tac-toe. Both are explained in more detail below.

5.1.1 Minimal game

Beginning with the minimal game. In this game first the first player picks a
number it, then the second player picks a number ht and finally the outcome is
sampled from a Bernoulli distribution, where the hyperparameter of the distri-
bution µ(it, ht) (which is equal to the mean for a Bernoulli) depends on which
number both players picked. These hyperparameters are set before the start and
are immutable during all repetitions. For simplicity, both players pick a number
from the set [K].

With this game, we run three experiments, each with a different value for [K],
which is the size of the action space for both players. This way we find if the size
of the action space influences the performance of CBT.6

In the experiments, the first move it is chosen by CBT, exactly as outlined in
Algorithm 3 and the second move ht is chosen by UCB1 as specified in Algorithm 1.

5.1.2 Tic-tac-toe

After looking at the minimal game, we will test the performance of the algorithm
in a real-life game: Tic-tac-toe, also known as noughts and crosses. The main

6The matrices (µ(i, t))i,j∈[K] with means for all three experiments can be found in https:

//github.com/daandj/Thesis.

https://github.com/daandj/Thesis
https://github.com/daandj/Thesis

5 EXPERIMENTS 28

difference between this game and the minimal game from the previous section is
that after two moves, the game is not finished yet. To deal with this, the Bernoulli
distribution used to sample the outcome is replaced by a random rollout of the rest
of the game. Which means that after both players have picked a move, the next
moves for both are uniformly sampled from all available moves until the game is
finished. The outcome of the game is then 1 if the first player won, 0 if the second
player won, and 0.5 in the case of a draw. Apart from this difference, the algorithm
is exactly as with the minimal game in Section 5.1.1.

Exactly as with the minimal game experiment, we run this experiment with
boards of different sizes (where a player still needs to score all in a row to win), to
see how the performance changes with different action set sizes.

5.1.3 Hyperparameters CBT

Another thing we are interested in is the effects of different values for the hy-
perparameters: the learning rate and the exploration rate. In all the previously
mentioned experiments, we use the values for these hyperparameters that we em-
pirically found to be optimal. But we also want to analyse the effect of different
hyperparameters. For this, we perform two experiments, both use the minimal
game from Section 5.1.1, with K = 10. One of the experiments will be running
the algorithm with different values for the learning rate, the other will be the same,
but with different values for the exploration rate. All runs are again repeated 10
times to get a more representative result. In the learning rate experiment, the
exploration rate will be the same as in the minimal game experiment and vice
versa, that is, the empirically found optimal value.

We won’t attempt to find the best hyperparameter setting since this will de-
pend on the game, the ‘best hyperparameters’ that we find here are therefore not
generalizable for all games. We will look at the performance of the algorithms
under different hyperparameters to gain a better understanding of the way CBT
works and to compare the recommendations of the theory with empirical practice.

The values for the hyperparameters with the Tic-tac-toe experiment will also
be those empirically found to be optimal.

5.1.4 Algorithms for comparison

In the experiments from the previous subsection, which test the effect of different
values for the hyperparameters, only the CBT algorithm is run. The runs with
different hyperparameter values are compared with each other. The remaining
experiments, however, need a control group to compare against. Regarding the
minimal game and the two-level Tic-tac-toe game, the control case is UCB1. The
only thing that changes is the bandit that picks the first move. Remember that

5 EXPERIMENTS 29

the second move was already chosen by UCB1 in the CBT algorithm; this makes
for a fairer comparison.

Notice that using UCB1 to pick the first and second move is the same as UCT
from Kocsis and Szepesvári (2006) with a maximum search depth of 2. For the
experiments with the CBT algorithm that is generalised for dynamic depth search,
we therefore use UCT with dynamic depth as a control case as well.

6 RESULTS 30

6 Results

Now that we have explained the methodology and setup of the experiments, we
will present the results of the experiments. In this section, we will first look at
the result of the ‘minimal game’ experiment, then the experiments that look at
different hyperparameter settings for CBT, and finally, we look at the results of
the Tic-tac-toe experiment. After presenting them, we will interpret the results
and connect them with the theory from the previous sections. In the figure below,
with graphs for CBT and UCB1, the crosses show the means of the 10 repetitions
of the experiment, and the bars show the 25% and 75% quantiles.

6.1 Minimal game

Figure 4: Difference between average outcome and the minimax value in minimal
game of CBT and UCB1, with K = 10.

The first experiment was a minimal game with K = 10. Our first measure
of performance was the difference between the average outcome and the minimax
value (as seen in Equation 19). This difference is shown in Figure 4 for the first
experiment. Here, we see that CBT is not a clear improvement over UCB1. The
left-most results don’t say anything, because in these runs, each of the 10 arms has
been tried an average of 1 time. For higher values of T , however, we can observe
three things:

1. Both algorithms get closer to 0, as was predicted in Section 3 (though not
monotonically in the case of CBT);

6 RESULTS 31

2. The average outcomes of all UCB1 runs are always closer, or as close to 0 as
CBT is, meaning that UCB1 performs better at finding the minimax value;

3. The average outcome of CBT consistently has a bigger deviation than UCB1.

The first two observations mean that CBT is a less suitable algorithm than UCB1.
The last observation could be explained by the hypothesis that CBT keeps ex-
ploring more. Indeed, this is something that we can corroborate by looking at the
second measure of performance: how often the algorithms play the optimal move,
for this experiment shown in Figure 5. The results in this figure show the oppo-
site of this hypothesis: CBT plays the best move more often than UCB1. Which
means that CBT performs better than UCB1 for this metric. The difference in
divergence in Figure 4 could then be explained by the hypothesis that when CBT
explores, it does so more often with the worse moves than when UCB1 explores.
But unfortunately, we do not have the data to confirm or deny this.

Figure 5: The percentage of times that CBT and UCB1 try the optimal arm in a
minimal game with K = 10.

The final metric we will look at for this experiment is the moves the algorithms
recommend after running for T times. Table 1 shows the percentages of times
it recommended the best one. In Figure 1, ‘CBT (1)’ and ‘UCB1 (1)’ refer to
choosing a move a using equation 21 i.e. the most tried arm, and ‘CBT (2)’ and
‘UCB1 (2)’ refer to choosing a move a using Equation 22 i.e. the move with the
lowest average loss. In the results from this table, we see two things. First, UCB1
is slightly better than CBT at picking the right move in runs with lower T . Second,
picking the best move using the ’lowest average loss’ as shown in column ‘CBT (2)’

6 RESULTS 32

Times recommended move is optimal move

T CBT (1) CBT (2) UCB1 (1) UCB1 (2)

10 0% 10% 30% 50%
100 50% 50% 60% 70%

1 000 100% 10% 100% 100%
10 000 100% 90% 100% 100%
100 000 100% 100% 100% 100%

Table 1: The percentage of times that CBT and UCB1 recommended the best arm
with K = 10.

does worse than picking the most often tried arm ‘CBT (1)’, for CBT. Meanwhile,
for UCB1, this is the opposite; the lowest loss method in ‘UCB1 (2)’ performs
better than the most tried arm ‘UCB1 (1)’.

The reason for this is a fundamental difference in how both UCB1 and CBT
work. CBT works by predicting the loss by looking at the strategy of the next
bandit. When the next bandit changes their strategy for a certain arm, CBT may
already know, without trying that arm, that the loss from that arm is probably
higher, and CBT will therefore stop trying that arm. In this case, the expected loss
would be higher than the observed average loss. Then, making the final recommen-
dation for the best move based on the lowest observed loss would be disregarding
much of the information CBT has on the best move. On the other hand, when
choosing an arm, UCB1 looks at the average outcome (which is equivalent to the
lowest loss) and adds some optimism (i.e. the confidence bound), and from this
it chooses the best value. The arms with low average losses will therefore be the
most often chosen. This means that for UCB1, choosing the arms with the lowest
observed loss performs well, while for CBT, it performs significantly worse.

6.1.1 Higher K

Next, we look at larger values for K, still with the minimal game, of which the
results are shown in Figure 6. Just as with K = 10, they both show that the
outcome of UCB1 is almost always closer or just as close to the minimax value
than the outcome of CBT (except for K = 30, T = 10 000 where CBT is slightly
better). Where they both differ from the K = 10 case, however, is that the
quantiles for CBT are closer together, meaning the results deviate less between
reruns of the experiment, with the deviation being smaller for K = 30 than for
K = 20.

When we look at the number of times both algorithms try the optimal move

6 RESULTS 33

Figure 6: Difference between average outcome and the minimax value in minimal
game of CBT and UCB1, with K = 20 (left) and K = 30 (right).

(in Figure 7), we see that the results with K = 20 and K = 30 are similar to
K = 10. First of all, for higher T , CBT consistently tries the best move more
often than UCB1 with both K = 20 and K = 30.

With K = 20, just as it was with K = 10, there is no discernible difference
between the CBT and UCB1 for lower T . But with K = 30, UCB1 is better than
CBT when T ≤ 1000.

Finally, we look at the recommended moves for the minimal game with K = 20
and K = 30. First, for UCB1, there is no difference in performance between
choosing based on the most tried arm or the arm with the lowest observed loss.
For CBT, there is a difference between the two methods; picking the most tried
arm performs better.

When comparing UCB1 and CBT, we see that UCB1 is (with any method)
better than CBT at recommending the optimal move. This is again similar to
K = 10, where UCB1 was also slightly better.

In summary, the main takeaways for the minimal game experiments are that
UCB1 consistently performs better than CBT in recommending the right move
and converging to the minimax value of the game; the gap is relatively small. Yet,
what CBT does better is trying the optimal move more. This indicates that the
algorithms make different trade-offs between exploration and exploitation. Based
on these results, UCB1 would probably perform better in real-world applications.

6.2 Effect of hyperparameters

After we have seen the results of the minimal game, we look at the effects of dif-
ferent values for the hyperparameters. The hyperparameters used in the previous

6 RESULTS 34

Figure 7: The percentage of times that CBT and UCB1 try the optimal arm in a
minimal game with K = 20 (left), and K = 30 (right).

Times recommended move is optimal move

T CBT (1) CBT (2) UCB1 (1) UCB1 (2)

10 10% 10% 0% 10%
100 20% 10% 40% 40%

1 000 80% 10% 100% 100%
10 000 100% 0% 100% 100%
100 000 100% 100% 100% 100%

Table 2: The percentage of times that CBT and UCB1 recommended the best arm
with K = 20.

Times recommended move is optimal move

T CBT (1) CBT (2) UCB1 (1) UCB1 (2)

10 0% 0% 0% 0%
100 0% 10% 20% 20%

1 000 0% 10% 40% 30%
10 000 80% 0% 100% 100%
100 000 100% 0% 100% 100%

Table 3: The percentage of times that CBT and UCB1 recommended the best arm
with K = 30.

6 RESULTS 35

Figure 8: Difference between average outcome and the minimax value in minimal
game with K = 10 and different learning hyperparameters (left), and exploration
hyperparameters (right)

minimal game experiment with K = 10 were a learning rate of γ = 1500 and
exploration rate ν = 10, so these are the default settings for this experiment too.
Starting with the effect of the learning rate, for which the difference between the
minimax value and the estimated minimax value is seen (i.e. Equation 19) in
Figure 8 (in the graph on the left side).

The first thing that stands out is the green line corresponding with a learning
rate of γ = 0, for which the results get worse with higher T . This is because of the
way CBT chooses a move. Remember the move is sampled for a distribution where
move i has a chance of wi

t =
1

ν+γ(πt,j−πt,i)
. So when γ = 0, the distribution becomes

uniform, wi
t =

1
ν
for all i and t, meaning that the first player doesn’t improve over

time. However, the second player does improve over time, so the outcomes converge
to some value other than the minimax value. Another observation is that the best
performing learning rate (the learning rate for which the values are closest to zero)
is γ = 1500, which is why it was used in to other experiments too. Apart from
this, there is no noticeable difference between the different values.

The second experiment looks at the exploration rate; the results are shown in
Figure 8 (in the graph on the right side). The best performing setting is ν = 10(=
K), shown with a green line here. This is also the setting that is recommended by
the theory in Section 4. Lower exploration rates are not possible because the sum
of all probabilities

∑
i∈[K] w

i
t would then exceed 1, meaning wt would no longer be

a valid probability vector. For higher ν, we observe that the algorithm performs
worse for lower T , but recovers with higher T . This can be explained by the fact
that with a higher exploration rate, the algorithm keeps exploring more before it
commits to playing the best move it has found. But at some point it does still

6 RESULTS 36

Figure 9: The percentage of times that CBT tries the optimal arm in a minimal
game, different learning hyperparameters (left), and exploration hyperparameters
(right)

commit, which is what is happening at T ≥ 10 000.
When we look at the second measure of performance in Figure 9, how often

the algorithm chooses the optimal move, we see similar results. The learning rate
graph (on the left of the figure) confirms that for γ = 0 the algorithm keeps playing
the best move about 10% of the time. This is in line with the explanation that
keeps exploring uniformly. For the other values, we see no significant differences
between them. The right graph showing the performance for different values of
the exploration rate ν again shows that the value recommended by the analysis
of ν = 10 is the best one. Although the difference with the other values of ν is
smaller here.

Lastly, we look at the third measure of performance for the hyperparameter ex-
periments, which is again the final recommendation by the algorithm. In Tables 6
and 7 we see the percentage of times CBT recommends the correct move with the
‘most tried arm’ and ‘lowest average loss’ respectively. The one based on the ‘most
tried arm’ method shows what we would expect, the γ = 0 experiment is bad at
recommending the right move – this was expected because it plays every arm ap-
proximately the same number of times, therefore the recommendation is a random
move – and the other values perform approximately the same (with γ = 500 being
slightly better than the rest). But when we look at the recommendations based on
the ‘lowest loss’, the results are inverted. Here γ = 0 outperforms the rest. This
can also be explained by the fact that with the learning rate equal to 0, CBT only
explores. The move with the lowest average loss is then automatically the move
with the best average outcome, akin to a Monte Carlo tree search that doesn’t use
bandits but only random rollouts. We see here that the higher value of γ is, the
worse this method works. In other words, exploring is rewarded and exploiting is

6 RESULTS 37

Times recommended move is optimal move

T γ = 0 γ = 500 γ = 1000 γ = 1500 γ = 2000 γ = 2500

10 0% 10% 0% 20% 10% 50%
100 10% 60% 40% 50% 60% 30%

1 000 10% 100% 80% 80% 80% 90%
10 000 0% 100% 100% 100% 100% 90%
100 000 20% 100% 100% 100% 100% 100%

Table 4: The percentage of times that CBT recommended the best move using the
‘most tried arm’ method, for different learning rates and K = 10.

Times recommended move is optimal move

T γ = 0 γ = 500 γ = 1000 γ = 1500 γ = 2000 γ = 2500

10 0% 10% 0% 30% 30% 50%
100 50% 80% 40% 50% 20% 50%

1 000 100% 70% 60% 40% 30% 10%
10 000 100% 100% 90% 70% 80% 90%
100 000 100% 100% 100% 100% 100% 100%

Table 5: The percentage of times that CBT recommended the best move using the
‘minimum average loss’ method, for different learning rates and K = 10.

punished with the ‘lowest average loss’ method.
We also look at the performance of recommending the right move for the experi-

ment with different exploration rates in Tables 6 and 7. These results show nothing
new, the recommended ν = 10 works best with the ‘most tried arm’ method, the
other exploration hyperparameters have roughly the same performance, and the
‘lowest average loss’ method performs worse than the ‘most tried arm’ method.

The main takeaways from these hyperparameter experiments are that setting
γ = 0 means always playing a uniform random strategy, which performs worse
than γ ̸= 0. The effects of different settings for γ had no noticeable effects.
Furthermore, we have seen that for the exploration hyperparameter the value
recommended by the theory ν = K works best in practice as well (in our setting).
Finally, we must note that our results say nothing about what the correct settings
of the hyperparameters would be for any other game. However, they do tell us
something about the inner workings of the algorithm and the way this relates to
the theory.

6 RESULTS 38

Times recommended move is optimal move

T ν = 10 ν = 50 ν = 100 ν = 150 ν = 200 ν = 250

10 20% 40% 10% 10% 10% 0%
100 50% 30% 20% 10% 20% 20%

1 000 80% 70% 50% 50% 50% 50%
10 000 100% 100% 100% 100% 100% 100%
100 000 100% 100% 100% 100% 100% 100%

Table 6: The percentage of times that CBT recommended the best move using the
‘most tried arm’ method, for different values of the exploration hyperparameter and
K = 10.

Times recommended move is optimal move

T ν = 10 ν = 50 ν = 100 ν = 150 ν = 200 ν = 250

10 30% 50% 30% 40% 50% 20%
100 50% 20% 30% 40% 60% 60%

1 000 40% 40% 40% 0% 20% 30%
10 000 70% 80% 80% 40% 70% 50%
100 000 100% 100% 100% 100% 100% 100%

Table 7: The percentage of times that CBT recommended the best move using the
‘minimum average loss’ method, for different values of the exploration hyperpa-
rameter and K = 10.

6.3 Tic-tac-toe

Our final experiment tests the performance of CBT in the game of Tic-tac-toe.
Since we have let the algorithm play this game with board sizes varying up to
10-by-10, it is not possible to calculate the minimax values of best moves for our
version of the game, because there are too many possible plays. As a result,
Figures 10 and 11 don’t show the difference between the minimax value and the
average outcome (like in Equation 19), instead they show the average outcomes:

1

T

T∑
t=1

Xt (it, ht) (23)

Similarly, we do not show the number of times the optimal move is recom-
mended or tried, because we do not know the optimal move.

The first experiment with 3 by 3 Tic-tac-toe in Figure 10 shows the average
outcomes moving towards some point above 0.64. We can see that UCB1 has

6 RESULTS 39

Figure 10: Difference between average outcome and the minimax value in Tic-tac-
toe with a 3-by-3 board

higher outcomes, which means it performs better than CBT, which corresponds
with the results of the minimal game experiment. In the experiments with bigger
boards, 5-by-5 and 10-by-10, on the other hand, both algorithms perform equally
well (or possibly, equally badly, since we don’t know the minimax value).

The main takeaway for the Tic-tac-toe experiment is that UCB1 either per-
forms better or equal to CBT. These findings confirm what we found in the mini-
mal game experiments before. Further analysing these Tic-tac-toe experiments is
difficult because we don’t know the minimax values or moves.

7 CONCLUSION 40

Figure 11: Difference between average outcome and the minimax value in Tic-tac-
toe with 5-by-5 (left), and 10-by-10 (right) boards

7 Conclusion

In this research, we have tried to find an answer to the research question:

“Can we improve upon Monte Carlo tree search with UCB1 and make
a more efficient tree search algorithm by applying contextual bandits in
a two-player zero-sum game?”

We have introduced a new bandit algorithm, CBT, utilising contextual bandits
for Monte Carlo tree search of two levels deep. We have shown that the rate at
which MCTS finds the minimax value depends on the regret upper bound of the
bandit algorithm. We have seen in Section 4 that the regret bound of CBT is

O
(
K
√
2TD ln(1 + T/D

)
. The proof for this requires no assumptions on a fixed

stochastic reward from each arm. Furthermore, it has a worst-case sub-linear
dependence on T , and as we have shown, this means that the average result of the
strategy that CBT plays approaches the minimax value of the game. CBT does,
however, have a linear dependence on the number of arms K, which suggests the
performance deteriorates faster for games with a large number of moves that must
be considered.

Moreover, we have tested the performance of CBT in a stylised minimal game
and the real-world game Tic-tac-toe. In the minimal game experiments, CBT did
not perform better than UCB1 in approaching the minimax value of the game.
The results did suggest that CBT is slightly better at identifying the best move
with lower T , but this did not translate into better recommendations for the best
move. The results confirmed the fact that the algorithms perform worse for larger
K, and CBT was more sensitive to higher K than UCB1, also confirming our

7 CONCLUSION 41

theoretical analysis. In the Tic-tac-toe experiment, these results were confirmed
with a real-world game, UCB1 performing similarly or better than CBT.

We have also tested the effect of different hyperparameters on the performance
of CBT. These experiments showed that CBT performs poorly with a learning rate
of γ = 0, which follows from the theory and they showed that the performance
remains consistent for learning rates other than 0. The experiment on exploration
rates confirmed that the value recommended by the theoretical analysis, namely
an exploration rate equal to the number of arms ν = K, is optimal.

To answer the research question, based on the results presented in this thesis,
CBT does not suffer from the theoretical drawbacks of UCB1, which means it is
an improvement. However, from the experimental results we have seen that CBT
is not better at choosing the best move in a game. Therefore, we cannot conclude
that CBT is an improvement over UCB1. Still, this may not be the definitive
answer. Our approach was to use a contextual bandit to take into account the
predicted strategy of the next player for choosing a move. Although this does
seem to improve the algorithm’s ability to identify the best move, there was no
improvement in the recommendations of CBT. We have seen that the performance
of the recommendations by CBT is sensitive to the method used; therefore, it
might be possible to improve upon UCB1 by using a different method to give a final
recommendation. Finally, we only tested CBT in a two-level deep game; extending
CBT to search deeper into the game tree might also improve the algorithm. Since
by looking at more of the game tree, CBT can use the predicted strategies of the
third move, the fourth move, et cetera, as more information to base its decision
on.

7.1 Suggestions for future work

We leave these two improvements, extending CBT to more than 2 levels and find-
ing more suitable methods to give the final recommendation, as possible directions
for future research. Other possible directions include looking at different regres-
sion algorithms for the oracle in CBT and how it affects performance. Or looking
at other (not oracle-based) contextual bandits, instead of the framework by Foster
and Rakhlin (2020). Furthermore, in our analysis, we have looked at the regret
minimisation. It might be interesting to analyse CBT from a best-arm identifi-
cation perspective, since the overarching goal of the algorithm is to pick the best
move in a game.

REFERENCES 42

References

Agarwal, A., Hsu, D. J., Kale, S., Langford, J., Li, L., & Schapire, R. E. (2014).
Taming the monster: A fast and simple algorithm for contextual bandits.
Proceedings of the 31th International Conference on Machine Learning,
ICML 2014, 32, 1638–1646. http://proceedings.mlr.press/v32/agarwalb14.
html

Arce, P., & Salinas, L. (2012). Online ridge regression method using sliding win-
dows. 31st International Conference of the Chilean Computer Science So-
ciety, SCCC 2012, 87–90. https://doi.org/10.1109/SCCC.2012.18

Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the mul-
tiarmed bandit problem. Machine Learning, 47 (2-3), 235–256. https://doi.
org/10.1023/A:1013689704352

Bubeck, S., & Cesa-Bianchi, N. (2012). Regret analysis of stochastic and non-
stochastic multi-armed bandit problems. Foundations and Trends® in Ma-
chine Learning, 5 (1), 1–122. https://doi.org/10.1561/2200000024

Campbell, M., Jr., A. J. H., & Hsu, F. (2002). Deep blue. Artificial Intelligence,
134 (1-2), 57–83. https://doi.org/10.1016/S0004-3702(01)00129-1

Cesa-Bianchi, N., & Lugosi, G. (2006). Prediction, learning, and games. Cambridge
University Press. https://doi.org/10.1017/CBO9780511546921

Chaslot, G., Winands, M., Uiterwijk, J., Herik, H., & Bouzy, B. (2008). Progressive
strategies for Monte-Carlo tree search. New Mathematics and Natural Com-
putation, 04 (03), 343–357. https://doi.org/10.1142/S1793005708001094

Coquelin, P., & Munos, R. (2007). Bandit algorithms for tree search. UAI 2007,
Proceedings of the Twenty-Third Conference on Uncertainty in Artificial
Intelligence, Vancouver, 67–74. https://doi.org/10.5555/3020488.3020497

Coulom, R. (2006). Efficient selectivity and backup operators in Monte-Carlo tree
search. In H. J. van den Herik, P. Ciancarini, & H. H. L. M. Donkers (Eds.),
Computers and games, 5th international conference, CG 2006, (pp. 72–83,
Vol. 4630). Springer. https://doi.org/10.1007/978-3-540-75538-8\ 7

Ensmenger, N. (2012). Is chess the drosophila of artificial intelligence? A social
history of an algorithm. Social studies of science, 42 (1), 5–30. https://doi.
org/10.1177/0306312711424596

Foster, D. J., & Rakhlin, A. (2020). Beyond UCB: Optimal and efficient contex-
tual bandits with regression oracles. Proceedings of the 37th International
Conference on Machine Learning, ICML 2020, 119, 3199–3210. https://
proceedings.mlr.press/v119/foster20a.html

Garivier, A., & Kaufmann, E. (2016). Optimal best arm identification with fixed
confidence. Proceedings of the 29th Conference on Learning Theory, COLT
2016, 49, 998–1027. http://proceedings.mlr.press/v49/garivier16a.html

http://proceedings.mlr.press/v32/agarwalb14.html
http://proceedings.mlr.press/v32/agarwalb14.html
https://doi.org/10.1109/SCCC.2012.18
https://doi.org/10.1023/A:1013689704352
https://doi.org/10.1023/A:1013689704352
https://doi.org/10.1561/2200000024
https://doi.org/10.1016/S0004-3702(01)00129-1
https://doi.org/10.1017/CBO9780511546921
https://doi.org/10.1142/S1793005708001094
https://doi.org/10.5555/3020488.3020497
https://doi.org/10.1007/978-3-540-75538-8_7
https://doi.org/10.1177/0306312711424596
https://doi.org/10.1177/0306312711424596
https://proceedings.mlr.press/v119/foster20a.html
https://proceedings.mlr.press/v119/foster20a.html
http://proceedings.mlr.press/v49/garivier16a.html

REFERENCES 43

Knuth, D. E., & Moore, R. W. (1975). An analysis of alpha-beta pruning. Artificial
intelligence, 6 (4), 293–326. https://doi.org/10.1016/0004-3702(75)90019-3

Kocsis, L., & Szepesvári, C. (2006). Bandit based Monte-Carlo planning. Machine
Learning: ECML 2006, 17th European Conference on Machine Learning,
4212, 282–293. https://doi.org/10.1007/11871842 29

Lattimore, T., & Szepesvári, C. (2020). Bandit algorithms. Cambridge University
Press. https://doi.org/10.1017/9781108571401

Luo, H. (2017a). Lecture 7. CSCI 699: Introduction to Online Learning. Retrieved
January 15, 2025, from https://haipeng-luo.net/courses/CSCI699/lecture7.
pdf

Luo, H. (2017b). Lecture 14. CSCI 699: Introduction to Online Learning. Re-
trieved January 15, 2025, from https://haipeng-luo.net/courses/CSCI699/
lecture14.pdf

Munos, R. (2014). From bandits to Monte-Carlo tree search: The optimistic prin-
ciple applied to optimization and planning. Foundations and Trends in Ma-
chine Learning, 7 (1), 1–129. https://doi.org/10.1561/2200000038

Schapire, R. (2018). Lecture 18. COS 511: Theoretical Machine Learning. Re-
trieved January 3, 2025, from https ://www.cs .princeton.edu/courses/
archive/spring18/cos511/scribe notes/0411.pdf

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G.,
Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Diele-
man, S., Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap,
T. P., Leach, M., Kavukcuoglu, K., Graepel, T., & Hassabis, D. (2016).
Mastering the game of Go with deep neural networks and tree search. Na-
ture, 529 (7587), 484–489. https://doi.org/10.1038/NATURE16961

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanc-
tot, M., Sifre, L., Kumaran, D., Graepel, T., Lillicrap, T., Simonyan, K., &
Hassabis, D. (2018). A general reinforcement learning algorithm that mas-
ters chess, shogi, and go through self-play. Science, 362 (6419), 1140–1144.
https://doi.org/10.1126/science.aar6404

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A.,
Hubert, T., Baker, L., Lai, M., Bolton, A., Chen, Y., Lillicrap, T. P., Hui,
F., Sifre, L., van den Driessche, G., Graepel, T., & Hassabis, D. (2017).
Mastering the game of go without human knowledge. Nature, 550 (7676),
354–359. https://doi.org/10.1038/NATURE24270

Świechowski, M., Godlewski, K., Sawicki, B., & Mańdziuk, J. (2023). Monte carlo
tree search: A review of recent modifications and applications. Artificial
Intelligence Review, 56 (3), 2497–2562. https://doi.org/10.1007/s10462-
022-10228-y

https://doi.org/10.1016/0004-3702(75)90019-3
https://doi.org/10.1007/11871842_29
https://doi.org/10.1017/9781108571401
https://haipeng-luo.net/courses/CSCI699/lecture7.pdf
https://haipeng-luo.net/courses/CSCI699/lecture7.pdf
https://haipeng-luo.net/courses/CSCI699/lecture14.pdf
https://haipeng-luo.net/courses/CSCI699/lecture14.pdf
https://doi.org/10.1561/2200000038
https://www.cs.princeton.edu/courses/archive/spring18/cos511/scribe_notes/0411.pdf
https://www.cs.princeton.edu/courses/archive/spring18/cos511/scribe_notes/0411.pdf
https://doi.org/10.1038/NATURE16961
https://doi.org/10.1126/science.aar6404
https://doi.org/10.1038/NATURE24270
https://doi.org/10.1007/s10462-022-10228-y
https://doi.org/10.1007/s10462-022-10228-y

REFERENCES 44

Toosi, A., Bottino, A. G., Saboury, B., Siegel, E., & Rahmim, A. (2021). A brief
history of AI: How to prevent another winter (a critical review). PET Clin-
ics, 16 (4), 449–469. https://doi.org/10.1016/j.cpet.2021.07.001

van den Herik, H. J., Uiterwijk, J. W. H. M., & van Rijswijck, J. (2002). Games
solved: Now and in the future. Artificial Intelligence, 134 (1-2), 277–311.
https://doi.org/10.1016/S0004-3702(01)00152-7

Vovk, V. (2001). Competitive on-line statistics. International Statistical Review,
69 (2), 213–248.

https://doi.org/10.1016/j.cpet.2021.07.001
https://doi.org/10.1016/S0004-3702(01)00152-7

A PROOFS 45

A Proofs

A.1 Analysis of the first player

Proof of Lemma 1. Given three random real numbers a, b, c ∈ R, by algebraic
manipulations we derive that the following equations are all equivalent:

ca− ba2 ≤ c2

4b
4abc− 4a2b2 − c2 ≤ 0

(2ab)2 − 4abc+ c2 ≥ 0

(2ab− c)2 ≥ 0

Since the square of a real number is always positive, the last line must be true.
Therefore, the equivalent first line, which is the original statement, is also true.

Next, we want to prove Lemma 3. To this end, we first need the following
general result:

Lemma 5. Let θ, x ∈ Rn be two vectors with dimension n and let Y be a random
variable. Then we have:

(⟨θ, x⟩ − E[Y])2 = E
[
(Y − ⟨θ, x⟩)2 − (E[Y]− Y)2

]
Proof. We start from the right-hand side of the equality:

E
[
(Y − ⟨θ, x⟩)2 − (E[Y]− Y)2

]
= E

[
Y 2 − 2Y ⟨θ, x⟩+ ⟨θ, x⟩2 − E

[
Y 2
]
+ 2Y E[Y]− Y 2

]
= E

[
⟨θ, x⟩2 − 2Y ⟨θ, x⟩+ E

[
Y 2
]]

= ⟨θ, x⟩2 − 2E[Y]⟨θ, x⟩+ E
[
Y 2
]

= (⟨θ, x⟩ − E[Y])2

= (⟨θ, x⟩ − E[Y])2

Proof of Lemma 2. We start with the definition of the regret of the first player:

R̄player 1(T) = E

[
T∑
t=1

µ(wt, pt)

]
− min

w∈W
E

[
T∑
t=1

µ(w, pt)

]
In the proof below, we will sometimes leave out the minw∈W ; instead, we will

write w∗ for the argument of the minw∈W in the regret definition.

A PROOFS 46

E

[
T∑
t=1

µ(wt, pt)

]
− min

w∈W
E

[
T∑
t=1

µ(w, pt)

]

= E

[
T∑
t=1

µ(wt, pt)

]
− E

[
T∑
t=1

µ(w∗, pt)

]

= E

[
T∑
t=1

µ(wt, pt)−
T∑
t=1

µ(w∗, pt)

]

= E

 T∑
t=1

∑
i∈[K]

wi
t

∑
h∈Hi

pi,ht µ(i, h)−
T∑
t=1

∑
i∈[K]

wi
∗

∑
h∈Hi

pi,ht µ(i, h)


= E

 T∑
t=1

∑
i∈[K]

wi
t

〈
pit, µ

i
〉
−

T∑
t=1

∑
i∈[K]

wi
∗
〈
pit, µ

i
〉

= E

 T∑
t=1

∑
i∈[K]

wi
t

〈
pit, µ

i
〉
−

T∑
t=1

∑
i∈[K]

1{i = i∗}
〈
pit, µ

i
〉 (24)

= E

 T∑
t=1

∑
i∈[K]

wi
t

〈
pit, µ

i
〉
−

T∑
t=1

〈
pi

∗

t , µ
i∗
〉

= E

 T∑
t=1

∑
i∈[K]

wi
t

〈
pit, µ

i
〉
−

T∑
t=1

∑
i∈[K]

wi
t

〈
pi

∗

t , µ
i∗
〉 (25)

= E

 T∑
t=1

∑
i∈[K]

wi
t

(〈
pit, µ

i
〉
−
〈
pi

∗

t , µ
i∗
〉)

In line 24 we used the fact that the optimal distribution for player 1 will
always be to play some optimal move i∗. Moreover, in line 25 we used that wt is
a probability vector, and therefore

∑
i∈[K]w

i
t = 1.

Proof of Lemma 3. For the proof, we use Lemma 5 and the fact that the move it
played by player one is distributed according to wt. Furthermore, we use the tower
rule. The proof is then as follows:

E

 T∑
t=1

∑
i∈[K]

wi
t

(
⟨pit, µ̂i

t⟩ − ⟨pit, µi⟩
)2

A PROOFS 47

= E

[
T∑
t=1

E
[(
⟨pitt , µ̂it

t ⟩ − ⟨pitt , µit⟩
)2]]

= E

[
T∑
t=1

E
[(
⟨pitt , µ̂it

t ⟩ − E [Xt(it, ht) | it]
)2]]

= E

[
T∑
t=1

E
[
E
[(
⟨pitt , µ̂it

t ⟩ −Xt(it, ht)
)2 − (E [Xt(it, ht) | it]−Xt(it, ht))

2
∣∣∣ it]]]

= E

[
T∑
t=1

E
[
E
[(
⟨pitt , µ̂it

t ⟩ −Xt(it, ht)
)2 − (⟨pitt , µit⟩ −Xt(it, ht)

)2 ∣∣∣ it]]]

=
T∑
t=1

E
[(
⟨pitt , µ̂it

t ⟩ −Xt(it, ht)
)2 − (⟨pitt , µit⟩ −Xt(it, ht)

)2]
= E

[
T∑
t=1

(
⟨pitt , µ̂it

t ⟩ −Xt(it, ht)
)2 − (⟨pitt , µit⟩ −Xt(it, ht)

)2]

A.2 Analysis of the second player

Proof of Lemma 4. We will use the fact that there is always an optimal strategy
for the second player p that always plays a single optimal move. For each move i
by the first player, such a move must exist; we call this optimal move hi,∗.

R̄player 2(T) = max
p∈P

E

[
T∑
t=1

µ(wt, p)−
T∑
t=1

µ(wt, pt)

]

= max
p∈P

E

 T∑
t=1

∑
i∈[K]

wi
t

∑
h∈Hi

pi,hµ(i, h)−
T∑
t=1

∑
i∈[K]

wi
t

∑
h∈Hi

pi,ht µ(i, h)


= E

 T∑
t=1

∑
i∈[K]

wi
t

∑
h∈Hi

E[1{h = hi,∗}]µ(i, h)−
T∑
t=1

∑
i∈[K]

wi
t

∑
h∈Hi

E[1{h = ht}]µ(i, h)


= E

 T∑
t=1

∑
i∈[K]

wi
tµ(i, h

i,∗)−
T∑
t=1

∑
i∈[K]

wi
t

∑
h∈Hi

E[1{h = ht}]µ(i, h)


= E

 T∑
t=1

∑
i∈[K]

wi
t

∑
h∈Hi

∆i,hE[1{h = ht}]



A PROOFS 48

= E

∑
i∈[K]

T∑
t=1

E[1{i = it}]
∑
h∈Hi

∆i,h1{h = ht}


= E

∑
i∈[K]

∑
t:it=i

∑
h∈Hi

∆i,h1{h = ht}


= E

∑
i∈[K]

E

[∑
t:it=i

∑
h∈Hi

∆i,h1{ht = h}

∣∣∣∣∣{t : it = i}

] (26)

= E

∑
i∈[K]

∑
h∈Hi

∆i,hE [Th(ni)|ni]


Where in line 26 we used to tower rule by letting the outer expectation be on the
randomness in it and the inner expectation on the randomness in ht.

	Introduction
	Playing games
	Goal
	Thesis overview

	Theory
	Minimax Algorithm
	Monte Carlo tree search

	Alphago
	Multi-armed Bandits
	Regret
	UCB1
	SquareCB

	Online linear regression
	Online ridge regression

	Definitions
	Problem setting
	Bandits and minimax
	The CBT algorithm

	Analysis
	Analysis of the first player
	The regression oracle

	Analysis of the second player

	Experiments
	Methods
	Minimal game
	Tic-tac-toe
	Hyperparameters CBT
	Algorithms for comparison

	Results
	Minimal game
	Higher K

	Effect of hyperparameters
	Tic-tac-toe

	Conclusion
	Suggestions for future work

	References
	Proofs
	Analysis of the first player
	Analysis of the second player

